
Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

DISERTA�NÍ PRÁCE

RNDr. Daniel Jo²£ák

Vyuºití algebraických a kombinatorických metod
p°i studiu ha²ovacích funkcí

Katedra algebry

Vedoucí diserta£ní práce: Doc. RNDr. Ji°í T·ma, DrSc.

Studijní program: Matematika

Studijní obor: Algebra, teorie £ísel a matematická logika

Praha 2015

D¥kuji Doc. RNDr. Ji°ímu T·movi, DrSc. za cenné rady, nám¥ty a nespo-
£etné hodiny konzultací, kterými p°isp¥l k napsání této práce. D¥kuji Pánu
Bohu, své rodin¥, v²em p°átel·m, spoluautor·m publikací a koleg·m za jejich
podporu, trp¥livost a energii pro její sepsání. Dále d¥kuji svým nad°íºeným
ve �rmách S.ICZ, First Data a NN za podporu v £ase mého studia.

V¥nováno otci Miroslavovi Jo²£ákovi.

Prohla²uji, ºe jsem dizerta£ní práci vypracoval samostatn¥ a výhradn¥ s po-
uºitím citovaných pramen·, literatury a dal²ích odborných zdroj·.

Beru na v¥domí, ºe se na moji práci vztahují i práva a povinnosti vyplývající
ze zákona £. 121/2000 Sb., autorského zákona v platném zn¥ní, zejména
skute£nost, ºe Univerzita Karlova v Praze má právo na uzav°ení licen£ní
smlouvy o uºití této práce jako ²kolního díla podle � 60 odst. 1 autorského
zákona.

V Praze dne 7. £ervence 2015 Daniel Jo²£ák

Název práce: Vyuºití algebraických a kombinatorických metod p°i studiu
ha²ovacích funkcí

Autor: Daniel Jo²£ák

Katedra: Katedra algebry

Vedoucí diplomové práce: Doc. RNDr. Ji°í T·ma, DrSc.

Abstrakt: Práce shrnuje autor·v výzkum v oboru ha²ovacích funkcí v pr·-
b¥hu jeho doktorského studia. První £ást práce p°edstavuje zobecn¥-
nou teorii rovnic sestavených ze dvou základních stavebních kamen·
kryptogra�ckých primitiv: modulárního s£ítaní a exkluzivní disjunkce.
Druhá a t°etí £ást byly napsány po Wangové zve°ejn¥ní kolizí v MD5
a ukazují, ºe drobné modi�kace této ha²ovací funkce nefungují. Tyto
dv¥ £ástí popisují kolize pro 3C a 3C+ konstrukce hashovacích funkcí,
které navrhl Gauravaram, a pro tzv. �feedback ring-iterative structure�
konstrukci navrºenou Su a kol. Výsledky byly publikovány na konferen-
cích ICISC 2006 a SPI 2007. Poslední £ást p°edstavuje nový typ kolizí
pro MD5 s nov¥ navrºenými rozdíly v kolidujících zprávách. Výsledek
byl publikován ve sborníku konference Indocrypt 2008.

Klí£ová slova: AX-rovnice, ha²ovací funkce, kolize, MD5, XOR, ADD

Title: Algebraic and combinatorial methods for the study of hash functions

Author: Daniel Jo²£ák

Department: Department of Algebra

Supervisor: Doc. RNDr. Ji°í T·ma, DrSc.

Abstract: The work summarizes author's research during the doctoral stu-
dies in the �eld of hash functions. The �rst part of the thesis presents
a generalised theory of equations built from two basic building blocks
of cryptographic primitives: modular addition and eXclusive OR. In
particular we study AX-equations of depth 1. The second and third
sections were written after Wang's publication of collisions in MD5 and
show that minor modi�cations of the hash function does not work. We
present collisions in the 3C and 3C+ constructions of hash function
suggested by Gauravaram and feedback ring-iterative structure by Su
et al. The results were published at the conferences ICISC 2006 and
SPI 2007. The last part presents a newly constructed type of collisions
in MD5 with a newly proposed message di�erences. The result was
published and presented at the conference Indocrypt 2008.

Keywords: AX-equations, hash functions, collisions, MD5, XOR, ADD

1

Contents

Introduction 4

1 AX-Equations 8

1.1 Introduction . 8
1.2 Notation and preliminaries . 8
1.3 Examples of equations . 9
1.4 A general form of equations 10
1.5 Trivial and non-trivial cases 13
1.6 The non-trivial case . 15
1.7 Quadratic and linear cases . 16
1.8 The linear case . 18
1.9 Recursion . 32

2 Multi-block Collisions in Hash functions based on 3C and

3C+ Enhancements of the Merkle-Damgård 39

2.1 Introduction . 39
2.2 Description of 3C and 3C+ 40
2.3 Multi-block collision attacks 41
2.4 Multi-block collision attacks on 3C and 3C+ 42
2.5 Conclusion . 45
2.6 Appendix: Examples of Collisions 46

3 Beyond the MD5 Collisions 48

3.1 Introduction . 48
3.2 Collisions in MD5 . 49
3.3 Recent collision searching algorithms 50

3.3.1 Algorithm Complexity 51
3.4 3C and 3C+: An Attempt to Improve Merkle-Damgård con-

struction . 53
3.4.1 Multi-block collision attacks on 3C and 3C+ 55

3.5 Feedback Ring-iterative Structure 56
3.6 Conclusion . 58

4 A New Type of 2-block Collisions in MD5 59

4.1 Introduction . 59
4.2 Preliminaries . 60

4.2.1 MD5 compression function 61
4.2.2 Di�erential Paths . 62

4.3 New 2-block Collisions in MD5 63
4.4 On Our Implementation of Stevens Algorithm 64

4.4.1 Extending Partial Di�erential Paths 65
4.4.2 Connecting Partial Di�erential Paths 67

2

4.4.3 Choosing Parameters 67
4.5 Conclusion . 68
4.6 Di�erential paths and collision example 68

References 72

3

Introduction

Cryptographic hash functions play an important role in IT security protocols
and algorithms. The hash function takes as input an arbitrary long binary
message and maps it to a binary output of a �xed length. The length of the
output message is the length of the hash function. The output is called the
hash value of the input. The hash value is also known as a digital �ngerprint
of the input message. Just like a �ngerprint can be used to identify (al-
most) uniquely a person, the hash value of a message can be used to identify
(almost) uniquely the message.

There are several properties a well designed hash function must have.
Collision resistance. A hash function H is collision resistant if it is hard

to �nd two distinct inputs that hash to the same output (that is, two distinct
inputs m1 and m2, such that H(m1) = H(m2)). De�nition of hard to �nd
means that it is computationally infeasible to �nd a colliding messages in the
sense of computational complexity theory. Every hash function with more in-
puts than outputs will necessarily have collisions. Collision resistance doesn't
mean that no collisions exist; simply that they are hard to �nd. The birth-
day paradox sets an upper bound on collision resistance: if a hash function
produces n bits of output, an attacker can �nd a 2 distinct messages with
the same hash with probability 1/2 by performing

√
π/2 · 2n/2 hash operati-

ons on average. If there is a faster method than this brute force attack, it is
considered a �aw in the hash function.

First preimage resistance. A hash function H is said to be �rst preimage
resistant (sometimes only preimage resistant) if given h it is hard to �nd any
m such that h = H(m).

Second preimage resistance. A hash function H is said to be second pre-
image resistant if given an input m1, it is hard to �nd another input, m2

(m1 6= m2) such that H(m1) = H(m2). A preimage attack di�ers from a
collision attack in that there is a �xed hash or message that is being attac-
ked and in its complexity. Optimally, a preimage attack on an n-bit hash
function will take an order of 2n operations to be successful.

Additionally the following properties are often required.
E�ciency. Computation of a hash function must be e�cient or speed

matters. Hash functions are widely deployed in many applications and it is
important to have fast implementation on di�erent architectures.

Resistance to length-extension attacks. Given H(m) and length of m, it
is computationally infeasible to compute H(m||m′) for any m′ of a positive
length. Symbol || denotes concatenation of the messages.

HMAC construction. A hash function must have at least one construction
to support HMAC (or alternative MAC construction) as a pseudorandom
function (PRF) i.e. it is hard to distinguish HMACK based on H from a
random function.

Memory requirements and code size. It is important for implementation

4

on various embedded systems such as smart cards that a hash function can
work within a memory of various limited environments.

Advances in cryptanalysis of hash functions

In 2004 a group of researchers led by Xiaoyun Wang (Shandong Univer-
sity, China) presented real collisions in MD5 and other hash functions at the
rump session of Crypto conference and they explained the method in [29]. In
2006 the same group presented a collision attack on SHA�1 in [28] and since
then a lot of progress in collision �nding algorithms has been made. One of
the results of this research was a competition for a new hash standard which
started in 2007 and ended in 2012 by choosing of a new SHA-3 standard.

This thesis summrizes the following topics:

• AX Functions and their known properties as building blocks of hash
functions.

• Multi-block Collisions in Hash functions based on 3C and 3C+ Enhan-
cements of the Merkle-Damgård [8] published at International Confe-
rence on Information Security and Cryptology (ICISC) 2006.

• Beyond the MD5 Collisions [7] published at conference Security and
Protection of Information in 2007.

• A New Type of 2-Block Collisions in MD5 [26] published at Indocrypt
2008

AX-Eqautions In this section we present some properties of two basic bu-
ilding blocks of hash functions: modular addition and eXclusive OR known
also as XOR. These two functions together with a word rotation (≪) are
often referred of ARX construction and are frequently used because their
e�ciency and simple implementation. Computers well support these ope-
rations on 32 and 64-bit words which leads to very fast and optimal pro-
cessing. Modular addition provides a non-linearity, word rotation provides
di�usion within a single word and XOR provides di�usion between words
and linearity. The use of modular addition also reduces the memory requi-
rements that could be needed otherwise for substitution box table lookups
or other de�nitions of functions with nonlinear properties needed. This gives
additional points to popularity of ARX constructions as they provide more
resistance against some of the possible side channels. We omitted a word ro-
tation operation in our study, therefore the name AX-functions. We present
a theorem which describes a large class of AX-equations for which the solu-
bility condition depends only on pairs of subsequent vectors of parameters
of the equations. The theorem also gives a precise value of the probability
that a randomly selected unknowns solve AX-equation from this class. There
are additional classes of AX-equations where we encourage future work (e.g.
quadratic case and general recursion).

5

Multi-block Collisions in Hash functions based on 3C and 3C+

Enhancements of the Merkle-Damgård. The MD5 hash function was
still widely used right after Wang's' collision discovery and an obvious ques-
tion occurred. Is it possible to repair MD5 or SHA-1 without additional
investments for their complete removal? There were several proposals how
to repair the function. Gauravaram et al [5] have proposed a slight modi�-
cation to the Merkle-Damgård construction for an improved protection aga-
inst many known attacks on Merkle-Damgård based hash functions. Their
idea was to add additional registers that would collect xors of all chaining
variables. After the message is processed the content of additional registers is
padded to provide one more message block and the extra block is used as an
input for the last calculation of the compression function. Thus the original
Merkle-Damgård construction remains and the extra security is supposed to
be provided by the additional registers. We described in our paper Multi-
block Collisions in Hash functions based on 3C and 3C+ Enhancements of
the Merkle�Damgård Construction [8]. We have shown that improvements
such as 3C constructions do not work and that proofs provided in [5] are
based on strong assumptions which are not valid anymore. We emphasized
that random properties in compression function of MD5 are no more usa-
ble for cryptographic application. The same could be applied for the case of
SHA-1 function because theoretical collision searching algorithms have the
same structure as in the case of MD5.

Beyond the MD5 Collisions. In this article we summarize results and a
state of art of collision resistance of MD5. We recall known collision searching
methods, describe and compare 3 concrete algorithms by Vlastimil Klíma,
Marc Stevens and ourselves. We give a method how to theoretically calcu-
late the complexity of the algorithms which is not based on the measured
tests but which can be veri�ed by these tests. We show that collision attack
on MD5 (and also SHA-0, SHA-1) can be easily extended to the extensie-
ons of Merkle�Damgård construction like 3C and 3C+ constructions if the
same compression function is used. We present similar faults in the concept
of feedback ring-iterative structure suggested in [19] and present proof of
concept how collisions in this structure could look like. We discourage from
usage of compression function from MD5 in any other similar extensieon of
Merkle�Damgård construction.

A New Type of 2-Block Collisions in MD5. A lot of progress was made
after researchers studied in depth the structure of collisions introduced by
Wang in [29]. One direction of research was optimizing the collision searching
algorithms to �nd colliding messages faster. Examples of these improvements
could be found in e.g. [10], [23], [6]. Another direction of the research tried
to �nd a di�erent type of collisions as so far the colliding messages had
the same di�erences e.g. [25], [20], [21]. In our contribution we combine both

6

directions. We present a di�erent type of collisions for MD5 which were found
by a new di�erential path and then used the collision searching techniques to
�nd colliding messages with a new di�erences. To construct a new di�erential
path for MD5 function we have reimplemented Stevens algorithm [25] and
extended it with our experience from various collision searching techniques.
As the con�rmation that our method works we presented a colliding pair of
massages.

7

1 AX-Equations

1.1 Introduction

The method of di�erential cryptanalysis was �rst published by Biham and
Shamir in [2] in connection with their study of the security of DES. Since
then di�erential cryptanalysis has become one of the main tools for investiga-
ting security of various cryptographic primitives like ciphers, hash functions,
message authentication codes, pseudorandom generators, etc.

The method can be described brie�y in the following way. Let (G,⊕) and
(H,+) be two �nite Abelian groups and f : G → H an arbitrary mapping.
We choose some α ∈ G and consider the random variable f(x⊕α)−f(x) ∈ H,
where x ∈ G is uniformly selected. If the probability of some β ∈ H is
signi�cantly higher then |H|−1, then we say that a pair (α, β) is a good

di�erential for f . The probability of β = f(x ⊕ α) − f(x) is called the
probability of the di�erential (α, β). Similarly a pair (α, β) is a bad di�erential
for f if the probability of β = f(x ⊕ α) − f(x) is signi�cantly less then
|H|−1. In particular, a pair (α, β) is an impossible di�erential for f if the
probability of β = f(x ⊕ α) − f(x) is equal to 0. Di�erential cryptanalysis
takes advantage of existence of good or bad di�erentials for a mapping f .
The di�erential (α, β) is sometimes denoted as

α
f−→ β

and f is usually omitted when it is clear from the context.
Obviously, the concept of a good di�erential makes sense only when f is

not a group homomorphism. Cryptographic algorithms often use the group
(Z2)

p with addition⊕ over Z2, i.e. the additive group of the linear space (Z2)
p

over Z2. This operation is sometimes called xor. In some cases the algorithm
uses modular addition + with module 2p as the main source of nonlinearity
of the algorithm. In such a case, the operation + : (Z2)

p × (Z2)
p → (Z2)

p

plays the role of the mapping f from the previous paragraph. Estimating the

probability of a di�erential (α, β)
+−→ γ leads to the equation

(x⊕ α) + (y ⊕ β) = (x+ y)⊕ γ ,

where x, y ∈ (Z2)
p. We are interested in the probability that uniformly se-

lected x, y ∈ (Z2)
p satisfy the equation. Of course, this probability depends

on the parameters α, β, γ.

1.2 Notation and preliminaries

Any element (ap−1, . . . , a0) ∈ (Z2)
p can be interpreted also as a natural

number
ap−12

p−1 + · · ·+ a12
1 + a0 ∈ Z2p .

8

This interpretation allows to de�ne the modular addition + of the elements
of Zp

2 as the addition in the quotient ring Z2p of integers modulo 2p.
We will use the vector notation x = (xp−1, . . . , x0) for the elements of

(Z2)
p. It is a well-known fact that the modular addition x+y of two vectors

from (Z2)
p can be expressed in the form

x + y = x⊕ y ⊕ c ,

where c = (cp−1, . . . , c0) is the carry vector de�ned by c0 = 0 and

ci = xi−1yi−1 ⊕ ci−1(xi−1 ⊕ yi−1) (1)

for i = 1, ..., p − 1. Notice that the i-th carry ci depends only on the bits
x0, . . . , xi−1 and y0, . . . , yi−1 of the vectors x, y.

1.3 Examples of equations

We start with a list of equations. Most of them were already studied by
various authors.

Example 1.1. The equation

(x⊕α) + (y ⊕ β) = (x + y)⊕ γ (2)

was comprehensively studied by Lipmaa and Moriai in [14]. The authors
presented an e�cient algorithm for deciding if the equation has a solution for
given parameters α,β,γ and for calculating the probability that a randomly
selected vectors x and y from (Z2)

p satisfy the equation. We will write the
equation (2) in the form

[(x⊕α) + (y ⊕ β)]⊕ (x + y)⊕ γ = 0 . (3)

Example 1.2. The equation

x +α = x⊕ β (4)

was studied by Leurent and Thomsen in [12] in connection with cryptanalysis
of the BMW candidate for a new hash standard SHA-3. They again calcula-
ted the probability that a randomly selected vector x from (Z2)

p solves the
equation (4) for given parameters α,β. Our form of the equation is

(x +α)⊕ x⊕ β = 0 . (5)

Example 1.3. The equation

(x +α)⊕ (y + β) = (x⊕ y) + γ (6)

was studied by Lipmaa et al. in [15] as the dual equation to (2). Also in this
case they calculated the probability that a randomly selected vectors x and
y from (Z2)

p solve the equation (6) for given parameters α,β,γ. We will
study it in the form

(x +α)⊕ (y + β)⊕ [(x⊕ y) + γ] = 0 . (7)

9

Example 1.4. The equation

(x⊕α) + β = (x + β)⊕α (8)

was formulated by Markova in her Master thesis [16] in connection with her
attempt to �ll in some gaps in the paper [4] analyzing two other candidates
for SHA-3. She found examples of parameters α,β for which the equation has
no solution, despite an unaproved assumption of [4] that such an equation is
always solvable. We will rewrite (8) as

[(x⊕α) + β]⊕ (x + β)⊕α = 0 . (9)

Example 1.5. We will also consider the equation

(x +α)⊕ (y + β)⊕ (x + y)⊕ γ = 0 . (10)

We are not aware of any paper where this equation was studied.

1.4 A general form of equations

All the previous equations combine modular addition and xor, some unk-
nown vectors from (Z2)

p and some parameters. Such equations are called
AX-equations. Each modular addition adds two expressions involving only
unknowns, parameters and the operation xor. AX-equations of this type will
be called of depth 1. The general form of AX-equations of depth 1 can be
formulated as follows.

We assume that the equation has N unknowns x̃T
1 , . . . , x̃

T
N ∈ (Z2)

p and
we will write them as rows of a single unknown matrix

X =


x̃T
1

x̃T
2
...

x̃T
N

 =


x1,p−1 x1,p−2 · · · x1,0
x2,p−1 x2,p−2 · · · x2,0

...
...

. . .
...

xN,p−1 xN,p−2 · · · xN,0


of type N × p over Z2.

Similarly, the parameters δ̃
T
1 , . . . , δ̃

T
M ∈ Zp

2 will be written as rows of a
single parameter matrix

∆ =


δ̃
T
1

δ̃
T
2
...

δ̃
T
M

 =


δ1,p−1 δ1,p−2 · · · δ1,0
δ2,p−1 δ2,p−2 · · · δ2,0

...
...

. . .
...

δM,p−1 δM,p−2 · · · δM,0


of type M × p over Z2.

10

We will denote the number of modular additions in the equation by S.
If the equation is of depth 1, then the left summand in the s-th modular
addition can be written as

ls,1x̃
T
1 ⊕ · · · ⊕ ls,N x̃T

N ⊕ ps,1δ̃
T
1 ⊕ · · · ⊕ ps,M δ̃

T
M ,

where ls,j , ps,k ∈ Z2 for each s = 1, . . . , S. The coe�cient ls,j = 1 if and
only if the unknown x̃j does appear in the left summand of the s-th modular
addition. Also ps,k = 1 if and only if the parameter δ̃k does appear in the
left summand of the s-th modular addition.

Similarly, the right summand of the s-th modular addition can be written
as

rs,1x̃
T
1 ⊕ · · · ⊕ rs,N x̃T

N ⊕ qs,1δ̃
T
1 ⊕ · · · ⊕ qs,M δ̃

T
M ,

where rs,j , qs,k ∈ Z2.
So we can write the s-th modular addition as

(̃lTsX ⊕ p̃T
s ∆) + (r̃TsX ⊕ q̃T

s ∆) ,

where l̃Ts = (ls,1, . . . , ls,N), r̃Ts = (rs,1, . . . , rs,N) are vectors in (Z2)
N , and

p̃T
s = (ps,1, . . . , ps,M), q̃T

s = (qs,1, . . . , qs,M) are vectors in (Z2)
M .

If we denote the carry vector of the s-th modular addition by c̃Ts =
(cs,p−1, . . . , cs,1, cs,0), then we can rewrite the s-th modular addition as

(̃lTsX ⊕ p̃T
s ∆) + (r̃TsX ⊕ q̃T

s ∆) = l̃TsX ⊕ p̃T
s ∆⊕ r̃TsX ⊕ q̃T

s ∆⊕ c̃Ts .

Some of the unknowns and parameters can appear in the equation as
�singles�, i.e. not in a summand of any modular addition. For example, x
and β are singles in (5). The presence of single unknowns in an equation can
be described by a vector uT = (u1, . . . , uN) ∈ (Z2)

N , where uj = 1 if and
only if the unknown x̃j appears as a single. Similarly, the presence of single
parameters in an equation is described by a vector vT = (v1, . . . , vM) ∈
(Z2)

M , where vk = 1 if and only if the parameter δ̃k appears in the equation
also as a single.

So any AX-equation of depth 1 can be written as

S⊕
s=1

[
(̃lTsX ⊕ p̃T

s ∆) + (r̃TsX ⊕ q̃T
s ∆)

]
⊕ uTX ⊕ vT∆ = 0 , (11)

or with the carry vectors as

S⊕
s=1

[̃
lTsX ⊕ p̃T

s ∆⊕ r̃TsX ⊕ q̃T
s ∆⊕ c̃Ts

]
⊕ uTX ⊕ vT∆ = 0 . (12)

11

The equation can be written in a compact matrix form if we combine the
vectors l̃s, r̃s into matrices

L =


l̃T1
l̃T2
...

l̃TS

 =


l1,1 · · · l1,N
l2,1 · · · l2,N
...

. . .
...

lS,1 · · · lS,N

 , R =


r̃T1
r̃T2
...
r̃TS

 =


r1,1 · · · r1,N
r2,1 · · · r2,N
...

. . .
...

rS,1 · · · rS,N


of type S ×N , the vectors p̃s and q̃s into matrices

P =


p̃T
1

p̃T
2
...
p̃T
S

 =


p1,1 · · · p1,M
p2,1 · · · p2,M
...

. . .
...

pS,1 · · · pS,M

 , Q =


q̃T
1

q̃T
2
...

q̃T
M

 =


q1,1 · · · q1,M
q2,1 · · · q2,M
...

. . .
...

qS,1 · · · qS,M


of type S ×M , and the carry vectors c̃1, . . . c̃S into a carry matrix

C =


c̃T1
c̃T2
...
c̃TS

 =


c1,p−1 c1,p−2 · · · q1,0
c2,p−1 c2,p−2 · · · q2,0

...
...

. . .
...

cS,p−1 cS,p−2 · · · qS,0


of type S × p.

The big xor in the equation (12) is the linear combination of the rows of
the matrix LX ⊕ P∆⊕RX ⊕Q∆⊕C with all coe�cients equal to 1. If we
denote by 1TS the vector of ones (1, 1, . . . , 1) ∈ ZS

2 , then the big xor equals

1TS (LX ⊕ P∆⊕RX ⊕Q∆⊕ C) .

So the equation (11) can be written as

1TS (LX ⊕ P∆⊕RX ⊕Q∆⊕ C)⊕ uTX ⊕ vT∆ = 0. (13)

The binary matrices L, R, P , Q and the vectors uT , vT describe the form
of the equation.

Example 1.1. In the �rst example the number of unknowns is N = 2, the
number of parameters is M = 3, and the number of modular additions is
S = 2. The matrices L, R, P , Q are

L =

(
1 0
1 0

)
, R =

(
0 1
0 1

)
, P =

(
1 0 0
0 0 0

)
, Q =

(
0 1 0
0 0 0

)
,

and the vectors u,v are

uT = (0, 0), vT = (0, 0, 1) .

12

Example 1.2. In the second example we have N = 1, M = 2, S = 1, and
the matrices L, R, P , Q are

L =
(
1
)
, R =

(
0
)
, P =

(
0 0

)
, Q =

(
1 0

)
.

The vectors u,v are
uT = (1), vT = (0, 1) .

Example 1.3. In the third example we have N = 2, M = 3, S = 3, and the
matrices L, R, P , Q are

L =

1 0
0 1
1 1

 , R =

0 0
0 0
0 0

 , P =

0 0 0
0 0 0
0 0 0

 , Q =

1 0 0
0 1 0
0 0 1

 .

The vectors u,v are

uT = (0, 0), vT = (0, 0, 0) .

Example 1.4. In this case we have N = 1, M = 2, S = 2, and the matrices
L, R, P , Q are

L =

(
1
1

)
, R =

(
0
0

)
, P =

(
1 0
0 0

)
, Q =

(
0 1
0 1

)
.

The vectors u,v are
uT = (0), vT = (1, 0) .

Example 1.5. In the �fth example we have N = 2, M = 3, S = 3, and the
matrices L, R, P , Q are

L =

1 0
0 1
1 0

 , R =

0 0
0 0
0 1

 , P =

0 0 0
0 0 0
0 0 0

 , Q =

1 0 0
0 1 0
0 0 0

 .

The vectors u,v are

uT = (0, 0), vT = (0, 0, 1) .

1.5 Trivial and non-trivial cases

We will study AX-equations of depth 1 written in the form (13). It can be
written even more conveniently as(

1TS (L⊕R)⊕ uT
)
X ⊕ 1TSC ⊕

(
1TS (P ⊕Q)⊕ vT

)
∆ = 0 . (14)

We write the unknown matrixX in the column formX = (xp−1|xp−2| . . . |x0),
where for i = 1, . . . p−1, xi ∈ (Z2)

N is the vector of the i-th bits of the unk-
nowns x̃T

1 , . . . , x̃
T
N . Similarly, ∆ = (δp−1|δp−2| . . . |δ0) is the column form

13

of the parameter matrix and C = (cp−1|cp−2| . . . |c0) is the column form of
the carry matrix. So ci is the vector of the i-th carries of the carry vectors
c̃T1 , . . . , c̃

T
S .

For a randomly selected matrix X of type N × p the equality (14) holds
if and only if(

1TS (L⊕R)⊕ uT
)
xj ⊕ 1TScj ⊕

(
1TS (P ⊕Q)⊕ vT

)
δj = 0 (15)

for every j = 0, . . . , p− 1.
If i ∈ {0, . . . , p}, then we say that a matrix X solves the equation (14)

mod 2i if(
1TS (L⊕R)⊕ uT

)
xj ⊕ 1TScj ⊕

(
1TS (P ⊕Q)⊕ vT

)
δj = 0

for every j = 0, . . . , i−1. Thus every matrix X solves (14) mod 20. A matrix
X solves (14) if and only if it solves it mod 2p.

We will proceed by the following induction. We start with a matrix X
solving the equation (14) mod 2i for some i = 0, . . . , p−1, and �nd conditions
under which it solves (14) also mod 2i+1 .

Note also that the fact that X solves (14) mod 2i depends only on the
columns xi−1, . . . ,x0 and ci−1, . . . , c0. And since any column cj depends
only on xj−1, . . . ,x0, the induction step reduces to the equation(

1TS (L⊕R)⊕ uT
)
xi ⊕ 1TSci ⊕

(
1TS (P ⊕Q)⊕ vT

)
δi = 0 , (16)

in the unknown vector xi. The induction step is easy when the vector(
1TS (L⊕R)⊕ uT

)
6= 0 .

In this case a matrix X solving (14) mod 2i is a solution mod 2i+1 if and
only if (

1TS (L⊕R)⊕ uT
)
xi = 1TSci ⊕

(
1TS (P ⊕Q)⊕ vT

)
δi . (17)

This is a single linear equation in xi with a known right-hand side not
depending on mathbfxi. Since the coe�cient vector 1TS (L⊕R) ⊕ uT 6= 0,
vectors xi satisfying (17) form an a�ne hyperplane in (Z2)

N . The number
of these xi's is thus 2N−1 and the probability that a matrix X solving (14)
mod 2i is also a solution mod 2i+1 is exactly 1/2.

We call the case 1TS (L⊕R) ⊕ uT 6= 0 trivial. Results about the trivial
case of equations are summed up in the following proposition.

Proposition 1.6. If 1TS (L⊕R)⊕ uT 6= 0 then a randomly selected binary

matrix X of type N × p satis�es the equation (14) with probability 2−p.
In particular, any equation (14) with 1TS (L⊕R)⊕uT 6= 0 has a solution.

14

1.6 The non-trivial case

The equation (14) is called non-trivial if 1TS (L⊕R) ⊕ uT = 0. From now
on we will consider only non-trivial equations. One can easily check that our
�ve examples of AX-equations are all non-trivial. In the non-trivial case the
equation (14) reduces to

1TSC =
(
1TS (P ⊕Q)⊕ vT

)
∆. (18)

To simplify further notations we set

ωT = 1TS (P ⊕Q)⊕ vT .

Hence a matrix X is a solution of (18) mod 2i if and only if

1TScj = ωTδj (19)

for every j = 0, . . . , i − 1. This condition does not depend on the column
xi−1 of the matrix X.

A solution X of (18) mod 2i is also a solution 2i+1 if and only if

1TSci = ωTδi . (20)

Note that the last equation depends only on the columns xi−1, . . . ,x0 of the
matrix, and the induction hypothesis does not depend on xi−1.

To investigate further the equation (20) we expand the components of ci
using formula (1) de�ning the i-th carry. For every s = 1, . . . , S the carry
cs,i is the i-th carry in the modular sum

(̃lTsX ⊕ p̃T
s ∆) + (r̃TsX ⊕ q̃T

s ∆) ,

hence

cs,i = (̃lTs xi−1 ⊕ p̃T
s δi−1)(r̃

T
s xi−1 ⊕ q̃T

s δi−1)⊕
cs,i−1(̃l

T
s xi−1 ⊕ r̃Ts xi−1 ⊕ p̃T

s δi−1 ⊕ q̃T
s δi−1)

= (̃lTs xi−1)(r̃
T
s xi−1)⊕ (̃l

T

s xi−1)(q̃
T
s δi−1)⊕ (p̃T

s δi−1)(r̃
T
s xi−1)⊕

cs,i−1(̃l
T
s ⊕ r̃Ts)xi−1 ⊕ cs,i−1(p̃T

s ⊕ q̃T
s)δi−1 ⊕ (p̃T

s δi−1)(q̃
T
s δi−1)

= xT
i−1(̃lsr̃

T
s)xi−1 ⊕ δTi−1q̃s̃l

T
s xi−1 ⊕ δTi−1p̃sr̃

T
s xi−1 ⊕

cs,i−1(̃l
T
s ⊕ r̃Ts)xi−1 ⊕ cs,i−1(p̃T

s ⊕ q̃T
s)δi−1 ⊕ δTi−1(p̃sq̃

T
s)δi−1 .

Since cTi 1S = c1,i⊕c2,i⊕· · ·⊕cS,i, by summing up the previous equation
over S we obtain

cTi 1S =

S⊕
s=1

(
xT
i−1(̃lsr̃

T
s)xi−1

)
⊕

S⊕
s=1

(
δTi−1q̃s̃l

T
s xi−1

)
⊕

S⊕
s=1

(
δTi−1p̃sr̃

T
s xi−1

)
⊕

S⊕
s=1

(
cs,i−1(̃l

T
s ⊕ r̃Ts)xi−1

)
⊕

S⊕
s=1

(
cs,i−1(p̃

T
s ⊕ q̃T

s)δi−1
)
⊕

S⊕
s=1

(
δTi−1(p̃sq̃

T
s)δi−1

)
.

15

Next we calculate each sum on the right-hand side. We obtain

S⊕
s=1

xT
i−1(̃lsr̃

T
s)xi−1 = xT

i−1

(
S⊕

s=1

l̃sr̃
T
s

)
xi−1 = xT

i−1L
TRxi−1 ,

the last equality follows from the dyadic expansion of the product LTR.
Similarly we obtain

S⊕
s=1

δTi−1q̃s̃l
T
s xi−1 = δTi−1(Q

TL)xi−1 ,

S⊕
s=1

δTi−1p̃sr̃
T
s xi−1 = δTi−1(P

TR)xi−1 ,

S⊕
s=1

cs,i−1(̃l
T
s ⊕ r̃Ts)xi−1 = cTi−1(L⊕R)xi−1 ,

S⊕
s=1

cs,i−1(p̃
T
s ⊕ q̃T

s)δi−1 = cTi−1(P ⊕Q)δi−1 ,

S⊕
s=1

δTi−1(p̃sq̃
T
s)δi−1 = δTi−1(P

TQ)δi−1 .

Hence

cTi 1S = xT
i−1L

TRxi−1 ⊕ δTi−1(QTL⊕ P TR)xi−1 ⊕ cTi−1(L⊕R)xi−1 ⊕
cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1.

So cTi 1S is the sum of a quadratic form xT
i−1L

TRxi−1 in xi−1 with con-
stant coe�cients, a linear form in xi−1 with coe�cients depending on ci−1,
and a constant term depending on ci−1.

Proposition 1.7. If the equation (14) is non-trivial, then a solution X
mod 2i is a solution mod 2i+1 if and only if

xT
i−1L

TRxi−1 ⊕
[
δTi−1

(
QTL⊕ P TR

)
⊕ cTi−1(L⊕R)

]
xi−1 (21)

= cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi .

Proof. In the non-trivial case a solution X mod 2i of (14) is a solution
mod 2i+1 if and only if the equality (20) holds. So the proof follows from the
calculation preceding the proposition.

1.7 Quadratic and linear cases

The quadratic form xT
i−1L

TRxi−1 is over Z2. It reduces to a sum of squares

ε1x
2
1,i−1 ⊕ ε1x22,i−1 ⊕ · · · ⊕ εNx2N,i−1

16

if and only if the coe�cient matrix LTR is symmetric. Here ε = (ε1, . . . , εN) =
diag(LTR) is the vector of diagonal elements of LTR.

We call a non-trivial equation (14) quadratic, if the matrix LTR is not
symmetric, and linear otherwise (i.e. if LTR is symmetric).

In the linear case the equation (14) transforms via (21) to a linear
equation in xi−1 as follows. Since x2 = x for every x ∈ Z2, the value of
the quadratic form

xT
i−1L

TRxi−1 = ε1x
2
1,i−1 ⊕ ε1x22,i−1 ⊕ · · · ⊕ εNx2N,i−1

is the same as the value of the linear form

εTxi−1 = ε1x
2
1,i−1 ⊕ ε1x22,i−1 ⊕ · · · ⊕ εNx2N,i−1 .

for any vector xi−1 ∈ (Z2)
N . Hence a vector xi−1 satis�es (21) if and only if

it satis�es the linear equation

εTxi−1 ⊕
[
δTi−1

(
QTL⊕ P TR

)
⊕ cTi−1(L⊕R)

]
xi−1 =

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi ,

i.e. [
cTi−1(L⊕R)⊕ δTi−1

(
QTL⊕ P TR

)
⊕ εT

]
xi−1 = (22)

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi ,

Similarly we can simplify the quadratic case. The value of the linear form[
cTi−1(L⊕R)⊕ δTi−1

(
QTL⊕ P TR

)]
xi−1

is for any xi−1 ∈ (Z2)
N the same as the value of the quadratic form

xT
i−1Diag

[
δTi−1

(
QTL⊕ P TR

)
⊕ cTi−1(L⊕R)

]
xi−1 .

Here Diag
[
δTi−1

(
QTL⊕ P TR

)
⊕ cTi−1(L⊕R)

]
denotes the diagonal matrix

B over Z2 such that

diag(B) = δTi−1
(
QTL⊕ P TR

)
⊕ cTi−1(L⊕R) .

So in the quadratic case the equation (21) reduces to

xT
i−1L

TRxi−1 ⊕ xT
i−1Bxi−1 =

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi ,

i.e.

xT
i−1(L

TR⊕B)xi−1 = cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi (23)

with a non-symmetric matrix LTR⊕B. Note that LTR⊕B is non-symmetric
if and only if LTR is non-symmetric, since B is diagonal.

First we deal with the quadratic case. Here we can use the following
well-known result about quadratic forms over Z2, see e.g. Section 1-12 of the
monograph by Kaplansky [9].

17

Theorem 1.8. If xTAx a quadratic form of order n over Z2 de�ned by a

non-symmetric matrix A, then there exists a coordinate change x = Cy with

yT = (y1, . . . , yn), such that the quadratic form yT (CTAC)y is either

y1y2 ⊕ · · · ⊕ y2k−1y2k ⊕ y22k+1 ⊕ · · · ⊕ y22k+l

or

y1y2 ⊕ · · · ⊕ y2k−3y2k−2 ⊕ y2k−1y2k ⊕ y22k−1 ⊕ y22k ⊕ y22k+1 ⊕ · · · ⊕ y22k+l

for some k ≥ 1 and l ≥ 0.
In particular, the form xTAx always takes both values 0 and 1.

Since the right-hand side of (23) does not depend on xi−1, we immediately
obtain the following result on quadratic AX-equations.

Proposition 1.9. For a quadratic AX-equation (14) and any i = 0, . . . , p−1
there exists a solution X mod 2i that is also a solution mod 2i+1.

In particular, every quadratic AX-equation has a solution.

Proof. To prove the �rst claim, let us suppose that for some i < p− 1 there
exists a solution X mod 2i. Then X = (xp−1|xp−2| · · · |x0) is a solution
mod 2i+1 if and only if xi−1 satis�es (23), where the matrix LTR ⊕ B is
non-symmetric. By Theorem 1.8 there indeed does exist some xi−1 ∈ (Z2)

N

satisfying the equation (23). Hence there exists a solution of (14) mod 2i+1.
The �rst claim is the induction step to prove the second claim, it is just

su�cient to recall that any X is a solution of (14) mod 20.

The exact evaluation of the probability that a randomly selected X sa-
tis�es a quadratic AX-equation is out of scope of the current text. It would
require a detailed study of the size of various quadrics over Z2.

From our list of equations only the last one is quadratic.

Example 1.5. It is su�cient to calculate the matrix LTR:

LTR =

1 0
0 1
1 0

T 0 0
0 0
0 1

 =

(
0 1
0 0

)
.

The matrix is not symmetric, hence the equation (10) is quadratic and by
Proposition 1.9 is solvable for any parameters α,β,γ.

1.8 The linear case

The remaining four equations from our list are linear. We can easily check
it by calculating the matrix LTR in each case. Investigation of linear AX-
equations is the core of this chapter. In the linear case, the question if a

18

solution X mod 2i is also a solution mod 2i reduces to (22), i.e. to[
cTi−1(L⊕R)⊕ δTi−1

(
QTL⊕ P TR

)
⊕ εT

]
xi−1 =

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi .

This is a single linear equation for xi−1 with coe�cients depending only on
ci−1. To simplify slightly our notation we set

A = QTL⊕ P TR ,

Thus A is a matrix of type M ×N . So we investigate the equation[
cTi−1(L⊕R)⊕ δTi−1A⊕ εT

]
xi−1 = (24)

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi .

In the linear case we formulate a series of checks determining properties
of linear AX-equations.

Check No. 1

The vector

cTi−1(L⊕R)⊕ δTi−1A⊕ εT (25)

of coe�cients in (24) depends on the carries ci−1 and also on the parameters
δi−1. If this vector is non-zero for any solution X mod 2i, then the equation
(24) has always a solution. But the assumption that X is a solution mod 2i

means that the vector cTi−1 must satisfy the equation

cTi−11S = ωTδi−1 . (26)

So the vector (25) is certainly non-zero for every solution X mod 2i if the
system of linear equations

yT
i−1(L⊕R | 1S) = (δTi−1A⊕ εT | ωTδi−1)

is unsolvable.

Proposition 1.10. We assume that the equation (14) is linear. If

rank
(
L⊕R 1S

)
< cTi−11S

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
,

then the equation (24) is always solvable. The set of solutions of (24) forms

a hyperplane in (Z2)
N , hence it has cardinality 2N−1. A solution of X (14)

mod 2i is a solution mod 2i+1 with probability 2−1.
In particular, if there exists a solution of (14) mod 2i, then there is also

a solution mod 2i+1.

19

Proof. Let X be of a solution of (14) mod 2i. Then the vector cTi−1 satis�es
the equation (26). The matrix X is a solution mod 2i+1 if and only if it
satis�es (16). In the non-trivial case, (16) reduces to (21) by Proposition 1.7.
And since we assume the linear case, (21) reduces further to (24). By our
assumption, the system of linear equations

yT
i−1(L⊕R | 1S) = (δTi−1A⊕ εT | ωTδi−1)

has no solution. Since X is a solution of (14) mod 2i, the vector cTi−1 always
satis�es the last equation cTi−11S = ωTδi−1. Hence it must be

cTi−1(L⊕R)⊕ δTi−1A⊕ εT 6= 0 .

It follows that the equation (24) is solvable and the set of it's solutions is
a hyperplane in (Z2)

N . Thus any solution X mod 2i is a solution mod 2i+1

with probability 2−1.
The last claim follows directly from the previous one.

Since the right-hand side of the system of linear equations

yT
i−1(L⊕R | 1S) = (δTi−1A⊕ εT | ωTδi−1)

depends on δTi−1, a linear AX-equation may satisfy the assumptions of Pro-
position 1.10 for some i's and not satisfy them for other i's.

Example 1.1. As for the linear equation (3), we have

L =

(
1 0
1 0

)
, R =

(
0 1
0 1

)
, P =

(
1 0 0
0 0 0

)
, Q =

(
0 1 0
0 0 0

)
,

and the vectors uT = (0, 0), vT = (0, 0, 1). Thus we get

L⊕R =

(
1 1
1 1

)
, P ⊕Q =

(
1 1 0
0 0 0

)
, LTR =

(
0 0
0 0

)
,

hence also εT = (0, 0) and ωT = 1TS (P ⊕Q)⊕ vT = (1, 1, 1). Moreover

A = QTL⊕ P TR =

0 1
1 0
0 0

 ,

We set further

∆ =

αβ
γ

 .

So we get

δTi−1A = (αi−1, βi−1, γi−1)

0 1
1 0
0 0

 = (βi−1, αi−1) ,

20

and also

ωTδi−1 = (1, 1, 1)

αi−1
βi−1
γi−1

 = αi−1 ⊕ βi−1 ⊕ γi−1 .

Hence the rank of(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
=

 1 1 1
1 1 1

βi−1 αi−1 αi−1 ⊕ βi−1 ⊕ γi−1


is the same as the rank of

(L⊕R | 1S) =

(
1 1 1
1 1 1

)
if and only if αi−1 = βi−1 = γi−1.

It proves that equation (3) satis�es the assumption of Proposition 1.10 if
and only if the three bits αi−1, βi−1, γi−1 are not the same. Any such index i
reduces the probability that a matrix X solves (3) by exactly 2−1. As usual,
we set α−1 = β−1 = γ−1 = 0.

Example 1.2. As for the linear equation (5), we have

L =
(
1
)
, R =

(
0
)
, P =

(
0 0

)
, Q =

(
1 0

)
, uT = (1), vT = (0, 1) .

Thus we get

L⊕R =
(
1
)
, P ⊕Q =

(
1 0

)
, LTR =

(
0
)
, εT

(
0
)
,

and ωT = 1TS (P ⊕Q)⊕ vT = (1, 1). Moreover,

A = QTL⊕ P TR =

(
1
0

)
.

We set

∆ =

(
α
β

)
.

Then

δTi−1A = (αi−1, βi−1)

(
1
0

)
= (αi−1) ,

ωTδi−1 = (1, 1)

(
αi−1
βi−1

)
= αi−1 ⊕ βi−1 .

Hence the rank of(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
=

(
1 1

αi−1 αi−1 ⊕ βi−1

)
21

is equal to the rank of

(L⊕R | 1S) =
(

1 1
)

if and only if βi−1 = 0. Thus the assumptions of Proposition 1.10 are satis�ed
whenever βi−1 6= 0. Any such index i reduces the probability that a matrix
X solves (5) by exactly 2−1.

Example 1.3. In the linear equation (7) we have

L =

1 0
0 1
1 1

 , R =

0 0
0 0
0 0

 , P =

0 0 0
0 0 0
0 0 0

 , Q =

1 0 0
0 1 0
0 0 1

 ,

and the vectors uT = (0, 0), vT = (0, 0, 0). Then we obtain

L⊕R =

1 0
0 1
1 1

 , P ⊕Q =

1 0 0
0 1 0
0 0 1

 , LTR =

(
0 0
0 0

)
, εT (0, 0) .

The vector ωT = 1TS (P ⊕Q)⊕ vT = (1, 1, 1) and

A = QTL⊕ P TR =

1 0
0 1
1 1

 .

We again set

∆ =

αβ
γ

 .

Then

δTi−1A = (αi−1, βi−1, γi−1)

1 0
0 1
1 1

 = (αi−1 ⊕ γi−1, βi−1 ⊕ γi−1) ,

ωTδi−1 = (1, 1, 1)

αi−1
βi−1
γi−1

 = αi−1 ⊕ βi−1 ⊕ γi−1 .

Since in this case

rank(L⊕R | 1S) = rank

 1 0 1
0 1 1
1 1 1

 = 3 ,

We get

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= rank (L⊕R | 1S) = 3 .

So the equation (7) never satis�es assumptions of Proposition 1.10.

22

Example 1.4. In the equation (9) we have

L =

(
1
1

)
, R =

(
0
0

)
, P =

(
1 0
0 0

)
, Q =

(
0 1
0 1

)
,

and the vectors uT = (0), vT = (1, 0). We get

L⊕R =

(
1
1

)
, P ⊕Q =

(
1 1
0 1

)
, LTR =

(
0
)
, εT

(
0
)
.

The vector ωT = 1TS (P ⊕Q)⊕ vT = (0, 0) and

A = QTL⊕ P TR =

(
0
0

)
.

We set

∆ =

(
α
β

)
.

Then

δTi−1A = (0), ωTδi−1 = (0) .

In this case the rank of(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
=

 1 1
1 1
0 0


is always equal to the rank of

(L⊕R | 1S) =

(
1 1
1 1

)
.

It means that equation (9) never satis�es assumptions of Proposition 1.10.

If

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
,

then we cannot exclude the possibility that for some solutions X mod 2i the
vectors cTi−1 satisfy the equation

cTi−1(L⊕R) = δTi−1A⊕ εT , (27)

i.e. that the left-hand side in (24) is equal to 0.
From now on we assume that

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
, (28)

23

Check No. 2

In some cases it may even happen that every linear equation in the system
(27) is a multiple of the induction hypothesis cTi−11S = ωTδi−1, i.e. the left-
hand side in (24) is equal to 0 for every X solving mod 2i the equation (14).
It obviously happens under the assumption of the following proposition.

Proposition 1.11. We assume that the equation (14) is linear. If

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 ,

then any X solving mod 2i a linear equation (14) turns the left-hand side

of (24) to 0. Hence X is a solution mod 2i+1 if and only if the vector cTi−1
satis�es

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi = 0 . (29)

We check again which of the equations from our list satisfy the as-
sumption of Proposition 1.11.

Example 1.1. We already know that (28) holds if and only if αi−1 = βi−1 =
γi−1. In this case the matrix(

L⊕R 1S
δTi−1A⊕ εT ωTδi−1

)
=

 1 1 1
1 1 1

βi−1 αi−1 αi−1 ⊕ βi−1 ⊕ γi−1


indeed has rank equal to 1.

Example 1.2. The equation (5) satis�es (28) in and only if βi−1 = 0. Hence
the matrix(

L⊕R 1S
δTi−1A⊕ εT ωTδi−1

)
=

(
1 1

αi−1 αi−1 ⊕ βi−1

)
has rank equal to 1 also in this case.

Example 1.3. Since we have already calculated that in case of the equation (7)

rank (L⊕R | 1S) = rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 3 ,

the equation (7) never satis�es the assumption of Proposition 1.11.

Example 1.4. Here we already know that

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 ,

so the equation (9) satis�es the assumption of Proposition 1.11 for every
i = 0, . . . , p− 1.

24

In case

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
≥ 2,

there may be solutions X mod 2i such that the left-hand side of (24) is 0
for some other solutions mod 2i it is di�erent from 0. For the time being we
leave this case aside and continue with the case

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 .

Check No. 3

By Proposition 1.11, a solution X mod 2i is a solution mod 2i+1 of a linear
equation (14) if and only if the vector cTi−1 satis�es the equation (29). Since
it must satisfy the induction hypothesis (26), we have to consider the system
of two linear equations

cTi−11S = ωTδi−1 , (30)

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi .

The following proposition follows easily from the de�nition of parallel
a�ne subspaces of a linear space. The de�nition of parallel subspaces includes
also the possibility that one of the a�ne subspaces is contained in the other.

Proposition 1.12. We assume that the equation (14) is linear and

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 .

If

rank (1S | (P ⊕Q)δi−1) = 1 ,

then the a�ne subspaces de�ned by the two equations in (30) are parallel.

Proof. If rank(1S | (P ⊕ Q)δi−1) = 1, then the vector (P ⊕ Q)δi−1 is a
multiple of 1S , thus the left kernel of 1S is contained in the left kernel of
(P ⊕Q)δi−1. Hence the two a�ne subspaces de�ned by (30) are parallel.

Example 1.1. We already know that if αi−1 = βi−1 = γi−1, the equation (3)
satis�es the �rst assumption of Proposition 1.12. Since

(P ⊕Q)δi−1 =

(
1 1 0
0 0 0

)αi−1
βi−1
γi−1

 =

(
αi−1 ⊕ βi−1

0

)
=

(
0
0

)
,

the equation (3) satis�es also the other assumption of Proposition 1.12, if
αi−1 = βi−1 = γi−1.

25

Example 1.2. We know that if βi−1 = 0, then the equation (5) satis-
�es the �rst assumption of Proposition 1.12. Since S = 1, then the matrix
(1S | (P ⊕Q)δi−1) contains only one non-zero row, hence the equation (5)
satis�es both assumptions of Proposition 1.12 if βi−1 = 0.

Example 1.4. Here we know that the equation (9) satis�es the �rst as-
sumption of Proposition 1.12 for any i. We calculate

(P ⊕Q)δi−1 =

(
1 1
0 1

)(
αi−1
βi−1

)
=

(
αi−1 ⊕ βi−1

βi−1

)
.

It follows that

rank (1S | (P ⊕Q)δi−1) = rank

(
1 αi−1 ⊕ βi−1
1 βi−1

)
= 1

if and only if αi−1 = 0.

In case rank (1S | (P ⊕Q)δi−1) = 2 the two equations of the system
(30) de�ne two non-parallel a�ne hyperplanes in (Z2)

S . Since S ≥ 2, the
two hyperplanes intersect in an a�ne subspace of codimension 2. So in the
case

rank (1S | (P ⊕Q)δi−1) = 2

there might be some solutions mod 2i of (24) that satisfy the equation

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi

and some that do not satisfy it. We again leave this case aside for the moment
and return to the case

rank (1S | (P ⊕Q)δi−1) = 1 ,

where we can complete the inductions step and decide if a partial solution
X mod 2i is also a partial solution mod 2i+1.

Check No. 4

The �nal check completes our discussion of equations like (3) and (5). The
complete checking tree can be seen in Figure 1.

Proposition 1.13. We assume that the equation (14) is linear,

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 ,

and

rank (1S | (P ⊕Q)δi−1) = 1 .

Then

26

n
on
-

tr
iv
ia
l

q
u
ad
ra
ti
c

li
n
ea
r

1

1
/2

2

3

4

1
0

?

?

F
ig
u
re

1:
A
n
il
lu
st
ra
ti
on

of
th
e
ch
ec
k
in
g
tr
ee
.

27

i. every solution X mod 2i of (14) is also a solution mod 2i+1 if

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 1 ,

ii. no solution X mod 2i of (14) is a solution mod 2i+1 if

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 2 .

Proof. We already know by Proposition 1.11 that a solution X mod 2i is a
solution mod 2i+1 if and only if the vector cTi−1 satis�es the equation (29),
i.e. if

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi = 0 .

By Proposition 1.12, the a�ne subspace of (Z2)
S de�ned by (29) is parallel

to the a�ne hyperplane de�ned by induction hypothesis

cTi−11S = ωTδi−1 .

The hyperplane is contained in the a�ne subspace de�ned by (29) if and
only if the equation (29) is a multiple of the induction hypothesis cTi−11S =
ωTδi−1.

So if

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 1 ,

then any solution X mod 2i satis�es (29), hence it is a solution mod 2i+1

(with probability 1).
Now assume that

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 2 .

Since rank (1S | (P ⊕Q)δi−1) = 1, we can, if necessary, add the �rst column
to the second one to make all the elements of the second column equal to 0
except the bottom one. And since

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 2 ,

the bottom element of the second column will be equal to 1. It proves that
the last row of (

1S (P ⊕Q)δi−1
ωTδi−1 δTi−1(P

TQ)δi−1 ⊕ ωTδi

)

28

is not a linear combination of rows of the matrix (1S | (P ⊕Q)δi−1), hence
the system of two linear equations

cTi−1 (1S | P ⊕Q) = (ωTδTi−1 | δTi−1(P TQ)δi−1 ⊕ ωTδi)

is unsolvable for cTi−1. It follows that for any solution X mod 2i of (14) (i.e.
satisfying the induction hypothesis ci−11

T
S = ωTδi−1) we get

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi 6= 0 .

By Proposition 1.11, X is not a solution mod 2i+1.

We apply Proposition 1.13 to the equations (3) and (5).

Example 1.1. We already know that if αi−1 = βi−1 = γi−1, the equation (3)
satis�es the assumptions of Proposition 1.13.

Since

P TQ =

(
1 0 0
0 0 0

)T (
0 1 0
0 0 0

)
=

0 1 0
0 0 0
0 0 0

 ,

we get

δTi−1(P
TQ)δi−1 = (αi−1, βi−1, γi−1)

0 1 0
0 0 0
0 0 0

αi−1
βi−1
γi−1

 = αi−1βi−1 = αi−1 .

And since

ωTδi = (1, 1, 1)

αi

βi
γi

 = αi ⊕ βi ⊕ γi ,

the rank of(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
=

 1 0
1 0

αi−1 αi−1 ⊕ αi ⊕ βi ⊕ γi


is equal to 1 if and only if αi−1 = αi ⊕ βi ⊕ γi.

Example 1.2. We know that if βi−1 = 0, then the equation (5) satis�es the
�rst assumption of Proposition 1.13. Since

P TQ =

(
0
0

)
(1, 0) =

(
0 0
0 0

)
,

we get δTi−1(P
TQ)δi−1 = 0. And since

ωTδi = (1, 1)

(
αi

βi

)
= αi ⊕ βi ,

29

We obtain(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
=

(
1 αi−1

αi−1 ⊕ βi−1 αi ⊕ βi

)
.

So if βi−1 = 0, the matrix(
1 αi−1

αi−1 ⊕ βi−1 αi ⊕ βi

)
=

(
1 αi−1

αi−1 αi ⊕ βi

)
∼
(

1 0
αi−1 αi−1 ⊕ αi ⊕ βi

)
has rank equal to 1 if and only if αi−1 = αi ⊕ βi.

We can apply Proposition 1.13 also to the equation (9).

Example 1.4. We already know that equation (9) satis�es both assumptions
of Proposition 1.13 if and only if αi−1 = 0. We get

P TQ =

(
1 0
0 0

)T (
0 1
0 1

)
=

(
0 1
0 0

)
,

thus δTi−1(P
TQ)δi−1 = αi−1βi−1. Since ω

T = (0, 0), we obtain ωTδi−1 =
ωTδi = 0. So the matrix(

1S (P ⊕Q)δi−1
ωTδi−1 δTi−1(P

TQ)δi−1 ⊕ ωTδi

)
=

 1 αi−1 ⊕ βi−1
1 βi−1
0 αi−1βi−1

 =

 1 βi−1
1 βi−1
0 0


has rank 1. We conclude that if αi−1 = 0, then every solution X mod 2i is
also a solution mod 2i+1 by Proposition 1.13.i.

The following theorem describes a large class of AX-equations for which
the solubility condition depends only on pairs of subsequent vectors δi−1, δi.
It also gives a precise value of the probability that a randomly selected matrix
X solves an equation from this class.

Theorem 1.14. We assume that the equation (14) is linear, and if

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= rank

(
L⊕R 1S

)
,

then both

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 ,

and

rank (1S | (P ⊕Q)δi−1) = 1 .

Then the equation (14) is solvable if and only if

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 1

30

whenever

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= rank

(
L⊕R 1S

)
.

If this is this case, then the probability that a randomly selected matrix

X of type N × p solves the equation (14) is 2−p+k, where

k = #

{
i ∈ Zp : rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= rank

(
L⊕R 1S

)}
.

Proof. If for some i = 0, . . . , p− 1,

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
> rank

(
L⊕R 1S

)
,

then a solution X mod 2i is a solution mod 2i+1 with probability 2−1 by
Proposition 1.10.

If

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= rank

(
L⊕R 1S

)
,

then all the assumption of Proposition 1.13 are satis�ed. By Proposition 1.13.ii,
no solution X mod 2i is a solution mod 2i+1 if

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 2 .

So if the equation (14) is soluble, we must have

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 1 .

If this is the case, then by Proposition 1.13.i, any solution X mod 2i is also
a solution mod 2i+1.

The precise value of the probability that a randomly selected matrix X
solves the equation (14) follows directly from the proof.

From the previous discussions of Example 1.1, we obtain immediately
the result of [14] as a corollary of Theorem 1.14.

Corollary 1.15. The equation (2)

(x⊕α) + (y ⊕ β) = (x + y)⊕ γ

is solvable if and only if for every i = 0, . . . , p− 1,

αi−1 = βi−1 = γi−1 ⇒ αi−1 = αi ⊕ βi ⊕ γi . (31)

If this is true, then a matrix X solves the equation with probability 2−p+k,

where k = #{i ∈ {0, 1, . . . , p− 1} : αi−1 = βi−1 = γi−1}.

31

In the same way, we obtain the results of [12] on the equation (5) as
another corollary of Theorem 1.14.

Corollary 1.16. The equation (4)

x +α = x⊕ β

is solvable if and only if for every i = 0, . . . , p− 1,

βi−1 = 0 ⇒ αi−1 = αi ⊕ βi . (32)

If this is true, then a matrix X solves the equation with probability 2−p+k,

where k = #{i ∈ {0, 1, . . . , p− 1} : βi−1 = 0}.

1.9 Recursion

During the previous discussion of the linear case we left aside two possibili-
ties. Starting from Check No. 3 we did not consider the case

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
≥ 2 .

and under the assumption that

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 ,

we left aside the possibility that

rank (1S | (P ⊕Q)δi−1) = 2 . (33)

If rank (1S | (P ⊕Q)δi−1) = 2, then also

rank

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
= 2 .

So we cannot conclude that the equation

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi

has no solution like we did in Proposition 1.13 under the assumptions

rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1 ,

and
rank (1S | (P ⊕Q)δi−1) = 1 .

32

So we start with the discussion when

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi

if rank (1S | (P ⊕Q)δi−1) = 2. Then (P ⊕ Q)δi−1 is neither 1S nor 0S . So
the number of 1's in the vector (P ⊕Q)δi−1 is positive and less than S.

Let 1 ≤ s1 < s2 < · · · < sm ≤ S be the indices of all coordinates in
vector (P ⊕Q)δi−1 that are equal to 1. To �nd out if

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi

we expand the carries csj ,i−1 for j = 1, 2, . . . ,m. We have

csj ,i−1 = xT
i−2(̃lsj r̃

T
sj)xi−2 ⊕ δTi−2q̃sj l̃

T
sjxi−2 ⊕ δTi−2p̃sj r̃

T
sjxi−2 ⊕

csj ,i−2(̃l
T
sj ⊕ r̃Tsj)xi−2 ⊕ csj ,i−2(p̃T

sj ⊕ q̃T
sj)δi−2 ⊕ δ

T
i−2(p̃sj q̃

T
sj)δi−2 .

Since cTi−1(P ⊕Q)δi−1 = cs1,i−1 ⊕ cs2,i−1 ⊕ · · · ⊕ csm,i−1, we get

cTi−1(P ⊕Q)δi−1 =
m⊕
j=1

(
xT
i−2(̃lsj r̃

T
sj)xi−2

)
⊕

m⊕
j=1

(
δTi−2q̃sj l̃

T
sjxi−2

)
⊕

m⊕
j=1

(
δTi−2p̃sj r̃

T
sjxi−2

)
⊕

m⊕
j=1

(
csj ,i−2(̃l

T
sj ⊕ r̃Tsj)xi−2

)
⊕

m⊕
j=1

(
csj ,i−2(p̃

T
sj ⊕ q̃T

sj)δi−2

)
⊕

m⊕
j=1

(
δTi−2(p̃sj q̃

T
sj)δi−2

)
.

Using once again dyadic expansion of a product of two matrices, we
obtain

m⊕
j=1

xT
i−2(̃lsj r̃

T
sj)xi−2 = xT

i−2

 m⊕
j=1

l̃sj r̃
T
sj

xi−2 = xT
i−2L

T
i−1Ri−1xi−2 ,

where the matrices Li−1, Ri−1, respectively are obtained from L, R, respecti-
vely by omitting all rows with indices di�erent from any sj , j = 1, . . . ,m.

The matrices Li−1, Ri−1 can be described in more straight forward way
using the following selection matrix Ei−1 = (ej,k) of type m× S, where

ej,k =

{
1 if k = sj

0 otherwise.

Then Li−1 = Ei−1L and Ri−1 = Ei−1R. Similarly, we set Pi−1 = Ei−1P and
Qi−1 = Ei−1Q.

33

Similarly, we obtain

m⊕
j=1

δTi−2q̃sj l̃
T
sjxi−2 = δTi−2(Q

T
i−1Li−1)xi−2 ,

m⊕
j=1

δTi−2p̃sj r̃
T
sjxi−2 = δTi−2(P

T
i−1Ri−1)xi−2 ,

m⊕
j=1

δTi−2(p̃sj q̃
T
sj)δi−2 = δTi−2(P

T
i−1Qi−1)δi−2 .

The other two sums are
m⊕
j=1

csj ,i−2(̃l
T
sj ⊕ r̃Tsj)xi−2 = cTi−2E

T
i−1(Li−1 ⊕Ri−1)xi−2 ,

m⊕
j=1

csj ,i−2(p̃
T
sj ⊕ q̃T

sj)δi−2 = cTi−2E
T
i−1(Pi−1 ⊕Qi−1)δi−2 .

Thus

cTi−1(P ⊕Q)δi−1 = xT
i−2L

T
i−1Ri−1xi−2 ⊕ δTi−2(QT

i−1Li−1 ⊕ P T
i−1Ri−1)xi−2 ⊕

cTi−2E
T
i−1(Li−1 ⊕Ri−1)xi−2 ⊕ cTi−2E

T
i−1(Pi−1 ⊕Qi−1)δi−2 ⊕

δTi−2(P
T
i−1Qi−1)δi−2. (34)

Note also that

ET
i−1Ei−1 = Diag[(P ⊕Q)δi−1] ,

so ET
i−1Ei−1 has at least one row equal to 0TS . Also E

T
i−1(Li−1 ⊕ Ri−1) =

ET
i−1Ei−1(L ⊕ R) and ET

i−1(Pi−1 ⊕ Qi−1) = ET
i−1Ei−1(P ⊕ Q). If we set

Fi−1 = ET
i−1Ei−1, we can rewrite the equation (34) as

cTi−1(P ⊕Q)δi−1 = xT
i−2L

T
i−1Ri−1xi−2 ⊕ δTi−2(QT

i−1Li−1 ⊕ P T
i−1Ri−1)xi−2 ⊕

cTi−2Fi−1(L⊕R)xi−2 ⊕ cTi−2F
T
i−1(P ⊕Q)δi−2 ⊕

δTi−2(P
T
i−1Qi−1)δi−2.

So we have proved the following proposition.

Proposition 1.17. If (14) is a linear equation and rank (1S | (P ⊕Q)δi−1) =
2, then for a solution X mod 2i of (14) the equality

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi

holds if and only if

xT
i−2L

T
i−1Ri−1xi−2 ⊕ δTi−2(QT

i−1Li−1 ⊕ P T
i−1Ri−1)xi−2 ⊕

cTi−2F
T
i−1(L⊕R)xi−2 ⊕ cTi−2F

T
i−1(P ⊕Q)δi−2 ⊕

δTi−2(P
T
i−1Qi−1)δi−2 = δTi−1(P

TQ)δi−1 ⊕ ωTδi . (35)

34

The equation (35) is of the same type as (21). So we can use the checking
tree with matrices Li−1, Ri−1, Pi−1 and Qi−1 to check if the equation (35)
is solvable. But we have to keep in mind that X is a solution mod 2i of (14),
hence it satis�es equations

cTi−11S = ωTδi−1

for each j = 0, . . . , i− 1.
Although we are convinced that general theory of solubility of the system

of equations (35) along the checking tree is possible it becomes technically
more complicated in case the matrix the matrix LT

i−1Ri−1 is not symmetric,
and we will not attempt to develop it in full. Instead we just show how the
recursion works for the equation (9). A general theory of the recursive cases
is a future work extending this section.

First we summarize some results of sections 1.8 and 1.9. that apply also
to the case when

rank
(
L⊕R 1S

)
= rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
≥ 2 .

Proposition 1.18. Let (14) be a linear equation. Then the following holds

i. A solution X mod 2i of equation (14) is a solution mod 2i+1 with

probability 2−1 if

cTi−1(L⊕R) 6= δTi−1A⊕ εT .

ii. If cTi−1(L⊕R) = δTi−1A⊕εT , then a solution X mod 2i of equation (14)

is a solution mod 2i+1 if and only if

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi .

Proof. We already know that in the linear case the a solution mod 2i of (14)
is a solution mod 2i+1 if and only if the equation (24) holds, that is if[

cTi−1(L⊕R)⊕ δTi−1A⊕ εT
]
xi−1 =

cTi−1(P ⊕Q)δi−1 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi .

i. Hence if cTi−1(L ⊕ R) = δTi−1A ⊕ εT , then the equation (24) has a
solution. Exactly one half of possible xi−1's solves it.

ii. If cTi−1(L ⊕ R) = δTi−1A ⊕ εT then the left-hand side of (24) is equal
to 0 so the equality holds if and only if the right-hand side of (24) is
equal to 0.

35

We return for the last time to the equation (9).

Example 1.4. We already know that

(L⊕R | 1S) =

(
1 1
1 1

)
,

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
=

 1 1
1 1
0 0

 ,

Hence rank(L⊕R | 1S) = rank

(
L⊕R 1S

δTi−1A⊕ εT ωTδi−1

)
= 1.

Moreover

(1S | (P ⊕Q)δi−1) =

(
1 αi−1 ⊕ βi−1
1 βi−1

)

hence rank (1S | (P ⊕Q)δi−1) = rank

(
1 αi−1 ⊕ βi−1
1 βi−1

)
= 1 if and only

if αi−1 = 0. In this case

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
=

 1 αi−1 ⊕ βi−1
1 βi−1
0 αi−1βi−1

 =

 1 βi−1
1 βi−1
0 0


hence every solution X mod 2i of equation (9) is a solution mod 2i+1 by
Proposition 1.13.

It remains to consider the case αi−1 = 1. Then the equation (9) does not
satisfy the assumptions of Proposition 1.13, but still satis�es the assumptions
of Proposition 1.11. So a solution X mod 2i of equation (9) is a solution mod
2i+1 if and only if

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi .

Since cTi−1 also satis�es the induction hypothesis cTi−11S = ωTδi−1, the vec-
tor cTi−1 must solve the system of linear equations with the extended matrix

(
1S (P ⊕Q)δi−1

ωTδi−1 δTi−1(P
TQ)δi−1 ⊕ ωTδi

)
=

 1 1⊕ βi−1
1 βi−1
0 βi−1

 ∼
 1 1

1 0
0 βi−1

 .

The �rst equation (column) is the induction hypothesis so a solution X mod
2i is a solution mod 2i+1 (with probability 1) if and only

cTi−1

(
1
0

)
= βi−1 . (36)

36

Under the induction hypothesis cTi−11S = ωTδi−1 = 0, this equation is
equivalent to

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi , (37)

so we start we start the recursion with (36).
Now we transform (36) (i.e. (37)) to (35) using the selection matrix

Ei−1 = (1, 0). Since LT
i−1Ri−1 = (0), εi−1 = diag(LT

i−1Ri−1) = (0), the
equation (35) is in fact linear in xi−2 and can be written in the form[

cTi−2F
T
i−1(L⊕R)⊕ δTi−2(Ai−1)⊕ εTi−1

]
xi−2 = (38)

cTi−2F
T
i−1(P ⊕Q)δi−2 ⊕ δTi−2(P T

i−1Qi−1)δi−2 ⊕ δTi−1(P TQ)δi−1 ⊕ ωTδi .

since

Ai−1 = QT
i−1Li−1 ⊕ P T

i−1Ri−1 =

(
0
1

)
(1)⊕

(
1
0

)
(0) =

(
0
1

)
,

F T
i−1(L⊕R) =

(
1
0

)
, F T

i−1(P ⊕Q) =

(
1 1
0 0

)
,

after further substitutions (38) takes the form[
cTi−2

(
1
0

)
⊕ βi−2

]
xi−2 = cTi−2

(
1 1
0 0

)(
αi−2
βi−2

)
⊕ αi−2βi−2 ⊕ βi−1 , (39)

since we consider the case αi−1 = 1.
Now the column vector(

1
0

)
= Fi−1(L⊕R), βi−2 = δTi−2Ai−1 ⊕ εTi−1 ,

so we get

rank(Fi−1(L⊕R) | 1S) = rank

(
1 1
0 1

)
= 2 ,

and consequently

rank

(
1 1
0 1

)
= rank

 1 1
0 1

βi−2 0

 = rank

(
Fi−1(L⊕R) 1S

δTi−2Ai−1 ⊕ εTi−1 ωTδi−2

)
.

So we cannot use Proposition 1.11 and have to rely on Proposition 1.18.

Since X is a solution mod 2i−1 and cTi−2

(
1
0

)
6= βi−2, the equality (39),

which is the form of (35) after substitutions, holds with probability 2−1.
Hence any X satisfying the equality (39) satis�es the equality (35) and by
Proposition 1.17 satis�es

cTi−1(P ⊕Q)δi−1 = δTi−1(P
TQ)δi−1 ⊕ ωTδi .

37

Thus it is a solution mod 2i+1.

If cTi−2

(
1
0

)
= βi−2, then the right-hand side of (39) becomes

cTi−2

(
1 1
0 0

)(
αi−2
βi−2

)
⊕ αi−2βi−2 ⊕ βi−1 =

cTi−2

(
1
0

)
αi−2 ⊕ cTi−2

(
1
0

)
βi−2 ⊕ αi−2βi−2 ⊕ βi−1 =

βi−2αi−2 ⊕ βi−2βi−2 ⊕ αi−2βi−2 ⊕ βi−1 =

βi−2 ⊕ βi−1 .

Thus the equation (39) holds if and only if βi−2 = βi−1.

So if βi−1 6= βi−2 and cTi−2

(
1
0

)
= βi−2 for every solution mod 2i, then

none of them is a solution mod 2i+1 and the equation (9) has no solution.

By what we have just proved, cTi−2

(
1
0

)
= βi−2 for every solution mod 2i

if βi−2 = βi−3 and cTi−3

(
1
0

)
= βi−3 for every solution mod 2i.

But if there is some j < i − 1 such that αj = 1, then cTj

(
1
0

)
= βj for

every solution X mod 2j+1, thus also for every solution mod 2i. And if βj =

βj+j = · · ·βi−2, then every solution mod 2i aslo satis�es cTi−2

(
1
0

)
= βi−2

and since βi−2 6= βi−1, no solution mod 2i satis�es cTi−1

(
1
0

)
= βi−1, and

therefore is not a solution mod 2i+1.

Since c0 = 0 for every X, we have also cT0

(
1
0

)
= β0 if β0 = 0. And if

β0 = β1 = · · · = βi−2 6= βi−1 then again no solution mod 2i is a solution
mod 2i+1.

Proposition 1.19. The equation (8)

(x⊕α) + β = (x + β)⊕α

is unsolvable if and only if one of the following two conditions holds

i. there exists indices j < i < p − 1, such that αi−1 = αj = 1 and

βj = βj+1 = · · · = βi−1 6= βi,

ii. there exists an index i < p − 1, such that αi = 1 and 0 = β0 = β1 =
· · · = βi−1 6= βi.

38

2 Multi-block Collisions in Hash functions based

on 3C and 3C+ Enhancements of the Merkle-

Damgård

2.1 Introduction

Research in the design and analysis of cryptographic hash functions has
been very active since Wang at al [27] published their �rst collision search
algorithm for the MD5 hash function. Collision search algorithms for other
hash functions have been discovered, in particular for SHA-0, see [1], [30]. An
algorithm for �nding collisions in SHA-1 that is signi�cantly more e�cient
than the generic birthday attack was announced in [28].

In the light of these attacks Gauravaram et al [5] have proposed a slight
modi�cation to the Merkle-Damgård construction for an improved protection
against many known attacks on MD based hash functions. Their idea is to
add additional registers that would collect xors of all chaining variables.
After the message is processed the content of additional registers is padded
to provide one more message block and the extra block is used as an input
for the last calculation of the compression function. Thus the original MD
construction remains and the extra security is supposed to be provided by
the additional registers, see Figure 1.

Since the 3C construction contains the original MD contruction, any n-
block internal collision for the 3C construction must be in fact an n-block
collision of the MD construction based on the same compression function.
However, because of the extra use of the compression function at the end of
the 3C construction one cannot claim that an n-block collision for the 3C
construction must be also an n-block collision of the MD construction. To
�nd an n-block collision (where n ≥ 2) for the 3C construction that is not
an n-block collision for the MD construction based on the same compression
function would require to �nd a collision in the compression function with
di�erent IV's and possibly di�erent input blocks.

In this paper we show that the 3C construction does not increase sig-
ni�cantly resistance against multi-block collisions. In fact, under very mild
assumptions we prove that if there is an algorithm that �nds n-block collisi-
ons for the MD construction based on a compression function, then one can
easily �nd (2n)-block collisions for the 3C construction based on the same
compression function and (2n+ 1)-block collisions for its modi�cation called
3C+. Our theorem can be applied in particular to the MD5 compression
function.

We also observe that the 2-block collisions for the SHA-0 hash function
published in [30] are in fact also 2-block collisions for the 3C construction
based on the same collision function.

The paper is organized as follows. In section 2 we discuss the 3C and
3C+ design principles, in section 3 we point out a few important properties

39

of the recent 2-block collision attacks on MD5. In Section 4 we prove two
simple general theorems how multi-collision attacks on the MD construction
can be extended to multi-collision attacks on the 3C and 3C+ constructions.
We conclude the paper in section 5. In the appendix we present concrete
examples of colliding messages for the 3C and 3C+ constructions based on
the compression function of MD5.

2.2 Description of 3C and 3C+

The 3C construction is a generic construction designed as an enhancement
to the Merkle-Damgård construction with the idea to increase its resistance
against multi-block collision attacks. One of the main properties of the 3C
construction is that it is as e�cient as the standard hash functions when it is
instantiated with the compression functions of any of these hash functions.

The 3C construction accumulates every chaining state of the MD con-
struction by xoring it to the register already containing xor of all previous
chaining states.

@@f
@@f

@@f
@@f

@@f

⊕ ⊕ ⊕

- - -- -

6 6 6

- - - -
�

H

P

A

D

-
-IV0 IV1 IV2 IVL−1 IVL

C1 C2 CL−1 CL

M1 M2 ML−1 ML

- - - -

Figure 1: 3C construction of hash function

Thus if IVi is the chaining variable obtained as the result of i-th iteration
of the compression function (IV0 is the initialization vector), then the value of
the additional accumulation registers (denoted by Ci) after the i-th iteration
of the compression function is C1 = IV1 and

Ci = Ci−1 ⊕ IVi = IV1 ⊕ IV2 ⊕ · · · ⊕ IVi

for i = 2, . . . , L, where L is the number of blocks of the message. The authors
also suggest in their paper [5] that di�erent variants can be obtained for 3C
by replacing the xor function in the accumulation chain by other non-linear
functions.

The 3C+ construction is a di�erent modi�cation of the 3C construction in
which yet another chain Di, i = 1, . . . , L of additional registers accumulating
the values of chaining variables is added. This time D1 = IV0 and

Di = Di−1 ⊕ IVi = IV0 ⊕ IV2 ⊕ · · · ⊕ IVi

for i = 2, . . . , L. Thus
Di = Ci ⊕ IV1 ⊕ IV0

for every i = 2, . . . , L.

40

@@f
@@f

@@f
@@f

@@f

⊕ ⊕ ⊕

⊕ ⊕ ⊕

- - - --

6 6 6

6 6 6

??
C-
�

H

P

A

D -

- - -

- - -

IV0 IV1 IV2 IV3 IVL

- - - -

M1 M2 M3 ML

-

C1 C2 C3 CL−1 CL

D1 D2 D3 DL−1 DL

Figure 2: 3C+ construction of hash function

2.3 Multi-block collision attacks

The hash function MD5 uses four 32-bit registers to keep the value of each
chaining variable IVi. We denote them by IVi,0, IVi,1, IVi,2, IVi,3. Thus

IVi = (IVi,0||IVi,1||IVi,2||IVi,3).

Wang et al presented in [27] an algorithm for �nding 2-block collisions
in MD5. Their algorithm works for an arbitrary initialization vector IV0. If
(M1||M2) and (M ′1||M ′2) are two colliding messages found by their algorithm
then the modular di�erences of the chaining variables after processing the
�rst blocks M1 and M ′1 are

∆i,0 = IV′1,0 − IV1,0 = 231

∆i,1 = IV′1,1 − IV1,1 = 231 + 225

∆i,2 = IV′1,2 − IV1,2 = 231 + 225

∆i,3 = IV′1,3 − IV1,3 = 231 + 225, (1)

where

IV1 = f(IV0,M1)

IV′1 = f(IV0,M
′
1)

and f is the compression function used in MD5.
Wang et al in [27] also presented a set of so-called su�cient conditions

for registers in computation of f(IV,M1) to produce the �rst blocks of a
pair of colliding messages. These conditions in fact were not su�cient and
various authors, e.g. [13] [32] o�ered their sets of su�cient conditions. For
our purposes only the conditions for IV1 are important and these conditions
were the same for all authors. In fact, we need only four of the su�cient
conditions for IV1 and these four conditions are described in the Table 1.

The exact value of IV1 ⊕ IV′1 then follows from given modular di�eren-
ces (1) and prescribed conditions for IV1 in the Table 1. Thus IV1 ⊕ IV′1 is

41

IV1,0

IV1,10.

IV1,201.

IV1,30.

Table 1: Prescribed conditions for IV1

a constant independent of the initialization vector IV0 and the �rst blocks
M1 and M ′1 of the colliding messages (M1||M2) and (M ′1||M ′2).

δ1,0 = IV1,0 ⊕ IV′1,0 10000000 00000000 00000000 00000000

δ1,1 = IV1,1 ⊕ IV′1,1 10000010 00000000 00000000 00000000

δ1,2 = IV1,2 ⊕ IV′1,2 10000110 00000000 00000000 00000000

δ1,3 = IV1,3 ⊕ IV′1,3 10000010 00000000 00000000 00000000

Table 2: Prescribed δ for IV1

The collision �nding algorithm for SHA-0 by Wang et al [30] also �nds
2-block colliding messages but the structure of the messages in this attack is
di�erent than in the case of MD5. The �rst blocks of the colliding messages
(M1||M2) and (M1||M ′2) are the same and serve to obtain the chaining vari-
able IV1 satisfying the conditions su�cient for �nding the second blocks M2

and M ′2. The algorithm again works for an arbitrary IV0.
In another paper [28] Wang et al propose an algorithm for �nding 2-block

collisions in SHA-1 that is faster than the generic birthday attack. Although
no real collisions in SHA-1 have been found so far, the form of colliding
messages of the proposed attack is in fact the same as in the case of MD5.
It means that the algorithm should work for any IV0 and IV1 ⊕ IV′1 should
be a constant independent of IV and M1 and M ′1.

2.4 Multi-block collision attacks on 3C and 3C+

The idea of the attack on the 3C construction when the compression function
is the same as in MD5 is very simple. First, we �nd 2-block colliding messages
(M1||M2) and (M ′1||M ′2) in MD5 using the attack by Wang et al [27]. Then
we take the chaining variable IV2 = IV′2 as the initialization vector for the
second run of the Wang et al algorithm. In this way we obtain another pair of
messages (M3||M4) and (M ′3||M ′4). The 4-block messages (M1||M2||M3||M4)
and (M ′1||M ′2||M ′3||M ′4) then form a collision for the 3C construction based on
the MD5 compression function. The scheme of the attack and the distribution
of di�erences are shown on Figure 3.

A formal veri�cation of the idea is contained in the following theorem.

42

@@f
@@f

@@f
@@f

⊕ ⊕ ⊕

- - - -

6 6 6

- - - -

-IV0

- - - -
δ 0 δ 0δ 0 δ 0

δ δ 0 0

0 δ 0

Figure 3: 4-block internal collision attack on 3C without the �nal processing

Theorem 2.1. Let H be an MD hash function based on a compression

function f . Suppose that for some n ≥ 2 there exists an algorithm �nding

n-block collisions for H that works for any initialization vector IV0 and has

the property that IVi ⊕ IV′i for i = 1, . . . , n is a constant independent of IV0

and the actual colliding messages (but can be dependent on i). Then there

exists an algorithm that �nds (2n)-block collisions for the 3C construction

based on the same compression function f .
The running time of the algorithm for �nding collisions in the 3C con-

struction is twice the running time of the algorithm for �nding collisions in

the MD construction using the same compression function.

Proof. Let (M1||M2|| · · · ||Mn) and (M ′1||M ′2|| · · · ||M ′n) be the colliding messages
obtained by the �rst run of the algorithm �nding collisions in H. Thus
IVn = IV′n. We use this value as the initialization vector for the second run
of the collision search algorithm for H. We obtain another pair of colliding
messages (Mn+1||Mn+2|| · · · ||Mn+n) and (M ′n+1||M ′n+2|| · · · ||M ′n+n). We de-
note the chaining variables in the second run of the algorithm by IVn+i and
IV′n+i for i = 1, . . . , n.

By our assumption on the collision search algorithm for H we can write

IVi ⊕ IV′i = IVn+i ⊕ IV′n+i

for every i = 1, . . . , n. Thus we obtain

C2n =
2n⊕
i=1

IVi

and

C ′2n =

2n⊕
i=1

IV′i.

Hence

C2n ⊕ C ′2n =

2n⊕
i=1

IVi ⊕
2n⊕
i=1

IV′i =

2n⊕
i=1

(IVi ⊕ IV′i)

=

n⊕
i=1

(IVi ⊕ IV′i)⊕ (IVn+i ⊕ IV′n+i)

= 0.

43

Since IV2n = IV′2n, the messages (M1|| · · · ||Mn||Mn+1|| · · · ||M2n) and
(M ′1|| · · · ||M ′n||M ′n+1|| · · · ||M ′2n) form a collision for the 3C construction based
on f .

In Section 2.3 we explained that the Wang et al [27] collision search algori-
thm for MD5 satis�ed the assumptions of Theorem 2.1 for n = 2. Thus there
exists an algorithm �nding 4-block collisions in the 3C construction based on
the MD5 compression function. The fastest implementation of the Wang et
al algorithm known in the moment of writing the paper is by Klima [10] and
�nds collisions in MD5 in about 30 seconds in average. Thus at this moment
collisions in the 3C construction based on the MD5 compression function
can be found within a minute.

As for the 3C construction based on the SHA-0 compression function
there is no need for running the algorithm twice to obtain a collision. Since
the collision search algorithm for SHA-0 �nds colliding messages of the form
(M1||M2) and (M1||M ′2), we get IV1 = IV′1 and IV2 = IV′2, thus C2 =
C ′2. Hence the SHA-0 collisions found by the algorithm are simultaneously
collisions for the 3C construction based on the SHA-0 compression function.

Since the theoretical algorithm for �nding collisions in SHA-1 proposed
by Wang et al in [28] also satis�es the assumption of Theorem 2.1 running
the algorithm twice should again produce a 4-block collision in the 3C con-
struction based on the SHA-1 compression function.

@
@f

@
@f

@
@f

@
@f

@
@f

⊕ ⊕ ⊕ ⊕

- - - - -

6 6 6 6

- - - - -

-IV0

- - - - -

- - - - -

6 6 6 6
⊕ ⊕ ⊕ ⊕

0 δ 0 δ 00 δ 0 δ 0

0 δ δ 0 0

δ 0 δ 0

0 δ δ 0 0

δ 0 δ 0

Figure 4: 5-block collision attack on 3C+ without the �nal processing

The Figure 4 shows how a 5-block collision for the 3C+ construction based
on the MD5 compression function can be found. The only di�erence with
the collision search algorithm for the 3C construction is that we start with an
arbitrary message block M1, calculate the value of the compression function
for the block with given IV0 to obtain a new initialization vector IV1 and
then we run the collision search algorithm for the 3C construction with the
initialization vector IV1. We obtain messages (M1||M2||M3||M4||M5) and
(M1||M ′2||M ′3||M ′4||M ′5) such that C5 = C ′5 and IV5 = IV′5. Since D5 =
C5 ⊕ IV1 ⊕ IV0 and D′5 = C ′5 ⊕ IV1 ⊕ IV0, we obtain also D5 = D′5.

From this observation one obtains the following theorem.

44

Theorem 2.2. Suppose there exists an algorithm �nding k-block collisions

in the 3C construction based on a compression function f . Then there exists

an algorithm for �nding (k+1)-block collisions in the 3C+ construction based

on the same compression function f .
The running time of the algorithm for the 3C+ construction is equal the

running time of the algorithm for the 3C+ construction plus the running

time of the one calculation of the compression function.

Proof. Follows from the previous observation.

2.5 Conclusion

3C and 3C+ constructions based on a compression function f which is not
collision resistance is a bad idea. We have shown how to �nd collisions for
3C and 3C+ constructions based on a compression function f provided a
collision search algorithm for the MD construction based on f is known. We
also presented real examples of collisions for the 3C and 3C+ constructions
based on the MD5 compression function in [8].

45

2.6 Appendix: Examples of Collisions

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0x4e1a8245 0x5fe0e55d 0xfe3faa53 0x0d8546b3

0x18ccad34 0xac0bae59 0xd59d3352 0x4805693e

0x06342cd5 0x81b41206 0x83c2bea3 0x8fd22557

0xc41a4cd6 0x9e9a4fe1 0x818ae34d 0x1a97e731

N1 0x4e1a8245 0x5fe0e55d 0xfe3faa53 0x0d8546b3

0x98ccad34 0xac0bae59 0xd59d3352 0x4805693e

0x06342cd5 0x81b41206 0x83c2bea3 0x8fd2a557

0xc41a4cd6 0x9e9a4fe1 0x18ae34d 0x1a97e731

IV1 0xadebbbec 0xc85d058e 0xa2672e58 0xb91d144b

IV′1 0x2debbbec 0x4a5d058e 0x24672e58 0x3b1d144b

IV1 ⊕ IV′1 0x80000000 0x82000000 0x86000000 0x82000000

M2 0x06faa233 0x1c84a4bf 0xf38ee5f1 0x08deb9af

0x467ad36b 0x4c900712 0xd6a37d26 0x11f6de56

0x8577e045 0x299991d5 0x5940588e 0x3fd25887

0x301fc8fa 0x77dc0e81 0xe8c1a1a7 0x13d51d82

N2 0x06faa233 0x1c84a4bf 0xf38ee5f1 0x08deb9af

0xc67ad36b 0x4c900712 0xd6a37d26 0x11f6de56

0x8577e045 0x299991d5 0x5940588e 0x3fd1d887

0x301fc8fa 0x77dc0e81 0x68c1a1a7 0x13d51d82

IV2 = IV′2 0xa918ce8d 0xb7ea0df6 0x69bdb806 0x713af4de

M3 0xcd71fe0c 0x58d0f463 0xa9399e1d 0x7db79e98

0x3622a432 0x736cb277 0x011cb460 0x6a04e9b4

0x06332d55 0x23f47e02 0x799ab597 0xd3ba5325

0xb9e866e6 0xde6b9cd3 0xde6cebbb 0x0b4c3783

N3 0xcd71fe0c 0x58d0f463 0xa9399e1d 0x7db79e98

0xb622a432 0x736cb277 0x011cb460 0x6a04e9b4

0x06332d55 0x23f47e02 0x799ab597 0xd3bad325

0xb9e866e6 0xde6b9cd3 0x5e6cebbb 0x0b4c3783

IV3 0x2b30549a 0x089c590a 0x52710661 0x6932f794

IV′3 0xab30549a 0x8a9c590a 0xd4710661 0xeb32f794

IV3 ⊕ IV′3 0x80000000 0x82000000 0x86000000 0x82000000

M4 0x96ded638 0x4c1be33a 0xd46e6a5f 0xdbc8da73

0x473af92b 0x4d0da98e 0x56dd6d3e 0xd19e7bd1

0x53f857cd 0x4c25f191 0x918be4da 0xc09e206c

0x320b28d4 0xcc6c0e7a 0x68515c76 0x57840834

N4 0x96ded638 0x4c1be33a 0xd46e6a5f 0xdbc8da73

0xc73af92b 0x4d0da98e 0x56dd6d3e 0xd19e7bd1

0x53f857cd 0x4c25f191 0x918be4da 0xc09da06c

0x320b28d4 0xcc6c0e7a 0xe8515c76 0x57840834

IV4 = IV′4 0x6a1a021a 0xc81fe980 0x88e1db5b 0x512e7c88

Table 3: Collision in 3C invoked with MD5 compression function
46

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0x0634add5 0x4074c002 0x7baaf717 0x0f522d75

0xbf6ac0ec 0xa4885903 0x7349e78b 0x2aad1b45

0x281dfb7e 0x173e6c0c 0xab79fc54 0x39453670

0x44fb372b 0x4d5259c8 0xf7ad2d48 0xd1254b51

N1 0x0634add5 0x4074c002 0x7baaf717 0x0f522d75

0xbf6ac0ec 0xa4885903 0x7349e78b 0x2aad1b45

0x281dfb7e 0x173e6c0c 0xab79fc54 0x39453670

0x44fb372b 0x4d5259c8 0xf7ad2d48 0xd1254b51

IV1 = IV′1 0xd3f4b63c 0x595f4645 0xa890d3d0 0x9cc907db

M2 0xa72fc176 0x64b7a050 0xe266ae7a 0x1b21009e

0xfac1ee4c 0x9e588e8e 0x076d346d 0x805529b7

0x0633ad55 0x02342602 0x83b4ba0b 0x56d1d924

0x82d9651a 0xba9c8de6 0xebbbe37e 0xb78c63d5

N2 0xa72fc176 0x64b7a050 0xe266ae7a 0x1b21009e

0x7ac1ee4c 0x9e588e8e 0x076d346d 0x805529b7

0x0633ad55 0x02342602 0x83b4ba0b 0x56d25924

0x82d9651a 0xba9c8de6 0x6bbbe37e 0xb78c63d5

IV2 0xead1c69e 0xd19e34c2 0xca2e528e 0xb1790589

IV′2 0x6ad1c69e 0x539e34c2 0x4c2e528e 0x33790589

IV2 ⊕ IV′2 0x80000000 0x82000000 0x86000000 0x82000000

M3 0x6dbb34a0 0x9c1b815b 0x7ceb8ffd 0x1502296c

0x467d585b 0x4d0d8038 0xc6db2d16 0x00d11ad5

0xd2b2eeed 0x4a04145b 0x2f79d4aa 0x00be08a0

0xf2e830f3 0x10bc0a85 0xe9019cb8 0x4fd512a2

N3 0x6dbb34a0 0x9c1b815b 0x7ceb8ffd 0x1502296c

0xc67d585b 0x4d0d8038 0xc6db2d16 0x00d11ad5

0xd2b2eeed 0x4a04145b 0x2f79d4aa 0x00bd88a0

0xf2e830f3 0x10bc0a85 0x69019cb8 0x4fd512a2

IV3 = IV′3 0x46321911 0x9d317bd2 0xfde6d50e 0xeb2170d8

M4 0x122cdc12 0x5f60de22 0xedac78fd 0xf506f854

0x2b85436b 0x3c980908 0xda4c144d 0x03344bbe

0x0634ad55 0x0113f402 0x80aab777 0x13888f67

0xadea26f7 0x623cc142 0x1192759e 0x0e74317c

N4 0x122cdc12 0x5f60de22 0xedac78fd 0xf506f854

0xab85436b 0x3c980908 0xda4c144d 0x03344bbe

0x0634ad55 0x0113f402 0x80aab777 0x13890f67

0xadea26f7 0x623cc142 0x9192759e 0x0e74317c

IV4 0x754b85c2 0x45386ef2 0x3adad7b7 0x61523316

IV′4 0xf54b85c2 0xc7386ef2 0xbcdad7b7 0xe3523316

IV4 ⊕ IV′4 0x80000000 0x82000000 0x86000000 0x82000000

M5 0x65171431 0x2615affc 0x2a2519e7 0xe2e99ce8

0x44bcf42b 0x4c4def0e 0x47aadd22 0x127d7d56

0x62bf776d 0x6cc9d58b 0x597058d6 0x602a5867

0x3e2bc8ce 0xb3ec1267 0x68716155 0x17a50429

N5 0x65171431 0x2615affc 0x2a2519e7 0xe2e99ce8

0xc4bcf42b 0x4c4def0e 0x47aadd22 0x127d7d56

0x62bf776d 0x6cc9d58b 0x597058d6 0x6029d867

0x3e2bc8ce 0xb3ec1267 0xe8716155 0x17a50429

IV5 = IV′5 0x1453b7b0 0x803e8aee 0xfd85765e 0x176ca5d9

Table 4: Collision in 3C+ invoked with MD5 compression function

47

3 Beyond the MD5 Collisions

3.1 Introduction

A little more than two years ago collision resistance of several widely used
hash functions was broken. A group of researchers led by Xiaoyun Wang
(of Shandong University, China) presented at rump session of Crypto 2004
collision resistance attacks on MD5 and other hash functions. Since then a
lot of papers on various aspects of the Wang et al. attacks were published.

To explain what the consequences of [29] are, we start with several requi-
rements a well designed hash function should satisfy. First of all, the hash
function should be one-way meaning that it is very di�cult to invert it, i.e.
to �nd any input with the prescribed hash value. Further requirements we
describe on the application in digital signature scheme. Every digital signa-
ture scheme is based on an asymmetric cipher. The digital signature of a
document is obtained by applying the decryption function of the cipher (or
signature function) to the document. As asymmetric ciphers are very slow,
the decryption function is applied only to the hash value of the document
rather than to the document itself. This restricts the length of the message
to which the decryption function is applied to the length of the hash function
used in the digital signature scheme. That means we can speedup the calcu-
lation of the signature if the underlying hash function is very fast even for
extremely long input messages.

However, replacing the document by its hash value in digital signature
schemes is not without danger. A digital signature of a message is simulta-
neously a digital signature of any other message with the same hash value
as the original one. Thus it is critical that the hash functions used in digital
signature schemes are collision resistant, meaning that it is computationally
infeasible to �nd two di�erent messages with the same hash value. Only in
this case it is possible to assign uniquely a digital signature to the signed
document. Wang et al in [29] showed that collision resistance of some hash
function can be broken and it is possible to create two di�erent documents
with the same hash value. Therefore it is dangerous to use these hash functi-
ons for digital signatures after announcing their method.

Now if a hash function is found not to be collision resistant then it does
not mean that all digital signatures which used the hash function earlier
can now be repudiated. To falsify a signature of a given document requires
�nding a second preimage of the hash value of the document i.e. to �nd
another message with the same hash value as the original document. This
is much stronger requirement than just to �nd any two di�erent messages
with the same hash value and e.g. for MD5 it is not possible. However it is
believed that �nding collisions is the �rst step to �nding second preimage.

In Section 3.2 and 3.3 we present various improvements of Wang et al.
algorithm for �nding collisions in MD5. Within a year after announcing the

48

�rst collisions, the searching algorithms were much improved. Finding the
�rst collisions took approximately an hour for very strong computer, after a
year the collisions could be found in only seconds on a common PC [10]. We
shortly describe these algorithms. We also present a calculation of the com-
putational complexity of the three algorithms. Further in Section 3.4 and 3.5
we discuss suggested solutions for improving the hash functions [5, 19]. The
improvements concentrate on small changes in widely used Merkle-Damgård
(MD) construction and they were constructed to protect against multi-block
collisions. We show that it may be dangerous to use these improved con-
structions because they do not deal with the main problem - weakness in the
recent compression functions. In fact it may not be di�cult to �nd collisions
in such improved versions using the same method and the same algorithms
than in case of MD construction. We conclude the paper in Section 3.6.

3.2 Collisions in MD5

Description of Wang et al. collision searching algorithm consisted of a detai-
led set of conditions, so-called di�erential path, that gives many conditions
for the content of registers during the calculations of the MD5 hash value
of a message m = (M0||M1) consisting of two blocks, each of length of 512
bits. Although Wang et al claimed that their conditions on the content of re-
gisters were su�cient for �nding another message n = (N0||N1) of the same
length as m and with the same hash value as n it was shown by various au-
thors e.g. [13, 23] that Wang's su�cient conditions in fact were not su�cient
and further conditions were needed. The speci�cation of the MD5 uses �xed
initial vector IV but the attack of Wang et al works for any initial vector.
(That will be important for attacks in Sections 3.4 and 3.5.) To provide two
diistinct messages m = (M0||M1) and n = (N0||N1) with the same hash
value it is necessary and su�cient to prove that

f(f(M0, IV),M1) = f(f(N0, IV), N1), where f is the compression function
in MD5. The collisions in [29] as well as all other colliding pairs found by
various authors since the �rst Wang's announcement have the following pro-
perties (so-called di�erentials)

∆0 := M0 −N0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,+215, 0, 0, 231, 0) (1)

∆1 := M1 −N1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0) (2)

δ := f(IV,M0)− f(IV, N0) = (231, 231 + 225, 231 + 225, 231 + 225). (3)

Wang et al. proceed with giving precise forms for modular di�erences (Ri −
R′i) and xor di�erences (Ri ⊕ R′i), for i = 0, . . . , 63, where Ri and R′i are
registers obtained during the calculation f(IV,M0) and f(IV, N0), as well
as precise forms of IV1⊕ IV′1 where IV1 := f(IV,M0) and IV′1 := f(IV, N0)
and as well as forms of modular and xor di�erences for registers Ri, R

′
i ob-

tained during the calculation of f(IV1,M
1) and f(IV′1, N

1). By registers Ri

49

obtained during the calculation of compression function f we mean the chai-
ning variables aa, dd, cc, bb used in the speci�cation of the MD5 in RFC1321
indexed from 0 to 63. This is what they call a di�erential path for MD5
collision. From the di�erential path they derived a set of conditions for par-
ticular bits in the registers R0, . . . , R63, obtained when processing the �rst
block M0, for particular bits in IV1 and for particular bits in the regis-
ters R0, . . . , R63, obtained when processing the second block M1 (i.e. when
calculating f(IV1,M

1). They claimed these conditions were su�cient for
a message m = (M0||M1) satisfying the conditions and another message
n = (M0 + ∆0||M1 + ∆1) to have the same hash value. As we have already
mentioned these conditions were not su�cient and small corrections were ne-
eded [13, 23]. However the goal was to �nd messagem = (M0||M1) which has
the proper registers R′i-s i.e. the conditions for these registers are satis�ed.

The general method of the attack is to compute messagesMi, 0 ≤ i ≤ 15,
(we use lower index for indexing 32 bit long registers in a message block)
from the �rst 16 registers Ri, where Ri, 0 ≤ i ≤ 15, satis�es the prescribed
conditions. Then we can continue in computing of registers Ri, 16 ≤ i ≤ 63,
and verify if the prescribed conditions are satis�ed. If we �nd a condition
that is not satis�ed we stop computing and change some bits in Ri, for some
0 ≤ i ≤ 15. Then we calculate a new message wordsMi for indexes i a�ected
by the change in registers Ri. We continue in computing and verifying the
conditions for Ri, i ≥ 16 and if all prescribed conditions are satis�ed we
have found the �rst (or the second) block of the colliding message m. The
other colliding message n can be computed as n = (M0 + ∆0||M1 + ∆1).
The problem is that there are 45 conditions for registers Ri, i ≥ 16, in the
�rst message block M0 and the probability that all of them are satis�ed is
estimated as 2−45. Of course this is much better than 2−64 from the birthday
paradox attack but is there any chance for an improvement?

3.3 Recent collision searching algorithms

The �rst collision searching algorithm we describe is by Vlastimil Klíma [10],
the second one is by Marc Stevens [23] and the third one is our algorithm
[6]. All three algorithms were developed independently in the beginning of
2006 and all three are using Wang's method described in [29].

The main goal of these improvements is an e�ort to force message M0

to have all the su�cient conditions on registers Ri satis�ed. As we said,
the problem is to force conditions for registers Ri, i ≥ 16. Details of the
three presented algorithms can be found in the original papers [10, 23, 6].
Here we try to generalize the methods they are using so-called multi-message
modi�cation and tunneling. We also present a pseudocode of the three algo-
rithms for �nding the �rst message block M0 at the end of this section. The
algorithms for �nding the second block M1 are very similar.

By the veri�cation process we call the process of calculating the values of

50

registers starting from R16 and checking the prescribed conditions for Ri, i ≥
16. If some condition is not veri�ed then we start changing some bits in Ri for
some 0 ≤ i ≤ 15. Then we compute the a�ected message words Mi. By the
generating of a candidate for collision we mean the process of changing bits
in registers and computing a�ected message words Mi, where by candidate

for collision we mean the message block that can be calculated from the
modi�ed registers. We want to note that the computation of a�ected message
words Mi does not have to be done before the procedure of veri�cation is
started. In fact, the changes in Ri does not have to a�ect the Mi needed in
calculation of R16 (or the �rst step in the veri�cation procedure). We can
take advantage of that fact and calculate the a�ected message words only
after some of the �rst conditions are checked. It will make the algorithm
faster.

The multi-message modi�cation method concentrates on preparing the
message registersMi, 0 ≤ i ≤ 15, in a way that su�cient conditions for some
registers Ri, i ≥ 16, will be satis�ed with greater probability than 1/2. By
setting of bits in message registers Mi, 0 ≤ i ≤ 15, we can in�uent bits in
some registers after R15, i.e. R16, R17, R18, R19. The problem is that further
we are from R15 the harder it is to in�uent the bits in these registers and
so the method is e�ective only for satisfying several conditions on registers
R16, . . . , R20? [6, 29].

The tunneling method [10] came up with a di�erent approach. Suppose
we can �nd a collision candidate satisfying the conditions up to register
R23. Can we change some bits in registers Mi , 0 ≤ i ≤ 15, then recalculate
registers Ri which are a�ected by the change and the su�cient conditions up
to R23 will stay satis�ed? The places where this is possible are called tunnels.
There are di�erent types of tunnels. According to the numbers of changes
that can be done in the tunnel the strength of the tunnel is de�ned. The
tunnel of strength n can create 2n of di�erent collision candidates satisfying
the su�cient conditions up to R23. If a tunnel can satisfy the su�cient
conditions up to R23 with some probability it is called probabilistic tunnel.
The characteristics of tunnels described in [10] are summarized in the Table
1. We added the parameters cost which measure the expected number of
recalculated registers Ri and Mi for creation of one new collision candidate
satisfying the su�cient conditions up to R23.

We summarize the information about the tunnels in the Table 1. We must
note that the numbers in this table are very roughly estimated and further
analysis would be required. However, we will show the idea of complexity
calculation for the algorithm in the next section.

3.3.1 Algorithm Complexity

Basic unit in which we measure the complexity is computation of one MD5
step i.e. computation of one register Ri in compression function. We asked

51

tunnel strength probability cost changed registers

T6 : Q9 3 1 3 M8,M9,M12

T5 : Q4 1 1 3 M3,M4,M7

T4 : Q14 8 1 8 M2,M3,M4, R23,M6, M7,M13,M14

T3 : Q10 2 1/2 4*2 + 3 M10, R21, R22, R23,M9,M12,M13

T2 : Q13 > 10 1/3 3*7 + 3 M5, R20, R21,M15, R22,M4, R23,M1,M2,M3

T1 : Q20 > 3 roughly1/7 7*6 + 3 M5, R20, R21, R22,M4, R23,M1,M2,M3

Table 1: Tunnels characteristics

Algorithm 1 Klíma's algorithm

1: Loop until the conditions for R16, . . . , R23 are ful�lled;
2: Loop over all possible changes in T1
3: Generate a new candidate for collision for price c1;
4: Verify the candidate; if all conditions are true then return

M0, N0, IV 1
m, IV

1
n .

5: Loop over all possible changes in T2

6:
. . .

7: Loop over all possible changes in T6
8: Generate a new candidate for collision for price c6;
9: Verify the candidate; if all conditions are true then return
M0, N0, IV 1

m, IV
1
n .

10: End of loop T6;
11: . . .
12: End of loop T1;

ourselves what has an in�uence on the duration of searching algorithms.

(a) The cost of generating one collision candidate. (random variable G)

(b) The cost of verifying the candidate. (random variable V)

(c) The number of collision candidates that need to be generated. (random
variable C)

Then the expected value of waiting for collision can be calculated as

E(C) · (E(G) + E(V))

We present in [6] several prepositions in which we calculate the expected
values of the three variables and enumerate the values for the three described
algorithms. We obtained following results.

52

Algorithm 2 Stevens' Block 1 search algorithm

1: Choose Q1, Q3, . . . , Q16 ful�lling conditions;
2: Calculate m0,m6, . . . ,m15;
3: Loop until Q18, . . . , Q21 are ful�lling conditions:

(a) Choose Q17 ful�lling conditions;

(b) Calculate m1 at t = 16;

(c) Calculate Q2 and m2,m3,m4,m5;

(d) Calculate Q18, . . . , Q21;

4: Loop over all possible Q9, Q10 satisfying conditions such that m11 does
not change:

(a) Calculate m10;

(b) Calculate Q22, Q23, Q24,m8,m9,m12,m13, Q25 . . . , Q64;

(c) Verify conditions for Q22, . . . , Q64, T22, T34 and the iv-conditions
for the next block. Stop searching if all conditions are satis�ed and
a near-collision is veri�ed.

5: Start again at step 1.

For the �rst colliding block and the original initial vector the average
running time is

i. 24.5010 · (230) MD5 steps for Stevens' algorithm,

ii. 7.7153 · (230) MD5 steps for Klíma's algorithm,

iii. 29.437 · (230) MD5 stepsfor our algorithm.

For comparison running 232 MD5 steps takes on 1.54 GHz processor less
than one minute. We also calculated that the average running time for the
second colliding block is remarkable lower that the average for the �rst block.
It is mainly due to the lower number of the su�cient conditions for registers
Ri, i ≤ 16, in second block. That is why a lot of authors calculate just with
the complexity of the algorithm for �nding the �rst colliding block.

3.4 3C and 3C+: An Attempt to Improve Merkle-Damgård

construction

In the light of the multi-block attacks Gauravaram et al [5] proposed a slight
modi�cation of the Merkle-Damgård (MD) construction called 3C and 3C+
to improve protection against known attacks on MD based hash functions.

53

Algorithm 3 Our searching algorithm for the �rst block

Input: Initial vector IV 0

Output: Pair of messages M0, N0, IV 1
m, IV

1
n

1: R−4 ← IV 0
0 , R−3 ← IV 0

3 , R−2 ← IV 0
2 , R−1 ← IV 0

1 ;
2: Initialize R2, R3, . . . , R16 with regard to the �xed bits;
3: repeat

(a) Randomly change free bits in R2, R3, R7, R8, R9, R10, R11;

(b) Calculate M6, M7, M8, M9, M10, M11, M12, R17, R18;

(c) if one of the conditions for R17 and R18 is false then
- Try to satisfy them by speci�c changes in registers R13−R16;
- Calculate R17 and R18 again;

(d) if conditions for R17 and R18 are true then
- Calculate M13, M14, M15, M1;
- if M15[17] = 0 then execute step 4;

4: Loop over all possible choices in R19[6− 0] and R19[14− 8]

(a) Change R19;

(b) Calculate M0, R0, R1, M5, R20, R21;

(c) if R20[31] 6= 0 or R20[17] 6= R19[17] or R21[31] 6= 0 then
- Change some bits in R19 to satisfy the conditions;
- Calculate M0, R0, R1, M5, R20, R21 again;

(d) if R20[31] = 0 & R20[17] = R19[17] & R21[31] = 0 then (Verify the
candidate)

- Calculate R22,M4, R23,M2,M3, R24, R25, . . . , IV
1;

- Verify the conditions for R22, . . . , R63, IV
1
m;

- if all conditions are true then return M0, N0, IV 1
m, IV

1
n .

Their idea is to add additional registers that would collect xors of all chaining
variables. After the message is processed the content of additional registers
is padded to provide one more message block and the extra block is used
as an input for the last calculation of the compression function. Thus the
original MD construction remains and the extra security is supposed to be
provided by the additional registers, see Figures 1 and 2. One of the main
properties of the 3C construction is that it is as e�cient as the standard
hash functions when it is instantiated with the compression functions of any
of these hash functions. However it was shown in [8] that one must be very

54

careful to use this construction and invoke it with compression function from
MD5 or SHA-0 because the problem with the multi-block collisions was not
solved.

@@f
@@f

@@f
@@f

@@f

⊕ ⊕ ⊕

- - -- -

6 6 6

- - - -
�

H

P

A

D

-
-IV0 IV1 IV2 IVL−1 IVL

C1 C2 CL−1 CL

M1 M2 ML−1 ML

- - - -

Figure 1: 3C construction of hash function

@
@f

@
@f

@
@f

@
@f

@
@f

⊕ ⊕ ⊕

⊕ ⊕ ⊕

- - - --

6 6 6

6 6 6

??
C-
�

H

P

A

D -

- - -

- - -

IV0 IV1 IV2 IV3 IVL

- - - -

M1 M2 M3 ML

-

C1 C2 C3 CL−1 CL

D1 D2 D3 DL−1 DL

Figure 2: 3C+ construction of hash function

3.4.1 Multi-block collision attacks on 3C and 3C+

We introduce the main idea of the attack at 3C and 3C+ on the following
example of 3C construction invoked with compression function taken from
MD5. The case of 3C+ construction is very similar. First, 2-block colliding
messages (M1||M2) and (N1||N2) are found using the attack by Wang et al
[29]. Any of the algorithms from subsection 3.3 can be applied. It is important
the algorithms can �nd a collision for any IV. Then we take the chaining vari-
able IV2 = IV′2 as the initialization vector for the second run of the Wang et
al. algorithm. In this way we obtain another pair of messages (M3||M4) and
(N3||N4). The 4-block messages (M1||M2||M3||M4) and (N1||N2||N3||N4)
then form the collision for the 3C construction based on the MD5 compres-
sion function. The scheme of the attack and the distribution of di�erences
are shown on Figure 3. Basically we took advantage of the �xed di�erences in
equation (3), the fact that δ ⊕ δ = 0 and the property that Wang's collision
searching algorithm works for any IV.

We want to note that the method in [8] can be applied to the 3C con-
struction invoked with compression functions also from other hash functions

55

@@f
@@f

@@f
@@f

⊕ ⊕ ⊕

- - - -

6 6 6

- - - -

-IV0

- - - -
δ 0 δ 0δ 0 δ 0

δ δ 0 0

0 δ 0

Figure 3: 4-block internal collision attack on 3C without the �nal processing

such as SHA-0 [30] and SHA-1 [28]. In case SHA-1 the real collisions are not
known (yet) but the structure of the collisions in [28] is the same than in
case of MD5 what means the collisions in 3C can be found in the same way.

It is also fair to say that the authors of the 3C and 3C+ constructions also
suggested substitution of the simple xor function in the additional chaining
variable for the more complex one. We agree that it would make searching
for collisions more di�cult but our point is the weakness is inside of the
compression function. Another more complex function will also slow down
the algorithm and what is probably the most important we still need some
kind of proof of the collision resistance.

3.5 Feedback Ring-iterative Structure

The second example of a new construction of the hash function can be found
in [19]. The authors of the paper presented new hash ring-iterative example
of which are single feedback ring-iterative structure (SFRI) and multiple fe-
edback ring-iterative structure (MFRI). Description of the constructions is
pricesely given in [19]. Here we refer to Figures 3.5 and 3.5 which schema-
tically describe these constructions. Symbol means rearrangement of bits
of a variable in reverse order and we recall that by symbol ⊕ is meant ope-
ration xor (bitwise exclusive or) and by symbol � modular addition. From
the description in [19] it is not clear if authors mean k addition modulo 232

or one addition modulo 2k(32), where k = 4 in case of MD5 or k = 5 in
case of SHA-1 etc. Notice that message block M1 forms the input to the
compression function twice and message block Mn is processed twice in case
of SFRI. For proper description see the original paper [19].

Figure 4: Single Feedback Ring-iterative Structure

56

Figure 5: Multiple Feedback Ring-iterative Structure

Almost immediately we see how to use Wang's multi-collisions for colli-
ding messages in SFRI. We start and �nish with the same blocks for the both
colliding messages and put a colliding pair between these two blocks. So a
collision can consist of messages (M1||M2||M3||M4) and (M1||N2||N3||M4),
where (M2||M3) and (N2||N3) are di�erent 2-block colliding messages for
initial vector f(IV,M1). The messages (M2||M3) and (N2||N3) can be ob-
tained from any of the algorithms described in subsection 3.3.

The MFSR seems to be more complex, but in fact it is very similar
idea than 3C or 3C+ construction [5] with more complex chaining function.
Here we describe just the idea of possible multi-block collisions. To overcome
the �nal additional processing of message block M1 we use the same �rst
message block in the both messages. 2-block collision in the upper chain (xor
of message blocks) can be found because of the form of di�erences ∆1 and ∆2

from equations (2) and (3). We force the messages to have the same modular
di�erences than xor di�erences what means addition of one condition on
message register m11 in both colliding blocks. The last problem is to �nd
collision in the lower chain of modular additions.

Let us recall how the modular di�erence δ from equation (3) is cancelled.
Denote the last four registers in computation of compression function by
variable S. Then the di�erentials in Wang's 2-block method for messages
(M1||M2) and (N1||N2) can be described as follows

IV0 − IV′0 = 0 (4)

S1 − S′1 := (231, 231 + 225, 231 + 225, 231 + 225) = δ (5)

IV1 − IV′1 = (IV0 + S1)− (IV′0 + S′1) = δ (6)

S2 − S′2 = (231, 231 − 225, 231 − 225, 231 − 225) = −δ (7)

IV2 − IV′2 = (IV1 + S2)− (IV′1 + S′2) = δ − δ = 0 (8)

Now if somebody is able to �nd a colliding pair (M1||M2) and (N1||N2)
with the changed di�erentials i.e. where di�erential S1 − S′1 = −δ and S2 −

57

S′2 = δ, she can create 5-block collision pair m,m′ for simpli�ed MFRI in
the form

m = (M1||M2||M3||M4||M5) m′ = (M1||N2||N3||N4||N5),

where (M2||M3) and (N2||N3) forms the 2-block normal collision for initial
vector set to IV1 and (M4||M5) and (N4||N5) forms the 2-block collision
with changed di�erential for initial vector set to IV3. By simpli�ed MFRI
we mean the MFRI construction without reversing of bit order (). The
problem of �nding 2-block collision with changed di�erential seems to be
equivalent to the problem of �nding 2-block collision. We think that it should
be possible by very small changes in the di�erential path.

For the construction with operation of reverse bit ordering () we must
ensure that di�erentials 231 (which become 20 after reversing the bit order)
have the opposite signs. This may add a little obstacle to the collision gene-
rating algorithm but we wanted to show that this construction is no more
resistant to multi-block collisions than the Merkle-Damgård construction.

3.6 Conclusion

We have tried to present the latest work in cryptanalysis of MD5 and hash
functions. We have shown several collision searching algorithms for MD5
and several improvements of the Merkle-Damgård construction. The goal
for these improvements was to avoid multi-block collisions but in fact we
presented very simple attacks against them. We recommend not using the
compression function of MD5 as a part of any scheme which requires collision
resistance as a property.

58

4 A New Type of 2-block Collisions in MD5

4.1 Introduction

At rump session of Crypto 2004 X. Wang presented two pairs of colliding
messages for MD5 [27]. A more detailed description of the method for con-
structing colliding pairs of messages was given in the paper [29] presented at
Eurocrypt 2005. Each colliding pair consisted of messages of the same length
1024 bits, i.e. two blocks (M1||M2) and (M ′1||M ′2). Their modular di�erences
were:

δM1 = M ′1 −M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,+215, 0, 0, 231, 0)

δM2 = M ′2 −M2 = −δM1

= (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)

The most important part of [29] was the so called di�erential path for each
block. The di�erential path says how modular di�erences and xor of registers
Qt, Q

′
t evolve during the calculation of the MD5 compression function applied

to M1,M
′
1 and M2,M

′
2 resp. However, the paper [29] gives no information

about how the di�erential paths were found.
Since then, many improvements of the collision search algorithm based

on the di�erential paths of Wang et al. have been published. Two most
important developments were the multi-block message modi�cation (already
mentioned in [29]) and tunneling [10]. These methods decreased the time
required for �nding a pair of colliding messages to less than one minute on a
PC. The theoretical complexity was estimated [6] to 227 calculations of the
MD5 compression function for Klima's algorithm [10] and 229 calculations
for Stevens' algorithm [23].

A new type of collisions - the so called chosen pre�x collisions were pub-
lished in [25]. In case of chosen pre�x collisions one starts with di�erent initial
vectors IVand IV′ with modular di�erence δIV = IV− IV′ = (0, x, x, x) and
constructs messages M,M ′ such that MD5(IV,M) = MD5(IV′,M ′). The
number of blocks of M and M ′ equals the weight of x i.e. the minimal num-
ber of non-zero coe�cients in any binary signed digit representation (BSDR)
of x. The authors used chosen pre�x collisions to construct colliding X.509
certi�cates. A major development of [25] is an algorithm for an automated
construction of di�erential paths.

Another paper to mention in this context is the paper [20] by Yajima
et al. The authors point out that there might be colliding pairs of messages
with other di�erences than those of Wang et al. However their estimates of
time required for �nding colliding pairs with these di�erences were too high
even if the corresponding di�erential paths were known.

Recently Sasaki et al. [21] made another progress in the study of MD5
collisions. They constructed a di�erential path that allowed them to �nd two

59

message blocks M1,M
′
1 with modular di�erences

δM1 = M ′1 −M1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,+231, 0, 0, 0, 0)

such that MD5(IV,M1)−MD5(IV,M ′1) = (231, 231, 231, 231). Then they mo-
dify the algorithms of [3] to construct e�ciently a message block M2 such
that MD5(IV,M1||M2) = MD5(IV,M ′1||M2). This is then applied to recover
the �rst 31 letters of the client password used in the APOP. It was signi�cant
improvement of the result from [11] and [22], where Wang's et al. collisions
enabled recovery of the �rst three characters of the password.

In this paper we present a new type of 2-block collisions for MD5. We
choose one of the di�erences of messages suggested in [20] and construct
the corresponding colliding message pair. In our case the colliding messages
(M1||M2) and (M ′1||M ′2) have di�erences

δM1 = M ′1 −M1 = (0, 0, 231, 0, 0, 0, 0, 0, 0,+227, 0, 0, 231, 0, 0, 0)

δM2 = M ′2 −M2 = −δM1

= (0, 0, 231, 0, 0, 0, 0, 0, 0,−227, 0, 0, 231, 0, 0, 0)

We use our own implementation of Stevens di�erential path searching algo-
rithm (the original implementation has not been published yet) to construct
di�erential paths. We also give some details of our implementation in Section
4.4. As for the algorithm �nding colliding messages satisfying a given di�e-
rential path we also use our own implementation of Klima's algorithm [10].
We do not provide any details since the algorithm based on tunnels is de-
scribed well in e.g. [10], [24].

Recently Xie et al. announced in [31] a di�erent type of two block colliding
messages with di�erences

δM1 = M ′1 −M1 = (0, 0, 0, 0, 0, 0,+28, 0, 0, 231, 0, 0, 0, 0, 0, 231)

δM2 = M ′2 −M2 = −δM1

= (0, 0, 0, 0, 0, 0,−28, 0, 0, 231, 0, 0, 0, 0, 0, 231)

Their collisions also belong among the collisions forecasted in [20], the
case t = 43, see section 4.3.

4.2 Preliminaries

We follow description and notation from [24]. MD5 can be described as
follows:

1. Pad the message with the 1-bit, then as many 0 bits until the resulting
length equals 448 mod 512, and the bitlength of the original message
expressed as a 64-bit integer. The total bitlength of the padded message
is then multiple of 512.

60

2. Divide the padded message into N consecutive 512-bit blocks M1,M2,
. . . ,MN .

3. Go through N + 1 states IVi, for 0 ≤ i ≤ N , called the intermediate
hash values. Each intermediate hash value IVi consists of four 32-bit
words ai, bi, ci, di. For i = 0 these are initialized to �xed public values:
(a0, b0, c0, d0) = (0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476)
and for i = 1, 2, . . . , N intermediate hash value IVi is computed using
the MD5 compression function described below: IVi = H(IVi−1,Mi).

4. The resulting hash value is the last intermediate hash value IVN .

4.2.1 MD5 compression function

The input for the compression function H(IV,M) is an intermediate hash
value IV = (a, b, c, d) of length 128bits and a 512-bit message block M. There
are 64 steps, each step uses a modular addition, a left rotation, and a non-
linear function. Depending on the step t, addition constants Ct and rotation
constants st (all de�ned in standard [18]) are used.

The non-linear function ft is de�ned by

ft =


F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z), for 0 ≤ t ≤ 15,
G(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z), for 16 ≤ t ≤ 31,
H(x, y, z) = x⊕ y ⊕ z, for 32 ≤ t ≤ 47,
I(x, y, z) = y ⊕ (x ∧ ¬z), for 48 ≤ t ≤ 63,

The message blockM is divided into 16 consecutive 32-bit wordsm0,m1,
. . . ,m15 and expanded to 64 words Wt, for 0 ≤ t < 64, of 32 bits each:

Wt =


mt, for 0 ≤ t ≤ 15,
m1+5t mod 16, for 16 ≤ t ≤ 31,
m5+3t mod 16, for 32 ≤ t ≤ 47,
m7t mod 16, for 48 ≤ t ≤ 63,

For 0 ≤ t < 64 the compression function algorithm maintains a wor-
king register with 4 state words Qt, Qt−1, Qt−2, Qt−3. These are initialized
as (Q0, Q−1, Q−2, Q−3) = (b, c, d, a) and, for 0 ≤ t < 64 in succession, upda-
ted as follows:

Ft = ft(Qt, Qt−1, Qt−2),

Tt = Ft +Qt−3 + Ct +Wt,

Rt = RL(Tt, st),

Qt+1 = Qt +Rt.

After all steps are computed, the resulting state words are added to the
intermediate hash value and returned as output: H(IV,M) = (a + Q61, b+
Q64, c+Q63, d+Q62).

61

4.2.2 Di�erential Paths

A di�erential path for compression function H is a precise description of the
propagation of di�erences through the 64 steps caused by δIV and δM

δFt = ft(Q
′
t, Q

′
t−1, Q

′
t−2)− ft(Qt, Qt−1, Qt−2);

δTt = δFt + δQt−3 + δWt;

δRt = RL(T ′t , Ct)−RL(Tt, Ct);

δQt+1 = δQt + δRt.

We use notation of bitconditions (also taken from [24]) on (Qt, Q
′
t) to

describe di�erential paths, where a single bitcondition speci�es directly or
indirectly the values of the bits Qt[i] and Q

′
t[i].

qt[i] condition on (Qt[i], Q
′
t[i]) ki

· Qt[i] = Q′t[i] 0
+ Qt[i] = 0, Q′t[i] = 1 +1
− Qt[i] = 1, Q′t[i] = 0 −1

Table 1: Di�erential bitconditions

qt[i] condition on (Qt[i], Q
′
t[i]) direct/indirect direction

0 Qt[i] = Q′t[i] = 0 direct
1 Qt[i] = Q′t[i] = 1 direct

ˆ Qt[i] = Q′t[i] = Qt−1[i] indirect backward
v Qt[i] = Q′t[i] = Qt+1[i] indirect forward
! Qt[i] = Q′t[i] = ¬Qt−1[i] indirect backward
y Qt[i] = Q′t[i] = ¬Qt+1[i] indirect forward

m Qt[i] = Q′t[i] = Qt−2[i] indirect backward
w Qt[i] = Q′t[i] = Qt+2[i] indirect forward
Qt[i] = Q′t[i] = ¬Qt−2[i] indirect backward
h Qt[i] = Q′t[i] = ¬Qt+2[i] indirect forward

? Qt[i] = Q′t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) indirect backward
q Qt[i] = Q′t[i] ∧ (Qt+2[i] = 1 ∨Qt[i] = 0) indirect forward

Table 2: Boolean function bitconditions.

A binary signed digit representation (BSDR) of a word X is a sequence
Y = (ki)

31
i=0, often simply denoted as Y = (ki), of 32 digits ki ∈ {−1, 0,+1}

for 0 ≤ i ≤ 31, where

X ≡
31∑
i=0

ki2
i mod 232.

62

A particularly useful BSDR of a word X which always exists is the Non-
Adjacent Form (NAF), where no two non-zero ki's are adjacent. The NAF
is not unique since we work modulo 232 (making k31 = −1 equivalent to
k31 = +1), however we will enforce uniqueness of the NAF by choosing
k31 ∈ {0,+1}. Among the BSDRs of a word, the NAF has minimal weight
(see e.g. [17]).

4.3 New 2-block Collisions in MD5

The collisions of Wang et al. [29] make use of a weakness in the message
expansion of MD5, in particular in its interplay with the non-linear function
in the third round (steps t = 32, . . . , 47). This weakness appears for all
t = 32, . . . , 44, not only fot t = 34 used in [29]. This had been observed
already by Yajima et al. in [20]. They conjectured that any t = 32, . . . , 44
might possible lead to 2-block collisions with similar characteristics.

More speci�cally there are 13 triplets of possible di�erences in messages

dt = (δWt, δWt+1, δWt+3) = (δm(5+3i) mod 16, δm(8+3i) mod 16, δm(14+3i) mod 16),

where i = t−32, for which one can hope to construct 2-block collision similar
to those ones by Wang et al. They are summarized in Table 4.3.

step δQt δFt δWt δTt δRt st

t 0 0 ±231−st ±231−st ·231
t+ 1 ·231 ·231 ·231 0 0

t+ 2 ·231 0 0 0 0

t+ 3 ·231 ·231 ·231 0 0

Table 3: Generalized Wang type di�erentials

We believe this pattern must had been already known to Wang et al,
because they had chosen for their collisions the triplet de�ned by t = 34
which requires the smallest number of conditions in rounds 2�4 to have ma-
nageable computational complexity. An obvious strategy for choosing the t
and the corresponding triplet of di�erences to have a di�erential path with
manageable computational complexity is to obey the following con�icting
requirements:

1. Choose the triplet dt such that the di�erences in messages appear in
the second round as soon as possible, in particular the di�erence in
δm5+3i mod 16.

2. Choose the triplet dt such that the di�erence in δm5+3i mod 16 appears
in the fourth round as late as possible.

63

However, to �nd colliding messages with the forecasted di�erences requi-
res to �nd a di�erential path including a partial collision after two rounds,
the prescribed di�erences in the third round and their consequences in the
rest of round 3 and in round 4. This is what Wang et al. did in [29]. Yajima
et al. in [20] constructed a partial di�erential path for steps 17, . . . , 64 in the
case of di�erences d44, and estimated the number of conditions in rounds 2
to 4 for their partial di�erential path. They presented a table comparing the
number of conditions in rounds 2 to 4 for the di�erential path for the �rst
block of Wang et al. for the di�erences d34, and the partial di�erential path
they proposed for the di�erences d44.

round Wang: d34 Yajima: d44 ours: d44

2 15 52 50

3 0 0 0

4 20 17 16

Table 4: Number of conditions in rounds 2 to 4 for the �rst block

In this paper we present full di�erential paths for both blocks for the
di�erences d44 and examples of the 2-block colliding messages with these
di�erences. We constructed the full di�erential paths using our own imple-
mentation of Stevens algorithm described in [25] and [24]. The di�erential
path for the �rst block we constructed di�ers in the second round from the
partial path proposed by Yajima et al. In table 4 we also present the number
of conditions on Qt without the conditions on Tt for our di�erential path
for the �rst block. The numbers taken from the paper by Yajima et al. are
also the numbers of conditions on Qt without the conditions on Tt that were
completely missing in the paper by Wang et al. [29].

The di�erential paths we constructed and the corresponding colliding
messages are presented in Section 4.6. The actual colliding messages were
found by an algorithm involving Klima's tunnels which is similar to the
near-collision block searching algorithm presented by Stevens in [24].

4.4 On Our Implementation of Stevens Algorithm

In this section, we discuss the details of our implementation of Stevens al-
gorithm for generating di�erential paths. This algorithm can be divided into
two main parts

• extending partial di�erential paths,

• connecting partial di�erential paths.

We use the following terminology for partial di�erential paths. An upper

path is a partial di�erential path generated forward from an IV, a lower path

64

is a partial di�erential path generated backward from the registers 64, . . . , 61.
Note that our terminology di�ers from the one used by Stevens in [25].

4.4.1 Extending Partial Di�erential Paths

We provide more information on backward generation of lower paths. We
start with a partial di�erential path for steps 63, . . . , 31. This path is kept
�xed through out the whole run of the algorithm. We constructed it by hand
in the simplest possible way. This lower path is presented in table 5.

t δQt δFt δWt δTt δRt st

28 ·231
29 0

30 0

31 0 0 ·231 0 0 20

32�43 0 0 0 0 0

44 0 0 ±227 ±227 ·231 4

45 ·231 ·231 ·231 0 0 11

46 ·231 0 0 0 0 16

47 ·231 ·231 ·231 0 0 23

48-51 ·231 ·231 0 0 0

52 ·231 0 ·231 0 0 6

53-61 ·231 ·231 0 0 0

62 ·231 0 ·231 0 0 15

63 ·231 ·231 ±227 ±227 ±216 21

64 ±216 - - - -

Table 5: Partial lower di�erential path with δ

The Stevens algorithm for extending di�erential paths uses 3 basic choices
at each step t.

1. A choice of a BSDR of δQt.

2. A choice of δFt[i] for i = 0, . . . , 31. This choice determines a BSDR of
δFt.

3. A choice of a BSDR of δTt (in the case of generating upper paths
forward) or δRt (in the case of generating lower paths backward).

To limit the number of possible choices of BSDR's for δQt we use the
following 4 basic parameters

(a) max_nbr is the maximal number of BSDR's of δQt,

65

(b) max_dif is the the maximal di�erence between the weight of a BSDR
of δQ and the weight of its NAF,

(c) max_len is the maximal length of carry propagation,

(d) max_prp is the maximal number of carry propagations.

To choose a BSDR of δQt within the limits speci�ed by the parameters
one can use di�erent approaches. One possibility is to generate randomly a
BSDR satisfying the parameters and then to continue to the next choice.
Another possibility is to generate all BSDR's satisfying all four parameters
and then either to choose randomly from all generated possibilities or deter-
ministically in some prescribed order.

Stevens mentions in his thesis that he sets up max_dif = 2 and then
he chooses δQt randomly among all BSDR's satisfying this condition. The
advantage of this approach is speed.

In our implementation we have selected the other approach and generate
all BSDR's satisfying all four parameters. Then we choose a particular BSDR
deterministically. Our approach gives us information about the number of
possible choices of BSDR's and therefore it provides us with some information
about the tree of all possible extensions of partial di�erential paths.

To generate all BSDR's of δQt (within the limits set up by the four
parameters) exactly once we developed our own algorithm. The details of
the algorithm and a proof of its correctness will be presented in another
paper.

The second choice is to pick δFt[i], for i = 0, . . . 31, and therefore BSDR
of δFt. In what follows we use notations and de�nitions of sets Uabc, Vabc and
Wabc,g from subsection 5.5.2 of [25]. This choice depends on the precomputed
values of the functions FC(t, abc, g) and BC(t, abc, g), where a = qt[i], b =
qt[i− 1], c = qt[i− 2] are bitconditions, and g ∈ {0, 1,−1}.

There are again two di�erent approaches to choose δFt[i] (that is a BSDR
of δFt). One possibility is to choose δFt[i]'s randomly from the set Vabc
provided |Vabc| > 1. This is the approach used by Marc Stevens in his thesis
[24]. This leads to random selection of BSDR's of δFt. Our approach is to
limit the number of possible choices for a BSDR of δFt by a parameter
max_dF and, if |Vabc| > 1, we choose δFt[i] ∈ Vabc in the prescribed order
0, 1, -1. We proceed from i = 0 to i = 31.

The third choice is to pick a BSDR of δRt. Depending on the choice of
BSDR of δRt there are at most four possibilities for δTt. Stevens describes
in his thesis how he chooses the most probable one. In our implementation
we choose either the NAF of δRt or the BSDR that di�ers from the NAF of
δRt in the sign at the leading bit.

The algorithm for generating upper paths forward di�ers from the one
for generating lower paths backward in inessential details.

66

4.4.2 Connecting Partial Di�erential Paths

We generate partial upper di�erential paths forward up to step 12 (the last
computed value is δQ13) and partial lower di�erential paths backward up to
step 17 (the last computed value is δQ14). The choice of the bounds is the
same as in [24].

We have implemented the algorithm for connecting di�erential paths de-
scribed in [25] without any modi�cations. It should be noted however that
the output of the algorithm depends on the order of some steps in the algo-
rithm and on the data structures used to keep the intermediate results.

We supplement the connecting algorithm with the check if the rotation
of δTt, t = 11, . . . , 15, leads to the correct δRt selected in the extending parts
of the algorithm. We try all possibilities for free bits in registers Q11, . . . , Q16

and when there exists the possibility providing correct rotation of δTt, we
�x free bits and continue with the collision generating part of algorithm.

The connecting algorithm seems to have surprisingly high success rate.
Stevens in a test run of his improved connecting algorithm successfully con-
nected 52 pairs of upper and lower paths out of 2.5 · 105 × 5 · 105 attempted
pairs.

In our implementation the ratio of successfully connected pairs appears to
be very sensitive on the choice of parameters for generating partial di�erential
paths, especially the parameter max_dF. The distribution of the number
of successfully connected pairs in di�erent runs of our implementation was
rather irregular, but on average we constructed about 126 full di�erential
paths out of 8 · 104× 2 · 105 pairs of upper and lower paths for the �rst block
and 4 full di�erential paths for the second block. However, without it no
reasonable estimate of the success rate of the connecting partial di�erential
path algorithm can be made and the number of test runs is not high enough
to make any reasonable conclusions. In any case, this observed phenomenon
calls for deeper theoretical investigation.

4.4.3 Choosing Parameters

The number of generated partial di�erential paths in a given time appears
to be extremely sensitive on the choice of the parameters.

We present in table 6 the parameters we used for generating lower paths
in each step. The parameter max_con for step t denotes the total number
of conditions from the start of generation of partial paths to step t. We used
the same parameters for both blocks.

The strategy for generating lower paths was to set the parameters in such
a way that the following goals were achieved.

• The number of possible lower paths generated using chosen parameters
is su�cient for the next (connecting) part of the algorithm (from about
5 · 104 to 2.5 · 105).

67

t max_dif max_len max_prp max_nbr max_dF max_con

15 - - - - - 67
16 - - - - - 60
17 2 2 2 10 1000 51
18 2 2 2 10 1000 41
19 2 2 2 10 1000 39
20 2 2 2 10 1000 35
21 2 2 2 10 1000 24
22 2 2 2 10 1000 20
23 2 2 2 10 1000 18
24 2 2 2 10 1000 11

30-25 2 1 2 10 1000 10

Table 6: The parameters for partial lower paths

• The time needed to generate su�cient number of possible lower paths
using chosen parameters is feasible (less than 1 day on single PC).

• The number of conditions in steps 17, . . . , 30 is as small as possible.

• In particular, the number of conditions in steps 2, . . . , 30 is as small as
possible.

Setting the parameters is not straightforward and the values were obtained
after some experimentation. There might be better choices and a theoretical
understanding for an automated choice of the parameters is needed.

The strategy for the generating upper paths was not formulated in such
detail. The goal was to limit the number of conditions in steps 0, . . . , 12
in such a way that the su�cient number of upper di�erential paths was
generated in few hours. The total number of conditions is 80 for the �rst
block and 180 for the second block.

4.5 Conclusion

We presented a new type of 2-block MD5 collisions. We found them using
our implementation of Stevens algorithm. The implementation can be used to
construct di�erential paths for other types of di�erences in messages stated
in [20], i.e. to construct target or 2-block collisions in MD5.

4.6 Di�erential paths and collision example

68

�rst block second block

-3

-2 +.......1

-1 +.......1

0 +.......+

1v +.......v+v.

21 +.......1+ v.....1.

3+ +....... v.....+. 1.....+.

4 ...v....+ +v.v.... 1.....+1 ..v..... +.....+.

5 ...1....+v.. +1.1..v. +...v.+. ..1..... +...v.+.

6 ...+....+ v....1.. .-.-..1. +.v.1.+. .v+...v. +...1.+.

7 ...+...v+ 1..v.+.. 1-.-.v+v -v..+v+v .0+..v.. +.v.+.+.

8 .0.+...0+ .v...v.v +..1.+.. .1.-v.+0 +1+.+0+. v+.v.0+v -v.v+v+v

9 .1.+..1+v..+1.1 +..+.-.. .+.-1+.+ 1-0..-.- 1-1..+0. -1+11.+.

10 .+.-.v0+11.+ .+...+0- .vv+.-.. .1..-10- 1-1.1+10 -00+.-1+ .+0+1+.-

11 v+0-0.+1 10v1+0v. v1v0.+1+ 1..+000. y-.1-1.- 11-.1-11 -1-0.-00 0+++-010

12 .11+1++1 0100++11 0-110++0 0�0111. 00v.-1v+ 0++0-101 010-v11- 11101000

13 +1+-+0� -+�11-1 ++�1+1- +11+�-. ++0..+.+ -00100+- �++.++1 �0++-+.

14 1++0+-11 +�1+�- �++++� 0+01000. +1+.1�+ +-0+++++ +10+-101 0+.+-01.

15 11+10+11 11+01010 01011v11 -1.0110. y1-..-11 00-000+0 +000010+ 0-.1+10.

16 .11.10.. -11.0100 -100+.10 01..0... ..1..110 +0111011 +..1-..- .0.01...

17 ..�..�.. ..0...1.+..1 1+..-... ..�..�.. ..0...1. 1...-..0 .-..+...

18 �.....+. �...-..-0... �.....-. 0...+..+0...

190.. ..-...0.0... .�..+...0.. ..+...0.0... .�..-...

201.. ..-...1.-..�1.. ..+...1.+..�

21 0....-.. ..+...1.�... 0....+.. ..-...1.�...

22 1....0.. ..0...-.�... 1....0.. ..0...+.�...

23 +....0.. ..1..... +....0.. ..1.....

24 0....1..�. 1....1..�.

25 -....+.. +....-..

26 -....... -.......

27 +....�.. +....�..

28 +....... +.......

29 0....... 0.......

30 !....... !.......

Table 7: Di�erential path for the �rst and second blocks without tunnels,
registers -3 to 30

69

31-45

46 I.......

47 J.......

48 I.......

49 J.......

50 I.......

51 J.......

52 K.......

53 J.......

54 K.......

55 J.......

56 K.......

57 J.......

58 K.......

59 J.......

60 K.......

61 J.......

62 I.......

63 J.......

64

Table 8: Di�erential path for both blocks, registers 31 to 64. I, J, K ∈ {0, 1},
I 6= K.

70

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0xCE7E83CA 0xCADE345E 0xB81D83A5 0x562EDF19

0xB93C9D41 0xF9C4E244 0x5B9B832F 0xE16D2FE5

0x4B286759 0xF9FE0301 0xA912EF12 0x95A85769

0x18ADF66C 0x8B1AD802 0x291B44AB 0x732AF6A2

N1 0xCE7E83CA 0xCADE345E 0x381D83A5 0x562EDF19

0xB93C9D41 0xF9C4E244 0x5B9B832F 0xE16D2FE5

0x4B286759 0x01FE0301 0xA912EF12 0x95A85769

0x98ADF66C 0x8B1AD802 0x291B44AB 0x732AF6A2

IV1 0xFADBF815 0x1B73566D 0x6BCF3C99 0x5D6E2DFF

IV′1 0x7ADBF815 0x9B73566D 0xEBCF3C99 0xDD6F2DFF

IV1 ⊕ IV′1 0x80000000 0x80000000 0x80000000 0x80010000

M2 0x6A9B0D7D 0x9AAEEDA9 0x62255628 0xB6A85040

0xC7E08FD1 0x077E530A 0xDEDD6809 0xD20A7D80

0x55DFBE93 0x78571C29 0xC13D746C 0x062792C8

0x45A152CE 0x69727500 0x351EC8F7 0xCFFFAF73

N2 0x6A9B0D7D 0x9AAEEDA9 0xE2255628 0xB6A85040

0xC7E08FD1 0x077E530A 0xDEDD6809 0xD20A7D80

0x55DFBE93 0x70571C29 0xC13D746C 0x062792C8

0xC5A152CE 0x69727500 0x351EC8F7 0xCFFFAF73

IV2 = IV′2 0xA5A29F9F 0xBC622670 0x54E1D520 0xE6FA818E

Table 9: Collision example

71

References

[1] Eli Biham, Ra� Chen, Antoine Joux, Patrick Carribault, Christophe
Lemuet, and William Jalby. Collisions of sha-0 and reduced sha-1. In
Ronald Cramer, editor, Advances in Cryptology � EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 36�57. Sprin-
ger Berlin Heidelberg, 2005.

[2] Eli Biham and Adi Shamir. Di�erential cryptanalysis of des-like cryp-
tosystems. Journal of Cryptology, 4(1):3�72, 1991.

[3] Bert den Boer and Antoon Bosselaers. Collisions for the compression
function of md5. In Workshop on the theory and application of crypto-

graphic techniques on Advances in cryptology, EUROCRYPT '93, pages
293�304, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

[4] Brier E. et al. Linearization framework for collision attacks: Application
to cubehash and md6 (extended version). Cryptology ePrint Archive,
Report 2009/382, 2009. http://eprint.iacr.org/.

[5] Praveen Gauravaram, William Millan, Ed Dawson, and Kapali Viswa-
nathan. Constructing secure hash functions by enhancing Merkle-
Damgård Construction, url = http://dx.doi.org/10.1007/11780656_34,
year = 2006. Lecture Notes in Computer Science : Information Security

and Privacy, pages 407�420.

[6] Daniel Jo²£ák. Finding collisions in cryptographic hash functions. Mas-
ter's thesis, Charles University in Prague, 2006. http://cryptography.
hyperlink.cz/2006/diplomka.pdf.

[7] Daniel Jo²£ák. Beyond the md5 collisions. Security and Protection of
Information, 2007. http://spi.unob.cz/papers/2007/2007-04.pdf.

[8] Daniel Jo²£ák and Ji°í T·ma. Multi-block collisions in hash functions
based on 3c and 3c+ enhancements of the merkle-damgard construction.
Lecture Notes in Computer Science: Proceedings of ICISC, 4296:257 �
266, 2006.

[9] Irving Kaplansky. Linear algebra and geometry, a second course. Chel-
sea Publishing Company, 1974.

[10] Vlastimil Klima. Tunnels in hash functions: Md5 collisions within a
minute. Cryptology ePrint Archive, Report 2006/105, 2006. http:

//eprint.iacr.org/.

[11] Gaëtan Leurent. Message freedom in md4 and md5 collisions: Appli-
cation to apop. In Alex Biryukov, editor, Fast Software Encryption, vo-
lume 4593 of Lecture Notes in Computer Science, pages 309�328. Sprin-
ger Berlin / Heidelberg, 2007.

72

[12] Gaëtan Leurent and Søren S. Thomsen. Practical partial-collisions on
the compression function of bmw. In Fast Software Encryption - 18th

International Workshop, FSE 2011, volume 6733 of Lecture Notes in

Computer Science, page 238. Springer, 2011.

[13] Jie Liang and Xue-Jia Lai. Improved collision attack on hash function
md5. J. Comput. Sci. Technol., 22:79�87, January 2007.

[14] Helger Lipmaa and Shiho Moriai. E�cient algorithms for computing di-
�erential properties of addition. In Mitsuru Matsui, editor, FSE, volume
2355 of Lecture Notes in Computer Science, pages 336�350. Springer,
2001.

[15] Helger Lipmaa, Johan Wallén, and Philippe Dumas. On the additive
di�erential probability of exclusive-or. In Bimal Roy and Willi Me-
ier, editors, Fast Software Encryption, volume 3017 of Lecture Notes in
Computer Science, pages 317�331. Springer Berlin Heidelberg, 2004.

[16] Lucie Marková. Analysis of proposals of new hash functions for sha-3
competition. Master's thesis, Charles University in Prague, 2010.

[17] James A. Muir, Douglas, and R. Stinson. Minimality and other pro-
perties of the width-w nonadjacent form. Mathematics of Computation,
75:369�384.

[18] Ron Rivest. The md5 message-digest algorithm. Request for Comments:
1321, 1992.

[19] Su S., Yang Y., Yang B., and Zhang S. The design and analysis of a hash
ring-iterative structure. Cryptology ePrint Archive, Report 2006/384,
2006. http://eprint.iacr.org/2006/384.

[20] Yu Sasaki, Yusuke Naito, Jun Yajima, Takeshi Shimoyama, Noboru
Kunihiro, and Kazuo Ohta. How to construct su�cient condition in sear-
ching collisions of md5. Cryptology ePrint Archive, Report 2006/074,
2006. http://eprint.iacr.org/.

[21] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. Security
of md5 challenge and response: Extension of apop password reco-
very attack. In Tal Malkin, editor, Topics in Cryptology � CT-RSA

2008, volume 4964 of Lecture Notes in Computer Science, pages 1�
18. Springer Berlin / Heidelberg, 2008. http://dx.doi.org/10.1007/
978-3-540-79263-5_1.

[22] Yu Sasaki, Go Yamamoto, and Kazumaro Aoki. Practical password
recovery on an md5 challenge and response. Cryptology ePrint Archive,
Report 2007/101, 2007. http://eprint.iacr.org/.

73

[23] Marc Stevens. Fast collision attack on md5. Cryptology ePrint Archive,
Report 2006/104, 2006. http://eprint.iacr.org/.

[24] Marc Stevens. On collisions for md5. Master's thesis, Eidhoven Univer-
sity of Technology, 2007.

[25] Marc Stevens, Arjen Lenstra, and Benne Weger. Chosen-pre�x collisi-
ons for md5 and colliding x.509 certi�cates for di�erent identities. In
Proceedings of the 26th annual international conference on Advances in

Cryptology, EUROCRYPT '07, pages 1�22, Berlin, Heidelberg, 2007.
Springer-Verlag.

[26] Ji°í Vábek, Daniel Jo²£ák, Milan Bohá£ek, and Ji°í T·ma. A new type
of 2-block collisions in md5. In Proceedings of the 9th International Con-
ference on Cryptology in India: Progress in Cryptology, INDOCRYPT
'08, pages 78�90, Berlin, Heidelberg, 2008. Springer-Verlag.

[27] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions
for hash functions md4, md5, haval-128 and ripemd. Cryptology ePrint
Archive, Report 2004/199, 2004. http://eprint.iacr.org/.

[28] Xiaoyun Wang, Yiqun L. Yin, and Hongbo Yu. Finding collisions in the
full SHA-1. Lecture Notes in Computer Science, 3621:17�36, November
2005.

[29] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash
functions. Lecture Notes in Computer Science: Proceedings of EURO-

CRYPT, 2005.

[30] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. E�cient collision
search attacks on sha-0. Lecture Notes in Computer Science: Proceedings
of Crypto, pages 1�16, 2005.

[31] Tao Xie, DengGuo Feng, and FanBao Liu. A new collision di�erential for
md5 with its full di�erential path. Cryptology ePrint Archive, Report
2008/230, 2008. http://eprint.iacr.org/.

[32] Jun Yajima and Takeshi Shimoyama. Wang's su�cient conditions of
md5 are not su�cient. Cryptology ePrint Archive, Report 2005/263,
2005. http://eprint.iacr.org/.

74

