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Abstrakt 
Časné genové terapie založené na DNA byly testovány pro terapeutické účely, dříve či později 

se ovšem objevila řada překážek a rizik spojených s jejich využíváním, což zastavilo další 

klinické testování. Poměrně nedávno byly tyto metody nahrazeny rychle se rozvíjejícím 

genovým editováním za pomoci programovaných nukleas, které jsou schopny štěpit specifické 

sekvence DNA a tak vytvořit přesné genomové modifikace. Jako potenciální terapeutika jsou 

testovány nukleasy s motivem zinkového prstu (ZFN), dále tzv. „transcription activator-like 

effector” nukleasy (TALEN) či CRISPR/Cas9 systémy. Největším rizikem, kterému je nutné 

zabránit, jsou chybná štěpení mimo cílové sekvence. Jako nejvhodnější metoda pro aplikaci do 

buněk se jeví cílené dopravování nukleas ve formě mRNA. Nanočástice různých typů umožňují 

přenos mRNA a usnadňují tak dopravování nukleas do buněk. Tato bakalářská práce popisuje 

některé z těchto nanočástic společně s charakterizací programovaných nukleas. 
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Abstract 
Early DNA-based therapies were tested for therapeutic applications, but they sooner or later 

revealed multiple hurdles and risks preventing their use in further clinical trials. Recently, they 

have been replaced by rapidly evolving gene editing using programmed nucleases capable of 

precise genome modifications by cleaving specific DNA sequences. Zinc finger nucleases 

(ZFNs), transcription activator-like effector nucleases (TALENs) and CRISPR/Cas9 system are 

currently under investigation as potential therapeutics. However, their off-target effects must 

be controlled. Targeted delivery of nucleases in a form of mRNA seems as the most promising 

method. Various types of nanoparticles enable mRNA transfer and could be used to facilitate 

the nuclease application. Some of these nanoparticles together with characterization of the 

programmed nucleases are described in this thesis. 
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1. Introduction 

For the last decades, many experiments have been carried out to prove the concept  

of gene therapy. The initial idea of understanding the genetic basis of the problem seemed 

promising to solve the real cause of basically any genetic disease (Kay et al., 2000; Cavazzana-

Calvo et al., 2000). Several concepts, which appeared to be very efficient in research models, 

entered clinical trials. However, many of them failed with serious consequences.  

The main scheme of gene therapy was initially presented as a delivery and replacement 

of missing or damaged genes of the genome. In most of the cases, donor DNA templates were 

tested for therapeutic purposes. Besides, mRNA molecules encoding absent gene products were 

used for temporal effects. Specific challenges and dangers are associated to both of these 

methods. It can be either instability of RNA or risks of malignant insertions of DNA sequences. 

Finding suitable delivery methods also proved very challenging. The risk of potential cellular 

inflammation or cytotoxicity and immunogenicity of the transfecting agents is enormous. 

Numerous knock-out and knock-in genome modifications were generated in the past  

via insertion or homologous recombination with donor sequences, however, they were too far 

from their in vivo therapeutic applications, since the precision appeared to be quite low.  

An alternative method for gene editing was discovered recently with programmed nucleases. 

The relative simplicity of their design and their precision makes them an attractive tool.  

Therefore, a novel approach of targeted nuclease delivery, in order to edit genome in vivo, 

seems very promising and might provide a new alternative way for successful development of 

gene therapy. Nevertheless, ethical aspects about editing of human genes are concerning and 

gene editing of human germlines is prohibited in most of the countries worldwide.  
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2. DNA-based therapies  

Based on the viral capability to enter the cell or even the cell nucleus, the early methods 

of gene delivery used viral vectors.  The whole genes could be thus transported into the cells. 

They either temporarily stayed in the cell or they were permanently integrated into the genome.  

Modified viruses such as retroviruses (Cavazzana-Calvo et al., 2000), their subfamily 

lentiviruses (Kordower et al., 2000), adenoviruses (Gerdes et al., 2000) or adeno-associated 

viruses (Kay et al., 2000) were used for the initial gene delivery approaches. 

For generating such modified viral vectors, all viral genes enabling replication of their 

genome must be removed and replaced by therapeutic DNA sequences. Only the genes required 

for viral assembly or for integration into the host genome are not modified (Thomas et al., 

2003).  

The adenoviruses naturally transfer their genetic information into the cell nucleus. 

Therefore, they served as a first suitable model for delivering therapeutic genes. Nevertheless, 

their toxicity became quite an issue as a patient died after being treated with adenoviral gene 

therapy in a clinical trial in 1999. He was treated for deficiency of liver enzyme ornithine 

transcarbamylase, causing the accumulation of high ammonia concentrations in the blood and 

brain, which leads to encephalopathy and coma. He received a high dose of vector (3,8 x 1014 

particles) which activated cytokine cascade, led to disseminated intravascular coagulation, 

acute respiratory distress and finally multiorgan failure (Thomas et al., 2003). To avoid  

side-effects, such as the immune response or cellular inflammation, low concentrations of viral 

vectors with strong promoters must have been used in further cases (Gerdes et al., 2000).  

Based on the adenoviral model, adeno-associated viruses were further developed for their 

potential use as delivery vectors. They are small and simple which significantly reduces the risk 

of toxic reactions. They were used, for example, to deliver factor IX for haemophilia patients. 

(Kay et al., 2000).  

As another example, a possible gene therapy of Parkinson’s disease was examined on 

primates. Glial cell line-derived neurotrophic factor was delivered in lentiviral vectors  

into the striatum and substantia nigra of rhesus monkeys and it successfully prevented  

the neuron degradation (Kordower et al., 2000). 

Another study suggested a potential treatment for severe combined immunodeficiency 

disease (SCID). SCID patients carry a mutation for γc cytokine receptor causing a block of  
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T and natural killer (NK) lymphocytes differentiation. In a clinical trial, CD34+ cells were 

separated from the patient’s bone marrow and infected with a retroviral vectors encoding  

γc receptor. Cells with γc transgenes were then infused into the patients. This resulted  

in the effective correction of the SCID phenotype and it seemed as a promising SCID therapy 

(Cavazzana-Calvo et al., 2000).  However, three years later it was found that one of the patients 

treated by γc transgene CD34+ cells developed lymphocytosis and leukaemia as a consequence 

of the integration of the retroviral vector carrying the γc into the LMO-2 locus. The integration 

caused malignant expression of LMO-2 gene as it occurs in lymphoblastic leukaemia (Hacein-

Bey-Abina et al., 2003). This case pointed at the danger of insertional mutagenesis connected 

with the usage of retroviruses for gene transfer. 

As illustrated above, substantial research work and several relatively successful trials with 

knock-in genes for replacing the missing or damaged genes in humans had been performed.  

In addition, experiments for gene knock-outs were also a significant part of the research.  

Recombinant adeno-associated viruses were used to generate specific gene knock-outs  

in human somatic cells. They targeted, for instance, genes of colon cancer cells in vitro.  

The hypothesis assumed that these vectors generate the homologous recombination (HR) which 

leads to gene disruption (Kohli et al., 2004). However, after several studies, it was shown that 

therapeutic transgenes do not trigger HR and do not cause biallelic gene knock-outs and thus 

do not change the mutated loci and cannot be used to treat genetic disorders (Urnov et al., 2005). 

The need of alternative techniques was still urgent. 

 

3. RNA-based therapies 

The theory of gene therapy via nucleic acids encoding specific protein products included 

both DNA and RNA. At first, most of the studies focused on DNA delivery, mainly because 

the mRNA is less stable in the cell which makes it harder to use it for therapeutic purposes. 

Nonetheless, using mRNA has several advantages.   

 First, DNA must be transported into the nucleus to be transcribed and then translated 

into a functional protein, whereas, mRNA is immediately translated after entering the cell 

cytoplasm which eliminates the problem of crossing the nuclear membrane. In addition, mRNA 

does not integrate into the genome so there is no risk of insertional mutagenesis or unwanted 

multiple translations. After some time, mRNA is naturally degraded in the cell. 
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Transferred mRNA must be complete in order to be functional, which means that beside 

the therapeutic sequences, it also requires 5’ cap and 3’ poly(A)tail as well as the start and  

stop codons and untranslated terminal regions (UTR). Preparation of mRNA occurs via in vitro 

transcription and the mRNA is transfected into the cells afterwards (Sahin et al., 2014). 

Injected mRNA enters the cells via endocytosis. The cell has a protective mechanism and 

it recognizes the RNA in endosomes as possible infectious viral RNA. This causes a Toll-like 

receptor 7 signalling which can result in interferon-mediated inflammatory reaction (Diebold 

et al., 2004). 

Nonetheless, in a study using mRNA encoding luciferase as reporter gene, it was proven 

that mRNA injected directly into a mouse muscle in vivo undergoes translation. Luciferase 

expression in the cells was detectable until 60 hours after injection (Wolff et al., 1990).  

With this knowledge, possible mRNA-based therapies became more real and significant subject 

of further research. An mRNA was used mainly to substitute missing protein products or  

as a source of antigens for infection or cancer treatment. 

   The first clinical trial with mRNA started in 2001. The therapy targeted metastatic 

prostate cancer. Autologous dendritic cells (DCs) were transfected ex vivo with mRNA 

encoding prostate-specific antigen. Transfected DCs were then infused into patients which led 

to translation of mRNA and successful stimulation of T-cell-mediated antitumor immune 

response (Heiser et al., 2002). 

During ex vivo transfection by electroporation or lipofection, mRNA is kept safe  

from extracellular ribonucleases. Delivering mRNA into cells in vivo is far more challenging, 

but such treatment would be faster and could be applied in more patients.  

A preclinical animal model revealed that intranodal application of naked mRNA in vivo 

successfully triggered T-cell antitumor response due to DCs uptake of the naked mRNA and 

presentation of encoded antigens (Kreiter et al., 2010).  

However, another study about delivery of mRNA into dendritic cells indicated  

the opposite results. It was shown that mRNA encapsulated in nanoparticles was delivered  

with high efficiency, whereas the naked mRNA did not transfect any cells in vitro (Phua et al., 

2013). Some cell types can actually spontaneously take up naked mRNA, but the uptake rate  

in most cell types is just about 0,01 % of injected mRNA molecules (Sahin et al., 2014).  
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This indicates that the mRNA in nanoparticle format could facilitate the cell entry and protect 

the mRNA from degradation.  

 A new approach appeared with the development of precise nucleases. Encoded by 

mRNA, they have already entered the preclinical trials. Advances in research and the ways of 

delivery of such agents are analysed further. 

  

4. Nucleases 

Gene delivery into the cells did not prove any long-term therapeutic effect using temporary 

mRNA factors and it showed a danger of random integrations of virus-delivered genes  

into the genome. On the other hand, site-specific nucleases were found and designed to target 

mutated genes and repair the original cause of genetic or other disorders with high specificity. 

After several failures of gene therapy in clinical trials, the focus of research moved towards  

the development of precise nucleases (Gaj et al., 2013). 

Experiments with programmed nucleases showed that it is possible to design them to cleave 

desired sequences, or even substitute genes using donor vectors together with nucleases.  They 

enable to silence, insert or delete a gene of interest from genomic DNA in vitro. The goal is to 

prove the safety and possibility of doing so also in vivo and to use gene editing as a possible 

treatment for human diseases.  

The most commonly used nucleases are zinc finger nucleases (ZFNs), transcription 

activator-like effector nucleases (TALENs) and clustered regularly interspaced short 

palindromic repeats (CRISPRs) with CRISPR associated proteins (CRISPR/Cas9). They all 

cause double-strand breaks (DSB) of the DNA. The cell has its own mechanism to repair DSBs, 

which is either nonhomologous end joining (NHEJ), or homology directed repair (HDR) 

(Santiago et al., 2008). In case of HDR, the sister-chromatid is used as a template  

for homologous recombination. This usually occurs in yeasts, whereas the mammalian cells use 

NHEJ more often, because the chromatin is typically highly condensed and two sister-

chromatids are separated, making the search for homology very difficult in the cell. 

Nevertheless, during the NHEJ, exonucleases are active and produce deletions, hence, it induces 

errors in the repaired DNA sequence (Sonoda et al., 2006). 
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In order to use genome editing as a therapy for human diseases, many potential risks must 

be handled. Numerous experiments were performed to find the most suitable nuclease  

with precise genome modifications, high specificity and without off-targets and cytotoxicity.  

The known nucleases with the history of their development and current progress are described 

and compared below.  

 

4.1. Zinc fingers         

Zinc finger (ZF) is a DNA-binding motif and it is widely used by the eukaryotic cells. 

For example, most of the transcription factors binding DNA have the Cys2His2 zinc finger 

structure (Hossain et al., 2015).  ZFs were originally found in Xenopus laevis in their 

transcription factor IIIA, which contains domains binding zinc ion (Miller et al., 1985).  

 

Fig. 1 Zinc finger bound to DNA. α-helix and two β-sheets of the zinc finger are linked by a 

zinc ion (blue sphere) coordinated by two cysteine and two histidine residues. The picture was created 

by Pymol using structure of the PDB code 5egb (Patel et al., 2016). 

 

ZF consists of an α-helix and two β-sheets linked by a zinc ion, which is usually 

coordinated by two cysteine and two histidine residues (the Cys2His2 motif) (Fig. 1). Each finger 

binds 3 bp of DNA through the α-helix which is inserted into the major groove of DNA (Fig. 

1). The Cys2His2 zinc finger proteins bind specific sequences of the DNA which can be used 

for targeting designed sequence for gene editing. It is possible to form ZF to bind almost  
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any triplet and to combine those fingers to bind any desired sequence. However, adjacent 

fingers interact with each other and thus, they influence their binding specificity (Isalan et al., 

1997).  

 

4.2. Zinc finger nucleases 

Chandrasegaran et al. were the first who used the ability of ZFs to bind specific sequences 

for gene editing. They made a chimeric protein by fusion of ZFs with a catalytic domain of 

restriction endonuclease FokI type II, which makes a DSB in DNA (Fig. 2). After this fusion, 

they got the first programmed endonuclease (Kim et al., 1996). They also had to dimerize  

the protein, since the FokI works as a dimer in order to make a DSB and eventually the gene 

knockout (Kim et al., 1996). DSB caused by ZFN is typically repaired by NHEJ (Santiago  

et al., 2008). 

ZFN can be theoretically designed to bind any sequence. Libraries of various ZF domains 

were constructed and can be used as modules for further assembly of ZFN (Segal et al., 1999). 

However, the construction and selection of certain ZFN is very time- and material consuming. 

 

Fig. 2 Zinc finger nuclease. ZFN binding the DNA and causing a DSB (Adapted from Peng et 

al., 2014). 

 

ZFNs were used to make various mutants in many model organisms. For human cells,  

for example the IL2Rγ gene, carrying the X-linked severe combined immune deficiency 

mutation (SCID), was modified by designed ZFNs. Two ZFNs containing four ZF motifs each 

were used to bind DNA surrounding the SCID mutation locus. Human cells were then incubated 

with ZFNs and with a donor plasmid encoding a fragment of IL2Rγ locus carrying a silent point 
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mutation.  After 4-day incubation, the genome was mutated by ZFNs in 20 % of the cells. 

Moreover, both alleles of the gene were modified in 7 % of the cells (Urnov et al., 2005).  

Furthermore, ZFNs were designed to target CCR5 (human chemokine receptor 5) gene  

in the primary human CD4+ T lymphocytes. ZFNs targeted a sequence upstream of the natural 

CCR5Δ32 mutation which results in a HIV-1 resistance (Dean et al., 1996). After the incubation 

with ZFNs, 23 % of alleles were mutated, 7 % of the cells showed biallelic mutations. However, 

4 % of the related CCR2 gene was mutated as well showing thus quite high off-target effect 

(Perez et al., 2008). 

ZFN gene editing revealed some of their disadvantages, like the time-consuming 

preparation and their numerous off-target activities. To increase the specificity, ZFN should 

target a unique site which differs from the most closely related sequences within genome  

by at least three mismatches. Furthermore, ZFN should be designed without excess  

DNA-binding affinity and they should be used at the lowest concentration possible to decrease 

the tolerance for off-target effects. Despite the fact that this could lower the chance of  

off-targets, their prevalence makes the usage of ZFNs as a therapeutic tool still unacceptable 

(Pattanayak et al., 2011). 

 

4.3. Transcription activator-like effectors (TALEs) 

After ZFNs, another protein with the ability of binding DNA was discovered - TALE. 

TALEs were originally found in Gram-negative bacteria Xanthomonas. These bacteria were 

studied as pathogens of crop plants causing significant agriculture damage. They inject  

the effector proteins into the plant cells via type III secretion system. TALEs contain a nuclear 

localization signal, a central domain of tandem repeats for binding DNA and transcription 

activating domain. Once in the plant cell, they are translocated into the nucleus and they activate 

transcription. The specific activity of TALE is determined by their amino acid sequence and 

number of repeats (Boch et al., 2009). Each repeat unit contains two variable amino acid residue 

called repeat-variable diresidue (RVD). One repeat unit binds one specific DNA base (Moscou 

and Bogdanove, 2009) according to specific recognition code (Fig. 3). A T base is conserved 

and precedes the natural recognition sequence at 5’end and it seems to be important also for 

designing the engineered TALEs (Boch et al., 2009).  
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4.4. TALE nucleases 

Using ZFN for gene editing highlighted their propensity for non-specific off-targets. 

Since TALEs seemed to be more specific in DNA binding, an idea of creating TALE nucleases 

(TALENs) soon appeared. Analogically to ZFN, TALEs were linked to the cleavage domain of 

FokI endonuclease. Since the FokI functions as a dimer for DSB, the whole protein was 

dimerized (Fig. 3). In the study of Miller and co-workers, only TALE truncation variants were 

used in the TALEN construction for efficient gene modification (Miller et al., 2011). Other 

groups used the whole TALEN protein, nonetheless there can be a lower protein stability of 

longer protein variants (Mussolino et al., 2011) and it soon proved advantageous to use  

the truncated variant. 

 

Fig. 3 Structure of TALEN protein. TALEN dimer causing a DSB of DNA with the recognition 

code of amino acid residues binding nucleotides. FokI depicted in yellow (Adapted from Nemudryi et 

al., 2014). 

 

In contrast to ZFN, one TALEN RDV binds only one DNA base and adjacent RDVs  

do not influence each other. Therefore, TALEN monomers can be combined to create a protein 

binding basically any DNA sequence. Several methods for TALENs preparation have been 

described. For example, the Golden gate cloning method was used to generate TALENs 

(Cermak et al., 2011). TALENs were also constructed by fast ligation-based automatable  

solid-phase high-throughput (FLASH) and targeted to various human genes (Reyon et al., 

2012). Another strategy was ligation-independent cloning technique (Schmid-Burgk et al., 

2013). 
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TALENs and ZFNs were both used to target the human CCR5 gene, the co-receptor for 

HIV entering the T cell. Whereas ZFNs showed numerous off-targets at homologous CCR2 

locus, TALENs were more precise and significantly less cytotoxic. Mutation frequencies  

for ZFNs were 14 % at CCR5 and 11 % at CCR2 locus. TALENs mutated 17 % of CCR5 loci 

and only 1 % of CCR2. Nevertheless, not an insignificant number of off-targets remains, which 

is still a major risk for potential gene therapy in vivo (Mussolino et al., 2011). 

A major disadvantage of TALENs represents the big size of the genes encoding  

the nucleases, which makes it hard for a suitable delivery system. The size of TALEN cDNA 

is approximately 3 kb, whereas the size of ZFN cDNA is only 1 kb (Gupta and Musunuru, 

2014).  

 

4.5. Clustered regularly interspaced short palindromic repeats 

Since 2013, the interest of the gene editing research was shifted from ZFNs and TALENs 

to the newly (re)discovered CRISPR/Cas9 system. Even though the sequence of CRISPR was 

originally found much earlier, the function of these repeats remained unknown for many years.  

In 1987, a group of Ishino was studying Iap gene in Escherichia coli. Analysing the structure 

of the gene, they found a sequence containing five directed homologous repeats of 29 

nucleotides interspaced by 32 unique nucleotides called spacers (Ishino et al., 1987). Similar 

repeats of 21 to 37 nucleotides were later found in many diverse bacteria and Archaea species. 

To unify the nomenclature, they got their name CRISPRs.  

It was discovered that prokaryotes containing CRISPRs, contain also CRISPR-associated 

(Cas) genes. Cas genes code proteins with helicase and nucleases activity and they are always 

located next to the CRISPR locus. However, the CRISPR loci were found at different locations 

of the genome in each microorganism, which indicated that they could exist as mobile elements 

and be transferred among bacteria (Jansen et al., 2002).  

There are more subtypes of CRISPR repeats, but they are always identical for a particular 

Cas protein. Cas proteins can bind, regulate or differently interact with their DNA or expressed 

RNA repeats. Therefore, a hypothesis of existence of various CRISPR/Cas systems was 

formulated (Haft et al., 2005).  
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4.6. CRISPR/Cas system 

CRISPR/Cas system was proven to work as a bacterial natural defence mechanism against 

viral infections. It was shown that spacer sequences in CRISPR loci are homologous to various 

bacteriophage or plasmid DNA sequences. The experiment with Streptococcus thermophilus 

revealed that after viral infection of bacterium, new spacer is derived from phage DNA and 

incorporated into the CRISPR locus. The immunity during the next phage infection is provided 

via a mechanism based on RNA interference (via crRNA – transcribed CRISPR repeats  

with complementary spacers) and via Cas proteins functioning as nucleases and causing DSB 

of the phage DNA (Barrangou et al., 2007). 

Spacers in the CRISPR sequences are complementary to the phage sequences called 

protospacers. Moreover, the site-specific cleavage of protospacers is also determined by 

protospacer adjacent motif (PAM), consisting of 20 nucleotides and adjacent 5’-NGG sequence, 

located in the phage DNA (Jinek et al., 2012) (Fig. 4).  

There are three types of CRISPR/Cas systems and they differ in the crRNA transcription 

and maturation mechanism. The most important is type II, which is used for genome editing. 

Type II systems includes several different Cas proteins and they all transcribe the CRISPR 

DNA into two components: precursor of crRNA (pre-crRNA) and trans-activating crRNA 

(tracrRNA). TracrRNA is complementary to direct repeats in pre-crRNA and it helps crRNA 

maturation by activating host RNase III and Cas proteins (Deltcheva et al., 2011). 

As written above, there are more types of Cas proteins with various functions. However, 

only the Cas9 protein of CRISPR/Cas system type II, originally derived from Streptococcus 

pyogenes, showed both RNA interfering and nucleases activity. Cas9 protein sequence contains 

a McrA/HNH-nuclease and a RuvC/RNaseH-like nuclease motif. Each of these two nucleases 

cleaves one strand of dsDNA (Sapranauskas et al., 2011). Cas9 protein can thus enable  

the crRNA maturation and also target DNA cleavage.  Therefore, Cas9 protein is the one used 

for genome editing via CRISPR/Cas system.  

Normally, the tracrRNA interacts with crRNA and they form a duplex which is involved 

in the DNA cleavage via Cas9 protein. These two molecules can be fused into chimeric  

single-guided RNA (sgRNA) with crRNA at the 5’ end and tracrRNA forming a hairpin 

structure at the 3’ end (Fig. 4). The sgRNA cooperates with Cas9 protein and it can be easily 

designed to target any DNA sequence by changing only the sequence of complementary crRNA 

spacer (Jinek et al., 2012). 
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Overall, for the successful DNA cleavage and gene editing in the cell, necessary 

components of CRISPR/Cas9 system are: non-coding RNAs - tracrRNA (trans-activating 

antisense RNA providing the cleavage and thus maturation of crRNAs) and pre-crRNA as two 

molecules in prokaryotes, whereas for eukaryotes they are often fused into one molecule 

sgRNA, RNase III for maturation of crRNA (in case of prokaryotes, eukaryotic cell uses  

its own RNases), and the Cas9 protein (Nemudryi et al., 2014).  

 

A     B 

  

Fig. 4 Cas9 protein cleaving dsDNA. A: Cas9 guided via two RNA molecules: targeting crRNA, 

which forms duplex with activating tracrRNA. B: Cas9 guided by single chimeric RNA molecule 

consisting of tracrRNA and crRNA fused together (Adapted from Jinek et al., 2012). 

 

The difference in DNA editing by CRISPR/Cas9 system and TALENs and ZFNs is that 

Cas9 protein produces blunt ends while the FokI produces 5’ overhangs (Jinek et al., 2012). 

Nevertheless, it still makes DSB of DNA which is naturally repaired in mammalian cell (Cho 

et al., 2013).  

An advantage of CRISPR/Cas systems is their easier design in comparison to ZFNs and 

TALENs. Only the targeting crRNA sequence must be changed, but there is no need of 

changing the protein component (Cho et al., 2013). Furthermore, only the CRISR/Cas system 

can encode multiplexed gene disruption. Cas9 can also be transformed into nickase, generating 

only single strand breaks of the dsDNA, and facilitate the homology-directed repair (Cong et 

al., 2013). 
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The high efficiency of CRISPR/Cas9 was proven in a study with mouse embryonic stem 

cells, in which CRISPR/Cas9 targeted two genes simultaneously. Biallelic mutations in both 

targets were generated in 80 % of the cells (Wang et al., 2013). 

CRISPR/Cas9 were also used for the functional repair of cystic fibrosis transmembrane 

conductor receptor (CFTR). Intestinal stem cells were isolated from cystic fibrosis patients 

homozygous in Δ508 mutation of CFTR gene. Isolated cells were cultured to make organoids 

and then transfected with engineered CRISPR/Cas9 and donor vector encoding wild-type CFTR 

to repair the mutation. According to the reports suggesting that sgRNAs can tolerate 

mismatches in 20bp protospacer target sequence, 29 potential off-target sites were identified. 

However, no off-target mutations were found, proving the high specificity and efficiency  

of this system (Schwank et al., 2013). 

The size of the Cas9 gene (4,1 kbp) is smaller than the dimerized TALEN gene 

(approximately 6,1 kbp) which makes it highly advantageous for gene delivery (Cho et al., 

2013).  

The discovery of CRISPR/Cas9 system is one of the most important successes  

of the molecular biology of the last decades. At the time of CRISPR/Cas discovery, more 

research groups were studying the CRISPR/Cas9 for utilisation in gene editing. Three articles 

were published in the short period of time (Jinek et al., 2012; Gasiunas et al., 2012; Mali et al., 

2013).There are some disagreements about the patent rights which currently belong to Zhang 

(Mali et al., 2013), conversely, the authors of the two other articles (Gasiunas et al., 2012; Jinek 

et al., 2012) are more favoured to be awarded with the Nobel Prize. Since 2013, there have been 

a lot of further research works trying to improve CRISPRs and use them for genome editing  

in vivo. However, ethical concerns about editing of the human DNA do not allow the clinical 

application yet.  

 

5. Delivery methods 

In order to edit the cellular genome, programmed nuclease must be first delivered  

into the target cell and subsequently into its nucleus. It can be delivered as a functional protein 

– ZFNs alone, for example, can naturally penetrate through the cellular membrane due to 

positively charged zinc finger domains (Gaj et al., 2012). Moreover, a nuclear localization 

signal (NLS) can be incorporated into the ZFNs (at the N-terminus) and enable the protein  
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to cross the cell membrane and get to the nucleus with higher efficiency. Tandem NLS repeats 

usually lead to significantly improved cell-permeability and they also lower off-targets rate (Liu 

et al., 2015). On the other hand, most proteins are not able to cross the phospholipid bilayer 

without additional modifications. There is also risk of their degradation by proteases in direct 

protein transport and, secondly, even engineered nucleases in a form of protein would have 

significant immunogenicity. One should also consider that in case of CRISPR/Cas9 system, 

cotransport of protein and sgRNA would be necessary.  

A specific nuclease, in the form of a functional protein, could be also delivered  

into the target cell via various virus-like particles. Cai and co-workers used modified ZFNs and 

TALENs fused with lentiviral Gag precursors. After their delivery, they induced efficient gene 

disruption of the targeted sequences with minimal off-target effect. Additionally, the authors 

also incorporated new genes into the viral particles to replace those originally removed (Cai et 

al., 2014). 

The major advantage of nuclease delivery in the form of protein lies in the fact that they 

function during a relatively short period of time, thus minimizing the possibility of undesirable 

off-target effects. On the other hand, the process and form of delivery, especially via virus-like 

particles, brings about multiple problems related to the packaging of relatively huge protein 

molecules and the immunogenicity of the vector itself.   

 

5.1. Delivery of mRNA encoding programmed nucleases 

The majority of approaches use DNA and lately also mRNA encoding nucleases for their 

cell delivery. DNA, in contrast to mRNA and proteins, can integrate into the host genome, 

which is related to a risk of multiple translations of the nucleases and an increase of off-target 

events (Wurtele et al., 2003). There are multiple other disadvantages connected with DNA 

encoding nuclease delivery already summarized in Chapter 2.  

Quite oppositely, nucleases delivered in the form of mRNA represent a promising tool 

for gene editing. As mentioned in Chapter 3, the mRNA in nanoparticle format is transported 

into the cells with high efficiency, in contrast to the mRNA in naked format (Phua et al., 2013). 

Moreover, encapsulating the mRNA into the nanoparticle provides better stability and 
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protection against nucleases and adds the possibility of targeting. A brief review of currently 

available nanoparticles suitable for mRNA delivery is provided further. 

Briefly, the nanoparticles entering the cells should be positively charged,  

with an approximate diameter of 100 to 200 nm. The goal is to obtain nanoparticles with  

no cytotoxicity and no immunogenicity. They should also protect its mRNA cargo against 

nuclease degradation. 

 

5.1.1. Viral vectors 

TALEN genes were initially transferred via adenoviral or lentiviral vectors in the form  

of DNA (Holkers et al., 2013).  It was shown that adenoviral vectors are able to deliver 

undamaged functional TALENs into the cultured human cells. Packaging into the lentiviral 

vectors, conversely, led to recombination and rearrangements within the multiple TALE repeat 

sequences (Holkers et al., 2013), and thus lentiviral vectors are most probably unsuitable  

for TALEN-DNA delivery. However, lentiviral vectors were used to deliver mRNA encoding 

TALENs (Mock et al., 2014). These vectors contained a genetically inactivated reverse 

transcriptase which enabled delivery of intact mRNA encoding TALENs. Therefore, modified 

lentiviral vectors can be considered as a tool for therapeutic application (Mock et al., 2014).  

 

5.1.2. Lipid nanoparticles 

Lipid nanoparticles (Fig. 5) have been used for nucleic acid delivery for decades. They 

are generally used as transfection reagents for DNA or RNA into the cultured cell lines.  One 

of those transfection reagents is lipofectin, which is used for mRNA delivery. Lipofectin is  

a liposome with an incorporated synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-

trimethyl ammonium chloride. Lipofectin can transfect a wide variety of cell types, however,  

it should be mentioned that positively charged lipids are toxic. They remain a respectable 

research tool for in vitro delivery, but on the other hand, they are not suitable for in vivo 

utilisation unless modified or mixed with other molecules (Malone et al., 1989). 

Such modifications represent, for example, the lipid-enveloped pH-responsive polymer 

nanoparticles. Coated by a phospholipid bilayer, the cytotoxicity of the cationic core is 

significantly reduced. A pH-responsive poly(β-amino-ester) (PBAE) core was used to enable 

the endosomal escape of the nanoparticle by promoting endosome disruption. mRNA in this 
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system is absorbed onto the surface of the nanoparticle. While transfected into dendritic cells 

in vitro, the transfection and translation efficiency of the mRNA encoding fluorescent protein 

was approximately 30 %. In vivo, mice were intranasally injected with the same nanoparticles 

carrying mRNA. The successful expression of reporter genes was observed 6 hours after  

the injection (Su et al., 2011). This and other experiments (Islam et al., 2015) suggest that lipid 

or "liposome-based" nanoparticles could be successfully used for mRNA delivery.  

The advantage of such system is significantly reduced immunogenicity compared to virus-like 

particles and numerous possibilities for incorporating of specific targeting moieties.    

 
Fig. 5. Lipid nanoparticle for mRNA delivery. (Adapted from Islam et al., 2015). 

 

 

5.1.3. Polymeric nanoparticles 

Another type of nanoparticles suitable for mRNA delivery could be formed by a mixture 

of poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) (Fig. 6). PEI had been widely 

used for plasmid DNA delivery (again as a transfection reagent) since it can promote endosomal 

escape via proton sponge effect. However, cationic PEI is quite toxic for the cell. Blended with 

PEG, the cytotoxicity of PEI is significantly reduced and the transfection efficiency is 

enhanced.  Debus and co-workers formulated PEI-PEG copolymers with different nitrogen to 

phosphate ratios (N/P ratios) containing mRNA and they obtained stable nanoparticles with  

a diameter of approximately 200 nm, which enabled their successful cell delivery (Debus et al., 

2010). 
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Fig. 6. Structure of polyplex. Cationic polymer with mRNA forming a polyplex nanoparticle. 

(Adapted from Debus et al., 2010). 

 

Furthermore, poly(ε-caprolactone) (PCL) nanoparticles with mRNA-protamine 

hydrophilic core were generated as a new promising mRNA delivery method representing 

another possibility for mRNA therapeutic strategies. Cationic protamine binds mRNA and 

stabilizes the complex since mRNA with PCL shows negative zeta potential. The protamine 

also offers controlled pH-dependent release of nanoparticle cargo (mRNA). The nanoparticle 

is stable at pH 7.4, whereas it releases the mRNA at pH 5.0, which allows the endosomal escape. 

Moreover, PCL provides high colloidal stability, facile transport via endocytosis and low 

cytotoxicity of the nanoparticle (Palama et al., 2015). 

 

5.1.4. Messenger RNA nanoparticles 

Another alternative for mRNA delivery was recently presented as self-assembled mRNA-

nanoparticles (Kim et al., 2015). In that study, plasmid DNA was transcribed by rolling circle 

transcription (RCT) into long RNA strands encoding green fluorescent protein.  

The template plasmid DNA used for RCT contained the T7 polymerase promoter region,  

the eukaryotic ribosomal binding sequence and the coding sequence enclosed by start and  

stop codons. After approximately 20 hours, the mRNA strands from RCT entangled and  

self-assembled (Fig. 7) into positively-charged mRNA-nanoparticles of spherical shape with 

diameter of 100 to 200 nanometres. 

The main advantage of such mRNA-nanoparticles is no risk of cytotoxicity as they are 

made only from mRNA strands. Moreover, the study showed that mRNA packed  
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in mRNA-nanoparticles is protected from nucleases, and that after being introduced  

into the cell, mRNA-nanoparticles slowly undergo translation (Kim et al., 2015). Thus,  

mRNA-nanoparticles can be considered as a possible method for clinical therapy. 

 

Fig. 7. Synthesis of mRNA-nanoparticles. Rolling circle transcription generating mRNA strands 

which are further self-assembled into nanoparticles (Reprinted from Kim et al., 2015).  

 

5.1.5. Gold nanoparticles 

Gold nanoparticles have been studied mainly for DNA and siRNA delivery. Nevertheless, 

they were proven to deliver mRNA as well (Yeom et al., 2013). The nanoparticles are formed 

by a gold core with conjugated DNA oligonucleotides, which are used to anchor mRNA  

(Fig. 8).  

 

Fig. 8. Gold nanoparticle-DNA oligonucleotide conjugates. Gold core with conjugated DNA 

strands holding mRNA strands for mRNA transfection (Adapted from Islam et al., 2015). 
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Such gold nanoparticles were used to transport the BAX mRNA into human cells in vitro 

and into xenograft tumors generated in mice. The BAX protein is a pro-apoptotic factor. 

Encoded by mRNA, it was successfully translated into a functional protein in the cells and 

inhibited the tumor growth. However, more information about the delivery mechanism, 

cytotoxicity and clinical viability is needed (Yeom et al., 2013).  
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6. Conclusion 
The recently discovered system of CRISPR/Cas9 programmed nucleases seems  

as the most suitable one for genome editing. Together with TALENs, they present the most 

widely used nucleases in in vitro gene editing. Although many improvements of these nucleases 

were made to increase their precision, their off-target effects are still considered dangerous for 

in vivo studies and further research is needed to obtain full knowledge about their function,  

in order to eliminate all hazards. 

Nucleases in the form of proteins or encoding DNA or mRNA have been already 

delivered into the cells in many preclinical studies. Delivery of a large nuclease protein is very 

challenging. DNA delivery must contain transport into the nucleus and it is associated with 

risks of multiple translation of the protein and multiple deletions within the genome increasing 

thus the probability of off-targets. Hence, mRNA encoding nucleases might represent  

an appropriate choice. 

The relative instability of mRNA can be partially solved when delivered in nanoparticle. 

Packed in the nanoparticle, mRNA is protected against nucleases, which presents one advantage 

over the naked format delivery. The major advantage of the nanoparticle format is its potential 

of specific targeting. There are diverse types of nanoparticles enabling mRNA delivery.  

The main requirement is no cytotoxicity and immunogenicity. The function of nanoparticles, 

besides the prevention of mRNA degradation and the possibility of precise targeting, is also 

activating the cellular uptake and promoting the endosomal escape of the mRNA cargo. 

As already mentioned, the possibility of targeting of the nanoparticles into specific cell 

types by their surface modification, is their important aspect. Specific targeting moiety 

(antibody, small ligand,…), which is recognized by cellular receptor, can be incorporated  

in the nanoparticle. Such nanoparticles containing programmed nucleases and targeting 

moieties could significantly lower the possible off-targets of the nuclease by delivering them 

only into the “damaged” cells. However, such approaches still remain  

in the proof-of-the-concept state. 
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