Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Miroslav Kratochvil

Nizkourovnovy funkcionalni
programovaci jazyk

Katedra softwarového inzenyrstvi

Supervisor of the master thesis: RNDr. David Bednarek, Ph.D.
Study programme: Informatika

Specialization: Teoretickd informatika

Prague 2015

Dedicated to people who emit machine code directly.

I would like to thank everyone who took part in creating this thesis,
especially to the supervisor, RNDr. David Bednéarek, Ph.D., who provided
lots of practical advice that steered the thesis into this form, and
RNDr. Jan Hric and Be. Vit Sefl, who have both inspired and helped me to
several solutions of problems with type systems and functional programming.

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the
fact that the Charles University in Prague has the right to conclude a license
agreement on the use of this work as a school work pursuant to Section 60
paragraph 1 of the Copyright Act.

In ... date signature of the author

Nézev prace: Nizkoturoviiovy funkcionalni programovaci jazyk
Autor: Miroslav Kratochvil

Katedra: Katedra softwarového inzenyrstvi

Vedouci diplomové prace: RNDr. David Bednarek, Ph.D.

Abstrakt: Cilem prace je prozkoumat moznosti implementace kompilatoru
nizkoiroviového funkcionalniho jazyka. Predpokladéd se zhodnoceni teoret-
ickych vlastnosti funkciondlnich jazykt, moznych omezeni vyplyvajicich z
absence béhové podpory kédu a implementace kompilatoru jazyka, ktery
demonstruje nékteré vybrané vlastnosti.

Klicova slova: navrh programovacich jazyktu, funkcionalni programovéni,
prekladace, typovany lambda kalkulus

Title: Low-level functional programming language
Author: Miroslav Kratochvil

Department: Department of Software Engineering
Supervisor: RNDr. David Bednarek, Ph.D.

Abstract: The goal of this thesis is to explore the current possibilities
of implementation of compilers of low-level functional languages. It is
expected to evaluate theoretical possibilities of functional programming
languages, possible limitations that arise from the absence of run-time code
support in low-level environment, and to implement a language compiler that
demonstrates some chosen properties.

Keywords: programming language design, functional programming, compil-
ers, typed lambda calculus

Contents

(Introduction|

(I__Lambda calculus|

(1.1 Lambda calculus without types|
[LIT Formal definitionl
(1.1.2 T-completeness|

(1.1.3 Haltingl
(1.2 Basic type systems|

[1.2.1 Simply typed lambda calculus|
(1.2.2 System F| 00
[1.2.3 Simple Hindley-Milner system|
(1.2.4 Intersection A-calculusl
(1.3 Polymorphism and overloading]

[1.3.1 Parametric polymorphism in HM system|
[1.3.2 Overloading|
[1.3.3 Parametric overloading

[1.3.4 Principal type schemes|
(1.3.5 Haskell types|
[1.3.6 Other type systems|

Compilation of functional languages|

[2.1 Parsing and representation|

2.1.1 Desugaring|,

[2.1.2 Common conflicts in syntactical analysisf

2.2 Typeinterencel. L

221 Unification]. L
[2.2.2 'T'ype inference using Algorithm W|

2.3 Inliningl

[2.3.1 Termination and loop breakingl
[2.3.2 Code simplification|
2.4 Emitting of code] oo

2.4.1 Littingl
[2.4.2 Removing lazy evaluation|

[2.4.3 Code generators|.

10
10
13
17
19
19
21
22
23
24
25
26
26
28
30
31

[3 Low-level functional programming language]

[3.1.1 T'ypes and pointers|

[3.1.2 Partial application and lazy evaluation|

[3.1.3 Linking to other languages|

[3.1.4 Destructors
(3.2 Implementation|
[3.2.1 Syntax|.
[3.2.2 Syntactical analysis|

[3.2.3 Term storage method

[3.2.4 Code generator| . .
[3.2.50 Puilting
[3.2.6 Handling recursion|

[3.2.7 Compilation overview|.

[3.2.8 Possible extensions

Conclusion

(Bibliography|

[Appendix — Compiler usage|

51
52
92
93
55
56
o7
58
99
99
62
63
65
66
66

69

72

77

Introduction

Compilers of programming languages, used as tools for streamlining and
optimizing the communication of the programmer with the machine, have
been extensively developed since the half of 20'" century. There are various
programming languages optimized for solving different tasks on different
platforms, different efficiency constrains on time, space, expression format
or required programming proficiency.

With some generalization, currently available compilers may be sorted
into several overlapping categories by the possibilities the programming
language exposes for the programmer and the properties of resulting compiled
code form. For our reasoning we will consider following three informal
measures:

e First, what level of run-time support does the resulting code (or,
usually, the compiled program) need. This marks the languages
as being interpreted, byte-code-interpreted (or running in a VM) or
translated into machine code with or without supporting runtime.
Compare respectively languages like Scheme, Java, OCaml and C.

This runtime size is important for considerations about performance
of the language — whether it will benefit from either garbage collection
or exact memory allocation, from simple code execution by interpreter
or from compilation and heavy optimization for specific target.

e Second, what level of expressiveness does the programming language
provide. Consider, for example, a relatively simple idea of non-
deterministic solution of some puzzle implemented in PHP in contrast
to Scheme. While both languages are similar in terms of being
interpreted and having no serious type system, scheme program can
use the language features to construct straightforward, Prolog-like
backtracking using the (amb) operator [Sit], which handles the situation
in a very elegant, efficient and readable way, while the PHP program
is forced to simulate the non-determinism, backtracking and decision
points “by hand”, leaving the programmer with a lot of non-semantic
implementation-specific code that is usually hard to maintain or reuse.

For another view on expressiveness, compare C and C++ — while the
language concept is extremely similar (both have been anecdotally
entitled and used as “portable assemblers” E[), the programming

lin the case of C++, as a “portable assembler with a really exaggerated macro system”

paradigms added to C++ make it very easy to construct highly complex
programs (notably using the STL library), but some properties needed
to support the paradigms, for example the dependency of most of the
standard library on hidden implicit allocations, C++ name decoration
or the method of virtual function call prohibit those features from being
efficiently used in development of specific operating system kernels and
similar tools]

e Third, to what level is the language designed to be easily understood
and manipulated by tools that process it, most notably by compilers,
optimizers and verification tools (including humans). Apprehensive
language should have a structure that does not force the programmers
to write a code that would be hard to comprehend, prevents code
maintenance difficulties or errors resulting from code complexity;
and similarly, it should have very simple representation and internal
structure that would make it easy to process by other programs.

Functional languages are excellent from this point of view, due to
the omnipresent locality principle and controllable side effects of
constructions. Logic-based programs are easily verified for constraints
on their results, as the program sources are basically just lists of the
same applied constraints. Imperative languages do not deny such
principles, but their compilers are usually forced to expect a generalized
non-ideal case where many easy optimizations may not be readily
visible or available.

Motivation for this thesis is very simple: The separations above hint
that a generally-applicable language that combines all three properties could
be very useful; but, to the best of author’s knowledge, such programming
language currently does not exist and it is therefore necessary to create one.

Approach to the solution chosen for this thesis is to try to proceed
with the slow, successive shift of the paradigms that can be observed
on current programming languages. In last ten years, several low-level
programming languages (most notably C++, with the introduction of the
C++11 standard) have been extended to also allow many programming
primitives and styles from the functional and declarative programming.

At the same time, programming languages that are functional, logical
or meant as interpreted by design are getting various extensions that allow
them to produce high-performance code, by using some kind of language
restriction, new compiler or external conversion tool. Examples of this

20ne of the most famous opinions related to similar topic may be found in [Tor].

4

movement include the HHVM compiler for PHP [hhv], the PyPy project
[pyp], various languages with small runtime applicable for highly-performing
solutions of specific tasks (which include current JavaScript engines, see also
the Related research section for more), or, importantly, various low-level
extensions for functional languages, especially the practical improvements of
Haskell compilers and construction of several kernels based only on functional
languages.

This thesis aims to follow this development by producing a combination
of the paradigms that would fill one of the empty spaces on the language
list, by combining the functional paradigms and syntax from Haskell with
the execution and memory management model of C-like languages. The
result is expected to carry both the good properties of Haskell (for the
expressiveness and apprehensivity) and those of C and C++ (almost no run-
time requirements, and the ability to construct all the library code directly
in the languageﬂ).

Combining those paradigms is not a very straightforward process.
Functional programming usually requires some run-time support in form of
the automated memory manager and garbage collector. The aim of this thesis
is to identify exact language primitives that require garbage collection, and
either to provide a solution that runs without garbage collector, or to alter the
language so that the primitive is replaced by a less-demanding one, effectively
removing the whole need for automated memory management. The main
goal is then to provide an implementation of a compiler of a subset of the
planned language that, as a proof-of-concept, demonstrates the viability of
those results.

We can observe many specific cases where resulting programming
language could significantly improve software development. Usual points
where the needs for easy apprehension, expressiveness and performance meet
are following;:

e Common operating system kernels have to perform extremely well,
even in constrained situations or embedded hardware. Common
implementations in C-like languages that satisfy this property bring lots
of issues with code stability and security, also making any verification
hard. Examples of such situations can be seen in sel.4 movement
(especially their tools for interface definitions) or in traditional hunting
of security exploits in Linux kernel code.

e Scientific tools must be expressive and apprehensive to allow scientists
without formal education in programming run research-oriented

3 Just like in the case of STL from C++.

calculations, but implementations usually suffer from not being
optimized for running complex programs. Consider MATLAB, that,
on the one hand, implements very efficient routines (for example
for handling large matrix-structured data), but the language itself
is partially interpreted, possesses no efficient data structures and is
hard to connect with other tools because of the limited input/output
possibilities.

e Cryptography and related software requires a lot of programming from
scientists that do not have background in how non-mathematical or
non-cryptography attacks work, almost directly resulting for example
into problems like OpenSSL buffer-overflow bugs (see [LLHT10] for
another systematical approach that patches the same problem).

Having an expressive language that can provide a better separation
of software-related and cryptography-related concepts, but is able
to combine them into a highly performing package, could ease the
cooperation on security-related code and prevent human errors.

e Similar situations arise also with needs for reliable or highly available
application-specific software where the language runtime must fit and
perform optimally on a restricted or embedded hardware, but the
used language should be apprehensive enough to allow easy formal
verification (that is usually required).

Examples include automated systems for driving various dangerous
vehicles, machines, or collectively environments where errors cost
money or lives.

Related research

There has already been much research effort done on existing programming
languages that covers great amount of language features described here.

A lot of work was done on theoretical features of functional languages,
especially on various combinations of type systems and their features.
Related literature and results are referenced directly from the thesis.

Big amount of research with similar target is done in Haskell community,
producing low-level Haskell tools. Such efforts include Haskell kernels
(notably hOp, House or LightHouse, see for example [HJLT05]), research
on memory safety (notably the dissertation thesis of Rebekah Leslie [Les1I]
covering the gap from safe to unsafe memory by simple operation isolation)

6

and functional generators of safe non-functional code (for example the Atom
domain-specific language).

Habit language [HASI0] is a project of Portland State university HASP
group, that states the need for similar language, although choosing a little
different feature set than this thesis. Most recent publications from the
project discuss the language features and provide a clear specification for
implementation. To the best of author’s knowledge, no implementation of
Habit is available yet.

Many “mini-languages” that target similar environments have also
emerged in last decades. These include Rust, clean, Nim language, and lots
of related effortsE] Such languages usually bring interesting new concepts
and views, but almost all require heavy runtime support.

Thesis layout

First chapter of the thesis is partly a crash-course to the lambda calculus
intended for a reader with no background in actual functional programming,
and partly a quick overview of several type systems that are usually not a
part of lambda-calculus courses. We revisit some basic definitions and results
about the calculus, especially the definitions that will be used later for the
description of the new language, provide a reader with some insight about
the reasons of undecidability of several associated problems, and explain brief
details about the common type systems.

Details about inner workings of compilers of functional languages
are presented in the second chapter, including complete algorithms and
discussion about related difficulties. The chapter is intended as a complete
overview of the compiling process, connecting the whole chain of operations
from the input program to resulting generated code.

Approach to the construction of the low-level functional language, along
with details concerning the implementation of proof-of-concept compiler that
processes the simple functional language into low-level code can be found in
the third chapter.

Appendix of the thesis contains a brief tutorial to usage and modification
of the compiler.

4Not very long ago, even the widely popular Ruby was a mini-language.

1. Lambda calculus

This chapter is intended as a quick, condensed and partly incomplete course
to the basics of lambda calculus, serving as a reference for readers not
experienced in the topic. The rest of the readers may skip to the second half
of the chapter, starting by section that describes several type systems
and concepts that were developed for practical programming.

Lambda calculus was introduced by Church [Chu85] as a tool for describ-
ing foundations of logic and mathematics, especially for further generalization
of the concept of computable functions as seen in computability theory.

Simplicity of the syntax and several strong properties of the system make
it an excellent choice for programming language modeling. Although there
is little to be gained from actual lambda calculus implementation, there are
many interesting properties easily proven on the original simple system that,
as shown later in this thesis, persist even when enriching the system with
various primitives to enable practical usage.

The calculus itself is a term-rewriting system that works with abstractions
and applications (similar to function body and function call from common
programming systems). Abstraction, as the creation of simple anonymous
function with parameter is denoted by Az.Y, and application, written A B
is a “call” of this function that replaces all occurrences of the abstracted
parameter in the abstraction A by supplied term B.

Example computations on lambda calculus enriched by a common set of
integer constants, symbols and equalities, together with its specific reduction
—», look very intuitive:

(Ax.z)0 =, 0

Ay.Azy+(x-2)) 53—y, (A5 +(x-2)) 3= 5+ (3-2) =y, 11

In this section, we formally define the lambda calculus, show several
important properties that are possible to prove, describe typed lambda
calculi and several techniques that aid using lambda calculus in common
programming environments.

1.1 Lambda calculus without types

1.1.1 Formal definition

A-terms

Definition 1.1 (A-term). Given a set of variables x;, A-terms are defined
recursively:

e Fvery variable x; is a A-term,
o ift is A-term, then (Axz;.t) is A\-term, called \-abstraction,
e ift,s are \-terms, then (t s) is A-term called A-application.

Definition is usually shortened to a very simple formal grammar, for a
language A of A-terms:

V= wolvr|vg] - - -

A== V[(AV.A)|(A A)

For brevity, all terms mentioned from this in this thesis will be implicitly
considered A-terms, if not specified otherwise. Also, following shortcuts and
associativity rules are commonly used:

Azy. A = Ax.(Ay.A)
ABC = (A B) C

Substitution

Free variable is intuitively a variable that is not bound by any abstraction.

Definition 1.2 (Free variables). Set of free variables free(t) of term t is
defined recursively on the structure of the term:

e [ft is a variable v;, then free(t) = {v;},

o for application, t = A B = free(t) = free(A) U free(B),

e for abstraction, t = (\v;.A) = free(t) = free(A) \ {v;}.
If a variable belongs to free(t), it is called free in t.

10

Substitution is an operation that replaces all occurrences of a variable in
the term by some other term. Some care must be taken not to overwrite or
produce bound variables, as such substitution might change the semantics of
the term.

Definition 1.3 (Substitution). If variable x does not occur free in term S,
the result of substituting the variable x by term S in the term T s denoted
as T|x := S| and is defined inductively on the structure of T' as follows:

o (\y.A)x :=95] = (\y.Alz :=S)) if x and y are different and y is not
free in S,

o (AB)x:=5]=A[x:=S5] Bz :=19].

In the fourth case, when substitution would fail because of free-variable
check, a ‘variable conversion’ can be employed: One can find some variable
v; that is not free in both A and S, and continue the substitution on
(A Aly = vi][x == 9]).

Similar concept is usually called &—conversionﬂ basically stating that
Az.A = \y. Az := y]. Most current systems simply avoid name collision and
(costly) free-variable checking and conversion by assigning unique names to
all captured variables before anything is done with the lambda program by
running one “global” a-conversion.

Theorem 1.1 (Substitution lemma). Order of the substitutions is not
important, specifically

(VA, B,C)A[x := B]ly := C] = Aly := C][z := Bly := C]]

Proof. By induction on the structure of term A.]

I a-conversion was originally included as a first rule in A-calculus evaluation ruleset.

Today it is usually omitted in most descriptions, leaving a visible remain in the fact that
[B-reduction is named only after the second letter of the alphabet.

11

[-conversion

[-conversion is the basic evaluation rule of lambda calculus, giving semantic
meaning to both applications and abstractions.

Axiom 1.1 (S-conversion).
(Az.A) B = Az := B]

For completeness and brevity of reasoning that will follow, the usual set
of equality axioms can be easily extended with following rules:

M=N = N=M
— MZ=NZ
= ZM =7ZN
= o.M = x.N

n-conversion is not important for actual computation, but can vastly
simplify situations in functional language optimization. E|

Axiom 1.2 (n-conversion).
(Ar.Az) = A

Traditionally, the terms that can be used as functions are called
combinators. Commonly used combinators include the identity I = Az.z,
selection K = Azy.x or substitution S =)\xyz.xz(yz)ﬁ Very-well-known Y
combinator serves as a rather useful way to work with recursive functions:

Theorem 1.2 (Fixed-point). For each A-combinator F there exists a fized
point X so that X = FX. []

Proof. Take Y = (Af.(\x.f(zz))(Az.f(zx))) and set X =Y F.
Then

X =YF = (M\x.F(zzx))(Az.F(zx))

F
F(YF)=FX

O

2 Constructions that do not require n-conversion are usually called “point-free” [CP04].

3SKI calculus created only from the mentioned three combinators is Turing-complete.

4The fixed-point works “the other way” than the fixed points known from real analysis.
FX does actually not reduce to X (at least not in general case), but the reduction of X
generates the bodies of given F.

12

1.1.2 T-completeness

In this section we will show that lambda calculus can be used to compute
any recursively enumerable function. We will use a reduction to traditional
arithmetic function system.

Because of the nature of Church numerals defined below, we will use
following shortcut for multiple applications on terms A and B:

AB =B
A'B = A"YAB)

Church numerals

Consider a set of constants cg, cq,... that are defined as follows:

c, = Afx.f'x
Theorem 1.3 (J. B. Rosser). There are arithmetic combinators Ay, A, A,
such that

Aic,Cp = Capp
AsCaCh = Cap
b#0 = A.c,Cp = Cyp
Proof. Reference to the detailed proof can be obtained in [BDS13, Proposi-

tion 2.2.2].
First, observe that

l. (cpx)™y = ™™y, by induction on m, for m = 0 the equality holds
as y = y. Then, for m + 1, we can derive (c,z)" ™y = c,(c,2)"y =
Cn$(xmny) — l.nl,mny — $(m+1)ny.

2. (cp)™x = ¢, mx, by the exactly same induction with the result rewritten
to Church form.

We can now define the combinators as
AL = Azypq.zp(ypq)
A, = \ryz.x(yz)
A. = dxy.yx
A, works by induction on b parameter. A, works correctly exactly by
using the equation 1.

Using the equation 2, we can show that A.c,c, = cyc, = Azv.cl'lz =
Ax.c,mx, which is equal to c,= by n-conversion.]

13

Recursive functions

Partial recursive functions are usually defined as mappings N* — N and
constructed from the six basic operations (U:, S, Z, composition, primitive
recursion and minimization). This system of arithmetically recursive function
can be used to define any Turing-computable function. Following proof was
first shown in [K*36].

We will show how it is possible to A-define any such function by simple
rewriting of their definitions. In the rewriting process, we will substitute any
natural numbers used by their corresponding Church numerals and construct
the (informally specified) homomorphism from the algebra made of natural
numbers and arithmetic functions to the one made of corresponding numerals
and A-terms.

Initial functions are defined and A-defined as follows:

Z(n)=0—Z=Ar.cy
Sn)=n+1—-5S=A4A.¢

i i
Up(ny,...,nk) =n; = Ul = A\r1xg ... 2.5

Composition of functions g and hq, ..., hg, if they are already A-defined
as G and Hy, ..., Hy, is rewrittenE] as

F(R) = g (R), ho(R), . . ., (7)) — F = A&.G(H\Z)(HaT) . . . (Hy7)

Primitive recursion is defined as a “for loop” with supporting functions
g and h:

f(ov ﬁ) = g(ﬁ)
f(k+1,7) = h(f(k,n),7)

For the purpose of following needed functional programming we define
several simple control structures:

e Boolean types as true = K and false = Kf].

e if construct - for some Boolean B, we will write if B then T else I
as BTF.

5Sequences like x4, ..., z; are shortened to vector & as usual.
5K, = \zy.y

14

e Pair [A, B] is constructed as A\x.zAB, so that [A, Bltrue = A and
[A, Blfalse = B.

e Zero-check is constructed as zero = Az.z(true false)true. Obviously,
zero ¢y = false and (Vi)zero c;;; = true.

Primitive recursive function f is then A\-defined from already defined G
and H in several steps!|

e First, we create a combinator 7' that computes one iteration of the
cycle, thus produces a pair k+ 1, f(k + 1) from k, f(k). Take

T = Xa.[S(a true), H(a false)(a true)]

If we “call” this T on a pair [y, Cp(), it visibly increments the first
numeral, and correctly calls H on the second numeral.

e We take T" and copy it k£ times by numeral iteration, thus receiving

[Ck7 Fck] =T* [C07 Cf(o)] = CkT[COv Cf(O)]

e After adding G instead of Fcy, the result is picked from the pair by
false, and the iterator for k is abstracted to get the final A\-definition
of f:

F = Mk.kTcy, Glfalse

Minimization, needed for definition of all partial recursive functions,
cannot be defined by simple iteration — possible infinite iteration would
require the impossible infinite term. Instead, we employ the fixpoint
combinator Y in following lemma to produce and correctly use an endless
stream of function bodies.

Lemma 1.1 (Context lemma). For each term C with free variables f and x

(3F)(VX)FX = C[f = Fllx == X]

"Note that parameters 7@ of G and H were omitted for brevity, but as they are constant
through whole computation, adding them as additional parameters to the result is done
simply by prepending A7.

15

Proof. We set F as follows, and continue to evaluate the substituted term to
get C' in the correct form.

F=Y(\fz.0)
— F=(\fz.O)F (= (Afz.C)Y(Afz.C))
— F=)e.Clf:=F|
= Fuv=C[f:= F|[z =]
= (VX)FX =C|f := Fl[z := X]

]

Although it looks like a simple substitution, context lemma gives a
straightforward way to circumvent the basic limitation of substitution —
here, the “substituted” value of f can contain free occurrences of f itself.
Producing a fully substituted term is impossible in that case (since it would
have to be infinite), but producing a term that would behave equally under
[-reduction is possible.

That gives a straightforward way to create a recursive (in terms of self-
reference) function by taking the body of the function and replacing all its
self-referencing variables with the same function body. Note that context
lemma works flawlessly also for multi-parameter function, as z and X in the
lemma above can be extended to # and X without any impact on the proof.

For the case of recursive minimization f(7) = u,{g(z,7) = 0}, we can
easily A-define the function using the tools described earlier:

e With context lemma, we can construct recursive H such that
H = \zii.(zero Gzii) x (H(Sx)n)
Note the if-then-else construction using the Boolean type.

e Then f is defined by
F =)\ﬁHCoﬁ

Theorem 1.4. Lambda calculus is Turing-complete.

Proof. Any function from the Turing-complete arithmetic recursion system
can be inductively translated to A-definable terms as shown above and then
evaluated in A-calculus. O

Besides the proof for the computation power of lambda calculus, the
completeness theorem gives an interesting insight: Using the fact that the
converse statement — that the A-terms can be enumerated by Turing machine
— also holds, we easily show that the notions ‘recursively computable’, ‘\-
definable’ and ‘Turing-computable’ are equivalent.

16

1.1.3 Halting

Obviously, the ability to simulate a Turing machine implies that determining
whether evaluation of given A-term will halt is an undecidable problem. One
of the most useful undecidability results is that of Church, proving that A-
calculus is also an undecidable theory:

Theorem 1.5 (Church). For any A-term X, the set
{M|M =) true}
18 not recursive.

Proof. See (LINK church). For our purposes, almost identical result can be
obtained from the set {M|M =, ¢y =, false} which is equivalent to the
non-recursive arithmetical set of all programs that evaluate to zero.]

For an easy demonstration of halting properties of “\-programs”, compare
following terms:

e (Az.z) can not be evaluated by any conversion rule, so we assume that
it is the result of the evaluation that halted.

e) = (Azr.zz)(Ax.zz) has only one possible applicable evaluation (/-
conversion of the application), which leads back to 2 and repeated
evaluation will never halt.

o (\r.xzz)(Ax.zzx) will not halt, and the evaluation will never come to
the same state twice.

e With P = [Az.z,Q]true the situation gets more complicated. This
program may halt — if the evaluation engine chooses the correct
application, the result is (Az.x). If the evaluation engine always tried
the application in €2, it would never halt.

Normalization

Formal definition of what exactly is a “result” of computation is traditionally
given by -normal forms.

Definition 1.4 (S-nf). A-term in the form (Ax.A) B is called a [-redex.
A-term that doesn’t contain a [-redex is called to be a [-normal form.

Definition 1.5 (S-reduction). Binary relation —g (called “S-reduces in one
step to”) is defined recursively as

17

o (\2.A)B —4 Blz := A
o M =5 N = (ZM =5 ZN)A(MZ =5 NZ)AN(Az.M) =5 (Az.N)).

— g5 (“B-reduces to”) is defined as a transitive and reflexive closure of — 5.
=3 (“is B-convertible to”) is defined as a transitive and symmetric closure

of 3.
For example,
e (Azx.x)y has f-nf y,
o (\r.z)y =5 (A\x.y)z.

Definition 1.6. Term X is called normalizing if there exists some B-nf Y
so that X —3 Y. This is usually called “X has a normal form”.
Term 1s strongly normalizing if all possible reduction paths lead to B-nf.

For example, the aforementioned term [(Az.x), Q]true is normalizing, and
I(xI(xI(xlx))) is strongly normalizing, because no matter in which order the
I'’s are reduced, there is always a (-nf result zxxz.

Conditions necessary for the term to be (strongly) normalizing are best
stated by A-type systems later in this thesis. For simply normalizing terms,
following theorem due to Curry gives a reduction strategy that finds the S-nf.

Theorem 1.6 (Leftmost normalization strategy). If A is normalizing, it can
be evaluated to B-nf by iterated reduction of its leftmost redex.

Proof. Formal proof is given in [BDSI3| Section 13.2.2].

Informally, each leftmost redex must be reduced at some point (without
the reduction, it would never disappear because it can not be discarded by
any other redex on the left) and, by substitution lemma, there is no point
in postponing its reduction after the reduction of any non-leftmost redexes,
because it will never aid the possibility of halting.]

Given strategy is usually called lazy evaluation. Note that although many
functional programming languages claim to use lazy evaluation, in most cases
the extent of applied laziness is limited by practical considerations — in most
cases, lazy evaluation leads to a lot of substitutions and large temporary
structures. Other evaluation methods (for example the “leftmost primitive
first” from Scheme) obey locality principles and do not put such stress on
the term-rewriting engine.

18

1.2 Basic type systems

Informally, type systems are collections of rules used to assign and prove
properties on the program code, in our case on A-terms. The properties
assigned may vary by the type system used, but they usually include

e making a decision that the program is without (certain kinds of) errors
and will not fail at runtime

e checking that the program will terminate by strong normalization
theorems,

e assigning some semantic meaning represented by a type to a program,
and machine-checking if the program can have the expected type

e formalization of theorem proving methodsE]

1.2.1 Simply typed lambda calculus

Types in lambda calculus are usually assigned by one of two syntactical
systems, Curry and Church typing.

Definition 1.7 (Typing terms). Syntax for Curry typing adds following type
variables and type expressions

V.v=m,m,...
T:=V,|T -T

Type statement of form X : 7 where X € A and 7 € T carries the
meaning that the term X has type 7.

Declaration is a type statement where X is an atomic variable.

Basis is a set of declarations.

Definition 1.8 (Curry typing). We say that statement X : 7 is derivable
from a basis T in Curry typing, written as I' = X : 7] if it can be produced
by following rules:

(x:7)el = I'ta:7 (start)
'FX:(6—=7),Y:ic = TH(XY):7 (— elimination)
Frv{z:o}FF:7 = T'F(Ae.F):0—7 (— introduction)
8As seen for example in AP system that roughly corresponds with AUTOMATH
software [Bru87].
9Usually the F symbol is accompanied by some subscript that identifies the typing

system used to derive the statement. For brevity we omit the subscripts in all places of
this thesis where the system used is clearly identifiable from the context.

19

Church-style typing is based on a slight change to the syntax of the
calculus: instead of A-terms, we use A-pseudoterms that carry a type
constraint for each abstracted variable — given 7 € T (same set of types
as in Curry case), a A-abstraction in Church-based typed system that only
“accepts” the applied type 7 is denoted by

e T.F

Theorem 1.7 (Equivalence of Church and Curry typing). Define a map ¢
to omit the type constraints as

o(Ar: T.A) = Ar. A
Then, for each Church-term A,
I'Exchuren AT = T'Fx_cumy O(A) 1 7
and for each Curry-term B
L'Fx_cury B:7 = (3C)0(C) = BAT Fa_churen ¢(C) = 7
Moreover, the type inhabitation is preserved:
(V1 € T)((HA) Fa—cury A T <= (3B) Fa_churer B : 7')

Proof. By induction on structure of A and B. Inhabitation proof is then
immediate. O

Forcing the abstractions to carry their type is not particularly convenient
for actual programming work — although it has been established as a rule
in traditional programming languages (most similar example are the C
function type annotations), functional programming languages seldom use
any Church-based system. On the other side, type inference in the presence
of type annotations is very easy, as the only task left for the inference system
is to check if the programmer did not write any conflicting annotations.
Programming languages that use pure type systems (discussed later in section
1.3.6]) usually greatly exploit this feature.

Following theorem formalizes the most important (and very intuitive)
reason of why are the types are useful — if any typed term is S-reduced, its
type is guaranteed to stay the same:

20

Theorem 1.8 (Subject reduction). If M —3 N, then
'-M:7 = I'EN:T

Proof. Corollary on the beta-reduction rule. See [BDS13, Proposition
3.2.11]. O

Theorem 1.9 (Strong normalization). If ' = X : 7 then X is strongly
normalizing.

Proof. There are several methods to prove the strong normalization theorem.
Those that extend (weak) normalization can be found in [Klo80]. Method
of “computable terms” by Tait [Tai67] was later used to prove the Godel’s
System T normalization. Usual method to prove the normalization that also
extends to System F and several other systems is the one using the saturated
sets and the soundness theorem by Girard in [Gir72]. The proof can be found
in [BDS13| Definition 4.3.1 to Theorem 4.3.6] O

1.2.2 System F

System F, also known as A2 system, polymorphic A-calculus or similar,
was developed independently by Girard [Gir72] for work with second-order
intuitionistic logic, and Reynolds [Rey74] for simplification of functional
programming. From the programming side, basic idea for the system is in
formalization of the “for each type” statements that are implicitly thought
of in simple A-typing. Consider a term with type

ANXyYy.x T =0 —>T

A2 system notices that, for computation with type systems, a slightly formal
problem of whether 7 or ¢ is a free or captured variable might arise, and
explicitly captures the fact that the combinator is usable for all types:

\ey.x NTO.T >0 — T
Definition 1.9 (System F). Formally, type language for A2 is modified as
T:=V|T - TNV,..T

and the type derivation rules of simply-typed \-calculus are extended by
following rules:

I'FA: (V7o) = I'FA:o[r:=p (V-elimination)
'tA:7 = I'FA:Vor (V-introduction)

21

For example, I has type V7.7 — 7, Church numerals that work as iterators
of any function have type Vr.(r — 7) — (1 — 7)Y and w = (Az.2z) can
have types (V7.(Vo.0) — 1), (V7.(Vo.0) — (7 — 7)) and (V7.7) — (V7.7).

System F is strongly normalizing (proof is done in a similar manner
as for simply-typed A-calculus), but simpler variants are used in current
programming languages for the purpose of efficient type-checking (decision
whether certain term has given type) and typability (whether the term has
some type), which are believed to be undecidable for A2. [BDS13, Remark
4.4.1]

1.2.3 Simple Hindley-Milner system

HM system is basically the A2 system with a slight restriction on head-only
placement of V in type terms. Based on the presence of V it then distinguishes
monotypes and polytypes. “Full” HM system as defined by authors also
supports several other programming structures and shall be defined later.

Definition 1.10 (Hindley-Milner system). Type language of HM system is
defined by grammar

T:=P
M:=V, M —M (monotype)
P = M|VV,.P (polytype)
For m < n and terms aq,..., 0, B1,...,Bm, if T is the result of
substitution
T =o0olag = F1] - [am = Bl

and each [3; is not free in o, we say that T is more special than o and write
Vaq...0n.0 <VpB1...0n.T

Type deriwation rules are those of simply-typed lambda calculus extended
by following two:

'-X:7ho<7 = TFX:0 (specialization)
P'FEX:7Aoisnot freeinl — 'k X :Vor (generalization)

Strongest reason to use the HM system is its computational simplicity
allowed by the V placement restriction: The problems of type-checking and

108econd pair of parentheses is not necessary, but makes the fact that the result is again
used as a function visible.

22

typability are solved by Algorithm W (in section that finds the most
general typelﬂ for any term in time almost linear to the term length (although
the problem is actually DEXPTIME-complete, as shown in [Mai90]). Type
inhabitation problem is equivalent to the inhabitation problem in simply-
typed A-calculus.

Because most programming languages do not need complex types enabled
by A2 (for a good reason), HM has been used many times as a basis for various
specific type systems, including those of ML and Haskell.

1.2.4 Intersection \-calculus

The system AN (also known as Torino calculus for strong correlations in the
geographical locations of the authors), was introduced mainly by Coppo and
Dezani (see, for example, Coppo, Dezani, Barendregt 1983).

Definition 1.11 (Intersection types). Type terms for AN are defined by
T:=V|wTNT|T =T
Partial ordering < on types from T is defined by following axioms:

T<Ww
w<w—w
(r—=p)N(T—=0)< (= (pNo))
(tno) <7
(tNno)<o
T<oAT<p = 7<(0Np)
c<dNT<T = o =s717<0=>7

IN

Derivation rules for XN are those of simply typed lambda calculus extended

by following three.E

'EM:w (w-introduction)
'EM:7ANT<0c = TFM:o (generalization)
'EM:tNo <= T'EFM:0ANM:71 (N-rules)

HDefinition: Each type that the expression can have can be specialized to its most
general type.

12Traditionally the N-rules are written as two separate implications for introduction and
elimination.

23

Intersection calculus brings many interesting properties. First one is
obvious, it allows to state that a combination of properties is expected from
a A\-term. Typical example is the typing

(Az.zz):(cN(oc—71)) =T

basically stating that from the programmer’s side, the “argument” of the
lambda is required to be able to function both as a “primitive type” ¢ and a
map o — 7, returning 7. Similar property will be used later in this thesis for
making some sense in computations of types of ad-hoc overloaded functions.

Using the w, the AN system is able to type all terms, which can bring
some system into the situations when programs have to handle otherwise
untypable terms. On the other hand, this simplification makes the problem
of typability of terms trivially solvable (any term has the w type). Interesting
thing happens in a modified system called AN~ that does not include w type
and its rules — not only the strong normalization holds for AN~, but the other
direction of the implication also holds:

Theorem 1.10 (Strong normalization of intersection). Term is typable in
AT if and only if it is strongly normalizing.

Proof. Theorem was proven independently by van Bakel and Krivine, see for
example [VB92]. O

1.3 Polymorphism and overloading

Both polymorphism and overloading refer to the concepts where one code has
multiple semantic meanings, depending on the context in which it is used.
Exact definition varies wildly by programming environment, language and
literature. We can use following informal definitions:

Definition 1.12 (Polymorphism). Term is called polymorphic if more than
one type can be derived for it.

Note that all terms in calculi without atomic type constructors (as defined
below) are polymorphic. The distinction made here is useful only for practical
languages, where, for example, the logical operators A and V are usually not
polymorphic, owning only a single typing (bool — bool — bool). On the
contrary, (Az.z) is polymorphic, with type Vo.c — o.

Definition 1.13 (Overloading). Identifier is called overloaded if it possesses
multiple definitions, and a different definition may be used at each usage.

24

Examples of overloading can not be found in simple A-calculus since it
doesn’t allow multiple definitions of the same identifier. Functional languages
usually exploit some kind of let construction for this purpose, and select the
definition to be used based on inferred type.

As there are many algorithms that work correctly on many types of inputs
(thus they are polymorphic and the primitives they use to manipulate input
data may be overloaded), type systems of modern languages are required to
handle such cases accordingly. The idea of polymorphism has already been
captured in A2 and HM type systems. For completeness, we will extend
the HM system here with the let construction and primitive types to allow
practical programming and avoid typing of the fixpoint combinator.

1.3.1 Parametric polymorphism in HM system

Lambda calculus is not a very good system to be directly compiled into
machine instructions. Consider a case of a function + that is meant to work
with integer numbers and has a general type of 0 — o — o (possibly denoted
with Vo) — there is clearly some expectation to see the assembly instruction
add in resulting code, but such compiled function can no longer be used for
any other type, breaking the validity of previous type assumption. For this
purpose, constant types and type constructors were created.

Similar problems arise with the usage of fixpoint combinator. The “self-
generating” code it produces may be actually meant to do very simple
things (while-like loop or a recursive call) but the reconstruction of the
part of the code that actually loops or calls itself requires advanced pattern
matching techniques to find the looping code, especially if some parts of the
fixpoint combinator definition were already evaluated. Usual approach to this
problem is the introduction of let-syntax{"| that is meant to handle recursion
on its own, making any use of fixpoints unnecessary. More information on
handling the recursion in presence of let can be found in section [1.3.5]

We will enrich the previous definition of HM system with type
constructors and let. The new language will be defined by

A = V|AA|NV.Allet V = Ain A
and its types by '
——
T ::=V,|Co|C; V.. . Vi |T =T

where C' is a set of type constants.

13In current programming languages there are several types of let operators — here we
discuss only the recursion-enabling variant, as let from Haskell or letrec from Scheme.

25

Inference rules are extended by

'FX:7ANo<7ATU{z:0}FY:p =
— I'F(letv=XinY):p

Note that the type generalization is considered only for variables in let
construction.

By adding the let, we have enabled a broad range of polymorphic
constructions usable for practical programming. Note that the addition

didn’t influence the complexity of type inference — the proof from the original
HM system still holds.

1.3.2 Overloading

Overloaded identifiers are effectively those that choose their semantic
meaning by the context they are used in — such situations usually include
calling the same function on various types or using the same constant in
different expressions.

The task of choosing the right object to actually use in the expression,
usually solved by the compiler or interpreter, is very complex in the naive
case when the types of overloaded identifiers may actually be unrestricted.
Basic consequence of such language expansion is the loss of the principal
type property — the fact that each expression has a single, most general type
guaranteed easy manipulation of type expressions in HM and similar systems.

Unrestricted overloading is even proven to be NP-complete. Full proof is
done by a reduction to 3-SAT, and can be found in [Pall2].

For this reason, overloading systems are usually constrained on what they
can do. A simple example of this is the C++ language, that (omitting some
logic on automatic type conversion) states that a pair of functions with the
same overloaded name and same types of parameters must not exist, because
those would be either indistinguishable (in case the return type would also
be the same) or would lead to non-determinism of type assignment if the
return types would differ. In functional languages, selection of the overloaded
function by return type is quite useful, as demonstrated for example in
Haskell — for the simplest instance, observe its variant of “type conversions”,
usually named like fromInt that also elegantly express a constraint on the
converted type.

1.3.3 Parametric overloading

Parametric overloading was first fully formalized in the work of Kaes [Kae8§].
Basic principle is that all definitions of an overloaded identifier must bear a

26

type that conforms with the type scheme associated with the type. Type
scheme itself is a type definition with “holes” that are assumed to have the
same type.

Definition 1.14 (Type scheme). Let $ be a special symbol not found in type
variables. Then w is called overloading scheme if and only if

W=w1 XWy X+ X Wy, = Wni1
where each w; € T U {$}.
Typical examples of the overloading schemes include
e $ x $ — bool for comparison functions
e § — int for a discrete measure (e.g. list length)
e § — § for identity functions, successor and predecessor operators
e x — § for binary operators on closed domains (+)

Overloading assumptions are then defined to accommodate the identifier
that is being overloaded, its type scheme, and the list of types the scheme
is applicable to. For example, the overloading assumption for equality test
may look like:

(=,% x $ = bool, {int, real, list(7—))})

It specifies that integer, real and list types may be tested, and that the
internal type of the list must be again a subject to equality tests.

User-definable parametric overloading

The overloading assumptions may be defined by the programmer. Kaes uses
a simple extension of the HM system, where syntax

letop z : 7 in A
defines a type scheme 7 for the identifier x, and
y: 7 extends x in A

assigns an overloaded definition y of type 7 to x.
Type inference for parametric overloading basically follows the structure
of HM system, with several exceptions:

27

e New syntax correctly sets overloading assumptions for contained code,

e for each identifier, the basis I contains the assumptions for all contained
types (in the HM system the typing assumptions basically take the
form of polytypes, carrying no information about possible application
restrictions),

e the usual Martelli-Montanari unification algorithm [MMS&2] is modified
— the step that unifies a variable with occurrence-checked term is
extended to also fail in the case when the overloading assumption of
the variable does not contain the type that it is being unified with.

Note that computational complexity of the type inference in presence of
parametric overloading stays in the same class as for HM system.

1.3.4 Principal type schemes

The possibilities of parametric overloading are limited in many ways, most
notably in the presence of single $ in the type scheme, lack of overloaded
constant{'] and absence of subtyping, which is defined as follows.

Definition 1.15 (Subtyping). The fact that the type T is a subtype of type
o is marked by T C o, meaning that for any type term t(z) dependent on its
parameter x, (VA)A : t(1) = A :t(o).

Work of Smith [Smi94] describes a more advanced system that supports
both subtyping and overloading in a relatively unrestricted form. Used type
system defines a generalized version of type schemes and directly uses the
popular notation for parametric type constructors.[rj

Definition 1.16 (Unquantified types). Given a set of type variables T; and
type constructors &;, the set of unquantified types is defined as

T =711 — n|¢(r,m,...)

Definition 1.17 (Quantified type scheme). If 7; are type variables and C;
are constraints of the form either x : 7 or 7, C 7, then a quantified type
scheme o with the set of polymorphic variables subjected to the constraints is
denoted by syntax

V7, ..., with Cy,....C,, . 0

14 Constants can still be overloaded by a non-systematic workaround that produces the
constant from unary function with dummy argument.
15Generalized and versions of aforementioned dependent types, e.g. the list(7).

28

Given system allows to enrich the typings from the parametric overloading
with many new useful constructions.

Simplest example is the function Afz.f(fz): In traditional HM system,
its principal type is V7.(1 — 7) — 7 — 7. However, consider the situation
when f would be a function that would take a real number argument and
return an integer. Although every integer is (or can be easily converted to) a
real number and the simple argument conflict would not harm the program
logic, the HM typing is unable to express this fact. We will instead embody
this information in the assumption int C real, and derive a principal type
scheme

Vrowitho C7. (1 —>0)>T7—0

which can clearly be instantiated to support f of type real — int.
Overloading is expressed using the typing quantifications: Great example
is the function exp(z,n) created for any type that “supports” overloaded
multiplication and constant 1. Simple parametric overloading from the
previous section is unable to express neither the overloaded nature of the
constant 1, nor the need to ensure that the correct overloaded definition is
available for more than one required identifier. In the generalized system, we
easily construct the principal type scheme that handles this situation:

Vrwithmult: 7 —>7—>71:7.7—=int > 7

Smith proves that if the typing assumptions are subject to certain
restrictions, namely

e if there are no subtypings on types of different “shape”, for example
bool C bool — bool,

e if the set of subtypings is not cyclic (i.e. they can be extended to partial
ordering) and

e there are no unsatisfiable constraint sets in initial (or user-defined)
typing assumptions,

the generalized HM-style type inference algorithm W, for the quantified
type schemes as described in [Smi94, Section 3| is again complete, correct
and belongs to the same complexity class as the HM system.

The algorithm W, is given for a system where all overloading and
subtyping assumptions are predefined, but if some care is taken to ensure
that the overloaded identifiers stay global, it is easy to extend to some
user-defined form similar to the parametric overloading. Locally overloaded
identifiers can be renamed in most (reasonable) cases, but in general they may

29

introduce difficult situations, force the type system to carry whole overloading
information with the typing assumption, solve SAT-like problems and cause
undecidable overloading conflicts. According to [WBR&9], the exact difficulty
of the decision in such situation and existence of some easier restriction are
both open questions.

Note again the similarity of the requirements with other type systems —
partial ordering, global validity of conditions and assurance of satisfiability
together guarantee that finding a principal type stays predictable and can
not result in complexity explosion.

1.3.5 Haskell types

The type system of Haskell was introduced in [JHAT99] as a practical
extension of the principal type scheme system as introduced above, enriched
by several new typing rules and syntax — mostly the usage of type classes very
similar to their introduction in [WB89] and several concepts not needed for
theoretical purposes. There also exists a programmatic, annotated definition
of Haskell type inference algorithm (that, again, follows the basic structure
of algorithm W), completed by Jones in [Jon00].

Haskell type information is stored in a format similar to quantified types,
with the exception that the quantifiers are expressed as general predicates
that describe the properties of polymorphic variables.

Resolution of overloading is done using type classes, which are basically
lists of predicates (typing assumptions in this case) that each member of
the class must satisfy and overload correctly. The syntactical approach,
defined by keywords class for class definition, deriving for expressing class
membership and instance for assignment of implementations to overloaded
identifiers, is sometimes called “dictionary classes” for the fact that the
class object only serves as a register of names of overloaded types and their
implementations of corresponding class members. Interestingly, as noted in
7], type classes do not necessarily have to be hard-coded into a compiler to
“work” — Scala language is known to be able to simulate type classes with
built-in dictionary objects.

Because the predicates held in quantified type structures usually grow
very complex during the type inference, Haskell employs a type simplification
method known as context reduction. Its basic task is to convert a set of
predicates to equivalent but (by some measure) smaller one. Duplicated
predicates, obvious globally valid predicates (like Eq Ord), and superclass
pairs (Int a, Num a) are simply removed. Rest of the predicates is forced
to a variable-first form — if the predicate states that the type is a member of a
class, the first argument of the class definition must be a variable, otherwise

30

it is converted to one by instancing and adding another predicate (this also
creates new possibilities to further reduce the set).

The last important, but probably most striking difference between Haskell
and theoretical type systems is the handling of recursion. Descriptions of the
original HM system usually circumvent or completely omit[| the need for
typing of recursive variables by adding either a special rule for operator fix
that is equivalent to the Y combinator and has fixed type V7.(T — 7) — T,
or by adding complex rules for letrec or letrec...and...in for mutual
recursion['’] Haskell has a special object called binding group that roughly
corresponds to the notation of multivalue letrec, and employs a special
careful type inference in that case:

e Explicitly typed bindings are just type-checked,
e implicitly typed bindings are converted to let’s where possible,

e mutually recursive function groups are typed in two steps — first
“pass” infers the type using the incoming type information separately
for each functions, result is then applied again to provide the type
checking. There is an important restriction that the recursive functions
themselves must not be polymorphic in this environment, otherwise the
problem is proven undecidable [Hen93].

1.3.6 Other type systems

There is much functionality that the aforementioned type systems lack,
and lots of possible rules and ideas those can not safely express. Usual
example of a program that looks intuitively correct but fails to type is that
of Af.(f(+))(f1)(f1))(Az.z) — there is no way to assign both polymorphic
types int — int and (int — int) — (int — int) to the parameter variable
f

Various extensions to the Church typing™| have been systematized by the
concept of lambda cube [BDS13|, Section 5.1], by the kinds of objects that
the type system allows to depend on others. For example, in simply typed
lambda calculus, the abstraction Ax.M expects one argument term, which

16Several articles leave the recursion handling as an exercise for the reader.

TTo the best of author’s knowledge, the first approach is not very systematic, and
all definitions of the second approach that are available in the literature break the let-
polymorphism.

18Complexity and (non-)decidability of uninformed type checking of complicated type
systems usually restricts their practical applicability to Church-style annotated types.

31

will affect its usage, type and semantics. In other words, the term depends
on another term.

In similar generalized sense, the Church variant of A2 system gives terms
that depend on types, e.g. in (A7.Az : T.\y : 7.x + y) the type annotation
depends on the type of the applied term. Similarly, there is Aw calculus
that adds types depending on types, using kinds as “types of types” to ease
the construction, and AC' system that adds types depending on terms. For
details the constructions, this thesis refers to [BDS13| Section 5.4].

Promising research has been done on pure type systems that lift the
restrictions of lambda cube by providing an arbitrary choice of type kinds
and sorts, effectively creating the possibility to assign a type to anything.
Exact definition of PTS is given for example in [RJ07], together with the
PTS-based programming language Henk2000 [Roo00], and its type inference
and checking algorithms. Roorda also provides an interesting solution to
the basic problem of practical programming with pure systems: Explicit
Church-style type annotations are unwieldy for programmers, but required
for PTS type checking algorithms to stay decidable. The problem is solved
by combination of PTS and HM system — only the parts of the program that
actually require PTS functionality must be annotated by programmer, the
rest is assumed to be “simple” and typed implicitly by a fairly standard HM
inference.

32

2. Compilation of functional
languages

Following chapter summarizes the algorithms needed by functional language
compilers and interpreters. We will show techniques that cover whole
compiler “pipeline” — code representation, type inference, simplification and
code generation.

2.1 Parsing and representation

Lambda calculus is, by definition, a context-free grammar. Parsing of
reasonable lambda-based functional languages can therefore be performed
by a finite automaton with a stack, usually created by one of the standard
parsers that fits the compiler programming language — common choices
include Bison, AntLR or Parsec (see, respectively, [bis], [ant], [par]). Even
the usual syntactic sugar that eases the programming does not require any
significant extension of the language.

Target of the parsing process is to get the code to the form that is suitable
for running type inference (almost always the next step in the process), that
in most cases tightly follows the simple syntax of lambda calculus. For
example, intermediate representation of Haskell (after a lot of desugaring)
consists only of expressions of following types:

e variables (x, y, ...)

e data constructors (Int)

e literal constants (0, 1, ...)

e lambda abstractions (\x -> y, equivalent to A\z.y)

e lambda applications (x y)

e type abstractions (A for A2 system, see [BDS13| Definition 4.1.5])

e local bindings (let ... in ..., equivalent to the let construction
demonstrated in chapter 1)

e coercions and casts that were added in later versions to assist subtyping.

33

Actual method of the term storage depends heavily on the programming
language that the compiler itself is written in, but the usual choice is to
exploit some kind of runtime polymorphism: In many Haskell compilers, the
terms are represented by a polymorphic type in form

data Term = Variable str
| Constructor str
| IntConstant int
| Abstraction 1 r
|

Application 1 r

C++ implementations tend to use either polymorphic classes and
virtualize the common functions, or simulate the polymorphic structures by
enumeration.

For purposes of compiler efﬁciencyE], term storage may be subjected to
additional constraints:

e Memory efficiency of storage by eliminating unnecessary duplication of
stored terms,

e fast term comparison,

e case of extraction of various nested information — terms are often
queried for their set of free variables or their text representation,

e case of finding unused identifiers.

Simple techniques that allow to partially satisfy such efficiency require-
ments on a polymorphic term structure implemented in C++4 are shown in
the proof-of-concept compiler later in the thesis.

2.1.1 Desugaring

Any language constructions that do not fit in the restricted intermediate
representation are viewed as syntactic sugar and must be removed. Most of
those constructions are designed to be simple to remove, occupying a similar
position as preprocessor macros in C/C++, or (defmacro) from Scheme.
Functional languages traditionally perform following transformations:

L Although compilers are usually not regarded as software where actual performance
would be crucial (main area of focus is still the performance of resulting code),
more efficiency may indirectly allow for more (highly non-deterministic) speculative
optimization. There are also interpreters that must manipulate similar structures as
quickly as possible.

34

e Removal of multiargument lambdas — converting \x y -> z to
equivalent \x -> \y -> z

e Conversion of functions to lambda applications — binding £ x = y is
converted to £ = \x -> y

e Removal of infix functions, operators and operator constructions.

—a ‘op‘ b gets translated to (op a) b, just like a+b gets
translated to (((+) a) b)

— Partial application of operators, e.g. (+1) translates to \x -> x
+ 1

e Pattern matching expressions from Haskell may be translated to case
expressions

e Bindings in let constructions are translated to abstractions.

2.1.2 Common conflicts in syntactical analysis

While lambda calculus is, by definition, free of any parsing conflicts,
implementations that allow common infix operators are not. Main problem
is the left-associative lambda application rule, which (in a Bison-like parser
syntax) may look like

application_expr = application_expr other_expr | other_expr;

In combination with unary operators or partial operator applications, the
absence of any separator between the two halves of the application rule
creates many ambiguous situations. For instance, consider the syntax
a -b, which may be viewed both as subtraction (-) a b or application
(-b). Although the parentheses seem to clarify the situation, syntax for
(-b) is ambiguous as well, because it may also be viewed as application
\ x > ((-) x b).

Common priority rules are also a problem: In most languages lambda ap-
plication has a very high association priority, which leads to counter-intuitive
situations where for example return a+1 means (((+) (return a)) 1)
and not the (usually intended) return (((+) a) 1).

Solutions for aforementioned ambiguities vary. The tiny language
described in this thesis uses special priority rules to sort out lambda
application and unary minus priority, with priorities of other possible unary
operators (like the ! for negation) left behind. OCaml authors chose a
simpler approach — unary minus is prefixed with ~ to form syntax like -1,

PP

35

which eliminates the ambiguities altogether. Haskell uses its own variant of
parsing and makes the decision about whether operator is unary or binary
from existence of whitespace right behind the operator. For example, (x -y)
is therefore (suprisingly) not equivalent to (x - y).

2.2 Type inference

2.2.1 Unification

Unification of terms is usually the basic element of every type inference
algorithm. Usual unification semantics is that of Robinson [Rob65], most
implementations are using an algorithm that matches the unification of
Martelli and Montanari [MMS82]. Although the algorithm is meant to unify
logical formulas, lambda calculus can be easily translated to the language of
logic — applications, abstractions and all similar constructions are rewritten
to predicates in form apply(x, y) etcE]

Semantic meaning of unification is quite simple: It takes a list of equations
of terms that contain variables. If the equations can be satisfied by uniform
substitution of some terms to the places of variables, unification returns the
most general substitution that can be found (called the most general uniﬁel@,
otherwise returns failure.

Actual description of unification algorithm can be found in [MMS82] or (in
many copies) in any textbook of logic programming. We will only add the
common modifications for lambda code:

e Checking for equality of large type structures (including long string
identifiers) may usually be handled in a single step in reduced (even
constant) time, if the term system of the compiler/interpreter supports
it. Example is shown later in this thesis.

e Occur check, which is computationally most complex step of unifica-
tion, may be reduced to a simple operation by caching free variables
in terms — this solution would not be appropriate for interpreters or
Prolog-like logic programs, but may simplify the situation for compil-
ers.

e Unification steps may be altered for specific purposes — see for
example the description of Algorithm Z for type inference of parametric
overloading [Kae88, Secton 3.3].

2 Actually, common intermediate representations of lambda code already have this form.
SMGU

36

2.2.2 Type inference using Algorithm W

Algorithm W is, for its apparent simplicity, described by the set of “natural
deduction” rules in almost all presentations in available literature. Because
those rely heavily on correct grasp of produced side effects and do not give any
serious information about the structures that the algorithm relies upon, this
thesis instead rewrites the algorithm to its imperative form, in pseudocode
with explicit substitution rules and data structures.

This implementation will also generalize the basic concept of let
polymorphism, and add a simpleE] type check for the recursive binding-group
let of following syntax:

let v, =dy and vy =dyand --- ine

Primitive types (of constants) are also supported. Their type constructors
are expected to be distinguishable from type variables, so that the unification
process can treat them just like predicates of formal logic, e.g. the haskell
type List Int would translate to predicate List(Int).

Algorithm will use following primitives:

e Substitution type, in our case, is a set of tuples (v, t), meaning that the
variable v should get substituted by term ¢.

e Function subst(t, s) that correctly applies the substitution s to term
t by standard definition. If applied on a set, it returns a new set with
all elements substituted accordingly.

e Function merge(s,u) that produces a substitution that would be the
result of successive application of substitution s and u — result is
equivalent to

merge(s,u) ={(v,t)|(v,t) € u A—=(3t")(v,t') € s}
U{(v,7)|(v,0) € s A\ = subst(o,u)}

e Function unify(¢;,ts) that returns either the MGU substitution of the
terms or a failure.

e Function fresh(7) that returns a name of an unique new variable that
has certainly not been used in any other term so far.

4Simple but partially incomplete for careless bindings, see the notice in m

37

e Function inst(7) that returns an instance of type 7: If 7 is a monotype,
it is returned right away. For polytype 7 the function is defined
recursively as

inst(Vv.z) = inst(subst(z, {(v, fresh())}))

e Function close(r) that creates a polytype from a monotype with free
type variables, by capturing those variables by V. For example,

close(aw — bool) = Va.ae — bool

Main algorithm function infer(t) works as follows:

1. Initializes an empty set of substitutions S that will be common for all
sub-calls of function visit(), and its purpose is to hold the current type
substitution state.

2. Calls r = visit(t,0)

3. r now contains a set of tuples (¢ : 7) for each subterm of ¢, where t' is
the subterm and 7 is its principal type in t. That is the result of the
algorithm [’

Function visit(¢,C) derives the types for the term ¢ and all its subterms
in the presence of typing assumptions from the context C'. It is defined for
cases depending on the content of term ¢:

e If t = ¢ where c is a literal constant, return {(¢ : 7)} where 7 is the
type constructor that describes the type of constant.

e If t = v where v is a variable, then if some (v : 7) € C, return
subst({(t : inst(7))},S), otherwise fail because of the unbound
variable.

o t =)\u.f:

Check if the variable z is not already bound in context C'; if it is,
replace it by fresh() and substitute it accordingly in f.

Call v = fresh(), then r = visit(f, {(z : v)}).
Search r for the tuple (f : p) € r and return subst(rU{(t : v — p)},5)

5For clarity, we suppose that different terms in the program are also unique for selecting
their type from the result set. The semantics is used here only for returning all the sub-
results, actual implementation would probably use a side-effect to store the sub-result
directly to the term structure.

38

o =uzxy:
Call (ry,r,) = (visit(z, C), visit(y, C)).
m = unify(v,, v, = p) where (z,v,) € 1y, (y,v,) € 7, and p = fresh().

If m reports a failure, report the unification error and fail; otherwise
update S = merge(S, m) and return subst(r, Ur, U{(t: p)},9).

eit=letvy=d;and --- and v, = d,, in e:
For all bindings generate new variable names v; = fresh().
Again for each ¢ call r; = visit(d;, C' U {(vy : v1),...(vn : vn)}).

For each i call m; = unify(v;, p;) where (d; : p;) € r;. If the unification
failed, fail as well; otherwise merge it to S = merge(.S, m;).

Finally, call r = visit(e, C' U {(v; : close(subst(v;, S))}), and return
subst(r U, 75, 9).

Note that running all the substitutions everytime the function visit()
exists is not necessary — same result can be obtained by running the
substitutions only when a certain type is actually needed to be fully updated
to current substitution, which may save a lot of compiler time.

Also, observe the exact points in the algorithm that actually “cause” the
let-polymorphism: Those are exactly the calls of close() that mark some type
variables as available for replacement, and inst() that for each occurrence of
the same identifier generates different type “scheme” that matches the type
of the context, but is available for unification with completely different types.

2.3 Inlining

Inlining may refer to several concepts — in functional languages it is used as
a collective term for various partial operations on the code that are meant
to simplify or optimize the program.

Inlining for optimization is actually a difficult problem, because full
optimization is hard for any decidable complexity class even in the terms of
computational complexity hardness.ﬁ Most compilers therefore try to target

6Consider this “proof sketch”: For any problem from a class of decidable problems
C and for any problem instance X, we can take a program that solves the problem (no
matter what resources it uses), modify it to another program that solves the problem
only for instance X by hard-coding the input, and run the full optimizer on it. Optimal
program that solves the single problem instance X is of course a program that just prints
the solution for X of length n, in time and space O(n). If the result of full optimizer
would be slower, the program would obviously not be fully optimized. By this reduction,
full optimization is C-hard.

39

slightly different metrics.
For our purposes, we will use and separate following techniques:

partial evaluation — when the result of atomic operation of the program
can be determined at compile-time, there is no reason not to run
the operation right away. Such optimizations include traditional
precomputation of constant expressions (e.g. the simple 1+1 -> 2) and
constant propagation (that is able to reduce expressions like if 0 x y
to y or append x [] to x).

partial g-reduction is exactly the [-conversion of available [-redexes
(with renaming of fixed variables). This problem is usually rewritten
to name inlining (defined below), by a simple conversion to let-form,
where for example (\ x -> y) ais converted to let x=a in y.

inlining of names — by an example, the term let x = y in x + x may
be inlined to y + y. Problem of name inlining is the fact that together
with the previous rule, the algorithm basically simulates [-reduction
of the calculus, and it may never finish if it tries to optimize a non-
normalizing term.lZ]

Desirability of name inlining may also be questionable, especially when
the substituted term is not simple — consider the code of form

let x=y in ... X ... X ... X ... X ...

If y is big, the situation after inlining would be suboptimal, because
the result would contain several copies of the big code piece.

Similar situation may happen if the term y is not big, but just hard
to compute. Then, for example, inlining of = in following program
would not duplicate much code, but it would duplicate work needed by
computation of the compiled program:

let x=z in
let z=y in
let y=solve_sat_with_500_variables in
D I U U

7B-reduction alone is enough to create unpredictably diverging programs, see section

[LI3

40

There are many measures that help the compilers not to get astray
in such situations — only limited number of partial reductions may be
allowed per one optimization pass, and some reflection on resulting
code quality that will stop unnecessary expansion can be derived from
actual code size. This thesis will roughly describe the solution that is
used in Haskell compiler. Other concepts include for example heavy
non-deterministic optimization as described in [Blu].

dead code elimination — if the variable z is not free in y in term
let x=a in vy, the term is rewritten to y.

parameter dropping and specialization — Whenever parameters of the
function are not used in the function body, they can be simply dropped
from the function and from all its call sites. This may enable further
optimizations (namely dropping the computation of parameter value
at the call site) and save some program runtime that was needed to
transfer the parameter data.

Similarly, parameter specialization creates a new copy of the function
that assumes a fixed value of one parameter — not only it can be
dropped, but the fixed value creates new possibilities for constant
propagation.

This whole concept may be generalized to lambda dropping (exact
reverse of lambda lifting discussed later), which is discussed in great
detail in [DS97].

This thesis will further address the two problems of the name-inliner.
Following solutions were invented for usage in Haskell inliner and are
described in great detail in the report [PJMO02].

2.3.1 Termination and loop breaking

Cases when name inlining would never halt are caused by unbounded
program recursion that can be detected as cycles in function call graph. It
would be easy to never inline any function that is known to cause recursion,
but results would certainly not be optimal.

Haskell uses a less restrictive strategy — for each inlining pass[f|it chooses a
loop breaker as a set of variables such that the call graph contains no cycles if
all loop breaker vertices are removed. Those variables are then never inlined.
To demonstrate the situation, observe the call graph in a figure.

8there is a limited number of inline passes

41

let
(@) ()
(2)

Figure 2.1: Illustration of loop-breaking a recursive definition. Set {a}
certainly a loop breaker, but so are the sets {b, d} or {c, d, e}.

O & 0 T w
|
M O M O T

Optimal loop-breaker set is chosen heuristically — implementation from
[PIMO2), Section 4.3] just tries not to select variables that would be beneficial
to inline. Actual algorithm involves setting “scores” on how reasonable the
inlining of given variable would be (in decreasing order: variables that are
simple or atomic score best, variables that occur only once, variables that
return a simple constructed type, and all other) and uses any of the best
scoring sets.

2.3.2 Code simplification

To see how inlining each variable would affect the quality of resulting code,
Haskell inliner uses a simple occurrence analyzer that traverses the whole
program tree and assigns each binding one of following categories:

Dead if the bound variable does not occur anywhere else,

OnceSafe if the bound variable occurs exactly one time in the code, and
its occurrence can not duplicate work, i.e. it does not occur inside a
lambda or a constructor,

MultiSafe if the variable occurs more times, but only once in each of several
distinct case branches — basically meaning that it still can not be
evaluated more than once in the program flow, but the inlining will
duplicate code,

OnceUnsafe if the variable occurs once, but in a lambda or constructor,
therefore such inline may duplicate runtime work,

MultiUnsafe if the variable occurs more than once, and at least once in
a lambda or constructor, so the inlining may duplicate both code and
work

OneShot if the variable occurs once in lambda, but the lambda is sure to
be called at most once (for example when it is exactly a definition of

42

OnceSafe or MultiSafe binding). Variable would be otherwise marked
OnceUnsafe, but this special case is detected for the reason that it is
very common in practice and treating like OnceSafe is beneficial and
does not bring any side risk.

LoopBreaker if it belongs to the current loop breaker set.

The inliner then approaches the code schematically as this:

It certainly inlines all OnceSafe and OneShot bindings, if they are not
subjected to external constraints (e.g. are exported from a module).

It also inlines all trivial bindings — literal constants or variables.

For other types of variables, it considers separately whether to inline
each occurrence of the variable. The decision uses a fairly complex
heuristic that depends both on the call site (for detection whether the
work would be duplicated) and the type assigned to the binding (mainly
for detection whether leaving the code in a shared function would be
better). The heuristic itself is out of the scope of this thesis.

The report [PJMO02] contains further details about inlining: authors
provide a fast algorithm for solving the problem of renaming identifiers,
and highlight the argument and measurements supporting why such inlining
strategy is simple, fast and very beneficial at the same time.

2.4 Emitting of code

After successful type checking and optimization, compilers are faced with the
problem of producing the code for the target machine. We will consider a
traditional low-level target, that differs from lambda calculus mainly in three
points:

This

All code is organized in global-scope functions,

the functions have a calling convention that accept only fully evaluated
arguments of pre-defined types, which directly contrasts with lazy-
evaluation of lambda calculus; and

the code is in a form that is very close to the final assembly — either in
some flat language of SSA instructions like LLVM, or just assembly.

section describes common methods to perform transformations that

result in code that satisfies all these properties.

43

2.4.1 Lifting

Lambda lifting is a fairly standard procedure that takes a “function” — in
our case a lambda abstraction or a let-binding — out of its scope, and moves
its definition to a global scope. To preserve program semantics, care must
be taken not to introduce conflicts of variable names or unbound variables.
Algorithm for lifting a was designed originally by Johnsson [DS97, Section
2.2.2]:

e [fthe converted term is a lambda abstraction that is not a direct subject
of the binding’] produce a new name for anonymous function (for this
example “anon_func”), and convert the lambda \x -> y to let-binding
with “named” lambda abstraction:

let
anon_func = \x -> y
in anon_func

e Take all free variables in the “definition” of the binding and capture
them by adding them to the parameters of function call, and to the
abstractions in the function definition. If a and b were free variables
of y in the previous example, new function would look like

let
anon_func = \a -> \b -> \x >y
in anon_func a b x

e Functions with fully lifted parameters may be moved to the global scope
without any danger, except for possible name collision which is easily
solved by globally renaming one of the conflicting functions.

Although full lifting is guaranteed not to change the semantics of
programs written in pure lambda language, results on actual computers may
vary.

Care must be taken not to enforce evaluation of lifted parameters that
would otherwise not get evaluated — for example a branch of conditional code
may contain an expression of lifted parameter that either takes a lot of time
to evaluate, or does not evaluate at alll Partial solution to this problem is
presented in next section.

9.e. it is completely anonymous

44

Also, transfer of parameters (even when they are evaluated easily) takes
time and occupies stack space. Lifted functions with lots of unneeded
parameters may not be optimal from this perspective.

Lambda lifting is further examined in [DS97]. Authors introduce an
exact reverse process on code blocks, called lambda dropping: While lifting
adds (lifts) arguments to capture free variables and floats the code blocks
to global scope, dropping sinks the code blocks deeper in the code (closer
to their callers) and drops the arguments that are captured and applied
unnecessarily, if they can be obtained from the scope. Combination of both
techniques is demonstrated as a very useful tool for optimization of functional
programs, helping to find good candidate functions for possible merging (or
generalization) or parameter specialization.

2.4.2 Removing lazy evaluation

As stated above, compiled low-level code can only use strict evaluation.
Simple replacement of lazy evaluation with strict evaluation can be a solution
in very simple cases, but can cause the program to err or loop infinitely under
certain conditions.

To instantiate a situation where lazy evaluation of an expression will
terminate, but other evaluation methods are not guaranteed to do so (such
expression is equivalent to a lambda term that is normalizing, but not
strongly normalizing), consider following function call:

f argl arg? (endlessLoop x y) argd

If the compiler decides to evaluate strictly and produce a direct call of £ with
a value produced by the endlessLoop, the program will never terminate even
if its semantics would be correct (because, for example, £ would not use the
value of its third argument).

Note that deciding termination using the type system would not help in
this case — even though in pure lambda calculus the existence of typing in
HM system (thus also in System F) would effectively mean normalization
of the term, such assumption does not hold for a common language where
Church numerals are replaced by integer constants. For example, the code

letrec
ax = if (x < 20000)
then (a $ (x+1) ‘mod‘ 20000)
else O
in a 0

45

has a type Int in the extended HM system as well as in the extended System
F, but is not normalizing, and requires comparatively hard computation to
show that it does not terminate.

One possible simple solution to the problem would be to inline the
definition of f in the code, which could erase (or at least not execute) the
occurrence of endlessLoop; but because the detection of termination is an
undecidable problem, there is no way to reliably tell the inliner which call
sites would cause such problems and should therefore be inlined.

Usual functional programming languages workaround the problem by a
great margin, by “making lazy values strict”: They use thunks. A thunk
is a description of the value that yet has to be evaluated, stored in some
form that the callee function can detect and possibly evaluate. In Haskell
implementation, the thunk is a pointer to a memory location where a node
of Haskell STGH graph that represents the unevaluated call is stored. Since
it is a basic property of Haskell evaluation that almost every non-trivial
expression is at some point stored in STG in the form of thunk, processing
of thunks does not create any serious direct performance impact and can
be used for almost every call, except for the case when strictness is directly
requested by the programmer.

Main disandantage of using thunks is the fact that they implicitly work
as a simple value storage, and they can sometimes hold more values than it
would be needed to actually compute the function. Similar behavior can be
observed on the simple foldl function. Following code listing shows one line
for internal representation of each evaluation step:

foldl (\x y -> y) 0 [1 2 3 4]

foldl k2 0 [1 2 3 4] -- name the abstraction for brevity
foldl k2 (k2 0 1) [2 3 4]

foldl k2 (k2 (k2 0 1) 2) [3 4]

foldl k2 (k2 (k2 (k2 0 1) 2) 3) [4]

foldl k2 (k2 (k2 (k2 (k2 0 1) 2) 3) 4) [

k2 (k2 (k2 (k2 0 1) 2) 3) 4

4

Observe that even though k2 lambda is very easy to evaluate, the evaluation
is not forced to be called, and at one point a whole new copy of the input list
is created on the heap. If similar function would be applied on a dynamically
generated (possibly very long) list without any other optimization, result
could easily allocate much more memory than expected.

10Spineless Tagless Graph-Machine — see for example [JHH'93| for closer description.

46

Thunks can be generalized for other evaluation methods. Even in a very
strict language where the runtime has no possibility to use structures like
STG, the delayed call may be easily represented by a thunk of fixed size that
consists of function pointer and a list of parameters to pass to the function.
Aforementioned endlessLoop example can be transformed to a form that
can be safely compiled even for a very simple target machine. First, it is
possible to produce a modified definition of f that accepts a function pointer
argument together with parameters of the called function:

f al a2 resultOfF a4 --> f al a2 ptrToF f1 f2 a4
At the call site, the call is then simply transformed to
f argl arg? (ptrTo endlessLoop) x y argd

Such transformation is certainly not able to simulate all possibilities of
Haskell thunks, especially not for big constructions — the parameters are
now stored on the call stack where the space is precious, instead of the
STG runtime structure where some allocation does not matter. On the
other hand, the full situation is handled at compile-time and the cases
where such (possibly endless) stack growth would happen are easily detected
by unreasonably big numbers of arguments and excessive stack usage, and
possibly either suppressed or reported as error[H]

Detection of whether it is needed to transform the function to such form
of lazy call is still undecidable from compiler side, but the language may
add annotations for forced laziness transformation. Similar annotations have
been adopted in C++ [NieO§] or Ruby [laz|], although their runtime behavior
is closer to Haskell allocated thunks.

2.4.3 Code generators

Target code generation is the final step of compilation process. Exact
algorithms for code generation of each language may vary widely, but all
functional languages usually share a set of builtins and a runtime library
which serve as connection points to the target machine, and some code-
traversing method that uses the builtins accordingly to the source code and
assembles the target code representation. Because of the complexity of the
topic, we only give a rough generalization of the process. Details specific

1 Note that the approach is extremely similar to C++ lambda functions (especially the
changes in the callee function), and also applicable to solve partial application of function
arguments.

47

for the proof-of-concept functional language of this thesis are to be found in
section|3.2] rest of the information can be obtained from referenced literature.

Builtin objects traditionally serve as a generalized method to translate
language primitives (e.g. the most simple functions, operators and control
flow constructions) to the target representation. The separation to different
named builtin objects has been proven beneficial for compiler structure —
using the common “list of builtins”, any extension to the language gets
simplified to a declaration of new functionality and a method to translate
it.

Run-time library is a set of code that is needed to support the
functionality of run-time evaluation of language, usually containing library
functions (especially the functions that need to be virtualized across
platforms, or the definitions of builtins that are too large to inline into
generated code), run-time support (in case of Haskell, the functions
that govern the STG allocation and garbage collection), or environment
initialization (e.g. the allocator initializer in case of C standard library).

There are then several approaches how to perform the actual code
translation, depending on how the generation is “driven”. We will describe
three most common approaches to transform functional code into SSA form.

e Most common method is the “direct translation”, that corresponds to
code generation of C++-, Haskell, Java, or most other languages. The
source code is simply traversed as a tree structure in topological order,
and each node of the tree is translated to the instructions that depend
on the sub-results of its children and position in environment.

For example, expression +(f,3) is translated in this order:

1. Application of + is found. Builtin for + states that it requires
strict values of both arguments.

2. Call of (parameterless) £ is found in the first argument. f is looked
up in the scope, and a call is generated and returned.

3. Constant 3 is found in the second argument and the target
constant code is returned.

4. Builtin for + generates the code that adds the results of code
generation of both arguments and returns it.

e Second common method is the “generator” method, which virtualizes
translation by the actual source language — the source code is ran by
the interpreter, but the values of the results are not represented as
literal values, but as the machine code that generates them.

48

In a non-existent example language, programmer could then add a
definition of how to translate addition to the machine code by following
simple statement:

a + b = createSSAInstruction "add32" a b

Such approach is used in some older compilers of the ML language.

e Third popularized method is the “continuation” method, documented
for example in [Tof91] and used in Standard ML language. It reverses
some of the process of direct translation method by working only with
continuation objects — basically, those are descriptions of what will
happen with the program from some point in the code to the end
of the program, with defined placeholders (called simply “holes” by
the author) for information or values that are not yet known. The
program is then inductively generated backwards, from return or halt
instruction to the point where only holes are the ones for function or
program arguments.

Authors of the method also claim a great reduction in unnecessary
conditional branching of the code, allowed by the fact that the
continuations may easily be compared and merged.

Code generators for low-level targets are also expected to break possible
infinite recursion that is commonly found in functional languages, usually
for the purpose of not running out of limited stack space. The complete and
working solution to this problem is the tail-call optimization, described to
great detail in any literature concerning compilers. The solution adopted for
this thesis is described in section [3.2.6l

49

50

3. Low-level functional
programming language

We will approach the problem of constructing the main goal of the thesis
from two directions:

e Because the greatest problem that prevents low-level usage of current
functional languages is their reliance on automated memory manage-
ment and garbage collection, we will identify the exact language con-
structions that require this memory management and give proposals
on how to replace the functionality in a language without automatic
memory management.

e Main result of the thesis is a simple, proof-of-concept compiler of a
Haskell-like functional language that produces a code that does not
require any runtime support.

In most programs, the managed memory is usually divided into two areas:

e Stack contains a “call trace”, with call-local storage of variables and
information about where to return after the function exists,

e heap contains everything else.

The separation is most visible in languages that let the programmer
manage the heap allocations — the language itself is only allowed to perform
automated memory allocation and deallocation on the stack, in a very
controlled manner usually defined and restricted by used calling convention.

Resulting possibility for precise control of memory allocation is usually
needed to reach certain low-level and high-performance goals. We will
therefore seek to obtain exactly this behavior.

In case of functional languages, this separation is hidden. Actual
stack contains only local calls of the run-time (of the virtual machine or
the automated memory manager), rest of the data is stored on the heap
automatically. That includes the actual program stack, which in this case
looks more like a linked-list instead of a continuous area of memory. Apart
from the automated memory management itself, there are two main reasons
to use this structure:

e It can effectively handle lazy evaluation needed for most functional
languages, as demonstrated in previous chapter with thunks.

51

e [t handles the situation when an object of non-predictable size must be
stored on a stack.

For example, consider a function that would want to return a first-class
list object using a C-like calling convention on a traditional stack. Even
if we ignore the architectural limit on stack size (usually restrictively
small), none of the caller and callee functions know in advance what
will the size of the object be — the caller can therefore not “reserve”
any deterministic amount of space for the object, and the callee can
not be counted on to “somehow move and rearrange” the object to the
caller’s stack space along with size information — such behavior would
be both very complex and slow.

Simple observation reveals that objects with unpredictable run-time
size that require this behavior are exactly those that possess a recursive
definition, e.g. the lists, trees or strings.

Next section shows the possibilities of replacement this functionality
on a language that is constructed by removing the automated memory
management from Haskell.

3.1 Reduced Haskell

For illustration purposes, we will simply assume a language similar to Haskell,
but without any recursive types, i.e. without the possibility for the type to
(directly or indirectly) reference itself. As stated before, that effectively
guarantees that the stack memory of the language is predictable and can be
subjected to the conditions similar to those of low-level languages.

For example, following construction is forbidden in the reduced language:

data List a = ListItem a (List a) | Nil

In such language, traditional functional constructions are impossible,
but many effective workarounds exist and are already widely used in the
programming world. We will show that the language can safely accommodate
pointers and encapsulated object constructions as known from C++ to
easily simulate the lost functionality. Discussion about replacement of lazy
evaluation and partial application follows after that.

3.1.1 Types and pointers

Implementation of actual pointers to the reduced language is easy. One can
extend the IO monad with two simple methods (preferably with some more
compact syntax):

52

readPtr :: Ptr a -> I0 a
writePtr :: a -> Ptr a -=> I0 ()

In a similar way, standard calls for malloc and free from the C runtime
may be wrapped.

Recursion in the types can then be replaced by simple usage of pointers.
The singly linked list from the above example would then be defined as

data List a = ListItem a (Ptr $ List a)

The implicit enumeration (by operator |) is not necessary in this case, as Nil
list can be easily identified with a null pointer), but may be useful in other
cases and has to be replaced too.

Enumerated types

Implicit enumeration itself can be replaced as well — common approach to
the problem is to number the possibilities and add a simple integer tag to the
type that will be matched on operations that require access to type structures
(e.g. the language pattern matching); and union all “contained” data.

The construction is simple, gives a natural-looking way to common
definitions (for example the definition of data Bool = False | True then
exactly replicates how the actual binary values for False and True look like in
other languages), but may present a problem in situations where the integer
tag is unacceptable. Such cases must either be “compiled out”E] or the type
must be defined by hand, without |.

3.1.2 Partial application and lazy evaluation

We will demonstrate the concept on following code:
(if (cond) then functionA else functionB) paraml param?2

In the reduced Haskell, there is obviously no possibility to actually return
the function identifier or function definition lazily — both would require
(impossible) run-time name resolution. We will therefore need to come up
with another solution.

First, observe that partial evaluation could eventually come up with
following code:

if (cond) then (functionA paraml param2?) else (functionB paraml

IThis phrase is used for the code that is partially evaluated or inlined to the state
where it effectively disappears.

53

param?)

Still, such case requires a generalization of the concept of if and addition of
complex derivation rules to the partial evaluator.

Better approach is to handle the situation exactly like C-like languages:
We can follow the example construction from section|2.4.2|— generate function
pointers, process them with if (choosing one of them), and call the function
that is referenced by the resulting pointer.

That concept needs some construction in the language to be applicable to
general partial evaluation. We will call the result static thunks, which can be
thought of as structures with stored function pointers with some values of the
function parameters that are pre-set. Note that such object is of ﬁxed—sizeﬂ
and non-recursive, therefore it can be safely stored on a stack.

The compiler must be adapted to support automatic construction of such
thunks on cases of lambda application. Thunk usage concerns following cases:

e Identifier with a name of function is simply translated to a value with
the function pointer (which is now considered a static thunk). From
the perspective of the typing system, this has the original type of the
function.

e Thunk applied to a value is simply expanded to hold the value. Typing
system guarantees that the value type is correct for later application.

e Thunk applied to a thunk must be flattened to a single thunk — compiler
may produce an anonymous function, that

— accepts all parameters of both thunks and the unfilled parameters
of the “outer” thunk,

— on call, reconstructs the value of the “inner” thunk from the
parameters,

— calls the “outer” thunk function on the reconstructed parameters;

— resulting thunk holds a pointer to the newly generated “proxy”
function.

Because of the fact that the code for each function must be generated
in many versions for all possible different thunk applications that are
used in the program, this approach may generate a great amount of
almost-duplicate or unnecessary code. Still, most of it (especially the
small proxy functions) can be either inlined or compiled out.

2fixed for each occurence of partial application

o4

e Thunk that already has all parameters (that can be detected from its
type) can be transformed to actual call when its strict evaluation is
needed.

Effectivity of the whole process will be directly dependent on the
performance of the optimizer that is expected both to partially evaluate
or compile out most of the pointer-indirections in the code and, possibly, to
generate just the needed thunk-accepting function versions’

Because it is automatically indistinguishable whether given code can be
evaluated strictly and still terminate, the annotated-laziness may be a good
option for the possible implementation: The programmer will be able to
insert laziness wherever needed, and will be also able to control the amount
of static thunks generated.

3.1.3 Linking to other languages

With proposed execution model, linking of reduced Haskell functions with
other languages is extremely easy. The set of requirements for linking is
similar to those of C++ or Haskell FFI%

e (Call convention must be the same on both linking sides

e Function types must not be polymorphic and should be unified on both
sides of linking

e There must be some functionality that marks the function as exported
or external, together with exact type of the function

Simple (although not very complete) example of the linking with foreign
language is given in the proof-of-concept compiler:

e The main function is exported as symbol with the same name and gets
linked from the C runtime,

e functions printf and scanf are linked from the C runtime (a simple
wrapper that fills the arguments is used),

e generally all functions defined in the program can be directly called
from external code using the fastcc calling convention, with their types
simply rewritten to traditional declarations. For example, incr ::
Uint -> Uint would have C declaration uint64_t write(uint64_t).

For further details, we refer to section [3.2.4]

3This may beneficially correspond with the tendency of most compilers to optimize
code size.
4Foreign Function Interface

95

3.1.4 Destructors

Implementation of automatic destruction of allocated resources is a crucial
point that enables comfortable manipulation of complex data structures
within the language.

Reduced Haskell inherited the traditional constructor functions from
Haskell — those may allocate resources (open files, grab locks, occupy
memory), but without the garbage collector there is no way how to free
those resources automatically anymore.

C++ approached this problem using destructors: Before some space
for an object is deallocated (i.e. either removed from a stack, unrolled or
delete’d), the compiler automatically calls a special function that is meant
to free all held resources.

Haskell approaches the problem from a higher level — all resources that
eventually will have to be released (i.e. all possible resources that are in
danger of being “held” unnecessarily) are recognized by the garbage collector
that is able to automatically and correctly release them. That is convenient,
but limits the diversity of resources that the language can possibly manage
automatically, as the destruction routines are usually hard-coded into the
compiler. Moreover, indirect result of this automatic deallocation is the fact
that there is now no universally-accepted syntax or semantics for destructors
in Haskell-like languages.

There are several possibilities how to replace this functionality in the
reduced Haskell:

e To call the destructors by hand. That approach is prone to programmer
error (who would simply forget to call the destructors at all exit points)
and unusable in the presence of exceptions, where stack unrolling is
needed.

e To add the destructor calls by language convention. This is exactly
the example of C++, which implicitly adds a destructor call to each
exit point of the function, as well as to the unroll plans for exception
handling. Basic problem of this approach in functional programming
is that the “exit point” of the function is not explicitly defined.

Obviously, every state change is contained in a monad. It would be
therefore logical to add the destructors to the ends of lexical monads,
and provide an overloaded destroy operation for all types that require

destruction.
func = do
a <- allocResource --detect binding as allocation

56

destroy a -—implicitly inserted by the compiler

Basic problem is the nature of the monads: They can be also defined
without the do syntax (using e.g. only >>= operator) so it would be
necessary to guess where the defined “submonad” actually ends. One
of the basic properties of monads is the fact that they are monoids, in
our case that do { do a; b} ; ¢ must be equivalent to do a; b; c,
which effectively says that we can not find any other end of the monad
than the end of the program.

Lexical validity rule, destruction of the variable when it is sure to no
longer be in scope does not apply to functional languages for a similar
reason.

e Haskell library provides an interesting option in the implementation of
bracket — the syntax basically serves as a framework for construction,
usage and destruction procedures on some allocated resource. Consider
the example from the bracket documentation [bralb|:

bracket
(openFile "filename" ReadMode) --constructor
(hClose) --destructor
(\fileHandle -> do { ... }) --work with the fileHandle

The syntax explicitly avoids the aforementioned monad-ending prob-
lem. Moreover, bracket also catches the possible exceptions and simu-
lates unrolling by correctly calling hClose in case of problems and can
be easily embedded in specialized construction or destruction routines.

Note that similar problems as with destructors arise also with possible
copy constructors, which are usually avoided in any functional programming
as being completely irrelevant. Possible future implementation of the reduced
Haskell will have to either circumvent the situation (possibly using a level of
indirection by copying “references” as in Java or Python), or come up with
a novel solution or syntax for such problem.

3.2 Implementation

This section describes the implementation of the main result: The proof-of-
concept compiler of a low-level functional language is coded in C++, works on

57

any modern UNIX platform that supports the dependencies, and is attached
to this thesis.

C++ was chosen partly for author’s familiarity with the language, partly
for the fact it supports standard language parsers, and partly for easy
integration with LLVM framework that is used to process the resulting low-
level code into target-specific assembly.

A practical introduction to the usage of the compiler is given in the
Appendix.

The language itself is a small, Haskell-like language with several
simplifications and some resulting limitations. List of the known surprising
limitations is given in section [3.2.8]

3.2.1 Syntax

Syntax of the language is defined in file parser.y, but best explained on the
source of above loop example:

1. main = loop 0 10 [

2 loop :: Uint -> Uint -> Machine;
3 loop i max = {

4. write 1i;

5. if (i<max) (loop (i+1) max)

6 (return 0);

7 }

8.]

Line 1 contains the definition of the main function.

Let-syntax is provided in a similar way how the substitutions are usually
marked in the lambda calculus — a [b] means exactly let b in a from
Haskell. Note that definitions must be separated by a semicolon — we do not
allow the indent-driven separation syntax.

Main function contains a single call of the loop function with parameters.

Typing of the internal function on line 2 is not necessary, but was added
for clarity and demonstration.

Curly braces { } are used for the same purpose as Haskell do notation,
they basically transform the inside functions to a monad syntax using the >>
and >>= operators (which are supported too).

Conditional execution with if of a simplified syntax either loops with
another call of the loop function, or uses the return to assign a zero value
to the monad [l

Sreturn here is exactly the monadic return, and does not anyhow terminate the
function execution. In this case, it just accidentally terminates right after.

58

3.2.2 Syntactical analysis

Syntactical analysis is carried simply by the usage of Bison and Flex — the
token scanner is in usual file scanner.1 and the parser in parser.y.

The program uses a fairly standard method of parsing to an AST structure
defined in ast.h, that is in second phase (for purposes of simple checking and
desugaring) transformed to actual intermediate representation. The second
transformation is defined in the file ir.cpp.

3.2.3 Term storage method

The compiler demonstrates several possible improvements on term storage
that were mentioned in section 2.1l Term structure is defined in file term.h
— from the programming perspective, it contains an enumerated value for
the type (integer constant, identifier, lambda application, ...) and pointers
to the sub-terms, or possible values of the constants (integers, strings).

Basic improvement over the simple storage method is the fact that
each term is stored only in one unique place — two terms with the same
type, subterms and data are guaranteed to share their memory location.
This is achieved by storing the terms in a splay tree that is ordered
“lexicographically” on terms — by the term type, then by the term value
(if it exists), and subsequently by the lexicographical list of the subterms.
Already stored terms are then never modified on any variables that could
break the ordering, and the program only uses pointers to refer to them[]

Technically, the splay tree storage is achieved simply by adding three
term pointers LeftChild, RightChild, Parent to each term and maintaining
correct splay tree structure.

Such storage brings following new possibilities:

e Terms of arbitrary size that are saved in the splay tree can be quickly
compared for equality simply by comparing their pointers.

e Saved terms may be compared lexicographically in amortized timd'|
O(logn), simply by splaying the first term to the root, splaying
the second just after, and detecting the direction of the last tree
rotationf] Note that this might seem slow, but the same algorithm
works equally on terms of arbitrary size, where simple lexicographic
comparison would need to traverse the whole term structure. The

6 Adhering to this rule also prevents accidental construction of self-referencing infinite
term.

"in this analysis, n will designate the number of already stored terms

81f the second term “came from the right”, it was obviously greater, and vice-versa.

59

function term: : ttree_cmp that performs this comparison can be found
in source file term. cpp.

o [f at least one of the terms is not stored in the splay tree, but all their
subterms are already stored there, they can be compared in amortized
time O(s + klogn), where s is the time needed to compare the data
stored in the terms (e.g. text strings with variable names), and k is the
number of subterms of the term with less subterms. Algorithm simply
compares the term data, and then uses the previous in-tree comparison
to all subterms, returning the first non-matching result, or signaling
equality if no mismatch was found. The function that implements this
functionality is named term: : cmp.

e Finally, saving a term to the tree is performed by following operation:

1. A random term from the tree (preferably the last one Savedﬂ) is
splayed, to “find” the tree root for binary search.

2. Term pointer cur is initialized to point to the newly found of the
tree, and two empty sets of term pointers left and right are
created.

3. Algorithm produces a decision on how to continue with the tree
search:

(a) If cur is in left, move to the left children.
(b) If it is in right, move to the right.

(¢) Compare the to-be-saved term with cur using term: :cmp. If
they match, return cur.

(d) If the cur is lexicographically less then the new term,
add cur to the right and continue right. If the term is
lexicographically greater, do the same operation with exact
opposite sides.

4. Repeat previous steps until a free leaf is found.

5. Save the new term to the leaf, splay it, and return a pointer to it.

It has to be proven that the algorithm indeed terminates — there is
certainly a risk that the splaying involved in term comparison of the
subterms might splay the cur node and the search would therefore
cycle forever. If none of the terms compared in the step contain cur,
there is zero risk of any damage to the search operation — cur is not

9Last used term is supposedly “hot” and near the actual splay tree root.

60

moved up, it may only be “splayed through” by its child that is splayed,
which actually lowers its children count (and therefore speeds up the
algorithm). If cur happens to be a subterm of any of the compared
terms, it may be splayed, but the sets left and right remember the
decision for each of the compared terms, and cycling forever is therefore
impossible.

Actually (and in the average case), the situation is lot better —
probability that the exact term is a subterm of one of the involved
terms is extremely low and the situation of the cycling terms usually
happens only in the “root area” of the splay tree, getting quickly sorted
out using the cached comparisons. Average complexity is then kept
near O(k % logn).

Experimental measurement obtained from collecting the search cycle
repetition statistics from example program compilations, as shown in
the plot, statistically support the complexity claim.

25

T T
o 'Teport.txt’ using 1:2 .

20

15 | . ee o . . ¢ = . -

10 | © 00 0 I We OGN COM CEC 0 WEM ¢ WO WNS O NN CERNGS ¢ ®oo

I I I I I I
0 50 100 150 200 250 300 350 400

Figure 3.1: Scatter plot of the count of iterations in term: : save. Horizontal
axis is the size of the whole tree, vertical is the count of iterations.

The fact that the terms are stored in a constant structure may be further

exploited to precompute or cache interesting or useful information about the
terms. Program uses this to cache a formatted, string form of the term
(see function term: :format()), but for specific purposes, more information
can be cached with almost no cost for the compiler performance. Specific
example of caching the free variables could be implemented in a similar way.

61

There are also other simple tools associated with the term structure — the
one that has been proven most useful is the transformation pass framework
defined in pass.h: The pass() function allows to simply traverse and modify
any information in the term, and is defined as a DFS-ordered tree visitor that
saves some temporary environment information for each visited subterm and
provides an easy interface where any transformation pass can be constructed
using two simple callback functions (one for entering and one leaving the term
in the subtree) that only modify the local environment. Simplest example
usage can be seen in the inline.cpp, where it is used to quickly remove all
type information from the program before inlining.

3.2.4 Code generator

TinyL code generator follows the “direct translation” model presented in
section [2.4.3]— it receives the properly lifted and inlined code and is expected
to produce a LLVM module that contains the translated functions.

First, the (small) runtime is inserted in the module, so that the
builtins have all the requirements to work correctly, which currently includes
declarations of external functions and preparation of some constants. The
task is done by function builtin prepare_globals() in builtin.cpp.

In a similar manner, function prototypes of all defined functions are
inserted into the module, for the purposes of possible future reference
(and recursion). This is done using function codegen func proto() in
codegen. cpp.

After that, main code generation can start. LLVM framework stores
generated code into blocks represented by class 11lvm::BasicBlock, and
uses a simple builder abstraction that correctly inserts instructions into
given block. Code generation is simplified thanks to the fact that the
result (actually a reference to the code that generates the result) of each
operation may be easily stored in form of the 11vm: : Value* pointer, making
the binding of successive instruction calls very easy.

The code generator itself, found in function codegen_code () is not very
complicated: The pass framework (described above) is used to hold the
current code block, builder and scope, to allow generation of the code for
various code branches. Code generation itself is then rather straightforward:

e If the generator finds a constant, it generates a LLVM constant,
e if it finds a variable, it takes its value from the scope,

e if it finds a function call, it recurses to build code (and obtain LLVM
Values) for the parameters and creates a call instruction, and

62

e if it finds a builtin, it lets it direct the recursion of pass function, using
the callbacks for enter and leave specific to the builtin. The exact
function and structure of a builtin is discussed in next section.

Resulting LLVM module is then dumped in the bytecode file, and
compilation is finished.

3.2.5 Builtins

All non-core language features are meant to be easily separable and
extensible, and are therefore contained and implemented in builtin objects,
in file builtin. cpp.

A builtin is represented by the struct builtin_ def that is usually
referenced by terms of type BUILTIN LAMBDA. Such terms have roughly the
same meaning as an identifier with reference to some function, but instead
the evaluation and code generation is handled by a code specialized for the
builtin.

The builtin definition structure consists of following information:

e Builtin name string (e.g. “4” or “if”),

e builtin type and arity (e.g. the “+” has type Uint -> Uint -> Uint
and arity 2),

e pointer to the function that does partial evaluation,

e pointers to the functions that handle code generation of the builtin,
namely the cg_enter and cg_leave.

Builtin name and type are used in the beginning of the compilation
process, when correctly named and typed definitions of the builtins must be
injected into the loaded code. For example, we present a code for function
that generates the type Uint -> Machine for the write builtin:

static term_ptr type_write (ttree&TT)
{

term i, c;

i.type = term::IDENTIFIER;

c.type = term::TYPE_LAMBDA;
i.str = "Uint";
c.a = i.save (TT);
i.str = "Machine";
c.d = i.save (TT);
return c.save (TT);
}r

Note also the example usage of term object and term pointer creation
— the ttree is simply a container that holds the term objects so that they

63

do not get accidentally reallocated, and there is no trouble with eventual
deallocation (or garbage collection) of the term tree. Struct members .a and
.d are the left and right “operand”, named like this for same reasons as the
car and cdr from Scheme.

Partial evaluation function of the builtin is called in the inlining pass,
where it tries to evaluate the (supplied) term arguments or just transform
the code to something simpler. For demonstration, we present the definition
of partial evaluation of operator “$”, which serves just as a shortcut for
parentheses, and for “+7:

static bool

static bool inline_plus (term_ptr&t, ttree&TT)

dollar (term_ptr&t, ttree&TT) {

{ if (t->a->d->type != term::UINT
term n = *t; |l t->d->type != term::UINT)
n.a = t->a->d; return false;

//n.d = t->d is already set term n; n.type = term::UINT;
t = n.save (TT); n.uint=t->a->d->uint + t->d->uint;
return true; t=n.save(TT);

T return true;

}

The code-generation directing functions of the builtin, cg_enter and
cg-leave are virtualized to let the builtin decide how should the result be
arranged in the resulting code structure.

For example, the definition of if certainly needs to recurse to the first
parameter, but the second and third must not be unconditionally evaluated
in the same code block. Therefore, the enter function of if runs the code
generation with a new code block and builder for both branches, and the
leave function correctly creates the conditional jump to the new blocks,
return jumps from both branches to the completely new “merge” block, and

a phi-node to retrieve the result of the whole if instruction.

Here, simpler functions are demonstrated for completeness: A generic
enter function for strict evaluation of parameters, and a leave function for
“47 operator.

static void
cg_stricteval (term_ptr self, pass_env<codegen_data>&env, Module*mod)

{
term_ptr t = &env.t;
codegen_data nd (env.data()); //clone the environment
while (t->type == term::APPLICATION) { //recurse for all applications of the call
env.data() .argspace.push_front (NULL); //create a space for the result
nd.save = &env.data().argspace.front(); //mark a point for saving the result
env.visit (t->d, nd); //tell the environment to visit the argument
t = t->a; //go to next argument
}
}

static Value* cg_plus (term_ptr self, pass_env<codegen_data>&env, Module*mod)

{

64

std::vector<Value*> args
(env.data() .argspace.begin(),
env.data() .argspace.end()); //copy the arguments from the environment
return env.data().builder->CreateAdd (args[0], args[1]); //emit LLVM instruction
}

Function CreateAdd is the actual LLVM call to create an adding
instruction. One can also observe the function of pass_env structure, and

the (delayed) visit of the pass framework.

All builtins are finally registered in an array of builtin structures, and are
ready for usage in the environment. Complete and final builtin registration
to the array is shown in the last example:

static builtin_def builtin_list[] = {
{"+", 2, type_2uint, plus, cg_stricteval, cg_plus},
{"-", 2, type_2uint, minus, cg_stricteval, cg_minus},

/]

{">>", 2, type_proceed, no_inline, proceed_enter, proceed_leave},
{">>=", 2, type_bind, no_inline, bind_enter, bind_leavel},

{"", 0, NULL, NULL, NULL, NULL} //last entry

};

3.2.6 Handling recursion

As stated above, the program must handle the cases when infinite recursion
would allocate stack space with no bounds. Solution using a tail recursion
in TinyLL compiler is extremely simple and effective — as there are not any
complicated allocated resources, any function calls can simply be rewritten
to tail calls by the code generator. LLVM can give us even more flexibility
in the choice of marking a function call either tail to enable tail recursion
optimization, or musttail to require the tail recursion. The requirement may
be useful in actual programming environment where programmer is sure to
use some functions as loops. In that case the function call would get marked
as musttail in the language, which would translate to the same LLVM
requirement and produce an error if the call could not be tail-optimized,
to prevent possible stack depletion in runtime.

We give an example of the LLVM bytecodd™”] and resulting assembly code
of the program rw.tl, that simply reads the numbers on the input and writes

some simple modification of them, until a zero is entered.
The source of the program is following:

writer x = {

0Representation in the human-readable form of the LLVM language can be obtained
from any .bc file by using the 11vm-dis tool, usually shipped with the LLVM toolchain.

65

a <- read;

write (a*x);

if (a'!'=0) {writer (x+1)} {return 0};
};

main = writer O

In the figure, notice the result of lifting the anonymous function (that was
created by monad-syntax rewriting in the writer definition) and the tail
marks on the calls in the resulting LLVM code.

Translation to assembly results in final code shown in the second
figure (again stripped of information that are not interesting for this
demonstration). Notice that all “looping” calls were rewritten to actual
jump instructions, as they all appeared only in tail calling positions.

3.2.7 Compilation overview

The overall compilation process may be observed in main.cpp. After the
source is loaded and parsed to intermediate representation,

e the root term is injected with builtin definitions,
e it is type-checked by algorithm W (that can be found in file infer. cpp),

e type information is discarded from terms and names are inlined (see
inline.cpp). Currently, inlining is not very invasive — only the terms
that are sure not to do any harm are inlined, and builtins are allowed
to process the code (if they are able to);

e all lambda abstractions are converted to named functions, (1ift.cpp)
e all code blocks are lifted and dead code is eliminated, and finally

e the code generator (in codegen.cpp) creates the LLVM bytecode for
each function.

Output of the last step is saved to the file with extension .bc and is
expected to be processed by LLVM assembler and linker.

3.2.8 Possible extensions

As stated above, there are many limitations and simplifying design decisions
the compiler was subjected to, in order to stay small and fit the purposes of
this thesis.

Several limitations of the compiler may be surprising, especially for the
users of Haskell language:

66

define internal fastcc i64 Quriter(i64 %x) {

alloca i64

call i32 (i8%, ...)* @__isoc99_scanf(.....)

load i64x %0

tail call i64 @_lift__anon_func_3636(i64 %x, i64 %2)
ret i64 %3

}

B
RN
[AT

define 164 @main() {

entry:
%0 = tail call i64 Quriter(i64 0)
ret i64 %0

}

define internal fastcc i64 @_lift__anon_func_3636(i64 %_liftvar_x36, i64 %a) {

mul i64 %a, %_liftvar_x36

call i32 (i8%*, ...)* Qprintf(.....)
zext 132 %1 to i64

br label %proceed

B
BN
o

proceed:
%3 = icmp ne i64 %a, O
%4 = zext il %3 to i64
%ifcheck = icmp ne i64 %4, 0
br i1 %ifcheck, label %then, label %else

then:
%5 = add i64 ¥%_liftvar_x36, 1
%6 = tail call i64 Quriter(i64 %5)

br label %ifcont

else:
br label %ifcont

ifcont:
%ifval = phi i64 [%6, %then], [0, %else]
ret i64 %ifval

}
Figure 3.3: Example rw.tl translated to LLVM low-level code
_lift__anon_func_3636:
pushq Yri4
pushq Jrbx
.type writer,@function pushq Yrax
writer: movq %rsi, %ril4
pushq Yrbx movq %rdi, %rbx
subq $16, %rsp imulq Yrbx, %rsi
movq %rdi, %rbx movl $.Loutfmt, %edi
leaq 8(%rsp), %rsi xorl ‘Yeax, %eax
movl $.Linfmt, %edi callqg printf
xorl Yeax, %eax testq Yri4, %rid
callg __isoc99_scanf je .LBB2_1
movq 8(%rsp), %rsi # BB#2: # Jthen
movq %rbx, Yjrdi incq Y%rbx
addq $16, Yrsp movq %rbx, %rdi
popq “%rbx addq $8, Jrsp
jmp _lift__anon_func_3636 popq %rbx
popq ‘“rid
.globl main jmp writer
main: .LBB2_1: # Jifcont
xorl ‘hedi, %edi xorl ‘eax, %heax
jmp writer addq $8, Jrsp

popq “%rbx
popq %ri4
retq

Figure 3.4: Resulting assembly code of program rw.tl

67

The foremost limitation is the used type system, which is only a simple
HM system that is extended with the multi-letrec construction as
described in Chapter 2. This allows the compiler to run a complete
type check on the whole code, but limits some of its basic features. For
example, because the system does not support overloading, the main
monad Machine (replacement of Haskell IO monad) allows only the
constructions that would be otherwise marked as Machine Uint. Uint
here represents a 64-bit unsigned integer. The compiler effectively does
not support any other type yet.

Function main is forced to have type Machine, and is automatically
compiled and exported in the module as symbol main — from that
point, the compilation process may continue with linking exactly as in
the case of C-like languages.

Evaluation of all function calls is strict.

Because of the problems with polymorphic recursive bindings (see the
notice in section , some of the basic builtins are not polymorphic
in the code, unless explicitly redefined in a let-construction. Direct
outcome of this fact is that it is hard to use more than one $ operator in
whole code — derived types usually do not unify in the non-polymorphic
environment of the root letrec.

Possible future work on the compiler should certainly improve following
functionality:

Include more builtins. Writing builtins is easy and directly extends the
possibilities of the compiler.

Provide compound type constructors that would allow to construct
structures by hand.

Provide an overloading- and recursion-capable type system, mainly to
support the polymorphic Machine monad.

Implement better and more aggressive inlining, in combination with
some of the solutions for lazy evaluation.

Allow partial application by using the lazy evaluation solution from
section 3.1.2

68

Conclusion

This thesis has explored current possibilities of implementing compilers for
low-level functional languages.

The ancillary result of the thesis is the summarization of knowledge
that is required to implement such compilers. Theoretical requirements
for work with functional languages, review of some properties of lambda-
based languages and examples of several typing systems were collected in
chapter 1. Complete chain of algorithms needed for whole compiling process
was discussed and presented in chapter 2 in a straightforward form, with the
intention that the reader would easily understand the compiling process of
most of current functional languages.

Main result of this thesis is the construction of the proof-of-concept
compiler for a simple functional language, called TinyL. The implementation
contains

e a complete parser for a Haskell-like functional language,

e amethod of term storage with several interesting properties (see section
3.2.3)),

e type inference and checking system (the standard algorithm described

in section [2.2.2)),

e several (very simple) optimization methods,
e lambda lifting implementation,

e a code emitter that transforms the code into LLVM low-level
instructions (see section [3.2.4)) that are then used to produce a working
binary.

The main difference from other current functional languages is that the
compiled code does not require any runtime support; specifically, the
produced code works without automated memory manager or garbage
collector. Resulting execution and memory model is roughly equivalent to
that of C language. The code can be easily linked with modules written in
other languages — although current implementation does not support that
directly, the possibility is demonstrated by linking with standard C library
to use its program initialization code and several library functions.

The implementation of TinyL. compiler was discussed in detail in chapter
3, providing an insight into programmatical aspects of compiler construction

69

and describing properties of internal data structures of the compiler. A
practical introduction to work with the compiler is given in the Appendix.

There are still limitations to the compiler that arise from the fact that
some constructions common in lambda calculus directly require hidden
automatic memory management. Chapter 3 addresses this problem with
a demonstration on a (currently nonexistent) “reduced Haskell” language:

e [t describes a simple solution that replaces recursive types known from
functional languages by inclusion of pointed types. The solution is
implemented and demonstrated in the compiler.

e [t describes a possible solution to enable partial application and lazy
evaluation in a language that can not store thunks in garbage-collected
memory. The solution is not implemented.

e [t gives several possibilities how to approach the “destructor problem”
of functional languages — the problem how to reliably determine the
position in a code where the object (or allocated resource) may be
safely destroyed (freed) by the language, preferably in a way similar
to C++ destructors. To the best of author’s knowledge, no simple
satisfactory solution for this problem is currently known.

Future work and open questions

Development of the compiler has shown many points where either current
knowledge of the stated problem is insufficient, or the software that would
provide the functionality is missing:

e More research is certainly needed on the field of low-level functional
programming. FEspecially some solution to the destructor problem
might give a way to implement a new family of interesting programming
languages. There are possible constructions using linear types as
defined for example by [Abr93] that may be used to solve similar
problems, but those are out of scope of this thesis.

e There is lot of functionality of the TinyL compiler that was not
implemented by this thesis. It is possible to extend the compiler
to support compound types (i.e. user-defined structures) and a
Haskell-like type system that would allow overloading or subtyping.
Implementation of the proposed replacement of thunks could clearly
show the benefits or applicability limits of the method.

70

e From practical perspective, it could also be reasonable to start from
a different point and examine the possibilities of modifying some
currently available compiler of functional language (for example the
GHC, which shares many basic concepts with the approach chosen by
this thesis [JHHT93]) to produce low-level code.

71

72

Bibliography

[Abr93]

[ant]

[BDS13]

[bis]

[Bluy]

[bralb]

[Bru87]

[Chu&5]

[CP04]

[DS97]

[Gir72]

[HAS10]

Samson Abramsky. Computational interpretations of linear logic.
Theoretical computer science, 111(1):3-57, 1993.

Antlr parser for java. http://www.antlr.org/. Accessed: 2015-
07-10.

Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda
calculus with types. Cambridge University Press, 2013.

Bison. http://www.gnu.org/software/bison/. Accessed: 2015-
07-10.

Matthias Blume. Compiling with non-deterministic choice for
expressing pending optimization decisions.

Bracket pattern. https://wiki.haskell.org/Bracket_
pattern, 2015. Accessed: 2015-07-10.

de NG Bruijn. Generalizing automath by means of a lambda-typed
lambda calculus. Mathematical logic and theoretical computer
science/ed. by David W. Kueker, Edgar GK Lopez-Escobar, Carl
H. Smith, 106:71, 1987.

Alonzo Church. The calculi of lambda-conversion. Number 6.
Princeton University Press, 1985.

Alcino Cunha and Jorge Sousa Pinto. Point-free program
transformation. 2004.

Olivier Danvy and Ulrik P Schultz. Lambda-dropping: transform-
ing recursive equations into programs with block structure, vol-
ume 32. ACM, 1997.

Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l'arithmétique d’ordre supérieur. 1972.

The High Assurance Systems Programming Project HASP. The
Habit Programming Language: The Revised Preliminary Report.
Department of Computer Science, Portland State University
Portland, Oregon 97207, USA, November 2010.

73

http://www.antlr.org/
http://www.gnu.org/software/bison/
https://wiki.haskell.org/Bracket_pattern
https://wiki.haskell.org/Bracket_pattern

[Hen93|

[hhv]

[HJLTO5]

[JHA*99)

[JHH*93)

[Jon00]

[K+36]

[Kae88|

[K1080]

laz]

[Les11]

[LLH*10]

Fritz Henglein. Type inference with polymorphic recursion.
ACM Transactions on Programming Languages and Systems

(TOPLAS), 15(2):253-289, 1993.

Hhvm php virtual machine. http://www.hhvm.com/. Accessed:
2015-07-10.

Thomas Hallgren, Mark P Jones, Rebekah Leslie, and Andrew
Tolmach. A principled approach to operating system construction
in haskell. In ACM SIGPLAN Notices, volume 40, pages 116-128.
ACM, 2005.

S Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton,
Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond,
Ralf Hinze, Paul Hudak, et al. Haskell 98: A non-strict, purely
functional language, 1999.

SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and
Philip Wadler. The glasgow haskell compiler: a technical overview.
In Proc. UK Joint Framework for Information Technology (JFIT)
Technical Conference, volume 93, 1993.

Mark P. Jones. Typing haskell in haskell. https://gist.github.
com/chrisdone/0075a16b32bfd4f62b7b, 2000. Accessed: 2015-
07-10.

Stephen Cole Kleene et al. Lambda-definability and recursiveness.
Duke mathematical journal, 2(2):340-353, 1936.

Stefan Kaes. Parametric overloading in polymorphic programming
languages. In ESOP’88, pages 131-144. Springer, 1988.

Jan Willem Klop. Combinatory reduction systems. 1980.

lazy.rb, lazy evaluation and futures in ruby. http://moonbase.
rydia.net/software/lazy.rb/. Accessed: 2015-07-10.

Rebekah Leslie. A Functional Approach to Memory-Safe Operating
Systems. Portland State University, 2011.

Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix,
and Gilles Muller. Finding error handling bugs in openssl using
coccinelle. In Dependable Computing Conference (EDCC), 2010
FEuropean, pages 191-196. IEEE, 2010.

74

http://www.hhvm.com/
https://gist.github.com/chrisdone/0075a16b32bfd4f62b7b
https://gist.github.com/chrisdone/0075a16b32bfd4f62b7b
http://moonbase.rydia.net/software/lazy.rb/
http://moonbase.rydia.net/software/lazy.rb/

[Mai90]

[MMS82]

[Nie0g]

[Pall2]

[par]

[PIMO2]

[pyD]

[Rey74]

[RJO7]

[Rob65]

[Roo00]

[Sit]

Harry G. Mairson. Deciding ml typability is complete for
deterministic exponential time. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’90, pages 382-401, New York, NY, USA, 1990.
ACM.

Alberto Martelli and Ugo Montanari. An efficient unification
algorithm. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(2):258-282, 1982.

Eric Niebler. Boost::proto. http://www.boost.org/doc/1libs/
1_58_0/doc/html/proto.html) 2008. Accessed: 2015-07-10.

Jens Palsberg. Overloading is np-complete. In Logic and Program
Semantics, pages 204-218. Springer, 2012.

Parsec parser for haskell. https://wiki.haskell.org/Parsec.
Accessed: 2015-07-10.

Simon Peyton Jones and Simon Marlow. Secrets of the glasgow

haskell compiler inliner. Journal of Functional Programming, 12(4-
5):393-434, 2002.

Pypy, the fast python implementation. http://www.pypy.org/.
Accessed: 2015-07-10.

John C Reynolds. Towards a theory of type structure. In
Programming Symposium, pages 408-425. Springer, 1974.

J-W Roorda and JT Jeuring. Pure type systems for functional
programming. 2007.

John Alan Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM (JACM), 12(1):23-41,
1965.

Jan-Willem Roorda. Henk 2000. http://www.staff.science.
uu.nl/~jeuril01/MSc/jwroorda/, 2000. Accessed: 2015-07-10.

Dorai Sitaram. Teach yourself scheme in fixnum days.

http://ds26gte.github.io/tyscheme/index-Z-H-16.html#
node_chap_14. Accessed: 2010-09-30.

5

http://www.boost.org/doc/libs/1_58_0/doc/html/proto.html
http://www.boost.org/doc/libs/1_58_0/doc/html/proto.html
https://wiki.haskell.org/Parsec
http://www.pypy.org/
http://www.staff.science.uu.nl/~jeuri101/MSc/jwroorda/
http://www.staff.science.uu.nl/~jeuri101/MSc/jwroorda/
http://ds26gte.github.io/tyscheme/index-Z-H-16.html#node_chap_14
http://ds26gte.github.io/tyscheme/index-Z-H-16.html#node_chap_14

[Smi94]

[Tai67]

[Tof91]

[Tor]

[VB92]

[WBS9]

Geoffrey S Smith. Principal type schemes for functional
programs with overloading and subtyping. Science of Computer
Programming, 23(2):197-226, 1994.

William W Tait. Intensional interpretations of functionals of finite
type i. The journal of symbolic logic, 32(02):198-212, 1967.

Mads Tofte. Notes on code generation using standard ml. Lecture
Notes, DIKU, Feb, 1991.

Linus Torvalds. Linus torvalds on c4++. http://harmful.cat-v.
org/software/c++/1linus. Accessed: 2015-07-16.

Steffen Van Bakel. Complete restrictions of the intersection type
discipline. Theoretical Computer Science, 102(1):135-163, 1992.

Philip Wadler and Stephen Blott. How to make ad-hoc
polymorphism less ad hoc. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60-76. ACM, 19809.

76

http://harmful.cat-v.org/software/c++/linus
http://harmful.cat-v.org/software/c++/linus

Appendix — Compiler usage

Because the compiler produced by the thesis is a simple demonstration
software that lacks user documentation, following appendix is expected to
be used as a simple guide for examining its properties.

A model task that will be solved by this tutorial is to produce a program
that would compute the greatest common divisor of two numbers using the
standard algorithm. We will show how to compile the compiler, how to write
and compile the code, and how to extend the compiler with new functionality.

Compiling the compiler

The software was written and tested on a fairly standard Debian Linux and
on Gentoo installations in the university lab, but should be portable to any
64-bit UNIX-like system that has following dependencies installed:

e LLVM suite version 3.5 or 3.6 (can be obtained from http://1lvm.
org/releases/ or by distribution packaging method)

e GNU Make, Flex and Bison of some recent version

e A standard C library and a linker are required to run the compiled
samples — the library should export at least symbols printf and
__is0c99 scanf for the examples to work [

Software package uses a very simple build system — all program sources
are in the main directory together with a Makefile. If the dependencies are
installed correctly, a single invocation of make should produce the compiler
binary, tlc. The package itself is on a disc attached to the thesis, or may be
downloaded from the website:

$ wget http://e-x-a.org/tlc/tlc.tar.gz
$ tar xzf tlc.tar.gz

$ cd tlc

$ make

UTf the names differ on the target platform, they can be customized in source file
builtin.cpp.

7

http://llvm.org/releases/
http://llvm.org/releases/

Compiling the TinyL programs

The tlc compiler is used very simply: It expects exactly one filename
argument. The file is expected to contain the TinyL source, that will be
compiled, and the result will be saved to a file with the same name as original
source, only with extension .bc, as is the standard for LLVM bytecode.

Resulting LLVM bytecode can be translated to platform-specific assembly
by a single invocation of LLVM compiler 11c. The result is linked with
the system C library that is used to execute the exported main() function
correctly and for import of several other functions (see above), using any C
linker available — the linker tested by author is GCC (versions 4.8 and 4.9).

Whole “pipeline” to compile and run a TinyL program example.tl would
therefore be following:

$ tlc example.tl

$ 1lc example.bc

$ gcc example.s -o example
$./example

Examples that are packed with the source package are in the directory
examples/ and possess their own Makefile that executes this chain correctly.
Among the examples are:

e rw.tl that reads numbers from standard input and prints out some
multiplies of them, until a zero is entered

e fib.tl that prints out first n Fibonacci numbers, for n entered on
input

e alloc.tl that demonstrates memory allocation in a functional
program

e gcd.tl that is the result of this tutorial

Writing the GCD program

Using a fairly standard almost-Haskell syntax, we can implement the GCD
program as follows:

gcd a b =
if (a<b) (gcd b a) $
if (b==0) a (gcd (a-b) Db);

78

main = {

a <- read;

b <- read;

write (a ‘gcd‘ b);
}

Compiling, translating and linking:
$ tlc ged.tl
$ 1lc gcd.bc
$ gcc ged.s -o ged
$./gcd
15504 --inputs
22236
204 --output

It is also possible to inspect generated assembly by viewing the gcd. s file,
and generate a human-readable form of the t1c compiler output by using the
LLVM disassembler 11vm-dis gcd.bc, which generates the file gcd.11 with
LLVM-IR source. Note especially the transformation of the tail calls and the
fact that the program behaves monadically and returns the same exitcode as
the function write, which is basically the exitcode of printf (that fact can
be fixed by adding explicit return O to the main function).

Extending the compiler

Let us improve the example. We will modify the GCD code to use the
much-better modulo-division. The code for the function shall be modified as
follows:

ged a b =
if (a<b) (gecd b a) $
if (rem==0) b (gcd b rem) [rem=ajb];

This leaves us with an error, because the operator % is not implemented

yetEﬂ

error Q@infer.cpp:597 in ‘hm_leave’: unbound identifier:

12The compiler is more a research tool than actual software construction tool. Therefore,
error messages sometimes contain more debugging information about the compiler than
about the actual compiled program, but in most cases should be sufficient.

79

We must therefore add the functionality of the modulo function to the
compiler. Because the builtins are virtualized, whole process is very easy. To
create a new builtin, it is needed to

e decide on a builtin name (for our case, operator names are the same
thing as function names — the distinction is erased in the parsing process
and therefore completely invisible for most of the compiler),

e create a function that constructs the builtin type term, in our case
Uint->Uint->Uint,

e create a function that is able to partially evaluate the term,
e create a pair of functions that direct the code generation for the term["]

e create a “registration” entry in the builtins table.

We will progress “backwards”: In the file builtins.cpp we first create
the builtin registration in the table, just like the other registration for binary
integer operations:

{"%", 2, type_2uint, mult, cg_stricteval, cg_mult},
{"/", 2, type_2uint, div, cg_stricteval, cg_div},
{"%", 2, type_2uint, mod, cg_stricteval, cg_mod},

We have actually reused some code of other operators: The type_2uint
defines exactly the type we want, and the modulo-division requires strict
evaluation of both its arguments in the entering phase of code generation.

The code for partial evaluation of binary operators on Uint’s is
generalized by the UINT_OP macro, to save a lot of code duplication. In
a similar manner, we only add one macro expansion:

#define divop(a,b) (a / b)
UINT_OP (div, divop)

#define modop(a,b) (a % b)
UINT_OP (mod, modop)

#define 1ltop(a,b) ((a<b)?1:0)
UINT_OP (cmp_lt, ltop)

BDetailed information about the callbacks can be found in section

80

To generate the code, we need to determine what LLVM API builder
function is used to create the modulo-division. The exact documentation
for LLVM class 1lvm::IRBuilder<> can be (at the time of writing this
thesis) found at http://llvm.org/doxygen/classllvm_1_1IRBuilder.
html. From there, we get the information that the corresponding function is
called CreateURem.

The definition of the code generation is again generalized by the
UINTOP_CG macro that just virtualizes resulting function name and the
IRBuilder member name for the correct operation. Therefore, we only add
one more expansion:

UINTOP_CG (cg_mult, CreateMul)
UINTOP_CG (cg_div, CreateUDiv)
UINTOP_CG (cg_mod, CreateURem)

After that, the compiler should be rebuilt with make, and the modified
GCD code will compile and work correctly. Note also that this simple
expansion is already contained in the compiler package.

81

http://llvm.org/doxygen/classllvm_1_1IRBuilder.html
http://llvm.org/doxygen/classllvm_1_1IRBuilder.html

82

	Introduction
	Lambda calculus
	Lambda calculus without types
	Formal definition
	T-completeness
	Halting

	Basic type systems
	Simply typed lambda calculus
	System F
	Simple Hindley-Milner system
	Intersection -calculus

	Polymorphism and overloading
	Parametric polymorphism in HM system
	Overloading
	Parametric overloading
	Principal type schemes
	Haskell types
	Other type systems

	Compilation of functional languages
	Parsing and representation
	Desugaring
	Common conflicts in syntactical analysis

	Type inference
	Unification
	Type inference using Algorithm W

	Inlining
	Termination and loop breaking
	Code simplification

	Emitting of code
	Lifting
	Removing lazy evaluation
	Code generators

	Low-level functional programming language
	Reduced Haskell
	Types and pointers
	Partial application and lazy evaluation
	Linking to other languages
	Destructors

	Implementation
	Syntax
	Syntactical analysis
	Term storage method
	Code generator
	Builtins
	Handling recursion
	Compilation overview
	Possible extensions

	Conclusion
	Bibliography
	Appendix – Compiler usage

