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1. Introduction

Since twentieth century, astronomers have accumulated conclusive evidence that
the matter in the Universe is mostly non-baryonic and the Universe`s expansion
is accelerating [3]. Within the framework of the standard cosmological model this
implies that roughly 70% of the Universe is composed of a dark energy, whereas
25% is in a form of a dark matter, leaving only 5% in a form of standard matter.
Dark energy ranks as one of the most important discoveries in cosmology, with
profound implications for astronomy and fundamental physics. Many experiments
were, and are trying to discover the nature of these dark sectors of the Universe
while other projects are planned for the future.

The Large Synoptic Survey Telescope (LSST) is a ground-based telescope
being built in northern Chile [77]. Thanks to a large aperture, wide �eld survey
telescope and 3200 Megapixel camera it will image faint astronomical objects
across the sky. The LSST will rapidly scan the sky, charting objects that change or
move: from exploding supernovae to potentially hazardous near-Earth asteroids.
The LSST will produce very deep survey and its images will trace billions of
remote galaxies, providing multiple probes of the mysterious dark matter and
dark energy.

ESA`s Euclid mission is a high-precision space mission designed to map the
geometry of the dark Universe [75]. Its primary goal is to place high accuracy
constraints on dark energy, dark matter, gravity and cosmic initial conditions.
By measuring shapes and redshifts of galaxies and clusters of galaxies up to ten
billion years ago, Euclid will cover the entire period over which dark energy played
a signi�cant role.

Chapter 2 describes current and future dark energy surveys. We focus espe-
cially on the LSST Project. We describe the system design (telescope and camera
design, survey strategies or data management), survey requirements for meeting
its objectives and various probes of dark energy, which will be used. Some basic
information about the Dark Energy Science Collaboration (DESC) are presented
[40]. Similar information about the Euclid, i.e. the system design, science goals
and its requirements and Euclid`s probes of dark energy, is also described here.
Basic information about other surveys are presented at the end of the chapter.

For success of these surveys, dark energy theories need to be explored � both
analytical solutions and numerical simulations. In Chapter 3 we explain currently
known problems with the cosmological constant and why it is worth probing
alternatives to General Relativity (GR). We present the most studied alternative
theories such as extra scalar �elds (quintessence [27], k-essence [13]) or f(R)
theories [111]. Special attention is given to chameleon gravities [118] which are
of our main interest in this work.

We study the chameleon �eld in the context of Hu-Sawicki f(R) models [66]
and present our new results in Chapter 4. Here we present chameleon behavior
for non-standard potentials that are not of the usual runaway form which are in
most existing chameleon models. We are interested mainly in numerical solutions
as the analytical solutions are rare in nature. We examine the behavior of the
chameleon �eld inside and near a surface of stars in the non-linear, but not so
deeply screened regime. This regime is not well studied in the literature even

3



Symbol Description
c Speed of light; c = 1
~ Reduced Planck constant; ~ = 1
G Bare gravitational constant; G = 6.71 · 10−57 (eV)−2

Mpl Reduced Planck mass; Mpl ≡ (8πG)−1/2 = 2.44 · 1027 eV
Λ Cosmological constant; Λ = 1.41 · 10−120 M2

pl

a Scale factor; a0 ≡ 1
z Redshift; 1 + z = a−1

H Hubble parameter; H ≡ ȧ/a; H0 = 5.92 · 10−61 Mpl

h Dimensionless Hubble parameter; H ≡ h× 100 km· s−1 Mpc−1

w Equation of state parameter; w ≡ p/ρ
cs Sound speed; c2

s ≡ dp/dρ
∂ Partial derivative
ω,X Partial derivative with respect to the quantity X
∇ Covariant derivative
� d`Alembertian; � ≡ ∇2

∆ Laplace operator; ∆ ≡ ∂i∂
i

Table 1.1: List of symbols. When enumerating constants a value in the natural
units is speci�ed.

for standard potentials as analytical solutions do not exist here and experiments
usually take place outside the body. But understanding this regime inside the
body is key in our next task where we study the behavior of the chameleon �eld
in galaxies described by the NFW halo. We predict a change of the e�ective
mass distribution and a way to detect this e�ect through combine probes of weak
lensing and spectroscopic measurements of satellites of galaxies.

Some basics of the standard cosmological model are described in Appendix A
� fundamental principles, description of the FLRW metric and its kinematics, and
an introduction into the perturbation theory on the FLRW metric. The action
principle and its application to the modi�ed gravity theories is also described
here. In Appendix B we then present important parts of the code that has been
used in numerical computation in Chapter 4.

Units and conventions

Throughout this work we use natural units such that c = ~ = 1, where c is the
speed of light and ~ is the reduced Planck constant. Used symbols are summarized
in Table 1.1. The metric with signature (−,+,+,+) is used. We also use the
Einstein summation convention. Unless stated otherwise Greek indices run from
0 to 3, whereas Latin indices run from 1 to 3.

For various combinations of covariant derivatives we use following notation

�φ ≡∇µ∇µφ

(∇φ)2 ≡(∇µφ)2 ≡ (∇µφ)(∇µφ)

(∇∇φ)2 ≡(∇µ∇νφ)2 ≡ (∇µ∇νφ)(∇ν∇µφ)

(∇∇φ)3 ≡(∇µ∇νφ)3 ≡ (∇µ∇νφ)(∇ν∇ρφ)(∇ρ∇µφ)

Similar relations hold for partial derivatives ∂.
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2. Surveys for Constraining Dark

Energy

In this chapter we describe various dark energy surveys. As the Institute of
Physics is an a�liate member of the LSST and the supervisor of the thesis is a
full member of the DESC, while the author is an associate member, our descrip-
tion of surveys focus mainly on the LSST. We describe the system design, survey
requirements and various probes of dark energy. Next we present similar informa-
tion about the Euclid as the next mission with great potential of discovering the
nature of dark energy. At the end of the chapter we brie�y mention several other
dark energy surveys � Baryon Oscillation Spectroscopic Survey (BOSS), Dark
Energy Survey (DES), and Wide-Field Infrared Survey Telescope (WFIRST).

2.1 Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope (LSST) is a ground-based telescope being
built in northern Chile on the Cerro Pachón mountain. The system will produce
a 6-band (300 � 1100 nm) wide-�eld deep astronomical survey over 20,000 deg2

of the southern sky. Combining the wide �eld of view with short exposures, the
LSST will take more than 800 images each night and cover the whole observable
sky twice each week. Each patch of the sky will be visited about 1000 times
during ten years. The LSST will provide an unprecedented depth (single-visit
24.5 mag, co-added 27.5 mag) and unique details of the Universe while producing
30 terabytes of data nightly. This data will be used for locating dark matter
and to characterize the properties of the dark energy. Other major tasks for the
LSST will be detecting and tracking potentially hazardous asteroids or studying
the structure of the Milky Way. The project is in the construction phase and will
begin regular survey operations by 2022 (the LSST`s timeline in Figure 2.1). For
overview of the LSST design and science drivers see e.g. [69].

2.1.1 Overview of LSST System Design

The current baseline design allows to obtain sequential images covering over half
the sky every three nights. This design involves a 3-mirror system with an 8.4-m
primary mirror, which feeds three refractive correcting elements inside a camera,
thus providing a 10 deg2 �eld of view sampled by a 3.2 Gigapixel focal plane
array. The important characteristic that determines the speed at which a system
can survey the sky is called étendue (or grasp). It is the product of its primary
mirror area (in square meters) and the area of its �eld of view (in square degrees).
The total e�ective system étendue for LSST will be 319 m2deg2, which is more
than an order of magnitude larger than that of any existing facility.

5



Figure 2.1: The LSST Project Schedule (Last Update: June 2015). From [78].
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The basic characteristics of the LSST observing system follow directly from
science programs described in � 2.1.2. The location of the telescope should be a
site with a very high percentage of usable nights which are distributed uniformly
as much as possible throughout the year. The telescope must have a wide �eld
of view in order to obtain several hundred images of each area of the sky. The
aperture must be large in order to achieve the sensitivity required to observe faint
objects. The wavelength coverage must be broad in order to derive photometric
redshifts and to characterize ages and metallicities of stellar populations. Ter-
abytes of data must be obtained every observing night and reduced in near-real
time in order to keep pace with the data �ow and to send out alerts within a
minute or so after detections of interesting brightness changes. The raw images
must be converted to well-calibrated data products that can be used by a broad
community.

Observatory site

The LSST will be constructed on El Peñón Peak (Figure 2.2) of Cerro Pachón
in the northern Chilean Andes. This site was chosen after an extensive study
comparing seeing conditions, cloud cover and other weather patterns, and infras-
tructure issues at a variety of potential candidate sites around the world. Cerro
Pachón is located ten kilometers away from Cerro Tololo Inter-American Obser-
vatory (CTIO) for which over ten years of detailed weather data have been ac-
cumulated, and thus con�rmed excellent atmospheric conditions with more than
80% of the nights usable. The expected mean delivered image quality is 0.67′′

in g-band as measured by di�erential image motion monitoring (DIMM) on Cer-
ro Tololo (Figure 2.3). The excellent image quality have been con�rmed also by
nearby 8.2-m diameter Gemini-South and 4.3-m diameter Southern Astrophysical
Research (SOAR) telescopes. In addition, LSST will bene�t from the extensive
infrastructure that has been created on Cerro Pachón and La Serena to support
these other facilities.

The LSST Observatory as a whole will be distributed over four sites: the
Summit Facility on El Peñón, the Base Facility, the Archive Center, and the
Data Centers. The Base Facility will be at the AURA compound in the town of
La Serena, 57 km away from the mountain. The Archive Center will be at the
National Center for Supercomputing Applications (NCSA) on the campus of the
University of Illinois at Urbana-Champaign. One of the two Data Centers will be
located with the Archive Center at NCSA and the other one at the Base Facility
in La Serena. All these facilities will be connected via dedicated high-bandwidth
�ber optic links.

Telescope

The LSST telescope consists of three aspheric mirrors � an 8.4-m primary M1, a
3.4-m convex secondary M2 (the largest convex mirror ever made), and a 5.0-m
tertiary M3 (Figure 2.4). The primary mirror is highly annular having an outer
clear aperture of 8.36 m and an inner diameter of 5.12 m, giving an e�ective
collecting area of a 6.67-m �lled aperture. The camera body and its associated
readout electronics are located in the 1.8-m diameter hole in the secondary mirror.
The hole in the tertiary mirror is used to mount equipment for the maintenance of

7



Figure 2.2: Two renderings combine to create this image of the LSST summit
facility and Calypso, the small adjacent atmospheric telescope, atop Cerro Pachón
in Chile. From [78].

Figure 2.3: The distribution of �seeing� (FWHM of the image of a point source)
at 500 nm based on ten years of measurements from CTIO (10 km from the LSST
site). The red curve shows results from a DIMM, while the blue curve shows the
delivered image quality. The mean is 0.67′′, and the median is 0.59′′. From [77].
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Figure 2.4: The optical design con�guration showing the telescope (left) and
camera (right) layouts. Di�raction images in r for three �eld radii, 0, 1.0, and
1.75 degrees, are shown in boxes 0.6 arcseconds square (3× 3 pixels). From [77].

the LSST optical alignment. The primary and tertiary mirrors form a continuous
surface without any vertical discontinuities. Proposed design makes it possible to
fabricate both of them from a single monolithic substrate. The M1-M3 monolith
blank was formed in February 2015 from Ohara E6 low expansion glass using
the spin casting process developed at Steward Observatory Mirror Lab. The
secondary mirror will be made of a low expansion glass (e.g. ULE or Zerodur)
using a 100 mm thick solid meniscus blank.

The proposed LSST telescope is a compact, sti� structure with a powerful
set of drives, which makes it very accurate and agile. The telescope structure
is a welded and bolted steel system designed to be a sti� metering structure for
the optics and a stable platform for observing. The primary and tertiary mirrors
are supported in a single cell below the elevation ring, the camera and secondary
mirror are supported above it.

This construction makes it possible to reorient the telescope very quickly � the
motion time for a nominal 3.5◦ elevation move and a 7◦ azimuth move is only �ve
seconds. In two seconds, a shaped control pro�le will move the telescope, which
will then settle down to less than 0.1” pointing error in three seconds. There
are four motors per axis con�gured in two sets of opposing pairs to eliminate
hysteresis in the system. All-sky pointing performance will be better than 2”,
which is important for trailing and imaging systematics.

Camera

The LSST camera (Figure 2.5) with size of 1.6 meters by 3 meters and weight of
2800 kilograms will be the largest digital camera ever constructed. It will produce
data of extremely high quality with minimal downtime and maintenance. It is
a large-aperture, wide-�eld optical (0.3�1 µm ) imager designed to provide a
3.5◦ �eld of view with sampling better than 0.2 arcsecond. The image surface
is �at with a diameter of approximately 64 cm. Used detectors are 16 Mpixel
silicon detectors providing a total of approximately 3.2 Gpixels with read out in

9



Figure 2.5: Cutaway drawing of the LSST camera. The camera body is approx-
imately 1.6 m in diameter and 3.5 m in length. The optic, L1, is 1.57 m in
diameter. From [77].

2 sec (15 sec integration). The camera has 6 �lters (ugrizy) � ideal �lter curves
and speci�cations are in Figure 2.6. The camera is located in the middle of the
telescope.

Heat dissipation will be be controlled to limit thermal gradients in the optical
beam. In order to achieve the desired detector performance, the focal plane
array will operates at a temperature of approximately -100◦C . The focal plane
array, detector front-end electronics and thermal control are mounted on a silicon
carbide grid inside a vacuum cryostat. The cryostat lens serves as an entrance
window and vacuum seal for the cryostat. The camera housing is �lled with
dry nitrogen gas to provide the operating environment for the shutter and �lter
change mechanisms. The �lter carousel can accommodate 5 �lters, each 75 cm in
diameter, for rapid exchange without external intervention (the sixth �lter can
replace any of the �ve via an automated procedure accomplished during daylight
hours).

The focal plane consists of 189 arrays (∼16 cm2 each, 3200 cm2 focal plane) of
4k×4k CCDs which should ensure wide �eld of view while �lling the focal plane
without any large gaps (less than few hundred µm ) � the �ll factor is 93%. High
resistivity silicon substrate and high applied voltages with small pixel size will
produce low point spread function (PSF � 0.7 arcseconds). Other focal plane
requirements include high quantum e�ciency (QE) from 320 to 1080 nm, fast
f/1.23 focal ratio, high throughput fast readout (2 sec) or low read noise.

Sky survey strategies

Fundamental basis of the LSST observing strategy is to scan the sky deep, wide
and fast, and to obtain a dataset that simultaneously satis�es the majority of the
science goals. This is done by minimizing slew and other downtime and by making
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Figure 2.6: Design of �lters with transmission points in nanometers (top). The
left bottom panel shows the transmission e�ciency of the ugrizy �lters by them-
selves as calculated from models of the �lter performance. The total throughput,
accounting for the transmission through the atmosphere at the zenith, the re�ec-
tivity of the re�ective optics, the transmissivity of the refractive optics, and the
quantum e�ciency of the sensors is displayed in the bottom panel on the right.
From [77].

appropriate choices of the �lter bands given the real-time weather conditions.
The LSST Operations Simulator (OpSim) was developed to study and to

analyze various science tradeo�s described in � 2.1.2. It contains detailed mod-
els of site conditions, hardware and software performance, and an algorithm for
scheduling observations which will drive the largely robotic observatory. Observ-
ing conditions include a model based on measurements obtained during the site
selection. Weather data are taken from ten years of hourly measurements.

For each observation, the signal-to-noise ratio is determined using a detailed
sky background model. The time taken to move from one observation to the
next is given by a model of the camera, telescope, and dome. After a given
exposure, the best option based on a set of scienti�c requirements modi�ed by
observing conditions is selected from all possible next observations. The result of
a simulator run is a detailed history of which locations on the sky were observed
when, in what �lter, and with what sky background, seeing and other observing
conditions.

The cadence plan described here (the "universal cadence") based on OpSim
is still not de�nite while there are many variants and alternatives that enhances
various speci�c science programs. However, this plan shows that it is indeed
possible to design a universal cadence which addresses a wide variety of science
goals in a nearly optimal way.

The main deep-wide-fast survey (r ∼ 24.5) will use about 90% of the observing
time. The remaining 10% of the observing time will be used to obtain improved
coverage of parameter space such as very deep (r ∼ 26) observations, observations
with very short revisit times (∼1 minute), and observations of "special" regions
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Figure 2.7: The number of visits in one realization of a simulated ten-year survey
in all six LSST �lters, shown in Equatorial coordinates. The project goals are to
have 56, 80, 180, 180, 164, and 164 visits in the u, g, r, i, z, y �lters, respectively,
over 20,000 deg2of sky. From [77].

such as the Ecliptic, Galactic plane, and the Large and Small Magellanic Clouds.
A third type of survey, micro-surveys, that would use about 1% of the time, may
also be considered. An example of visit distributions from OpSim over ten years
of the survey is showed in Figure 2.7.

The main Wide-Fast-Deep mode will focus on the homogeneity of depth
and number of visits. In times of good seeing and at low airmass, preference is
given to r and i band observations. Observations will be performed by two 15
seconds exposures. Each �eld will be observed twice with visits separated by 15�
60 minutes as often as possible. This strategy will provide motion vectors to link
detections of moving objects in the Solar System and thus ful�ll the requirement
for detecting Near Earth Objects (NEOs) larger than ∼ 140 m in diameter. The
anticipated total number of visits for a ten-year LSST survey is about 2.8 million
(∼5.6 million 15-second long exposures). North Ecliptic Spur extends the
main survey to 4,000 deg2of the northern ecliptic beyond the airmass limit of the
main survey.

The mini-surveys (using roughly 10% of the time) aim to extend the parameter
space accessible to the main survey by going deeper (by coadding images up to
r ∼ 28) or by employing di�erent time/�lter sampling. The LSST has already
selected four distant extragalactic survey �elds (Elias S1, XMM-LSS, Extended
Chandra Deep Field-South, and COSMOS) that the project guarantees to observe
as Deep Drilling mode with a deeper coverage and more frequent temporal
sampling while more such �elds will be chosen. Deep Drilling mode allocates
ten minutes of exposure time distributed among �lters on a �ve-day cycle so as
to provide high-quality type-Ia supernova light curves at redshifts to z ∼ 1.2.
Galactic Plane mode allocates thirty observations in each of six �lters in a
region of 1000 deg2around the galactic center where a high stellar density leads
to a confusion limit at much brighter magnitudes than those attained in the rest
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of the survey. South Celestial Pole mode allocates thirty observations in each
of six �lters in a region of ∼1700 deg2around the south celestial pole to provide
data on the Magellanic Clouds and transients in the southern sky.

Data Management System

The LSST Data Management System (DMS) is required to generate and process
a set of data products and to make them available to scientists and the public.
DMS creates once per year (more often during the �rst year of the survey) and
archives a Data Release (DR), which is a static selfconsistent collection of data
products generated from all survey data. There exist three groups of data, based
largely on where and when they are produced.

Level 1 products are continuously generated and/or updated every observing
night. These data include alerts, i.e. announcements that the �ux or position
of a given object has changed signi�cantly. The alerts will be released within 60
seconds of the closing of the shutter at the end of a visit and thus the processing of
these data must be highly automated with absolutely minimal human interaction.

Level 2 products are generated as a part of the yearly Data Release. Level
2 products use Level 1 products as input and include data products which re-
quire extensive computation. Generation of Level 2 products will be automated,
however, signi�cant human interaction may be required.

Level 3 data products are derived from Level 1 and Level 2 data products to
support particular science goals. The DMS will provide an interface for programs
and an computing infrastructure. These data will not be created by the DMS
but rather externally using software written by science collaborations, e.g. DESC
(see � 2.1.3).

Level 1 and Level 2 data products will be accessible to the public without
restriction altogether with the source code used to generate them.

2.1.2 Survey requirements

The range of scienti�c investigations which would be enabled by the LSST is
extremely broad. Members of the LSST collaboration have identi�ed the four
main science programs: Taking an Inventory of the Solar System, Mapping the
Milky Way, Exploring the Transient Optical Sky, and Probing Dark Energy and
Dark Matter. These science requirements are made in the context of what is
expected for the scienti�c landscape by the end of this decade. The LSST missions
and their requirements are summarized in Table 2.1. More information about
these goals are described below while detailed description can be found in [68].
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Science Mission Observing Program and Analytic Methods and Survey Requirements
Experimental Design Techniques

Dark Energy/ Strong Lensing Source shape PSF concentration
Dark Matter Weak Lensing Photometric redshifts PSF shape systematics

Supernovae Image di�erencing Survey area
Cluster counting Precision photometry Filter de�nition
Growth of structure Photometric variability Single exposure depth
BAO Deep image stack Photometric precision and accuracy

Exposures per �lter
Survey cadence (time between revisits)
Spectral coverage

Solar System Census NEOs Image position Astrometric precision and accuracy
TNOs Image di�erencing Survey cadence
MBAs Moving object linkage Survey area
Comets Time series analysis

Time Domain/ Micro-lensing Image di�erencing Photometric precision and accuracy
Transient Discovery Gamma ray bursts Photometric variability Survey cadence

Active galactic nuclei Time series analysis Data processing delay
Periodic variable stars Precision photometry
Planet transits
Unknown events

Milky Way science Galactic structure Image position Astrometric precision and accuracy
Accretion streams Precision photometry Photometric precision and accuracy
Density structure Precision astrometry Survey cadence
Solar neighborhood census Photometric variability Survey area

Spectral coverage

Table 2.1: Primary LSST Science Missions, Related Observing Programs, Analytic Methods, and Survey Requirements. From [77].
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The single visit depth should reach r ∼ 24.5 in r-band. This limit is driven
by the search for Near-Earth-Objects (NEOs), variable sources (e.g. supernovae,
RR Lyrae stars), by proper motion and trigonometric parallax measurements for
stars, by coadded survey depth and the minimum number of exposures required
by WL science. Single visits will be split into two exposures of equal length to
identify and remove cosmic rays.

The coadded survey depth should reach r ∼ 27.5 in r-band with a su�cient
signal-to-noise ratio in other bands to address both extragalactic and Galactic
science drivers for cosmological studies.

Image quality should maintain the limit set by the atmosphere � the median
free-air seeing is 0.65 arcsec in the r-band. This constraint comes mostly from
weak lensing (WL), but also from the required survey depth for point sources and
from di�erencing techniques. The pixel size must be smaller than 0.22 to enable
sampling of the point spread function properly in the delivered images.

Photometric repeatability should achieve 5 milimag precision (g, r, i bands) at
the bright end, with spatial uniformity of photometric zeropoints across the sky
of 10 milimag and band-to-band calibration errors not larger than 5 milimag.
These requirements come from the need for high photometric redshift accuracy,
the separation of stellar populations, detection of low-amplitude variable objects
and the search for systematic e�ects in type Ia supernova light curves.

Astrometric precision should maintain the limit set by the atmosphere, of
about 10 mas for a single image at the bright end (on scales below 20 arcmin).
This precision is driven by the desire to achieve a proper motion accuracy of
0.2 mas/yr and parallax accuracy of 1.0 mas over the course of the 10-year survey.
A weaker constraint is also placed by the need for a positional cross-correlation
with external catalogs.

The single visit exposure time should be less than about a minute to prevent
trailing of fast moving objects and to aid control of various systematic e�ects
induced by the atmosphere. It should be longer than ∼20 seconds to avoid sig-
ni�cant e�ciency losses due to �nite readout, slew time, and read noise. The
selected optimal value of 2× 15 s satis�es both the required �nal coadded depth,
single visit depth, and the revisit time if the e�ective primary mirror diameter is
6.5m. For various special programs, where fast temporal changes in brightness
and position are studied, a shorter exposure time is needed. The minimal expo-
sure time for these goals will be three times shorter than the nominal exposure
time (i.e. 5 s).

The �lter complement is modeled after the Sloan Digital Sky Survey (SDSS).
It includes six �lters (ugrizy) in the wavelength range 320�1050 nm. Five �lters
will be used at the same time while the last one can be changed during day.
Switching between active �lters should take less than two minutes (one minute
goal). Accurate photometric redshifts and stellar typing require no large gaps in
the coverage. The u- band (330 � 403 nm) is important for separating low-redshift
quasars from hot stars, and for estimating the metallicities of F/G main sequence
stars. A bandpass with an e�ective wavelength of about 1 micron would enable
studies of sub-stellar objects, high-redshift quasars and regions of the Galaxy that
are obscured by interstellar dust.

The revisit time distribution should enable determination of orbits of Solar
System objects and sample supernova light curves every few days, while accom-
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modating constraints set by proper motion and trigonometric parallax measure-
ments. The LSST will be capable of observing 20,000 deg2 of the sky in two
bands every three nights, but it is desirable to explore much shorter scales, down
to 1 minute. This can be achieved with frequent revisits to the same �eld, or by
utilizing �eld overlap.

The total number of visits of any given area of sky should be of the order of
1,000 to enable WL science, the search for NEOs, proper motion and trigonomet-
ric parallax measurements and studies of transient sources.

The distribution of visits per �lter should enable accurate photometric red-
shifts, separation of stellar populations, and su�cient depth to enable detection
of faint extremely red sources. An approximately �at distribution of visits among
bandpasses will be used. The r and i-bands should be preferentially selected over
other bands because they will be used for shape measurements. Other bands
cannot be neglected, because a broad wavelength coverage is required to achieve
desired photometric redshift accuracy for galaxies and needed color information
on transients such as supernovae.

The distribution of visits on the sky should extend over at least ∼20,000 deg2

to obtain the required number of galaxies for WL studies, with attention paid to
include "special" regions such as the Ecliptic and Galactic planes, and the Large
and Small Magellanic Clouds.

Data processing, data products and data access should result in data products
that approach the statistical uncertainties in the raw data. To enable fast and
e�cient response to transient sources, the processing latency for variable sources
should be less than a minute.

These requirements for the scienti�c goals speci�ed by the system design and
other LSST properties are summarized in Table 2.2.

Dark energy and dark matter

Current cosmological models require huge amount of dark matter and some sort
of exotic dark energy to be able to �t observations. The nature of this dark mat-
ter and dark energy remains unexplained and is one of the primary challenges
for fundamental physics. The LSST will create an unique map of a dark matter
structure and probe dark energy in multiple ways, providing cross checks and
removal of important degeneracies. Primary probes for studying this dark sector
are: 1) two and three point weak lensing cosmic shear tomography analyses cou-
pled with galaxy power spectrum, 2) baryon acoustic oscillation (BAO) in the
power spectrum of the galaxy distribution, 3) evolution of the mass function of
clusters of galaxies, as measured via peaks in the weak lensing shear �eld and 4)
measuring of supernovae of type Ia as standard candles (redshifts and distances
measurements). LSST`s measurements will be done in moderate redshift, i.e. the
epoch at which the dark energy began to dominate the cosmic expansion. When
combined with Planck CMB data or other future project`s data, the synergy
between these probes breaks degeneracies and allows cosmological models to be
sharply tested.

The goal in constraining the dark energy is measuring the lowest six eigen-
modes of the dark energy equation of state as a function of redshift, and any di-
rectional dependence. Combining these probes will allow to measure the growth
of cosmic structures and the comoving distance as a function of redshift in the
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Field of View 3.5 deg (9.6 deg2)
Étendue 319 m2deg2

E�ective clear aperture 6.68 m
Final f-ratio f/1.234
Primary mirror aperture 8.4 m
Pixel count 3.2 Gpixels
Readout time 2 sec
Dynamic range 16 bits
Plate scale 50.9 µm /arcsec
Filter set (FWHM points � nm)

�u 330 nm to 403 nm
�g 403 nm to 552 nm
�r 552 nm to 691 nm
�i 691 nm to 818 nm
�z 818 nm to 922 nm
�y 950 nm to 1070 nm

Number of active �lters 5
Real-time alert latency 60 s
Fiducial number of visits per point in the main survey 825
Fiducial main survey area 18,000 deg2

Estimated total covered area, including special programs 25,000 deg2

Number of
�visits collected over 10 years 2.75 million
�images collected over 10 years 5.5 million
�visits per night ∼1000
�calibration exposures 450/day
�data collected per 24 hr period ∼15 TB

Standard visit exposure duration 15 s
Time to take a single exposure 18 s
Median slew time between visits 5 s
Time to take one visit in normal survey mode

�Median 39 s
�Mean 44 s

Estimated number of objects (total) 37 billion
Estimated number of single-epoch sources (total) 7 trillion
Estimated number of forced measurements (total) 30 trillion
Average number of alerts per night ∼10 million
Network bandwidths

�Summit (Pachón) to Base (La Serena) 2 x 100 Gbps
�Base (La Serena) to Archive (NCSA) 2 x 40 Gbps

Data and compute sizes
�Final image collection 0.5 Exabytes
�Final database size 15 PB
�Final disk storage 0.4 Exabytes
�Peak number of nodes 1750 nodes
�Peak compute power in LSST data centers 1.8 PFLOPS

Table 2.2: LSST System and Survey Key Numbers. From [78].
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range 0.3 < z < 3.0 with an accuracy of 1�2%. Su�cient number of galaxies
with very accurate photometric redshift are crucial for obtaining this accuracy.
Combining BAO with weak lensing of galaxies can signi�cantly reduce sensitivity
to bias systematics.

Solar system

Small bodies of the Solar System � their orbital elements, sizes, and color distri-
butions � provide a unique insight into its early stages. The LSST will measure
orbital parameters for several million moving objects, which represents an increase
of factors of ten to one hundred over the numbers of objects with documented
orbits, colors, and variability information now. This will enable testing of various
theories for the formation and evolution of our planetary system.

The LSST will make huge advance in studying objects beyond Neptune (trans-
Neptunian Objects, TNOs). The LSST will survey for asteroids, get superb orbits,
go tremendously faint, and measure precise colors, allowing measurement of light
curves for thousands of trans-Neptunian Objects, producing rotation periods and
phase curves, yielding shape and spin properties, and providing clues to the early
environment in the outer Solar System. The LSST will also catalog 90% of all
potentially hazardous asteroids larger than 140 meters in diameter that travel in
Earth-crossing orbits.

Galactic Structure

The structure and stellar content of the Milky Way encode a history of its for-
mation. The LSST will enable studies of the distribution of numerous main
sequence stars beyond the presumed edge of the Galaxy's halo, their metallicity
distribution throughout most of the halo, and their kinematics beyond the thick
disk/halo boundary, and will obtain direct distance measurements below the hy-
drogenburning limit for a representative thin-disk sample. The LSST will enable
precise studying of the structure and accretion history of the Milky Way and will
measure the fundamental properties of all the stars within 300 pc of the Sun.

The LSST will produce a massive and exquisitely accurate photometric and
astrometric data set � about 1010 stars will be detected, with su�cient signal-to-
noise ratio to enable accurate light curves, geometric parallax, and proper motion
measurements for about billion stars. The accurate multi-color photometry can
be used for source classi�cation, and measurements of detailed stellar properties
such as e�ective temperatures to a rms accuracy of 100 K and metallicity to a
rms accuracy of 0.3 dex (decimal exponent).

Transient objects

The LSST will open a new window on the variable sky. The LSST, with its repeat-
ed, wide-area coverage to deep limiting magnitudes will enable the discovery and
analysis of rare and exotic objects such as neutron star and black hole binaries,
gamma-ray bursts and X-ray �ashes, active galactic nuclei (AGN) and blazars,
and very possibly new classes of transients, such as binary mergers and stellar
disruptions by black holes. Numerous microlensing events in the Local Group are
also expected. With its large aperture, the LSST is well suited to conducting a
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Deep Supernova Search in selected areas. The LSST will also provide a powerful
new capability for monitoring periodic variables, such as RR Lyrae stars, which
can be used to map the Galactic halo.

Other science themes

It is anticipated that the LSST will enable far more diverse science than encom-
passed by the four themes described above that drive the system design. Among
many other scienti�c programs the LSST will enable for example:

• detailed studies of galaxy formation and evolution using their distribution
in luminosity-colormorphology space as a function of redshift for an un-
precedentedly large number of galaxies,

• testing evolutionary cosmic downsizing scenarios and much clearer under-
standing of black hole growth during the �rst Gyr by discovering ∼1000
AGNs with very faint luminosities and large redshifts (z ∼ 6− 7.5),

• �rst wide �eld survey of ultra low surface brightness galaxies, with photo-
metric redshift information,

• search for strong gravitational lenses to a faint surface brightness limit,
which can be used to explore the dark matter pro�les of galaxies.

Synergy with other projects

The LSST will cooperate with other projects and bene�t from their data and
multiple wavelengths, depth, and timescales. SDSS [104], SkyMapper [103] or
the Gaia [48] survey will cover most of the celestial sphere to a limit several
magnitudes fainter than the LSST. The Pan-STARRS [90] surveys will provide
multi-epoch data deeper than SDSS in the northern sky, and the DES (more in
� 2.3.2) in the southern sky. The Gaia survey will provide calibration checks at the
bright end for proper motions and trigonometric parallax measurements by LSST.
Other surveys will provide in addition to LSST data temporal, spectral and spatial
resolution coverage as well as cross-correlation of their data. Collaboration with
other projects will be necessary to provide calibration of photometric redshifts.

2.1.3 Dark Energy Science Collaboration

The LSST Project Team has been assembled to design and build the telescope,
camera, and data management systems but it is not a scienti�c collaboration in
the usual sense. While scientists working on the LSST Project are interested
in the scienti�c questions that LSST data can address, they are not o�cially
involved in the scienti�c analyses of those data. Therefore, a number of quasi-
independent scienti�c collaborations, which provided advices on technical issues
and helped articulate the scienti�c case for the LSST, have created the LSST Dark
Energy Science Collaboration (DESC) in 2012 during a meeting at the University
of Pennsylvania.

DESC prepares variety of cosmological analyses for the LSST survey. In ad-
vance of LSST's �rst observations, the DESC helps prepare for the LSST science
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analysis, make synergistic connections with ongoing cosmological surveys and
provide the dark energy community with state of the art analysis tools. Primary
goal of the DESC is the study of dark energy and related topics in fundamental
physics with data from the LSST. For more information see the DESC`s white
paper [1].

Analysis working groups cover �ve key probes of dark energy: weak lensing,
large scale structure, galaxy clusters, Type Ia supernovae, and strong lensing.
The DESC will identify and work to minimize the most signi�cant systematic
uncertainties that limit the sensitivity of each probe. In addition to these primary
goals the DESC will also address joint tasks: calibration strategies for photometric
redshifts, cosmological simulations, simulated catalogs, photon-level simulations,
cross working group tools, technical coordination (instrument model, calibration
and survey operations), and theory and framework for combining and jointly
interpreting the dark energy probes.

2.1.4 Cosmological Probes of Dark Energy

Here we present a brief description of cosmological probes which will be used
when constraining dark energy. For more details see e.g. [119] or [70].

Supernovae

Supernovae (SNe) are the most straightforward tool for studying cosmic acceler-
ation, as they directly discovered the acceleration in the �rst place [99]. Type
Ia supernovae (SNe Ia) are exploding stars de�ned by the lack of hydrogen and
the presence of silicon in their early-time spectra [58], and are a product of a
thermonuclear explosion of a C/O white dwarf. Observations show that SNe Ia
have a luminosity peak that is tightly correlated with the shape of their light
curves � supernovae that rise and fall more slowly have higher peak luminosity
(�rst quanti�ed by [92]). From observations of (multiband) light curve shapes
and colors the luminosity at a brightness peak can be predicted.

To measure cosmic expansion with Type Ia SNe, the observed �ux and pre-
dicted luminosity are compared. From that the supernova's luminosity distance
can be measured. An accurate redshift is obtained by measuring the host galaxy
(calibrator). Since the distances to the local calibrators are usually determined
from the Hubble expansion, this method gives the luminosity distance DL in units
of h−1 Mpc. Measured relation is used to constraint dark energy parameters.

Long-term task of the SN working group within DESC is Develop theoret-
ical/numerical/empirical SN models to better describe or improve the distance
indicator.

Baryonic acoustic oscillations

Baryonic acoustic oscillations (BAO) provide an entirely independent way of mea-
suring cosmic distance. Sound waves propagating before recombination imprint
a characteristic scale on matter clustering. The acoustic length scale can be
computed as

rs =

∫ t∗

0

cs(t)

a(t)
dt =

∫ ∞
z∗

cs(z)

H(z)
dz, (2.1)
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where asterisk denotes time (redshift) at recombination and cs is the sound speed.
The behavior of H(z) depends on the ratio of the matter density to radiation
density and the sound speed depends on the ratio of radiation pressure to the
energy density of the baryon-photon �uid, determined by the baryon-to-photon
ratio. Both the matter-to-radiation ratio and the baryon-to-photon ratio can be
measured from the CMB anisotropy power spectrum. This gives rs ∼ 150 Mpc.
The scale of the acoustic feature is stable to better than 1% accuracy, making it
an excellent standard ruler.

This e�ect can be detected in the angular clustering of galaxies in bins of
photometric redshift, yielding the angular diameter distance. Furthermore, mea-
suring the BAO scale in a velocity separation allows a direct determination of
H(z). The BAO method measures D(z) in absolute units � Mpc not h−1 Mpc
like SNe measurements, and thus BAO measurements to the same redshift carry
di�erent information. At low redshift (z . 0.5), the BAO method strongly com-
plements SN measurements, while at higher redshift (z & 0.5) the BAO method
is an powerful probe of dark energy and cosmic geometry.

Weak lensing

Gravitational lensing is the de�ection of light from distant sources due to the
bending of space-time by baryonic and dark matter (lenses) along the line of sight
(more about lensing in � A.3.2). It is a very useful cosmological probe because it is
sensitive to all matter regardless of its nature. In the limit of very small de�ection
angles it is called weak lensing (WL). WL causes tiny distortions (∼ 0.5%), or
�shear�, in galaxy sizes and shapes � see Figure 2.8. Intrinsic size or shape of a
given galaxy are unknown, but normally, galaxy orientations are assumed to be
random (∼ 30% dispersion), so they should not exhibit statistically signi�cant
and coherent alignments. In the presence of lensing, small but coherent shears
in background galaxy images are induced. This means that WL is statistically
detectable by averaging shapes over many lensed galaxies. In principle either
the shearing of galaxies (shape distortion) or their magni�cation (size distortion)
can be measured. However, in practice the shape distortions is used much more
widely, since the scatter in shapes of galaxies is less than the scatter in their sizes.

Weak lensing provides a direct measure of the distribution of matter, inde-
pendent of any assumptions about galaxy biasing1. Since this distribution can
be predicted theoretically, and its amplitude can be directly used to constrain
cosmology, weak lensing has great potential as a cosmological probe. The corre-
lation of the density �eld of nearby galaxies with the lensing shear measured on
more distant galaxies is called galaxy-galaxy lensing. Most lens systems involve
sources (and lenses) at moderate or high redshift, and thus can lensing probe the
geometry of the Universe � the measurement of the shear correlation function as
a function of the redshifts of observed galaxies is called tomography. The scaling
of the galaxy-galaxy lensing signal as a function of the source redshift, known
as cosmography, depends purely on geometric factors and hence can be used to
construct a distance-redshift relation.

1Galaxy bias is the di�erence in the distribution of galaxies and that of the underlying dark
matter. The biasing factor b is de�ned such that the relative �uctuations in the spatial number
density of galaxies are b times the relative density �uctuations.
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Figure 2.8: (Left) Illustrations of the e�ect of a lensing mass on a circularly
symmetric image. Weak lensing elliptically distorts the image, �exion provides
an arc-ness and strong lensing creates large arcs and multiple images. (Right)
Galaxy cluster Abell 2218, strongly lensed arcs can be seen in around the cluster.
Every background galaxy is weakly lensed. From NASA, ESA, and Johan Richard
(Caltech, USA).

Long-term tasks of the WL working group within DESC are Develop non-
canonical WL statistics that have the potential to improve dark energy constraints
and Extend WL data analysis methods from Stage III surveys to LSST.

Large-scale structure

Studying the large-scale structures (LSS) of the Universe is of a great impor-
tance for the cosmology. Since the clustering of matter on scales from galaxies
to superclusters came from quantum �uctuations in the very early Universe with
important modi�cation by radiation and baryons, the LSS encode critical infor-
mation about the contents of the Universe, the origin of the �uctuations, and the
cosmic expansion background in which the structures evolved.

Measurements of large-scale power spectrum for the spatial distribution of
matter as a function of redshift constrain the cosmic expansion history, the cos-
mological distance scale, the growth rate of structures, the mass of the neutrinos
and the abundance of dark matter. This includes BAO measurement of the
distance-redshift relation (as a standard ruler). The BAO with the growth of
the LSS in the Universe form two robust probes of dark energy, and a poten-
tial discriminator between dark energy and modi�ed gravity models. Beyond the
dark energy, the large scale power spectrum is a probe of both neutrino mass and
primordial non-gaussianity.

Long-term task of the LSS working group within DESC is Scalable optimal
LSS analysis software development.

Galaxy clusters

The observed number density and clustering of galaxy clusters as a function of
mass and redshift provides a powerful toolset to constraining cosmology. Galaxy
clusters provided the �rst line of evidence for the existence of dark matter [125]
and cluster mass-to-light ratio measurements suggested that the matter density
in the universe was sub-critical [67]. Galaxy clusters measurements are sensitive
to both the expansion history and the growth of structure in the Universe en-
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abling to distinguish between dark energy and modi�ed gravity models for cosmic
acceleration. Additional probes are measurements of the baryonic mass fraction
in clusters, and of the tomographic lensing signatures through clusters.

The basic idea of cluster abundance studies is to compare the predicted space
density of massive halos to the observed space density of clusters. The basic
observables are the richness, the number of galaxies in a speci�ed luminosity and
color range. Halo abundance is sensitive to the amplitude of the matter power-
spectrum σ8

2 and the matter density Ωm, more precisely a combination of a form
σ8Ωq

m, with q ≈ 0.4 [121]. The degeneracy between σ8 and Ωm can be broken by
measuring abundances at a variety of masses.

Long-term task of the Cl working group within DESC isOptimizing magni�cation-
based cluster mass calibration.

Strong lensing

Strong gravitational lensing (SL) refers to the multiple imaging of a background
object due to a massive foreground object (typically clusters of galaxies) � see
Figure 2.8. The resulting angular displacement, morphological distortion, and
time delay can be used to measure dark energy parameters. Strong gravitational
lensing time delays measure a combination of distances that combining with other
dark energy probes can further constraint cosmological parameters. The time
delays is also expected to test gravity on scales where the screening mechanisms
is becoming active (more about screening mechanisms of modi�ed gravities in
� 3.2.2).

Another independent way to measure dark energy parameters with SL is the
analysis of systems with multiple sets of multiple images [72]. The positions of
these multiple images depend strongly on the detailed properties of the lens mass
distribution and on the angular diameter distance ratios between the lens, source
and observer, they encapsulate information about the underlying cosmology. This
dependence on the geometry can be used to derive constraints on the cosmological
parameters.

Long-term task of the SN working group within DESC is Explore multiple
source plane cosmography as a competitive DE probe.

Redshift-space distortions

When we observe distant galaxies, two features determine their redshifts � the
Hubble expansion and their peculiar velocities. The peculiar velocities of galaxies
thus cause them to appear displaced along the line of sight in redshift space. These
displacements lead to redshift distortions in the pattern of clustering of galaxies
in redshift space and make large scale galaxy clustering anisotropic. Redshift-
space distortions (RSD) have the tremendous advantage of bearing information
about the dynamics of galaxies. The strength of the anisotropy is governed by
distortion parameter β = f(z)/b(z), where f(z) is the logarithmic growth rate of
�uctuations. By modeling the full redshift-space galaxy power spectrum one can
obtain combination of the product of the matter clustering amplitude and the
growth rate.

2σ8 is a linear �uctuation in the mass distribution on scales of 8h−1 Mpc
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Anisotropy of galaxy clustering o�ers an alternative to weak lensing and clus-
ter abundances as a tool for measuring the growth of structures. RSD directly
measure the rate at which structure is growing at the redshift of observation un-
like WL and galaxy cluster measurements which measure the rate of growth at
multiple redshifts. RSD measurements can improve constraints on dark energy
models and they can be used to constrain departures from GR by testing consis-
tency of the growth and expansion histories. The key challenge in modeling RSD
is accounting for nonlinear e�ects, including nonlinear or scale-dependent bias
between galaxies and matter, at the level of accuracy demanded by the LSST`s
precision.

2.2 Euclid mission

Euclid is an ESA (European Space Agency) high-precision space mission designed
to map the geometry and evolution of the universe and to study properties of dark
matter and dark energy. Its primary goal is to place high accuracy constraints on
dark energy, dark matter, gravity and cosmic initial conditions using two inde-
pendent cosmological probes � weak gravitational lensing and baryonic acoustic
oscillation � out to redshift z ∼ 2. Galaxy clusters and the Integrated Sachs-
Wolfe e�ect will be used as secondary cosmological probes. Along with these
tasks will Euclid`s visible and near infrared imaging and spectroscopy of the en-
tire extragalactic sky produce legacy science for various �elds of astronomy, e.g.
galaxy evolution, large-scale structures or the search for high-redshift objects.
The Euclid mission has been adopted with launch planned for 2020. Overview of
the Euclid system design and scienti�c requirements can be found in [75].

Figure 2.9: Artist's impression of Euclid. From ESA-C. Carreau.
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Instrument Field of view Band Wavelength Limiting Resolution
(deg2) (nm) AB mag

VIS 0.787× 0.709 R+I+Z 550 � 920 24.5 0.1" pixel
Y 920 � 1146 24.0 0.3" pixel

NIP 0.763× 0.722 J 1146 � 1372 24.0 0.3" pixel
Hp 1372 � 2000 24.0 0.3" pixel

NIS slitless 0.763× 0.722 Hs 1000 � 2000 19.5 R = 500± 20

Table 2.3: Instrument bands. From [12].

2.2.1 Overview of Euclid System Design

The mission is based on a telescope with a primary mirror of 1.2 m diameter.
The Euclid payload consist of a wide-�eld (0.5 deg2) imager comprising visible
and near infrared (NIR) and a NIR spectrometer. The shapes of galaxies for
weak lensing will be measured via the visible channel, with a resolution of 0.18
arcsec in a wide visible red band (R+I+Z, 0.55 � 0.92 µm ). The visual imager
consists of 36 arrays of 4k×4k CCDs. The NIR photometric channel provides
three NIR bands (Y, J, H, spanning 1.0 � 1.6 µm ) with a resolution of 0.3 arcsec.
The baseline for the NIR spectroscopic channel operates in the wavelength range
1.0 � 2.0 µm in slitless mode at a spectral resolution R = λ/∆λ ∼ 500, employ-
ing 0.5" pixels. The NIR spectrometer and photometer consists of 16 arrays of
2k×2k near-infrared sensitive HgCdTe detectors. The optional spectroscopic im-
plementation is slit spectroscopy using digital micro-mirror devices. Instruments
characteristics are summarized in Table 2.3

The mission will survey 20 000 deg2 of the extragalactic sky in the regions
of the North and South galactic poles (Galactic latitude |b|> 30◦). in the vis-
ible channel down to AB = 24.5 mag. Two types of redshift will be collected.
For all galaxies, photometric redshifts will be obtained from the broad band
visible and near-IR measurements. For the sub-sample of galaxies brighter than
H(AB) = 19.5 mag, redshifts will be measured directly with the NIR slitless spec-
troscopic channel. Along with the wide extragalactic survey, a deep survey of
roughly 40 deg2 will be performed by multiple visits in the vicinity of the ecliptic
poles. The deep survey will provide the calibration of the photometric redshifts
of the wide survey, as well as additional science. The sky survey is accomplished
by collecting daily strips made up of contiguous, partly overlapping �elds.

The Euclid system is driven by the diverse dark energy probes, each with its
own speci�c requirements � by the width and speed of the envisaged sky survey;
by the survey depth and signal-to-noise ratios; and, by programmatic constraints.

Spacecraft

The Euclid spacecraft will have a launch mass of around 2100 kg. It will be about
4.5 m tall and 3.1 m in diameter. The Euclid spacecraft will be made up of two
major assemblies � payload module and service module. The payload consists
of a 1.2-m aperture telescope with two instruments: the visual imager and the
near-infrared spectrometer and photometer.

The Euclid telescope is a three mirror Korsch con�guration with a 0.45 deg
o�-axis �eld and an aperture stop at the primary mirror. The entrance pupil
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diameter is 1.2 m, the optically corrected and unvigneted �eld of view is 0.79×1.16
deg2, and the focal length is 24.5 m. In order to meet the scienti�c performance
requirements the telescope must operate at a reduced temperature � a maximum
operating temperature of about 240 K.

The service module hosts most of the spacecraft subsystems that are needed
to operate the payload, including telemetry, power, thermal control, and attitude
and orbit control. The service module provides X and K band communications,
with a K band science data rate of 55 Mbit/s during the daily telecommanding.
To store the large data volume that will be accumulated during observations,
Euclid will have a mass memory of at least 2.6 Tbit. To meet the high precision
imaging requirements, the Euclid control provides an extremely stable pointing
with a dispersion of less than 35 milli-arcseconds per visual exposure. At those
accuracies, a high thermal stability is also required to protect the telescope as-
sembly from optical misalignments.

Mission operations

Euclid will depart from Europe's Spaceport in French Guiana and be carried
by a Soyuz ST 2-1b launch vehicle. A free-insertion launch opportunities can
be found almost through the whole year. Approximately in 30 days will Euclid
reach the second Sun-Earth Lagrange point L2. Then it will rotate in an orbit
around L2 with large amplitude about million kilometers. This orbit provides
optimal conditions for Euclid � a benign radiation environment and very stable
observing conditions. An instability inherent in the motion about L2 requires
periodic corrections. Every 30 days throughout the operation will be performed
station-keeping manoeuvres and take less than one day.

The Euclid mission will deliver large volume of data � about 850 Gbit of com-
pressed data per day that will be transfered at the rate of 55 Mbit/s. This data
will be handled by the Euclid ground segment. The ground station network for
Euclid will be composed of the 15-m antenna at Kourou and the 35-m antennas
at New Norcia and Cebreros (see Figure 2.10) at the beginning of the mission
(the Lunch and Early Operations Phase) with almost 24-hour coverage of the
spacecraft during this period. For the rest of the time will be used 35-m anten-
nas at the Cebreros ground station in Spain or the Malargue ground station in
Argentina with 4-hour time for the daily telecommanding and communications.
The rest of the day the spacecraft will be operating without ground contact. The
Mission Operations Centre will be set up at ESA's European Space Operations
Centre in Darmstadt, Germany.

Sky survey strategies

In order to bring the wide extragalactic survey to less than four years (requirement
of 4.5 yr maximum), many variants of strategies were studied. The basic strategy
of the sky mapping consists in performing sequential observations by rotating
about the spacecraft X-axis, nominally pointed at the sun, each day covering a
strip along the intersection of a great circle perpendicular to the sun line with
the extragalactic caps. However, int this basic strategy the complete coverage is
achieved in six years. This occurs because of a lesser e�ciency in the vicinity of
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Figure 2.10: ESA's 35 m-diameter deep-space dish antenna, DSA-2, is located at
Cebreros, near Avila, Spain, as part of the ESTRACK network. From [47].

the ecliptic poles, due to a strip overlapping, as well as a dead time around the
equinoxes.

Modi�ed strategy was introduced in order to overcome these di�culties. In
this variant, the X-axis is allowed to make an angle of up to 30◦ with the direction
of the sun, by rotating the spacecraft around Y-axis. This allows observing sky
areas at longitudes di�erent from those in the basic strategy. As a consequence
one can now explore the dead zones of the basic strategy by tilting the spacecraft
around its Y-axis while the standard scanning sequence is used for zones where
no loss of e�ciency occurs due to excessive strip overlaps. The modi�ed strategy
has also a drawback � there appears an unreachable zone in each of the galactic
caps. Imaging that zone would require extending the mission beyond four years.
Simulation of the visits after four years of the mission is shown in Figure 2.11.

2.2.2 Survey Requirements

The requirements on size reconstruction and stability of the PSF lead to high
image quality and thus large data rates.

Weak lensing requires a high image quality for the shear measurements, near-
infrared imaging capabilities to measure photometric redshifts for galaxies at
redshifts z > 1, a very high degree of system stability to minimize systematic
e�ects, and the ability to survey the entire extra-galactic sky.

The survey speed is guaranteed by the combination of a large �eld of view
an optimized sky mapping strategy, and minimized dead times such as attitude
transitions, leading to a requirement for fast slews.The survey depth and signal-
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Figure 2.11: Visit count after 4 yars. From [12].

to-noise ratio requirements lead to a well ba�ed design, low temperature optics
and detectors, and, driven by the NIR instruments NIP and NIS, a cold telescope
for low thermal IR background, and extensive on- board data processing for noise
limitation.

2.2.3 Science Goals

The Euclid imaging instrument is optimized for the weak gravitational lensing
as the main cosmological probe. The Euclid imaging surveys will also make
use of several secondary cosmological probes such as the Integrated Sachs-Wolfe
E�ect (ISW), galaxy clusters to provide additional measurements of the cosmic
geometry and structure growth (some of these probes were described in � 2.1.4).

Euclid`s four primary science objectives in fundamental cosmology are: 1) to
measure the dark energy equation of state parameters3 w0 and wa to a precision
of 2% and 10% from the geometry and structure growth of the Universe; 2) to test
the validity of General Relativity against modi�ed gravity theories, and measure
the growth factor exponent γ to an accuracy of 2%; 3) to study the properties of
dark matter by mapping its distribution, testing the Cold Dark Matter paradigm
and measuring the sum of the neutrino masses to a few 0.01eV in combination
with Planck; and 4) to improve the constraints on the initial condition parameters
by a factor of 2�30 compared to Planck alone.

Euclid is therefore poised to uncover new physics by challenging all sectors
of the cosmological model. The Euclid survey can thus be thought as the low-
redshift, 3-dimensional analogue and complement to the map of the high-redshift
universe provided by CMB experiments. More about the primary and legacy
science which will be achieved with the Euclid in [98].

Legacy science

Beyond these objectives in fundamental cosmology, the Euclid imaging surveys
will provide legacy science in various �elds of astrophysics. Euclid will deliv-
er high quality morphologies and masses for billions of galaxies out to z ∼ 2,
over the entire extra-galactic sky, with a resolution four times better and three

3Dark energy equation of state is commonly parametrized as w = w0 + (1− a)wa.
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NIR magnitudes deeper than ground based surveys which will enhance studies
of galaxy evolution. The Euclid deep survey will probe ages of galaxy formation
(z > 6) and the era of reionisation of the Universe (z > 10). Euclid will also
augment the Gaia survey of our Milky Way, taking it several magnitudes deeper
and adding infrared colors for every Gaia star it observes. Euclid will detect
nearby extremely low surface brightness tidal streams of stars thus allowing us to
probe the formation and evolution of the Milky Way. The Euclid imaging surveys
will also provide key measurements of the mass function of galaxy clusters and of
over 105 strong lensing systems. Through the microlensing technique Euclid will
undertake a programme to detect Earth-mass planets in the habitable zone.

2.2.4 Additional Cosmological Probes

The two main cosmological probes of the Euclid � weak gravitational lensing and
baryonic acoustic oscillation � have been introduce in � 2.1.4. Here we brie�y
describe additional cosmological probes.

Integrated Sachs-Wolfe e�ect

The Integrated Sachs-Wolfe (ISW) e�ect is an independent probe of dark ener-
gy, curvature and deviations from General Relativity on large scales. It can be
measured using correlations of the CMB with tracers of LSS. The ISW e�ect
arises from the time-variation of the scalar metric perturbations. There exists an
early- and a late-time ISW e�ect. The early e�ect is important around recombi-
nation when anisotropies can start growing and the radiation energy density is
still dynamically important. The late ISW e�ect (which is of more importance
here) originates much later after the onset of matter domination from the time
derivative of the gravitational potential.

The late-time ISW e�ect can be due to dark energy domination at low red-
shift, curvature, or modi�cations to the growth of structure on large scales. In
�at universe with no modi�cations to gravity, detection of the ISW is a direct
signature of the presence of dark energy.

The observed temperature �uctuation at the angular position n̂ on the sky in
is [87]

δT

T
=
δT

T
(η∗)− Φ(η0) + Φ(η∗, n̂) + [v · e]η∗η0 − 2

∫ η∗

η0

dη
∂Φ

∂η
, (2.2)

where Φ is the gravitational potential4, η∗ denotes the conformal time of the
recombination time, and η0 today.

The �rst term is the intrinsic photon �uctuation at the last scattering surface
other than those induced by the metric perturbations. The second term is the
gravitational redshift due to our gravitational potential which is the monopole
contribution and cannot be observed. The third term represents the temperature
anisotropy caused by the gravitational redshift due to the potential �uctuations at
the recombination epoch (early-time ISW). The fourth term is the Doppler e�ect
that is induced by the relative motion between the observer and the CMB last

4In GR, the gravitational potential equals the curvature potential Ψ. More generally, in the
integral in (2.2) should be a sum of these potentials Φ + Ψ instead of a factor of two. More
detailed derivation of the ISW with general scalar perturbations is in � A.2.
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scattering surface. The �nal integral term represents the temperature anisotropy
caused by the time variation of gravitational potential integrated along the line
of sight (late-time ISW).

Galaxy correlations

The statistical distribution of galaxies is a very powerful tool with which to probe
the composition of the Universe. One of them is e.g. the BAOs. However, the full
statistic of the three-dimensional distribution contains much more information.
On linear scales there are three main features in the galaxy power spectrum [98]:

• The broad-band power: Information is contained in the shape, normaliza-
tion and time evolution of the power spectrum.

• The Baryon Acoustic Oscillations: Information is contained in the tangen-
tial and radial wavelengths, as well as the wiggles amplitude.

• The linear redshift space distortions: Even when considering the projected
power spectrum, this radial information is partially present.

The Euclid will provide a photometric galaxy survey over the redshift range
z ∼ 0− 2. The measurement of the statistical distribution of galaxies can be
done in real space (ξ(r)), con�guration space (w(θ)), Fourier space (P (k)) or in
Spherical Harmonic space (C(l)). The Euclid will concentrate on a Fourier space
wiggles-only method [102] as well as a projected spherical harmonic method which
is ideal to study tangential modes on a sphere.

2.2.5 Comparison and Synergy with LSST

Both Euclid and the LSST have the same scienti�c goal(s) � reduce errors on
dark energy equation of state and constrain modi�ed gravity. Both of them want
to achieve this by deep (AB ∼ 24 − 27) and large sky survey. Also the main
probes are the same � weak lensing and baryonic acoustic oscillation. The main
di�erence is their approach to systematic errors. The LSST will observe the same
patch of sky thousand times to get rid of instrumental and atmospheric distortion,
while Euclid, in space, will avoid the atmospheric distortion and plan a stable
observation.

The other di�erence is in the observable spectrum � the LSST will cover six
visible bands (ugrizy, 300 � 1100 nm) while Euclid will cover visible red band
(550 � 900 nm) and three near-infrared bands (YJH, 1000 � 1600 nm). Both
Euclid and the LSST will cover ∼20,000 deg2 with overlap area ∼11,000 deg2. It
is estimated that at least one billion of galaxies will have measurable NIR colors
from Euclid while the LSST will provide multicolor visible band photometry
required for the weak lensing. The LSST will be premier facility to provide such
measurements in the southern hemisphere. While the combined ground-based
visible and space-based NIR photometry is essential for Euclid, it is also useful
for the LSST. The use of YJH photometry from Euclid does yield a modest
but signi�cant improvement in photo-z determination over what the LSST can
provide alone with its six-color photometry. Euclid spectroscopic data may also
play a signi�cant role in helping to calibrate photo-z determination, especially at
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higher redshifts. Finally, comparison of Euclid and LSST shear determination for
common �elds will be helpful in understanding shape measurement systematics
for weak lensing investigations with both facilities.

2.3 Other Surveys

There are many other projects and mission which study properties of the dark
energy, either as a main scienti�c goal, or as a complementary program. Among
the big surveys are e.g. Sloan Digital Sky Surveys (SDSS, o�cial site [104]) �
from the beginning of regular surveys in 2000 till 2014 there were seven �nished
surveys in total (SDSS-I/II results [74], SDSS-III results [14]), while there are
three ongoing surveys from 2014 (SDSS-IV). Other surveys are e.g. Wilkinson
Microwave Anisotropy Probe (WMAP, o�cial site [122], results [61]); Planck
(o�cial site [49], results [3]); Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX, o�cial site [59]); or Wide �eld Multi-Object Spectrograph (WFMOS,
Gemini study report [16]). In this section we just brie�y introduce three further
examples � �nished BOSS, ongoing DES, and future WFIRST.

2.3.1 Baryon Oscillation Spectroscopic Survey

The Sloan Digital Sky Survey`s (SDSS-III) Baryon Oscillation Spectroscopic Sur-
vey (BOSS) is a six-year program (Fall 2009 � Spring 2014) that uses the wide-�eld
2.5-m telescope at Apache Point Observatory. The BOSS is designed to measure
the scale of BAO in the clustering of matter over a larger volume than the com-
bined e�orts of all previous spectroscopic surveys of large-scale structures. BOSS
uses 1.5 million luminous galaxies to measure BAO to redshifts z < 0.7. Observa-
tions of neutral hydrogen in the Lyα forest in more than 150,000 quasar spectra
constrain BAO over the redshift range 2.15 < z < 3.5 [41].

There are two double spectrographs, each covering the wavelength range 361
nm � 1014 nm with resolution R = λ/∆λ ranging from 1300 at the blue end to
2600 at the red end. Both spectrographs have a red channel with a 4k × 4k,
15µm pixel CCD from Lawrence Berkeley National Laboratory (LBNL). Both
spectrographs have a blue channel with a 4k× 4k, 15µm pixel CCD from e2v. The
instrument is fed by 1000 optical �bers (500 per spectrograph), each subtending
2� on the sky.

Using the acoustic scale as a physically calibrated ruler, BOSS determines the
angular diameter distance with a precision of 1% at redshifts z = 0.3 and z = 0.57
using the distribution of galaxies and measurements of H(z) to 1.8% and 1.7%
at the same redshifts. At redshifts z ∼ 2.5 the angular diameter distance and
H−1(z) is measured to an accuracy of 1.9% using Lyα forest.

BAO measurements with the CMB-calibrated physical scale of the sound hori-
zon and SN data yields of H0 = (67.3± 1.1) km· s−1 Mpc−1 with 1.7% precision
[14]. This measurement assumes standard pre-recombination physics but is in-
sensitive to assumptions about dark energy or space curvature. When we allow
more general forms of evolving dark energy, the BAO+SN+CMB parameter con-
straints are always consistent with �at ΛCDM values at 1σ. While the overal
χ2 of model �ts is satisfactory, the Lyα forest BAO measurements are in mod-
erate (2 − 2.5σ) tension with model predictions. Models with early dark energy
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that tracks the dominant energy component at high redshift remain consistent
with expansion history constraints, and they yield a higher H0 and lower matter
clustering amplitude, improving agreement with some low-redshift observations.

2.3.2 Dark Energy Survey

The Dark Energy Survey (DES) is designed to probe the origin of the acceler-
ating universe and to help uncover the nature of dark energy by measuring the
14-billion-year history of cosmic expansion with high precision. DES is an optical
near infrared survey of 5000 deg2 of the South Galactic Cap to r ∼ 24 in grizy
spectrum. DES`s instrument consists primarily of a new camera, Dark Energy
Camera (DECam), speci�cally designed to be sensitive to the highly redshifted
light from distant galaxies. DECam is mounted on a classic telescope, the Blan-
co 4-m telescope at the Cerro Tololo Inter-American Observatory (CTIO) in La
Serena, Chile. The imaging system is supported by a combination of microwave
and optical data links that will provide the recorded data to the survey members.
Starting in August of 2013 and continuing for �ve years, DES has begun to survey
a large swath of the southern sky out to vast distances in order to provide new
clues to this most fundamental questions [2].

The survey data allow to measure the dark energy and dark matter densities
and the dark energy equation of state through four independent methods: galaxy
clusters (counts and spatial distributions at 0.1 < z < 1.3), weak gravitational
lensing tomography (on several redshift shells to z ∼ 1), galaxy angular clustering,
and supernova distances (at 0.3 < z < 0.8).

The main tool is the DECam, 74 2k × 4k 570 Mpx digital camera built at
Fermilab in Batavia. It provides a 2.2◦ �eld of view image at 0.27�/pixel. It
covers wavelength range 400�1100 nm with �ve �lters (grizy). The electronics
will allow an entire digital image to be read out and recorded in 17 seconds, time
that it takes the telescope to move to its next viewing position.

From the �rst two years of observation a mass map from weak gravitational
lensing shear measurements over 139 deg2 has been reconstructed [35]. There is
a good agreement between the mass map and the distribution of massive galaxy
clusters identi�ed using a red-sequence cluster �nder. These measurements are
consistent with simulated galaxy catalogs based on ΛCDM N -body simulations,
suggesting low systematics uncertainties in the map.

2.3.3 Wide-Field Infrared Survey Telescope

The Wide-Field Infrared Survey Telescope (WFIRST) is a NASA large space
mission designed to settle essential questions in dark energy, exoplanets, and
infrared astrophysics. It is designed to perform wide-�eld imaging and slitless
spectroscopic surveys of the near infrared sky. The current Astrophysics Focused
Telescope Assets (AFTA) design of the mission makes use of an existing 2.4-m
telescope to enhance sensitivity and imaging performance. It is the top-ranked
large space mission in the New Worlds, New Horizon (NWNH) Decadal Survey
of Astronomy and Astrophysics. The main instrument is a wide-�eld multi-
�lter NIR imager and spectrometer. With the 2.4-m telescope, a coronagraph
instrument has been added to the payload for direct imaging of exoplanets and
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debris disks. If authorized for a mission start in 2017, WFIRST-AFTA would
launch in the early 2020s [115].

The mission will feature strategic key science programs plus a large program
of guest observations (see Appendix A of [106]). The main focus is on the dark
energy and fundamental cosmology (determine the expansion history of the Uni-
verse and the growth history of its largest structures). The next scienti�c goal
is discovering of exoplanets � by microlensing photometric survey of the Galac-
tic bulge and by a direct high-contrast imaging and spectroscopic survey of the
nearest stars. Data for general astrophysics science will be gathered by surveys
at high Galactic latitudes and Galactic bulge. Relatively huge priority is assigned
to the guest observer science program.

The payload features a 2.4-m telescope, which feeds the wide-�eld instrument
(wide-�eld channel and an integral �eld unit spectrograph channel) and the coro-
nagraph instrument. The wide-�eld channel covers a wavelength range 0.76�2.0
µm and a spectroscopy mode covering 1.35�1.89 µm . The wide-�eld focal plane
uses 18 4k × 4k HgCdTe detector arrays. The integral �eld unit channel us-
es an image slicer and spectrograph to provide individual spectra of each slice
covering the 0.6�2.0 µm spectral range. The coronagraph instrument provides
high-contrast imaging and spectroscopy. Direct imaging is provided over a band-
pass of 430�970 nm, while spectroscopy is provided by the spectrograph over the
spectral range of 0.6�0.97 µm with a spectral resolution of R ∼ 70 [106].

As WFIRST will be a NIR mission it will require visible band photometry for
photo-z determination. LSST will be the premier ground-based facility to provide
those data. As for Euclid, the baryon acoustic oscillation spectroscopic survey
will be helpful for calibrating photo-z determinations for LSST. The comparison
of shear determinations between WFIRST and LSST measurements will be useful
for understanding shape measurement systematics with both facilities.
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3. Modi�ed Gravity and Dark

Energy

If the surveys described above are to be successful in interpreting their results,
many di�erent theories of gravity need to be explored. This chapter serves as a
brief review of the various models of modi�ed gravity and dark energy. At �rst, we
present problems with the cosmological constant as an explanation of the accel-
eration of the Universe. Next we introduce general properties of modi�cations of
gravity and then we deal with the most studied theories � quintessence, k-essence,
models with coupled dark energy with special attention to the chameleon gravity,
two models of uni�ed dark energy and dark matter, and f(R) theories.

3.1 Problems with Cosmological Constant

Standard cosmological ΛCDM model is in a good agreement with all measure-
ments of CMB [3], type Ia supernovae [4], or BAO [14]. So why we want to study
physics beyond this concordance cosmology? Why are we not satis�ed with the
cosmological constant as an explanation of the acceleration of the Universe?

First of all, let me stress that the cosmological constant Λ is itself a modi�-
cation of GR, and not a nice or elegant one, just the simplest. One adds into the
action of GR a constant of unknown origin and ridiculously small value right next
to the curvature with the clear purpose. There are two major problems with the
cosmological constant referred to as the �ne-tuning problem and the coincidence
problem.

Fine-Tuning Problem

The �rst problem could be phrased as the question: Why is the observed value
of Λ so small in Planck units? In order to realize the cosmic acceleration today,
we require that the cosmological constant Λ is of the order of the square of the
present Hubble parameter H0. If we interpret this as an energy density, it is
equivalent to

ρΛ = ΛM2
pl ≈ 10−120M4

pl ≈ 10−47 GeV4. (3.1)

Suppose that this energy density comes from the vacuum energy. The zero-point
energy of some �eld of mass m with momentum k is

E0 = 〈0 |H| 0〉 = V

∫
d3k

(2π)3

1

2

√
k2 +m2, (3.2)

where V = (2π)3δ3(0) is the volume of space. If we trust our theory up to some
cut-o� scale ΛUV � m, we obtain the vacuum energy density

ρvac =

∫ ΛUV

0

4πk2dk
(2π)3

1

2

√
k2 +m2 ≈ Λ4

UV

16π2
. (3.3)

If we take the cut-o� scale to be order of the Planck scaleMpl ≈ 1018 GeV, we get
a value of about 120 orders of magnitude larger than the observed value. This
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situation is not better for di�erent scales in particle physics. For the SUSY1 scale
ΛSUSY ≈ 103 GeV, even for the QCD scale ΛQCD ≈ 0.1 GeV, is ρvac still much
larger than ρΛ. Even if the value of Λ does not originate from the vacuum energy
there is no such a small scale in known physics � not in GR nor in quantum
physics. This huge discrepancy between theoretical predictions and observed
value of Λ is a major issue in physics and cosmology.

Coincidence Problem

The second problem could be phrased as the question: Why is the energy den-
sity ρΛ so close to the present matter density? While the energy density of the
cosmological constant (vacuum energy) remains constant in time and was com-
pletely negligible in most of the past, the energy density of matter evolves like
ρm ∝ (1 + z)3 and will be entirely negligible in the future. According to the
Copernican principle [46] we do not live in a special place nor time. Thus it is
very unlikely that these two components will have densities of the same order of
magnitude in the present. If ρ(0)

Λ /ρ
(0)
m was just 10 or 100 times smaller, we would

not see any accelerated expansion. If it were a few orders of magnitude larger
than one, the transition to the accelerated universe would occur at a large redshift.

The so-called anthropic principle can seemingly give us the explanation for
both of the two cosmological constant problems, why it is small and why the
acceleration starts now. Because if the vacuum energy has been big and domi-
nant from the earlier epoch, there would be no chance to form structures in the
Universe, like galaxies, stars, planets and us, intelligent lives. But this anthropic
explanation of the value ρΛ makes sense only if there is a multiverse with a lot
di�erent realizations of ρΛ. But we live only in our realization of the Universe and
therefore we cannot verify whether the anthropic principle solves the cosmological
constant problem or not.

Beside these two problems concerning the cosmological constant, the obser-
vations of coherent acoustic oscillations in the CMB [3] has turned the notion of
accelerated expansion in the very early universe (in�ation) into an integral part
of the cosmic standard model. This early accelerated expansion was not due to
the cosmological constant, because in that case the in�ation would not stop and
today`s universe would not be possible. Therefore, we have to postulate some
new scalar �eld (in�aton) [36] that we know so little about. If we do not properly
understand the past dynamics of the universe how can we accept the cosmological
constant as an explanation of the present acceleration without doubt?

1In some supersymmetric theories, the number of fermionic and bosonic degrees of freedom
are equal. The energy of the vacuum �uctuations per degree of freedom is the same in magnitude
but opposite in sign for fermions and bosons of the same mass. Therefore the fermion and
boson contributions cancel each other and the total vacuum energy density (and consequently
Λ) vanishes. As the supersymmetry has to be broken today (we do not observe supersymetry
in nature) supersymmetric partners can have di�erent masses of order ΛSUSY ≈ 103 GeV.
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3.2 Beyond ΛCDM

If extensions of the standard model prove the vacuum energy to be exactly zero
or we are not satis�ed with the cosmological constant and its problems we need
to �nd alternative models of dark energy. Since general relativity is an unique
theory of a massless spin 2 degree of freedom, modifying gravity means changing
its degrees of freedom � usually adding a scalar degree of freedom2 [62]. Theories
of modi�ed gravity (and dark energy) are obtained by modifying the classical
Einstein-Hilbert action of general relativity (with the cosmological constant Λ)

S =
M2

pl

2

∫
d4x
√
−g [R− 2Λ] + Sm[ψm; gµν ], (3.4)

where R is the Ricci scalar and Sm is the matter action with matter �elds Ψm

which are minimally coupled to gravity3. This action can be modi�ed basically in
two ways. The �rst approach is based on modi�ed matter models in which we add
additional �elds of an exotic matter � dark energy with a negative pressure, and
thus modifying right hand side of the Einstein equations � the energy momentum
tensor Tµν . The second approach is based on modi�ed gravity models in which
we modify gravity part of the action and thus modifying the left hand side of the
Einstein equations � the Einstein tensor Gµν . We can also mix gravity and matter
parts of the action together, i.e. involve in the action �elds with non-minimal
coupling.

Note that within GR one cannot distinguish between models of modi�ed grav-
ity and dark energy � gravity modi�cations can be absorbed in the matter part of
the action and vice versa. By a conformal transformation one can directly assign
new �elds to any modi�cations of gravity (see � 3.2.1). By using only gravitation-
al interactions there is no way how to distinguish between these two approaches.
In the particle physic and quantum �eld theory there is of course the di�erence
and it is up to them to distinguish what can cause these modi�cations.

We cannot modi�ed action (3.4) arbitrary if we want to involve in equations
of motion only second derivatives of the �elds. This requirement comes from the
Ostrogradski`s theorem which basically claims that such theories are unstable and
involve ghosts4[123]. However, we can still involve in equations of motion higher
order derivatives by violating assumption of the Ostrogradski`s theorem, i.e. the
nondegenerancy of a conjugate momentum.

General scalar-tensor theories de�ned by the Horndeski extension[65] leads to

2Extra scalar degrees of freedom are the most preferable modi�cations of gravity.
Quintessence or k-essence contains these �elds directly; f(R) gravity through the presence
of higher derivatives; a massive graviton has more degrees of freedom than a massless one and
one of these behaves like an additional scalar mode; or in many brane world models there is an
extra scalar mode corresponding to the position of the brane in the extra dimension.

3By minimally coupled matter �elds are meant �elds that are coupled to gravity only through
the determinant of the metric

√
−g and the canonical kinetic term − 1

2g
µν∂µφ∂νφ.

4Ghost is a state of a negative norm or a �eld with the kinetic term of the wrong sign. Ghosts
in quantum physics break the unitarity and generally implies classical instabilities either at the
background or at the perturbed level [53].
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the action

S =
M2

pl

2

∫
d4x
√
−g
{
G2(ϕ,X)−G3(ϕ,X)�ϕ+G4(ϕ,X)R

+
∂G4

∂X

[
(�ϕ)2 − (∇∇ϕ)2

]
+G5(ϕ,X)Gµν∇µ∇νϕ

− 1

6

∂G5

∂X

[
(�ϕ)3 − 3�ϕ(∇∇ϕ)2 + 2(∇∇ϕ)3

] }
+ Sm[ψm; gµν ],

(3.5)

where X ≡ −1
2
(∂ϕ)2 is the canonical kinetic energy and Gµν is the Einstein

tensor. The scalar �eld ϕ is coupled with gravity via the covariant derivatives, R
and Gµν . Functions Gi are arbitrary functions of ϕ and X. This action de�nes
the most general scalar-tensor theory with at most second order derivatives of
the �elds in equations of motion.

The Horndeski action incorporates many models of modi�ed gravity, e.g.
Chameleon gravity, f(R) gravity or Galileon models. Classical ΛCDM model
is recovered by

G2(ϕ,X) =− 2Λ,

G3(ϕ,X) = G5(ϕ,X) = 0,

G4(ϕ,X) = 1.

(3.6)

K-essence � dark energy described by a single, real scalar �eld ϕ, minimally
coupled to gravity but with a non-canonical kinetic term � we get by

G2(ϕ,X) =
2

M2
pl

K(ϕ,X),

G3(ϕ,X) = G5(ϕ,X) = 0,

G4(ϕ,X) = 1.

(3.7)

Special case of k-essence, the quintessence � scalar �eld with a canonical kinetic
term rolling in a potential � is obtained from (3.7) by choice K(ϕ,X) = X −
V (ϕ)).

Another broad subclass of the Horndeski action � the Jordan-Brans-Dicke
models [24] � can be obtained by choice

G2(ϕ,X) =− 2

[
U(ϕ)− ω(ϕ)

ϕ
X

]
,

G3(ϕ,X) = G5(ϕ,X) = 0,

G4(ϕ,X) = ϕ,

(3.8)

where U(ϕ) is the scalar �eld potential and ω(ϕ) is the Brans-Dicke parameter
determining the kinetic coupling. This leads to an action (in the Jordan frame)

S =
M2

pl

2

∫
d4x
√
−g
{
ϕR− ω(ϕ)

ϕ
(∂ϕ)2 − 2U(ϕ)

}
+ Sm[ψm; gµν ]. (3.9)

Although the Brans-Dicke parameter ω is generally a function of the �eld ϕ many
models assume ω to be constant while the condition ω > −3/2 guarantees the
theory to be ghost-free.
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The so called f(R) gravity models, where the Einstein-Hilbert action (3.4) is
supplemented with a free nonlinear function of the Ricci scalar, replacing R →
R+f(R), can be embedded in the Jordan-Brans-Dicke subclass of the Horndeski
action with

ω = 0,

ϕ = 1 + f,R,

U(ϕ) =
Rf,R − f

2
.

(3.10)

3.2.1 Jordan vs. Einstein Frame

The action (3.9) is described in the so-called Jordan frame, where the matter �elds
are minimally coupled to the metric and follow geodesics. We can also describe
this in the so-called Einstein frame, where �standard� gravity is restored. Using
the conformal transformations

g̃µν ≡ ϕgµν(
dφ
dϕ

)2

≡
M2

pl

2

3 + 2ω

ϕ2

A(φ) ≡ ϕ−1/2

V (φ) ≡M2
pl

U(ϕ)

ϕ2

(3.11)

which leads to

S =

∫
d4x
√
−g̃
[
M2

pl

2
R̃− 1

2
(∂φ)2 − V (φ)

]
+ Sm[ψm;A2(φ)g̃µν ], (3.12)

where tildes denote quantities in the Einstein frame. This action looks like the
Einstein-Hilbert action with minimally coupled scalar but now the matter �elds
are also coupled with the scalar �eld via the factor A(φ) .

There is a di�erence whether one takes action (3.9) or (3.12) to be the fun-
damental action de�ning the modi�ed gravity. In the former one there is only
one coupling constant β, de�ned by A(φ) = exp(βφ/Mpl), for all matter �elds. If
one takes the action in the Einstein frame to be the fundamental one the matter
action is replaced by Sm[ψm;A2(φ)g̃µν ] → Si[ψi;A

2
i (φ)g̃µν ] where one can de�ne

the coupling strengths βi to the di�erent matter components to be di�erent. This
is very important for tests of modi�ed gravity. For instance, if there is minimal
coupling to the baryonic matter � βb = 0, Solar System or astrophysical tests do
not constraint coupling strength to the cold matter βc whereas the cosmological
observation do.

Also other theories than Jordan-Brans-Dicke theory, e.g. Kaluza-Klein theo-
ries and higher derivative theories of gravity, can be formulated in two di�erent
ways [51].

What does it mean that two frames are conformally related? Are these frames
equivalent? And how is this equivality de�ned? It has been shown in [79] that
these two frames are mathematically equivalent, i.e. every solution in one frame
implies an existence of a solution in the other frame and can be mapped into this
frame. But this does not necessary mean that they are physically equivalent and
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quantities de�ned in the individual frames are those we observe. There has been
many debates about the (in)equivalence of these frames ([94]) and whether which
one is the physical ([52]). Many contradictory arguments (sometimes incorrect)
of both sides result into confusion and ambiguous viewpoints.

Both frames have some issues with fundamental principles. In the Jordan
frame the weak energy condition can be violated and hence states with the neg-
ative energy are possible. Moreover, there is no guarantee of stability of ground
state. All classical �elds are believed to satisfy the energy condition but no so
in quantum theories. On the other hand in the Einstein frame the weak energy
condition is satis�ed but due to the non-universal coupling of the matter �elds
the equivalence principle is violated. However this violation is only weak and can
pass the Solar system tests.

So far it has not been de�nitely decided which frame is the physically cor-
rect one or whether they are equivalent and a complete agreement has not been
reached in the community on this issue. For more information see e.g. [31][30].

3.2.2 Screening Mechanisms

We know that general relativity with the cosmological constant and assumptions
about cold dark matter can describe our universe very well. That means that
any modi�ed cosmology must be able to recover ΛCDM cosmology to a high
accuracy. This is not normally an issue. However, since modi�cations of GR
typically involve extra scalar degree of freedom there are interactions with matter
that are unavoidable � no symmetry can prevent all couplings to the standard
model. This coupling to matter means that there should be a �fth force. Because
we do not see any �fth forces or modi�cations of gravity in the laboratory or in
the Solar System we need to suppress these �fth forces � we need some sort of a
screening mechanism.

A nature of the screening mechanisms can be di�erent. Let us start from (3.12)
with generalized kinetic term −1

2
Z(φ, ∂φ, ...)(∂φ)2. We can solve the equations

of motion for the background in a minimum of a potential V (φ) and write φ =
φ0+δφ, where φ0 is a background solution and δφ is a �uctuation. The Lagrangian
density for the �uctuations to the second order (�rst order vanishes) is

L ∝ −1

2
Z(φ0)(∂δφ)2 +

1

2
m2(φ0)δφ2 +

β(φ0)

Mp

δφδT, (3.13)

where m2(φ) ≡ V,φφ(φ). Now, any of these three terms can serve as a screening
term:

• Large inertia � a large Z makes it hard for the scalar to propagate and leads
to the kinetic type of the screening, where �rst or second derivatives being
important (Galileons [86], massive gravity [62], Vainshtein mechanism [15]);

• Large mass � a large m means the scalar propagates only over short dis-
tances and leads to the chameleon type of the screening, where in regions
of high density, such as on the Earth, the �eld acquires a large mass
(Chameleon mechanism [118]);
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• Weak coupling � a small β in regions of high density makes the interaction
with matter �elds weaker and leads to symmetron ([63]) or varying dilaton
([39][25]) theories.

3.3 Quintessence

Quintessence, from the Latin ��fth element�, is according to ancient and medieval
philosophy the �fth element, or ether, supposed to be the constituent matter of
the heavenly bodies after air, �re, earth, and water. The name quintessence, or
the Q component, was �rst used by [27] for canonical scalar �eld φ evolving along
a potential V (φ). Such a dynamical �eld can reproduce the late-time acceleration
with the equation of state w = w(t) ≈ 1. Although quintessence can alleviate
the coincidence problem of dark energy via the so-called tracker solution, it still
su�ers by the �ne-tunning problem as the potential needs to be �at enough to lead
to the slow-roll in�ation today with an energy scale ρDE ' 10−120M4

pl and a mass
scale mφ . 10−33 eV. However, such �ne-tunned potentials can be constructed
within the framework of particle physics.

Quintessence is one of the simple models of dark energy as it is a canonical
scalar �eld that interacts with all the other components only through standard
gravity. The lagrangian density for the quintessence �eld is

Lφ = −1

2
(∂φ)2 − V (φ) (3.14)

We can compute the stress-energy tensor as

T φµν ≡
−2√
−g

δ(
√
−gLφ)

δgµν
= ∂µφ∂νφ− gµν

(
1

2
(∂φ)2 + V (φ)

)
. (3.15)

Now, the energy density and pressure is given by components of the stress-energy
tensor. For FLRW background and φ only time-dependent we get

ρφ = −T 0
0 =

1

2
φ̇2 + V (φ) pφ =

1

3
T ii =

1

2
φ̇2 − V (φ). (3.16)

Equation of state for the quintessence is then

w ≡ p

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (3.17)

We require the condition w < −1/3 to realize the late-time cosmic acceleration,
which translates into the condition φ̇2 < V (φ), i.e. the potential needs to be
shallow enough for the �eld to evolve slowly along the potential. For a slow-
rolling �eld such as φ̇ � V (φ) equation of state (3.17) reduce to w ≈ −1 as
indicated by cosmological measurements.

The variation of (3.14) with respect to φ gives us the equation of motion for
the scalar �eld φ

φ̈+ 3Hφ̇2 + V,φ = 0. (3.18)
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3.3.1 Thawing or Freezing

Depending on which term and when determines the evolution of the �eld, the
quintessence models has been dynamically classi�ed into freezing models and
thawing models [28]. In the freezing models the �eld was rolling along the poten-
tial in the past, but the movement gradually slows down as the �eld approaches
the minimum of the potential (φ̇ → 0) and the system enters the phase of the
cosmic acceleration (w → −1). In the thawing models the �eld was initially
frozen (φ̇ ≈ 0) in the early matter era because of the Hubble friction (the term
Hφ̇) until recently and then it begins to evolve once H drops below mφ and w
evolves from −1.

A potential of the freezing models is for example

V (φ) = M4+nφ−n (n > 0), (3.19)

which appears in the fermion condensate model as a dynamical supersymmetry
breaking [21]. This potential does not possess a minimum and hence the �eld
rolls down the potential toward in�nity. Another example of a potential in the
freezing models is

V (φ) = M4+nφ−n exp (αφ2/M2
pl), (3.20)

which can be constructed in the framework of supergravity [26]. This potential
has a minimum at which the �eld is eventually trapped (corresponding to φ̇ = 0
and hence w = −1).

Broader class of potentials belonging to the thawing models are so-called
hilltop quintessence models [43], in which the scalar �eld is rolling near a local
maximum in the potential but it begins to roll down around the present. A
particularly example that is well-described by this model is the pseudo-Nambu-
Goldstone Boson (PNGB) model [55], for which the potential is given by

V (φ) = M4 [cos (φ/f) + 1] . (3.21)

3.3.2 Tracker Solutions

In the tracker solution the quintessence component tracks the dominant back-
ground density for most of the history of the Universe, then only recently grows
to dominate the energy density and drives the Universe into a period of an ac-
celerated expansion [116]. The simplest form of the tracker solution is obtained
from the potential (3.19).

One takes into account both radiation and non-relativistic matter together
(characterized by one energy density ρM = ρm + ρr and equation of state wM)
with the quintessence �eld. In radiation and matter dominant epochs the equation
of state of quintessence in the tracking regime is given by [11]

wφ ≈
nwM − 2

n+ 2
, (3.22)

which is valid as long as ρφ � ρM . A remarkable feature is that wφ decreases
to a negative value after the transition from the radiation dominated epoch to
the matter dominated epoch (wM ≈ 0) regardless of the initial value of wφ � the
initial ratio of the quintessence energy density ρφ to the matter density ρm can
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Figure 3.1: A plot of energy density vs. redshift using the equation of state for a
tracker solution. For an illustration, n = 30 in the (3.19) is plotted. The dotted
line is for radiation, the solid line is for matter, and the thick solid line is for
quintessence. From [116].

vary by nearly 100 orders of magnitude and does not a�ect the cosmic history
[124].

Since ρφ decreases more slowly than ρM , in later epoch ρφ becomes relatively
large and at some time catches up with ρM and start to dominate the Universe.
In that epoch wφ ≈ −1 and the quintessence �eld drives the late time accelerated
expansion of the Universe. The evolution of the energy density is showed in
Figure 3.1.

The fact that the evolution of ρφ does not depend on initial conditions par-
tially solves the cosmological constant problems. However, the value of M in the
potential (3.19) still needs to be �ne-tunned and the quintessence theory gives no
explanation of this value.

3.4 K-essence

Quintessence models are based on a scalar �eld with a canonical kinetic term
and a slowly varying potential. However, in the context of particle physics there
appear scalar �elds with non-canonical kinetic terms. In [13] it is shown that a
large class of scalar �elds with non-canonical kinetic terms can, without the help
of potential terms, drive an in�ationary evolution starting from rather generic
initial conditions. The Lagrangian density for the k-essence is

LK = P (φ,X), (3.23)

where X = −1
2
(∂φ)2 is the canonical kinetic energy and the function P (φ,X)

must vanish for X → 0 (otherwise there would be some potential term).
The energy-momentum tensor of the k-essence is given by

TKµν ≡
−2√
−g

δ(
√
−gLK)

δgµν
= P,X∂µφ∂νφ+ gµνP, (3.24)
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which is of the form of a perfect �uid, Tµν = (ρ+p)uµuν+gµνp, with a four-velocity
uµ = ∂µφ/

√
2X, pressure pK = P and energy density

ρK = 2XP,X − P. (3.25)

The equation of state of the k-essence is then

wK =
pK
ρK

=
P

2XP,X − P
, (3.26)

which is wK ≈ −1, as long as the condition XP,X � P is satis�ed.
In the low-energy e�ective string theory appear higher-order derivative terms

coming from α and loop corrections to the tree-level action [56]. The k-essence
action for these theories is for example

P = K(φ)X + L(φ)X2. (3.27)

Phantom or ghost scalar �elds with a negative kinetic energy −X and w . −1
can also �t the current observations. These ghost �elds generally su�er from a
quantum instability problem unless higher-order terms in X or φ are taken into
account in the Lagrangian density [11]. The action of so-called dilatonic ghost
condensate model is [93]

P = −X + eκλφX2/M4. (3.28)

3.4.1 Attractor Solutions

As an example, the cosmological evolution of the dilatonic ghost condensate model
with λ = 0.2 in the �at FLRW background (with both matter and radiation �uids)
is shown in Figure 3.2. During radiation and most matter eras, the equation of
state wφ is close to -1 and the energy density of the �eld ρφ is negligibly small
relative to the background �uid density. Once the �eld energy density begins to
dominate over the background �uid density, wφ starts to evolve from -1. Since
the deviation from wφ = −1 appears around the present epoch, the dilatonic
ghost condensate model corresponds to the thawing model of k-essence. Unlike
thawing models of quintessence the �eld acquires a nearly constant energy by its
kinetic term.

In addition to these types of solutions, where k-essence is attracted to an
equation of state which is di�erent from matter or radiation, there are also track-
er solutions in which k-essence mimics the equation of state of the background
component in the Universe [116].

As in the case of the quintessence, the cosmic evolution in the presence of
the k-essence is insensitive to initial conditions and the �eld is attracted to the
attractor solution wherever it started. In addition to solving the coincidence
problem the k-essence does not need a potential energy term thus it is free from
�ne-tuning that arose in quintessence models. However, the k-essence does not
solve the vacuum energy problem and, in some era, the �eld can travel with
superluminal speeds.
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Figure 3.2: Evolution of Ωφ, Ωm, Ωr, and wφ for the dilatonic ghost condensate
model with λ = 0.2 versus the redshift z. Initially the equation of state wφ is
close to −1 but deviates from −1 in the low-redshift regime. From [11].

3.5 Coupled Dark Energy

Because the energy density of the (dark) matter and the dark energy are of the
same order in the present Universe there may be some relation between them. The
coupling between dark matter and scalar �eld is described via modi�ed energy
conservation equations. This coupling is of the form, for instance [7]

∇µT
µ
ν(φ) = +CTM∇νφ,

∇µT
µ
ν(M) = −CTM∇νφ,

(3.29)

with coupling C and trace of the energy-momentum tensor TM = −ρM + 3pM .
Since the radiation is traceless, the coupling term with radiation vanishes and
the scalar �eld couples only to non-relativistic matter such as dark matter and
baryons. Generally the coupling strength C is di�erent for baryons and dark
matter, but since baryons are subdominant component of the Universe, their
coupling to dark energy makes only a small di�erence. Therefore for simplicity
it is discussed here the case with only a single �uid with universal coupling.

Dark energy with interactions of the form of (3.29) with a constant coupling
C arises in Brans-Dicke theory after a conformal transformation to the Einstein
frame.

In the �at FLRW background the �eld φ, non-relativistic matter and radiation
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with interaction (3.29) obey the equations of motion

ρ̇m + 3Hρm = +Cρmφ̇,

ρ̇φ + 3H(ρφ + pφ) = −Cρmφ̇,
ṙm + 4Hρr = 0,

(3.30)

which can be rewritten for the scalar �eld with potential V (φ) as

φ̈+ 3Hφ̇+ V,φ = −Cρm. (3.31)

For the exponential �eld potential V (φ)

V (φ) = V0e
−λφ (3.32)

with λ2 < 2 an attractor causing accelerated expansion of the Universe can be
found. During the matter dominated era the scalar �eld has a �nite and almost
constant energy density. This �eld-matter-dominated era between the radiation
era and the accelerated era is called φMDE. The φMDE is responsible for most
of the di�erences with respect to the uncoupled quintessence model � e.g. the evo-
lution of the Hubble parameter (and hence di�erent sound horizon) or equations
for perturbations (which lead to a larger growth rate of matter perturbations).
The φMDE is characterized by

Ωφ =
2M2

plC
2

3
,

wφ = 1,

we� =
2M2

plC

3
.

(3.33)

Once the the attractor is reached, matter density becomes zero and the Universe
is characterized by

Ωφ = 1,

wφ =
λ2

3
− 1,

we� =
λ2

3
− 1.

(3.34)

The CMB data constrain the coupling constant to be |C| < 0.1M−1
pl [10]

3.6 Chameleon Gravity

If there is a scalar �eld coupled to a non-relativistic matter with the interaction
as strong as gravity, the coupling must be tuned to a small value to satisfy tests of
the equivalence principle in Solar System which exclude any �fth forces. However,
this �ne-tunning can be avoided and the coupling can be of order of unity with
the so called chameleon mechanism.

The action of a chameleon scalar �eld φ is given by the action (3.12) in the
Einstein frame

S =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
(∂φ)2 − V (φ)

]
+ Sm[ψ(i)

m ; g(i)
µν ]. (3.35)
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It is the same action as for the normal quintessence but now the matter �elds are
coupled to a metric g(i)

µν , which is related to the Einstein frame metric gµν by a
conformal transformation

g(i)
µν = e2βiφ/Mplgµν . (3.36)

Varying the action (3.35) with respect to the �eld φ one can obtain the equation
of motion

�φ = V,φ −
∑
i

βi
Mpl

e4βiφ/Mplgµν(i)T
(i)
µν , (3.37)

where

T (i)
µν ≡

−2√
−g

δ(
√
−gLm)

δgµν(i)

(3.38)

is the stress-energy tensor for the i-th matter component. Note that the stress-
energy tensor de�ned in this way is not conserved in the Einstein frame, but
rather in the Jordan frame, i.e.

∇̃µT
µν
(i) = 0, (3.39)

where ∇̃µ is the covariant derivative corresponding to the Jordan frame metric
and we are assuming that the individual matter species do not interact with each
other. The trace (not a scalar in the Einstein frame) of the i-th component is
de�ned as T (i) ≡ gµν(i)T

(i)
µν . For a perfect isentropic �uid is T (i) = −(1 − 3wi)ρ̃i

with ρ̃i the energy density in the Jordan frame. The energy density de�ned as

ρi ≡ ρ̃ie
3(1+wi)βiφ/Mpl , (3.40)

is conserved in the Einstein frame [118].
Equation of motion (3.37) is then

�φ = V,φ +
∑
i

(1− 3wi)
βi
Mpl

ρie
(1−3wi)βiφ/Mpl . (3.41)

This equation could be read as

�φ = Ve�,φ (φ) , (3.42)

where the e�ective potential Ve� is de�ned by

Ve� (φ) ≡ V (φ) +
∑
i

ρie
(1−3wi)βiφ/Mpl . (3.43)

If the couplings βi are the same for each matter component with the same w (we
can omit the radiation in the sum) and the overall density is ρ =

∑
i ρi, then the

e�ective potential reads

Ve� (φ) ≡ V (φ) + ρe(1−3w)βφ/Mpl . (3.44)

For the quasi-static and weak (βφ/Mpl � 1) �eld in a weak gravity background
(the Minkowski background) with non-relativistic matter, the equation further
simpli�es as

∆φ =
β

Mpl

ρ+ V,φ, (3.45)

which looks like the normal Poisson equation but with an extra non-linear term.
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3.6.1 Chameleon Force

The interaction of the chameleon �eld with matter is described by the conformal
coupling (3.36). As the matter �elds ψ(i)

m couple to the metric g(i)
µν instead of gµν ,

free test particles follow geodesics of g(i)
µν

d2xµ

dτ̃ 2
+ Γ̃µαβ

dxα

dτ̃
dxβ

dτ̃
= 0, (3.46)

where Γ̃µαβ are the Christo�el symbols of the metric g(i)
µν . In the Einstein frame

metric this gives [118]

d2xµ

dτ 2
+ Γµαβ

dxα

dτ
dxβ

dτ
= − βi

Mpl

(
2φ,α

dxα

dτ
dxµ

dτ
+ gβµφ,β

)
. (3.47)

Note that the chameleon force violates the weak Equivalence Principle only if
there exist two matter species with di�ering values of βi. In the non-relativistic
limit, a test particle of mass m of species i in a static chameleon �eld φ is moving
under a force ~Fφ given by

~Fφ
m

= − βi
Mpl

~∇φ (3.48)

3.6.2 Chameleon mechanism

As discussed in � 3.2.2 we need some sort of a screening mechanism to avoid Solar
System tests of GR. It means as seen from (3.48) that the chameleon potential
needs to approach some constant value in dense regions.

Suppose we have a background solution φ∞ which minimizes the e�ective
potential with ρ = ρ∞. For small �uctuations φ = φ∞ + δφ and ρ = ρ∞ + δρ we
can linearized (3.45) to obain

∆δφ =
β

Mpl

δρ+m2
∞δφ, (3.49)

where
m2
∞ ≡ V,φφ(φ∞). (3.50)

Except for the screening term, which often could be neglected, the equation (3.49)
has the same behavior as the Poisson equation for the Newtonian potential ΦN .
For a spherically symmetric density pro�le this gives solution

φ = φ∞ + 2βMplΦN (r) e−m∞r. (3.51)

As the objects in the background become more massive (larger and/or denser) the
Newtonian potential grows larger (in magnitude) and so the deviation of φ from
background solution φ∞. At some point this deviation is no longer small and the
potential term in (3.45) cannot be treated perturbatively. It starts canceling the
�rst source term and eventually the �eld φ posses a new (constant) value which
minimizes the e�ective potential inside an object.

This is the essence of the chameleon mechanism. Let us derive the mechanism
in a more proper and exact way.
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3.6.3 Chameleon Pro�le

To obtain the cosmic acceleration and chameleon behavior described above we
need to choose a chameleon potential V (φ) with the right properties. As in the
case of the quintessence �eld we need the slow-roll mechanism to provide the
acceleration and therefore we need the potential where the �eld rolls down in a
potential slope. To have a screening mechanism in (3.45) we need V,φ < 0 and so
�eld rolls down in the positive direction. And �nally to have a screening behavior
of the �eld as in the case of the Yukawa potential we need a real mass of the �eld,
i.e. V,φφ > 0.

These properties of the potential are commonly referred to as the potential of
the runaway form:

1. limφ→0 V (φ) =∞;

2. V (φ) is C∞, bounded below;

3. V,φ < 0 and increasing;

4. V,φφ > 0 and decreasing.

Although the item 1. and boundedness from 2. are usually assumed as these kinds
of potentials arise in in supersymmetric models, there are not necessary as we
will see in the Chapter 4 where we will study the chameleon gravity in context
of Hu-Sawicki f(R) models.

Example of this runaway potential we have already seen in the quintessence
models � the inverse power-law potential (3.19)

V (φ) = M4+nφ−n (n > 0). (3.52)

Another example is the exponential potential

V (φ) = M4 exp
Mn

φn
(n > 0). (3.53)

We wish to �nd a solution for spherically symmetric matter distributions of a
single species of pressureless matter such that

ρ(r) =

{
ρc r < Rc

ρ∞ r > Rc,

where ρc > ρ∞. Further we de�ne φc and φ∞ with their masses mc and m∞ (the
masses of small �uctuations about φc and φ∞) such as

Ve�,φ (φc)|ρ=ρc
≡ 0 m2

c ≡ Ve�,φφ (φc)

Ve�,φ (φ∞)|ρ=ρ∞
≡ 0 m2

∞ ≡ Ve�,φφ (φ∞) .

The e�ective chameleon potential for this con�guration is shown in Figure 3.3. In
the background with low density, the curvature of the potential is much shallower,
corresponding to a light scalar that mediates a long range force. Inside the object
of high density, the scalar acquires a large mass, and the force shuts o�.
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Figure 3.3: The e�ective chameleon potential for a massive spherical object of
density ρobj. surrounded by the background with density ρamb.. From [71].

In spherical coordinates assuming spherical symmetry, equation (3.45) be-
comes

d2φ

dr2
+

2

r

dφ
dr

=
1

r

d2 (rφ)

dr2
= V,φ (φ(r)) +

β

Mpl

ρ(r). (3.54)

We must impose two boundary conditions which are

dφ
dr

(r = 0) = 0

φ(r →∞) = φ∞.

The �rst one corresponds to a non-singularity of the solution at the origin while
the later one ensures that the chameleon force vanishes at the in�nity (as dφ/dr →
0).

The equation (3.54) drives the �eld φ toward the φ∞ outside the object and
toward φc inside the object. Note that the second term acts like the friction term.

In order to solve (3.54) we must do several approximations. Outside the
object we assume that the �eld sits near the extreme φ∞ and we can linearized
our equation

1

r

d2 (rφ)

dr2
= m2

∞(φ− φ∞), (3.55)

with the decaying solution

φ(r) = − β

4πMpl

M̃

r
e−m∞r + φ∞. (3.56)

Note that the integration constant M̃ is not generally the mass of the object Mc

as in the case of the Newtonian potential because it is determined by the �eld
inside the object which has di�erent behavior than the Newtonian potential. As
we will see later, for small Newtonian potentials (in magnitude) this e�ective mass
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M̃ ≈ Mc but as the potential grows larger part of the object`s mass is screened
away M̃ < Mc.

Inside the object we use one of the two approximations based on the initial
value of φi ≡ φ(0) � either φi ≈ φc or φi � φc .

Thin-shell regime

In the thin-shell regime the �eld initially sits very close the minimum φc, i.e. we
require

(φi − φc)/φc � 1. (3.57)

The �eld is frozen near this value until the friction term is su�ciently small to
allow the �eld to roll. This �moment� is denoted by Rroll. As soon as φ is displaced
signi�cantly from φc we may neglect the potential term in (3.54). This gives us
the solution

φ(r) =

{
φc 0 < r < Rroll

β
6Mpl

ρcr
2 + A

r
+D Rroll < r < Rc.

(3.58)

We have boundary conditions coming from the requirement on matching φ and
dφ/dr at Rroll, namely: φ = φc and dφ/dr = 0 at r = rroll. This �xes our
constants and the solution is

φ(r) =

{
φc 0 < r < Rroll

βρc
3Mpl

(
r2

2
+

R3
roll

r

)
− βρcR2

roll

2Mpl
+ φc Rroll < r < Rc.

(3.59)

The approximation of separating the solution into the two regions only makes
sense if (Rc −Rroll)/Rc � 1. Otherwise there is no clear separation between the
two regions, and one needs a solution valid over the entire range 0 < r < Rc. In
Chapter 4 is (3.54) solved numerically and we can check these approximations
against numerical solutions.

With approximation (Rc − Rroll)/Rc � 1 we can determines the e�ective
mass of the object M̃ from the requirement φ(R−c ) = φ(R+

c ) and dφ/dr(R−c ) =
dφ/dr(R+

c ).

M̃ =
3∆Rc

Rc

Mc, (3.60)

where
∆Rc

Rc

≡ φ∞ − φc
6βMpl|ΦN(Rc)|

≈ Rc −Rroll

Rc

� 1. (3.61)

This qualitative derivation of the thin-shell regime is using too much strong as-
sumptions and can be done more precisely without ignoring some of the terms
but then it is harder to see the principle of the thin-shell e�ect. For more details
see e.g. [108], [81], [118].

Thick-shell regime

In the thick-shell regime the �eld is initially su�ciently displaced from the min-
imum � φi � φc that it begins to roll almost immediately (no friction term).
Hence the interior solution is most easily obtained by taking the Rroll = 0 in
(3.59) and replacing φc by φi

φ(r) =
βρcr

2

6Mpl

+ φi 0 < r < Rc. (3.62)
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By matching the interior and exterior solutions, we obtain

φi = φ∞ − 3βMplΦN(Rc)

M̃ = Mc,
(3.63)

which is the linear regime with no screening. From the de�nition of ∆Rc/Rc we
also obtain

∆Rc

Rc

≡ φ∞ − φc
6βMpl|ΦN(Rc)|

> 1. (3.64)

Thin-shell suppression factor

The chameleon force outside the object (where experiments take place) comparing
to the Newtonian force is

Fthick
FN

= 2β2

Fthin
FN

= 2β2 3Mpl (φ∞ − φc)
βρcR2

c

,

(3.65)

where we ignore the term m∞r � 1. Therefore for the coupling β of order unity
the chameleon force is as strong as gravity unless it is screened away by the
thin-shell e�ect.

3.7 Uni�ed Dark Energy and Dark Matter

Despite the fact that dark matter and dark energy have di�erent equations of state
and completely di�erent clustering properties there have been many attempts to
unify them into a single entity. This can be done using either a single �uid or a
single scalar �eld.

3.7.1 Generalized Chaplygin Gas Model

The Chapligin5 gas model has been proposed in 2001 in order to explain the
cosmic acceleration [73]. The so-called generalized Chaplygin gas is a a perfect
�uid having the following equation of state:

p = − A
ρα
, (3.66)

A is a positive constant. The choice α = 1 corresponds to the original Chaplygin
gas model which is now completely ruled out. This equation has a connection with
the string theory and it can be obtained from the Nambu-Goto action for d-branes
moving in a (d+ 2)-dimensional spacetime in the lightcone parametrization. For
α > 0, the pressure is suppressed by the energy density in the early universe
and the Chaplygin gas acts like pressureless matter. At late times the negative
pressure becomes important and the Chaplygin gas acts like dark energy realizing
the cosmic acceleration.

5Named after Sergey Chaplygin (1869�1942), Russian mathematician, physicist, and engi-
neer, who found a similar behavior in aerodynamical studies.
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From the energy conservation equation and the equation of state (3.66) follows

ρ(t) =

[
A+

B

a3(1+α)

]1/(1+α)

, (3.67)

where B is an integration constant.
The density then evolves as ρ ∝ a−3 in the early epoch when a � 1 and

as ρ ∝ A1/(1+α) in the late epoch when a � 1. The later solution ρ ≈ const
corresponds to the de Sitter Universe.

At the background level the Chaplygin gas can explain both dark matter and
dark energy. However, at the perturbation level the sound speed becomes large
at the late epoch which leads to growth of inhomogeneities. The observations
constrain the values of |α| . 10−5 [100]. It is di�cult for this model to have
suppressed role of the pressure during most of the matter era (for a successful
structure formation) while a large negative pressure at the late time (for cosmic
acceleration).

3.7.2 K-essence

As an uni�ed model of dark energy and dark matter can also serve a single �eld
with a purely kinetic Lagrangian density

LK = P (X). (3.68)

Let us take a function P (X) with an extremum at some value X = X0. If the
�eld sits near the extremum, such as holds the condition

ε ≡ X −X0

X0

� 1, (3.69)

the function P (X) can be expanded around this extremum:

P (X) = P0 + P2(X −X0)2. (3.70)

The continuity equation in the �at FLRW spacetime yields

(P,X + 2XP,XX)Ẋ + 6HP,XX = 0. (3.71)

Then substituting (3.69) into (3.71) and calculating up to the linear order we
obtain

ε̇ = −3Hε. (3.72)

This gives the following solution

X = X0

[
1 + ε1(a/a1)−3

]
, (3.73)

where ε1 and a1 are constants. The condition (3.69) translates into

ε1(a/a1)−3 � 1. (3.74)

The equation of state for k-essence as the uni�ed model is

wK = −

[
1 +

4P2

P0

X2
0 ε1

(
a

a1

)−3
]−1

, (3.75)
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which approaches wK → 0 during the early epoch and wK → −1 at the late
epoch.

Unlike in the case of the Chaplygin gas model, the sound speed of the k-essence

c2
s =

1

2
ε1

(
a

a1

)−3

(3.76)

is always c2
s � 1 and thus is compatible with the observations of large-scale

structure.

3.8 f (R) Gravity

Until now we considered the dark energy as a modi�cation of the right-hand side
of the Einstein equations � adding some kind of exotic matter or extra scalar �elds.
We can also change the left-hand side of the Einstein equations and consider the
modi�cation of gravity itself. One of the simplest modi�ed gravity models is the
so-called f(R) gravity in which we consider general functions of the Ricci scalar
R in the action

S =
M2

pl

2

∫
d4x
√
−g [F (R)] + Sm[ψm; gµν ], (3.77)

where §m is the action of matter �elds and F (R) = R + f(R) is an arbitrary
function of the Ricci scalar. The matter �elds ψm obey standard conservation
equations and therefore the metric gµν corresponds to the physical frame (which
here is the Jordan frame).

Variation with respect to the metric6 gµν gives us equation of motion (for
more details see � A.4)

F,RRµν −
1

2
Fgµν + gµν�F,R −∇µ∇νF,R =

1

M2
pl

Tµν . (3.78)

For f(R) = −2Λ the Einstein gravity is reconstructed. Taking the trace of (3.78)
we get

3�F,R + F,RR− 2F =
1

M2
pl

T. (3.79)

We see that there is a propagating scalar degree of freedom, so-called scalaron
Ψ ≡ F,R with mass m2

Ψ = F,R/(3F,RR), which corresponds to the scalar �eld
conformally coupled to matter in the Einstein frame.

To get the in�ation we need a solution that approaches the de Sitter solution
characterized by vacuum space with with a constant positive curvature. Thus
�F,R = 0 and (3.79) becomes

F,RR− 2F = 0. (3.80)

6In this co-called metric formalism used to derive �eld equations, the connections Γαβγ have
the usual de�nition in terms of the metric gµν . There can be also used another approach, the
so-called Palatini formalism in which Γαβγ and gµν are treated as independent variables. In
General Relativity these two approaches give the same results but not in f(R) gravity. In the
Palatini formalism the �eld equations is of the second order, unlike the fourth-order equations
in the metric case. Hence the scalar-�eld degree of freedom does not have a dynamical evolution
as in the case of General Relativity [11].
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For example the model f(R) = αR2 gives rise to an asymptotically exact de
Sitter solution and can be responsible for the in�ation in the early Universe. The
in�ation ends when the quadratic term becomes smaller than the linear term.
As at the present epoch is the curvature very small this model is not suitable
to realize the present cosmic acceleration. Models like f(R) = −α/Rn with
α > 0, n > 0 could in principle give rise to the present acceleration. However,
these models do not satisfy local gravity constraints because of the instability
associated with negative values of f,RR. Moreover, the standard matter epoch
is not present because of a large coupling between the Ricci scalar and the non-
relativistic matter.

There are four conditions for the viability of f(R) models [9]

• F,R > 0 (R > R0), where R0 is the Ricci scalar at the present epoch,
�required to avoid anti-gravity [11]

• F,RR > 0 (R > R0),
�required for consistency with local gravity tests [57], for the presence of
the matter-dominated epoch [8] and for the stability of cosmological per-
turbations [105]

• f(R)→ −2Λ (R� R0),
�required for consistency with local gravity tests [111] and for the presence
of the matter-dominated epoch [9]

• 0 <
RF,RR

F,R
< 1 (F,RR− 2F = 0).

�required for the stability of the late-time de Sitter solution [83]

Some examples of f(R) models that satisfy these conditions:

f(R) = −µRc(R/Rc)
p for 0 < p < 1; µ,Rc > 0, (3.81)

f(R) = −µRc
(R/Rc)

2n

(R/Rc)2n + 1
for n, µ,Rc > 0, (3.82)

f(R) = −µRc

[
1− (1 +R2/R2

c)
−n] for n, µ,Rc > 0, (3.83)

f(R) = −µRc tanh(R/Rc) for µ,Rc > 0. (3.84)

One of the main prediction of f(R) gravity is di�erent structure formation his-
tory than in ΛCDM. For the large-scale structure formation on subhorizon scales
k � H in quasi-static approximation one gets the modi�ed equation for matter
density perturbation [20]

δ̈m + 2Hδ̇m − 4πGe�ρmδm ≈ 0, (3.85)

where the e�ective gravitational constant is de�ned by

Ge� ≡
G

1 + f,R

4k2 + 3a2m2
Ψ

3k2 + 3a2m2
Ψ

. (3.86)

On scales much larger than the scalaron Compton wavelength m−1
Ψ , gravity is

unmodi�ed aside from the overall reduction factor f,R. However, on smaller scales
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the gravitational coupling increases by the factor 4/3. As the scalaron mass mΨ

and the factor f,R depend on curvature (local density), the chameleon mechanism
discussed earlier can prevent the detection of this e�ect in the Solar System.

3.9 Other Models of Modi�ed Gravity

The list of possible modi�cations of gravity is nearly endless so in this section we
just brie�y introduce some of them with references for further reading.

3.9.1 Gauss-Bonnet Dark Energy Models

In f(R) gravity one adds general function of the Ricci scalar. But in principle
one can add general functions of the Ricci and Riemann tensors as well, e.g.
f(R,RµνR

µν , RαβγδR
αβγδ, ...) [33]. These Lagrangians are generally plagued by

the existence of ghosts. However, there exists a combination of Ricci and Riemann
tensors that keeps the equations at second-order in the metric and does not
necessarily give rise to instabilities � so-called Gauss-Bonnet term G coupled to
a scalar �eld

G ≡ R2 − 4RµνR
µν +RαβγδR

αβγδ. (3.87)

The Gauss-Bonnet term is the unique invariant for which the highest (second)
derivative occurs linearly in the equations of motion and thus ensuring the unique-
ness of solutions. The Gauss-Bonnet term naturally arises as a correction to the
tree-level action of low-energy e�ective string theories [76]. The starting action
is given by

S =

∫
d4x
√
−g
[
M2

pl

2
R− γ

2
(∇φ)2 − V (φ) + f(φ)G

]
, (3.88)

where γ = ±1 (+1 for the canonical scalar). For more details see [88][85][29].

3.9.2 Braneworld Models

In the braneworld model of Dvali, Gabadadze and Porrati (DGP model) [44] the
3-brane is embedded in a Minkowski bulk spacetime with in�nitely large extra
dimensions. The theory gives rise to the correct 4D potential at short distances
whereas at large distances the potential is that of a 5D theory. The action of the
theory is

S =
M3

(5)

2

∫
d5X

√
−g̃R̃ +

M2
pl

2

∫
d4x
√
−gR +

∫
d4x
√
−gLm, (3.89)

where gAB(X) = gAB(x, y) denotes a 5D metric for which the 5D Ricci scalar is
R̃ and M(5) is the 5D Planck mass. Capital letters are used for 5D quantities
(A,B = 0, 1, 2, 3, 5). The brane is located at y = 0. The induces 4D metric on
the brane is denoted by

gµν(x) ≡ g̃µν(x, y = 0). (3.90)

The cross-over scale r0 is de�ned by

r0 ≡
M2

pl

2M3
(5)

. (3.91)
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At short distances r � r0 gravity behaves as usual 4D theory, i.e the gravitational
potential has correct 1/r behavior (except small logarithmic repulsion term). On
the other hand at large distances r � r0 the potential scales as 1/r2 in accordance
with laws of 5D theory.

The presence of the extra dimension has severe consequences on the cosmology
as well. It can be shown ([11][82]) that the matter dominated Universe approaches
the de Sitter solution H = r−1

0 . This cosmological solution drives our Universe
into the self-in�ationary regime without dark energy. From H0 ≈ r−1

0 we get
M(5) ≈ 10− 100 MeV.

3.9.3 Massive Gravity

The idea to give a mass to the graviton (infrared modi�cation of gravity) is not
new and has been investigated since the �rst years of General Relativity. It is a
less minimal theory than f(R) theories or modi�ed gravities with an extra scalar
�eld because it introduces three new degrees of freedom rather than one. By
giving a mass m to the graviton we deform the classical potential to the Yukawa
pro�le ∼ 1

r
e−mr which departs from the classical one at distances r > 1/m. By

choosing the graviton mass to be of the order of the Hubble constant m ∼ H one
can hope to explain the acceleration of the universe without dark energy.

The simplest theory for a non-self-interacting massive graviton is Fierz-Pauli
theory [54]. The action for a single massive spin 2 particle in �at space, carried
by a symmetric tensor �eld hµν is

S =

∫
d4x
[
− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh

+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
) ]

+ Sm.

(3.92)

Any other combination of hµνhµν and h2 would lead to instabilities. Varying the
action with respect to hµν yields the equation of motion

Rµν −
1

2
Rgµν +

1

2
m2(hµν − hηµν) =

1

M2
pl

Tµν , (3.93)

where all quantities are linearized around ηµν .
Because of the so-called vDVZ discontinuity (�van Dam-Veltman-Zakharov�)

in the propagator of a graviton, the Fierz-Pauli theory leads to di�erent physical
predictions from those of GR regardless the mass of the graviton (even when
m → 0). The Vainshtein mechanism [117] allows in principle to get rid of the
vDVZ discontinuity by introducing non-linear Fierz-Pauli gravity.

The Vainshtein mechanism is another example of the screening mechanism
and restores the continuity with GR on scales below the so-called Vainshtein
radius rV , de�ned as

rV ≡ (GM/m4)1/5. (3.94)

Much below the Vainshtein radius, which grows as the graviton`s mass approaches
0, only linear terms plays crucial role and the GR is restored.

More about the massive gravity and the Vainshtein mechanism see e.g. [62][15].
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3.9.4 Acceleration without Dark Energy

So far we studied some kind of a dark energy � either in a form of an exotic
matter or by modifying gravity itself. But this need for a dark energy as an
explanation of the acceleration comes from our observations which are based on
the presumption of the homogeneous and isotropic Universe. What we observe
are di�erent expansion rates at di�erent distances rather than an increase in the
expansion rate at all distances. But this can be caused by strong inhomogeneities
in the distribution of matter rather than by an accelerating Universe.

Void models

The basic idea behind void models is that we live in the middle of a huge spheri-
cal region which is expanding faster because it is emptier than the outside. That
means that the Universe as a whole does not accelerate but that we observe
an apparent cosmic acceleration. The edge of this void should be located around
z ∼ 0.3−0.5, the value at which in the standard interpretation we observe the be-
ginning of the acceleration. These models are described by the Lemaître-Tolman-
Bondi (LTB) spherically symmetric metric � the generalization of a FLRW metric
in which the expansion factor along the radial coordinate is di�erent relative to
the surface line element dΩ2 [96][6].

The inhomogeneous LTB model matches to the supernovae data and the lo-
cation of the �rst acoustic peak of CMB temperature power spectrum but cannot
satisfactorily reproduce the entire CMB angular power spectrum [37]. The ob-
served isotropy of the CMB radiation implies that we must live close to the center
of the void � nearer than 15 Mpc [5]. Moreover, there is no valid mechanism at
present to explain the formation of such huge inhomogeneities, let alone one with
our Galaxy near the center.

Backreaction

Unlike the void models, which regard the acceleration as an apparent one, backre-
action models try to explain the cosmic acceleration by arranging inhomogeneities
so that the deviation from the FLRW metric can produce a real acceleration
[107][97][80]. Because GR equations are non-linear, averaging the inhomogeneities
and then solving the GR equations (which is the usual approach) is not the same
as �rst solving the full (inhomogeneous) GR equations and then averaging them
� the expected value of a non-linear function is not the same as the nonlinear
function of the expected value.

Any large inhomogeneities must be conceal from our sight to �t observations.
Strong peculiar velocities instead of strong density �uctuations can do this job,
but there are strong constraints on peculiar velocities from e.g., the kinematic
Sunyaev�Zel'dovich e�ect. Moreover, the accompanying anisotropy is another
source of observable e�ects di�cult to accommodate with current observations.
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3.10 Summary

As we saw, there are many ways how to modify gravity and therefore many
di�erent theories of gravity. But how much are these theories di�erent? How can
we distinguish between them?

On the background level, all modi�ed theories must be able to recover the
standard ΛCDM model very accurately � to �t current data. As these data
allow only small deviations from the standard model, the usual approach is to
parametrized the dark energy with linear equation of state

w = w0 + (1− a)wa, (3.95)

i.e. on the background level all modi�ed theories must behave (almost) the same.
The main di�erences come with perturbations. All surveys focus on the perturbed
level. E�ects like BAO, CMB or the growth of structures, all of them come
from the deviations from the smooth FLRW background. Introduction to the
perturbation theory and ways to measure deviations from the standard model
are in � A.2 and � A.3.

In order to distinguish between modi�ed theories we must measure these ef-
fects. Di�erent sound speed, form of coupling to matter or time evolution will
lead to di�erent prediction of these e�ects. It is expected that joint LSST BAO
and WL can yield 0.5% level precision on comoving distances for 0.3 < z < 3.
The parameters of equation of state (3.95) should be measured with percent-level
precision. Euclid`s forecast for accuracies of w0 and wa are 2% and 10%.
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4. Numerical Solutions to

Chameleon Field

Within the DESC we cooperate mostly with the Argonne National Laboratory
(ANL) in United States. ANL is a member institution of the LSST Corpora-
tion and a number of ANL sta� members participates in the LSST DESC. The
ANL group is interested in (modi�ed) large-scale cosmological simulations. In
cosmological simulations for the LSST, ANL planes to include a large number of
models. Our contribution to the project is a research on the chameleon �eld (see
� 3.6). Even though the term chameleon �eld sounds rather exotic, in a general
scalar-�eld theory with a matter coupling and arbitrary self-interaction potential,
there will generically be some values of the �eld about which the �eld theory ex-
hibits a chameleon mechanism. Our task is to probe the chameleon mechanism
on galactic scales.

In this chapter we study a chameleon behavior in regions where the analytical
solutions do not exist. We start with a Hu-Sawicki f(R) model of gravity and
transform the original action into the Einstein frame to get a chameleon type of
action. At �rst, we compare our numerical solution in a special case � planar slab
in a vacuum � against the exact solution to get an idea about an accuracy of our
algorithm. Then we apply our algorithm on more realistic cases � spherical object
in a background (e.g. a star) and NFW halo. Next follows a section aboutN -body
simulations. We discuss algorithms used in cosmological simulations with focus
on FFT-based methods. Then we introduce problems concerning application of
these methods on chameleon gravity. This chapter is concluded by the discussion
of results and possible future tasks.

4.1 Hu-Sawicki f (R) Models

We wish to study a class of f(R) models that accelerates the expansion at the
late epoch without a cosmological constant and satis�es both cosmological and
Solar System tests. We are interested in the Hu-Sawicki f(R) models [66]. The
action of these models in the Jordan frame is

S =
M2

pl

2

∫
d4x
√
−g̃
[
R̃ + f(R̃)

]
+ Sm[ψm; g̃µν ], (4.1)

where tildes now denote quantities in the Jordan frame and the f(R̃) is of the
broken power law form

f(R̃) = −M2 c1(R̃/M2)m

c2(R̃/M2)m + 1
= − 2Λ

1 + (L2R̃)−m
, (4.2)

with m > 0. In the second step we just rede�ned constants (following [113]).
This form of f(R̃) also satis�es all four conditions for the viability of f(R) models
described in � 3.8.
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In the high curvature limit (as it is in high density regions such as the Solar
System) this can be approximated by

f(R̃) = − 2Λ

1 + (L2R̃)−m
≈ −2Λ +

2Λ

(L2R̃)m
. (4.3)

In this limit we can also see that cosmological tests at high redshifts remain the
same as in General Relativity.

We do not want to work with fourth-order �eld equations so we use the con-
formal transformation as described in � 3.2.1 to transform our action into the
Einstein frame. Inserting (3.10) into (3.11) yields

S =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
(∂φ)2 − V (φ)

]
+ Sm[ψm; eβφ/Mplgµν ], (4.4)

where β = 1/
√

6, the potential

V (φ) ≡
M2

pl

2

f,R̃R̃− f
(1 + f,R̃)2

=
M2

pl

2

2Λ− 2Λ(1+m)

(L2R̃)
m(

1− 2Λn

(L2R̃)
m
R̃

)2 , (4.5)

and the �eld

φ ≡ −Mpl

√
3

2
ln
(
1 + f,R̃

)
= −Mpl

2β
ln

1− 2Λm(
L2R̃

)m
R̃

. (4.6)

In the high-curvature limit these expressions simplify as

V (φ) ≈M2
plΛ−

M2
plΛ (1 +m)(
L2R̃

)m ,

φ ≈ Mpl

2β

2Λm

L2mR̃m+1
.

(4.7)

Inserting R̃ = R̃(φ) into the potential we get

V (φ) = M2
plΛ−

M2
plΛ (1 +m)

L2m

(
L2m

2Λm

) m
m+1

(
2βφ

Mpl

) m
m+1

. (4.8)

Now we reparametrize our constants: L → Φs and de�ne n ≡ m/(m + 1) (0 <
n < 1) to obtain

V (φ) = M2
plΛ−

βρ∞
nMpl

(2βMplΦs)
1−n φn, (4.9)

where ρ∞ is the background density and Φs is the so-called screening potential
(dimensionless). Derivative of the potential is

V,φ(φ) = − β

Mpl

ρ∞

(
2βMplΦs

φ

)1−n

(4.10)
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and the e�ective potential is then

Ve�,φ(φ) =
β

Mpl

ρ− β

Mpl

ρ∞

(
2βMplΦs

φ

)1−n

. (4.11)

The value of the �eld in the minimum of the e�ective potential is

φmin(ρ) = 2βMplΦs

(
ρ∞
ρ

)1/(1−n)

≡ φ∞

(
ρ∞
ρ

)1/(1−n)

, (4.12)

where in the second step we identify the background value of the �eld φ∞ ≡ 2βMplΦs.
The mass of the �eld in the minimum of the e�ective potential is

m2(φmin) ≡ Ve�,φφ(φmin) =
β

Mpl

(1− n)
ρ∞
φ∞

(
ρ

ρ∞

) 2−n
1−n

. (4.13)

In the above, the word �background� in the background density ρ∞ and the �eld
φ∞ do not refer to the background of the Universe but rather to the surrounding
of the �eld. For example, the chameleon �eld of a star in a galaxy would approach
to the value given by the minimum of the e�ective potential with the density of
the galaxy rather than the Universe. In this sense the screening potential Φs

should be viewed as an e�ective screening potential. For a typical galaxy with
density of �ve orders of magnitude greater than the Universe background density
and for n = 1/2 this would result into Φgal = Φs · 10−10.

It is expected that quantum corrections from matter loops do not change the
form of the matter coupling but can change the value of coupling strength β
[114]. Therefore β can posses an arbitrary value. In numerical computation we
are using the standard value β = 1/

√
6.

4.2 Numerical Solutions

We want to solve the equation (3.45) with the potential (4.10), i.e.

∆φ =
β

Mpl

ρ− β

Mpl

ρ∞

(
φ∞
φ

)1−n

. (4.14)

As it is a non-linear equation without an exact solution we need to solve it
numerically. The main problem with this equation is that it is ill-conditioned and
therefore any numerical computation must be treated carefully. This instability
can be seen easily from the linearized equation around the value in minimum of
the potential, φ = φmin + δφ

∆δφ = m2(φmin)δφ. (4.15)

For a slowly varying m we have two solutions

δφ ∝ e±mr

r
. (4.16)

Now, for either r → 0 or r →∞ we need to �x integration constants to prevent
the divergence of the solution. This is very hard to do numerically because every
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small inaccuracy will eventually grow ad in�nitum (exponentially). Therefore we
cannot solve the equation (4.14) purely numerically but we need to use analytical
solutions in highly unstable regions.

We will solve the equation (4.14) in special cases where the Poisson equation
reduces to an ordinary di�erential equation of second order � a planar slab in a
vacuum, a spherical object of a constant density in the background and the NFW
halo.

4.2.1 Runge-Kutta Method with Adaptive Stepsize

For the integration of ordinary di�erential equations we use the Runge-Kutta
method [95]. This method uses �trial� steps across the integration interval and
then uses all of them (with appropriate weights) to compute the �real� step across
the whole interval. The classical fourth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k2)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(h5)

(4.17)

For a practical usage we need to make frequent changes in the stepsize of the
algorithm. For example, inside and near the star we need many small steps to
obtain the proper behavior of the chameleon. But when we are outside the star
and the �eld behaves smoothly only few large steps are required to obtain the
desired accuracy. As we will sometimes integrate our equations at very large radii
(many orders of magnitude of a characteristic size of the system) this improvement
in e�ciency can be factors of hundred or more.

The most straightforward technique to implement the adaptive stepsize con-
trol is step doubling. We take each step twice, once as a full step, and then
independently as two half-steps. If y is the exact solution and y1 (one step 2h)
and y2 (two steps of size h) are two approximate solutions, these are related by

y(x+ 2h) = y1 + (2h)5φ+O(h6)

y(x+ 2h) = y2 + 2(h)5φ+O(h6),
(4.18)

where we assume φ to be constant over the step. The di�erence between the two
numerical estimates is a indicator of the truncation error

δ ≡ y2 − y1. (4.19)

Note that δ is actual a vector. This can be used to improve the numerical estimate
of the true solution but than we would loose the information about the error.
We want to adjust the stepsize h so the error δ is neither too large (inaccurate
solution) nor too small (slow algorithm). We de�ne a scale

scale = atol + |y|rtol, (4.20)
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where atol is the absolute tolerance and rtol is the relative error tolerance. We
de�ne the error of the solution

err =

√√√√ 1

N

N−1∑
i=0

(
δi

scalei

)2

. (4.21)

One can de�ne the norm of δ arbitrary � as long as it scales as err ∝ δ the
algorithm remains unchanged. If this error err ≤ 1 than we accept the step,
otherwise reject it and decrease the stepsize. If this error is too small, on the
contrary, we want to increase the stepsize to get a better e�ciency. From (4.18)
we see that the error scales as h5 Thus we adjust the new step as

hn+1 = Shn

(
1

err

) 1
5

, (4.22)

where S is a safety factor. Because the error scales only approximately as h5

(in the leading order) by putting the safety factor S . 1 this ensures the desired
accuracy. In our program we use S = 0.9. We also do not let the stepsize increase
or decrease too fast, and not to let the stepsize increase at all if the previous step
was rejected. In our algorithm the stepsize cannot increase by more than a factor
of ten nor decrease by more than a factor of �ve in a single step.

4.2.2 Shooting Method

We are dealing with an ordinary di�erential equation of second order with two
boundary conditions at two di�erent points. The problem is that in this case
we cannot just start with some �xed initial conditions at the begging of the
integration and integrate the equations. For solving this two-point boundary
value problem we will use the shooting method [95].

The shooting method is a bit like trial and error. At the initial point the
one initial condition is �xed by the boundary conditions. We then guess the
second initial condition, integrate our equations and try to match the boundary
conditions at the end of the integration. This problem can be viewed as a root-
�nding problem.

At the initial time t0 we have the condition y0(t0) = b0 and at the end of
the integration the condition y1(t1) = b1. The second initial condition (which we
guess) is denoted by s and y0(t0; s) = b0 is satis�ed. Then we de�ne the function
F (s) as

F (s) ≡ y1(t1; s)− b1. (4.23)

If F (s) has a root s0 then s0 is our required initial condition. As a root-�nding
algorithm we use the simplest method � the bisection method [95]. Methods
based on derivative (secant method, Newton`s method) are no use for our problem
because the shooting functions for non-linear equations are not well behaved and
have very large gradients.

The shooting parameter s does not have to be directly one of the initial con-
ditions. We can choose some combination of y(t0) and ẏ(t0) (so-called Robinson
boundary conditions) �xed by s or the initial time can be �xed by s. We simply
need to have speci�ed initial conditions for given s.
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4.3 Planar Slab in Vacuum

4.3.1 Con�guration

We want to check our algorithm against an exact solution �rst [112]. For that
purpose we use the potential

V (φ) = M4
Λ

(
1 + γ

∣∣∣∣ φMΛ

∣∣∣∣k
)
, (4.24)

with MΛ = 2.4 ·10−3 eV, γ > 0. For 1 ≤ k ≤ 2 the e�ective mass of the �eld does
not increase with an increase of ρ and therefore cannot produce the chameleon
behavior. Moreover, the range −1/2 . k < 1 is constrained by cosmology and
therefore we restrict ourself only on k . −1/2 and k > 2. The minimum of the
e�ective potential is at the value of the �eld

φmin(ρ) = MΛsgn(1− k)

(
βρ

|k|γM3
ΛMpl

) 1
1−k

. (4.25)

This potential has an exact solution in a vacuum outside an in�nitely thick planar
slab with density ρ(z) = ρ0θ(−z), where θ(z) is the Heaviside step function. The
equation of motion outside the slab, d2φ/dz2 = V,φ, is solved by

φ(z) = φ0

(
1 +

√
1

2
(k − 2)2γM4−kφk−2

0 z

)− 2
k−2

≡ φ0 (1 + z/zc)
− 2

k−2 , (4.26)

where φ0 is the �eld value on the surface of the slab (z = 0) . We de�ned the
characteristic scale zc for the solution (4.26) as

z−1
c ≡

√
1

2
(k − 2)2γM4−kφk−2

0 . (4.27)

Note that except prefactors of order k the scale z−1
c is the same as me�(ρ0) �

the chameleon Compton wavelength in the slab, and therefore it is truly the
characteristic scale. From boundary conditions dφ/dz → 0 as z → ±∞ and the
requirement of a continuity at z = 0 one can show that

φ0 =

(
1− 1

k

)
φmin(ρ0). (4.28)

Inside the slab an exact solution does not exist and the numerical one is unstable
as discussed earlier. Therefore we will test our algorithm only on the interval
(0,∞).

First we use the initial conditions from the exact solution to test the accuracy
of our integrator, i.e.

φ(0) = φ0

dφ
dz

= − 2

k − 2

φ0

zc
.

(4.29)
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Next we will test the shooting algorithm. For that purpose we use one boundary
condition φ(0) = φ0. The second condition used in the analytical solution �
dφ/dz (z →∞) = 0 is not su�cient for our numerical solution. Because dφ/dz
tends to zero very slowly we must choose a di�erent condition. We use the
behavior of the solution at large z, i.e.

φ ∝ z−
2

k−2 , (4.30)

which can be guess easily even without the knowledge of the exact solution.
Taking a derivative we obtain the Robin boundary condition

dφ
dz

+
2φ

(k − 2)z
= 0, (4.31)

which is valid for z � zc. Comparing with the boundary condition from the exact
solution at some zmax we see that the error of condition (4.31) scales as zc/zmax.

We de�ne an error

δφ ≡

√√√√ N∑
i=1

1

N

(
φA(zi)− φN(zi)

φA(zi)

)2

, (4.32)

where φA is the analytical solution and φN is the numerical solution.

4.3.2 Numerical Results

We tested our algorithm against the potential (4.24) with following parameters

MΛ = 2.4 · 10−3 eV
γ = 1

ρ0 = 10−11 eV4

z0 = 0

zmax = 100zc

atol = 10−10

rtol = 10−8

(4.33)

and various k. Let us �rst test the accuracy of our integrator. In Figure 4.1
are shown solutions for k > 2 and exact initial conditions. We see that except
the case k = 3 our numerical solutions match the analytical pretty accurately.
According to (4.32) we computed the errors as

δφ =∞ (k = 3)

δφ = 6.7% (k = 4)

δφ = 0.05% (k = 6)

δφ = 0.009% (k = 8).

We see that for larger k the error is decreasing while as k tends to two the problem
is becoming more and more unstable. If we write our numerical solution as the
analytical one plus a small deviation

φN = φA + δφ, (4.34)
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Figure 4.1: Numerical (dashed lines) and analytical (solid lines) solutions for the
potential (4.24) with various k > 2. We use γ = 1 and ρ0 = 10−11 eV4.

we can linearize the equation of motion and �nd

δφ ∝ (1 + z/zc)
α± , (4.35)

where

α± =
1

2

(
1± 3k − 2

k − 2

)
. (4.36)

The non-decaying mode α+ is getting worse as k → 2. In order to get the
correct solution we need to increase the accuracy of our integrator. In Figure 4.2
are shown numerical solutions for k = 3 and various rtol. This tells us how
the numerical integration of non-linear equations can be problematic � even the
slightest deviation can produce a disastrous behavior. Thus we should always use
an analytical solution whenever it is possible and avoid the numerical integration
over too large distances.

The computed errors come only from the large errors for higher z. We com-
puted the error also for z < 10zc:

δφ = 1 · 10−3 (k = 3)

δφ = 1 · 10−5 (k = 4)

δφ = 7 · 10−7 (k = 6)

δφ = 2 · 10−7 (k = 8).

For the most stable case (k = 8) we see that we almost achieved the desired
accuracy rtol = 10−8. On even shorter distances this accuracy is truly achieved.
Next we tested our shooting algorithm. We used the same potential with

parameters (4.33) but now with k < −1/2 (more stable). The Robin boundary
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Figure 4.2: Numerical (dashed lines) and analytical (solid line) solutions for the
potential (4.24) with k = 3 and various tolerances of relative error. We use γ = 1
and ρ0 = 10−11 eV4.

condition (4.31) is used. In Figure 4.3 are shown these solutions with errors

δφ = 2.1% (k = −1)

δφ = 1.2% (k = −2)

δφ = 0.5% (k = −4)

δφ = 0.4% (k = −8).

Note that for zmax = 100zc the error of the boundary condition is 1% and therefore
the shooting algorithm works satisfactorily.

4.4 Stars

Next we will consider a more realistic case � a compact spherical object of constant
density ρc surrounded by the background of density ρ∞ as discuss in � 3.6.3. This
can be an approximate model of a star, globular clusters or a spherical overdensity
on large scales. We remind here the used notation

Ve�,φ (φc)|ρ=ρc
≡ 0 m2

c ≡ Ve�,φφ (φc)

Ve�,φ (φ∞)|ρ=ρ∞
≡ 0 m2

∞ ≡ Ve�,φφ (φ∞) .

With the spherical symmetry the equation (4.14) becomes

d2φ

dr2
+

2

r

dφ
dr

=
β

Mpl

ρ(r)− β

Mpl

ρ∞

(
φ∞
φ

)1−n

. (4.37)

We will use the potential with n = 1/2 which corresponds to the simplest
Hu-Sawicki model m = 1. Note that this particularly choice a�ects the value
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Figure 4.3: Numerical (dashed lines) and analytical (solid lines) solutions for the
potential (4.24) with various k < −1/2. We use γ = 1 and ρ0 = 10−11 eV4.

of the �eld in the minimum of the potential and also the e�ective mass of the
�eld, but does not a�ect the qualitative description of the problem.

4.4.1 Expected Behavior

For a low-mass star we are in the thick-shell (linear) regime where the chameleon
behaves like the Newtonian potential

φ(r) = φ∞ + 2βMplΦNe
−m∞r = 2βMpl

(
Φs + ΦNe

−m∞r
)
. (4.38)

The exponential factor could be neglected as long as m∞r � 1. As the object
becomes more massive so grows (in magnitude) the potential ΦN . Because we
have φ > 0, once the potential is large enough that |ΦN | > Φs , the linear regime
breaks down.

Next we will denote Req the equivalence radius � radius at which the Newtoni-
an potential equals the screening potential |ΦN(Req)| = Φs. By letting the equiv-
alence radius posses also negative values such as (1 + |Req|/Rc)|ΦN(0)| = Φs we
can clearly distinguish between the linear (Req < 0) and the screening (Req > 0)
regime.

When Req > 0 the �eld will be initially frozen near φc and starts to roll away
at a radius Rroll < Req. If Req < Rc we expect that the �eld manages to catch up
the linearized solution still inside the object and there will be no screening outside
the object. But when Req & Rc the �eld reaches the surface of the object with
di�erent value than expected from the linearized solution. Outside the object the
�eld behaves like in the linearized case but now with a di�erent amplitude and
hence the screening occurs.
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4.4.2 Boundary Conditions

Because of the numerical instabilities we must treat boundary conditions carefully.
In the analytical solution the boundary conditions are dφ/dr(r = 0) = 0 (from
symmetry reasons) and φ(r) = φ∞ as r → ∞. The boundary condition at the
origin r = 0 works �ne in the linear regime (Req < 0) when the solution is
displaced enough from φc and we can use the shooting method to �nd φ(0). But
when we enter the non-linear regime and the solution is very close to φc the
numerical instabilities appear. In this case we must use an analytical method.

In this non-linear case we can �nd the linearized solution φ = φc + δφ near
the origin with

δφ = A
e+mcr

r
+B

e−mcr

r
. (4.39)

We want to have a non-divergent solution at the origin so we choose A = −B
which automatically satis�es the boundary condition dφ/dr(r = 0) = 0. Now
we reparametrized the constant A such as at some radius Rroll the solution is
δφ(r = Rroll) = εφc, i.e.

φ = φc

(
1 + ε

Rroll

r

e+mcr − e−mcr

e+mcRroll − e−mcRroll

)
. (4.40)

The parameter ε ensures that in the region 0 < r < Rroll we are close enough
to the minimum of the e�ective potential and our linearized solution is valid. In
numerical simulations we chose ε = 0.01. In the shooting method we now use the
parameter Rroll as the shooting parameter and we start the integration at Rroll

with initial conditions obtained from this linearized solution. This approach gets
us through the most unstable region near the origin.

As the mass of the object grows the �eld starts to roll closer and closer to
the surface Rroll → Rc, until it enters the no-shell solution Rroll = Rc. In this
limit the above method is unstable and gives wrong result. We must therefore
use once again the analytical solution. With no shell the �eld is nearly frozen in
the whole interior and starts to roll at the surface of the object with [108]

φ(Rc) = φc +
φ∞ − φc
mcRc

emcRc − e−mcRc

emcRc + e−mcRc
,

dφ
dr

(Rc) =
φ∞ − φc

rc

[
1− 2

mcRc (emcRc + e−mcRc)

]
.

(4.41)

The boundary condition at in�nity φ(r) = φ∞ is bad in both linear and non-linear
cases. As discussed earlier the existence of the non-decaying solution δφ ∝ em∞r/r
makes the integration at radii r & 1/m∞ numerically di�cult. We will use the
analytical solution (which contains only the decaying mode) to get the condition

dδφ
dr

+
1 +m∞r

r
δφ = 0, (4.42)

which is valid for δφ/φ∞ < ε. In our numerical simulations we chose ε = 0.01 and
we integrate our equations till this condition is satis�ed. Then we try to match
the boundary condition (4.42) via the shooting method.
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Figure 4.4: Chameleon �eld (blue dashed line) and Newtonian potential (red solid
line) for a spherical object of constant density in the background. Chameleon �eld
is in the linear regime Req = −Rc with the screening potential Φs = 10−12.

4.4.3 Numerical Results

In Figure 4.4 is shown a numerical solution to the chameleon �eld in the linear
regime � we set the screening potential Φs = 10−12 and adjust density so that
the equivalence radius Req = −Rc. We also plot the Newtonian potential for
comparison. We see that the chameleon �eld behaves like the Newtonian potential
as we expected. Around r ∼ 1/m∞ the chameleon behavior starts to deviates
from the Newtonian and enters the exponentially damped phase.

In Figure 4.5 are shown numerical solutions for the chameleon �eld with the
same mass of the object but with several screening potentials. The red solid line
is a linear solution that tracks the Newtonian potential. The next two solutions
are in a deep screening regime. We see (if approaching from the in�nity) that
these solutions behave like the Newtonian potential outside the star, but once
they reach the �barrier� Φs at the surface of the star the �eld will freeze.

Let us now examine the screening inside the object more closely. For obser-
vations is not important the actual value of the �eld but rather the derivative �
the chameleon force Fφ. In Figure 4.6 is plotted the force a�ecting a test particle
compared to the Newtonian one as a function of a distance for several values
of the screening potential and corresponding equivalence radii. We see that for
Req � Rc there is no screening outside the object, but as the Req grows (while
still Req < Rc) the force is screened outside the object (in contradiction with
our expectations). While inside a radius Rroll < Req the force is exponentially
damped.
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Figure 4.5: Chameleon �eld for several screening potentials with corresponding
equivalence radii. The top solution is in the linear regime and the two last
solutions correspond to the non-linear screened regime.
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Figure 4.6: Chameleon force for several screening potentials with corresponding
equivalence radii. For Req � Rc there is no screening outside the object. As the
Req grows, the screening occurs. While inside a radius Rroll < Req the force is
exponentially damped.
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4.5 NFW Halo

The Navarro-Frenk-White (NFW) pro�le proposed in [84] describes the distri-
bution of cold dark matter. The NFW pro�le of matter overdensity is given
by

δρNFW (r) =
ρc

r/rs (1 + r/rs)
2 , (4.43)

where ρc is the density scale and rs is the scale radius. We will also be using
the dimensionless radius x ≡ r/rs. We use ρc = 3 · 10−5 eV4 and rs = 10 kpc
= 1.57 · 1027eV−1, if not stated otherwise. Total mass of the halo is divergent
(logarithmically) so we take a cut-o� at the radius r200, which is de�ned as a
radius at which the density is 200 times the critical density. Then the mass of
the halo is

M200 =

∫ r200

0

4πr2ρ(r)dr = 4πρcr
3
s

(
ln(1 + c)− c

c+ 1

)
, (4.44)

where c ≡ r200/rs is the concentration of the halo. For a given mass the halo is
fully characterized by the concentration.

The Newtonian potential and force corresponding to the density (4.43) is

ΦN(r) = −4πGρcr
2
s

ln (1 + x)

x
, (4.45)

FN(r) = −4πGρcrs
ln (1 + x)− x

1+x

x2
. (4.46)

We want to compute the chameleon pro�le for a NFW halo. Unlike stars the
density of the halo is not constant and therefore neither does the e�ective mass
of the �eld

Ve�,φ (φB) ≡ 0 m2(ρ) ≡ Ve�,φφ (φB) . (4.47)

However, for realistic halos the matter density varies on scales much larger than
the Compton wavelength m−1 of the chameleon �eld in that region. In such a
case that d ln ρ/dr � m one can make an adiabatic approximation and treats
ρ(r) as a constant in the equations of motion. In Figure 4.7 is shown the e�ective
mass of the chameleon �eld versus the distant x. Here we see that for the most
relevant regions of the halo (r < r200) we have d ln ρ/dr � m and therefore we
can neglect the space dependence of the chameleon mass m.

4.5.1 Expected Behavior

We know we can treat ρ(r) as a constant and thus we are expecting the behavior
of the chameleon �eld in the case of the NFW halo to be rather similar to the
interior of stars, except there are now no boundaries of the object. In the linear
regime Req < 0 the chameleon should track the Newtonian potential and starts
to deviate at r ∼ 1/m∞ when it enters the exponentially damped phase. As the
mass of the halo will grow and/or the screening potential will decrease, Req will
become positive and the �eld will be screened at r . Req. As there is now no
boundary as the surface of the star it will reach the linear solution at some radius
r & Req. However, for really massive halos and/or small screening potential the
Req will be very large. In such a case the �eld might not catch the linear solution
till r ∼ 1/m∞ where it enters the damped phase.
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4.5.2 Boundary Condition

Because the NFW halo has a cuspy distribution, i.e. ρ(x → 0) → ∞, we do not
have the symmetry condition dφ/dr(r = 0) = 0. In the linear regime we will use
the known behavior of the Newtonian potential, i.e.

dδφ
dr

(0) +
δφ(0)

2rs

c+ 1

c
= 0. (4.48)

In the non-linear case (Req > 0) we will look for the radius Rroll where the
�eld starts to roll from the minimum of the e�ective potential as in the case of
stars. For r < Rroll we use the solution in the minimum of the e�ective potential
φ = φB + δφ. This solution φB is not a constant as in the case of the star but as
long as holds the inequation

Mpl

β

∆φB
ρ
� 1, (4.49)

the solution is valid. At r < Rroll we use linearized solution as in the case of stars

φ = φB(r)

(
1 + ε

Rroll

r

e+mr − e−mr

e+mRroll − e−mRroll

)
, (4.50)

where now m = m(r).
For r → ∞ we will use the same condition as in the case of stars, i.e. we

require
dδφ
dr

+
1 +m∞r

r
δφ = 0, (4.51)

at some rmax(∼ 1/m∞), where the condition δφ/φ∞ < ε holds.
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Figure 4.8: Chameleon �eld (blue dashed line) and Newtonian potential (red solid
line) for a NFW density pro�le. Chameleon �eld is in the linear regime Req = −rs
with the screening potential Φs = 10−12.

4.5.3 Numerical Results

In Figure 4.8 is shown a numerical solution to the chameleon �eld in the linear
regime � we set the screening potential Φs = 10−12 and adjust density ρc so
that the equivalence radius Req = −rs. We also plot the Newtonian potential
for comparison. We see that the chameleon �eld behaves like the Newtonian
potential as we expected. At large radii the chameleon behavior starts to deviate
from Newtonian and around r ∼ 1/m∞ enters the exponentially damped phase.

In Figure 4.9 are shown chameleon forces for the same mass of the halo
(ρc = 3 · 10−5 eV4) but with several di�erent screening potentials with corre-
sponding equivalence radii. The force is damped at radii r < Rroll < Req while at
radii r � Req the �eld manages to catch up the linearized solution and the force
is unscreened as we expected.

Let us now explore the rotation curves in the presence of the chameleon �eld.
The circular velocity which includes the acceleration due to the Newtonian force
and the �fth force from the chameleon is given by

vc(r) =

√
1

8πM2
pl

M(r)

r
+

βr

Mpl

dφ
dr
. (4.52)

In Figure 4.10 are shown rotation curves with and without the chameleon force.
We see that for Req of order rs the rotational curve looks like in the normal case
but the larger amplitude. This means that we cannot distinguish this case from
the more dense distribution of dark matter. For the detection of the chameleon
�eld is important the behavior around the transition Rroll which therefore should
not occur around the peak of the curve (or sooner).
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We now �inverse� the relation (4.52) and ask a question: What mass distri-
bution would we observe based on lensing measurements and on dynamical mea-
surements? Relativistic particles are una�ected by the chameleon force whereas
non-relativistic particles such as stars and galaxy`s satellites obey the chameleon
force and therefore these two types of measurements combined can detect the
chameleon. The e�ective mass within radius r for dynamical measurements is

Me�(r) = M(r) + 8πβMplr
2dφ
dr
. (4.53)

For lensing measurements we have Me� = M . In Figure 4.11 is shown Me� versus
the distance r for lensing measurements and dynamical measurements for several
screening potentials Φs for galaxy with the scale radius rs = 10 kpc and the
concentration c = 16.4. In Figure 4.12 is plotted a similar dependence, but now
with several concentrations c of the halos of the same massM200 = 3 ·1012M� and
the same screening potential Φs = 10−6. And �nally in Figure 4.13 is plotted the
same dependence for several massesM200 of the halos with the same concentration
c = 15 and the same screening potential Φs = 10−6.

From this mass distributions we see that with (enough accurate) both dynam-
ical and weak lensing measurements the chameleon �eld can be detected quite
easily. The main problem here is that the more massive halo, and/or the smaller
the screening potential, the greater the distance where we would have to make
our measurements.

76



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300

M
e
�
/M
�
·1

0−
1
2

r [kpc]

c = 5, rs = 37 kpc
c = 15, rs = 11 kpc
c = 40, rs = 4 kpc

Figure 4.12: E�ective mass distribution for lensing measurements (solid lines)
and dynamical measurements (dashed lines) for several concentrations c, mass
M200 = 3 · 1012M� and the screening potential Φs = 10−6.

0

2

4

6

8

10

12

0 50 100 150 200 250 300

M
e
�
/M
�
·1

0−
1
2

r [kpc]

M = 1 · 1012M�, rs = 7 kpc
M = 3 · 1012M�, rs = 11 kpc
M = 5 · 1012M�, rs = 13 kpc
M = 1 · 1013M�, rs = 16 kpc

Figure 4.13: E�ective mass distribution for lensing measurements (solid lines) and
dynamical measurements (dashed lines) for several masses M200, concentration
c = 15 and the screening potential Φs = 10−6.

77



4.6 N-Body Simulations

We have solved rather speci�c problems � we assumed spherical symmetry and re-
quired only slow changes in the matter distribution. These are great for acquiring
intuition about how the chameleon �eld works and for forecasts in approximate
models. But for practical usage we need to be able to solve chameleon equations
in a more generic case with no spherical symmetry. For this purpose we will use
the N-body simulations. Let us start with �normal� N -body simulations.

4.6.1 Introduction

Many physical phenomena involve, or can be simulated with particle systems,
where each particle interacts with all other particles. This involves the gravi-
tational interaction among the stars, galaxies or clusters of galaxies which is of
our main interest here. The purpose of cosmological simulations is to model the
growth of structures in the universe.

Systems where the dominant force is long-range (such as gravity) are not
well treatable by statistical mechanical methods � energy is not extensive, the
canonical and micro-canonical ensembles do not exist, and the heat capacity
is negative [22]. Thus we cannot work with a distribution function but rather
directly with the particles. The cosmological N -body simulations use a comoving
box of length L where dynamics of particles is collisionless, i.e. we treat only long-
range gravitational interaction. The homogeneity and isotropy of the Universe
on large scales is �solved� by using triply periodic boundary conditions.

The algorithm for N -body simulation with N particles of mass mi with posi-
tions x i(t) where i = 1, ..., N can be characterized as

1. Set initial conditions (positions and velocities)

2. Compute forces for each particle

3. Integrate equations of motion for each particle

4. Update time and go to 2.

Initial conditions

The Universe was never completely smooth and this is encoded in small perturba-
tions in otherwise homogeneous and isotropic matter density. Periodic boundary
conditions imply discrete sampling in the Fourier space. Fluctuations in the
particle distribution are represented by a population of modes with independent
random phases in Fourier space. On scales which are small compared with the
box size, the Central Limit Theorem guarantees an approximately Gaussian den-
sity distribution. A Gaussian distribution may be approximated on large scales
by averaging over an ensemble of distributions in which mode amplitudes are
drawn from a Gaussian variate.

Equations of motion

In cosmological simulations we should use GR equations of motion. On large
scales, the Universe is nearly isotropic and described by the FLRW metric. How-
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ever, on small scales GR reduces to the Newtonian physics. This fact can be used
to think of the Universe as being �lled with a self-gravitating �uid that locally
obeys Newton's law of gravitation, while expanding as an FLRW metric on large
scales. Hamiltonian of a test particle is [91]

H =
p2
i

2mia2
+
mi

a
Φ(x i), (4.54)

where x i = r i/a(t) and p i = a2miẋ i are comoving canonical coordinates. The
particles then move according to Hamilton`s equations.

dx i
dt

= v i

dv i
dt

= −2
ȧ

a
v i −

∇iΦ

a3
= −2

ȧ

a
v i +

f i
a3
,

(4.55)

where v = ẋ and f i = −∇iΦ is a force a�ecting a particle with a mass of unity
(F i/mi). To integrate these equations numerically it is convenient to transform
to a new time variable p = aα. Equations of motion then becomes

dx i
dp

= u i,

du i
dp

= −2A(p)u i +B(p)f i,

(4.56)

where

A(p) =
1 + α + äa/ȧ2

2αaα
,

B(p) =
1

α2ȧ2a2α+1
.

(4.57)

These equations need to be discretized and then solved. There are many ways to
do it, one example is the leapfrog scheme [45]

xn+1 = xn + un−1/2∆p,

un+1/2 = un−1/2
1− An∆p

1 + An∆p
+

Bn

1 + An∆p
f n∆p,

(4.58)

where we omitted the particle indices i and replace them with the timestep indices
n. The optimum choice of the parameter α will depend upon the problem under
investigation.

This scheme is fast one and second-order accurate. One can also use slower
but more accurate methods such as Runge-Kutta. The leapfrog integrator is an
example of a symplectic integrator which preserves certain conserved quantities
exactly, such as the total angular momentum, the phase-space volume, and the
Jacobi constants.

4.6.2 Force computing

Integration of the equations of motion is rather straightforward and except the
choice of an integration scheme there are no problems. The main problem comes

79



with the computation of the forces which must be both accurate and very fast
(we are dealing with very large number of particles).

The force a�ecting a particles is

f (x ) =
∑
i

Gmi
x − x i

|x − x i|3
, (4.59)

where the sum is preformed over all particles, i.e. even the periodic ones. In
practice, the periodic sum is approximated using the Ewald`s method [50], which
was originally invented for solid-state physics and imported to this �eld by Hern-
quist et al.[60]. The idea of the Ewald`s method is to break the sum into two
pieces � one that converges quickly in the real space (within the box) and one
that converges quickly in the Fourier k-space (long range outside the box).

For a review of numerical techniques in force evaluations see e.g. [42] or [109].

Particle-Particle methods

The Particle-Particle (PP) methods are based on evaluating the sum in (4.59)
directly. For few particles the direct summation provides very accurate result �
the only inaccuracy arises from the Ewald`s summation. But for large number of
particles this brute-force approach is not feasible as it requires O(N)2 time. If
one wants to compute the sum more e�ciently some approximation is needed.

The tree code was pioneered by Barnes and Hut [17]. It uses a hierarchical
spatial tree to de�ne localized groups of particles. The usual oct-tree method
starts with the box containing all particles as a root. Then the box is split into
up to eight child cells of half their parent's size. This is done recursively to the
bottom as long as the current box contains at least nmax particles. Then for each
box its mass and center of the mass is computed. When calculating the force
a�ecting a particle in a box A one considers the ratio

ϑ =
D

r
, (4.60)

where D is the size of another box B and r is the distance to the center of mass
of B. If ϑ is su�ciently small (usually ϑ ≤ 1) we can use the center of mass and
mass of B to compute the force in A. If ϑ > 1, we need to go to the children of
B and do the same test.

It is rather straightforward to show that the time to compute the force per
particle scales like the depth of the tree, i.e. lnN . The computation of all N
forces is then O(N lnN).

The fast multipole method (FMM) [38] can be viewed as a tree code but
now instead of force we compute the potential �rst. In addition to expanding the
Greens function at the source positions xA, it also expands it at the sink positions
xB. Multipole expansions of the potential of a box are more accurate than a
simple center of mass substitution, but for more computational cost. However,
for a given accuracy the FFM is faster than tree code.

Grid-based methods

Instead of solving the integral version of (4.59), as with direct summation and its
approximations, the grid-based methods, or Particle-Mesh methods (PM) solve
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its di�erential form
∆Φ(x) = 4πGρ(x), (4.61)

after discretization on a grid. The box is split into n regular mesh cells of length
M . In the next we will denote by x p the continuous position of a particle and
by x i the discrete position of a gridpoint. For easier implementation of the Fast
Fourier Transform (FFT) or adaptive mesh size one uses number of cells in one
dimension as powers of 2. The next step is to assign mass of particles to the grid:

ρ(x i) =
1

M3

N∑
p=1

mpW (x i − x p). (4.62)

The assignment functionW can be expressed as a product of three one-dimensional
functions w of a displacement of a particle from the cell center δx i = |x i − x p|/M .
Three most often used schemes are:

• Nearest gridpoint (NGP) � the whole mass of a particle is assigned to the
gridpoint closest to the particle. The assigned mass density is discontinuous
as a particles moves across a cell boundary.

w = 1, δx ≤ 1

2
.

• Cloud in Cell (CIC) � the mass is distributed among eight cells. The as-
signed mass density is continuous but the �rst derivative is discontinuous.

w = 1− δx, δx ≤ 1.

• Triangular-shaped Clouds (TCS) � the mass is distributed among 27 cells.
Both mass density and �rst derivative are continuous, but higher derivatives
are discontinuous.

w =

{
3
4
− δx2, δx ≤ 1

2
,

1
2
(3

2
− δx)2, 1

2
≤ δx ≤ 3

2
.

The assignment function is w = 0 outside the given ranges.
It is straightforward to derive higher order schemes but the gain in accuracy

is small in comparison with the rapid increase in the number of operations.
Next one needs to solve the potential on a grid. This can be done by either

Fast-Fourier-transform-based methods or instead of FFT one can also use
multi-grid techniques. Regardless of the used method one obtains the forces
on a grid and needs to interpolate them back on particles

F (x p) =
n∑
i=1

W (x i − x p)F (x i). (4.63)

To avoid any self-forces on the particles and thus to conserve momentum, it is
necessary to use the same weighting function W in equations (4.62) and (4.63)
[45].

Multi-grid techniques were developed by Brandt [23]. They solve the dis-
cretized Poisson equation (large matrix equations) using relaxation methods, such
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as Gauss-Seidel iteration. It uses several grids � some courser with faster relax-
ation and some �ner with slower but more accurate relaxation. The distribution
of errors (the di�erence between current approximate solution ∆Φ and the true
one 4πGρ) is �rst smoothed on the �nest grid (by Gauss-Seidel iterations). The
problem is then transferred to a coarser grid and coarser grids until the conver-
gence is achieved. Then the problem is transferred back to �ner and �ner grids,
each time iterating until convergence.

For cosmological simulations are often used methods based on FFT as natu-
rally incorporates periodic boundary condition. As we are also using a FFT-based
method we described the algorithm in more detail.

4.6.3 Mesh Force Calculation

When calculating the mesh forces we �rst assign the masses of the particles onto
the gridpoints to get discretized density distribution as described above. The
density distribution is then convolved with the Green`s function G appropriate
for the required pairwise particle interaction. The obtained potential on a grid
is di�erenced using the operator D to obtain forces at mesh points. And �nally
the forces are interpolated back to the particles.

The algorithm looks pretty straightforward. Transform the discretized density
ρ using FFT, multiply it by a Green`s function to get the potential Φ̂ = ρ̂ · Ĝ
(hats denote quantities in k-space), performed inverse FFT to get the real-space
potential Φ and �nally obtain forces by the �nite di�erence F = −D · Φ.

As the di�erencing operator one can use a classical two- or four-point �nite
di�erence approximation. In our algorithm we use a four-point operator

D̂j = i
4

3
sin ki − i

1

6
sin 2ki. (4.64)

The �rst option of a Green`s function, one could think of, is the Green`s function
of the continuous Poisson equation

Ĝ(k) = − 1

k2
. (4.65)

But this choice does not re�ect use of the �nite di�erence approximation D and
the smoothing we performed when we assign masses of particles to the grid by
W . One can compute the optimal Green`s function which minimizes the total
square deviation between the actual required force R and the approximate mesh
force F [64]

Ĝ(k) =

D̂(k) ·
∑
n

Ŵ 2(kn)R̂(kn)

|D̂(k)|2
[∑
n

Ŵ 2(kn)

]2 , (4.66)

where summation over n should be preformed over all mesh cells, even the periodic
ones. However, the sum

∑
n Ŵ

2 can be computed analytically using trigonometric
identities and the sum

∑
n Ŵ

2R̂ decays very quickly. Usually one can the neglect
terms where the components of n have magnitudes greater than one or two.

The reference force R should be su�ciently smooth that it can be adequately
represented by the discrete mesh. Smoothing is equivalent to prescribing a �nite
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size to the particles. The often used shape denoted by S2 is [64]

ρ(r) =

{
48
πa4

(
a
2
− r
)

r < a/2

0 r > a/2
(4.67)

with mass of unity and a the smoothing length. Since the highest frequency that
can be represented by a discrete mesh (the Nyquist frequency) corresponds to
a wavelength of two mesh spacings only forces corresponding to S2 clouds with
a ≥ 2M can be adequately reproduced. The force corresponding to particles of
the S2 shape is simply

R̂(k) = −ik Ŝ
2

k2
. (4.68)

4.6.4 Particle-Particle Particle-Mesh Algorithm

The above PM algorithm produces the mesh force with minimum errors for a
given softening. However, on scales r . a this long-range force quickly decays
and does not match the true required force F . Particle-Particle Particle-Mesh
algorithm (P3M) improves this force by including a short-range force by a direct
particle-particle sum. The great advantage over direct PP methods is that now
this sum is performed only over small range rc . a. The short-range force FPP
is the di�erence between the required force and the approximate mesh force

FPP = F (r)−Ra(r). (4.69)

The empirically found cut-o� radius rc = 0.7a is a compromise between the ac-
curacy and the e�ciency of the algorithm. In order to have a fast P3M algorithm
one must e�ciently compute the short-range force for all particles r < rc. This
is achieved by creating an extra mesh � the chaining mesh of side C ≥ rc. Par-
ticles are then numbered and assigned to the chain mesh. When computing the
short-range force one goes through the chain mesh of the particle and all 26 neigh-
boring cells and adds the short-range force for particles with separation less than
the cut-o� radius.

One usually does not want the true required force F (r) to be of the 1/r2

form as suggest by the (4.61) for a point source. This would lead to a collisional
system of N particles with divergent forces and large-angle de�ections during
close encounters. This can be avoided by prescribing a shape to the particles as
before. One can for simplicity take F (r) = Rã(r) with the arbitrary softening
length ã < a which cannot be appropriately represent on the mesh, i.e. ã < 2M .

4.6.5 Solution to the Chameleon Field

We now want to use the above FFT algorithm to solve the chameleon equation
of motion

∆φ =
β

Mpl

ρ+ V,φ(φ) =
β

Mpl

ρ− β

Mpl

ρ∞

(
φ∞
φ

)1−n

(4.70)

with

φmin(ρ) = φ∞

(
ρ∞
ρ

)1/(1−n)

. (4.71)
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The problem is obvious � this non-linear equation does not have a Green`s function
to convolve with the density �eld and thus we must solve it iteratively. The
simplest way is to solve it as a classical Poisson equation with modi�ed right
hand, i.e.

∆φ(i+1) =
β

Mpl

ρ− β

Mpl

ρ∞

(
φ∞
φ(i)

)1−n

. (4.72)

What is the appropriate initial value of the �eld φ(0)? One can start to approx-
imate the solution around the background value and choose φ(0) = φ∞. This
results into the normal Poisson equation for the Newtonian potential and after
the �rst iteration one obtain the linear solution φ(1) = φ∞+2βMplΦN . If we have
only small objects with low mass such as φ(1) > 0 everywhere this method works
and we obtain the correct linear solution.

However, we are mostly interested in the non-linear regime where the condition
φ∞ + 2βMplΦN > 0 does not hold everywhere (and so does φ(1) < 0 somewhere).
In such regions we must somehow modify these negative values to get a meaningful
solution. We can set φ = φmin to have a positive solution. Such regions then have
Ve�,φ = 0. The following iteration steps either result into the wrong solution (with
large regions of φmin) or does not converge at all.

Other iteration scheme one can try to use is just the inverse of the �rst, i.e.

∆φ(i) =
β

Mpl

ρ− β

Mpl

ρ∞

(
φ∞
φ(i+1)

)1−n

φ(i+1) = φ∞
1(

ρ
ρ∞
− Mpl

β

∆φ(i)
ρ∞

)1/(1−n)
.

(4.73)

Note that this scheme is not suited for every case as it does not converge every-
where. This can be easily seen in the linear case where we want our �nal solution
to be φ∞ + 2βMplΦN . Plugging this linear solution into the iterative scheme we
see that the next iteration will be φ = φmin. But in principle this scheme can be
used in the screened regions to get the right solution and outside the screened
regions try some other iteration schemes.

We did try this scheme in an approximate model of stars, i.e. dense spherical
objects in a background. Inside the star this works well as the term ∆φ is small
compared to the density of the object, but it fails near the surface, where the
density changes rapidly. Outside the object the solution does not converge as
discussed above.

The next iteration scheme we tried is obtained by linearization of the equations
around the background value, φ(i) = φ∞ + δφ(i). By the Taylor expansion of V,φ
around φ∞ and the appropriate recon�guration of the terms one can obtain the
iteration scheme

∆φ(i) =
β

Mpl

δρ+m2(φ(i−1))δφ(i), (4.74)

where

m2
(i) ≡

V,φ(φ∞ + δφ(i))− V,φ(φ∞)

δφ(i)

. (4.75)

If it was the case m2 = const we would have the exact Green`s function Ĝ(k) =
−1/(k2 + m2). This is true for the �rst iteration where we choose δφ(0) = 0
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everywhere. In this case m2 = V,φφ(φ∞) so we have an exact linearized solution
with the correct damping term. But in this case the scheme posses the same (bad)
behavior as the �rst scheme (4.72) � in the non-linear case when φ∞+2βMplΦN <
0 somewhere the scheme breaks down. But even in the linearized case we have
m = m(r) after the �rst iteration and we cannot solve (4.74) with the FFT.

4.7 Discussion and Outlook

We have studied the numerical behavior of the chameleon �eld and successfully
applied the shooting method to get results under various conditions. Let us start
with a discussion of the accuracy and reliability of our algorithm based on our
results from the planar slab in a vacuum.

We saw that even with the exact initial conditions the integration of non-
linear di�erential equations is di�cult and unstable. To make the integration
possible we needed to achieve really high accuracy (� 10−10). For this purpose
the fourth-order Runge-Kutta algorithm proved to be su�cient. However, as we
are dealing with smooth functions using the Bulirsch-Stoer method [95] could
provide better results.

The shooting algorithm we have used had great success when matching the
boundary conditions. We managed to obtain the proper initial conditions with
the required accuracy � the computed errors came from the integration errors
on large distances. We also wrote the algorithm generally enough that it can be
successfully applied to arbitrary boundary conditions. However, there are issues
associated with the instability of the integration at large distances. If we do not
choose the initial guess close enough to the true solution, the integration will
always fail and we cannot even �nd the two values of the shooting function which
are on two di�erent sides of the root. To overcome this obstacle we came with
a solution using sequential integration. We integrated over much smaller ranges
than we truly wanted to achieve, where the solution was still stable. Then we
used these obtained initial conditions as a new guess when integrating over full
range. This idea is implemented in the code only partially and was done mainly
manually. This is of course ine�ective and it is the next thing we will implement
properly into our algorithm.

In the model of stars we focused especially on cases with no analytical solution
� cases where neither of commonly used conditions Rroll = 0 nor (Rc−Rroll)/Rc �
1 is satis�ed. This was done in order to get an idea of the chameleon behavior
which could be generalize to the model of the NFW halo where the condition
(Rc−Rroll)/Rc � 1 has no purpose as there are no boundaries. However, it would
be worth probing the behavior of the chameleon in these limits more closely and
compare the numerical results with analytical. One then could get a better idea
where these analytical solutions break down and whether e.g. the suppression
factor (3.65) is correct even for cases Req ∼ Rc.

For the NFW halo we successfully computed the chameleon pro�le for various
parameters of the halo and the chameleon screening potential. From the rota-
tional curves and the e�ective mass distribution we see that if we want to detect
the chameleon �eld solely with dynamical measurements we need to have a large
sample of galaxies with extended and accurate rotational curves. If the screening
potential is large and/or the halo is not massive enough we cannot distinguish
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between the chameleon and more dense dark matter distribution. On the other
hand if the halo is very massive the screening occurs everywhere where we can
measure the rotational curves. For the detection of the chameleon e�ect we need
to have very accurate measurements around the transition at r ∼ Rroll. If we
do have also non-dynamical measurements from the weak lensing the chameleon
e�ect can be detected, in principal rather easily. The main issue here is the lack
of precise spectroscopic measurements (for the velocity information) and at the
same time weak lensing measurements.

We are planning to compute the chameleon pro�le for other models of halos
other than NFW, parametrized models described by

δρ(r) =
ρc

(r/rs)
α [1 + r/rs]

β
, (4.76)

or
δρ(r) =

ρc

(r/rs)
α
[
1 + (r/rs)

β
] . (4.77)

Our main goal for the future is the N -body simulation for the chameleon �eld. We
have already started to work on this project, however, this turns out to be rather
di�cult. We started with the approach based on the FFT with proposed iterative
schemes but this seems to be a wrong way to continue. Next we want to try the
multi-grid based method with the Full Approximation Scheme (FAS) [23] which
is used for solving non-linear problems. Once we have a working method we will
run large cosmological simulations. This tasks will be performed in cooperation
with ANL.

Within the DESC, the core of our cooperation with the ANL group is large-
scale cosmological simulations for LSST science. In cosmological simulations for
the LSST, we wish to include a large number of models, one of which is the Hu-
Sawicki f(R) model, which we have studied. After we run these large simulations
we can analyze their outcome. This will eventually lead to constraining physics
beyond the cosmological standard model once data from the LSST become avail-
able.
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5. Conclusion

As we do not properly understand 95% of the content of the Universe it would
be hasty to draw conclusions about the origin of the cosmic acceleration. In
order to understand the physics behind the dark energy we must also study other
alternative theories. For this theories we must �nd their di�erences compared to
the cosmological constant and ways to test them. Even if all of them prove to
be wrong it is a way how to make the standard cosmological model more precise
and trustworthy.

In the work we described some basic problems concerning the cosmological
constants and why it is worth probing the alternative theories. We described the
most studied theories � ones that modify gravity itself such as f(R) or ones that
introduce a new scalar �eld such as the quintessence. We also showed the relation
between these two types of theories via the conformal transformation.

After the theoretical work will have been done on these alternatives we must
have su�ciently accurate data to test them. One of the project designed to study
dark energy is the LSST Project. The LSST will be one of the largest telescope
in the world. The system will produce a wide-�eld deep astronomical survey over
almost the whole southern sky. The LSST will provide an unprecedented depth
from co-added images and unique details of the Universe. The great amount of
data produced every night by the LSST will help to characterize the properties
of the dark energy. Amongst many other projects and missions the greatest syn-
ergy will be between the LSST, Euclid and WFIRST. The scienti�c opportunity
o�ered by the combination of data from LSST, WFIRST and Euclid goes well
beyond the science enabled by any one of the data sets alone. The range in wave-
length, angular resolution and redshift coverage that these missions jointly span
is remarkable.

The chameleon gravity is one of the alternative theories explaining the accel-
erated expansion of the Universe. This theory is interesting for the DESC (and
for the LSST) as it has rather general behavior. Even though the term chameleon
�eld sounds rather exotic, in a general scalar-�eld theory (including f(R) theo-
ries) with a matter coupling and arbitrary self-interaction potential, there will
generically be some values of the �eld about which the �eld theory exhibits a
chameleon mechanism.

In this work we studied chameleon �eld in the context of Hu-Sawicki f(R)
models. We introduced some basic properties of the chameleon �eld and de-
rived an expected behavior in and near stars and also its behavior in galaxies
described by the NFW halo. We managed to develop an algorithm based on
the shooting method to numerically compute the chameleon �eld for spherically
symmetric objects. We then successfully applied our algorithm to speci�c prob-
lems. We computed the modi�ed dynamic in galaxies for non-relativistic particles
and its e�ect on measurements. We speci�cally showed how the presence of the
chameleon �eld can change the rotational curves and how this can be measured
by combining probes of the weak lensing and dynamical measurements obtain
e.g. from spectroscopic measurements. These studied cases tested the usefulness
of our algorithm.

During the work we came up with other projects where we can apply our
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algorithm and these we will pursue. The next goal after spherically symmetric
objects is the N -body simulation of the chameleon �eld and modi�ed evolution of
the large scale structures. So far we have started to work on the algorithm based
on FFT and found out how di�cult this problem is. We want to try di�erent
approach than FFT, the multi-grid based method with the Full Approximation
Scheme which is more optimized for non-linear problems.

To sum up, we ful�lled the �rst objective in the study of the chameleon �eld.
We successfully probed the behavior of the chameleon on galactic scales and came
up with forecasts for future observations. Our next task is to probe the chameleon
behavior on cosmological scales with N -body simulations.
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A. Standard Cosmological Model

In this section we just brie�y review the modern cosmology. This serves as a
summary of important equations not all of which are derived in full detail. For
further reading see e.g. [34] (short review) or [46] (full derivation).

A.1 Introduction

A.1.1 Assumptions

The standard cosmological model is based on several assumptions. The most
important one is the omnipresent validity of the Einstein`s equations

Rµν −
1

2
Rgµν =

1

M2
pl

Tµν , (A.1)

where Rµν is the Ricci tensor, R the Ricci scalar, Mpl the reduced Planck mass
and Tµν the stress-energy tensor. The stress-energy tensor of a perfect �uid has
a form

Tµν = (ρ+ p)uµuν + pgµν , (A.2)

where ρ is the energy density and p the pressure. The next assumption is the
Copernican principle (also known as the cosmological principle) which states
that we do not live in special place nor time. Observations of isotropy of our
Universe on large scales then imply that the whole Universe is spatially homo-
geneous and isotropic. This homogeneous and isotropic spacetime symmetry is
encoded in the FLRW metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (A.3)

where k = 0,+1,−1 for a �at, closed, or open space respectively. We normalized
a in a way that a = 1 in the present. The coordinate t measures the time on
hypersurfaces of constant density, while the space-coordinate r measures in the
�at Universe the comoving distance, i.e. the distance that is constant with respect
to the expansion of the universe. The di�erential solid angle is dΩ = sin θdθdφ
with the spherical coordinates θ and φ.

To obtain such homogeneous and isotropic Universe the cosmic in�ation is
needed. During the in�ationary era (t ∼ 10−36 − 10−32 s) the Universe increased
its size by a factor of 1043 and dilutes any initial curvature. Hence next we will
consider only �at (k = 0) spaces.

To obtain observed structures in the Universe only a baryonic component of
the matter is not enough. Hence we need an additional unknown exotic compo-
nent of matter � cold dark matter. The cold refers to non-relativistic particles
with the equation of state w = 0.

To explain the present acceleration of the Universe we need some sort of an
exotic �uid with the equation of state w ≡ p/ρ < −1/3. The simplest solution is
the cosmological constant Λ. The Einstein`s equations are then modi�ed to

Rµν −
1

2
Rgµν + Λgµν =

1

M2
pl

Tµν . (A.4)
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More convenient way to treat the cosmological constant is to move it at the right
hand side of the equations as a perfect �uid with the equation of state w = −1
and the energy density

ρΛ ≡M2
plΛ. (A.5)

These assumptions about the Universe lead us to the standard cosmological model
� the ΛCDM model.

A.1.2 FLRW metric

The FLRW metric for �at spaces simplify as

ds2 = −dt2 + a2(t)
[
dr2 + r2dΩ2

]
. (A.6)

The expansion of the Universe is usually measured through the redshift z

1 + z ≡ a−1 (A.7)

From the Einstein`s equations is obtained

H2 ≡
(

1

a

da
dt

)2

=
1

3M2
pl

ρ (A.8)

1

a

d2a

dt2
= − 1

6M2
pl

(ρ+ 3p), (A.9)

where H is the Hubble parameter, ρ is the overall density ρ = ρm + ρr + ρΛ. The
former one is usually written as

1 = Ωr + ΩM + ΩΛ + Ωk, (A.10)

where Ωi ≡ 8πGρi/3H
2 and ΩΛ ≡ Λ/3H2 are density parameters. In this equation

we also recover the curvature Ωk ≡ − k
a2H2 . From measurements of the overall

density of matter and dark energy we can determine the curvature. The ESA`s
Planck satellite data combined with BAO measurements con�rmed the �atness
of the space [3]

Ωk = 0.000± 0.005 (95%, P lanckTT+lowP+lensing+BAO). (A.11)

Conservation of the stress-energy tensor yields the continuity equation

dρ
dt

+ 3H(ρ+ p) = 0. (A.12)

These three equations are not independent (only two them). To solve this system
of equations for three unknown variables (a, ρ and p) we need a relation between
ρ and p � the equation of state p ≡ ρw. For a constant w we can integrate the
equation (A.12) to obtain

ρ = ρ0a
−3(1+w). (A.13)

The early Universe is dominated by the radiation and ultra-relativistic matter
with equation of state w = 1/3. After the Universe cooled enough masses of
the particles eventually dominated over the radiation components at the equality
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epoch around zeq ∼ 3200. From this epoch until recently the Universe is domi-
nated by cold dark matter with the dust equation of state w = 0. Around z ∼ 2
the Universe starts to slowly accelerate and around z ∼ 1/2 begins to dominate
the Universe dark energy with the equation of state w = −1.

From H2 ≈ 1
3M2

pl
ρ∗ with ρ∗ being the dominant component of the Universe

one can easily show that in these epochs the Universe expands as

a(t) ∝


t
1
2 (w = 1

3
)

t
2
3 (w = 0)

eHt (w = −1)

(A.14)

A.2 Perturbed Universe

In this section we use assumptions that are not special to GR but can hold in other
modi�ed theories as well: 1) spacetime is a 4-dimensional pseudo-Riemannian
manifold, 2) special relativity holds locally, and 3) the weak equivalence principal
holds (freely-falling bodies follow geodesics).

A.2.1 Newtonian Gauge

The most general perturbed metric can be written as gµν = g
(0)
µν + δgµν , where an

unperturbed metric g(0)
µν is the FLRW metric

ds2 = a2(−dη2 + γijdxidxj) (A.15)

with the conformal time η =
∫
a−1dt and the three-metric γij of constant curva-

ture spaces. Perturbation of the metric is schematically

δgµν = a2

(
−2Φ wi
wi −2Ψγij + hij

)
, (A.16)

where Φ and Ψ are scalars (Newton and curvature potential), wi is a 3-vector
and hij is a traceless 3-tensor. Now, we can decompose the vector wi into a
longitudinal and a transverse component

wi = w
‖
i + w⊥i , (A.17)

where by construction
εijk∂iw

‖
j = ∂iw⊥i = 0. (A.18)

A similar decomposition can be done for traceless part hij

hij = h
‖
ij + h⊥ij + hTij, (A.19)

where the divergences ∂ih‖ij, ∂
ih⊥ij are longitudinal and transverse vectors and hTij

is transverse, i.e.
εijk∂i∂

lh
‖
lj = ∂i∂jh⊥ij = ∂ihTij = 0. (A.20)

Since w‖i and ∂ih
‖
ij are curl-free, they can be written in terms of some scalar

functions

w
‖
i = ∂iE, h

‖
ij =

(
∂i∂j −

1

3
γij∂k∂

k

)
B ≡ DijB, (A.21)
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where we de�ne the traceless operator Dij. By taking divergence or curl of the
Einstein equations we can deal only with longitudinal or transverse terms which
therefore completely decouple from each other. Since the density perturbation
δ is a scalar it couples only to longitudinal terms, which can be derived from a
scalar quantity.

A vector h⊥ij is giving rise to a rotational velocity perturbation while a ten-
sor hTij is giving rise to gravitational waves. Since transverse terms couple to
rotationally or vorticity modes only, which decrease as a−1, vector and tensor
perturbations can be neglected. We are therefore left with only four scalars
quantities Φ,Ψ, E and B. We can further simpli�ed metric (A.16) by choosing
speci�c gauge. We can impose up to four conditions which are wi = 0 and B = 0.
The metric in this so-called Newtonian or longitudinal gauge takes a form

gµν = a2

(
−(1 + 2Φ) 0

0 (1− 2Ψ)γij

)
, (A.22)

while the inverse metric (keeping only the linear terms in potentials) is

gµν = a−2

(
−(1− 2Φ) 0

0 (1 + 2Ψ)γij

)
. (A.23)

Christo�el symbols for this metric are

Γ0
00 = H + Φ̇,

Γ0
0i = ∂iΦ,

Γ0
ij =

[
H(1− 2Φ− 2Ψ)− Ψ̇

]
γij

Γi00 = ∂iΦ,

Γij0 = (H− Ψ̇)δij,

Γijk = γijk + γjk∂
iΨ− δij∂kΨ− δik∂jΨ,

(A.24)

where dot means partial derivative with respect to the conformal time, H ≡ ȧ/a
is the conformal Hubble parameter and γijk is the spatial connection needed when
non-Cartesian coordinates are used.

A.2.2 Kinematics

Let us now examine a motion of particles in the metric (A.22) where the po-
tentials are assumed to be small enough (Φ ∼ Ψ ∼ 10−5) so we can treat them
perturbatively. The proper (physical) 3-velocity vi measured by a comoving ob-
server, or the peculiar velocity with respect to the uniform Hubble �ow, is de�ned
as

dxi

dη
≡ (1 + Φ + Ψ)vi, (A.25)

which ensures that for the light (d2s = 0) the velocity is v = 1. The four-velocity
uµ ≡ dxµ/dτ where τ is the proper time, is

uµ =
γ

a(1 + Φ)

[
1, (1 + Φ + Ψ)vi

]
, (A.26)
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while the contravariant components are

uµ = γa [1 + Φ, (1−Ψ)vi] , (A.27)

where γ ≡ (1 − v2)−1/2 is the special relativistic Lorentz factor. Freely-falling
particles move along geodesics of the metric (A.22) and thus obeying the equation
of motion

1

γa(1−Ψ)

d
dη

[
γa(1−Ψ)vi

]
= −∂i(Φ + v2Ψ)− (1 + Φ + Ψ)γijkv

jvk. (A.28)

This equation simpli�es for nonrelativistic particles (v → 0), or on the other hand
for massless particles (v2 = 1), as

1

a

d(avi)

dη
= −∂iΦ, v2 � 1 (A.29)

dvi

dη
= −∂i⊥(Φ + Ψ), v2 = 1 (A.30)

where the gradient is taken in the plane perpendicular to the photon trajectory

∂i⊥ ≡ ∂i − vivj∂j (A.31)

Another useful relation comes from the redshift of a light. An observer at the rest,
with respect to the uniform Hubble �ow (v = 0), measures the energy of a photon
E = −pµuµ0 . From that and a normalization of a four-momentum pµp

µ = 0 we
get

pµ = a [(1 + Φ)E, (1−Ψ)~p] , (A.32)

where we de�ne the three-momentum such that |~p| = E. From the equation of
motion along geodesics we get

1

aE

d(aE)

dη
= Ψ̇− vi∂iΦ. (A.33)

After an integration from a redshift z to the time of the observation we get

(1 + z)
Eobs
Eem

= 1 + Φem − Φobs −
∫ z

0

(Φ̇ + Ψ̇)
dη
dz

dz, (A.34)

which is the Sachs-Wolfe e�ect.

A.3 Methods to Measure the Potentials

We want to measure the three free functions of the metric (A.22) � a(η) and
potentials Φ(η, x) and Ψ(η, x) � to constraint gravity. The simplest way to do
it is to use the equations (A.30) and (A.34). However, in practice these direct
methods are very inaccurate.
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A.3.1 Growth of Structure

The growth of density perturbation is a great way to measure the potential Φ.
The stress-energy tensor for scalar perturbations is

T 0
0 = −(ρ̄+ δρ), (A.35)
T 0
i = −(ρ̄+ p̄)∂iu, (A.36)

T ij = δij(p̄+ δp) +
1

2
(ρ̄+ p̄)

(
∂i∂j −

1

3
δij∆

)
π, (A.37)

where ∆ = ∂i∂
i, ρ̄ and p̄ are the background density and pressure and u and

π are velocity and shear stress potentials, respectively. These perturbations are
of course gauge-dependent. However, one can also work with gauge-independent
quantities such as the physical number density perturbation in the �uid rest
frame, obtained from the conformal Newtonian gauge variables as [20]

ν ≡ δρ+ 3Hu
ρ̄+ p̄

. (A.38)

For a non-relativistic �uid on scales much less than the Hubble length with a neg-
ligible shear stress, the linear perturbations of energy-momentum conservation
gives

1

a

∂

∂τ

(
a
∂ν

∂τ

)
= ∆

(
Φ + c2

s + σ
)
, (A.39)

where c2
s = dρ/dp is the adiabatic sound speed and the dimensionless entropy

perturbation is

σ =
δp− c2

sδρ

ρ̄+ p̄
. (A.40)

Through the growth of structures thus one can measure the potential Φ.

A.3.2 Gravitational Lensing

Weak gravitational lensing bends the trajectory of the light according to (A.30).
The angular de�ection integrated over the past light cone between z and z + δz
is

δ~α = −~∇⊥(Φ + Ψ)
dη
dz
δz, (A.41)

where α is a (two-dimensional) vector perpendicular to the trajectory of the light.
The gravitational lens equation [18]

~β = ~θ − rLS
rS

δ~α, (A.42)

where θ is the observed direction of a ray and β the direction to the source in the
absence of the de�ection. The distances are are the comoving angular distances
from the lens plane to the source plane, and from the observer to the source plane
respectively.

We cannot observe the absolute de�ection since we do not know the the true
direction of the source. However, the gradient of the de�ection results in an image
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magni�cation and shear that are observable. These are described by the inverse
magni�cation matrix

M−1(~θ) =
∂~β

∂~θ
= 1+

∫ zS

0

rSrLS
rS

~∇⊥~∇⊥(Φ + Ψ)
dη
dz

dz. (A.43)

This magni�cation matrix is parametrized by a convergence κ and shear param-
eters γ1 and γ2

M(~θ) =

(
1 + κ+ γ1 γ2

γ2 1 + κ− γ1

)
. (A.44)

The weak lensing limit assumes κ2 � 1 and γ2
i � 1. The convergence still cannot

be measured directly as the size and �ux of the source is generally unknown.
However, the shear components can be measured statistically averaging galaxy
image distortions over large sample of galaxies since the orientation of galaxies
are assumed to be random. Weak lensing thus o�ers a probe of the sum of the
two potentials (Φ + Ψ).

A.3.3 Current Limits

Using the Shapiro time delay one can obtain strong limits on the gravitational
slip (combination Ψ−Φ) in the solar system. The round-trip time of signals from
the Cassini spacecraft near Saturn as the signals pass close to the sun is longer
than one would expect in �at spacetime. This gives tight limit on the slip [19]

|Ψ− Φ|
Φ

= (2.1± 2.3) · 10−5 (A.45)

within the solar system. Combining stellar dynamics with the strong gravitational
lensing on galaxy scales limit the slip [101]

|Ψ− Φ|
Φ

= 0.01± 0.05 (A.46)

on kpc scales. Future surveys such as the LSST and Euclid will improve these
limits and provide new one on larger scales.

A.4 Action Principle

To obtain various equations of motion, the well known action principle is used.
Since the variation with respect to the metric �eld gµν can be tricky, we de-
scribed here in detail these variations for f(R) gravity as an example, from which
equations of motion for other theories can be obtained easily.

Action for f(R) gravity (and in a special case for General Relativity) is

S =

∫
d4x
√
−g
[
M2

pl

2
F (R) + LM

]
, (A.47)

where LM is the Lagrangian density of matter (or dark energy) and F (R) ≡ R + f(R)
is an arbitrary function of the Ricci scalar. According to the action principle a
variation of this action with respect to the inverse metric gµν is zero

0 = δS = (δS)1 + (δS)2 + (δS)3 + (δS)M , (A.48)
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where

(δS)1 =
M2

pl

2

∫
d4xF (R)δ

√
−g,

(δS)2 =
M2

pl

2

∫
d4x
√
−gF,RRµνδg

µν ,

(δS)3 =
M2

pl

2

∫
d4x
√
−gF,RgµνδRµν ,

(δS)M =

∫
d4xδ

(√
−gLM

)
,

(A.49)

The variation of the determinant
√
−g in (δS)1 is according to the Jacobi`s for-

mula given by

δ
√
−g = −1

2

1√
−g

δg =
1

2

√
−g(gµνδgµν) = −1

2

√
−ggµνδgµν . (A.50)

In the second term (δS)2 is already the variation δgµν . To calculate the variation
(δS)3 we must know the variations of the Riemann tensor and the Ricci tensor.
Variation of the Riemann tensor is

δRρ
σµν = ∂µδΓ

ρ
σν + δΓρµλΓ

λ
σν + ΓρµλδΓ

λ
σν − (µ↔ ν). (A.51)

The variation δΓρσν is the di�erence of two connections and therefore a tensor. Its
covariant derivative is

∇λ (δΓρσν) = ∂λ (δΓρσν) + ΓρλµδΓ
µ
σν − ΓµλσδΓ

ρ
µν − ΓµλνδΓ

ρ
σµ. (A.52)

From equations (A.51) and (A.52) it can be seen that the variation of the Riemann
tensor is equal to the di�erence of two covariant derivative of connections. The
variation of the Ricci tensor is given by the contraction of the Riemann tensor

δRµν = δRρ
µρν = ∇ρ

(
δΓρµν

)
−∇ν

(
δΓρρµ

)
. (A.53)

We can replace δΓρµν in terms of δgµν throughout the Christo�el symbols

δΓρµν = −1

2

[
gλµ∇ν(δg

λρ) + gλν∇µ(δgλρ)− gµαgνβ∇ρ(δgαβ)
]
. (A.54)

Therefore, the variation (δS)3 is

(δS)3 =
M2

pl

2

∫
d4x
√
−gF,R∇σ

[
gµν∇σ(δgµν)−∇λ(δg

σλ)
]
. (A.55)

Now, for any four-vector holds equivalency between its derivative and covariant
derivative [120]

∇µA
µ =

1√
−g

∂µ(
√
−gV µ), (A.56)

which we can use together with the Stoke`s theorem to integrate the action (δS)3

per partes. If we assume that the variations of the metric and its derivative vanish
at the surface, after two integrations we get

(δS)3 =
M2

pl

2

∫
d4x
√
−g [gµν�F,R −∇µ∇νF,R] δgµν . (A.57)
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To calculate (δS)M we use the de�nition of the stress-energy tensor

Tµν ≡
−2√
−g

δ(
√
−gLM)

δgµν
. (A.58)

Putting all four parts of the action together we get

δS =
M2

pl

2

∫
d4x
√
−g

[
F,RRµν −

1

2
Fgµν + gµν�F,R −∇µ∇νF,R −

1

M2
pl

Tµν

]
δgµν .

(A.59)
Restoring F (R) = R + f(R) this gives the equation of motion

Gµν + f,RRµν −
1

2
fgµν + gµν�f,R −∇µ∇νf,R =

1

M2
pl

Tµν , (A.60)

where Gµν ≡ Rµν − 1
2
Rgµν is the Einstein tensor.
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B. C++ Implementation

Here we describe the implementation of used methods in C++ language with
extended comments. We present here only the most relevant parts of the code,
e.g. we omit overloaded versions of the functions and some auxiliary functions.
The whole code can be found on an enclosed CD or by sending me an email at
vrastil@fzu.cz.

In our program we are using following libraries,

#include "stdafx.h" // standard pre -compiled headers

#include <math.h> // common mathematical operations

#include "limits.h" // fundamental constants

#include <iostream> // standard input/output stream objects

#include <fstream> // provides file stream classes

#include <stdlib.h> // C Standard General Utilities Library

#include <functional> // function -like objects

and the namespace

using namespace std;

We are often dealing with the functions (scalar or vector) of the form f(t, x ), so
we de�ne a type

typedef function <double(double , double *)> t_function;

B.1 Runge-Kutta Method with Adaptive Stepsize

The Runge-Kutta method1 includes two main functions � the Runge_Kutta_step
for the Runge-Kutta algorithm and the Runge_Kutta_adap_step for the adaptive
stepsize. It also includes two smaller functions shift and fce which we separated
from the main functions to increase clari�cation of the program.

Function shift is an equivalence of the sum of vectors y0 and h · shift , the
outcome is stored in the vector y = y0 + h · shift . The function fce evaluates
the vector function f and stores the outcome in y = f (t0, x 0).

void shift(double *y, double *y_0 , double *shift , double h,

int dim){

for (int i = 0; i < dim; i++){

y[i] = y_0[i] + h*shift[i];

}

}

void fce(double *y, t_function *f, double t_0 , double *x_0 ,

int dim){

1These parts of the code are from the header �le runge_integ_root.h.
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for (int i = 0; i < dim; i++){

y[i] = f[i](t_0 , x_0);

}

}

Function Runge_Kutta_step performs one step of the length h in the integration
of ordinary di�erential equations ẏ = f (t, y).

void Runge_Kutta_step(double &t_0 , double *y_0 , double h,

t_function *f, int dim){

double *k1 = new double[dim];

double *k2 = new double[dim];

double *k3 = new double[dim];

double *k4 = new double[dim];

double *y_h = new double[dim];

fce(k1, f, t_0 , y_0 , dim);

shift(y_h , y_0 , k1, h / 2, dim);

fce(k2, f, t_0 + h / 2, y_h , dim);

shift(y_h , y_0 , k2, h / 2, dim);

fce(k3, f, t_0 + h / 2, y_h , dim);

shift(y_h , y_0 , k3, h, dim);

fce(k4, f, t_0 + h, y_h , dim);

t_0 += h;

shift(y_0 , y_0 , k1, h / 6, dim);

shift(y_0 , y_0 , k2, h / 3, dim);

shift(y_0 , y_0 , k3, h / 3, dim);

shift(y_0 , y_0 , k4, h / 6, dim);

delete [] k1;

delete [] k2;

delete [] k3;

delete [] k4;

delete [] y_h;

}

Function Runge_Kutta_adap_step controls the size of the step hin. One can also
require some lower and/or upper limit on size of the step. The function counts
number of rejected steps to prevent an in�nite reiteration in case of ill-de�ned
problems.

void Runge_Kutta_adap_step(double &t_0 , double *y_0 , double

&h_in , double h_min , double h_max , double atol , double

rtol , t_function *f, int dim , int &N_iter){

if (N_iter >30) Runge_Kutta_step(t_0 , y_0 , h_in , f, dim);
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// prevents from an infinite loop , h_out = h_in *1e-21

else {

if ((h_in > h_max) && h_max != 0) h_in = h_max;

if (h_in < h_min) h_in = h_min;

double err_h = 0;

double scale;

double dh;

double * yh = new double[dim];

double * y1 = new double[dim];

for (int i = 0; i < dim; i++){

yh[i] = y_0[i];

y1[i] = y_0[i];

}

Runge_Kutta_step(t_0 , y1, h_in , f, dim);

// one step of h

t_0 -= h_in;

Runge_Kutta_step(t_0 , y_0 , h_in / 2, f, dim);

Runge_Kutta_step(t_0 , y_0 , h_in / 2, f, dim);

// two steps of h/2

for (int i = 0; i < dim; i++){

scale = atol + rtol*abs(y_0[i]);

err_h += pow((y_0[i] - y1[i]) / scale , 2);

}

err_h = sqrt(err_h / dim);

if (err_h == 0) dh = 10;

else dh = 0.9* pow(1 / err_h , 1.0 / 5);

if (dh > 10) dh = 10;

// maximal increase of the stepsize by a factor 10 or

if (dh < 1 / 5.0) dh = 1 / 5.0;

// decrease by a factor 5

if (err_h < 1){

if (N_iter == 0) h_in *= dh;

// no increase if previous step fails

}

else{

t_0 -= h_in; // go back

for (int i = 0; i < dim; i++){

y_0[i] = yh[i];

}

delete [] y1;

delete [] yh;

h_in *= dh; // adjust h

N_iter ++;

Runge_Kutta_adap_step(t_0 , y_0 , h_in , h_min , h_max ,

atol , rtol , f, dim , N_iter); // reiterate

}

}

}

100



B.2 Shooting Method

The shooting method algorithm2 consists of two parts. First part is the classi-
cal root-�nder algorithm and the other one is how to convert an integration of
ordinary di�erential equations into a function of one variable.

Function root_finder takes two initial guesses of equation fce(x)− feq = 0
which satisfy (fce(x1) − feq)(fce(x2) − feq) < 0. It returns the root with given
relative and absolute tolerances in variable x1.

void root_finder(double &x1, double &x2,

function <double(double)> fce_x , double f_eq , double

x_rtol , double x_atol , double f_atol){

double f1, f2, fh, xh;

bool f_acc = true;

bool x_acc = true;

double scale;

f1 = fce_x(x1) - f_eq;

f2 = fce_x(x2) - f_eq;

while ((f_acc) && (x_acc)){

fh = f2;

xh = x2;

x2 = (x2 + x1) / 2;

f2 = fce_x(x2) - f_eq;

if (f1*f2 > 0){

x1 = xh;

f1 = fh;

}

scale = x_atol + x2*x_rtol;

x_acc = (abs(x1 - x2) / scale) > 1;

scale = f_atol;

f_acc = abs(f2 / scale) > 1;

}

if (abs(f1) > abs(f2)){

xh = x2;

x2 = x1; // x1 <=> |f1| < |f2|

x1 = xh;

}

}

The demand for the knowledge of two guesses in root_finder can be a bit prob-
lematic in the shooting method. One usually has at best one guess and an esti-
mation in which direction should lie the other one. The function get_x1_x2 is
�nding the other guess based on the �rst guess and given multiplier which de�nes
the direction. If the sign does not change after 100 multiplications the function
tries to �nd the root in the opposite direction.

void get_x1_x2(double &x1, double &x2,

function <double(double)> fce , double f_eq , double mlt){

double xh = x1;

2These parts of the code are from the header �le runge_integ_root.h.
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int N_h = 0;

double f1, f2;

x2 = x1;

f2 = fce(x2) - f_eq;

do {

x1 = x2;

x2 *= mlt;

f1 = f2;

f2 = fce(x2) - f_eq;

N_h++;

} while ((f1*f2 > 0) && (N_h < 100));

if (N_h < 100) return;

x2 = xh;

f2 = fce(x2) - f_eq;

mlt = 1 / mlt;

N_h = 0;

do {

x1 = x2;

x2 *= mlt;

f1 = f2;

f2 = fce(x2) - f_eq;

N_h++;

} while ((f1*f2 > 0) && (N_h < 100));

}

Function integrate integrates a di�erential equation with initial conditions spec-
i�ed in fcemin(s, t, y). It integrates the equations till tmax = true. The function
tmax(t, y) can be simply of the form t < t1 but in principle it can contain arbitrary
condition, e.g. we are often using the condition δφ/φinf < ε as discussed in Chap-
ter 4. Function integrate_fmax in addition to integrate returns a boundary
condition at the end of the integration. Boundary conditions (whether Dirichlet,
Neumann or Robin b.c.) are speci�ed in fcemax(t, y).

void integrate(double s, double &t, double *y,

function <bool(double , double *)>t_max ,

function <void(double , double &, double *)>fce_min , double

err , t_function *f_diff , int dim){

double h = 1;

fce_min(s, t, y);

while (t_max(t, y)){

Runge_Kutta_adap_step(t, y, h, err , f_diff , dim);

}

}

double integrate_fmax(double s, function <bool(double ,

double *)>t_max , function <void(double , double &,

double *)>fce_min , t_function fce_max , double err ,

t_function *f_diff , int dim){

double *y = (double *) malloc(dim*sizeof(double));
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double t = 0;

integrate(s, t, y, t_max , fce_min , err , f_diff , dim);

return fce_max(t, y);

}

Next we need to convert initial conditions and the integration into a function
of one variable to feed functions get_x1_x2 and root_finder. This is done
using the function template std::bind de�ned in the header <functional>. In
shoot_meth we create a function fce(s) of one variable from integrate_fmax by
�lling all of its arguments but the �rst.

double shoot_meth(double s1, double mlt ,

function <bool(double , double *)>t_max ,

function <void(double , double &, double *)>fce_min ,

t_function fce_max , double err , t_function *f_diff , int

dim , double scale){

// s1, mlt -- first guess and a multiplier to obtain other

guesses

// initial conditions is specified in fce_min with

parameter s

// integrate till t_max is true

// boundary conditions at t=t_max are specified in

fce_max , return 0 if achieved

double s2 = 0;

auto fce_s = bind(integrate_fmax , placeholders ::_1, t_max ,

fce_min , fce_max , err , f_diff , dim);

get_x1_x2(s1, s2, fce_s , mlt);

root_finder(s1, s2, fce_s , scale);

return s1;

}

B.3 Planar Slab

Here we presented the code3 for solving the chameleon �eld in a planar slab.
It is the application of the previous methods in a concrete case. We have used
constants

const double M_L = 2.4e-3;

const double n_pl = 3.0;

const double gamma = 1;

const double rho_pl = 1e-11;

const double phi_min = M_L*sgn(1 - n_pl)*

pow(B*rho_pl /(abs(n_pl)*gamma*pow(M_L ,3)*Mp) ,1/(1-n_pl));

const double phi_s = phi_min *(1 - 1 / n_pl);

const double K = sqrt((n_pl - 2)*(n_pl - 2)*gamma*pow(M_L ,

4 - n_pl)*pow(abs(phi_s), n_pl - 2) / 2);

3These parts of the code are from the header �le planar_slab.h.
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The main routine slv_planar_slab takes as an argument maximal z till which
integrate and a desired accuracy err (relative and absolute tolerance). Into the
array phi are stored values of the �eld with z separation step and an integer
variable N_i counts the total number of stored values.

void slv_planar_slab(double r_max , double err , double

**phi , double step , int &N_i){

t_function phi_vec_eq [] = { phi_0_der , phi_pl_1_der };

double h = 1;

int i = -1;

double phi_der_0 = get_phi_pl_der(r_max , err);

double phi_vec [2] = { phi_s , phi_der_0 };

double r = 0;

auto integrate_pl = bind(is_integrate_pl ,

placeholders ::_1, placeholders ::_2, r_max);

integrate_cout(r, phi_vec , integrate_pl , err , phi_vec_eq ,

2, phi , step , 1, 0, i);

N_i = i;

}

phi_vec_eq de�nes the di�erential equation we want to integrate, i.e. two equa-
tions of the �rst order with dφ0/dz = φ1 and dφ1/dz = V,φ(φ0).

double phi_0_der(double r, double *phi){

return phi [1];

}

double phi_pl_1_der(double r, double *phi){

double tmp = V_pl_der(phi [0]);

if (tmp != tmp){

return 0;

}

return tmp;

}

double V_pl_der(double phi){

if (phi > 0) return n_pl*gamma*pow(M_L , 4 - n_pl)*

pow(phi , n_pl - 1);

else return -n_pl*gamma*pow(M_L , 4 - n_pl)*pow(-phi , n_pl

- 1);

}

The function get_phi_pl_der returns the derivative dφ/dz(0) via the shooting
method.

double get_phi_pl_der(double r_max , double err){

double h = 1;

double s1;
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t_function phi_vec_eq [] = { phi_0_der , phi_pl_1_der };

double r_mlt = 1;

double f1;

if (n_pl > 2) s1 = -K*phi_s * 2 / (n_pl - 2);

// exact initial condition

else {

s1 = K*phi_s; // first guess is phi(0)/z_c

do{

auto integrate_pl = bind(is_integrate_pl ,

placeholders ::_1, placeholders ::_2, r_max*r_mlt);

s1 = shoot_meth(s1, 0.9, integrate_pl , fce_min_phi_0 ,

fce_max_pl , err , phi_vec_eq , 2, phi_s / r_max);

f1 = integrate_fmax(s1, integrate_pl , fce_min_phi_0 ,

fce_max_pl , err , phi_vec_eq , 2);

r_mlt *= 0.9;

} while ((abs(f1 / (phi_s / r_max)) > 1) && (r_mlt >

0.1)); // if the integration fails

}

return s1;

}

The function integrate_pl tells the routine integrate or shoot_meth described
in previous section when to stop the integration (in this case just till z < rmax),
fce_min_phi_0 speci�es initial conditions (in this case the shooting parameter s1

is directly the derivative dφ/dz(0)) and the function fce_max_pl returns Robin
boundary condition (0 if achieved).

The routine integrate_cout4 is similar to the routine integrate while now
it also stores the values of the chameleon �eld (reg = 0) or its derivative (reg =

1) into the �eld chi.

void integrate_cout(double &t, double *y,

function <bool(double , double *)>t_max , double err ,

t_function *f_diff , int dim , double **chi , double step ,

double mlt , int reg , int &i){

double h = step;

double h_max = step;

i++;

chi [0][i] = t;

chi [1][i] = y[reg] * mlt;

while (t_max(t, y)){

Runge_Kutta_adap_step(t, y, h, 0,h_max , err , f_diff , dim);

if (t > R) {

h_max = R200;

}

if (t > R200) {

h_max = 0;

}

4The routine integrate_cout and also the next subroutine if_low_memory are from the
header �le runge_integ_root.h.
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if ((t - chi [0][i]) >= step){

if(t>R) step *= 1.5;

i++;

if_low_memory(i, h_N , h_re , chi ,2);

chi [0][i] = t;

chi [1][i] = y[reg] * mlt;

}

}

}

The subroutine if_low_memory checks if there is enough allocated space for the
�eld chi. In a case that did not it reallocates the allocated memory with an
additional one.

void if_low_memory(int i, int &i_max , int i_re , double

**chi , int dim){

if (i >= i_max){

for (int j = 0; j < dim; j++){

chi[j] = (double *) realloc(chi[j], (i_max +

i_re)*sizeof(double));

}

i_max += i_re;

}

}

B.4 Stars

The structure of the code5 in case of the stars is di�erent than in the case of
a planar slab. We now have to deal with linear and non-linear case separately
(which means two completely di�erent ways of determining initial conditions)
and since r ∼ 1/m∞ we also have to treat the solution analytically rather than
using a brute force and a numerical solution.

The main routine slv_Chameleon_star takes as arguments similar variables
as in a case of planar slab � max radius r_max, desired accuracy err, array chi

for storing values with r-separation step and an integer variable N_i for counting
the total number of stored values. The procedure stores values of the �eld or its
derivative based on an integer variable reg (0 for potential, 1 for force).

The procedure �rst determines whether the solution is in the linear or non-
linear regime base on the value req and then computes the initial conditions via the
shooting method. Note that in the linear regime the integration starts at r = 0
whereas in the non-linear regime at r = Rroll (at the code this value is denoted by
r2). Next the equations are integrated till we enters the exponentially damped
phase. In this phase we integrate only one-dimensional di�erential equation where
we use the analytical (linearized) solution for the derivative of the �eld with an
amplitude based on previous numerical solution. This ensures the continuity of
the �eld and its derivative.

5These parts of the code are from the header �le stars_NFW.h.
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void slv_Chameleon_star(double r_max , double err , double

**chi , double &step , int &N_i , int reg){

double h = step;

double eps = 1e-2;

t_function chi_vec_eq [] = { chi_0_der , chi_1_der };

double chi_pot_0;

if (( pot_new (0) + Ys) <= 0) chi_pot_0 = chi_B;

// non -linear regime

else chi_pot_0 = get_chi_0_star(err , eps); // linear regime

double chi_der_0 = 0;

double r = 0;

int i = 0;

double chi_vec [2] = { chi_pot_0 , chi_der_0 };

if (abs(chi_pot_0 - chi_B) / chi_B < eps){

// non -linear regime

double m = sqrt(V_eff_2nd_derr(chi_B));

double r2;

if (r_eq >0){

r2 = shoot_meth_star(err , eps);

chi [0][i] = 0;

chi [1][i] = (1 - reg)*chi_B *(1 + eps*m*r2 / sinh(m*r2));

}

else{

r2 = 0;

chi [0][i] = 0;

chi [1][i] = (1-reg)*chi_B *(1 + eps);

}

double shr_d_shr2 , chr_d_shr2;

// sinh(r) / sinhr(r2), cosh(r) / sinhr(r2)

for (r = step; r < r2; r += step){

i++;

chi [0][i] = r;

if (m*r>30){

shr_d_shr2 = exp(m*(r - r2));

// approximation 2*sinh(x)=e^x

chr_d_shr2 = shr_d_shr2;

}

else{

shr_d_shr2 = sinh(m*r) / sinh(m*r2);

chr_d_shr2 = cosh(m*r) / sinh(m*r2);

}

if (reg == 0) chi [1][i] = chi_B *(1 + eps*r2 / r *

shr_d_shr2);

else chi [1][i] = -B / Mp*chi_B*eps * r2 /

(r*r)*(m*r*chr_d_shr2 - shr_d_shr2);

}
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if ((R - r2) / R < 1e-6){ // no-shell solution

r = R;

chi_vec [0] = chi_B + (chi_0 - chi_B) / (m*R)*tanh(m*R);

chi_vec [1] = (chi_0 - chi_B)*(m_inf*R + 1) / (R*R)*(R -

tanh(m*R) / (m*R));

}

else{

r = r2;

chi_vec [0] = chi_B *(1 + eps);

chi_vec [1] = chi_B*eps / r2*(m*r2 / tanh(m*r2) - 1);

}

}

else i--;

auto integrate_star = bind(is_integrate , placeholders ::_1,

placeholders ::_2, 1 / m_inf);

double mlt = 1;

if (reg == 1) mlt *= -B / Mp;

// F_\phi = -\beta/\Mpl * \dd\phi / \dd r

integrate_cout(r, chi_vec , integrate_star , err ,

chi_vec_eq , 2, chi , step , mlt , reg , i);

double a = chi_vec [1] * r*r*exp(m_inf*r) / (m_inf*r + 1);

chi_vec_eq [0] = bind(chi_0_der_lin , placeholders ::_1,

placeholders ::_2, a);

while (r < r_max){

Runge_Kutta_adap_step(r, chi_vec , h, err , chi_vec_eq , 1);

chi_vec [1] = a*exp(-m_inf*r) / (r*r)*(m_inf*r + 1);

if ((r - chi [0][i]) >= step){

step *= 2;

i++;

chi [0][i] = r;

chi [1][i] = chi_vec[reg] * mlt;

}

}

N_i = i;

}

Some of the smaller functions used previously and in the next code.

bool is_integrate(double r, double *y, double r_max){

if ((r_max != 0) && (r > r_max)) return false;

if (r < R200) return true;

return abs(chi_0 - y[0]) / chi_0 > 1e-2;

}

double V_eff_der(double r, double chi){

double v = B / Mp*(rho_r(r) - rho_0*pow(chi_0 / abs(chi),

1 - n));

if ((v != v) || (isinf(v))){

return 0;
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}

return v;

}

double V_eff_2nd_derr(double chi){

return B / Mp*rho_0 *(1 - n)*pow(chi / chi_0 , n)*chi_0 /

(chi*chi);

}

double chi_0_der(double r, double *chi){

return chi [1];

}

double chi_0_der_lin(double r, double *chi , double a){

return a*exp(-m_inf*r) / (r*r)*(m_inf*r + 1);

}

double chi_1_der(double r, double *chi){

if (r == 0) return V_eff_der(r, chi [0]) / 3;

else return V_eff_der(r, chi [0]) - 2 / r*chi [1];

}

void fce_min_r2(double s, double &t_0 , double *y_0 , double

eps , double m){

switch (mod){

case 0:{ // stars

t_0 = s;

y_0[0] = chi_B *(1 + eps);

y_0[1] = chi_B*eps / s*(m*s / tanh(m*s) - 1);

}

case 1:{ // NFW halo

t_0 = s;

m = sqrt(V_eff_2nd_derr(chi_bulk_r(t_0)));

y_0[0] = chi_bulk_r(s)*(1 + eps);

y_0[1] = chi_bulk_der(s)*(1 + eps) +

chi_bulk_r(s)*eps / s*(m*s / tanh(m*s) - 1);

}

}

}

void fce_min_chi_0(double s, double &t_0 , double *y_0){

switch (mod){

case 0:{ // stars

t_0 = 0;

y_0[0] = s;

y_0[1] = 0;

}

case 1:{ // NFW halo

t_0 = 0;

y_0[0] = s;
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y_0[1] = -(s - chi_0) / (2 * R)*(c + 1) / c;

// Newtonian relationship between potential and

derivative for NFW halo

}

}

}

double fce_max(double r, double *y){

double dchi = y[0] - chi_0;

if (dchi < 0) return (y[1] * r + dchi*(m_inf*r + 1));

else return 10 * (y[1] * r + dchi*(m_inf*r + 1));

}

Two shooting routines shoot_meth_star (non-linear regime) and get_chi_0_star
(linear regime) return parameter Rroll and φ(0) respectively.

double shoot_meth_star(double err , double eps){

double m = sqrt(V_eff_2nd_derr(chi_B));

double h = 1;

double r2a = R - Mp*(chi_0 - chi_B) / (B*rho_c*R*R)*R;

// analytical value of r2

double s1;

if (r_eq <r2a) s1 = r_eq;

else s1 = r2a;

if (s1 > R) return R;

auto fce_min_star = bind(fce_min_r2 , placeholders ::_1,

placeholders ::_2, placeholders ::_3, eps , m);

auto integrate_star = bind(is_integrate , placeholders ::_1,

placeholders ::_2, 1 / m_inf);

t_function f_diff [] = { chi_0_der , chi_1_der };

return shoot_meth(s1, 0.7, integrate_star , fce_min_star ,

fce_max , err , f_diff , 2, chi_0*eps);

}

double get_chi_0_star(double err , double eps){

double h = 1;

double s1 = chi_0 + 1 * 2 * B*Mp*pot_star (0);

// guess from the analytical solution

auto integrate_star = bind(is_integrate , placeholders ::_1,

placeholders ::_2, 1 / m_inf);

t_function f_diff [] = { chi_0_der , chi_1_der };

return shoot_meth(s1, 0.95, integrate_star , fce_min_chi_0 ,

fce_max , err , f_diff , 2, chi_0*eps);

}
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B.5 NFW Halo

The structure of the code6 in case of the NFW halo is rather similar to the case
of stars. At �rst, the main routine slv_Chameleon_NFW determines which regime
we are in. Then it computes the initial conditions via the shooting method,
integrate the equations till we are near the background and �nally integrate one-
dimensional di�erential equation with derivative obtained from the analytical
solution till r_max.

void slv_Chameleon_NFW(double r_max , double err , double

**chi , double &step , int &N_i , int reg){

double h = step;

double eps = 1e-2;

t_function chi_vec_eq [] = { chi_0_der , chi_1_der };

double s;

if (( pot_NFW (0) + Ys) <= 0) s = 0;

else s = get_chi_0_NFW(err , eps);

double r;

int i = 0;

double chi_vec [2];

fce_min_chi_0(s, r, chi_vec);

if (s == 0){ // screening regime

double m;

double r2 = shoot_meth_NFW(err , eps);

chi [0][i] = 0;

chi [1][i] = 0;

double shr_d_shr2 , chr_d_shr2;

for (r = step; r < r2; r += step){

i++;

if_low_memory(i, h_N , h_re , chi , 2);

m = sqrt(V_eff_2nd_derr(chi_bulk_r(r)));

chi [0][i] = r;

if (m*r>30){ // approximation for m*r>>1

shr_d_shr2 = exp(m*(r - r2));

// approximation 2*sinh(x)=e^x

chr_d_shr2 = shr_d_shr2;

}

else{

shr_d_shr2 = sinh(m*r) / sinh(m*r2);

chr_d_shr2 = cosh(m*r) / sinh(m*r2);

}

if (reg == 0) chi [1][i] = chi_bulk_r(r)*(1 + eps*r2 / r

* shr_d_shr2);

else chi [1][i] = -B / Mp*( chi_bulk_der(r)*(1 + eps*r2 /

r * shr_d_shr2) + chi_bulk_r(r)*eps * r2 /

(r*r)*(m*r*chr_d_shr2 - shr_d_shr2));

6These parts of the code are from the header �le stars_NFW.h.
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}

r = r2;

m = sqrt(V_eff_2nd_derr(chi_bulk_r(r)));

chi_vec [0] = chi_bulk_r(r)*(1 + eps);

chi_vec [1] = chi_bulk_der(r)*(1 + eps) +

chi_bulk_r(r)*eps / r*(m*r / tanh(m*r) - 1);

}

else i--;

auto integrate_star = bind(is_integrate , placeholders ::_1,

placeholders ::_2, 1 / (1 * m_inf));

double mlt = 1;

if (reg == 1) mlt *= -B / Mp;

integrate_cout(r, chi_vec , integrate_star , err ,

chi_vec_eq , 2, chi , step , mlt , reg , i);

double a = chi_vec [1] * r*r*exp(m_inf*r) / (m_inf*r + 1);

chi_vec_eq [0] = bind(chi_0_der_lin , placeholders ::_1,

placeholders ::_2, a);

while (r < r_max){

Runge_Kutta_adap_step(r, chi_vec , h, err , chi_vec_eq , 1);

chi_vec [1] = a*exp(-m_inf*r) / (r*r)*(m_inf*r + 1);

if ((r - chi [0][i]) >= step){

step *= 2;

i++;

if_low_memory(i, h_N , h_re , chi , 2);

chi [0][i] = r;

chi [1][i] = chi_vec[reg] * mlt;

}

}

N_i = i;

}

We are also using some smaller functions.

double chi_bulk(double rho){

return chi_0*pow(rho_0 / rho , 1 / (1 - n));

}

double chi_bulk_der(double r){

double x = r / R;

switch (mod){

case 0: return 0;

case 1: return 1 / R*chi_0*pow(rho_0 / rho_c , 1 / (1 - n))

/ (1 - n)*pow(x*(1 + x)*(1 + x), n / (1 - n))*((1 +

x)*(1 + x) + 2 * x*(1 + x));

}

}
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double chi_bulk_r(double r){

return chi_0*pow(rho_0 / rho_r(r), 1 / (1 - n));

}

Two shootings method for determining initial values.

double shoot_meth_NFW(double err , double eps){

double h = 1;

double s1 = r_eq;

auto fce_min_star = bind(fce_min_r2 , placeholders ::_1,

placeholders ::_2, placeholders ::_3, eps , 0);

auto integrate_star = bind(is_integrate , placeholders ::_1,

placeholders ::_2, 1 / m_inf);

t_function f_diff [] = { chi_0_der , chi_1_der };

return shoot_meth(s1, 0.5, integrate_star , fce_min_star ,

fce_max , err , f_diff , 2, chi_0*eps);

}

double get_chi_0_NFW(double err , double eps){

double h = 1;

double s1 = chi_0 + 2 * B*Mp*pot_NFW (0);

// guess from the analytical solution

auto integrate_star = bind(is_integrate , placeholders ::_1,

placeholders ::_2, 1 / (1 * m_inf));

t_function f_diff [] = { chi_0_der , chi_1_der };

return shoot_meth(s1, 0.95, integrate_star , fce_min_chi_0 ,

fce_max , err , f_diff , 2, eps*chi_0*m_inf*1e3);

}

B.6 N-body simulations

We present here part of the N -body algorithm7, namely the computation of the
forces. We focused on this part as for the chameleon gravity the set up of the
initial condition as well as the integration of equations of motion remains the
same as for standard N -body simulation. These parts are completely separate
from previous section. In this part we are using following libraries

#include "stdafx.h" // standard pre -compiled headers

#include <math.h> // common mathematical operations

#include <iostream> // standard input/output stream objects

#include <fstream> // provides file stream classes

#include <stdlib.h> // C Standard General Utilities Library

#include <fftsg.c> // 1-D FFT

#include <fftsg2d.c> // 2-D FFT

7These parts of the code are from the source �le FFT_Poisson.cpp.
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#include <fftsg3d.c> // 3-D FFT

Libraries for Fourier transforms are publicly available at [89]. We are using the
namespace

using namespace std;

For particles we de�ne a (public) class and for widely used arrays types

typedef int tVector_I [3];

typedef double tVector_D [3];

struct particle {

double x;

double y;

double z;

double mass;

double vx;

double vy;

double vz;

};

As we are dealing (for now) only with the force computation and not the equa-
tions integration, the velocity parameters are not used. We are using two public
constants: cubic grid of length of N points (total N3 grid points) with grid size h.

The algorithm is organized according to steps described in � 4.6:

1. Assign masses of particles onto the grid.

2. Convolve the density with appropriate Green`s function to get the

mesh potential.

3. Differentiate the potential to get mesh forces.

4. Interpolate mesh forces back to particles.

5. Add the short-range part of the force to particles.

Mass Assignment

For mass assignment one uses a weighting scheme. In one dimension the weighting
function of order order in a particle point x and a mesh point y is

double wgh_sch(double *x, int *y, int order){

double dx, w = 1;

switch (order){

case 0: { // NGP: Nearest grid point

for (int i = 0; i < 3; i++){

if ((int)(x[i] + 0.5) % N != (y[i] + N) % N) w *= 0;

}

return w;
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}

case 1: { // CIC: Cloud in cells

for (int i = 0; i < 3; i++){

dx = fmin(abs(x[i] - (y[i] + N) % N),x[i] + N - (y[i]

+ N) % N);

if (dx > 1) w *= 0;

else w *= 1 - dx;

}

return w;

}

case 2: { // TSC: Triangular shaped clouds

for (int i = 0; i < 3; i++){

dx = fmin(abs(x[i] - (y[i] + N) % N), x[i] + N - (y[i]

+ N) % N);

if (dx > 1.5) w *= 0;

else if (dx > 0.5) w *= (1.5 - dx)*(1.5 - dx) / 2.0;

else w *= 3 / 4.0 - dx*dx;

}

return w;

}

}

}

For assigning values to or from the 3-D mesh we use

void assign_fc(double ***data , double *x, double &value ,

int order , bool asgn){

switch (order){

case 0: { // NGP: Nearest grid point , 1 cell involved

if (asgn) data[(int)(x[0] + 0.5) % N][(int)(x[1] + 0.5)

% N][(int)(x[2] + 0.5) % N] += value;

else value += data[(int)(x[0] + 0.5) % N][(int)(x[1] +

0.5) % N][(int)(x[2] + 0.5) % N];

break;

}

default :{

tVector_I y, z;

for (int i = 0; i < 3; i++){

z[i] = (int)(x[i] - 0.5*( order - 1));

}

for (y[0] = z[0]; y[0] < z[0] + 1 + order; y[0]++){

for (y[1] = z[1]; y[1] < z[1] + 1 + order; y[1]++){

for (y[2] = z[2]; y[2] < z[2] + 1 + order; y[2]++){

if (asgn) data[(y[0] + N) % N][(y[1] + N) % N][(y[2]

+ N) % N] += value*wgh_sch(x, y, order);

else value += data[(y[0] + N) % N][(y[1] + N) %

N][(y[2] + N) % N] * wgh_sch(x, y, order);

}

}

}

break;
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}

}

}

In case of asgn = true the value in point x is added to the mesh data � case
when we assign a mass of a particle to the mesh. In case of asgn = false, on
the contrary, the value stored on a grid is assign to the value in point x � case
when interpolating forces from the mesh to particles. The mass assignment for
all p_num particles is then done by the routine add_density

void add_density(double ***data , particle *particles , int

order , int p_num , double mod){

tVector_D x;

double m;

for (int p = 0; p < p_num; p++){

x[0] = particles[p].x;

x[1] = particles[p].y;

x[2] = particles[p].z;

m = mod*particles[p].mass;

assign_fc(data , x, m, order , true);

}

}

The modi�er mod is simply 1 for classical N -body simulation with standard
Green`s function, but di�ers for the chameleon simulation while still using the
same Green`s function.

Potential calculation

For potential calculation we need an optimized Green`s function. Here we present
an algorithm for the Green`s function optimized for the TSC weighting scheme,
particles of S2(a) shape with the reference force

R̂(k) = − ik Ŝ2

k2 + λ2
, (B.1)

and 4-point �nite di�erence.

double green_fc(int i, int j, int k, double a, double

pre_fc , double lambda_2){

if (a == 0) return green_fc(i, j, k, pre_fc , lambda_2);

if (((i*i + j*j + k*k)*4*PI*PI/(N*N) + lambda_2) == 0)

return 0;

else {

const int n_max = 1;

double U2 = 1, Gr = 0, D2 = 0;

double U2_n , G_n , k2;

tVector_D k3, D, R_n;

k3[0] = 2 * PI / N*i;

k3[1] = 2 * PI / N*j;

k3[2] = 2 * PI / N*k;
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for (int n = 0; n < 3; n++){

D[n] = 4 / 3.0* sin(k3[n]) - 1 / 6.0* sin(2 * k3[n]);

D2 += D[n] * D[n];

U2 *= 1 - pow(sin(k3[n] / 2), 2) + 2 * pow(sin(k3[n] /

2), 4) / 15;

}

if (D2*U2*U2 == 0) return 0;

for (int n1 = -n_max; n1 < n_max + 1; n1++){

k3[0] = 2 * PI / N*i + 2 * PI*n1;

for (int n2 = -n_max; n2 < n_max + 1; n2++){

k3[1] = 2 * PI / N*j + 2 * PI*n2;

for (int n3 = -n_max; n3 < n_max + 1; n3++){

k3[2] = 2 * PI / N*k + 2 * PI*n3;

k2 = k3[0] * k3[0] + k3[1] * k3[1] + k3[2] * k3[2];

U2_n = 1;

G_n = 0;

for (int n = 0; n < 3; n++){

if (k3[n] != 0) U2_n *= sin(k3[n] / 2) / (k3[n] / 2);

R_n[n] = k3[n] * pow(S2_shape(sqrt(k2), a), 2) / (k2

+ lambda_2);

G_n += D[n] * R_n[n];

}

Gr += G_n*pow(U2_n , 6);

}

}

}

return -pre_fc*Gr / (D2*U2*U2);

}

}

Standard gravity is restored for pre_fc = 4πG and lambda_2 = 0. S2(a) shape
in Fourier space is

double S2_shape(double k, double a){

double t = k*a / 2;

return 12 / pow(t, 4)*(2 - 2 * cos(t) - t*sin(t));

}

Note that evaluation of the Green`s function is performed only once in whole
simulation. The convolution of the Green`s function with density is than rather
straightforward

void slvPoisson(double ***data , double *t, int *ip, double

*w, double *** green){

rdft3d(N, N, N, 1, data , t, ip, w);

rdft3dsort(N, N, N, 1, data);

double g;

for (int i = 0; i < N; i++){

for (int j = 0; j < N; j++){
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for (int k = 0; k <= N/2 ; k++){

g = green[i][j][k] * 2 / (N*N*N);

// Green `s function and normalization in case of IRDFT

data[i][j][2*k] *= g;

// Real part of the potential in Fourier space

data[i][j][2 * k+1] *= g;

// Imaginary part

}

}

}

rdft3dsort(N, N, N, -1, data);

rdft3d(N, N, N, -1, data , t, ip, w);

}

Routines rdft3d and rdft3dsort are from the library fftsg3d.c. Arrays t, ip

and w are working space for the routine rdft3d.
The �nite di�erentiation of the potential to get forces and then interpolat-

ing them back to particle positions using the routine assign_fc is simple and
straightforward so we will not present these parts here.

Short-range Force

In order to e�ciently treat nearby particles a chain mesh with linked-list is cre-
ated. The 3-D integer chain mesh HOC has M grid points with grid size Hc > rc.
The linked-list is an integer array [0..p_num]. Particles are numbered in the
same fashion. i.e. 0..p_num. The idea with the chain mesh is following: If the
chain cell contains no particles, assign it value -1. If it contains some particles,
assign it value of the last particle. The linked-list then points to the next particle
in the cell, that one points to another, etc. until one hits -1. When evaluating
the short-range force one goes through the 27 chain cells and quickly �nds every
particle.

void get_LL(int ***HOC , int *LL, particle *particles , int

M, double Hc, int p_num){

for (int i = 0; i < M; i++){

for (int j = 0; j < M; j++){

for (int k = 0; k < M; k++){

HOC[i][j][k] = -1;

}

}

}

int x,y,z;

for (int i = 0; i < p_num; i++){

x = (int)(particles[i].x / Hc);

y = (int)(particles[i].y / Hc);

z = (int)(particles[i].z / Hc);

LL[i] = HOC[x][y][z];

HOC[x][y][z] = i;

}

}
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void force_short(particle *particles , int ***HOC , int *LL,

double *x, double *f, double Hc, double rc, double a,

int M){

// Calculate short range force in point x, force is added

to vector *f

int p;

double dr;

for (int i = (int)(x[0] / Hc) - 1; i < (int)(x[0] / Hc) +

2; i++){

for (int j = (int)(x[1] / Hc) - 1; j < (int)(x[1] / Hc) +

2; j++){

for (int k = (int)(x[2] / Hc) - 1; k < (int)(x[2] / Hc)

+ 2; k++){

p = HOC[(i + M) % M][(j + M) % M][(k + M) % M];

while (p != -1){

dr = dst(particles[p], x);

if (dr < rc){ // Short range force is set 0 for

separation larger than rc

f[0] += particles[p].mass* G*( force_tot(dr) -

force_ref(dr, a))*dst_per(particles[p].x, x[0]) /

dr;

f[1] += particles[p].mass*G*( force_tot(dr) -

force_ref(dr, a))*dst_per(particles[p].y, x[1]) /

dr;

f[2] += particles[p].mass*G*( force_tot(dr) -

force_ref(dr, a))*dst_per(particles[p].z, x[2]) /

dr;

}

p = LL[p];

}

}

}

}

}

Auxiliary functions dst and dst_per simply return the distance (with periodicity
included). The force_tot is desired total force and force_ref is the reference
(mesh) force. For S2(a) shape particle

double force_ref(double r, double a){

double z = 2 * r / a;

if (z > 2) return 1 / (r*r);

else if (z > 1) return (12 / (z*z) - 224 + 896 * z - 840 *

z*z + 224 * pow(z, 3) + 70 * pow(z, 4) - 48 * pow(z, 5)

+ 7 * pow(z, 6)) / (35 * a*a);

else return (224 * z - 224 * pow(z, 3) + 70 * pow(z, 4) +

48 * pow(z, 5) - 21 * pow(z, 7)) / (35 * a*a);

}
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