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Abstract 

Ischemic heart disease is the leading cause of death and disability worldwide. The 

effects of ischemic heart disease are usually attributable to the detrimental effects of acute 

myocardial ischemia/reperfusion (I/R) injury. The aim of the thesis was to contribute to 

current effort to clarify the basis of mechanisms that could save the heart from I/R injury.   

The whole thesis is based on four studies; while the first three are published, the fourth 

one has been under revision. In the first study, we proved the involvement of nitric oxide 

(NO) in the cardioprotective mechanism of chronic hypoxia (CH). We described that 

exogenously increased availability of NO as well as inhibition of phosphodiesterase type 5 led 

to increased myocardial tolerance of normoxic and chronically hypoxic rats. The effects of 

both interventions were not additive, suggesting that NO is included in cardioprotective 

signaling of CH. Second study continued in investigating molecular mechanisms underlying 

cardioprotection induced by CH. We showed that infarct size-limiting effect of adaptation to 

CH was accompanied by increased myocardial concentration of tumor-necrosis factor alpha 

(TNF-α) and TNF-α receptor R2. In the third study, we examined the effect of dexrazoxane 

(DEX), the only clinically approved drug against anthracycline-induced cardiotoxicity, on I/R 

injury. We found a narrow dose range that could supress ischemic and reperfusion 

arrhythmias in isolated perfused hearts, while only the highest dose of DEX reduced infarct 

size in open-chest rats. Surprisingly, DEX-mediated cardioprotection was not associated with 

the decrease in oxidative stress, which had been believed as a major cause of anthracycline-

induced cardiotoxicity as well as I/R injury. In the last study, epoxyeicosatrienoic acid analog 

exhibited neither cardioprotective nor blood pressure-lowering effect in two-kidney, one-clip 

Goldblatt hypertensive rats, a model resembling human renovascular hypertension. 

Unexpectedly, we found an infarct size-limiting effect in untreated hypertensive rats. 

In conclusion, this thesis provided new findings in the field of experimental 

cardiology. We examined components of molecular signaling pathways leading to 

cardioprotection provided by CH and described the effects of exogenous drugs with possible 

beneficial impact on the ischemic myocardium. All these findings could be useful for 

development of new strategies for protecting the heart against acute I/R injury. 
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LIST OF ABBREVIATIONS 
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2+

-activated K
+ 
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 superoxide anion 
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hydroxyl radical 
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1. INTRODUCTION 

According to the World Health Organization, ischemic heart disease is the leading 

cause of death and disability worldwide. The effects of ischemic heart disease are usually 

attributable to the detrimental effects of acute myocardial ischemia/reperfusion (I/R) injury. 

Myocardial I/R injury includes a series of events, such as ischemic and reperfusion 

arrhythmias, myocardial stunning, microvascular damage and cell death (Dhalla et al., 2000; 

Perrelli et al., 2011). 

During ischemia, severely reduced or interrupted blood flow to the heart causes an 

imbalance between oxygen demand and supply, resulting in damage of the cardiac tissue. 

Early and fast restoration of blood supply seems to be essential for the salvage of ischemic 

myocardium. Indeed, the use of thrombolytic therapy, primary percutaneous coronary 

intervention or coronary bypass surgery is the most effective strategy for reducing the 

myocardial ischemia and improving the clinical outcome. 

It has been observed that reperfusion of the ischemic myocardium can also induce 

injury. During the crucial moments of reperfusion, significant reversible and irreversible 

organ damage is initiated, and is referred to as I/R injury, firstly described by Jennings et al. 

(1960). They observed an acceleration of necrosis development during reperfusion in canine 

heart with coronary ligation. They showed that left ventricular (LV) myocardium could 

sustain up to 15-20 minutes of coronary occlusion followed by reperfusion with no cell death 

and no permanent changes in myocyte ultrastructure. This was defined as reversible 

reperfusion injury. However, when the duration of the ischemic episode was extended up to 

60 minutes, restoration of arterial blood flow causes additional cell injury known as lethal 

reperfusion injury.  

It is, therefore, obvious that clinical and experimental cardiologists would like to 

understand the underlying molecular mechanism of myocardial I/R injury to design 

therapeutic strategies ultimately reducing the final extent of damage.  

 

1.1. MYOCARDIAL ISCHEMIA 

Reduced blood flow to the myocardium causes deprivation of oxygen and nutrient 

supply. These consequences result in a series of metabolic, functional and morphological 

changes. The absence of oxygen halts oxidative phosphorylation, leading to mitochondrial 

membrane depolarization, adenosine triphosphate (ATP) depletion and inhibition of 

myocardial contractile function (reviewed in Hausenloy and Yellon, 2013). Fifteen-twenty 

seconds after the occlusion of coronary vessels, cellular metabolism switches to anaerobic 
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glycolysis, resulting in the accumulation of lactate, which reduces intracellular pH. This is 

sufficient to meet the most basic energy demand of cardiomyocytes, however within 60-90 

minutes of ischemia the affected area of the heart develops contracture-rigor (Jennings and 

Reimer, 1991). If the anaerobic glycolysis was inhibited, in less than five minutes the reserve 

supplies of energy phosphates would be totally depleted and heart would undergo contracture-

rigor (Frank et al., 2012). The intracellular accumulation of protons activates the Na
+
/H

+
 

exchanger, which extrudes protons from the cell in exchange for Na
+
 entry. In response, the 

reverse activation of the Na
+
/Ca

2+
 ion exchanger results in intracellular Ca

2+
 overloading and 

cell death (reviewed in Avkiran and Marber, 2002). Cardiomyocytes can undergo cell death 

by two different mechanisms: necrosis and apoptosis (reviewed in Majno and Joris, 1995). 

While apoptosis is a highly regulated process that is activated via death receptors in the 

plasma membrane or via permeabilization of the mitochondria, necrosis is generally viewed 

as an uncontrolled process that leads to mitochondrial swelling, cell rupture, and subsequent 

inflammation (reviewed in Orogo and Gustafsson, 2013). 

 

 

 

Figure 1 Main components of myocardial I/R injury. Hausenloy and Yellon, 2013. 

 

1.2. MYOCARDIAL REPERFUSION 

Early coronary reperfusion is essential to salvage viable myocardium, limit myocardial 

infarct size, preserve LV systolic function and prevent the onset of heart failure. Nowadays, 

myocardial reperfusion is the only way of treatment of evolving myocardial infarction in 
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clinical practice. However, as mentioned earlier, reperfusion may cause further tissue damage 

(Piper et al., 1998). This phenomenon, including reversible (reperfusion-induced arrhythmias, 

myocardial stunning) and irreversible (microvascular obstruction, cardiomyocytes death) 

changes, is known as reperfusion injury.  

In the first few minutes of myocardial reperfusion, a burst of oxidative stress (Eefting 

et al., 2004) is produced by a variety of sources. This detrimental reactive oxygen species 

(ROS) production has been widely accepted as the main mediator of reperfusion injury. 

Intracellular and mitochondrial Ca
2+

 overload begins during acute myocardial ischemia and is 

exacerbated at the time of reperfusion due to disruption of plasma membrane, oxidative 

stress-induced damage to the sarcoplasmic reticulum and mitochondrial re-energization. 

Mitochondrial re-energization allows the recovery of the mitochondrial membrane potential 

that drives the entry of Ca
2+

 into mitochondria and subsequently induces the opening of the 

mitochondrial permeability transition pore (mPTP; Di Lisa et al., 2001).  

Experimental studies have shown that pharmacological antagonists of the sarcolemmal 

Ca
2+

 channel administered at the onset of myocardial reperfusion, reduce infarct size by up to 

50% (Herzog et al., 1997). However, clinical studies with Ca
2+

 channel blockers administered 

at the onset of myocardial reperfusion have not exhibited beneficial results (Bär et al., 2006). 

During acute myocardial ischemia, the intracellular pH decreases to less than 7.0, whereas at 

reperfusion, physiological pH is rapidly restored by the washout of lactate and the activation 

of the Na
+
/H

+
 exchanger. This pH shift contributes to the lethal myocardial reperfusion injury 

by permitting mPTP opening. Therefore, a potential treatment strategy for preventing lethal 

myocardial reperfusion injury would be to slow the normalization of physiological pH at the 

time of myocardial reperfusion by slowing the process of myocardial reperfusion, as in case 

of ischemic postconditioning (Fujita et al., 2007).  

The mPTP, a voltage-dependent, nonselective channel of the inner mitochondrial 

membrane, became a critical determinant of lethal reperfusion injury (Halestrap et al., 2004). 

Fate of the cell is determined by the extent of mitochondrial permeabilization. If minimal, the 

cell may recover; if severe, the cell may die from necrosis. Opening the channel results in 

mitochondrial membrane depolarization and uncoupling of oxidative phosphorylation, leading 

to mitochondrial membrane potential collapse, ATP depletion and cell death (Hausenloy and 

Yellon, 2003; Heusch et al., 2010). In the setting of acute myocardial I/R injury, the mPTP 

has been shown to remain closed during ischemia and only open at reperfusion in response to 

mitochondrial Ca
2+

, oxidative stress and rapid pH correction (Halestrap et al., 2004). 
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Preventing mPTP opening at the time of reperfusion provides an important therapeutic target 

for preventing lethal myocardial reperfusion injury (Fancelli et al., 2014; Gomez et al., 2008). 

 

1.3. CARDIAC PROTECTION 

Cardioprotective strategies for ameliorating reversible and irreversible injuries 

associated with I/R are highly desirable. Research on cardiac protection has a long history in 

the discovery of new principles of protection, replete with triumphs but also broken dreams 

with respect to their clinical application. Over the last 40 years, hundreds of experimental 

interventions have been reported to protect the ischemic myocardium in experimental 

animals. However, with the exception of early reperfusion, none has been translated into 

clinical practice, although a limited number appear to be quite promising in initial clinical 

studies (reviewed in Ošťádal, 2009).  

The extent of ischemic injury depends not only on the intensity and duration of 

ischemic insult, but also on the degree of myocardial tolerance to oxygen deprivation. 

Therefore, it is not surprising that the interest of many experimental and clinical cardiologists 

during the past 50 years has been focused on the question of how cardiac tolerance to 

ischemia might be increased. More recently, many studies are focused on finding novel signal 

transduction complexes of cardioprotection and understanding the underlying intracellular 

mechanisms. Following chapters will be devoted to the effective cardioprotective phenomena 

such as adaptation to chronic hypoxia (CH) and different types of conditioning. 

 

1.3.1. Chronic hypoxia 

 Over 140 million people live at high altitude, defined as living at an altitude of 2400 m 

or more above sea level (Hurtado et al., 2012). The characteristic aspect of these high-altitude 

regions is the low oxygen levels due to the low barometric pressure. For this reason, native 

dwellers have developed mechanisms to survive in a chronic hypoxic environment. Defence 

mechanisms include increased erythropoiesis and angiogenesis in order to augment red blood 

cell mass and oxygen delivery, and metabolic remodeling that increases utilization of oxygen-

efficient fuel substrates such as carbohydrates (reviewed in Essop, 2007). Exposure to 

chronically hypoxic conditions is associated with increased protection against various disease 

states. Besides smaller incidence of diabetes and obesity, it is mainly a low prevalence of 

ischemic heart disease. In the late 1950s, the first observations appeared showing that the 

incidence of myocardial infarction was lower among Andean populations living at high 
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altitude compared with people living at the sea level (Hurtado, 1960). The epidemiological 

observations were repeatedly confirmed also in experimental studies using simulated hypoxia. 

Kopecký and Daum were the first to demonstrate experimentally in Prague in 1958 that 

adaptation to CH increases tolerance of the heart against injury caused by acute oxygen 

deprivation. They found that cardiac muscle isolated from rats exposed every other day for 6 

weeks to an altitude of 7000 m recovered its contractile function during reoxygenation 

following a period of acute anoxia to a higher level than that of control animals (Kopecký and 

Daum, 1958). These results were later confirmed by Poupa et al. (1966) and Widimský et al. 

(1973). 

Beside subjects living permanently at high altitudes, there are two physiological 

situations when the heart is significantly more tolerant to ischemia: the fetal myocardium 

adapted to hypoxia corresponding to an altitude of 8000 m and the female heart prior to 

menopause. It is necessary to point out that clinical relevance of adaptation to CH can be 

found in common cardiopulmonary diseases, such as chronic ischemic heart disease, chronic 

obstructive lung disease, sleep apnea and cyanosis due to a hypoxemic congenital heart 

disease (reviewed in Ošťádal and Kolář, 2007). We are aware that introduction of CH has 

limitations resulting from the complicated clinical accessibility of the simulated hypoxic 

environment. However, adaptation to CH may serve as a useful tool for studying molecular 

identity underlying its cardioprotective pathways. Future basic research in the field of 

cardiology should be able to provide the possibility of translation of new discoveries obtained 

from experiments into the clinical setting. 

 

1.3.1.1. Experimental models of chronic hypoxia 

Hypoxia is the result of disproportion between oxygen supply and the demand at the 

tissue level. The most common forms are ischemic hypoxia, induced by the reduction or 

complete interruption of the coronary blood flow; systemic hypoxia, characterized by a drop 

in partial pressure of oxygen (pO2) in the arterial blood; and anemic hypoxia caused by the 

decreased ability of blood to transport oxygen (reviewed in Ošťádal and Kolář, 2007).  

The most common experimental model in research of CH is either the natural 

mountain environment or hypoxia simulated under laboratory conditions in a normobaric 

(controlled gases exchange) or hypobaric chamber (pO2 reduction by partial air depletion). 

These models allow studying both beneficial and adverse adaptive changes, process of 

desadaptation and pharmacological protection against the unfavorable manifestations.  
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Adaptation to CH does not need to be only permanent; it is often of intermittent 

nature, occuring during ascends to high altitude or sleep apnea. Current experimental 

protocols of intermittent hypoxia vary greatly in cycle length, severity and number of hypoxic 

episodes per day and number of exposure days. Experimental data comparing the effects of 

permanent and intermittent or normobaric and hypobaric hypoxia on cardiac ischemic 

tolerance are not conclusive. 

 

1.3.1.2. Cardioprotective effect of chronic hypoxia 

 The improved tolerance of chronically hypoxic hearts to I/R injury manifests itself as a 

limitation of myocardial infarct size (Meerson et al., 1973; Turek et al., 1980), increased 

postischemic recovery of cardiac contractile function (Tajima et al., 1994), and reduced 

incidence and severity of both ischemic and reperfusion ventricular arrhythmias (Meerson et 

al., 1987; Asemu et al., 2000). 

 

 

 

Figure 2 Effect of CH on three main manifestations of I/R injury. Ošťádal and Kolář, 2007. 

 

 The most important feature of this cardioprotective phenomenon is that the changes 

induced by CH persist much longer that any form of conditioning.  It is well known that the 

majority of CH-induced cardiopulmonary structural, functional and biochemical alterations 

persists for a relatively long period after removal of animals from the hypoxic atmosphere 

(Ošťádal and Widimský, 1985; Faltová et al., 1987). Neckář et al. (2004) showed that residual 

protective effect on infarct size was detected 7 and 35 days after termination of the adaptation 

period; it was absent after 90 days of normoxic recovery. In contrast, the antiarrhythmic 
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protection by CH disappeared already during the first week after restoration of normoxic 

conditions.  

 The cardioprotective effect of adaptation to CH seems to be influenced by age. La 

Padula and Costa (2005) examined the effect of aging. They submitted 7 weeks-old rats to 

sustained CH for their entire lifetime. They found an increased cardiac tolerance to acute 

hypoxia up to 18 months, which was lost in 25 months-old rats. Baker et al. (1995) 

demonstrated that adaptation to CH increased tolerance of the developing rabbit heart from 

day 7 to day 28. Experiments by Ošťádalová et al. (2002) showed that the protective effect of 

CH is absent in newborn rats. Prenatal exposure to simulated CH fails to further increase 

ischemic tolerance in 1 day-old rat hearts; the protective phenomenon develops only during 

the first postnatal week. 

 Moreover, a significant sex difference was demonstrated in the resistance of isolated 

cardiac muscle to oxygen deficiency; the myocardium of female control rats proved to be 

more tolerant to hypoxia. CH resulted in enhanced resistance in both sexes, yet the sex 

difference was maintained (Ošťádal et al., 1984). Sensitivity to hypoxia is characterized also 

by interspecies differences. Cattle and pigs are among the most sensitive animals, sheep and 

dogs seem less liable to develop hypoxic pulmonary hypertension and right vetricular (RV) 

hypertrophy, while rats fall between these two groups (Tucker et al., 1975; Waughty et al., 

2004). Variations in hypoxic response have been partially related to differences in collateral 

ventilation. The concept is that collateral ventilation is an efficient protection against local 

alveolar hypoxia. Dogs have good collateral ventilation, experience less local hypoxia. Pigs 

have no collateral ventilation, experience more local hypoxia (Kuriyama and Wagner, 1981).  

 

1.3.1.3. Molecular mechanisms of protection by chronic hypoxia 

 Despite the fact that CH-induced cardioprotection has been known for many decades, 

the complex mechanism underlying this form of a sustained protective phenotype is still a 

matter of debate. CH changes the distribution and expression of many cytoprotective proteins 

including protein kinase C (PKC, Holzerová et al., 2014), mitogen-activated protein kinase 

(Raffiee et al., 2002, Ravingerová et al., 2007) or antioxidant systems (Guo et al., 2009). 

 According to our latest study by Chytilová et al. (2015), tumor necrosis factor alpha 

(TNF-α), a key pro-inflammatory cytokine, does not exert only deleterious effect on the heart, 

but also activates intracellular signaling pathways that improve cardiac ischemic tolerance. In 

our experiments, adaptation to CH was associated with increased levels of TNF-α , however, 
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when chronically hypoxic rats were treated with the inhibitor of TNF-α, the infarct size-

limiting effect was blunted. 

Large conductance Ca
2+

-activated K
+ 

(BKCa) channels are another important 

component localized on inner mitochondrial membrane (Xu et al., 2002). They are opened by 

hypoxia and contribute to the myocardial protection. The protective effect of BKCa opening 

has been attributed to increased matrix K
+
 uptake and volume, improved respiratory control, 

inhibition of mitochondrial Ca
2+

 overload, and prevention of mPTP opening. Borchert et al. 

(2011) proved that cardiomyocytes isolated from chronically hypoxic rats were more resistant 

to I/R injury; this effect was attenuated by the BKCa channel blocker paxilline, while the BKCa 

channel opener NS-1619 protected only cells isolated from control normoxic animals.  

CH has been shown to protect the heart by a mechanism involving the activation of 

ATP-sensitive K
+
 (KATP) channels (Neckář et al., 2002; Kolář et al., 2005). KATP channels are 

localized in sarcolemma  (sKATP) and in the inner mitochondrial membrane (mKATP). KATP 

channels were found to be activated by hypoxia in the heart (Eells et al., 2000). Adaptation to 

CH causes an increased current of K
+
 ions through the channels (Baker et al., 2001). mKATP 

are supposed to be essential for cardioprotection (Costa et al., 2007). Opening of mKATP 

promotes K
+
 entry into mitochondria with consequent alkalinization of the mitochondrial 

matrix and generation of ROS with a protective signaling role. The activation of mKATP 

channels reduces the action potential duration, thus decreasing contractility during ischemia. 

Opening of mKATP and subsequent ROS generation is considered to be a pivotal step in the 

mechanism of cardioprotection (Perelli et al., 2011). Activators of mKATP channels increase 

infarct size, whereas their inhibitors are decreasing it (Baker et al., 1999). 

 

The role of ROS as well as reactive nitrogen species (RNS) in the heart is not simple. 

Many studies have proposed increased generation of ROS and RNS as a major cause of 

myocardial I/R injury and toxicity, respectively. On the other hand, both ROS and RNS are 

essential in signaling pathways leading to cardioprotection. As we have already discussed 

their unfavorable part in the myocardium, next chapters of the thesis will be dedicated to their 

positive role in cardioprotective signaling of CH. 

 

1.3.1.3.1. Reactive oxygen species 

 ROS include both one-electron oxidants such as superoxide anion (O2
-
) and hydroxyl 

radical (OH
·
) and two-electron oxidants such as hydrogen peroxide (H2O2). Donation of a 

single electron to molecular oxygen results in the formation of O2
-
. Donation of a second 
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electron yields peroxide, which then undergoes protonation to yield H2O2. Donation of a third 

electron, such as occurs in the Fenton reaction, results in production of highly reactive OH
·
. 

Finally, donation of the fourth electron yields water (reviewed in Giordano, 2005).  

 

1.3.1.3.1.1. Reactive oxygen species generation and degradation 

ROS can be formed in the heart, and other tissues, by various sources among which 

the most important are electron transport and leakage during oxidative phosphorylation in the 

mitochondria, nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases of the Nox 

family, xanthine oxidase (XO) and uncoupled nitric oxide synthases (NOS).  

 There are several cellular mechanisms that counterbalance the production of ROS, 

including enzymatic and non-enzymatic pathways. These include enzymes such as superoxide 

dismutase (SOD), which facilitates the formation of H2O2 from O2
-
. Manganese SOD 

(MnSOD), as the only known SOD located in the mitochondria, plays a critical role in the 

control of mitochondrial O2
-
 disposal during oxidative phosphorylation. H2O2, a product of 

SOD, is then handled by catalase and glutathione peroxidase (GPx), which catalyzes the 

removal of H2O2 to water through oxidation of reduced glutathione, which is recycled to 

oxidized glutathione by glutathione reductase (GRed). There are present also non-enzymatic 

antioxidants such as vitamins E, C or β carotene. The thioredoxin system, including 

thioredoxin, thioredoxin reductase, and NADPH, forms an additional integrated antioxidant 

defense system, which operates as a powerful protein-disulfide oxidoreductase (Sawyer et al., 

2002). 

 

 

Figure 3 ROS and the enzymes regulating their levels. Sawyer et al., 2002. 



 - 12 - 

 

 

1.3.1.3.1.2. Role of reactive oxygen species in chronic hypoxia 

 In the past, ROS were considered exclusively injurious, but now it is generally 

accepted that they may exert both deleterious and beneficial actions. The balance between 

ROS production and scavenging is important, because oxidative stress can be either protective 

or damaging in several diseases. Detrimental processes can result from an imbalance between 

the excess formation of ROS and limited antioxidant defenses. Excessive generation of ROS 

during the early phase of reperfusion after myocardial ischemia has been proposed to 

contribute to reperfusion injury. On the other hand, ROS generated at the same phase may 

also act as second messengers, modulating cardioprotective pathways, referred to as redox 

signaling or ROS signaling. 

ROS are also thought to have an important role in the protective mechanism of CH. 

Many cellular responses to hypoxia are known to be mediated by the production of ROS in 

mitochondria. ROS are produced by the electron transport chain at complexes I, II and III. 

While complexes I and II produce ROS into the matrix, complex III is capable of producing 

ROS on both sides of the mitochondrial inner membrane (Muller et al., 2004). Kolář et al. 

(2007) demonstrated for the first time that antioxidant N-acetylcysteine (NAC) completely 

prevented the development of cardioprotection in chronically hypoxic rats. Chronic treatment 

with NAC decreased infarct size in the normoxic animals, but it abolished protection induced 

by CH. Moreover, CH was associated with tissue oxidative stress, which was prevented by 

NAC treatment. Similar results were found by Balková et al. (2011), when chronic 

intermittent hypoxia reduced infarct size and increased the expression/activity of MnSOD. 

NAC treatment abolished effects of CH on both infarct size and expression/activity of 

MnSOD. Wang et al. (2011) investigated whether the ROS generated during early reperfusion 

contribute to the cardioprotection induced by adaptation to CH. They demonstrated that 

intermittent hypobaric hypoxia confers protection of the heart through elevation of ROS 

production during early reperfusion, which is associated with the activation of Akt kinase and 

PKCε pathways. It indicates that CH is associated with oxidative stress and increased ROS 

generation may be implicated in the induction of cardioprotective mechanism against I/R 

injury. 

 

1.3.1.3.2. Reactive nitrogen species 

 Nitric oxide (NO) as well as peroxynitrite, nitrogen dioxide and dinitrogen trioxide 

belongs to the group of RNS. NO is a unique, endogenous regulatory molecule involved in a 
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variety of physiological processes. These include regulation of vascular tone in the circulatory 

system, neurotransmission and immune defense. More specifically, its role in the heart relates 

to the control of coronary tone, regulation of myocardial contractility, effect on platelet 

aggregation and free radical production. Dysregulation of its mediated effects have been 

implicated in the pathology of hypertension, myocardial infarction and cardiomyopathy (Nava 

et al., 1995). While NO is highly diffusible, the distances that this free radical effectively 

travels are short due to its high reactivity with molecules such as hemoglobin, myoglobin and 

other radicals.  

 

1.3.1.3.2.1. Nitric oxide synthesis 

There are three NOS widely distributed through most cells and tissues, which can 

produce NO by converting L-arginine to L-citruline in the presence of NADPH, O2 and other 

cofactors. The neuronal NOS (nNOS or NOS1) and endothelial NOS (eNOS or NOS3) are 

constitutive and Ca
2+

-dependent, whereas the expression of inducible NOS (iNOS or NOS2) 

is Ca
2+

-independent and stress-induced. There is growing evidence supporting the existence 

of mitochondrial NOS (mtNOS) and the involvement of mitochondrial NO in the regulation 

of cellular functions. However, the short mitochondrial genome encodes only a few proteins, 

none of which resembles cytoplasmic NOS. Therefore, if mtNOS is one of the cytoplasmic 

NOS isoforms, one of the nuclear-encoded NOS isoforms should be transported to the 

mitochondria after the protein is synthesized in the cytosol (reviewed in Zaobornyj and 

Ghafourifar, 2012). In the heart, the most convincing data implicate nNOS as the primary 

candidate for the cytoplasmic NOS isoform targeted into mitochondria (Dedkova and Blatter, 

2009).  

 

 
 

Figure 4 NO synthesis from L-arginine. Manukhina et al., 2006. 
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NO can be stabilized by oxidation to nitrite and nitrate, which can be considered as 

endocrine molecules that are transported in blood, accumulate in tissue and have the potential 

to be converted back to NO. This physiological NO recycling is called NOS-independent NO 

generation (Lundberg et al., 2008). 

 

1.3.1.3.2.2. Nitric oxide regulation 

NO generation by nitrate - nitrite - NO pathway is greatly enhanced during hypoxia, 

thereby ensuring NO production in situations for which the oxygen-dependent NOS enzyme 

activities are compromised. Interestingly, L-arginine - NOS pathway is oxygen-dependent, 

whereas the nitrate - nitrite - NO pathway is activated as oxygen tension falls. NO 

bioavailability is also reduced early in vascular disease states, such as hypertension. This is a 

result of both reduced NO synthesis and increased NO consumption by ROS.  

eNOS enzymatic activity appears to be determined by the availability of its cofactor 

tetrahydrobiopterin (BH4). When BH4 levels are adequate, eNOS produces NO, when BH4 

levels are limiting, eNOS becomes enzymatically uncoupled and generates O2
-
, contributing 

to the vascular oxidative stress (reviewed in Schmidt and Alp, 2007). By contrast, 

dihydrobiopterin (BH2) an oxidized form of BH4, can cause uncoupling between L-arginine 

and eNOS. Under this condition, eNOS utilizes molecular oxygen as the substrate to generate 

O2
-
 instead of NO. eNOS uncoupling may induce NO insufficiency, but also contribute to the 

oxidative stress under various pathological conditions, such as I/R (Chen et al., 2010). 

Similarly, Sumeray et al. (2000) found that mice lacking eNOS demonstrated significantly 

greater infarct size after I/R injury than wild type mice. According to these data showing the 

positive effect of NO on I/R injury, it has been suggested that nitric oxide may play a role also 

in the cardioprotective effect of CH. Nowadays, it is generally accepted that NO is an 

important mediator of adaptation to CH. 

 It is well known that NO activates soluble guanylate cyclase (sGC). This activation 

leads to the production of 3,5-cyclic guanosine monophosphate (cGMP) that stimulates 

protein kinase G (PKG) and cGMP-regulated phosphodiesterase activities. Phosphorylated 

PKG inactivates sarcolemmal Ca
2+

 channels, thus decreasing intracellular Ca
2+

 concentration. 

PKG also contributes to vasodilatation by reducing Ca
2+

 sensitivity of troponin C (Rastaldo et 

al., 2007). On the other hand, cGMP-independent pathways include nitrosylation of proteins, 

when NO modifies free thiol group of cysteines to produce nitrosothiols. This 

posttranslational modification is proposed to be a widespread mediator of signaling. Because 

NO is highly reactive, transport of NO signal can be facilitated through reaction with 
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glutathione and movement of S-nitrosoglutathione, which can transduce the signal by 

modifying thiol groups on target protein by transnitrosylation (Lipton et al., 2001). 

 

1.3.1.3.2.3. Role of nitric oxide in chronic hypoxia 

Chronically hypoxic hearts exhibit increased coronary vasodilatation, generate more 

nitrite plus nitrate and more cGMP than normoxic hearts (Baker et al., 1999). According to 

Manukhina et al. (2000), plasma levels of nitrite/nitrate are increased by adaptation to CH. 

The accumulation of nitrite/nitrate indicates enhanced NO synthesis and release of additional 

NO from the NO stores. These results were confirmed by Shi et al. (2000), who also showed 

increased NOS3 protein as well as its increased activity in chronically hypoxic hearts. 

Therefore, it seems that increased ischemic resistance induced by CH is associated with 

increased NO production from the NOS3 isoform.  

As already mentioned, KATP channels also serve as important mediators of adaptation 

to CH (Baker et al., 1997). This group, working with isolated hearts of infant rabbits exposed 

to hypoxia from birth, later showed that CH from birth increases current through the sKATP 

channels and results in increased NO production from NOS3 (Shi et al., 2000). NO from 

increased NOS activity activates the sKATP channel, in chronically hypoxic rabbit hearts. 

Moreover, activation of sKATP channel by NO in both normoxic and chronically hypoxic 

hearts occurs by a cGMP-dependent mechanism (Baker et al., 2001). Fitzpatrick et al. (2005) 

demonstrated a memory of increased resistance against ischemia. This memory of increased 

cardioprotection persisted at least 20 days following removal from the stimulus of CH. The 

mechanism underlying the memory appears to involve activation of both NOS and enhanced 

current through KATP channels.  

   

1.3.1.4. Adverse effects of adaptation to chronic hypoxia 

 Besides the positive adaptive changes (increased ischemic tolerance), CH exhibits also 

adverse impact on cardiopulmonary system. It was Rotta et al. (1956) who reported for the 

first time that healthy men and women living at high altitude in the Peruvian Andes have 

some degree of pulmonary hypertension (PH) and RV hypertrophy. This observation was 

confirmed by Penaloza et al. (1962) for the same geographical region as well as by Vogel et 

al. (1962) for residents of high altitude in the United States. The critical altitude for the 

development of PH and RV hypertrophy was set to be 3000 m (Hurtado, 1960).  

CH is considered a critical factor causing sustained PH followed by the development 

of RV hypertrophy. PH is a severe disease characterised by vasoconstriction and remodeling 
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of precapillary pulmonary arteries without a change in systemic circulation. Remodeling 

affects endothelial cells and smooth muscle cells, which proliferate. These changes cause 

medial hypertrophy, adventitial thickening and reduction in vascular lumen diameter (Herget 

et al., 1999).  

Nevertheless, PH is an important physiological mechanism that optimizes ventilation-

perfusion matching by diverting blood flow from poorly ventilated areas of the lung 

(reviewed in Ward and McMurtry, 2009). Associated RV hypertrophy is also a beneficial 

adaptation since it allows RV to cope with the increased afterload to maintain a normal 

cardiac output. However, it leads to progressive right heart failure and death, if left untreated. 

The general treatment for PH includes oxygen supplementation, calcium channel blockers and 

diuretics. In addition to primary care, therapeutics such as endothelin receptors antagonists, 

phosphodiesterase type 5 (PDE-5) inhibitors and prostacyclin analogues were introduced to 

improve the quality of life for patients (D´Alonzo et al., 2001).  

Many factors like vasoconstrictors, such as endothelin-1, angiotensin II, and 

vasodilatators, such as NO and prostacyclin, can regulate pulmonary vasoconstriction during 

CH (Aoshima et al., 2009). The primary locus of PH is the pulmonary artery smooth muscle 

cell, which undergoes enhanced proliferation and a slowly developing vasoconstriction that is 

sustained as long as hypoxia is present. A growing body of evidence indicates that oxidative 

stress contributes to both acute hypoxic vasoconstriction (Waypa et al., 2001) and to PH 

associated with CH (Hoshikawa et al., 2001). Administration of antioxidants, such as tempol 

(Elmedal et al., 2004) or NAC (Hoshikawa et al., 2001), has been demonstrated to 

significantly attenuate the effect of CH on right ventricular systolic pressure (RVSP) and RV 

hypertrophy. Also research of nitric oxide pathway modulators, such as NO donor 

molsidomine, seems beneficial. Andersen et al. (2005) proved that treatment with 

molsidomine or sildenafil, a PDE-5 inhibitor, reduced RVSP and RV weight. 

 

1.3.2. Conditioning 

‘Conditioning’ the heart to tolerate the effects of acute I/R injury can be initiated 

through the application of several different mechanical and pharmacological strategies. 

Inducing brief non-lethal episodes of ischemia and reperfusion to the heart either prior to, 

during, or after an episode of sustained lethal myocardial ischemia has the ability to reduce 

myocardial injury. These phenomena are called preconditioning (PC), perconditioning and 

postconditioning (PostC), respectively. Similarly, brief episodes of non-lethal ischemia and 

reperfusion applied to the organ or tissue distal to the heart reduce myocardial infarct size, 
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which is known as remote ischemic conditioning. Transient limb ischemia is a simple 

noninvasive stimulus with important potential clinical application. This procedure can be 

applied before and during sustained ischemia and at the onset of reperfusion.  

The identification of the signaling pathways which underlie the effects of 

conditioning, has provided novel targets for pharmacological agents to mimic these 

cardioprotective phenomena resulting in pharmacological PC and PostC. 

  

1.3.2.1. Preconditioning 

In 1986, Murry et al. reported that a series of four 5-min occlusions, each separated by 

5-min reperfusion, followed by a sustained 40-min occlusion in the dog heart dramatically 

attenuated I/R injury (Murry et al., 1986). This phenomenon was named ischemic PC. Thus 

ischemic PC is an endogenous protective mechanism activated by a mild ischemic stress that 

makes the heart better able to cope with another similar or greater stress. It can reduce infarct 

size, lethal arrhythmias and contractile dysfunction.  

The effect of PC consists of two distinct windows of cardioprotection: the first 

window (classical PC), which develops within a few minutes from the exposure to the 

stimulus and lasts only 1-2 hours, and a second window, which appears more slowly after 12-

24 h but lasts much longer 2-3 days. A major difference in the cardioprotective mechanisms 

of the first and second window is that the first one results in rapid modification of existing 

proteins, whereas the second window is exerted by newly synthesized cardioprotective 

proteins. The range of protection is also different. The early phase is very effective in limiting 

lethal I/R injury (infarction), but does not protect against reversible postischemic contractile 

dysfunction (myocardial stunning). The late phase protects against both infarction and 

stunning, but it is less powerful (reviewed in Bolli, 2007). 

Unfortunately, possibility of clinical application of PC is very limited due to 

unpredictable onset of cardiac ischemia in clinical practice. The other disadvantages are direct 

stress to the target organ and mechanical trauma to major vascular structures. On the other 

hand, remote ischemic PC is a novel method where ischemia followed by reperfusion of one 

organ is believed to protect remote organs either due to release of biochemical messengers in 

the circulation or activation of nerve pathways, resulting in the release of messengers that 

have a protective effect (Tapuria et al., 2008). Moreover, studying of PC conducted the 

researchers to the discovery of PostC, a clinically more relevant tool of cardioprotection.  
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1.3.2.2. Postconditioning 

Although it has been shown that PC can make ischemic myocardium resistant to I/R 

injury, the need for the pretreatment – as it has been mentioned above - could limit its clinical 

application. In 2003, Zhao et al. reported that three episodes of 30-s reperfusion followed by 

30-s ischemia performed immediately after 60-min ischemia in the dog heart attenuated 

reperfusion injury (Zhao et al., 2003). This phenomenon was named ischemic PostC. PostC 

can be defined as intermittent interruption of coronary flow in the very early phase of 

reperfusion. Unlike PC, this cardioprotective mechanism is more clinically relevant. 

Protection provided by PostC was shown to be as potent as that provided by PC and has been 

described in differet animal species (Ferdinandy et al., 2007; Zhao et al., 2003). Importantly, 

evidence for the existence of the protective effect of PostC has also been obtained in patients 

experiencing an acute myocardial infarction (Laskey, 2005; Staat et al., 2005). 

PostC provides an intervention which can be applied after the onset of myocardial 

ischemia and at the time of reperfusion, facilitating its application to patients suffering from 

acute myocardial infarction. PostC is a clinically relevant cardioprotective invasive strategy 

that can be applied only to patients undergoing cardiac surgery. However, PostC stimulus to 

an organ remote from the heart offers an innovative non-invasive approach. Clinical studies 

are underway to determine whether remote PostC is capable of reducing myocardial injury in 

patients with acute myocardial infarction (reviewed in Hausenloy and Yellon, 2009). 

 

1.3.2.3. Molecular mechanisms of conditioning 

The question whether cardioprotection from PC and PostC use different mechanisms 

is under discussion. According to Hausenloy and Yellon (2009) signal transduction pathway 

underlying PostC is similar to that recruited by PC. ROS-induced PKCε activation followed 

by mPTP inhibition is supposed to be the primary means by which PC as well as PostC 

prevents cardiac cell death (Costa and Garlid, 2008).  

Cardioprotection by ischemic PC and PostC is triggered by autacoids such as 

adenosine, bradykinin and opioids produced as a response to the cycles of brief I/R. Their G-

protein coupled receptors mediate signal transduction resulting in activation of 

phosphatidylinositol 3-kinase and series of phospholipid-dependent kinase (PDK). PDK 

causes phosphorylation and activation of Akt kinase, which induces NOS phosphorylation 

and NO generation. After that, sGC is activated to produce cGMP, which finally activate 

PKG. In the last step of cytosolic signaling, PKG reacts on mitochondria, resulting in the 

opening of mKATP channels. Once it is opened, the increase in K
+
 uptake leads to matrix 
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alkalinization, which in turn inhibits complex I, leading to increased production of O2
- 

(Andrukhiv et al., 2006). The increase in ROS activates PKCε that then inhibits the 

mitochondrial mPTP in a phosphorylation-dependent manner (Costa and Garlid, 2008). Short-

term opening is involved in cardioprotection that involves transient ROS formation. In 

contrast, long-term mPTP opening, which is facilitated by pH restoration, Ca
2+

 overload and 

the burst of ROS formation at the onset of reperfusion, results in increased mitochondrial 

permeability, collapse of the mitochondrial membrane potential, matrix swelling and finally 

rupture of mitochondrial membrane. It is now generally accepted that ROS and RNS signaling 

play an important role in ischemic PC and cardioprotection.  

 

  

 

Figure 5 Signaling pathways of myocardial PC. Costa et al., 2007. 

 

Although PC was initially described as a response of the myocardium to ischemia, it 

became apparent soon that a similar phenotype can be elicited by different stimuli, such as 

pharmacological agents, which have been found to elicit PC-like phenotype. For example, 

Ockaili et al. (2002) demonstrated powerful PC-like cardioprotection with PDE-5 inhibitor 

sildenafil against I/R injury. Also agonists of G-protein coupled receptors, such as bradykinin, 

adenosine, opioids, or NO donors have been found to elicit a PC-like effect. Similarly, PostC 

enables cardioprotection against I/R injury either by application of short, repetitive periods of 

ischemia or by pharmacological intervention prior to reperfusion. Pharmacological PostC has 
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been described for PDE-5 inhibitors. Salloum et al. (2007) showed that intravenous 

administration of sildenafil or vardenafil at reperfusion induced a significant cardioprotective 

effect as demonstrated by a reduction in infarct size. The cardioprotective effect of PDE-5 

inhibitors was similar to their PC-like effect (Ockaili et al., 2002). The protection was blocked 

by 5-hydroxydecanoate suggesting that it was mediated by opening of mKATP channels. Ebner 

et al. (2013) extended these findings to bolus application, which is more convenient for 

clinical use.  

 

1.4. DEXRAZOXANE 

 As mentioned above, myocardial I/R injury is associated with an increased oxidative 

stress. For many years, it has been believed that ROS are also the primary cause of 

anthracycline-induced cardiotoxicity. The cardioprotective effects of drugs possessing iron 

chelating properties on anthracycline-induced cardiotoxicity have been well established; 

hence the use of iron chelators against myocardial injury seems relevant. 

Anthracycline antibiotics, such as doxorubicine, epirubicin or daunorubicine, rank 

among the most effective anticancer drugs, but their clinical use has been hampered by the 

risk of cardiotoxicity. The most important forms of anthracycline-induced cardiotoxicity are 

chronic forms associated with cardiomyopathy with a decrease in LV ejection fraction and 

heart failure (Jones et al., 2006). The chronic cardiotoxicity is common to all anthrycycline 

derivatives introduced into the clinical practice; however, molecular determinants of the toxic 

damage remain to be established. The optimal approach seems to be the effective prevention 

of anthrycycline-induced cardiotoxicity with effective pharmacological cardioprotectant. As it 

was proposed that anthracycline cardiotoxicity has been associated with oxidative stress-

induced injury with an involvement of free cellular iron (Keizer et al., 1990), the search for 

new treatments revealed Dexrazoxane (DEX). 

DEX has been the only drug with proved effective cardioprotection in both clinical 

and experimental settings (reviewed in Cvetkovic and Scott, 2005; van Dalen et al., 2011). 

DEX has been shown to induce effective protection from both anthracycline-induced 

degenerative changes and apoptotic cell death of cardiomyocytes (Popelová et al., 2009; 

Sawyer et al., 1999). DEX is a bis-dioxopiperazine compound that is converted intracellularly 

to its metabolite ADR-925, which was shown to possess iron and other metal ion chelating 

properties. This mechanism was assumed to be the basis of its protective activity against the 

anthracycline-induced cardiotoxicity, by decreasing the redox activity of chelated iron 

(Hasinoff, 1998). However, stronger and more selective iron chelators failed to provide better 
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or at least the comparable cardioprotection as DEX in chronic anthracycline cardiotoxicity 

models (Štěrba et al., 2013), which argues against this hypothesis.  

Therefore, it seems that DEX mediate its cardioprotective action through different 

pathways. DEX is also a strong inhibitor of topoisomerase II (Hasinoff et al. 1995), which 

plays an important role in DNA transcription and replication. However, at least the latter 

effect seems unlikely to contribute to the cardioprotection observed in this study, because 

ventricular myocytes are terminally differentiated and myocardium contains only low levels 

of this enzyme (Hasinoff and Herman 2007). Thus the mechanisms responsible for 

cardioprotection provided by DEX are still poorly understood.  

 

 

 

Figure 6 Stepwise hydrolysis of dexrazoxane to intermediate metabolites B and C and iron-

chelating metabolite ADR-925. Štěrba et al., 2013. 

 

1.5. EPOXYEICOSATRIENOIC ACIDS 

Evidence suggests that ischemic heart disease is the most common outcome of 

hypertension. Hypertension accelerates the development of atherosclerosis, and sustained 

elevation of blood pressure can destabilize vascular lesions and precipitate acute coronary 

events. Besides, increased ROS formation is a common feature of hypertension and I/R 

injury. Therefore, antihypertensive agents may be a unifying option for treatment of both of 

them.  

Arachidonic acid is a major component of cell membranes that resides in the sn-2 

position of phospholipids. Once liberated from the cell membrane phospholipids, this 20-
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carbon fatty acid is converted by a series of enzymes to biological active metabolites termed 

eicosanoids. Beside cyclooxygenase and lipoxygenase, the third eicosanoid enzymatic 

pathway is the cytochrome P-450 (CYP) pathway that contains two distinct enzymatic 

activities. CYP hydroxylase generates hydroxyeicosatetraenoic acids (HETEs), whereas CYP 

epoxygenase produces epoxyeicosatrienoic acids (EETs). CYP epoxygenase adds an epoxide 

across one of four double bonds in arachidonic acid to produce four EETs regioisomers: 5,6-

EETs, 8,8-EETs, 11,12-EETs and 14,15-EETs. The main EETs catabolic pathway is 

conversion to their corresponding dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide 

hydrolase (sEH; reviewed in Imig, 2012). 

 

 

 

Figure 7 CYP epoxygenase metabolic pathway. Imig, 2012. 

 

For investigation of EETs cardiovascular and cell signaling agonists, antagonists and 

inhibitors have been used in cell cultures as well as in animal models. EETs play an important 

role in the regulation of renal tubular ion transport and renal and systemic vascular tone 

(Capdevila et al., 2007; Sarkis et al., 2004). Moreover, EETs have been shown to be potent 

vasodilators involved in the action of the endothelium-derived hyperpolarizing factor and in 

the kidney they inhibit tubular reabsorption of sodium and water in the proximal tubule and 

collecting duct. Both these actions could contribute to potential antihypertensive properties of 

EETs (Čertíková-Chábová et al., 2007; Campbell et al., 1996; Madhun et al., 1991; Sakairi et 

al., 1995). It has been also suggested that EETs serve as a compensatory system against 
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enhanced renin-angiotensin system (Sarkis et al., 2004; Imig, 2010). Kopkan et al. (2012) 

showed that chronic treatment with sEH inhibitor decreased blood pressure in two-kidney, 

one-clip (2K1C) Goldblatt hypertensive mice, which was associated with normalization of the 

reduced availability of EETs in the nonclipped kidney. 

 Cardioprotection is another area, where therapeutic targeting of the epoxygenase 

pathway has demonstrated its promise. Recent studies have provided evidence that EETs are 

cardioprotective in several models of I/R injury (reviewed in Imig, 2010; Nithipatikon and 

Gross, 2010). Neckář et al. (2012) showed that chronic treatment with sEH inhibitor limited 

myocardial infarct size induced by I/R in Ren-2 transgenic hypertensive rats and was 

associated with marked decrease in blood pressure. 

 EETs seem to have many actions that contribute importantly to cardiac and vascular 

pharmacology to maintain cardiovascular homeostasis. The future studies of EETs signaling 

pathways may provide novel EETs targets for developing treatments for cardiovascular 

diseases. 
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2. AIMS OF THE THESIS 

The specific aims of the thesis were: 

 

1.) To investigate the role of signaling pathways including NO/cGMP and TNF-α in the  

      cardioprotective mechanism of CH. 

 

2.)  To find out whether dexrazoxane can reduce myocardial I/R injury in rats. 

 

3.) To evaluate the effects of EET analog on myocardial infarct size in 2K1C Goldblatt 

hypertensive rats. 
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3. MATERIAL AND METHODS 

 This section of the thesis includes chosen methodics, which was completely or at least 

partly performed by the author. 

 

3.1. ANIMALS 

All experiments were performed in rats according to the Guide for the Care and Use of 

laboratory Animals published by the US National Institutes of Health (NIH Publication No. 

85-23, revised 1996). 

 

3.1.1. Model of continuous normobaric hypoxia 

Adult male Wistar rats (250 – 300 g body weight) were adapted to continuous 

normobaric hypoxia (inspired O2 fraction 0.1) in a normobaric chamber equipped with 

hypoxic generators (Everest Summit Hypoxico Inc., NY, USA) for 3 - 4 weeks. No 

reoxygenation occured during this period. The control rats were kept for the same period of 

time at room air. All animals were kept in a controlled environment (23 °C; 12:12-h light-dark 

cycle; light from 5:00 AM) with free access to water and standard chow diet.  

 

3.1.2. Model of two-kidney, one-clip Goldblatt hypertension 

Male Hannover Sprague-Dawley (HanSD) rats (100 – 120 g body weight) were 

anesthetized with a combination of tiletamine, zolazepam (Zoletil, 8 mg/kg), and xylasine  

(4 mg/kg, Rometar, Spofa, Czech Republic) administrated intramuscularly. The right renal 

artery was isolated through a flank incision, while a silver clip (0.25 mm in internal diameter) 

was placed on the renal artery. 2K1C Goldblatt hypertensive rats are a model closely 

resembling human renovascular hypertension. Sham-operated rats underwent the same 

surgical procedure except placing the arterial clip. 

 

3.2. INFARCT SIZE AND VENTRICULAR ARRHYTHMIAS DETERMINATION IN  

       OPEN-CHEST RATS 

Susceptibility to ventricular arrhythmias and myocardial infarction were evaluated in 

anesthetized (pentobarbital sodium; 60 mg/kg body weight, i.p.; Sigma-Aldrich, USA) open-

chest rats, pump-ventilated (rodent ventilator 7026; Ugo Basile, Italy) via tracheal cannula 

with room air at 68-70 strokes/min (tidal volume of 1.2 ml/100 g body weight). A cannulation 

of carotid artery (mean arterial pressure recording) was accomplished. The rectal temperature 
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was maintained between 36.5 and 37.5 °C by a heated table throughout the experiment. Left 

thoracotomy was performed to expose the heart; myocardial ischemia was induced by 

occlusion of the left anterior descending coronary artery for 20 min, followed by 3-h 

reperfusion. A single-lead electrocardiogram (ECG) and blood pressure were continually 

recorded. The number of premature ventricular complexes during ischemia and at the 

beginning (3 min) of reperfusion was counted from ECG records according to the Lambeth 

Conventions (Walker et al., 1988). At the end of 3-h reperfusion, the hearts were excised and 

washed with 20 ml saline through the aorta. The area at risk and the infarct size were 

determined by staining with 5% potassium permanganate (Sigma-Aldrich, USA) and 1% 

2,3,5-triphenyltetrazolium chloride (Sigma–Aldrich, USA), respectively. The hearts were cut 

perpendicularly to the LV long axis into slices 1 mm thick and stored overnight in 10% 

neutral formaldehyde solution. The next day, the RV free wall was separated and both sides of 

the LV slices were photographed. The size of the infarct area, the size of the area at risk, and 

the size of the LV were determined by a computerized planimetric method using the software 

Ellipse (ViDiTo, Slovakia). The infarct area was normalized to the area at risk, and the area at 

risk was normalized to LV. 

 

3.3. VENTRICULAR ARRHYTHMIAS DETERMINATION IN ISOLATED  

       PERFUSED HEARTS 

In this experimental protocol, rats were anesthetized (pentobarbital sodium; 60 mg/kg 

body weight, i.p.; Sigma-Aldrich, USA) and given heparin (500 IU, i.p.). Hearts were rapidly 

excised and perfused via aorta at a constant flow and temperature (37 ºC) according to the 

method of Langendorff. A modified Krebs-Henseleit solution was gassed with 95% O2 and 

5% CO2 (pH 7.4) and contained (in mmol/l): NaCl, 118.0; KCl, 3.2; MgSO4, 1.2; NaHCO3, 

25.0; KH2PO4, 1.2; CaCl2, 1.25; glucose, 7.0. An epicardial ECG was continuously recorded 

and subsequently analyzed. After a period of stabilization, hearts were subjected to 30 min 

ischemia followed by reperfusion. Ventricular arrhythmias occuring during 30 min ischemia 

and first 5 min of reperfusion, respectively, were counted and evaluated according to the 

Lambeth Conventions (Walker et al., 1988). 
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3.4. BIOCHEMICAL METHODS 

 

3.4.1. Analysis of oxidized and reduced glutathione 

The reduced (GSH) and oxidized (GSSG) glutathione concentrations were determined 

simultaneously in LV tissue samples using the method of Reed et al. (1980) adapted by 

Yoshida (1996), with slight modifications. The tissue was homogenized in cold 5% 

metaphosphoric acid containing 10 mmol/l EDTA (1 ml). The precipitated proteins were 

removed by centrifugation, and the supernatant (0.4 ml) was reacted with 0.4 mol/l iodoacetic 

acid (100 μl) to block the thiol group of GSH and then with 1-fluoro-2,4-dinitrobenzene (100 

μl) to derivatize amino groups of both GSH and GSSG. The excess reagent was removed by 

incubation with glycine. The solution was analyzed using an high-performance liquid 

chromatography (HPLC) system 1100 (Agilent, USA; Zorbax NH2 column; 4.6 mm × 150 

mm; 5 μm). The mobile phase for gradient elution was methanol-water 4:1 (v/v; solution A) 

mixed with 2 mol/l sodium acetate-water-methanol 3:1:2 (v/v/v; solution B). Ultraviolet 

detection was set at 365 nm.  

 

3.4.2. Analysis of malondialdehyde  

The LV tissue samples were pulverized into a powder under liquid nitrogen. After 

adding 500 μl of the homogenization buffer (25 mmol/l Tris-HCl and 0,1% Triton X-100), the 

samples were homogenized and centrifuged (1000 g, 10 min, 4 °C). Supernatant (100 μl) was 

taken for the determination of malondialdehyde (MDA) concentration. After adding 20 μl of 

NaOH (6 mol/l) and vortexing, the samples were kept at 60 °C for 30 min followed by 5 min 

cooling at -20 °C, deproteinized by 50 μl of HClO4 (35% v/v) and centrifuged (10 000 g, 5 

min, 4 °C). Supernatant (100 μl) was mixed with 10 μl of 2,4-dinitrophenylhydrazine (5 

mmol/l), kept in the dark for 10 min, and analyzed by an HPLC system (Shimadzu, Japan; 

column EC Nucleosil 100-5 C18; 4.6 mm × 125 mm; flow 1.0 ml/min; sampling volume 30-

100 μl) with the UV detection set on 310 nm. Concentration of MDA was normalized to total 

protein determined by the method by Bradford (1976). 

 

3.4.3. Electrophoresis and western blot analysis 

Proteins from the LV myocardium were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis using 10% gel and transferred onto polyvinylidene 

difluoride membranes (Bio-Rad Laboratories, Hercules, CA, USA). After blocking with 5% 
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dry low-fat milk in TRIS-buffered saline for 60 min at room temperature, membranes were 

washed and incubated with specific monoclonal antibodies overnight at 4 °C. Membranes 

were washed again and incubated with secondary antibody for 60 min at room temperature. 

Bands were visualized by enhanced chemiluminescence on the LAS system, and ImageJ 

software was used for quantification of the relative abundance of the enzymes. All protein 

data were normalized to the housekeeping protein glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH; Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

 

3.4.4. Analysis of nitrite and nitrate 

Detection of nitrosative stress markers, nitrite and nitrate was assessed. For 

measurements of total nitrite and nitrate concentrations in plasma samples we used 

Nitrate/Nitrite Colorimetric Assay kit (Cayman, Czech Republic). This assay was performed 

on samples from different experimental groups according to the protocols described by the 

manufacturer.  

 

3.5. STATISTICAL ANALYSIS 

Data are presented as mean±standard error of the mean (SEM). GraphPad Prism 

software was used and statistical evaluations were done using one-way analysis of variance 

with the Newman-Keuls post test. Differences in number of ventricular arrhythmias between 

the groups were evaluated by the Kruskal-Wallace nonparametric test followed by Dunn test. 

Values exceeding the 95% probability limits (P<0.05) were considered statistically 

significant. 
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4. RESULTS 

 

4.1. ROLE OF NO/cGMP PATHWAY IN THE CARDIOPROTECTIVE EFFECT OF    

CHRONIC HYPOXIA (PUBLICATION A) 

 In this study, we tried to uncover the effect of pharmacological increase in acute NO 

production on cardioprotective effect of CH in rats. Therefore, normoxic and chronically 

hypoxic male Wistar rats were treated acutely with NO donor molsidomine (10 mg/kg, i.v., 30 

min before ischemia) or PDE-5 inhibitor sildenafil (0.7 mg/kg, i.v., 30 min before ischemia). 

These animals together with the corresponding untreated controls were subjected to acute I/R 

injury for subsequent infarct size determination. 

 As shown in Figure 8A, area at risk expressed as percentage of LV size was the same 

in all experimental groups; this allowed comparing the average values of infarct size. Figure 

8B shows that adaptation to CH induced a significant decrease in infarct size, expressed as the 

percentage of area at risk (40.6±2.4%) as compared to the normoxic controls (56.3±2.8%). 

Acute molsidomine or sildenafil administration markedly reduced myocardial infarct size in 

normoxic rats (32.3±6.3% and 33.7±8.4%, respectively) and significantly enhanced protective 

effect of CH (26±2.5% and 24.4±3.5%) in comparison to the untreated groups. Myocardial 

infarct size in CH rats treated with molsidomine or sildenafil did not differ from treated 

normoxic animals. 
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Figure 8 Area at risk expressed as the percentage of LV size (A) and myocardial infarct size 

expressed as the percentage of area at risk (B) in normoxic and chronically hypoxic rats 

untreated (C) or treated acutely with molsidomine (CM) or sildenafil (CS). Data are 

expressed as mean±SEM; 
*
 P<0.05 vs. corresponding normoxic group, 

†
 P<0.05 vs. 

corresponding untreated group. 



 - 30 - 

 

In the second part of the project (not published yet), normoxic and chronically hypoxic 

rats were treated chronically with sildenafil (1.5 mg/kg/day in drinking water). Sildenafil 

treatment started 3 days before the hypoxic exposure and lasted during the whole adaptation 

period. Similarly, we were interested in myocardial ischemic tolerance as well as changes in 

hemodynamics. Moreover, we examined how CH affects concentration of several markers of 

oxidative stress. 

As shown in Figure 9A, normalized area at risk did not significantly differ among the 

experimental groups. Figure 9B shows the effect of CH and sildenafil treatment on the infarct 

size. Infarct size expressed as percentage of area at risk was markedly decreased from 

58.3±2.7% in normoxic controls to 42.7±2.1% in CH rats. Sildenafil treatment reduced infarct 

size in both normoxic (35.8±3%) and chronically hypoxic (19.8±2.6%) animals. 
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Figure 9 Area at risk expressed as the percentage of LV size (A) and myocardial infarct size 

expressed as the percentage of area at risk (B) in normoxic and chronically hypoxic rats 

untreated (C) or treated chronically with sildenafil (CS). Data are expressed as mean±SEM; 
*
 

P<0.05 vs. corresponding normoxic group, 
†
 P<0.05 vs. corresponding untreated group. 

 

Figure 10 demonstrates that exposure of the animals to CH for a period of 4 weeks 

resulted in a significant increase in RVSP followed by RV hypertrophy. Treatment with 

sildenafil had no preventive effect against the development of PH. Systemic blood pressure or 

LV weight were affected neither by CH nor by sildenafil treatment.  
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Figure 10 Right ventricular systolic pressure (RVSP; A), right ventricular weight normalized 

to body weight (RV/BW; B), mean arterial pressure (MAP; C) and left ventricular weight 

normalized to body weight (LV/BW; D) in normoxic and chronically hypoxic rats untreated 

(C) or treated chronically with sildenafil (CS). Data are expressed as mean±SEM; 
*
 P<0.05 

vs. corresponding normoxic group. 

Figure 11 presents changes in myocardial levels of oxidative and nitrosative stress 

markers. Adaptation to CH increased MDA and 3-nitrotyrosine (3-NT) levels as well as 

decreased GSH/GSSG and plasma nitrite to nitrate ratio. Sildenafil treatment restored the 

levels in different ways. It caused a significant increase in 3-NT levels in both normoxic and 

chronically hypoxic group; it decreased the levels of MDA and nitrite/nitrate in normoxic 

animals and did not change GSH/GSSG. 
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Figure 11 Myocardial levels of reduced to oxidized glutathione ratio (GSH/GSSG; A), 

malondialdehyde (MDA; B), 3-nitrotyrosine (C) and plasma nitrite to nitrate ratio  

(NO2
-
/NO3

-
; D) in normoxic and chronically hypoxic rats untreated (C) or treated chronically 

with sildenafil (CS). Data are expressed as mean±SEM; 
*
 P<0.05 vs. corresponding normoxic 

group, 
†
 P<0.05 vs. corresponding untreated group. 

 

The myocardial cGMP level, shown in Figure 12, was increased by CH with respect 

to normoxia. Sildenafil treatment increased cGMP level in normoxic group; however, it had 

no effect in CH group. 
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Figure 12 Myocardial levels of cGMP in 

normoxic and chronically hypoxic rats 

untreated (C) or treated chronically with 

sildenafil (CS). Data are expressed as 

mean±SEM; 
*
 P<0.05 vs. corresponding 

normoxic group, 
†
 P<0.05 vs. 

corresponding untreated group. 

 

The author of the thesis performed and analyzed all experiments on infarct size and 

ventricular arrhythmias determination, determination of markers of oxidative and nitrosative 

stress and cGMP concentration. 

 

4.2. THE ROLE OF TNF-α IN THE CARDIOPROTECTIVE EFFECT OF CHRONIC 

       HYPOXIA (PUBLICATION B) 

 The aim of this study was to characterize the role of TNF-α in myocardium of rats 

adapted to CH. Normoxic and chronically hypoxic rats were treated weekly with a 

monoclonal antibody against TNF-α, infliximab (5 mg/kg, i.p.) during the whole adaptation to 

CH. These animals with corresponding untreated controls were used for infarct size 

determination. Separated groups of animals were assigned to biochemical analyses. 

 Figure 13 shows that adaptation to CH improved cardiac ischemic tolerance in 

chronically hypoxic rats (35.5±2.4%) compared to normoxic controls (50.8±4.3%). Chronic 

administration of infliximab had no effect on infarct size in normoxic animals (53.0±3.9%), 

but weakened the infarct size-limiting effect of CH (44.9±2.0%).  

 

 

 

 

 

 

 

 

Figure 13 Myocardial infarct size 

expressed as the percentage of area at risk 

in normoxic and chronically hypoxic rats 

untreated (C) or treated with infliximab  

(CI). Data are expressed as mean±SEM;  

*
 P<0.05 vs. corresponding normoxic 

group, 
†
 P<0.05 vs. corresponding 

untreated group. 
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Figure 14 demonstrates the increase of TNF-α content in both cytosolic and particulate 

fractions of LV in chronically hypoxic rats. This increase was completely inhibited by chronic 

infliximab treatment. This corresponded with the changes in protein level of TNF-α receptor 

R2 (TNFR2), whose increase caused by CH was completely inhibited by infliximab 

treatment. We did not observe any change in protein level of TNF-α receptor R1 (TNFR1). 

Moreover, CH increased myocardial expression of MnSOD and iNOS as well as levels of 

oxidative stress markers MDA and 3-NT by 64 - 72% compared to the normoxic values. 

Except for iNOS expression, chronic infliximab treatment completely eliminated these effects 

of CH without affecting these parameters in normoxic controls (Figure 15). 
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Figure 14 Myocardial levels of TNF-α in cytosolic (A) and particulate (B) fractions of left 

ventricle and levels of TNF-α receptor R1 (TNFR1; C) and TNF-α receptor R2 (TNFR2; D) in 

normoxic and chronically hypoxic rats untreated (C) or treated with infliximab (CI). Data are 

expressed as mean±SEM; 
*
 P<0.05 vs. corresponding normoxic group, 

†
 P<0.05 vs. 

corresponding untreated group. 
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Figure 15 Myocardial levels of mitochondrial manganese superoxide dismutase (MnSOD; A), 

inducible nitric oxide synthase (iNOS, B) and concentrations of malondialdehyde (C) and 3-

nitrotyrosine (D) in left ventricle of normoxic and chronically hypoxic rats untreated (C) or 

treated with infliximab (CI). Data are expressed as mean±SEM; 
*
 P<0.05 vs. corresponding 

normoxic group, 
†
 P<0.05 vs. corresponding untreated group. 

 

The author of the thesis performed and analyzed experiments on infarct size and 

ventricular arrhythmias determination and determination of markers of oxidative and 

nitrosative stress. 

 

4.3. THE EFFECT OF DEXRAZOXANE ON ISCHEMIA/REPERFUSION INJURY 

       (PUBLICATION C) 

 DEX is the only drug approved for the protection of myocardium from the 

cardiotoxicity induced by anthracycline chemotherapeutics, which is supposed to be based on 

ROS limitation. The aim of the study was to find out whether DEX exhibits cardioprotective 
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effect also against I/R injury. Myocardial infarct size and ventricular arrhythmias 

determination were performed in both isolated perfused hearts and open-chest rats which were 

administered with DEX in single doses of 50, 150 and 450 mg/kg 60 min before the induction 

of myocardial ischemia. Biochemical markers were assesed in additional groups of DEX-

treated (150 and 450 mg/kg) and vehicle-treated rats subjected to 20 min of ischemia and 60 

min of reperfusion. 

In open-chest rats, normalized area at risk did not significantly differ among the 

experimental groups (Figure 16A). Only the highest dose of DEX 450 mg/kg significantly 

reduced the infarct size to 37.5±4.3% of the area at risk compared with the vehicle-treated 

controls (53.9±4.7%), while the other doses had no effect (Figure 16B). None of the tested 

doses affected the values of ischemic (Figure 16C) or reperfusion arrhythmia score (Figure 

16D).  
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Figure 16 Area at risk expressed as the percentage of LV size (A), myocardial infarct size 

expressed as the percentage of area at risk (B), ventricular arrhythmia score during ischemia 

(C) and ventricular arrhythmia score during early reperfusion (D) in open-chest control (C)  

and dexrazoxane (DEX)-treated rats. Data are expressed as mean±SEM; 
*
 P<0.05 vs. C. 



 - 37 - 

 

 In isolated perfused hearts, arrhythmia score during ischemia did not differ among the 

groups (Figure 17A). Although the dose of 150 mg/kg tended to decrease both the total 

number of ischemic premature ventricular complexes (Figure 17B) and the duration of 

ischemic tachyarrhythmias (Figure 17C), the same dose significantly reduced arrhythmia 

score during early reperfusion (Figure 17D). Figure 18 shows the myocardial GSH/GSSG 

ratio as well as myocardial level of MDA, expressed as a percentage of vehicle-treated 

controls. I/R injury decreased GSH/GSSG ratio by 36% and increased the concentration of 

MDA by 40%. DEX treatment did not significantly affect these markers of oxidative stress. 
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Figure 17 Ventricular arrhythmia score during ischemia (A), total number of premature 

ventricular complexes during ischemia (PVCs, B), duration of tachyarrhythmias during 

ischemia (C), ventricular arrhythmia score during reperfusion (D) in isolated perfused hearts 

of control (C) and dexrazoxane (DEX)-treated rats. Data are expressed as mean±SEM;  

*
 P<0.05 vs. C, 

(*)
 P<0.1 vs. C. 
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Figure 18 Myocardial reduced to oxidized glutathione ratio (GSH/GSSG, A) and myocardial 

concentration of malondialdehyde (MDA, B) in open-chest control (Veh) and dexrazoxane 

(DEX)-treated rats. Effects of ischemia and reperfusion (I/R) are expressed as a percentage of 

corresponding non-ischemic (C) values. Data are expressed as mean±SEM; 
*
 P<0.05 vs. C. 

 

The author of the thesis performed and analyzed experiments on infarct size and 

ventricular arrhythmias determination in open-chest animals and determination of markers of 

oxidative stress. 

 

4.4. THE EFFECT OF EPOXYEICOSATRIENOIC ACID ANALOG ON 

 ISCHEMIA/REPERFUSION INJURY (PUBLICATION D) 

 The present study was undertaken to evaluate the effects of treatment with EET analog 

(EET-A) on blood pressure and myocardial infarct size in 2K1C Goldblatt hypertensive rats in 

sustained phase of hypertension. Adult male HanSD rats underwent a placement of right renal 

artery clip, while sham-operated animals were used as controls. Treatment with EET-A (10 

mg/kg/day in drinking water) started on day 31 after clipping and continued for 4 days. Rats 

were subjected to I/R injury for infarct size determination. In paralel subgroups, renal 

EETs/DHETs ratio and myocardial expression of Akt kinase and glycogen synthase-3β 

(GSK-3β) were measured.  

 Figure 19 shows that systolic blood pressure in sham-operated rats remained within 

the normotensive range (from 119±2 to 115±3 mmHg) and the EET-A treatment had no 

effect. On the contrary, 2K1C rats developed high blood pressure (170±3 mmHg) and EET-A 

did not alter their systolic blood pressure. As shown in Figure 20, untreated 2K1C rats 

exhibited severe LV hypertrophy as compared with untreated sham-operated rats (28.92±0.61 

vs. 23.08±0.61), which was not altered by the treatment with EET-A. 
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Figure 19 Systolic blood pressure in sham-operated and 2K1C rats untreated or treated with 

EET analog. Data are expressed as mean±SEM. 
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Figure 20 Left ventricular hypertrophy 

expressed as left ventricular weight to tibia 

length ratio in sham-operated and 2K1C 

rats untreated or treated with EET analog. 

Data are expressed as mean±SEM;  

*
 P<0.05 vs. corresponding sham-operated 

group. 

As shown in Figure 21, the intrarenal availability of biologically active epoxygenase 

metabolites expressed as the ratio of biologically active EETs to almost inactive DHETs was 

significantly lower in the nonclipped kidneys of 2K1C rats compared with sham-operated rats, 

and treatment with EET-A did not alter it in either group. Figure 22 shows that myocardial 

infarct size normalized to the area at risk was significantly lower in untreated 2K1C rats as 

compared with untreated sham-operated rats (23.2±3.4 vs. 46.1±3.9%). Treatment with EET-

A did not alter the infarct size in 2K1C, but significantly diminished it in sham-operated rats 

(to 29.9±2.9%). As shown in Figure 23, there were no differences between sham-operated 

and 2K1C rats when protein levels of Akt kinase and GSK-3β were expressed as the ratio of 

phosphorylated vs. unphosphorylated fraction, and the treatment with EET-A did not alter 

protein expression in any experimental group. 
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Figure 21 Nonclipped kidney 

EETs/DHETs ratio in sham-operated and 

2K1C rats untreated or treated with EET 

analog. Data are expressed as 

mean±SEM; 
*
 P<0.05 vs. corresponding 

sham-operated group. 

In
fa

rc
t 
s
iz

e

(%
 o

f 
a
re

a
 a

t 
ri

s
k
)

0

20

40

60

*

*

sham sham+
analog

2K1C 2K1C+
analog

 

 

Figure 22 Myocardial infarct size 

expressed as a percentage of area at risk 

in sham-operated and 2K1C rats untreated 

or treated with EET analog. Data are 

expressed as mean±SEM; 
*
 P<0.05 vs. 

corresponding sham-operated group. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Left ventricle myocardial protein expression of Akt kinase (A) and glycogen 

synthase 3β (B) in sham-operated and 2K1C rats untreated or treated with EET analog. Data 

are expressed as mean±SEM. 
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The author of the thesis performed and analyzed all experiments on infarct size and 

ventricular arrhythmias determination and western blot analyses. 
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5. DISCUSSION   

Our experiments tried to contribute to the clarification of possible mechanisms which 

could defend the heart against I/R injury. From all above mentioned cardioprotective 

phenomena, we chose three - adaptation to chronic continuous hypoxia, acute DEX 

pretreatment before the ischemic insult and chronic treatment with EET-A. The effectiveness 

of therapeutic strategies to reduce infarct size was investigated in adult male Wistar or HanSD 

rats.  

 

Role of NO/cGMP pathway in the cardioprotective effect of chronic hypoxia  

 The first major result was that NO/cGMP pathway is included in the acute phase of 

cardioprotective mechanism of CH. When studying the role of NO/cGMP pathway in the 

cardioprotective effect of adaptation to CH, we decided to compare the affection of two 

different phases of NO/cGMP signaling pathway - increase in NO by exogenous supply and 

increase in cGMP by PDE-5 inhibition.  

 We confirmed that adaptation to CH improves cardiac ischemic tolerance (Asemu et 

al., 2000; Neckář et al., 2004; Wang et al., 2011; Maslov et al., 2014). Acute administration of 

molsidomine or sildenafil decreased infarct size in both normoxic and chronically hypoxic 

rats. We showed more profound infarct size-lowering effect in rats adapted to CH without an 

additive result of CH and drugs administration. Therefore, we assume that NO/cGMP 

signaling pathway is included in the acute phase of cardioprotection induced by CH. 

 The second major result was that chronically increased availability of cGMP by 

sildenafil treatment reduced myocardial infarction in normoxic rats and potentiated 

cardioprotective effect of CH. Therefore, it seems that signaling via cGMP does not play a 

key role in the induction of cardioprotection induced by CH. 

Adaptation to CH was associated with oxidative and nitrosative stress verified by the 

increased levels of MDA, 3-NT and decreased GSH/GSSG and nitrite/nitrate ratio. Our data 

concerning CH-induced oxidative stress are in agreement with the results by Ashmore et al. 

(2014) or Santos et al. (2011). ROS as well as NO seem to be an integral part of adaptive 

changes of chronically hypoxic hearts.  

CH was associated also with the development of PH. On the contrary to other studies 

(Andersen et al., 2005; Zhao et al., 2001; Weissmann et al., 2007), chronic treatment with 

sildenafil was not able to prevent the increase in RVSP followed by RV hypertrophy. 

Sildenafil is an established therapeutic option, albeit with limited effects. Preston et al. (2004) 

showed that sildenafil normalized hypoxia-induced increased RVSP without affecting RV 
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hypertrophy or pulmonary vascular remodeling. The effect of sildenafil on vascular 

remodeling seems to be dose-dependent. We used dosage according to Milano et al. (2011), 

which successfully attenuated hypoxia-induced increase in myocardial hypertrophy. This dose 

was not able to prevent vascular remodeling in our conditions. The discrepancy could be 

explained by different experimental protocols used. The positive results on PH treated with 

sildenafil were obtained after two weeks of adaptation in comparison to our results obtained 

after 4 weeks of adaptation in the period of sustained hypoxia. According to Samillan et al. 

(2013), PDE-5 inhibitors are able to improve hemodynamic parameters, however, 

monotherapeutic onsets are still insufficient. In clinical practice, the PDE inhibitors are used 

most often in combination with other drugs in treatment of PH, in combination with 

prostacycline analogs (Itoh et al., 2004), in combination with endothelin receptor A inhibitors 

(Mouchaers et al., 2009). Every used combination has a moderate potentiation effect in 

decreasing the pulmonary artery pressure compared to the PDE inhibitor alone.  

  

Role of TNF-α in the cardioprotective effect of chronic hypoxia  

In our experiments, adaptation to CH was accompanied by the increased myocardial 

concentration of TNF-α and its receptor TNFR2. This finding is in agreement with the 

increased expression of TNF-α and proinflammatory genes in hearts of chronically hypoxic 

adult rats or fetal guinea pigs (Chen et al., 2007; Oh et al., 2008; Klusoňová et al., 2009). 

TNF-α is generated as a precursor called transmembrane TNF-α, which is cleaved to the 

secreted form of TNF-α that mediates its action through receptors TNFR1 and TNFR2 

(Vandenabeele et al., 1995).  The activation of TNF-α receptor-specific response was shown 

as an important event in cardiac ischemic tolerance. While an excessive TNF-α expression 

and subsequent TNFR1 activation are deleterious, a lower TNF-α concentration and TNFR2 

activation are protective (Flaherty et al., 2008; Lacerda et al., 2009). Our results revealed 

increased expression of TNFR2 but not TNFR1 in LV of rats adapted to CH. Moreover, 

chronic treatment with infliximab abolished the increased TNFR2 level and blunted infarct 

size-limiting effect of CH. These data suggest that CH improved cardiac ischemic tolerance of 

rat hearts by activation of protective TNFR2 signaling, but had no effect on detrimental 

signaling mediated by TNFR1. Not only secreted TNF-α but also its transmembrane form 

exerts biological actions (Horiuchi et al., 2010). Transmembrane TNF-α mediates its 

biological activities through TNFR2 (Grell et al., 1995) which is the key receptor for 

beneficial role of TNF-α in cardiac I/R injury. With this background, we analysed the 

expression of TNF-α in both cytosolic and particulate fractions of LV in normoxic and 
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chronically hypoxic rats. CH increased TNF-α levels equally in both fractions, therefore, we 

can not decide whether it is transmembrane or secreted form of TNF-α, which contributes to 

the cardioprotective phenotype of CH.  

 It has been suggested that ROS play an important role in the cell survival and death 

triggered by TNF-α signaling. The main sources of TNF-α-induced ROS generation are 

mitochondria (Kim et al., 2010), where MnSOD is the dominant antioxidative enzyme. We 

found that adaptation to CH increased myocardial oxidative stress and induced overexpression 

of MnSOD that were abolished by infliximab treatment. Therefore, it seems that TNF-α 

contributes to the improved cardiac ischemic tolerance via activation of protective redox 

signaling with increased antioxidant defence. 

Adaptation to CH was associated also with the increased expression of iNOS. 

However, chronic infliximab treatment only slightly reduced iNOS expression in chronically 

hypoxic rats. On contrary to many studies demonstrating the important role of NO in PC 

(Andrukhiv et al., 2006) or CH (Shi et al., 2000), this result showed that NO signaling does 

not play a key role in induction of cardioprotective signaling during adaptation to CH, as was 

metioned above. 

 

The effect of dexrazoxane on ischemia/reperfusion injury 

 The major result of the study with DEX was that a narrow dose range of DEX could 

suppress arrhythmias in isolated perfused rat hearts subjected to I/R injury; on the other hand, 

a higher dose was necessary for a limitation of myocardial infarct size in open-chest rats. To 

the best of our knowledge, the infarct size and the susceptibility to ischemia and reperfusion 

arrhythmias in DEX-treated animals were assessed for the first time. We found that a single 

dose of 150 mg/kg effectively supressed ventricular arrhythmias in isolated perfused hearts, 

but it was insufficient to reduce arrhythmias in open-chest animals. The reason for the 

different effect of DEX on arrhythmias in open-chest rats and in isolated perfused hearts is not 

clear. Asemu et al. (2000) reported also a distinct effect of CH on susceptibility of rat hearts 

to ischemia-induced arrhythmogenesis assessed under in vitro and in vivo conditions. The 

cause is unknown, but the presence of blood components and neurohumoral control 

mechanisms in open-chest rat may participate on this discrepancy. On the other hand, only the 

highest dose of DEX significantly reduced infarct size in open-chest rats. Our observation of 

the infarct-size limiting effect of DEX is in line with results of Ramu et al. (2006), who 

showed improved postischemic recovery of contractile function in isolated perfused rat hearts 

subjected to global I/R injury after DEX-pretreatment. Hasinoff (2002) detected lower lactate 
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dehydrogenase release from DEX-treated neonatal cardiac myocytes exposed to anoxia-

reoxygenation.  

Based on current knowledge, both anthracycline-induced cardiotoxicity and I/R injury 

seem to share the involvement of ROS with a supposed catalytic role of free iron. Hence, 

intracellular iron chelation can be considered as a promising approach. In the present study, 

we determined two different markers of oxidative stress: GSH/GSSG and MDA. The aim was 

to test the hypothesis that the protective effects of DEX were associated with the decreased 

ROS formation during I/R insult. However, none of these markers showed any significant 

effect of DEX treatment what strongly argues with generally accepted mechanism of action. 

This result was later confirmed by Štěrba et al. (2013), who demonstrated that stronger and 

more selective iron chelators failed to provide better or at least the comparable 

cardioprotection as DEX in chronic anthracycline cardiotoxicity models. It suggests that other 

protective mechanism than limitation of ROS formation might play a role. 

 

The effect of epoxyeicosatrienoic acid analog on  ischemia/reperfusion injury  

The first major finding of the study was that the size of the myocardial infarction 

induced by acute I/R insult was significantly smaller in 2K1C Goldblatt hypertensive rats than 

in sham-operated normotensive controls. This finding contradicts generally accepted view that 

the hypertrophic myocardium shows decreased tolerance to I/R injury. However, our findings 

are not exceptional; it has been observed that hypertensive animals with LV hypertrophy 

exhibit either comparable or reduced infarct size (Mozaffari and Schaffer, 2003; Saupe et al., 

2000; Matsuhisa et al., 2008). Neckář et al. (2012) recently showed that Ren-2 transgenic 

hypertensive rats exhibited higher myocardial resistance to I/R injury as compared with 

normotensive rats. It is obvious that the influence of hypertension on cardiac tolerance to I/R 

injury has not been completely understood until now. It could depend on the phase of 

hypertension or it may activate a protective mechanism. EET-A treatment significantly 

reduced infarct size in normotensive sham-operated rats. Chronic treatment with EET-A did 

not reduce myocardial infarct size in 2K1C Goldblatt hypertensive rats suggesting that 2K1C 

rats already exhibited the maximal activation of cardioprotective signaling. 

The second major result of the study with EETs was that in the sustained phase of 

2K1C Goldblatt hypertension, EET-A treatment did not decrease blood pressure and did not 

attenuate cardiac hypertrophy in 2K1C Goldblatt hypertensive rats. These unexpected 

findings are not easy to explain, because recent studies have clearly shown that increased 

availability of EETs in the kidney of animals with angiotensin II-dependent hypertension is 
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associated with improvement of the impaired renal autoregulatory capacity and blunted 

pressure-natriuresis relationship (Elmarakby, 2012, Sporková et al., 2011). Moreover, 2K1C 

hypertensive animals in the sustained phase of hypertension were shown to have a deficit of 

EETs in the nonclipped kidney as a consequence of enhanced sEH activity and their increased 

conversion to DHETs (Sporková et al., 2011; Kopkan et al., 2012). Based on these findings, it 

was proposed that the reduced intrarenal bioavailability of EETs contributes to the 

angiotensin II-induced derangement of the pressure-natriuresis relationship in the nonclipped 

kidney of 2K1C hypertensive rats; it plays also a crucial role in the pathophysiology of 

sustained hypertension. It was reported that in Ren-2 transgenic rats, chronic sEH inhibition 

lead to the marked elevation of intrarenal EETs levels (Varcabová et al., 2013). Considering 

the above evidence, it is difficult to explain why chronic EET-A treatment did not lower 

blood pressure in 2K1C Goldblatt hypertensive rats. This failure can not be ascribed to the 

low dosage of EET-A, because in a recent study the same dose proved to be effective (Imig et 

al., 2010). The possible explanation might be that, in contrast to sEH inhibition, EET-A 

treatment did not normalize the availability of endogenous intrarenal EETs (Sporková et al., 

2011). We assumed that the decreased intrarenal EETs bioavailability in 2K1C rats was 

accompanied by the lack of antihypertensive effect. 

 

 In conclusion, all three potential cardioprotective interventions studied were able to 

defend the myocardium against I/R injury. Adaptation to CH was associated with the 

oxidative stress as well as cardioprotective effect of DEX pretreatment was not mediated by 

ROS limitation. It suggests a beneficial role of ROS in signaling leading to cardioprotection. 

Furthermore, we confirmed involvement of NO/cGMP pathway as well as TNF-α in the CH-

induced cardioprotective signaling. While EET-A provided cardioprotective action only in 

normotensive rats; surprisingly, 2K1C Goldblatt hypertensive rats exhibited increased cardiac 

tolerance to I/R injury even without EET-A treatment, suggesting already activated 

cardioprotective signaling. 
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6. SUMMARY 

a)  NO/cGMP signaling pathway plays a role in the acute phase of cardioprotection induced 

by CH. The acute preischemic treatment with NO donor molsidomine and PDE-5 inhibitor 

sildenafil enhanced cardiac ischemic tolerance not only in normoxic but also in 

chronically hypoxic rats. Chronic sildenafil treatment was able to provide an additional 

protection in chronically hypoxic rats. 

 

b) Adaptation to CH exhibited the increased levels of TNF-α in both cytosolic and 

particulate fractions of LV myocardium. Moreover, an increased expression of receptor 

TNFR2 without change in TNFR1 suggests that TNF-α contributes to the improved 

cardiac ischemic tolerance of chronically hypoxic rats via its receptor TNFR2 and 

increased oxidative stress. 

 

c) DEX exhibited significant protective effect against reperfusion-induced arrhythmias in 

isolated perfused hearts with the mild dose of DEX. In open-chest animals, the high dose 

of DEX significantly reduced infarct size. According to the unchanged markers of 

oxidative stress, we suggest that DEX-induced protective mechanism is not mediated by 

limitation of ROS formation. 

 

d) 2K1C Goldblatt hypertensive rats during the sustained phase of hypertension exhibited 

increased cardiac tolerance to I/R injury as compared to the normotensive controls. 

Treatment with EET-A did not induce any antihypertensive and cardioprotective actions 

in this animal model of human renovascular hypertension; however, it reduced infarct size 

in normotensive animals. 
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