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Preface

Within this thesis, I present my work and results in the area of combinatorial pur-
suit games. The main focus is on the research problems I significantly contributed
to. At the same time I aim to give the reader an overview of the area and provide
context for the problems. Most of the scientific material is already published in
the form of articles but this thesis is written in the form of a monograph to be
more approachable.

I had the opportunity to work with different aspects of combinatorial game
theory: Structural properties in the case of the original cops and robber game on
geometric graphs, showing several strong bounds. Computational complexity in
the case of the fast robber game and a special domination problem on interval
graphs, showing a polynomial algorithm for both. And finally proposing and
studying extensions of the graph parameter tree-depth, related games and minors
to the world of hypergraphs.

The area of combinatorial games is vast and still growing in many directions,
and the related graph theory even more so. In these areas, while many of the
problems and research questions are only loosely coupled with one another within
their areas, many tools, approaches, the general problem structure and the mindset
are common. This is also the case of my research in the area and I hope to give
you, the kind reader, a glimpse of it with this work.
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Catching a fast robber on interval graphs,
published in proceedings of TAMC 2011 [Gav11]
Announcement of results of Section 3.4.

• D. Dereniowski, T. Gavenčiak, J. Kratochv́ıl:
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Chapter 1

Pursuit games on graphs

We begin with a general, introductory chapter providing history, motivation and
context for pursuit game research. While the games are broadly studied since the
80’s, the game seems to have appeared first along with a problem of locating a
person lost in a cave system, represented as a graph: Inspired by his spelunker
friend Richard Breisch, T. D. Parsons [Par76, Par78] first considered such a graph
theoretic problem around the year 1976.

A small part of the current motivation for pursuit games research are security
applications, but the theoretically most interesting, as well as most successful
research seems to be in exploring theoretical applications and connections of these
games in graph theory and complexity theory, and in exploring the structure of
these games on their own. This is also the direction we approach the games from;
exploring the structure of the underlying graphical structures, feasible strategies,
and the implied computational complexity and algorithms.

In Section 1.1 we introduce the notation used throughout this thesis and recall
some of the classical results required later. Section 1.2 introduces intersection
graphs in general as well as defining the classes of our interest. Section 1.3 gives
a general overview of pursuit games, presenting a rich framework encompassing
many common and studied game variants and modifications. Finally, Section 1.4
presents several notable results, questions and conjectures.

1.1 Notation and preliminaries
In this thesis we mostly follow well-established mathematical notation and basic
results, but for the sake of clarity and completeness we briefly recall most of the
notation and technical terms. You may find an overview of the notation and
common symbols in section Notation on page 81.

As standard references, we recommend Modern graph theory by Béla Bol-
lobás [Bol98] as the graph theory resource, and Lessons in Play: An Introduction
to Combinatorial Game Theory by Michael H. Albert, Richard J. Nowakowski
and David Wolfe [ANW07] for combinatorial graph theory.

We recommend the book Computational complexity: a modern approach by
Sanjeev Arora and Boaz Barak [AB09] or the classical Computational Complexity
by Christos H. Papadimitriou [Pap94] as the standard computational complexity
references. However, basic knowledge of algorithms and complexity classes should
be sufficient throughout the thesis.
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We use R to denote the set of real numbers, R+ the set of positive real numbers,
N the set of natural numbers (including zero). For a, b ∈ R, (a, b) denotes the
open interval {x

∣∣∣ a < x < b}, empty when b ≥ a. For a set X ⊆ Rk, clos(X)
denotes the topological closure (smallest closed superset) of X and int(X) denotes
the topological interior (largest open subset) of X. For a set X, 2X denotes the
powerset of X, that is {Y | Y ⊆ X}.

For two functions f, g : N → R+ we write f = O(g) if there is c > 0 such
that ∀x ∈ N : f(x) ≤ cg(x)1. Similarly, f = Ω(g) if there is c > 0 such that
∀x ∈ N : f(x) ≥ cg(x) and f = Θ(g) if f = O(g) and f = Ω(g).

We generally use minuscule letters a, b, c, . . . to denote set elements, f, g, . . .
functions, i, j, k, l,m, n, . . . natural numbers, u, v, w, . . . graph vertices x, y, . . .
numbers or points, capital letters A,B,C,X, Y, . . . for sets, G,H for graphs, and
then calligraphic letters A,G, . . . to denote set families and graph classes.

In some parts of Section 3, we deal with multisets, which is a generalisation
of sets allowing multiplicities of the elements. We just sketch basic notions and
properties, referring to a standard set-theory resources for details.

One way to define multisets is to consider an indicator function 1A : A→ N
for every multiset A, counting the number of occurrences of every element (and
defined to be 0 everywhere outside A). Another, equivalent and sometimes more
convenient, definition is to distinguish the occurrences of all elements, e.g. by
letting the set {(x, 1), . . . (x, k)} represent the multiset with k occurrences of x.

The set-theoretic notions are naturally extended to multisets by considering
and comparing the multiplicities as well. For example, for multisets A ⊆ B ⇐⇒
∀x ∈ A : 1A(x) ≤ 1B(x), a multiset function f : A → B maps every element
x ∈ A to a multiset f(x) ⊆ B with |f(x)| = 1A(x) and similarly, for a function
f : A→ B to be injective means that for all y ∈ B |f−1(y)| = 1B(y).

1.1.1 Graph theory
We recall the basics of graph theory relevant to the thesis. See the books of
Bollobás [Bol98] or Diestel [Die10] for more details.

A graph is a tuple G = (V,E) where V is a vertex set and E ⊆
(

V
2

)
its edge set.

We mostly deal with undirected graphs; directed graphs have edges as ordered
pairs of vertices. Let V (G) denote the vertex set of G and E(G) the edge set of
G. For u, v ∈ V (G), let uv = {u, v} be the edge between u and v. The number
of vertices of G is the order of G, the number of edges the size of G. We use
NG[v] and NG[X] to denote the closed neighborhood of a vertex v or a subset of
vertices X (including v, resp. X), and NG(v) to denote the open neighborhood of
v (not containing v). Let the degree be dG(v) = |NG(v)|. We drop the subscript
G when the graph is clear from the context. Vertices u and v are adjacent when
uv ∈ E(G).

There are several graphs operations: deletion of an edge, deletion of a vertex
(also removing all the edges incident with it), and edge uv contraction: creating
a new vertex w adjacent to N(u) ∪N(v) and deleting the two endpoints u, v. A

1While this notation is standard and widely used, to rationalise the at first counter-intuitive
notation of f = O(g), we could define O(g) as the class of such functions f .
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subgraph of G is a graph obtainable by deleting some vertices and some edges. An
induced subgraph of G is a graph obtainable by deleting vertices only.

A minor of G is a subgraph obtainable by all three operations: deleting edges
and vertices and edge contraction (in any order). An induced minor of G is
obtained by a sequence of vertex deletions and edge contractions (no direct edge
deletion). Graph minors are introduced in more detail in Section 4.2.3, the concept
of minor maps and models is recalled in Section 4.4.4.

For any set A of vertices of G, we denote by G[A] the subgraph of G induced
by A, that is, the subgraph with the vertex set A and with an edge between each
pair of vertices of A that are adjacent in G.

Two graphs G, H are isomorphic when there is a bijection f : V (G)→ V (H)
with

∀u, v ∈ V (G) : uv ∈ E(G) ⇐⇒ f(u)f(v) ∈ E(H).

In some cases when dealing with abstract graphs, the vertex representatives
themselves are not as important as the graph structure, so in most cases the
graphs are distinguished only up to isomorphism. For a graph H, we say that
G contains H as a subgraph (induced subgraph, minor) when H is isomorphic to
some G′ that is a subgraph (induced subgraph, minor) of G.

Basic graphs and properties

The path on n vertices is Pn = ({0, 1, . . . n − 1}, {{0, 1}, {1, 2}, {2, 3}, . . . {n −
2, n− 1}}). The length of a path Pn is n− 1 (the number of edges). The distance
of two vertices dist(u, v) is the length of a shortest u− v path in G, or ∞ when
no such path exists. Graph G is connected when there is a path between any two
of its vertices. A component of connectivity of G is any of the maximal connected
subgraphs.

The cycle on n vertices Cn is Pn with additional edge {n− 1, 0}. A graph is
acyclic when it does not contain any cycle. A complete graph on n vertices is Kn =
({0, 1, . . . n− 1},

(
V
2

)
). An empty graph on n vertices is In = ({0, 1, . . . n− 1}, ∅).

Any connected acyclic graph is called a tree.
A homomorphism is a map f : V (G)→ V (H) such that for every uv ∈ E(G),

f(u)f(v) ∈ E(H). When H is not a reflexive graph (that is with loop edges on
every vertex) this also forces f(u) 6= f(v) for every uv ∈ E(G). A retract from G
to H ⊆ G is a map f : V (G)→ V (H) fixing H (that is f(v) = v for all v ∈ V (H))
and for every (u, v) ∈ E(G) either (f(u), f(v)) ∈ E(H) or f(u) = f(v). Note that
a retract is also a homomorphism to H with loops added to every vertex.

We say that a set A of vertices dominates a vertex set B when every v ∈ B
belongs to A or has a neighbour in A, that is, B ⊆ NG[A].

Rooted forests and orders

A rooted tree is a tree with one distinguished vertex (the root). A rooted forest is
a graph constituting of a set of rooted trees.

Let F be a rooted forest. We use ≤F to denote the partial order on V (F )
induced by F (where the roots are the smallest elements). Let T be one of the
rooted trees composing F . For s, t ∈ V (T ) we denote the infimum (with respect
to ≤F ) of s and t by s∧ t. A chain in F is a subset of V (F ) that is totally ordered
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by ≤F . For t ∈ V (F ), by ↓F t we denote the chain of all ≤F -predecessors of t
in F (including t). We omit the subscript F if it is clear from the context. The
height of a node t ∈ V (F ) is the number of vertices in a path from the root (of
the tree containing t) to t. The height of F is the maximum height of the vertices
in F . For a rooted forest F and a vertex t ∈ V (F ) we let Ft be the subtree of F
induced by {s ∈ V (F ) | t ≤F s}.

Hypergraphs

A hypergraph is a pair H = (V,E) with V an arbitrary set of vertices and
E ⊆ 2V \ {∅} the set of hyperedges. In a sense, a hypergraph is a graph with
arbitrary size edges, and many of the graph concepts also generalise to hypergraphs.
Any graph may be viewed as a hypergraph, but we try to keep the groups of
graph and hypergraph notions separated.

A hypergraph is k-uniform if ∀e ∈ E : |e| = k. A hyperedge e is singleton
when |e| = 1. A vertex is isolated when it is not contained in any edge (not even
a singleton edge). For a hypergraph H = (V,E), define the underlying graph

H = (V, {(u, v) | ∃e ∈ E : u, v ∈ e}).

1.1.2 Combinatorial game theory
We sketch the basic concepts and tools of combinatorial game theory we address
in our work. For a detailed introduction we recommend the book of Albert et
al. [ANW07].

For two players, Anna and Barbara, a two-player deterministic full-information
memory-less combinatorial game is described by the following: a state space S
consisting of the following disjoint sets: the set of A-states SA, the set of B-states
SB, the set of states won for Anna WA, the set of states won for Barbara WB

and the set of draw states WD. We have S = SA ∪ SB ∪WA ∪WB ∪WD, finite
or infinite. Then there is the initial state s0 ∈ S and finally a rule function
r : (SA ∪ SB)→ (2S \ {∅}) indicating the valid moves in every state except the
final (won or drawn) states.

The game is played as follows: The first game state is s0. Then on i-th round
with the game in the state si−1 one of the following happens:

si−1 ∈ SA Anna picks the next state si from the set r(s).

si−1 ∈ SB Barbara picks the next state si from the set r(s).

si−1 ∈ WA Anna wins the game.

si−1 ∈ WB Barbara wins the game.

si−1 ∈ WD The game ends with a draw.

If the game goes on indefinitely avoiding the final states, we also consider it a
draw.

Both Anna and Barbara have full information about the set S and the rules r
when making their choice. A memory-less strategy for Anna (resp. Barbara) is a
function S : SA → S (resp. S : SB → S) such that S(s) ∈ r(s) (strategy advises
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only valid moves). Given two strategies SA and SB, the game is determined as a
(potentially infinite) sequence s0, s1, s2, . . . . An Anna’s (resp. Barbara’s) strategy
is winning if it wins against any Barbara’s (resp. Anna’s) strategy. Similarly,
a strategy is non-losing if it wins or draws (including playing an infinite game)
against any strategy.

Note that in a memory-less game, it is a well-known fact that memory-less
deterministic strategies are as strong as any other strategies (e.g. considering
state history or using randomness) and therefore we only need to consider those.

A note on the adjectives of a two-player deterministic full-information memory-
less combinatorial game: Two players is an important limitation since with more
players the tools for dealing with winning strategies are much weaker (imagine the
currently “losing” player helping the currently “second” player etc.). The game is
deterministic since the next state is determined only by the rules and the players’
choices (without any randomness). In a partial information game, the players
would only have some information of the game state (having hidden variables for
one or both players). In a memory-less game, the valid moves and won states only
depend on the current state (and not on previous states or the number of turns
played)2.

There is an important folklore game-theoretic theorem allowing us to classify
the games by the winning player. There are several possible variations on the
game conditions, in our case we additionally restrict ourselves to finite state-space
games.

Theorem 1. In a deterministic, full-information, finite-state memory-less two-
player combinatorial game, one of the players has a memory-less non-losing
strategy. If a draw or endless game is not possible, one player has a winning
strategy.

The game tree is a tree rooted in s0 with every vertex of the tree representing
a state from S and the descendants of every vertex representing the state s being
the representatives of r(s) (or none if s ∈ WA ∪WB ∪WD). A play (e.g. of two
given strategies) is a downward path in this tree. Another view on a game is the
game-state directed graph, where the vertices are exactly the states of S (labelled
with their type SA, SB, WA, WB or WD), vertex s0 is distinguished, and from
every state s ∈ SA ∈ SB there are directed edges to r(s).

These representations are good tools to observe the following two properties of
combinatorial games as well as the complexity remarks below. Refer to the book
by Albert et al. [ANW07] for further details.

Lemma 2. In a memory-less game, a winning strategy never has to repeat a game
state against any strategy.

Lemma 3. In a memory-less finite-state game, a winning strategy can be assumed
to have a finite bound on the game length.

Given a game from a fixed class of games, it is not generally computable to de-
cide the winning (or non-losing) player, or to find the winning strategy, depending

2Note that it is possible to encode the game history within the current state, getting a (vastly)
extended game state but a memory-less game. However the games we consider are naturally
memory-less.
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on the computability and size of S and r. However, for finite-state memory-less
games we have the following well-known general state-marking algorithm.

Theorem 4. Given a two-player deterministic full-information memory-less and
finite-state combinatorial game (given either by (SA, SB,WA,WB,WD), s0 and r,
or by the state-space graph) there is a polynomial time algorithm (in the size of
the input) to decide the outcome of the game and find the shortest winning (resp.
non-losing) strategy.

1.2 Intersection graph classes

A big part of the thesis, namely Chapters 2 and 3, deal with intersection graph
classes, mostly defined by planar geometrical objects. Here we introduce some of
the notable and relevant classes, and point out some of their interesting properties.

An intersection representation of graph G is a map ϕ : VG → I for some
ground set X and some image set I ⊆ 2X , such that the edges of G are prescribed
by intersections of the sets ϕ(v); formally, uv ∈ EG if and only if ϕ(u) ∩ ϕ(v) 6= ∅.
Given the (multi)set of the images of ϕ, the corresponding intersection graph of ϕ
is uniquely defined up to isomorphism.

Note that we can obtain any graph G as an intersection graph of the set of its
edges: Let X = EG and ϕ(v) = {e ∈ EG | v ∈ e}. Therefore, for any infinite set
X and I = 2X we obtain the class of all (finite) graphs.

Interesting intersection classes are most commonly defined by restricting the
ground set X and the image set I. In some cases the allowed set of images of
ϕ[VG] is also restricted, for example by bounding the number of intersections at a
single point of X .

Intersection graphs are widely used in abstract graph theory and when con-
structing graphs out of combinatorial objects (together with, e.g., incidence
graphs). As an example, take X = N and I =

(
X
2

)
, the set of all unordered pairs.

It is not difficult to see that this yields the family of (countable) line graphs – the
intersection graphs of the edges of any given graph.

The intersection graph classes of our interest are mostly geometry or graph-
based and we introduce them below. Additional examples of intersection graph
classes are the intersection graphs of segments in a plane, balls or unit balls in
Rk, convex subsets of a plane or connected subgraphs of a given (fixed) graph.
For more information on intersection graphs and their properties, see a book by
McKee and McMorris [MM99] or an older classic by Golombic [Gol80].

The classes of planar and bounded genus graphs are closely related to inter-
section classes (but not natural intersection classes themselves). Planar graphs
(denoted PLANAR) can be drawn into plane (with vertices as distinct points and
edges as arcs connecting their endpoints, and with the edges crossing only in
the endpoints). Graphs of genus at most k (denoted GENUS-k) may be drawn
similarly on a surface of genus k.
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INT

CHORDAL

Figure 1.1: Examples of interval and chordal graphs.

1.2.1 Interval and chordal graphs
An interval graph (denoted INT) is an intersection graph of intervals of the real
line. See Figure 1.1 for an illustration.

There was an extensive research on interval graphs in the 60s and 70s, firs
appearing in a paper by Lekkeikerker and Boland in 1962 [LB62]. Today, these
graphs are folklore and they appear in many graph theoretic contexts as well as
modeling objects outside graph theory.

As for the representation, in case of finite graphs, it does not matter whether
the intervals are open or closed. Alternatively, one can define (finite) interval
graphs as intersection graphs of subpaths of a path, or of intervals of natural
numbers. We may generally assume that all the 2n endpoints of the intervals are
distinct natural numbers 1 . . . 2n, where n is the order of the graph, which can
be achieved by moving the endpoints without changing their order, and therefore
without changing the graph.

A given abstract graph can be recognized as interval and its interval model
can be constructed in linear time [BL76, KM89]. Interval graph representation
also requires only O(n log n) bits, unlike general graphs which require Θ(n2) bits.
There are also other characterizations of interval graphs by forbidden substructures
already by Lekkeikerker and Boland [LB62], but this falls outside of the scope of
this thesis.

Formally, an interval representation ϕ : V → 2R maps each vertex v to an
open interval such that ϕ(u) ∩ ϕ(v) 6= ∅ if and only if uv ∈ E. For any subset
X of vertices of an interval graph G let ϕ[X] = ⋃

x∈X ϕ(x) the union of intervals
representing the vertices in X. Note that when G is connected, then for any
X ⊆ VG the subgraph G[X] is connected if and only if ϕ[X] is an interval.

For any number i, ϕ−1(i) = {v ∈ V
∣∣∣ i ∈ ϕ(v)} is the set of vertices whose

intervals contain i3. Then, for X ⊆ R, let ϕ̃(X) = {v ∈ V
∣∣∣ ϕ(v) ⊆ X} be the

vertices with intervals entirely contained in X. Since here X is usually an interval,
we let ϕ̃(i, j) = ϕ̃((i, j)). Note that ϕ̃(i, j)∩ (ϕ−1(i)∪ ϕ−1(j)) = ∅ for every i and
j.

3This is not exactly the inverse of ϕ, but we believe this convenient notation won’t cause any
misunderstanding.
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Given an interval I, denote by L(I) and R(I) the left and right endpoints of I,
respectively, i.e., L(I) = inf(I) and R(I) = sup(I).

The intervals of a representation are naturally ordered in two ways – by their
left and right endpoints. We use these to define two orders on VG: Let u <R v if
and only if R(ϕu) < R(ϕ(v)). Similarly, u <L v if and only if L(ϕ(u)) < L(ϕ(v)).
Note that these orders are linear thanks to the assumption that all endpoints are
different.

In the algorithmic sections, <R is the commonly and sometimes implicitly
used interval order while <L usually plays an auxiliary role. This is due to our
choice of sweeping the graph representation left-to-right. In particular we use the
following properties:

Lemma 5. If we have a <R b <R c and ac ∈ E, then also bc ∈ E. Similarly, if
a <L b <L c and ac ∈ E, then also ab ∈ E.

Proof. Since ac ∈ E we have L(ϕ(c)) < R(ϕ(a)) and therefore R(ϕ(b)) ∈ ϕ(c).
The proof of the second statement is symmetric.

The integers 1, . . . , 2|V | are also called cutpoints, as every ϕ−1(i) is a vertex
cut in the interval graph between the vertex sets ϕ̃(−∞, i) and ϕ̃(i,∞). However,
unlike with the usual definition of a cut, here either may be empty.

Chordal graphs (denoted CHORDAL) have several popular equivalent definitions.
Within the framework of intersection graphs, a chordal graph is an intersection
graph of subtrees of a tree. By definition, chordal graphs are a superclass of
interval graphs, and have a “tree-like” structure instead of a “path-like” one of
interval graphs.

An older and more common definition is the following: A graph is chordal
if every cycle of length at least 4 has a chord – an edge between two vertices
nonadjacent in the cycle. The equivalence was shown by Gavril in 1974 [Gav74].
Other characterizations, as well as linear time recognition algorithms, are based
on vertex orderings and perfect elimination schemes. See the book by McKee and
McMorris [MM99] for more information.

1.2.2 Circle and circular arc, function and IFA graphs
The following related classes are the topic of Section 2.4. See Figure 1.2 for an
illustration.

Circle graphs (denoted CIRCLE) are intersection graphs of chords of a single cir-
cle, that is straight line segments between two points on the circle. Bouchet [Bou85]
and Naji [Naj85] have shown that circle graphs can be recognized in polynomial
time.

Circular arc graphs (denoted CIRCARC) are the intersection graphs of arcs
(connected subsets) of a single given circle. These graphs can be also recognized
in polynomial, even linear time as shown by McConnell [McC03].

Function graphs (denoted FUN) are the intersection graphs of continuous
functions defined on the interval [0, 1]4. A much better known equivalent class is

4You may require the functions to be from [0, 1] to [0, 1], to be piece-wise linear et c.
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CIRCLE CIRCARC

FUN IFA

Figure 1.2: Examples of geometrical intersection graphs.

the class of co-comparability graphs – that is complements of comparability graphs5.
While this characterization is widely studied in both algorithmic and structural
context, we refer the interested reader to the book by Golombic [Gol80], who has
also shown the recognition complexity to be polynomial [Gol77].

Interval filalent arc graphs, or IFA graphs for short (denoted IFA) are the
intersection graphs of filaments over a set of intervals. a filament over an interval
[a, b] is a continuous function f from [a, b] to [0,∞) with f(a) = f(b) = 0. We
call a the left endpoint and b the right endpoint and assume a 6= b.

Notice that, similarly to interval graphs, the filaments over [1, 3] and [2, 4]
must intersect, the filaments over nested intervals such as [1, 4] and [2, 3] may
or may not intersect. The class was introduced by Gavril in 2000 [Gav00] as a
generalization of interval graphs on which his algorithms for weighted maximum
clique and weighted maximum independent set can be used. Pergel [Per07] has
later shown their recognition to be NP-complete.

While the classes of circle graphs, circular arc graphs and function graphs are
generally incomparable, IFA graphs is their common superclass. We sketch the
class inclusions for the curious reader: Continuous functions on [0, 1] can be easily
completed to filaments without introducing new intersections. The circle of a circle
graph may be cut at any point and straightened to a segment while continuously
morphing the original chords into filaments. Cutting and straightening the circle
of a circular arc graph gives almost an interval graph except for some arcs now split
into 2 intervals. The corresponding vertices are all adjacent in the intersection
graph and can be connected by filaments going above the interval part almost
arbitrarily.

13



STRING

OUTER-STRING

1-GENUS-STRING

Figure 1.3: Examples of string-based intersection graphs.

1.2.3 String graphs and related classes
String graphs (denoted STRING) are intersection graphs of strings in the plane. A
string is the image of a continuous function from [0, 1] to R2, that is a continuous
path between two points in the plane. See Figure 1.3 for an illustration. The class
was introduced by Sinden [Sin66] and characterized to be equivalent to intersection
graphs of arc-connected regions of the plane. See [MM99] for further information.

String graphs on genus g surfaces (denoted GENUS-g-STRING) are defined
similarly, but on arbitrary surface of Euler genus g. We are not aware of any
work on this class prior to our work on this subject [GGJ+15]. The extension
however is quite natural and aims to follow the rich development in the area of
graph genus and graphs drawn on surfaces.

A graph G is an outer-string graph (denoted OUTER-STRING) if it has a string
representation by curves lying in the upper half-plane and intersecting the x-axis
in exactly one point, which is an endpoint of the curve. Alternatively, we may
require that every string in a plane has at least one endpoint outside of a disc
containing all the string intersections (hence the name).

Note that outer-string graphs are related to, but less limited than interval
filament arc graphs.

Recognition of string graphs is an interesting story on its own. The problem
was first shown to be NP-hard by Kratochv́ıl in 1991 [Kra91], but even decidability
of the recognition problem was open for quite some time. For example, Kratochv́ıl
et al. [KGK86] shows that there are string graphs requiring an number of string
intersections exponential in the order of the graph, so any straightforward de-
scription of a (piecewise-linear) string model may require (at least) exponential

5Also known as transitively orientable graphs, a comparability graph for a given partially
ordered set connects comparable elements with undirected edges.
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space.
In 2001, Schaefer and Štefankovič [SS04] have shown that the number of inter-

sections is always at most exponential, and that string graphs may be recognized
in non-deterministic exponential time. Shortly afterwards, Schaefer et al. [SSS03]
have finally shown the membership in NP. (The reversed years of publication of
those results are due to different publishing delays.)

To our best knowledge, the complexity of recognizing outer-string graphs and
g-genus string graphs for g > 0 are open problems.

1.2.4 General assumptions and remarks
To simplify our treatment of the matter without a loss of generality, we make the
following assumptions on the geometrical graph representations throughout the
thesis.

1. No two strings, functions, lines or subtrees share an endpoint (resp. a leaf).

2. In the plane, no three lines or strings intersect in one point.

3. In the plane, whenever two strings touch, they also cross or exactly one of
them ends.

4. In the plane, no string self-intersects.

5. The number of intersection points (or connected intersection regions) is
finite.

Assumptions 1, 2 and 3 are easily achiever through local perturbation. Assump-
tions 4 and 5 follow from the fact that strings can be replaced by piece-wise linear
curves with finite numbers of linear segments without affecting their intersection
graph. For more details see a book by Kratochv́ıl et al. [KGK86]. Assumption 5
for IFA and function graphs follows from the fact that they are a special type of
string graphs. We always assume and maintain these properties.

As noted in Section 1.2.3, string graphs are a superclass of any intersection class
of arc-connected objects in the plane (i.e. intersection graphs of connected regions
bounded by closed simple Jordan curves). While there are some intersection classes
with every object a union of at most k arc-connected objects (of various types,
e.g. 2-interval graphs), weakening of the connectivity condition to topological
connectivity would immediately allow all graphs.

Proposition 6. Every graph can be represented as an intersection graph of
topologically connected sets in the plane.

While this is folklore, one can obtain such representation by first getting an
arbitrary string representation of Kn and then replacing unwanted crossings by (no
longer string) crossing gadgets preserving topological connectedness but making
the sets disjoint. See a book by Prasolov [Pra] for more information.

As a last remark, notice that in the matter below we do not distinguish
between placing the player tokens on the vertices of the graph or their geometric
representation. This simplifies the language when we focus on the representation
of the graph and we believe that it shall not bring any confusion to the reader.
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1.3 Game variants
While there are numerous variants and modifications of pursuit games, some of
them mentioned in Section 1.4 and three examined closely in this thesis, it is
possible to describe a framework fitting most of the games. This presentation of
the framework is not meant formally, but rather to give the reader an idea of the
scope of variations and choices this family of games allows.

While only several games of the myriad possible ones are directly motivated
by other problems from mathematics and computer science, it is of independent
interest to understand the full landscape of these games, comparing the significance
and strength of individual changes and their interplay in various situations.

The understanding of the “game landscape” may also give new character-
izations of old related problems, as well as serve as a criterion of naturalness
of proposed definitions. Notable examples are three proposed definitions of di-
rected graph counterpart of tree-width, namely Directed tree-width by Johnson et
al. [JRST01], Kelly-width by Hunter and Kreutzer [HK08], and DAG-width by
Obdržálek [Obd06], all of them arguing their case with game characterization of
the new parameter. Chapter 4 of this thesis could be also seen as a step in this
direction.

1.3.1 Pursuit game framework
Here we sketch a framework of a pursuit game in the sense used in this work.
While we give a formal definition, there is no commonly accepted formalism and a
slightly informal language of game variants is widely used and sufficient for most
uses. See a survey by Alspach [Als04] for a broader overview of known pursuit
games.

Below, by “usually” we mean that it either applies to most games known to
us, or that other natural definitions are either equivalent or nonsensical for most
known games. Examples include victory conditions and game set-up and start.

The game is played by two players: The pursuer is usually called Cops, Clean-
ers, Rescuers, Marshals, . . . , while the evader is called Robber, Contamination,
Virus, Victim, Fugitive, . . . . Each player controls a set of indistinguishable tokens,
usually of bounded size and quite often with just one evader.

At every moment, every token is either off-board or placed on some locations of
the game board. Most commonly, the locations are the vertices of a given graph,
other variants include edges and hyper-edges. Note that games on infinite, even
uncountable, structures are sometimes also considered. The number of tokens in
a single location is generally not limited. Some locations may be available to only
one player.

Most commonly, the pursuer wins when all (or a defined quantity) of the
evader tokens are captured, which means that they share location with a pursuer
token, or in some cases, that they have been previously removed from the board.
The evader wins by avoiding capture indefinitely. In case of full-information games
with a finite state-space this is equivalent to repeating a game state, as follows
from Lemma 1.

The game rules and the playground structure are known to both players, as
well as the position of the pursuer’s tokens. This information may even include the
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declaration of next moves of the pursuer tokens. The visibility of the evader varies
from invisible evader to evader visible from distance at most d to fully visible
evader. Invisible robber games were introduced by Tosic already in 1985 [Tos85].

While the games with invisible evader are generally no longer full-information
and therefore may not fall into the combinatorial game framework, some of them
are equivalent to a different game with full information. A typical example: The
hidden information in a game with a single infinitely fast invisible evader can be
encoded in a set of evader’s possible locations, yielding a contamination clean-up
game where the evader has tokens in all contaminated areas.

Every game round consists of a pursuer turn followed by an evader turn. In
the beginning of the game, the tokens are generally off-board and the first round
has special rules to place the tokens. Most commonly the placement of the tokens
is not restricted in any way, but the evader’s tokens are placed last.

In most games, including the games in Chapters 2 and 3, every pursuer token
may move to distance at most one6, passing a move is allowed. In the first turn,
the cops choose any starting positions instead of moving.

In the helicopter game characterizing tree-width, every pursuer may “fly” to
a location “above” any vertex, but will land there only after the evader’s move,
allowing the evader to react. This “announcing” of the moves before they take
place is also present in other pursuer move rules (e.g. variations on the first one
above).

In another family of games, the pursuer tokens are not placed in the first turn
and any already placed tokens may not be moved at all. Every turn, one location
is chosen by the pursuer and announced to the evader. After the next evader’s
turn, a pursuer token is placed in the location and a new location is chosen. This
one and similar rules characterize graph parameters related to tree-depth and are
the main topic of Chapter 4. Note that the number of pursuer tokens in such
games corresponds to the maximum length of the game.

The evader generally moves along a path of length at most s avoiding all
pursuer tokens. Here, s is a parameter of the game. Most commonly s = 1, which
is the case in Chapter 2. A special case s =∞ allows movement arbitrarily far,
but it is not possible to skip “over” pursuer tokens, e.g. when they hold an entire
cut. We explore these cases in Chapters 3 and 4.

In the games against “contamination” (or virus), new evader tokens are placed
in all locations in distance at most s from an old token along a path avoiding
all pursuers. Again 1 ≤ s ≤ ∞ is a parameter of the game. As noted above,
these games are related to games with a single invisible evader, but we refer the
curious reader to a paper by Dereniowski et al. [DDTY13] or to the survey by
Alspach[Als04].

There are many additional rule variations (e.g. all evaders must be captured at
once), restrictions (e.g. pursuers must avoid getting disconnected by the evaders)
and playground structures (e.g. directed graphs, hypergraph pairs and groups).
An notable condition is the restriction to “monotonic” pursuer strategies (the
pursuers may not allow the evader enter a location once occupied by a pursuer).
We leave the rest to the imagination of our kind reader and recommend a survey
by Alspach [Als04].

6Games with faster pursuers are not very common.
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1.4 Notable results
There are plenty and various results in the area of pursuit games and it is beyond
the scope of this work to attempt to give their overview. A rich family of games
with selected results and a brief history can be found in a survey Searching and
sweeping graphs: a brief survey by B. Alspach [Als04] and in a more recent survey
An annotated bibliography on guaranteed graph searching by F. V. Fomin and
D. M. Thilikos [FT08]. Other specialised surveys include Meyniel’s conjecture
on the cop number: a survey of W. Baird, A. Bonato [BB13] and Cops, robbers
and graphs by G. Hahn [Hah07] focusing e.g. on games on algebraic and infinite
graphs.

The background and results relevant to the individual chapters can be found
in the respective sections: Section 2.2 with history of traditional Cops and Robber
game, time of capture, Meyniel’s conjecture, known bounds for planar graphs and
complexity remarks. Section 3.2 on the game with various robber speed. And
Section 4.1 with games related to various graph width and depth parameters.

To give just a few examples of other games, the recent development includes
results on games with various visibility [DDTY13, IKK06], speed [CCNV11,
FGK+10] or radius of capture [BCP10].
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Chapter 2

Cops and robber games on intersec-
tion graph classes

The game of Cops and robber, introduced in 1983 by Nowakowski and Win-
kler [NW83] and independently by Quilliot in his thesis [Qui83], is one of the
oldest mathematically studied pursuit game on graphs, and in some sense the
most natural turn-based formalization of a real-world coordinated pursuit.

There are even popular board games Scotland Yard [B+83] and its Czech variant
Phantom of the old Prague[JAV87] based on the same principle of coordinated
graph pursuit1. The first time I have encountered the game was in my bachelor
thesis on maximum capture time of cop-win graphs [Gav07] and, together with
many mathematicians all over the world, I found the game very approachable, yet
elegant and interesting to work with.

The main problem – to decide the number of cops required to win on a given
graph – has seen a lot of development over the years, and while the number is
generally unbounded, many graph classes and parameters have been shown to
require only a bounded number of cops. This chapter presents an overview of
the most important of these results, focusing on geometrically represented graph
classes and our contribution to the area.

It has been asked at several occasions, recently during the Banff Workshop
on Graph Searching in October 2012, whether intersection-defined graph classes
(other than interval graphs) have bounded maximum cop numbers. The classes
in question have included circle graphs, intersection graphs of disks in the plane,
graphs of boxicity 2, and others. In this chapter, we solve the question in
affirmative in the most general way by bounding the cop number of string graphs
on bounded genus surfaces, and therefore also of the intersection graphs of any
arc-connected regions on a bounded genus surface.

Section 2.1 formally introduces the game. Section 2.3 presents an overview
map of graph classes related to our as well as older results. Section 2.2 presents
an overview of the game history and interesting results related to the game, but
outside of the scopes of other sections. Sections 2.4, 2.5, 2.6 and 2.7 then present
detailed analysis of the game on several geometrical graph classes. Section 2.8
generalises the guarding concept from Section 2.6.1 to retracts and shows an

1The board games, however, additionally include some hidden information, resources and
pre-coloured edges restricting the movement.
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application to grid graphs. Section 2.9 then invites the reader to some open
problems and presents some general remarks.

2.1 Game of Cops and robber

We start by a formal definition of the game of Cops and robber. Note that it falls
very nicely into the framework sketched in Section 1.3.1 as it has been the basis
for most developed pursuit games.

This game is played by two players, called “the cops” and “the robber”, on a
given simple undirected graph G and with a given number of cops k. The game
pieces (k cops and one robber) are always placed on the vertices of G and several
pieces may share a vertex. The complete game state is always known to both
players.

Initially the first player distributes k cops on the vertices arbitrarily, then the
robber chooses any starting vertex (depending on the cops’ positions). Then the
players alternate in turns: First every cop moves to a vertex in distance at most
one, then the robber moves to a vertex in distance at most one (passing a move is
therefore allowed).

The game ends when the robber is captured which happens whenever a cop
occupies the same vertex as the robber. The first player wins if he is able to
capture the robber, the robber wins if he is able to escape indefinitely.

Note that the game is deterministic, full-information and has a finite state
space, so according to Theorem 1, one player has a memory-less non-losing strategy.
If the cops have a non-losing strategy, they in fact have a winning strategy and,
according to Lemma 2, capture the robber in a number of moves bounded by the
state-space size.

Our main interest lies in the minimum number of cops that have a strategy to
capture the robber for a given graph and for a given graph class. Note that for
finite graphs this number is always finite (but not necessarily for infinite graphs).

Definition 7. For a graph G, its cop number cn(G) is the least number k such
that the cops have a winning strategy on G with k cops. For a class of graphs C,
the maximum cop number max-cn(C) is the maximum cop number cn(G) of a
connected graph G ∈ C, possibly +∞.

Note that the restriction to connected graphs is standard due to the following
observation. Since most of the graph classes we discuss allow an unbounded number
of components, we would need to always specify the necessary connectedness
requirement in our bounds.

Lemma 8. If G has connected components C1, . . . , Ck, then cn(G) = ∑k
i=1 cn(Ci).

Proof. This follows from the fact that the cops may never move between the
components after the initial placement. Therefore, in every component Ci there
has to be at least cn(Ci), which is sufficient.
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2.2 History and notable results
The game of Cops and robber was introduced by Nowakowski and Winkler in
their 1983 article Vertex to vertex pursuit in a graph [NW83], and independently
by Quilliot in his Master’s and PhD theses in 1978 and 1983 [Qui78, Qui83]2. We
point out the following aspects of the game.

2.2.1 One cop game
Graphs with cn(G) = 1 are also called cop-win, referring to a simple version of the
game only considering a single cop. Both Nowakowski and Winkler, and Quilliot
have characterized cop-win graphs to be exactly dismantlable graphs, defined in
the following way: A vertex u is dominated by a different vertex v if N [u] ⊆ N [v].
A graph is dismantlable if it can be reduced to a single vertex by repeated removal
of dominated vertices.

Bonato et al. [BGHK09] have shown that the maximum number of rounds
required to capture the robber in a n vertex cop-win graph is at most n − 3;
Gavenčiak [Gav07, Gav10] has shown n− 4 to be the tight bound.

2.2.2 Meyniel’s conjecture
For general connected graphs, Meyniel made the following famous conjecture in a
personal communication to Frankl [Fra87] in 1985.

Corollary 9 (Meyniel’s conjecture). For any connected n-vertex graph we have
cn(G) = O(

√
n).

In the article, Frankl shows that if the conjecture holds it would be tight, since
there are connected graphs that require Ω(

√
n) cops.

Example 10. Let G be the incidence graph3 of a finite projective plane of order
k. G then has girth4 at least 6, degree k + 1 and n = Θ(k2) vertices. Such graph
requires at least k + 1 cops to capture the robber, since in any position of k cops
the robber always has a safe adjacent vertex to escape to.

2.2.3 Planar and bounded genus graphs
Somewhat surprisingly, Aigner and Fromme [AF84] have shown that the cop
number of a connected planar graph is at most 3. We build on their result and
generalize it to string graphs in Section 2.6.

This result has been generalized to graphs of bounded genus graphs by Quil-
liot [Qui85] and Schroeder [Sch01], the former showing max-cn(GENUS-g) ≤ 3+2g,
the latter improving this to max-cn(GENUS-g) ≤ 3 + 3

2g. Again, we generalize
this result to string graphs on bounded genus surfaces in Section 2.7.

However, while for planar (genus 0) graphs the constant 3 is known to be
the best possible, already for toroidal (genus 1) graphs the exact value of the
maximum cop number (either 3 or 4) is not known.

2However, Quilliot focused on the one-cop version of the game.
3Vertices of G are the points and lines of the plane, edges connect a line to all its vertices.
4The length of a shortest cycle.
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2.2.4 Computational complexity
As mentioned in Section 1.1.2, a game with a fixed number of cops k has state
space size O(nk+1) and therefore can be decided in polynomial time. Note that
the game is memoryless: the move options do depend only on the current game
board state. The algorithms for exploring the full game space (games in extensive
form), in different contexts usually called state-marking, retrograde analysis or
backward induction, can be found in a classic book Fudenberg and Tirole: Game
Theory [FT91]. These algorithms can also compute the time required to capture
the robber and other properties of the game.

The following complexity corollary leverages this observation to some classes
and is a further motivation for our study of max-cn.

Corollary 11. The cop number of graphs from a class C with max-cn(C) ≤ k can
be computed in time nO(k), where n is the order of the graph.

However, for k part of the input, deciding whether the cop number of a graph
is at most k has been shown to be NP-hard by Fomin et al. in 2010 [FGK+10],
then PSPACE-hard by Mamino in 2013 [Mam13] and very recently (2015) even
EXPTIME-complete by Kinnersley [Kin15], confirming a conjecture of Goldstein
and Reingold from 1995 [GR95].

For more details and results in this direction, see the recent book of Bonato
and Nowakowski [BN11].

2.3 Map of classes and bounds
Figure 2.1 on the following extended page shows the map of upper and lower bounds
on the maximum cop number for several intersection-based and related graph
classes. The Hasse diagram depicts known inclusions between the classes. Bounded
boxicity of bounded genus graphs has been shown in [EJ13]. The other inclusions
are mostly well-known; for details and particular references we recommend the
Information System on Graph Classes and their Inclusions website5.

Note that only connected graphs are considered as per Lemma 8. Also, the
sources are omitted where the bound follows from the bound for a sub- or super-
class.

5http://www.graphclasses.org/
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Figure 2.1: The map of bounds on the maximum cop number of several intersection-based and related classes.





2.4 IFA, function, circle and circular arc graphs
In this section, we examine the game on several related classes of intersection
graphs: interval filament graphs, function graphs, circle graphs and circular arc
graphs, all introduced in Section 1.2 together with their representation assumptions.
The following theorem is shown in Section 2.4.2.

Theorem 12.

max-cn(IFA) = max-cn(FUN) = max-cn(CIRCLE) = max-cn(CIRCARC) = 2.

Moreover, O(n) turns are sufficient to capture the robber, where n is the order of
the graph.

For the lower bounds, we have the following easy observation.

Observation 13. Since the cycle graph C4 is both function, circle and circular
arc graph, and cn(C4) = 2, we have max-cn(FUN) ≥ 2, max-cn(CIRCLE) ≥ 2 and
max-cn(CIRCARC) ≥ 2.

For the upper bounds, we show a strategy for two cops to capture a robber in
any connected interval filament graph with a given representation ϕ, which then
directly gives strategies for all the subclasses.

2.4.1 Filaments and regions
It is important that each filament splits the half-plane into two regions: the
unbounded top region and the bottom region. We say that a filament ϕ(u) is
nested in a filament ϕ(v) if ϕ(u) is contained in the bottom region of ϕ(v). We say
that the robber is/stays in a region if he is/stays on a filament entirely contained
in this region. The robber is confined by ϕ(u) if a cop takes ϕ(u) and the robber
is in the bottom region of ϕ(u).

Lemma 14. Suppose that the robber is confined by ϕ(u). Then he stays in the
bottom region of ϕ(u) as long as there is a cop on ϕ(u).

Proof. This is obvious since to move from one region to another, the robber has
to use a filament ϕ(v) which crosses ϕ(u). But then v is a neighbor of u, and the
cop captures the robber in the next turn.

A filament ϕ(u) is called top in x if it maximizes the value ϕ(v)(x) over all
filaments ϕ(v) defined for x. Suppose that ` is the left-most and r is the right-most
endpoint of the representation. We have a sequence of top filaments {ϕ(ti)}k

i=1 as
we traverse from ` to r. We note that one filament can appear several times in
this sequence. See Figure 2.2 for an example.

Let ϕ(ti) be top in x. Each filament ϕ(ti) together with the upward ray starting
at
(
x, ϕ(ti)(x)

)
separates the half-plane into three regions: the left region, the

bottom region and the right region. The key property is that there is no filament
intersecting the left and right regions and avoiding ϕ(ti). Also note that the
division of filaments into the regions is the same for all x in the same top part of
ϕ(ti).
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ϕ(t1)

ϕ(t2)ϕ(t3)

ϕ(t4)

ϕ(t5) ϕ(t6)

ϕ(t7)

Figure 2.2: An example of a sequence of top filaments. Only the top part of each
ϕ(ti) is depicted in bold. Note that t2 = t4 and t3 = t5 = t7.

Lemma 15. Suppose that a cop stands on ϕ(ti) and the robber is in the right
region of ϕ(ti). If the cop moves to the neighboring ϕ(tj) with the highest index j,
the robber cannot move to the left region of ϕ(tj).

Proof. Let ϕ(ti) be on [a, b] and ϕ(tj) on [c, d] and we have c < b. Suppose that
the cop moves from ϕ(ti) to ϕ(tj) and the robber stands on a filament ϕ(u) defined
on [e, f ]. We know that c < b < e < f , so ϕ(u) does not intersect the left region
of ϕ(tj). And since ϕ(tj) is top, there is no path going to the left region which
avoids ϕ(tj). So the robber cannot move there.

2.4.2 Two cops’ strategy
We show the strategy for two cops on IFA graphs, completing the proof of
Theorem 12.

Proof of Theorem 12. We call one cop the guard, and the other one the hunter.
The strategy proceeds in phases. Every phase starts with both cops on a filament
ϕ(u) such that the robber is confined by it. The guard stays on ϕ(u) till the
robber is either captured or confined by the hunter in some filament ϕ(v) nested
in ϕ(u); so according Lemma 14 the robber can only move in the bottom region of
ϕ(u). If the confinement happens, the guard moves to the filament ϕ(v) taken by
the hunter, ending the phase. In the next phase the hunter proceeds with capture
the robber inside the bottom region of ϕ(v).

For the initial phase, we imagine that the guard takes some imaginary filament
above all filaments of ϕ so the robber is confined to its bottom region, i.e., to the
entire graph G. We can choose both cops to start the first phase at a filament
ϕ(v) with left-most left endpoint and therefore top in G.

Suppose that we are in some phase where the guard is placed on ϕ(u). Let Gu

be the subgraph of G induced by the vertices whose filaments are nested in ϕ(u),
and let Cu be the connected component of Gu containing the vertex occupied
by the robber. Since the guard stays at ϕ(u) till the robber is confined in some
nested ϕ(v), the strategy ensures that the robber must remain in Cu throughout
the phase, because any vertex in the open neighborhood of Cu is adjacent to the
vertex u guarded by the cop.

Let {ϕ(ti)}k
i=1 be the sequence of top intervals in the restriction of ϕ to the

vertices of Cu. The hunter first goes to ϕ(t1). When he arrives to ϕ(t1), the robber
cannot be in the left region of ϕ(t1) since there is no filament of Cu contained there.
Now suppose that the hunter is in ϕ(ti) and assume the induction hypothesis that
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the robber is not in the left region of ϕ(ti). If the robber is confined in ϕ(ti), the
phase ends with the guard moving towards ϕ(ti). If the robber is in the right
region of ϕ(ti), the hunter moves to the neighbor ϕ(tj) with highest index j. By
Lemma 15 the robber cannot move to the left region of ϕ(tj) so he is either in the
bottom or the right region. The robber cannot stay in the right regions forever
since ϕ(tk) has no filament of Cu contained in the right region, so eventually the
robber is confined in ϕ(ti) or captured directly.

Since there are only finitely many filaments nested in each other, the strategy
proceeds in finitely many phases and the robber is eventually captured.

With a small modification we can prove that this strategy captures the robber
in O(n) turns. Suppose that initially both cops are placed in the filament with
the left-most endpoint ` and there are p phases. Let Ci be the graph the robber
is confined to by the guard on ui in phase i, so Ci = G and let Cp+1 = ∅. Let
Di = Ci \ Ci+1 and note that Di contains all top filaments of Ci.

During the i-th phase the hunter moves to any top filament of Ci in at most 2
moves (note that there must be a filament in G which simultaneously intersects
ϕ(ui) and a top filament of Ci), then to the left-most top filament of Ci in at
most |Di| moves using a shortest path in Di, then takes at most |Di| steps over
the top filaments of Ci. Finally, when the hunter confines the robber in Ci+1, it
takes the guard at most |Di|+ 2 steps to get to ui+1 by a similar argument. Since∑ |Di| = n and the number of phases is also bounded by n we have used O(n)
turns.

The strategy applies to function, circle and circular arc graphs since they are
subclasses of IFA graphs. Similarly, the lower bound from Observation 13 above
extends to IFA graphs as a superclass.

2.5 Outer string graphs
In this section, we show almost tight bound on the maximum cop number of
outer-string graphs, introduced in Section 1.2. Namely, we show the following.

Theorem 16.
3 ≤ max-cn(OUTER-STRING) ≤ 4.

We first establish some analogues to the method and terminology used in
Section 2.4. The intuition behind the analogues is that all IFA graphs are also
string graphs in the upper half-plane with both endpoints fixed to the x-axis6,
while outer-string graphs have just one endpoint fixed to the line.

2.5.1 String pairs and Regions
For a given outer-string representation of G, let v1, . . . , vn be the ordering of the
vertices of G by the x-coordinates of the (unique) intersection of ϕ(vi) with the
x-axis. We say that vi is left of vj if i < j and similarly for right.

Every pair of intersecting outer-strings (vi, vj) divides the half-plane into at
least two regions: the unbounded top region, the bottom region incident with an

6Note that filaments have an additional condition on x-monotonicity.
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interval of the x-axis, and possibly other middle regions. The middle regions do
not play any role in our proof, since no string is entirely contained in them and
every string intersecting a middle region intersects ϕ(vi) or ϕ(vj). The strings
entirely contained in the bottom region are surrounded by ϕ(vi) and ϕ(vj), a
robber on a vertex surrounded by ϕ(vi) and ϕ(vj), each occupied by a cop, is
confined by ϕ(vi) and ϕ(vj).

The following is a straightforward analogue of Lemma 14.

Lemma 17. Suppose that the robber is confined by ϕ(vi) and ϕ(vj). Then he
stays in the bottom region of (vi, vj) as long as there are cops on vi and vj.

2.5.2 Four cop strategy
We show Theorem 16 by describing a strategy for 2 pairs of cops and an example
of a graph requiring 3 cops.

Figure 2.3: The 3-by-5 toroidal grid (left) and its outer-string representation
(right).

Theorem 16. Figure 2.3 shows a connected outer string graph requiring three cops,
as the robber can safely escape capture in any situation with two cops. Since the
graph is vertex transitive, we only need to check the situations with the robber in
a fixed vertex and at least one cop adjacent to the robber. However, in all cases
there is at least one safe vertex adjacent to the robber.

The cops’ strategy has a similar basic structure as the two-cop strategy for
interval filament graphs described in Section 2.4. Among the four cops, there
are two guards and two hunters. The strategy is divided into phases. During
each phase, the two guards stand on a pair of intersecting strings ϕ(vi) and ϕ(vj)
confining the robber.

In the beginning of the game, the two guards take an arbitrary pair x and
y of adjacent vertices, and the two hunters take an arbitrary vertex. Then the
robber takes a vertex r of his choosing, which we may assume is not in the closed
neighborhood of x and y. We then fix an outer-string representation ϕ of G in
which the string ϕ(r) is surrounded by ϕ(x) and ϕ(y); it is not hard to see that
such a representation exists.

In each phase, let (vi, vj) be the pair of adjacent vertices occupied by the
guards. Let Gi,j be the subgraph induced by the strings entirely contained in the
bottom region. When the guards occupy a pair (vk, vl), vk, vl ∈ Gi,j, of adjacent
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vertices confining the robber, they switch roles with the guards and the game
continues with the next phase with strictly smaller graph Gk,l.

Let C be the connected component of Gi,j containing the vertex taken by the
robber at the beginning of the phase. We may assume that the robber only moves
on the vertices of C, otherwise he will be caught by one of the guards.

The strings of ϕ(C) partition the upper half-plane into several regions, of
which exactly one is unbounded. We say that a vertex w of C is external, if the
string ϕ(w) has at least one point on the boundary of the unbounded region.
Let X be the subgraph of C induced by the external vertices. Note that X is
connected.

ϕ(vi)

C ⊆ Gij

ϕ(vj)
p0 p1 pk. . .

Figure 2.4: Illustration of the situation in one phase. Pair of strings ϕ(vi) and
ϕ(vj) confines the robber. The bold strings are external in C, the dotted strings
are not part of Gij and are not safe for the robber.

Since the vertices of Gi,j that are left and right of an external vertex va fall
into different components of Gi,j −N [va], we get:

Observation 18. When the robber at vr is confined by (vi, vj) and a cop occupies
an external vertex va of Gi,j left of vr, the robber can not safely move to a vb left
of va.

Let P = p0, p1, . . . , pk be a path in X from the leftmost vertex p0 of C to the
rightmost vertex pk of C. Note that p0, pk ∈ X. See Figure 2.4 for an illustration.
Note that P need not be monotone with respect to the left-to-right ordering of
strings.

The strategy of the hunters is to first occupy the two vertices p0 and p1. Then,
throughout this phase the hunters will always occupy a pair of vertices pi and pi+1
for some i, with the robber occupying a vertex that is to the right of pi.

In the cops’ turn with the hunters at pi, pi+1, either the robber is confined by
the hunters and a next phase may begin, or he is right of pi+1. In the second case
the cops move with a single step to occupy pi+1, pi+2, let the robber move and
repeat this step. Since the path P contains the rightmost vertex of C, the robber
must at some point end up at a vertex between the two hunters, beginning a new
phase.

In fact, by an analogous argument as in the proof of Theorem 12, we may
show that the strategy requires at most a linear number of moves.
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2.6 String graphs
In this section, we show that the maximum cop number of string graphs is at most
15. Our strategy is inspired by the strategy for 3 cops in planar graphs [AF84].
The key difference is that we use Lemma 22 instead of Lemma 20 allowing us to
guard curves within the string graph from being crossed, requiring 5 cops for each
shortest path of the string-graph.

Theorem 19.
3 ≤ max-cn(STRING) ≤ 15.

2.6.1 Guarding shortest paths
We say that a group of cops guards a subgraph G′ ⊆ G when these cops can play
indefinitely such that whenever the robber would enter G′, he would be captured
in the next turn. Note that the cops in general have to react to robber’s movement.
Also, it may not be trivial for the cops to start guarding G′, that is reach the
appropriate positions.

We recall a lemma by Aigner and Fromme [AF84] for guarding a shortest path
in a graph:

Lemma 20 (Lemma 4 in [AF84]). Let G be a graph, and P = {p0, p1, . . . , pk}
be a shortest path. Then a single cop can, after a finite number of initial moves,
guard P .

This result turned out to be particularly useful for planar graphs where one
can cut the graph by protecting several shortest paths. For intersection graphs
forbidding the robber to visit vertices of P is not sufficient to prevent him from
moving from one side of the part to the other. We need a stronger tool to
geometrically restrict the robber. We get this by showing that in general graphs
we can protect the closed neighbourhood of a given shortest path using five
cops, preventing the robber from safely stepping on any string even crossing the
protected path.

We first need one additional generalization of Lemma 20 – we protect paths
which are not necessarily shortest inG, but are shortest from the point of the robber
within a region he is already confined to. Below we combine this generalization
with guarding path neighbourhood. We believe that these tools may be of some
further interest.

We say that an u− v path P is shortest relative to D ⊆ V if there is no shorter
u− v path in G using at least one vertex of D. Note that P itself may or may
not go through D.

When our strategy makes sure that any time in the future of the game,
whenever the robber leaves D ⊆ V he is captured immediately, we say that the
robber is confined to D. Note that this includes the case when the robber cannot
even get outside D without being captured. If the robber would be immediately
captured by moving to a vertex v, we say that the robber can not safely move to
v.

Note that in the following we get exactly the original statement for D = V .
Also, we could equivalently define a relative shortest path by having no shortcuts
contained in D with the same results.
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Lemma 21. Let G be a graph, u, v ∈ V and let P be a shortest u−v path relative
to D ⊆ V with the robber confined to D. Then a single cop C can, after a finite
number of initial moves, prevent the robber from safely entering P .
Proof. The proof is analogous to the proof of Aigner and Fromme [AF84]. First,
in case there is no u− v path using at least one vertex in D we have P ∩D = ∅
and there is a 1-cut between P and D due to Menger’s theorem. We let the cop
guard this cut-vertex in this case, trivially getting our result.

Otherwise, let l be the length of a shortest u − v path using a vertex in D.
We prescribe a position for the cop on P for every robber’s position r ∈ D. Let
P = (u = p0, p1, p2, . . . pk = v). We let the cop stand on pa where a = dist(r, u).
In case this would make the cop move off the ends of path P (e.g. to pk+1) he
should just stay at the nearest endpoint of P .

To initially get there, the cop first moves to u via any shortest path and then
moves along P until his current vertex is the prescribed one. After that moment,
a = dist(r, u) can change by at most 1 in one step and the cop can keep up with
the prescribed position.

Now in case the robber would step on pi ∈ P ∩D, we claim that dist(pi, u) = i
and the cop captures him immediately. Surely dist(pi, u) ≤ i. Having dist(pi, u) <
i would mean that there is a u − v path through pi (and therefore D) that is
strictly shorter than P , a contradiction.
Lemma 22. Let G be a graph, u, v ∈ V and let P be a shortest u−v path relative
to D ⊆ V with the robber is confined to D. Then five cops C−2, C−1, C0, C1, C2
can, after a finite number of initial moves, guard N [P ].
Proof. We assume a one cop’s strategy S preventing the robber from safely entering
P as given by Lemma 21 and describe the desired strategy for five cops. In the
rest of the proof, we assume any cop happening to be adjacent to the robber will
capture him immediately.

The cop C0 moves according to S. When C0 moves to pi, the cops Cj (for
j ∈ {−2,−1, 1, 2}) move to pi+j. This is always possible since S moves C0 to
distance at most one and on the path P . In case a cop would have to move beyond
an endpoint of P , he just stays on the endpoint. This way the cops always occupy
five consecutive vertices of the path or share an endpoint of the path.

Now assume that the robber moves to a vertex r. If r is adjacent to a vertex
q, which is in turn adjacent to pi, strategy S necessarily moves C0 to one of
pi−2 . . . pi+2, since otherwise the robber could step on P in two moves without
being immediately captured by C0, which would contradict the properties of S.
Therefore, after the cops’ move, there is at least one cop on pi, and so if the robber
moves to q, he is captured immediately.

The initial setup procedure is analogous to the one in Lemma 21 for all five
cops.

To guard N [P ] with cops only moving on P we can show that five cops are
necessary as shown in Fig. 2.5. With the robber on r, there needs to be a cop on
each of the vertices pi−2 . . . pi+2 or the robber could safely move to N [P ] in the
next turn.

In the following, when we say “start guarding a path”, we do not explicitly
mention the initial time required to position the five cops onto the path and
assume that the strategy waits for enough turns.
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Figure 2.5: a) Situation when guarding shortest curve π defined by path P : Five
cops guard consecutive strings of π, string r crossing π may not be in P , but
is contained in N [P ]. b) The necessity of five cops to guard N [P ]. With the
robber standing on r, there needs to be a cop on each of the vertices pi−2, . . . , pi+2,
otherwise the robber could safely move to N [P ].

2.6.2 Guarding shortest curves
Since our strategy for string graphs is partially geometric, we introduce the
concept of shortest curves as particular curves through the string representation
of a shortest path. Note that below we consider any curves sharing only their
endpoints to be disjoint.

Let G be a string graph together with a fixed string representation ϕ, robber
confined to D ⊆ V and P a shortest u− v relative to D. Suppose that we choose
and fix two points πu ∈ ϕ(u) and πv ∈ ϕ(v). Let πuv ⊆ ϕ(P ) be a curve from
πu to πv such that πuv ⊆

⋃
p∈P ϕ(p) and for every p ∈ P πuv has a connected

intersection with φ(p) and these correspond to the points of P in the same order.
We call πuv a shortest curve of P (relative to D) with endpoints πu and πv. A
curve π is called a shortest curve (relative to D) if it is a shortest curve of some
shortest path. We leave out D if D = V or it is clear from the context.

The shortest path in the graph corresponding to a shortest curve π is uniquely
defined by the sequence of strings that intersect π on a substring of non-zero
length. To guard a shortest curve π means to guard its corresponding shortest
path. The number of its strings is the length of π. Note that the Euclidean length
of π plays no role in this paper.

Corollary 23. Let G be a string graph together with a string representation ϕ
and let π be a shortest curve relative to D such that the robber is confined to D.
Then five cops can (after a finite number of initial moves) prevent the robber from
entering any string intersecting π.

Proof. Let P be the shortest path such that π is a shortest curve of P . By
guarding N [P ], the cops prevent the robber from entering strings intersecting π.
See Figure 2.5 for an illustration.

We also note the following easy observation.

Observation 24. Any sub-curve (continuous part) of a shortest curve (relative
to D) is also a shortest curve (relative to D).

2.6.3 Segments, faces and regions
For a given string graph G and its string representation ϕ let the faces (of ϕ) be
the open arc-connected regions of R2 \ ϕ(G), and let a closed face be the closure
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of a face. As we assume that the number of intersections of ϕ is finite, the number
of faces is also finite. Note that every face is an open set.

A segment of string π is a part of the string not containing any intersection with
another string between either two intersections, an intersection and an endpoint,
or two endpoints. Note that the number of segments is also finite. A region is a
closed subset of R2 obtained as a closure of a union of some of the faces.

Denote all vertices internal to a region B by VB = {v ∈ V | ϕ(v) ⊆ int(B)}.
We use the following topological result, following from the previous section and
Corollary 23.

Proposition 25. If there is D ⊆ V such that the cops guard disjoint shortest
curves π1 and π2 (relative to D) between points πu to πv such F is the closed face
of R2 \ (π1 ∪ π2) containing the robber’s string and D is the component of VF

containing the robber, then the robber may not safely leave D.

Additionally, below we use the following topological lemma.

Lemma 26. Given two disjoint simple πu − πv curves π1 and π2 in R2, πu 6= πv,
let F be one of the faces of R2 \ (π1 ∪ π2). For any simple πu − πv curve π3
contained in clos(F ) and going through at least one of its inner points we have
that then every face of F \ (π1 ∪ π2 ∪ π3) is bounded by some simple and internally
disjoint curves π′i and π′3 with π′i ⊆ πi, i ∈ {1, 2} and π′3 ⊆ π3.

Proof. For our illustrations we assume that without loss of generality, F is the
inner face of π1 ∪ π2, potentially using circular inversion to attain that. Let R be
any (open) face of F \ (π1 ∪ π2 ∪ π3) and B = clos(R) \ R be its boundary. We
have that R is arc-connected from definition and so B is a simple closed Jordan
curve.

πu
R

πv

π1

π2

π′ π3

π3

b1

b2

b3 πu R πv

π1

π2

π3

π3

cu
cv

c′π′
1 π′

1

Figure 2.6: Left: Illustration of the situation in proof of Lemma 26, showing
that there can not be both b1 and b2 as in the proof. Right: Illustration how a
disconnected π′1 (bold line) would imply π3 crossing R.

We first establish that B ⊆ (πi ∪ π3) for some i ∈ {1, 2}. Observe that B ⊆ πj

for j ∈ {1, 2, 3} would imply that πj is not a simple curve. Moreover, there is a
point b3 ∈ B ∩ π3 with b3 /∈ (π1 ∪ π2) as otherwise we would have R bound by just
π1 ∪ π2 and we would have R ∪B = F , a contradiction with π3 ∩ int(F ) 6= ∅.

Now it can not be the case that there are points b1 ∈ B∩π1 with b1 /∈ (π2∪π3)
and b2 ∈ B ∩ π2 with b2 /∈ (π1 ∪ π3). If that was the case, there would be a
b1− b2 curve π′ ⊆ (R∪{b1, b2}) separating πu from πv in F and not intersecting π3
(including the endpoints), contradicting π3 being a πu − πv curve through F . See
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Figure 2.6 for an illustration. However, we necessarily have one such bi, i ∈ {1, 2}.
Without loss of generality assume that we have such b1, there is no such b2 and
therefore B ⊆ π1 ∪ π3.

Let π′1 = clos((B ∩π1) \π3). Let cu be the first point of π′1 going along π1 from
πu to πv and cv last such point. If π′1 was not connected, let c′ be an endpoint
of one segment of π′1 different from cu, cv. We would necessarily have c′ ∈ π3
since B (as a curve) can be composed from sub-curves of π1 and π3. However,
is topologically impossible for π3 to enter c′ without going through R, R2 \ F
or π′1, as illustrated in Figure 2.6. Therefore π′1 is connected and we can take
π′3 = clos(B \ π′1), getting a connected curve π′3 ⊆ π3.

2.6.4 Restricted graphs and strategies
Given a closed region B ⊆ R2, let G restricted to B, denoted G �B, be the
intersection graph of the curves of ϕ ∩ B. This operation may remove vertices
(for entire strings outside B), remove edges (crossings outside B) and it also splits
each vertex v whose string ϕ(v) leaves and then re-enters B at least once. In the
last case, every arc-connected part of ϕ(v) ∩B spans a new vertex vi. The new
vertices are also called the splits of v. The new graph is again a string graph with
representation denoted ϕ�B obtained from ϕ as above. Note that this operation
preserves the faces and strings in int(B) and all representation properties assumed
above, namely the vertex set of G�B is finite. Also, the number of segments does
not increase.

Lemma 27. Let B be a region. If π is a shortest curve (optionally relative to D
with the robber confined to D) and π′ ⊆ π is a sub-curve with π′ ⊆ B, then π′ is a
shortest curve (relative to D) in G�B and ϕ�B.

Proof. This follows from Observation 24 and the fact that underlying path of π′
is preserved (and if any p ∈ P ′ got split into {pi} we use the pi intersecting π′)
and no path (e.g. through D) can get shortened by a restriction.

We now show that a strategy for a restricted graph may be used in the original
graph.

Lemma 28. Let B be a region. If there is a cop’s strategy S ′ eventually capturing
a robber in G �B confining him to VB then there is a strategy S for the same
number of cops capturing the robber on G confining him to VB.

Proof. The strategy S plays out as S ′ except when S ′ would move a cop to a split
vi ∈ VG�B of v ∈ VG, S moves the cop to v. Note that all such moves are possible.
Robber’s choices while internal to B are not extended in any way.

Assume the robber moves from internal u to non-internal v, which is split to
v1, . . . vk in G�B. Note that at least one of vv1, . . . vk, say vi, is adjacent to u in
G�B, as ϕ(u) has to intersect ϕ(v) in int(B). Let S play as S ′ would if the robber
moved to vi, capturing him with this move as assumed in the statement.

2.6.5 Proof of Theorem 19
We are ready to prove that the maximum cop number of string graphs is at most
15.
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Theorem 19. Our strategy proceeds in phases, monotonously shrinking the con-
finement area of the robber. In the beginning of each phase, the robber is confined
to D ⊆ V either (A) by a single cop guarding a cut-vertex separating D from the
rest of the graph, or (B) by 10 cops guarding two shortest curves forming a simple
(non-self-intersecting) cycle surrounding D. In each phase we either decrease the
number of the segments of ϕ, or keep the number of segments and decrease |D|.

Let B be the union of the currently guarded paths by Lemma 23. Let D
be the component of G \ N [B] containing the vertex with the robber and let
Q = N [B] ∩N [D]. Since our strategy confines the robber to D for the rest of the
game we can assume that V = D ∪Q ∪B. Let s be the number of segments of ϕ.

Claim 29. Let V = D ∪ Q ∪ B, the robber stands on r ∈ D, and one of the
following holds:

(A) 1 cop guards a vertex c ∈ B, |B| = 1.

(B) 10 cops guard two shortest curves π1 and π2 relative to D between points a to
b such that π1 ∪ π2 forms a simple cycle, |B| ≥ 2 and additionally G = G|F
where F is the closed face of R2 \ (π1 ∪ π2) containing ϕ(r).

Then 15 cops have a strategy to capture the robber.

Proof of Claim 29. We prove this claim by induction on s and then on |D|, the
claim obviously holds for either s ≤ 1 or |D| = 0. The strategy proceeds differently
according to which of the assumptions (A) and (B) is satisfied.

Case (A). If Q = {q}, then move the cop guarding c to start guarding q. Let
G′ = G\{c} while also leaving out any irrelevant vertices to have V ′ = D′∪Q′∪{q}
as above. The rest follows from the induction hypothesis, with the assumption
(A), applied to G′ with both smaller s′ and D′ ( D.

If Q = {q1, . . . , qk} for k ≥ 2, let G′ = G \ {c} and let πqi
be any point of

ϕ(c) ∩ ϕ(qi). Now let π1 be a shortest curve between some πqi
and πqj

. We let
π2 ⊆ ϕ(c) be the part of ϕ(c) between πqi

and πqj
.

However, π1 ∪ π2 may not be a simple cycle. Let πu = πqi
and let πv to be

the first point of π1 ∪ π2 along π2 going from πu. Note that if there is no other
intersection then πv = πqj

. Now let π′1 and π′2 be the parts of π1 and π2 between
πu and πv, forming a simple cycle.

Let G′′ = G|F where F is the closed face of R2 \ (π1 ∪ π2) containing ϕ(r).
Remove any irrelevant vertices from G′′ to have V ′′ = D′′ ∪ Q′′ ∪ B′′ as above
and use claim case (B) for smaller D′′ ( D (as P1 has a neighbour in D) and not
increased |s′′|. Note that B′′ uses at least one vertex other than c.

Case (B). If there is no πu − πv path through a vertex of D then, according
to Menger theorem, there must be a cut-vertex c ∈ B ∪Q separating D from B.
Let one cop guard c and then stop guarding B. Let G′ = G \ (B − c) while also
leaving out irrelevant vertices to have V ′ = D′ ∪Q′ ∪ {c} as above. We then use
claim case (A) for G′ with smaller s′ and D′ ⊆ D.

If there is a πu − πv path through a vertex of D, let π3 be shortest such curve.
Note that it is a shortest curve relative to D. Let five cops start guarding π3
and then let F be the closed face of R2 \ (π1 ∪ π2 ∪ π3) containing the robber
string. According to Lemma 26 we have that F is delimited by disjoint π′i and
π′j where i = 3 or j = 3 and π′i ∪ π′j form a simple cycle. We let the cops stop
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guarding πk where k /∈ {i, j} and restrict the guarding of πi and πj to π′i and π′j
as in Proposition 24. |B| ≥ 2 as one vertex string can not form a closed loop.

Let G′ = G|F while also removing any irrelevant vertices from G′ to have
V ′ = D′ ∪Q′ ∪B′ as above. We then use claim case (B) for G′ with non-increased
number of segments (s′ ≤ s) and D′ ( D. By Lemma 28, the strategy on G′ from
the induction hypothesis implies a strategy on G.

The theorem follows by guarding an arbitrary vertex c with one cop, so B = {c}.
We leave out the irrelevant vertices, so V ′ = D ∪Q ∪B. We use Claim 29 with
the assumption (A) for G′ = G|V ′ .

2.7 Strings on surfaces
In this section, we generalize the results of the previous section to graphs having
a string representation on a bounded genus surface, and we show the following
theorem.

Theorem 30. Let G be a connected graph with a string representation ϕ on a
surface S of genus g. Then 15 + 10g cops have a strategy to capture the robber
on G.

In Lemma 36 below, we also show that there are graphs of genus g requiring
Ω(g 1

3 ) cops to capture the robber. See Section 2.7.3 for both proofs.
We assume familiarity with basic topological concepts related to curves on

surfaces, such as genus, non-contractible closed curves, the fundamental group
of surfaces and graph embedding properties. A suitable treatment of these
notions can be found, e.g., in Prasolov’s book [Pra] and the book by Mohar and
Thomassen [MT01].

2.7.1 Topological preliminaries
We recall several definitions and topological tools.

A walk in a graph G is a sequence of vertices W = w0, w1, . . . wk with wi and
wi+1 adjacent; repetitions of vertices and edges are allowed. A closed walk is a
walk with w0 = wk. Let |W | = k denote the length of the walk (both open and
closed), i.e., the number of steps between vertices along the walk.

Given two walks W = w0, w1, . . . , wk and W ′ = w′0, w
′
1, . . . , w

′
` with wk = w′0,

we let W +W ′ denote their concatenation w0, w1, . . . , wk, w
′
1, w

′
2, . . . , w

′
`. Let −W

be W with reversed vertex order and let W1 −W2 = W1 + (−W2).
A curve π is a continuous function from the interval [0, 1] to the surface and

carries its direction information. The concatenation of curves π1 + π2 is defined
naturally whenever π1(1) = π2(0), that is the curves connect. Similarly to walks
above, −π is the reversed curve and π1 − π2 = π1 + (−π2).

We use the following topological lemma, which directly follows from the
properties of the fundamental group. We omit the topological group theory
introduction as well as its proof and refer the interested reader to Prasolov’s
book [Pra] on the subject.
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Lemma 31. Let π1, π2 and π3 be three curves on a surface S, all sharing the
same endpoints x and y and oriented from x to y. If the closed curve π1 − π2 is
non-contractible, then at least one of π1 − π3 and π2 − π3 is non-contractible as
well.

Let G be a graph with a string representation ϕ on a surface S. We represent
the combinatorial structure of ϕ by an auxiliary multigraph A(G) embedded on
S and defined as follows: the vertices of A(G) are the endpoints of the strings
of ϕ and the intersection points of pairs of strings of ϕ, and the edges of A(G)
correspond to segments of strings of ϕ connecting pairs of vertices appearing
consecutively on a string of ϕ. By representing ϕ by its auxiliary multigraph
A(G), we will be able to apply the well-developed theory of graph embeddings on
surfaces.

We introduce a relation between a walk in G and a curve on S, allowing us
to easily transition between the two, leading to an easy proof of the following
lemmas and Theorem 30.

We say that a (closed) walk W = w0, w1, . . . wk in G imitates a (closed) curve
π ⊆ ϕ[G] on the surface S if π can be partitioned into a sequence of consecutive
segments π0, π1, . . . , πk of positive length such that π = ∑k

i=0 πi and πi ⊆ ϕ(wi)
for each i = 0, . . . , k. A closed walk W imitates a non-contractible curve if there
is a non-contractible curve π ⊆ ϕ[G] imitated by W .

Lemma 32. Let ϕ be a string representation of a connected graph G on a surface
S of genus g > 0 and let W be a closed walk in G imitating a non-contractible
curve. Then every connected component of the graph G′ = G−N [W ] has a string
representation on a surface of genus at most g − 1.

Proof. Consider the auxiliary multigraph A(G) corresponding to the string repre-
sentation ϕ. If A(G) also has an embedding on a surface S′ of genus g − 1, then
G has a string representation on S′, and we are done. Suppose then, that this is
not the case, i.e., A(G) is a graph of genus g, and therefore its embedding on S is
a 2-cell embedding, that is every face of S− ϕ is homeomorphic to a disk.

Let π be the noncontractible curve imitated by W . The curve π traces a closed
walk W ′ in A(G). Since π is noncontractible, W ′ contains a noncontractible simple
cycle C of A(G). Define the multigraph A′ = A(G) − C. By standard results
on 2-cell embeddings (see [MT01, Chapter 4.2]), the genus of every connected
component of A′ is strictly smaller than the genus of A(G).

Consider now the string representation ϕ[G′] of the graph G′ = G−N [W ]. Its
auxiliary multigraph A(G′) is a subgraph of A′, and hence each of its connected
components has an embedding on a surface of genus g − 1. This embedding
corresponds to a string representation of a connected component of G′ on a surface
of genus g − 1.

Lemma 33. If a graph G has no string representation in the plane, then for
every string representation ϕ of G on a surface S there is a closed walk W in G
imitating a non-contractible curve.

Proof. Let A(G) be the auxiliary multigraph corresponding to the string rep-
resentation ϕ. Since A(G) is not planar, the embedding of A(G) contains a
noncontractible cycle (see [MT01, Chapter 4.2]), which corresponds to a noncon-
tractible curve on S. This curve is imitated by a closed walk W of G.
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Lemma 34. Let ϕ be a string representation of G on a surface S, let u, v ∈ V be
two vertices, and let W1, W2, W3 be three u-v-walks of G. If W1 −W2 imitates a
non-contractible closed curve, then at least one of W1−W3 and W2−W3 imitates
a non-contractible closed curve.

Proof. Let π12 be a non-contractible closed curve imitated by W1 −W2. Looking
at the consecutive segments of π12 corresponding to vertices of W1−W2 (from the
imitation), we have that π12 = π1 − π2 with π1 imitated by W1 and π2 imitated
by W2. Let x ∈ ϕ(u) be the first point of π1 and y ∈ ϕ(v) be the last point of π1.

Now let π3 be any x-y curve imitated by W3 and observe that π1 − π3 is
imitated by W1−W3 and π2− π3 is imitated by W2−W3. By Lemma 31, at least
one of π1 − π3 and π2 − π3 is non-contractible and the lemma follows.

u1 u2

v2v1
W1 W2

W3 W ′
3

W

Figure 2.7: An illustration of the situation in the proof of Lemma 35.

2.7.2 Guarding non-contractible closed walks
The following lemma is the main tool to generalise our results to higher-genus
graphs.

Lemma 35. On a graph G with a string representation ϕ on a surface S and a
shortest closed walk W imitating a non-contractible curve, 10 cops have a strategy
to guard N [W ] after a finite number of initial moves.

Proof. First, if |W | ≤ 10, the cops may occupy every vertex of W for the rest
of the game and we are done. Otherwise we divide W into two almost-equally
long walks W1, W2 and two edges u1u2, v1v2 with |W1| ≥ |W2| ≥ |W1| − 1, such
that W = W1 + v1v2 −W2 − u1u2. See Figure 2.7 for an illustration. Note that
|W | = |W1|+ |W2|+ 2

We claim that both W1 and W2 are shortest paths in G. If W1 is not a shortest
u1-v1-path, let W3 be an u1-v1-walk with |W3| < |W1|. Then both closed walks
W1 −W3 and W3 + v1v2 −W2 − u1u2 would be shorter than W :

|W1 −W3| = |W1|+ |W3| < 2|W1| ≤ |W1|+ |W2|+ 1 < |W |,

|W3 + v1v2 −W2 − u1u2| = |W2|+ |W3|+ 2 < |W1|+ |W2|+ 2 = |W |

and at least one of these two must be non-contractible by Lemma 34, a contra-
diction with the choice of W . Similarly, a u2-v2-walk W ′

3 with |W ′
3| < |W2| would

give us that both W1 −W ′
3 and W2 −W ′

3 are shorter that W and at least one is
non-contractible, a contradiction.
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Therefore we may use Lemma 21 (with D = V ) to guard N [W1] with 5 cops
and guard N [W2] with the other 5 cops after a finite number of initial moves,
guarding both curves imitated by W1 and W2 as in Lemma 23.

W
N(W )

G−N [W ]

Figure 2.8: An illustration of cutting a surface handle after guarding N [W ]
(dotted), where W is the closed path imitating a non-contractible curve (bold
line) as in Lemma 35. Note that the non-contractible curve going once around a
handle is just one of the possibilities, however the proof does not depend on the
particular case.

2.7.3 The game on higher genus surfaces
Now we are ready to show that 15 + 10g cops win the game on genus g string
graph, but first we show an easy lower bound on the number of cops required for
both string graphs on genus g surface and graphs of genus g.

Lemma 36. For every g > 0 there is a graph of genus at most g and cop number
at least 1

2g
1
3 .

Proof. Consider Gg to be the incidence graph of a projective plane of order
k = d1

2g
1
3 e. It has at most than 2k3 edges, so the genus is at most 2k3 ≤ g. Its

girth is 6 and its degrees are k + 1 which implies that the cop number is at least
k + 1: Let r be the robber’s vertex; every of the k cops is adjacent to or present
at most one vertex of N(r), and the robber can move away from the cops in every
turn. Therefore, cn(Gg) ≥ k + 1 ≥ 1

2g
1
3 .

Theorem 30. We proceed by induction on the genus g, where the case g = 0 is
proved in Theorem 19. Suppose that g > 0, and fix a string representation of
G on a surface of genus g. Let W be a shortest closed walk in G imitating a
non-contractible curve. See Fig. 2.8 for an illustration.

By Lemma 35, 10 cops may, after a finite amount of moves, prevent the robber
from entering N [W ]. The first part of the cops’ strategy is to designate a group
of 10 cops that will spend the entire game guarding N [W ]. Thus, after a finite
number of moves the robber will remain confined to a single connected component
K of the graph G′ = G−N [W ].

By Lemma 32, the graph K has a string representation on a surface of genus
at most g − 1, and by induction, 15 + 10(g − 1) cops have a strategy to capture
the robber on K. Thus, 15 + 10g cops will capture the robber on G.
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2.8 Guarding retracts and grids
In this section we show a generalisation of Lemma 20 and show one of its applica-
tions to d-dimensional grid graphs. This material is not directly used in the later
sections but gives a broader view and a strong tool. The following lemma is likely
to have implicitly appeared earlier in some form, but we were not able to find it
in this or similar form.

Lemma 37. Let H be a retract of G. Then cn(H) cops can, after a finite number
of turns, position one of them such that this cop can guard H from the robber
indefinitely. After the positioning, the other cn(H) − 1 cops are free for other
tasks.

Proof. Let f : G→ H be the retraction map. The cn(H) cops play on H as if a
robber on r ∈ V (G) would be on f(r). Note that f(r) moves with speed at most
1 so the strategy will “capture” the projection f(r) of the robber in finitely many
turns. The cop on f(r) in that moment then can intercept the robber – that is
be on f(r′) where r′ is the robber’s position. Therefore, if the robber steps on
v ∈ V (H), retract condition ensures f(v) = v and the robber would be captured
immediately. Note that the remaining cn(H) − 1 cops are not required for the
interception.

Now Lemma 20 is an easy corollary, since any shortest path is a retract and
paths have cop number 1. For a retract map to a shortest path p0, p1, . . . pk we
may take f(v) = pmin{dist(p0,v),k}.

Note that unfortunately, it is not straightforward to extend this to neighbour-
hoods of general retracts as we do in Section 2.6.2 below by keeping “deputy
cops” in the second neighbourhood of f(r′): even if the retract itself has bounded
degree (and therefore the number of deputies required for the retract vertices in
distance ≤ 2 of f(r′) is bounded) it is not always possible to move the deputy
cops together with the cop following f(r′) in the required way. See Section 2.6.2
for more details.

2.8.1 Guarding d-dimensional Grids
As an application of the above, and an indication that some d-dimensionally
represented graphs might have a bounded cop number even for d ≥ 3, we bound
the cop number of finite d-dimensional grids.

A d-dimensional grid of dimensions (n1, n2, . . . nd) has the integral points of
a n1 × · · · × nd cube as the vertex set, that is V = {(x1, x2, . . . xd) | ∀1 ≤ i ≤ d :
1 ≤ xi ≤ di}, and edges between every two points in distance 1.

Lemma 38. A finite d-dimensional grid graph has cop number at most d.

Proof. We show this by induction on d. A 1-dimensional gird graph is a path
with cop number 1. If G is a finite d-dimensional grid graph, let Hi be subgraph
on the the vertices with xd = i, that is a d− 1-dimensional grid graph. Note that
every Hi is a retract of G and using Lemma 37, d− 1 cops can position one of
them to guard Hi.
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The cops’ strategy starts by guarding H0 as above, and then in turn starts
guarding H1, H2 . . . Hnd

. Whenever some cop successfully starts guarding Hi, the
cop guarding Hi−1 up to that point is free to join the d−2 others to start guarding
Hi+1, therefore only d cops are needed at any point. Since at least one of Hi is
guarded at every point, the robber may not safely enter a vertex with xd ≤ i, and
is eventually captured.

2.9 Remarks and open problems
There are several open problems concerning the game and maximum cop number
of several classes. While all intersection graphs of arc-connected planar (and
bounded genus) regions have bounded cop number, the bounds of the individual
classes are not very tight. Especially better examples of lower bounds on cop
number are scarce. One long-standing well-known problem is the maximum cop
number of toroidal graphs, known to be 3 or 4.

It still remains to decide whether other intersection classes have bounded
cop number, such as bounded boxicity graphs: Boxicity k graphs (denoted
BOXICITY-k) are the intersection graphs of axis-aligned boxes in Rk. There
are interesting connections to some well-known classes: Interval graphs are exactly
boxicity-1 graphs, every outer-string graph has boxicity at most 2 [Sch84], and
every planar graph has boxicity at most 3 [Tho86]. The maximum cop number of
boxicity-2 graphs is bounded by the string graphs bound, but the maximum cop
number of boxicity-3 is widely open.

Let us remark that one can use our results as a tool or a polynomial time
heuristic to prove that a given graph is not a string graph (resp. an outer-string
graph, resp. an interval filament graph), by showing that the graph’s cop number
is more than 15 (resp. 4, resp. 2), which can be done in polynomial time.

For instance, this shows that a graph of girth 5 and minimum degree 16 is
not a string graph, since such a graph would have cop number at least 16: in any
position of 15 cops with the robber on v, at least one neighbor of v is not adjacent
to a cop.
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Chapter 3

Cops, fast robber and defensive dom-
ination on interval graphs

In this chapter, we examine cop and robber games with different player speeds,
focusing in particular on games on interval graphs. As a tool and an independently
interesting problem, we introduce and study A-defensive domination in Section 3.3
together with the definitions, history and our results.

The results and techniques of the previous chapter and the cop and robber
game in general often depend on the fact that the cops and the robber have
exactly the same speed. While making the robber slower usually allows one cop
to capture him, a faster robber is a different challenge (as well as closer to any
security settings). As we shall see, a game with a robber with infinite speed
behaves like a game where the robber’s position does not matter and the robber
merely chooses components of the graph split by the cops.

The various games with fast robber seem to have more connections to es-
tablished game parameters, such as tree-width and tree-depth, as outlined in
Section 1.4. The main problem is still to decide the number of cops required
to win on a given graph and, optionally, to find a winning strategy. Frequently,
and perhaps due to those connections, the games are generally computationally
difficult and mostly tractable only on special graph classes.

While studying the game on interval graphs, one sub-problem pops up repeat-
edly and we present it as a separate concept of A-defensive domination with its
own history, motivation and solution on interval graphs.

Section 3.1 formally introduces the game and our results. Section 3.2 presents
an overview of history and some interesting results related to the game. Section 3.3
introduces and solves the problem of A-defensive domination on interval graphs.
Section 3.4 introduces and analyses an auxiliary barrier game and finishes the
proof of the main result of this chapter. Section 3.5 presents some general remarks
and open problems.

3.1 Cops and fast robber game
The cops and s-fast robber game is closely related to the cops and robber game
introduced in Section 2.1 and falls nicely within the games outlined in Section 1.3.1.
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The game is played by two players, one controlling k cop tokens (or just cops),
the other controlling one robber token (or just the robber), on a given simple
undirected graph G. Additionally, the robber speed s ≥ 1 is given. The tokens
move on the vertices of G and several cops may share a vertex.

Initially, the first player positions k cops arbitrarily on the vertices of G, the
second player then chooses a starting vertex for the robber according to the
distribution of the cops. Then in every round, the players alternate in turns: On
cop-turn, every cop may move to distance at most one. Such move to distance at
most one is called a step. On robber-turn, the robber may do s steps avoiding all
the cops, or equivalently move along a path of length at most s in G− C, where
C is the set of vertices occupied by the cops.

The cops win when a cop steps on a robber (or when the robber has no available
starting vertex, or when the graph is empty). Note that a robber is not allowed
suicide by moving on a cop. Also, both players have a complete information about
G and the game state at all times.

The number of cops required to capture the s-fast robber in a graph G is
denoted by cns(G).

In the special case s =∞ the robber may move to an arbitrary vertex of his
present component of G \ C where C is the set of vertices taken by the cops.
Equivalently, the robber may choose any vertex in his component of G− C.

The other special case of s = 1 is directly equivalent to the cop and robber
game introduced in Section 2.1 and therefore cn1(G) = cn(G).

Due to the following natural generalization of Lemma 8, we are mainly inter-
ested in connected graphs.

Lemma 39. If G has connected components C1, . . . , Ck, then for any s ≥ 1 we
have cns(G) = ∑k

i=1 cns(Ci).

Proof. Analogously to the proof of Lemma 8, this follows from the fact that the
cops may never move between the components after the initial placement.

Our main result on this game is summarized in the following theorem.

Theorem 40. There exists a polynomial-time algorithm that, given an n-vertex
interval graph G, computes cn∞(G) and also a winning strategy for the cops that
captures the robber in O(n3) turns.

The proof of the theorem may be found in Section 3.4 below.

3.2 History and related results
The cops and s-fast robber game is a generalization of the original Cops and
Robber game introduced in Section 2.1, allowing the robber to make up to s steps
instead of 1 in one turn.

The motivation for examining the complexity of the ∞-fast robber game does
not, slightly surprisingly, come from other games with ∞-fast robber, but from
a research on bounded speed games: Fomin et al. [FGK+10] examine several
complexity aspects of cops and s-fast robber games and show that, for each s ≥ 2,
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the problem of computing cns(G) is NP-hard (and even W[2]-hard in the version
parametrized by cns) even if G is a chordal graph, or even a split graph1. On the
other hand, cns(G) can be computed in polynomial time for an interval graph and
every fixed s <∞. While the hardness results of Fomin et al. easily extend to
the game of ∞-fast robber for the mentioned classes, the polynomiality proof for
interval graphs does not, and our proof takes a different approach.

This game of cops and ∞-fast robber has been further studied by Mehra-
bian [Meh11a] who gave a 3-approximation polynomial-time algorithm for interval
graphs, but the complexity status of the exact problem remained open. In [Meh12],
a characterization of graphs with cn∞(G) = 1 is given.

For some bounds on cns(G) see [AM11, FKL12, Meh11b]. For other works on
the version of the game with different speeds see, e.g., [CCNV11, NS08]

3.3 A-defensive domination
As a main tool in our analysis of cops and ∞-fast robber game, we introduce the
problem of A-defensive domination – a generalization of a domination problem of
Farley and Proskurowski which in turn generalizes domination.

This section is completely independent from the game analysis and we hope it
to be of independent interest.

3.3.1 The problem and motivation
Defensive domination has been introduced by Farley and Proskurowski [FP04] in
the following way. A simple set D ⊆ VG is said to be k-defensive dominating if
for each set {a1, . . . , ak} ⊆ VG of k distinct vertices of G (called a k-attack) there
exists a set {d1, . . . , dk} ⊆ D of k distinct vertices of D (called an assignment of
defenders) such that for each i ∈ {1, . . . , k} we have di ∈ N [ai] (every attacker is
assigned a different adjacent or same-vertex defender).

Problem 41 (k-defensive domination). Given a graph G and an integer k,
compute a smallest simple set D that is k-defensive dominating on G.

The concept of k-defensive domination has been introduced as a generalization
of the well-known dominating set problem. They see the dominating set as a
“defense unit” placement scheme where every single unit may actively defend an
attack on one vertex in distance at most 1. The k-defensive domination asks for
defense unit placement that can counter any k-vertex attack. We take a slightly
different approach and propose the problem with the possible attack sets as a part
of the input.

Farley and Proskurowski [FP04] show that while the problem is generally
NP -hard (as it generalizes the problem of smallest dominating set even for k = 1),
there is a polynomial-time algorithm for any k on trees.

Here, we use an equivalent definition of defense and generalize it to multisets:
A vertex (multi)set D (the defender placement) defends an attacker (multi)set

1A split graph G has VG = K ∪ I with G[K] a clique, G[I] an independent set and arbitrary
edges between K and I.
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A when there is a map f : A → D which is injective2 and when f(a) = d then
d ∈ N [a]. Such f is called a defense or a defending mapping.

We consider multisets to provide a natural but strong generalization of the
problem as well as to address a situation with multiple cops on a vertex in our
application to the game analysis.

The following generalization allows us to explicitly specify the attacks of
interest, both the attacks and the defenses may be multiset, we may limit the
vertex defender-capacities by Dmax and we may specify fixed (pre-placed) defenders
Dmin.

Problem 42 (A-defensive domination). Given a graph G, a family of vertex
multisets A (the attacks) and vertex multisets Dmin ⊆ Dmax, compute a smallest
multiset of vertices D defending every attack A ∈ A such that Dmin ⊆ D ⊆ Dmax,
or answer that no such D exists.

The natural settings are empty Dmin = ∅ and unbounded Dmax = t ∗ V for
some large-enough t. Also, setting Dmax = V (a simple set) would force the
defender set D to be a simple set.

Our statement of the problem differs from the one in [FP04] in two ways.
First, we may allow more defenders per vertex. This can be forbidden by setting
Dmax = V as above. However, in this article we only show an algorithm for
unbounded capacities Dmax. Note that considering just unbounded capacities
does not interfere with use in the game part of the paper and allows us use
simpler the algorithm and technical arguments. See Section 3.5 for a discussion of
extensions.

Second, and more importantly, in our case the collection A is a part of the
input and may contain multisets of any size, as opposed containing all the subsets
of the vertices of G of given size k. Specifying A brings more flexibility but having
all the sets

(
V
k

)
as part of the input may blow it up substantially even for medium

values of k.

Our main result on A-defensive domination is the following theorem.

Theorem 43. There is an algorithm that solves A-defensive domination on
interval graphs in time polynomial in the input size for any Dmin and unbounded
capacities Dmax.

3.3.2 Leftmost defense on interval graphs
Before we state the algorithm and the proof of the theorem, let us introduce
further definitions specific to interval graphs and our algorithm. We assume that
the input graph G is given with an interval representation, and we use notation
introduced in Section 1.2.1.

With D a multiset of defenders let a partial defense (against an attack A) be a
function from A′ ⊆ A to D mapping every vertex to distance at most 1, similarly
to defense defined above. Two partial defenses f1 and f2 agree on a set X ⊆ A if
f(x) = f ′(x) for each x ∈ X.

2Injectivity of a multiset map means that is every element d ∈ D is the image of at most c
multiset elements where c is the multiplicity of d in D.
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Before the algorithm, we introduce a property of a defense we use throughout
the algorithm. For a given attack A and defenders D, order the attackers a1 <R

. . . <R ak. A (partial) defense f is called leftmost (partial) defense if the defender
f(ai) assigned to attacker ai is <R-leftmost among the neighbors of ai from
D \ {f(a1), . . . f(ai−1)}. Such (partial) defense is called maximal if f assigns a
defender to ai whenever N(ai) ∩ (D \ {f(a1), . . . f(ai−1)}) 6= ∅.

Note that for given attack and defense, a unique maximal leftmost (partial)
defense is computed by the following straightforward algorithm which closely
follows the definition of a leftmost (partial) defense:

procedure LeftmostDefense(G, A, D)
Input: Represented interval (multi)graph G
Input: Multisets A ⊆ VG, D ⊆ VG

Output: Maximal leftmost (partial) defense f : A′ → D, A′ ⊆ A
f ← ∅
Order vertices of A as a1 ≤R a2 ≤R . . . ≤R ak

for all i ∈ {1, . . . k} do
Di ← N(ai) ∩ (D \ f [A′])
if Di 6= ∅ then

A′ ← A′ ∪ {ai}
f(ai)← min<R

Di

end if
end for
return f

end procedure

Lemma 44. The algorithm LeftmostDefense returns a maximal leftmost
(partial) defense.

Proof. The procedure obviously returns a valid partial defense map, runs in
polynomial time and is easily implementable in time O(k|V |). By induction
on i, the mapping f is a leftmost partial defense and also maximal on the set
{A1 . . . Ai}.

Whenever there is no full defense for A and D, the <R-leftmost undefended
attacker is called the leftmost greedily undefended attacker. Note that f is injective
(w.r.t. D) and so the partial function f−1 : D → A is well-defined and injective
whenever f is a full map. We can also additionally assume that f−1 is monotoneR

on every group of assigned defenders on a single vertex.
This computed defense also has the following useful properties.

Lemma 45. The partial function f returned by LeftmostDefense satisfies:
Whenever ai <R aj and f(aj) ∈ N [ai], then f(ai) ≤R f(aj).

Proof. Assume f(ai) >R f(aj). But in that case, ai would get assigned f(aj) as a
left-most available defender, which is a contradiction.

Lemma 46. Whenever there is a defensive map f from A to D on an interval
graph G, LeftmostDefense returns a valid full defense map.

Proof. Let falg be as returned by LeftmostDefense(G,A,D) and among all
defense maps, take f : A→ D such that f and falg agree on the longest prefix
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{a1 . . . ai−1}. Now either falg = f and we are done, or we have either falg(ai)
undefined or f(ai) 6= falg(ai).

Note that we have f(ai) ∈ Di (with Di as in the algorithm) since f and falg
agree on {a1 . . . ai−1}. This immediately rules out the possibility of undefined
falg(ai). Additionally, this shows that falg(ai) ≤R f(ai), since falg(ai) is minimal
from Di.

The last possibility for us to examine is falg(ai) <R f(ai). In this case we
show that there is a full defense map f ′ : A→ D that agrees with falg on a longer
prefix, a contradiction with the choice of f . Let dalg

i = falg(ai) and di = f(ai).
Moreover let aj = f−1(dalg

i ) if defined, in which case also note that necessarily
j > i. See Figure 3.1 for an illustration.

dALG
i

ai

fALG
di

aj

f

f ′

Figure 3.1: Illustration for the proof of Lemma 46
.

Set f ′ as f except for f ′(ai) = dalg
i and f(aj) = di when aj is defined. In

case aj is undefined, validity of f ′ is straightforward. In the other case we only
need to show aj ∈ N [di]: when ai <R aj ≤R di observe that ai ∈ N [di], when
dalg

i <R di ≤R aj observe that aj ∈ N [dalg
i ].

Additionally, when two defenses differ at some point, the algorithm finds
defenses that agree up to that point:

Lemma 47. Let D = {d1 ≤R . . . } and D′ = {d′1 ≤R . . . } be defenses against
an attack A = {a1 ≤R . . . } and let f and f ′ be the defense maps computed by
LeftmostDefense. Assume D and D′ agree on {d1 = d′1, . . . , di−1 = d′i−1},
di <R d′i. Then f−1 and f ′−1 agree on {d1 . . . di−1} (being either equal or both
undefined).

Proof. Assume that f−1 and f ′−1 do not agree on a left-most dj, j < i. Let
al = minR{f−1(dj), f ′−1(dj)} (note that at least one is defined). Now if f(al) = di

then di was a left-most candidate defender for a in LeftmostDefense not only
for f but also for f ′ since by assumption we have

f [{a1 . . . al−1}] ∩ {d1 . . . dj−1} = f ′[{a1 . . . al−1}] ∩ {d1 . . . dj−1}

which is a contradiction with existence of such dj.

3.3.3 A-defensive domination on interval graphs

Now we state and analyze the main algorithm, and show Theorem 43. The
algorithm computing an optimal A-defensive domination set on interval graphs
follows:
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procedure A-DefensiveDomination(G, A, Dmin)
Input: Represented interval (multi)graph G
Input: Multiset family A ⊆ 2VG (attack)
Input: Multiset Dmin ⊆ VG

Output: Smallest defender placement Dmin ⊆ D ⊆ VG

D ← Dmin

loop
for all A ∈ A do

fA ←LeftmostDefense(G,A,D)
end for
if all attackers defended in every fA then

return D
end if
u← left-mostR vertex undefended in some fA.
d′ ← right-mostR vertex of N [u].
D ← D ∪ {d′} . A and u are referred to as reason for this d′.

end loop
end procedure

Proof of Theorem 43. The algorithm always returns a solution, and any returned
solution is a valid defense against all attacks, as certified by the computed maps
fA. Additionally, all the intervals of D \Dmin are always inclusion-maximal. We
only need to show size-optimality.

Let us call the computed defense Dalg = {dalg
1 ≤R . . . } and take an optimum-

size defense Dopt = {dopt
1 ≤R . . . } such that it agrees with Dalg on a longest

possible prefix {dalg
1 = dopt

1 , . . . , dalg
i−1 = dopt

i−1}. We additionally assume that
all the intervals of Dopt \ Dmin are inclusion-maximal (as are those of Dalg \
Dmin). Let {falg,A}A∈A and {fopt,A}A∈A be the defense maps computed by
LeftmostDefense for Dalg and Dopt respectively. Note that fopt,A are well-
defined thanks to Lemma 46.

If Dalg = Dopt we are done. Otherwise, let dalg
i 6= dopt

i be the first difference
in the solutions. Note that thanks to Lemma 47 the maps f−1

alg,A and f−1
opt,A agree

on {dalg
1 , . . . , dalg

i−1}. Consider the two possibilities:
1. dalg

i <R dopt
i . Let A′ and u′ be the reason for including dalg

i in Dalg.
Now opt can not defend u′ in A′: We have dopt

i /∈ N [u′] since dopt
i >R dalg

i and
dalg

i is the right-most neighbor of u′. At the same time, all the vertices of Dopt
before dopt

i are either already used in fopt,A′ (as they are in in falg,A′) or too far
(otherwise u′ would not be added to Dalg at that point).

2. dalg
i >R dopt

i . Take as dalg
j the left-endpoint left-mostL with j ≥ i and then

set D′opt = Dopt − dopt
i + dalg

j . We show that D′opt is a valid defense: take any
attack A ∈ A and let a = f−1

opt,A(dopt
i ). If such a is undefined, let f ′opt,A = fopt,A

and this map trivially defends A using D′opt as well.
If such a exists, let dalg

l = falg,A(a) and note that l ≥ i thanks to Lemma 47.
Now in both cases, a <R dopt

i and a >R dopt
i , we straightforwardly obtain

dalg
j ∈ N [a]. The map f ′opt,A derived from fopt,A by replacing f ′opt,A(aj) = dalg

j is
then a valid defense map. In either case we get a contradiction with the choice of
Dopt.
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3.4 Game reductions and strategy

We solve ∞-fast robber game on interval graphs by showing an equivalence with
an auxiliary restricted game that we introduce below. As you shall find below,
this new game has a small enough state space to be solved by a full state space
search.

3.4.1 Observations and notation
We start with several observations of the game properties and introduce some
notation.

To avoid special treatment of the game-states at the start of the game, we work
with a game with modified starting state, which is equivalent to the unmodified
game on connected graphs:

Lemma 48. A connected interval graph G is k-cop-win if and only if k cops win
starting all positioned at the leftmost vertex a of G (w.r. to <R) with the robber
starting on the rightmost vertex b (w.r. to <L) such that dist(a, b) ≥ 2. If there is
no such b, then the graph is 1-cop-win.

Proof. To show this, assume that k cops have a wining strategy in the unmodified
game starting at a configuration C. In the modified game, the cops can first use
several moves to get to C ignoring the robber (or even capturing him on the way
accidentally) and then play out the winning strategy according to the position of
the robber at that point.

If the robber has a wining strategy in the unmodified game for any starting
position of the cops, then let C be the cop’s positions after their first move from
a and let w be the desired robber’s starting position for C. The cases w = a or
w ∈ C can happen only if the radius of the graph is ≤ 1 and therefore G can
not be robber-win. Also, we can assume w /∈ N [C] as such strategy would lose
immediately. Otherwise w and b belong to the same component of G \ C, since
every such component is either contained in N [C] (and therefore not containing
w) or contains b as the right-most vertex. In that case, the robber can move to w
and play out his winning strategy.

Formally, we denote the game state before cops’ move (also cop-state) by
C(C,w), where C is a multiset of vertices occupied by the cops and w is the vertex
occupied by the robber. The game state before robber’s move (also robber-state)
is R(C,A) with C as above and A is the set of all vertices the robber may reach
in his following move (thus, A is the vertex set of the connected component of
G− C containing the robber).

Note that before any robber’s move, two states with the robber in the same
component of G−C offer the same moves to the robber and this notation already
slightly reduces the complexity of the examined states. Also note that A is by
definition always connected. By the remarks in Section 1.2.1 we have the following.

Observation 49. For any game state R(C,A), ϕ[A] is an interval.
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For a state R(C,A) we call the interval ϕ[A] the playground of the state.
The playground (l, r) is an open interval between the cutpoints l and r called
specifically the left and right barrier.

Note that all vertices containing the barriers, i.e., ϕ−1(l)∪ϕ−1(r), are occupied
by the cops (otherwise the playground would be bigger). The vertices of ϕ−1(l)
and in ϕ−1(r) are called the barriers’ support. Note that the support of either
barrier may be empty and in such case, due to the connectedness of G, we may
assume that such a barrier is at either 1 or 2|V |. The vertices in ϕ̃(l, r) are called
the playground support. Note that, by definition, the support of a playground is
always disjoint from the supports of the barriers.

Among the cops occupying a barrier’s support, we choose and fix one cop per
vertex. Let us call these cops the cops holding the barrier. Note that a cop may
hold both barriers at once, but as we see below, that this may happen only just
before capturing the robber.

A playground (l, r) is feasible, if |ϕ−1(l) ∪ ϕ−1(r)| ≤ k where k is the number
of cops. That is if the cops are able to hold both barriers at once. A playground
(l, r) is non-trivial if ϕ̃(l, r) is nonempty and it does not contain all vertices of G.

For every feasible and non-trivial playground (l, r), we fix a canonical game
state

canon(l, r) = R(ϕ−1(l) ∪ ϕ−1(r), ϕ̃(l, r))
in which the cops occupy all vertices in ϕ−1(l) ∪ ϕ−1(r) and the extra cops, if

any, are positioned on an arbitrary (say, left-mostR) vertex in ϕ−1(l) ∪ ϕ−1(r). A
game state won by the cops, canonical for every playground with ϕ̃(l, r) = ∅, is
denoted by WIN .

Lemma 50. If ϕ̃(l, r) 6= ∅ then the playground of canon(l, r) is (l, r).

The cops occupying the vertices in C threaten a vertex set T if the cops can
occupy all vertices of T after one cop-move. This is equivalent to an existence
of a partial surjective mapping from the cops on C to T in such that every cop
is assigned to a vertex in distance at most 1. If the cops threaten ϕ−1(i) for
some i ∈ {1, . . . , 2|V |} then we also say that the cops threaten the cut i. When
considering a set of cops threatening T , we fix a matching between the threatening
cops and the vertices in T for the moment. In the rest of this section we introduce
some additional notation that allows us to formally define the sets T we are be
interested in.

We say that a cop/robber is over an interval I if it is located on a vertex
v such that I ⊆ ϕ(v). Then the cops c1, . . . , cp are over I if ci is at vertex vi,
i = 1, . . . , p, and I ⊆ ϕ(v1)∪ · · · ∪ϕ(vp). Any maximal interval B such that some
cops are over B is called a base. Given a base B, ξ(B) = ⋃

x∩B 6=∅ ϕ(x) is called
the cover of B.

Alternatively, when the cops are positioned on C ⊆ V , the bases are the
maximal intervals of ϕ[C]. The cover of a single base are the individual vertices
threatened by the cops of that base.

Note that in game state R(C,A), if the robber positions himself on a vertex v
such that ϕ(v) intersects a base then the cops can catch the robber in the next
move. Let A′ ⊆ A be the vertices safe for the robber, that is A′ = A \N [C]. This
includes vertices v such that ϕ(v) is entirely contained in ξ(B) \B. Any maximal
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interval in ϕ[A′] is called a hole in R(C,A), or simply a hole, if the state is clear
from the context. Hence, if C(C, r) is the state that follows R(C,A), then either
the cops can immediately catch the robber or ϕ(r) is contained in some hole in
R(C,A).

Given a state R(C,A), a base collection B is a set of bases {B1, . . . , Bl} such
that ⋃l

i=1 ξ(Bi) is an interval. Denote the latter interval by ξ(B). A base collection
B is maximal if B ∪ {B} is not a base collection for any base B, B /∈ B.

3.4.2 Manoeuvres and the restricted game
The main tool of our result is to transform an arbitrary cops’ winning strategy
to a restricted strategy in an equivalent but simpler restricted game on a smaller
state space. Informally, a restricted game state only describes which cuts are held
or threatened by the cops and the current playground of the robber or his choices
of a new playground.

While a general cops’ strategy is mapping from every valid state of the game to
a move valid in that state, a restricted cop’s strategy is a mapping from a restricted
game states C(C, r) to the maneuvers valid in those states. In the following we fix
a constant Q = 12, that is the sufficient number of following playgrounds to be
considered, as we show later. A restricted game state is WIN (game won by the
cops) or one of the following:

Restricted game cop-states denoted C̃(l, r) represent the state canon(l, r) =
R(ϕ−1(l) ∪ ϕ−1(r), ϕ̃(l, r)), where the cops choose the next maneuver to
perform. Note that the corresponding general game state is a robber-state,
which is more convenient as the maneuver ignores the position of the robber
possibly except for the last turn before capture (see below).

Restricted game robber-states denoted R̃((l1, r1), . . . (lq, rq)), q ≤ Q, where
the robber chooses the next playground he will be restricted to after the
next cop-move. The restricted robber state represents any of the states
R(C, ϕ̃(l, r) \ C) for some C and l, r such that C is a witness for a split
maneuever from C̃(l, r) to R̃((l1, r1), . . . (lq, rq)), described below. We may
assume that this representative is the witness found by the algorithm in
Lemma 51.
This state happens in the original game only before the last move in a
spit-maneuver (defined below), where the cops threaten multiple cuts and
the robber has to decide where to stand before the cops actually choose
which two barriers to create and therefore what will be the new playground.
Note that the cops actually do not only present robber with the threatened
cuts, but additionally inform the robber about the at most Q possibilities
of their next turn. The conditions on the maneuvers ensure that the list of
options is complete and valid.

Formally, a maneuver is a fixed finite sequence of cop-moves not depending
on the robber’s movement in the meantime, except for automatically capturing
the robber if he ends his move adjacent to a cop. A maneuver always starts in a
restricted cop-state and ends in a robber-state (where robber chooses the next
playground) or WIN . A maneuver is valid if k cops are capable to perform the
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moves of the maneuver while restricting the robber accordingly, as specified below.
There are two types of maneuvers:

Endgame from C̃(l, r) to WIN . Starting from the state canon(l, r), the cops
move so that in each turn hold l and r, into position R(C,A) such that
C contains ϕ−1(l) ∪ ϕ−1(r) and dominates ϕ̃(l, r). In their next move the
cops capture the robber. Such a multiset C with |C| ≤ k is a witness of the
maneuver. The maneuver itself is, in this case, the sequence of the above
moves that lead from canon(l, r) to WIN .

Split from C̃(l, r) to R̃((l1, r1), . . . (lq, rq)) , q ≤ Q, with li ≤ li+1 for each i ∈
{1, . . . , q − 1}.
Starting from the state canon(l, r), the move (while holding l and r) into
position R(C,A) such that

(i) the cops are holding l and r,
(ii) there exists a base collection B = {B1, . . . , Bq−1} such that ri, li+1 ∈

ξ(Bi) for each i = 1, . . . , q − 1,
(iii) the cops are threatening ϕ−1(li) ∪ ϕ−1(ri) for each i ∈ {1, . . . , q},
(iv) C dominates ϕ̃(ri, li+1) for each i ∈ {1, . . . , q − 1},
(v) C dominates ϕ̃(l, l1) and ϕ̃(rq, r).

Such a multiset C with |C| ≤ k is called the witness of the maneuver. Note
that the cops holding l and r may be used in the threatening mapping.
Also note that the condition on dominating ϕ̃(ri, li+1) is trivially satisfied if
ri > li+1.

In the state R̃((l1, r1), . . . (lq, rq)), the robber selects his next position w. Either
w ∈ N [C] and the cops win immediately, or w ∈ ϕ̃(li, ri) for some i ∈ {1, . . . , q}.
Then, the cops make a move that results in canon(li, ri). Note that in the restricted
game the robber is given the choice of i even in the case that for his choice of w
both w ∈ ϕ̃(li, ri) and w ∈ ϕ̃(lj, rj) and the cops would therefore make the choice
of the next playground (out of the two) in the real game, but the choice is up to
the robber in the restricted game.

It is not trivial to check for the existence of such witnesses, but we can find
a smallest witness using the algorithm for A-defensive domination presented in
Section 3.3.

Lemma 51. There are polynomial-time algorithms deciding the validity of ma-
neuvers endgame and split.

Proof. We observe that by the definitions, a multiset D is a smallest witness of a
split maneuver from canon(l, r) to one of canon(li, ri), i ∈ {1, . . . p} if and only if D
is a smallest A-defensive multiset for A = {ϕ−1(li)∪ϕ−1(ri)

∣∣∣ i ∈ {1, . . . p}}∪ (Y
1

)
(possible barriers to be taken) with Dmin = ϕ−1(l) ∪ ϕ−1(r) ⊆ D (pre-placed
defenders/cops) and unbounded capacities Dmax, where Y = ϕ̃(l, l1) ∪ ϕ̃(rp, r) ∪⋃p−1

i=1 ϕ̃(ri, li+1) (the vertices between the playgrounds to be dominated individually,
preventing robber from safely moving there).
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Indeed, suppose first that D is a witness of size k of a split maneuver. Then
D is a solution to A-defensive domination: For each A ∈ A generated by a
playground, the injective mapping fX : X → D is given by the possible cop-move
from D to occupy A. For A ∈ A arising from Y , the mapping (of a single defender)
follows from D (simply) dominating Y . On the other hand, it is easy to check
that a solution to A-defensive domination satisfies all the witness conditions.

Similarly, a multiset D is a smallest witness of an endgame maneuver from
canon(l, r) if and only if D is a smallest

(
ϕ̃(l,r)

1

)
-defensive multiset with Dmin =

ϕ−1(l) ∪ ϕ−1(r) ⊆ D and unbounded capacities Dmax.
The algorithm deciding the problem of A-defensive domination is polynomial

for interval graphs according to Theorem 43. The input size is polynomial in the
size of G and number of playgrounds considered, which is bounded by Q.

This then allows us to decide the existence of a cops’ restricted strategy.

Theorem 52. There exists a O(nO(1))-time algorithm that, given an interval graph
G with |G| = n and an integer k, decides the existence of a winning restricted
strategy using k cops for G.

Proof. We construct a game-state digraph D representing the restricted game.
VD consists of all restricted game states including WIN , the initial state is the
state corresponding to the initial position of the modified game. The only cop-win
state is WIN , there are no robber-win states.

For every valid endgame maneuver from canon(l, r) add an arc from canon(l, r)
to WIN . For every valid split from canon(l, r) to one of the canon(li, ri), i ∈
{1, . . . , q ≤ Q}, add an arc from canon(l, r) to R{(l1, r1), . . . (lq, rq)}. From every
R{(l1, r1), . . . (lq, rq)} add arcs to canon(li, ri), i ∈ {1, . . . , q}.

We decide the game given by D using Theorem 4, giving us either a winning
restricted strategy for the cops or a non-losing restricted strategy for the robber.

Since Q is a fixed constant, D has polynomial size, every arc can be decided in
polynomial time according to Lemma 51, the game decision algorithm also runs
in time polynomial in |D|.

3.4.3 Equivalence of the restricted game
In this section we show that the restricted game is equivalent to the original game
in the following sense.

Theorem 53. For an interval graph G and an integer k, k cops have a winning
strategy for the Cops and ∞-fast Robber game if and only if k cops have a winning
strategy in the restricted game on G with any interval representation ϕ.

Before we prove Theorem 53, we show several lemmas which compose the
individual steps of the equivalence and, unfortunately, we need to introduce
additional general assumptions and definitions.

A strategy for the Cops and ∞-fast Robber game is called simple if at the
beginning of any turn in which the robber occupies a vertex p and in which the
playground changes, the following holds: for each base B there exist at most two
cuts l and r, l, r ∈ ξ(B), such that if R(p) < L(B), then the cops do not take any
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cuts in B except possibly for r, and if L(p) > R(B), then the cops do not take any
cuts in B except possibly for l. We call l and r, respectively, to be the left and
right barriers associated with B. Informally speaking, in a simple strategy if the
robber positions himself to the left (right, respectively) of B in a turn in which
the playground changes, then the cops either start to hold r (l, respectively) or
do not hold any barrier of B.

Lemma 54. For an interval graph G and an integer k, if k cops have a winning
strategy for the Cops and ∞-fast Robber game, then k cops have a simple winning
strategy.

Proof. Let us consider a playground changing move in a winning strategy S and
the two game states R(C,A) and C(C,w) preceding the playground change. Let
H1, . . . , Hq be all holes at the beginning of R(C,A) ordered so that R(Hj) <
L(Hj+1) for each j ∈ {1, . . . , q − 1}. Take any base B formed by the cops at the
beginning of R(C,A). If R(H1) ≤ L(B), then let p ∈ {1, . . . , q} be the highest
index such that R(Hp) ≤ L(B), and let p = 0 otherwise.

Since S is winning, for each j ∈ {1, . . . , p} there exists a barrier rj ∈ ξ(B)
such that if w ∈ ϕ−1(Hj), then the cops take in C(C,w) either no barrier in ξ(B)
or they take rj. Suppose that ri 6= ri′ for some i, i′ ∈ {1, . . . , p}. We argue that
we can modify the strategy S so that ri = ri′ and the ‘worst-case’ length of the
new strategy is not greater than the length of S. If ri is not taken by the cops
when w ∈ ϕ−1(Hi), then one may change ri := ri′ . By using a similar argument
for ri′ , we obtain that both ri and ri′ become the endpoints of the playgrounds
in the cases when w ∈ ϕ−1(Hi) and w ∈ ϕ−1(Hi′), respectively. Suppose without
loss of generality that i < i′. Then, however, changing the playground in case of
w ∈ ϕ−1(Hi′) to be the same as in case of w ∈ ϕ−1(Hi) results in particular in
ri = ri′ .

We repeat the same argument for B and lp+1, . . . , lq, where lj is the border
taken by the cops when w ∈ ϕ−1(Hj) for each j = p + 1, . . . , q. As a result, we
obtain a strategy with the same bases as in S, of length not greater than that of
S. By repeating the same transformation for each remaining base we obtain the
desired simple strategy.

Note that in a general strategy, in a move that changes the playground many
base collections can be formed and each of them can contain many bases (up to
one collection per a cop). We prove below that it is enough to consider one base
collection at a time. This motivates the following definition:

We say that a strategy for the Cops and∞-fast Robber game is semi-restricted
if it is simple and for each cops’ move that results in a change of the playground
in the preceding robber’s move there exists exactly one base collection.

Lemma 55. Let S be a winning strategy using k cops. Given any robber state
R(C,A) of S, let R(Ci, Ai), i ∈ {1, . . . , q}, be the robber states of S reachable
from R(C,A) in two turns (a robber turn and a cop turn). Let P = (l, r)
be the playground corresponding to R(C,A) and Pi = (li, ri,) be the playground
corresponding to R(Ci, Ai) for each i ∈ {1, . . . , q}. Then, there is a semi-restricted
cops’ strategy that uses k cops, starts in state canon(l, r) and either wins or results
in state canon(li, ri) for some i ∈ {1, . . . , q}.
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Figure 3.2: An illustration of the playgrounds of P with q = 3. Note that the
playgrounds may overlap. The intervals Hj are the holes separating the groups of
cops of C.

Proof. In view of Lemma 54, we may assume without loss of generality that S is
simple. If C is a witness for endgame, then the considered turn does not violate
the definition of semi-restricted strategy. Hence, assume that this is not the case
and let H1, . . . , Hq be the holes at the beginning of R(C,A). See Figure 3.2 for
an illustration.

We prove the lemma by induction on the number of base collections of a strategy.
If the state R(C,A) consists of one base collection, then the two following moves
of S themselves form a is semi-restricted strategy. Thus, suppose that S has more
than one base collection.

Let P ′j = (l′j, r′j) be the playground at the end of C(C,w) when w ∈ ϕ−1(Hj)
for each j ∈ {1, . . . , q}. Let the corresponding states be R(C ′j, B′j), j ∈ {1, . . . , q}.
Denote by P ′i1 , . . . , P

′
ip

all inclusion-maximal playgrounds ‘between’ the base
collections, that is, P ′ij

* B for any base collection B formed at the beginning of
R(C,A), j ∈ {1, . . . , p}. By assumption, p > 1.

The strategy construction is algorithmic and is done by modifying S. First,
the modified strategy forms the base collection B with minimum L(ϕ[B]). Suppose
that the robber occupies a vertex w such that R(ϕ(w)) < R(ϕ[B]). Hence,
ϕ(w) ⊆ (l′j, r′j) for some j < i2. The modified strategy plays the split maneuver
to C̃(l′j, r′j), as required.

Hence, assume that R(ϕ(w)) ≥ R(ϕ[B]). The strategy plays a split to C̃(l′i2 , r).
Denote by S ′ the strategy that performs this maneuver. There exists a (general)
strategy that uses p − 1 base collections (all base collections, except for B, of
the initial strategy S) and in one turn results in a playground (l′j′ , r′j′) for some
j′ ∈ {i2, . . . , q}. By the induction hypothesis, there exists a semi restricted strategy
S ′′ that either wins or results in a state canon(l′j′ , r′j′) for some j′ ∈ {i2, . . . , q}.
Thus, S ′ together with S ′′ is the strategy that satisfies the conditions of the lemma.
Indeed, the number of cops that the latter strategy uses is k because, by definition,
no cop is simultaneously used in two base collections.

The following lemma is used to show that it is sufficient to consider a bounded
number of playgrounds resulting from a split maneuver.

Lemma 56. Let B = {B1, . . . , Bq}, q ≥ 12, be a base collection that is formed by
k′ cops. Let li and ri be the left and right barriers associated with Bi, i ∈ {1, . . . , q}.
If 1 ≤ j < j′ ≤ q and j′ − j ≤ 3, then endgame maneuver using k′ cops is possible
from canon(lj, rj′).

Proof. We prove the lemma by placing the cops so that they hold lj and rj′ and
dominate ϕ̃(lj, rj′). The cops in B used to threaten lj and rj′ are selected occupy
the vertices in ϕ−1(lj) ∪ ϕ−1(rj′). If j′ = j + 1, then two additional cops can
dominate ϕ̃(lj, rj′), which follows directly from the definition of base collection.
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The two cops are available, because q ≥ 9. Hence, assume that j′ > j + 1 and we
describe how to dominate ϕ̃(lj, rj′) with the remaining cops.

Place the cops initially used to form Bj+1, . . . , Bj′−1, except for those in Q, in
the same way as in the base collection B. The possibly non-dominated vertices are
then the ones in ϕ̃(lj+1, rj+2) if j′ − j = 3, and ϕ̃(lj, rj+1) ∪X ∪ ϕ̃(lj′−1, rj′) ∪ Y ,
where X (respectively, Y ) is the set of vertices initially dominated by the cops in
B present on Bj+1 (respectively, Bj′−1). Let X ′ ⊆ X and Y ′ ⊆ Y be, respectively,
the vertices in X and Y occupied by the cops in Q. The vertex v in X ′ such that
R(v) ≥ R(x) for each x ∈ X ′ dominates X. Another cop can dominate ϕ̃(lj, rj+1)
by definition of base collection. Similarly, two cops can dominate ϕ̃(lj′−1, rj′) ∪ Y .

If j′ − j < 3, then the construction is completed. Otherwise, two additional
cops can be used to dominate ϕ̃(lj+1, rj+2). Hence, in the worst case 6 additional
cops are used with respect to the ones that initially form Bj, . . . , Bj′ . No cop from
a base Bi, i < j − 1 (respectively, i < j′ + 1), is used to hold lj (rj′ , respectively).
Since q ≥ 12, the total number of cops used to construct the witness of endgame
does not exceed k.

Lemma 57. Let S be a winning strategy using k cops. For a robber state R(C,A)
in S let R(Ci, Ai), i ∈ {1, . . . , q}, be the robber states of S reachable from R(C,A)
in two moves (a robber’s move and a cops’ move). Let P = (l, r) be a playground
corresponding to R(C,A) and Pi = (li, ri) be the playgrounds corresponding to
R(Ci, Ai), i ∈ {1, . . . , q}. Then, there is a restricted cops’ strategy that uses k
cops, starts in the state C̃(l, r) and either wins or results in one of states C̃(li, ri).

Proof. By Lemma 55, there exists a semi-restricted search strategy S ′ that uses
k cops and results in one of the canon(l1, r1), . . . , canon(lq, rq). The strategy S ′
performs several manoeuvres and in the following we analyse two selected moves
of S ′ after which the playground changes. Namely, let R(C ′, A′) be a state of S ′
such that at the end of the following cops’ move the playground changes to one of
(l′1, r′1), . . . , (l′q, r′q). Let (l′, r′) be the playground in R(C ′, A′).

We argue that there exists a restricted strategy S ′′ that starts from canon(l′, r′)
and arrives at one of the canon(l′1, r′1), . . . , canon(l′q, r′q). Let B = {B1, . . . , Bp} be
the base collection in R(C ′, A′). If p < 12, then the two moves of S following
R(C ′, A′) form a restricted strategy as required. Hence, let p ≥ 12 in the following.

In the remainder of this proof we assume that l′ /∈ ξ(B1) and r′ /∈ ξ(Bp) as the
other cases are analogous with minor adjustments to border conditions.

This assumption implies that l′1 = l′, r′q = r′ and p = q − 1. The strategy S ′′
performs the first manoeuvre by holding l′ and r′ and threatening ϕ−1(l′1)∪ϕ−1(r′1)
(by using the base B1). If the robber responds by occupying a vertex in ϕ̃(l′, r′1),
then the strategy plays to C̃(l′, r′1) = C̃(l′1, r′1), and the lemma follows. Otherwise,
the restricted strategy plays to C̃(l′1, r′). Then, the strategy continues by holding
l′1 and r′ and threatening ϕ−1(l′q) ∪ ϕ−1(r′q) (by using Bp). If the robber responds
by occupying a vertex in ϕ̃(l′q, r′), then the strategy plays to C̃(l′q, r′) = C̃(l′q, rq),
and the lemma follows.

Otherwise, the strategy plays a split to (l′1, r′q) and performs iteratively the
following maneuver. Let initially i = 1. The strategy holds l′i and r′q and threatens
ϕ−1(l′i+2) ∪ ϕ−1(r′i+2) by forming the bases Bi+2 and Bi+3. Note that this is
possible because no cop that currently holds the barrier l′i is used in those bases.
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If the robber decides to occupy a vertex in ϕ̃(l′i, r′i+2), then the strategy plays to
C̃(l′i, r′i+2) and, by Lemma 56, an endgame maneuver is valid from this state.

Otherwise, i.e., if the robber occupies a vertex in ϕ̃(l′i+2, r
′
q), the strategy plays

to C̃(l′i+2, r
′
q). If i+ 2 ≥ q − 3, then, by Lemma 56, an endgame is possible from

C̃(l′i+2, r
′
q). If i + 2 < q − 3, then we set i := i + 2 and repeat the above step.

Thus, after a finite number of split maneuver, an endgame maneuver occurs as
required.

We compose those steps into proof of Theorem 53.

Proof of Theorem 53. The “if” part is straightforward, as the cops can play out
the maneuvers of a restricted winning strategy. The maneuver properties and
witnesses ensure that the moves are possible and that after the maneuver, the
robber is inside the respective playground or captured. Note that the capture
may occur even playing out a split maneuver.

For the other direction, let S be a shortest (i.e., with the minimum number of
turns) cop’s winning strategy using k cops. Note that if the cops play according
to S, the game never revisits a game state.

Let S be the subgraph of the game state digraph representing S, in which the
vertices are all the cop- and robber-states of the game. From each cop-vertex,
there is exactly one cop-move in S, as dictated by S. From each robber-vertex,
all the robber-moves are present in S. Note that we can assume S to be acyclic,
since it is a shortest winning strategy. Also, fix any total ordering o of the states
of S extending the partial order given by the arcs (moves).

For any robber-state in S find the maximum (with respect to o) robber-state
R(C,B) in S with the same playground. We construct a winning restricted
strategy T using k cops as follows. Let R(Ci, Ai) and (li, ri), i ∈ {1, . . . , t}, be
the states in S and the corresponding playgrounds reachable from R(C,A) in two
moves. By Lemma 57, there exists a restricted strategy that uses k cops, starts in
state R̃(l, r) = R(C,A) and ends in R̃(li, ri) = R(Ci, Ai) for some i ∈ {1, . . . , t}.
Note that all R̃(li, ri) are different from R̃(l, r), because the state R(C,A) is
latest such state in S.

Now we have that the latest occurrence of a robber-state with playground
(li, ri) is (with respect to o) later than that of (l, r). Therefore, by playing T , the
latest state (with respect to o) with the same playground as the current one only
increases. This proves that T is acyclic and therefore finite (as S is), and winning
for the cops, as there is no draw or robber-win position in the game.

And with this, we may finally prove Theorem 40.

Proof of Theorem 40. According to Theorem 52, we can decide the existence of
a winning restricted cops’ strategy in polynomial time. By Theorem 53, such a
strategy exists if and only if a general winning cops’ strategy exists.

Note that any play of a restricted cops’ winning strategy visits every restricted
cop-state (playground) at most once. There are O(n2) playgrounds and every
robber-state is followed by a maneuver to a cop-state. It is easy to see that playing
out any single maneuver takes O(n) cop-moves when the moving cops follow
shortest paths to their destinations. Therefore the game takes O(n3) turns.
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3.5 Remarks and open problems

Since the game is already NP-hard for general chordal graphs and even split graphs,
it might be interesting to consider the complexity of the game on chordal graphs
with bounded asteroidal number (or, asymptotically equivalently, the number
of leaves of the underlying tree for the standard intersection representation of
chordal graphs) and the class of circular-arc graphs. It seems that the notion
of playgrounds of the reduced game can be extended to such graphs and they
might have some common properties, but the analysis does not extend in a
straightforward way.

The definition of A-defensive domination generalizes k-defensive domination,
but explicitly specifying A =

(
V
k

)
is not practical for even small values of k,

making the complexity of the problems incomparable. One hope would be to find
an algorithm for a left-most undefended attacker in some of the k-attacks for a
given defense, and plug it into the current algorithm.

In this paper we only show an algorithm for A-defensive domination assuming
an unbounded number of defenders allowed on individual vertices. We strongly
believe that specifying the number of allowed defenders for every vertex (in Dmax)
still allows for a polynomial algorithm. Together with the previous question, this
would give a truly general answer for interval graphs.

It would of course be of interest to see the complexity ofA-defensive domination
algorithms for other classes, both with specifying Dmin and Dmax as part of the
input and fixed for the problems. Trees and, more generally, bounded tree-width
and path-width graphs seem like natural candidates.
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Chapter 4

Ultramonotone games and minors on
hypergraphs

In the following chapter we look at tree-depth as a graph parameter together
with its game characterisation, and we introduce and examine extensions of these
concepts to hypergraphs and hypergraph pairs. We also recall the famous graph
minors together with their relation to tree-depth, tree-width and ultramonotone
games.

In Section 4.1 we show some of the related results and motivation for our
research. Section 4.2 recalls tree-depth, its many characterisations and hypergraph
minors. Section 4.3 introduces the notion of hypertree-depth, its relation to
tree-depth, defines the ultramonotone marshals and robber game and hypergraph
minors. Section 4.4 generalises all these concepts to hypergraph pairs, also
introducing those. Also, some of the results of Section 4.3 are shown here in
greater generality. Section 4.7 concludes with several remarks and open questions.

4.1 History and related research
The tree-depth of a graph is a parameter introduced by Nešetřil and Ossona de
Mendez in 2006 [NdM06]. It has received much attention due to its connections
to graph coloring and homomorphism dualities, and it plays a central role in the
theory of graph classes of bounded expansion [NdM08a, NdM08b, NdM08c].

The main motivation of this research direction is to extend the notion of
tree-depth to the hypergraph setting while preserving as many nice and useful
properties as possible, with a big part of the intuition coming from monotonicity
of the defining games. The same motivation applies for hypergraph minors also
introduced and discussed below and in Sections 4.2.3, 4.3.4 and 4.4.4.

Note that extending well-known graph notions to hypergraphs or digraphs is
far from straightforward and usually several competing variants emerge. Then the
fitness measures are the usefulness, interactions, elegance and simplicity of those
concepts. And frequently, alternative notions have their strengths in different
settings. In our opinion, the games and basic subgraph and minor monotonicity
are great basic criteria.

To illustrate, consider the extensions of tree-width to directed graphs: DAG-
width by Obdržálek [Obd06], directed tree-width by Johnson et al. [JRST01], and
Kelly-width by Hunter and Kreutzer [HK08]. All these measures are also defined
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by games, some of them related to the helicopter game characterising tree-width.
See the Graph minors series for details on tree-width and the game, namely part
III. [RS86].

For tree-width there are the hypergraph notions of hypertree-width1 by Gottlob
et al. [GLS99], generalised hypertree-width by Gottlob et al. [GLS03] and marshal-
width studied by Adler [Adl04]. These notions are all characterised (and sometimes
motivated) by various marshals and robber games. The ultramonotone robber and
marshals game was already used by Adler as a tool for constructing hypergraph
counterexamples [Adl06]. Generalized hyperpath-width by Miklós [Mik88] is
another example in this direction.

Graph minor is a central notion in a big part of modern structural graph
theory. Since their introduction in 1983 by Robertson and Seymour in their
famous Graph Minors series [RS83], there is a strong steady stream of research
and applications. Today, in December 2015, there are over 400 published papers
indexed by DBLP2 with “graph minor” in the title. The minor relation (as well as
induced minors, immersions etc.) extends the subgraph relation to more general
“structure containment” (see definition in Section 4.2.3). We extend the minor
relation to hypergraphs motivated by the symbiotic relations of minors and the
games characterising tree-width and tree-depth.

Hypergraph pairs of Section 4.4 are introduced in order to capture a Marshals
and robber game with asymmetric game boards (and possible moves) for the
marshals and the robber. This framework was introduced in [Adl08] as a common
generalization of tree-width of graphs and hypertree-width of hypergraphs. Here it
allows us to obtain hypergraph minors, graph minors and induced graph minors as
special cases. We also propose this as a confirmation that our notion of tree-depth
and minors in hypergraphs are indeed a robust generalization, and in our case we
use the general setting to show some of the results on hypergraphs.

4.2 Tree-depth and minors of graphs

In this section we briefly introduce the traditional graph concepts of tree-depth
(with its various characterisations) and graph minors.

4.2.1 Tree-depth of graphs

Tree-depth allows several equivalent definitions, namely via rooted forest closure,
recursive definition, vertex rankings, centred colourings, and finally a ultramono-
tone cops and robber game. For all these definitions and their equivalences we
recommend the great book Sparsity by Nešetřil and de Mendez [NdM12].

1Note on the name: The exact hyphenation follows from “tree-depth” being hyphenated
while the “hyper-” prefix is usually used in the closed form. However, there is no direct relation
to hypertrees, and “hyper-tree-depth” and “hypertreedepth” are other possible variants.

2DBLP (http://dblp.uni-trier.de/) is a computer science bibliography database by
University of Trier.
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Rooted forest closure and decomposition

Given a rooted forest F , clos(F ) is the graph obtained from F by adding an edge
between every two vertices u, v with u below v (in the rooted forest partial order).

For a graph G, td(G) is the smallest possible height of a rooted forest F such
that G ⊆ clos(F ). Note that while F and G may be assumed to have the same
vertex set, F ⊆ G generally does not hold.

This can be also treated as a tree decomposition of G with F the decomposition
forest (with an identity mapping between V (F ) and V (G)) and the condition that
every edge {u, v} ∈ E(G) is a subset of some chain of comparable vertices of F .
td(G) is then again the smallest possible height of such F .

Recursive definition

For an empty graph G, td(G) = 0. For a disconnected graph G with components
G1, . . . Gk we have

td(G) = max{td(Gi)
∣∣∣ 1 ≤ i ≤ k}.

For a connected graph G we have

td(G) = 1 + min{td(G− v)
∣∣∣ v ∈ V (G)}.

Vertex ranking and centred colouring

A vertex ranking of G is a function r : V (G) → {1..k} such that for every two
vertices u and v with r(u) = r(v) and every u-v path P , there is some vertex
w ∈ P with r(w) > r(u). The smallest h for which such r exists is td(G).

A centred colouring of G is a mapping c : V (G) → C such that for every
connected H ⊆ G some colour appears exactly once in H. td(G) is the smallest
number of colours where such c exists.

4.2.2 Cops and robber game
In [GHK+09], Ganian et al. give a cop and robber game characterization of
tree-depth, calling the game “lift-free” k-cops and robber game (as a modification
of the Helicopter game mentioned in Section 1.3.1). In [NdM12], Nešetřil and de
Mendez introduce an equivalent game called selection-deletion game. We prefer
to call the game the ultramonotone cops and robber game.

At the beginning of the game, the robber picks his starting vertex and all the
k cops start in a reserve off-board. Then in the i-th round the cops announce a
vertex vi to place a cop from the reserve. The robber may then move from his
current position along a cop-free path of any length (moving in a component of
G− {v1, . . . vi−1}). Then one of the cops off-board is placed at vi. The cops are
never removed from the board. The cops win the game if they capture the robber
before running out of cops in the reserve (that is in k rounds), the robber wins
otherwise. For a given G, td(G) ≤ k if and only if k cops have a winning strategy.

The “ultramonotonicity” in the name of the game refers to the fact that cops
are never removed. This is related to a weaker monotonicity condition which
demands that any area once made inaccessible for the robber may never get
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accessible to him again. The condition on never moving the cops may be seen as
a strengthening of this requirement. Below we modify the game to marshals and
hypergraphs.

4.2.3 Graph minors
As mentioned in Section 4.1, graph minors have been introduced in 1983 by
Robertson and Seymour [RS83] and are already a standard part of graph theory
tools. We give a short definition and remember several useful properties.

A graph H is a minor of a graph G, denoted G 4 H if H can be obtained
from a subgraph of G by a sequence of edge contractions. Alternatively, a minor
of G is any graph obtainable from G by a series of vertex deletions, edge deletions
and contractions in any order.

It is straightforward that the minor relation is a partial order, and it generalises
the subgraph relation. One of the most important results on graph minors is the
following by Robertson and Seymour.

Theorem 58 (Graph Minor Theorem, [RS04]). Any infinite set of finite simple
graphs contains two minor-comparable elements.

The main consequence of this theorem is the forbidden minor characterisation:
For any non-trivial minor-closed graph class G, there is a finite set of graphs
{F1, . . . Fk} such that:

∀G : G ∈ G ⇐⇒ (∀i : Fi 64 G) .

An alternative definition of the minor relation is via minor models: A minor
model of H in G is a function m mapping every V (H) to a connected subgraph of
G such that m(u)∩m(v) = ∅ for all distinct u, v ∈ V (H) and for every uv ∈ E(H)
the subgraphs m(u) and m(v) of G are connected by a direct edge of G. We then
have H 4 G if and only if there is a minor model of H in G.

The equivalence can be easily demonstrated by taking the target subgraphs of
m as the connected subgraphs to be contracted to a single vertex each, yielding a
supergraph of H. On the other hand, the set of vertices of G eventually contracted
to form some vertex v ∈ V (H) can be taken as m(v). We omit the details.

4.3 Tree-depth and minors of hypergraphs
In this section we generalise the above concepts to hypergraphs, showing their
most interesting properties. Section 4.4 introduces these concepts in an even more
general setting, sometimes yielding definitions below as specialisations, but we
present the matter in the (logical) order of increased generality. However, some of
the proofs are postponed to the more general setting.

4.3.1 Hypertree-depth
Hypertree-depth is defined as follows. Let H be a hypergraph. A decomposition
forest of H is a tuple (F,C), where F is a rooted forest, and C : V (F )→ E(H) is
a mapping, satisfying the following conditions.
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(dec1) For every vertex v ∈ V (H) there is a node t ∈ V (F ) such that v ∈ C(t).

(dec2) For every edge e ∈ E(H) there are ≤F -comparable nodes s, t ∈ V (F )
such that e ⊆ C(s) ∪ C(t).

(dec3) All s, t ∈ V (F ) satisfy: If C(s) ∩ C(t) 6= ∅ then the node s ∧ t exists and
C(s) ∩ C(t) ⊆ ⋃r∈↓(s∧t) C(r).

The hypertree-depth of a hypergraph H, hd(H), is the minimum height of
a rooted forest F , taken over all decomposition forests (F,C) of H. Note that
if H has isolated vertices (not present in any edge), then H does not have a
decomposition forest. In this case hd(H) =∞.

It is easy to see that we can equivalently replace condition (dec2) by the
following condition (dec2′).

(dec2′) every hyperedge e ∈ E(H) satisfies e ⊆ ⋃t∈Z C(t) for some chain Z in F .

The trivial forest consisting of isolated vertices, each of them corresponding to
one hyperedge of a given hypergraph satisfies (dec1) and (dec2). Thus, condition
(dec3) might be viewed as the condition enforcing non-triviality of a decomposition
forest and cannot be omitted. In particular, for a decomposition forest of a
hypergraph H, condition (dec3) ensures that every tree of the decomposition
forest corresponds to a union of connected components of H, i.e. two hyperedges
can be mapped to different trees of a decomposition forest only if their vertices
are contained in two distinct connected components of H.

When we view a graph G as a 2-uniform hypergraph, generally td(G) 6= hd(G).
However, td(G) and hd(G) are linearly bounded.

Lemma 59. Any hypergraph H with edges of size at most k satisfies

k hd(H) ≥ td(H) ≥ hd(H).

In particular, any graph G satisfies 2 hd(G) ≥ td(G) ≥ hd(G).

Proof. Let G = H. For the first inequality, assume we have an optimal decompo-
sition tree (F,C) of H. Define f : V (G)→ V (F ) by letting f(v) = u with u the
lowest node of F with v ∈ C(u). This node is unique by (dec3).

Now f may not be injective – up to k vertices may map to the same node
(since edges of H have size at most k). We can resolve that by splitting every
such node u into a path u1, . . . uk, making u1 adjacent to the parent of u and uk

C

DB

A

E

A
B

C

D

E

Figure 4.1: Example of a decomposition tree of a hypergraph.
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to all children of u. We also change f to map the vertices to u1, . . . uk arbitrarily
injectively. Let F ′ be the resulting forest and f ′ the resulting injective mapping.

We now have G ⊆ clos(F ′) as shown by f ′: let e = xy ∈ E(G) and s, t be
as in (dec2). Then f ′(x) ≤ s and f ′(y) ≤ t and therefore f ′(x) and f ′(y) are
≤F ′-comparable. Obviously, the depth of F ′ is at most k times the depth of F .

For the second inequality, let F be an optimal forest with G ⊆ clos(F ). Define
C : V (F ) = V (G) → E(G) with C(u) an arbitrary edge of containing u. Then
(F,C) trivially satisfies (dec1) and (dec2). For (dec3), have s, t ∈ V (F ) and
U = C(s) ∩ C(T ). Note that s and t are also vertices of G and s ∈ C(s) and
t ∈ C(t). Now either s and t are comparable, in which case the required node
is the lower of s, t. Or s and t are incomparable, in which case every u ∈ U is
adjacent to both s and t in G = H, and therefore is below both s and t and
u ∈ C(u). This gives us that U ⊆ ⋃r∈↓(s∧t) C(r).

Note that this is tight, as we have td(Kkn) = 2 hd(Kk
kn) = kn. (with Kk

n the
complete k-uniform hypergraph on n vertices). Furthermore, for graphs we have
td(P2n−2) = hd(P2n−2) = n, where Pn is the path with n edges (cf. Example 77).
For k ≥ 2, we can replace each edge of Pn with a size k hyperedge, introducing
new vertices for each edge. This gives an almost tight bound (slack by an additive
factor of k − 2).

It might seem desirable for a hypergraph extension of tree-depth definition
that when we view a graph G as a hypergraph, we would have td(G) = hd(G).
Our definition does not satisfy this (and neither do tree-width and generalized
hypertree-width, nor path-width and hyperpath-width). The reason for this is
that tree-depth counts the vertices in the decomposition, while the hypergraph
measures hypertree-width, hyperpath-width and hypertree-depth count the number
of edges covering certain vertex sets. This stems from the applications in database
theory and constraint satisfaction problems, where tuples are counted rather that
elements.

4.3.2 Alternative characterisations of hypertree-depth
Hypertree-depth allows a natural inductive definition as well as characterisations
by vertex-hyperrankings and centred hypercolourings, as done for tree-depth by
Nešetřil et al. [NdM06]. We give these in a slightly more general setting for
hypergraph pairs in Section 4.4.2 and do not repeat the hypergraph version here.
The definitions and properties follow naturally for any H by considering the
hypergraph pair (H,H).

4.3.3 Marshals and robber game

We generalise the game defined in Section 4.2.2. The ultramonotone3 robber and
marshals game on a hypergraph H is played by two players: first controlling k
the marshals and second the robber. The marshals are initially off-board and are

3The word ‘ultramonotone’ refers to the fact that the ultramonotone robber and marshals
game is ‘monotone’ in the sense of [GLS03] (robber’s area monotonically shrinks). Not removing
the marshals is much stronger – and hence the term.
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placed on hyperedges of H. Once they occupy a hyperedge, they stay there for
the rest of the game. The robber moves on vertices of H.

In a play of the ultramonotone robber and marshals game, the robber begins
by choosing a vertex r0 ∈ V (H) and placing the robber on r0. Then, in every
round of the game with robber at r and marshals on M ⊆ E, the marshals select
a hyperedge e′ ∈ E(H) and reveals it to the robber. The robber then selects a
vertex r′ ∈ V (H) that is connected to r by a path in H \ ⋃M . He moves the
robber to r′ and the marshals place a new marshal on e′.

The marshals win if they reach a position r ∈ ⋃M before they run out of
marshals. The robber wins if the marshals run out of marshal tokens. A winning
strategy for the marshals is then a winning strategy for the marshals such that
every play played according to the strategy has length at most k rounds (the
initial robber placement is not considered a round).

This game characterizes hypertree-depth. The following theorem follows
directly from Lemma 64, Theorem 69 and Observation 68 below.

Theorem 60. A hypergraph H has hd(H) ≤ k if and only if k marshals have a
winning strategy for the ultramonotone robber and marshals’ game on H.

4.3.4 Hypergraph minors
In this section we propose a concept of minors for hypergraphs. The concept of
minor maps and models are omitted, as they follow from applying the definitions
for hypergraph pairs (introduced in Section 4.4.4) to (H,H).

For a hypergraph H, the hypergraph obtained from H by contracting an edge
e = {x, y} such that e ⊆ e′ ∈ E(H) is the hypergraph H/e with V (H/e) =
V (H) \ e ∪ {ve} and

E(H/e) =
{
h ∈ E(H)

∣∣∣ h ∩ e = ∅
}
∪
{

(h \ e) ∪ {ve}
∣∣∣ h ∈ E(H), h ∩ e 6= ∅

}
.

In other words, ve is the new contracted vertex and every hyperedge containing
some v ∈ e is set to contain ve. Note that we usually consider |e| = 2 which
corresponds to contracting e ∈ E(H).

Let H and H ′ be hypergraphs. Then H is a minor of H ′, denoted H 4 H ′ if
H can be obtained from H ′ by a sequence of the following operations:

• vertex deletion,

• contraction of an edge e ∈ E(H),

• addition of a hyperedge e such that H[e] is a clique,

• deletion of a proper sub-hyperedge e ∈ E(H), e ( e′ ∈ E(H).

Note that we do not allow arbitrary hyperedge removal, so a sub-hypergraph
is not necessarily a minor. From our game and decomposition point of view, a
hypergraph with a hyperedge containing all the vertices would be trivial, while
removing this edge (even if preserving the underlying graph) might increase the
complexity arbitrarily. While this argument is not rigorous, it is not bound to a
single width parameter or game, but captures most scenarios where the hyperedges
represent a unit to be taken, counted or paid for.

67



The first two operations are analogous to traditional graph minors. In the
spirit of the previous paragraph, the third operation only decreases the ‘cost’
without changing the underlying graph, and the last removes hyperedges that are
‘made redundant’ by other edges.

Hypergraph minors behave as graph minors of the underlying graphs.

Lemma 61. Let H and H ′ be hypergraphs. If H 4 H ′, then H 4 H ′.

Proof. It is straightforward to see that every hypergraph minor operation on H
has an effect on H corresponding to some minor operation (or no effect at all).

Note that the converse does not hold: If H is the path of length two and H ′ is
the triangle (both viewed as hypergraphs), then H 4 H ′, but H 64 H ′ because we
do not allow deleting arbitrary hyperedges.

It seems desirable to have graph minors as a special case of hypergraph minors.
For this, we move one step further and generalise minors to hypergraph pairs in
Section 4.4.4, getting a if-and-only-if relation with graph minors in Observation 72.
There we also introduce hypergraph minor models and maps.

4.4 Tree-depth and minors of hypergraph pairs
In the ultramonotone robber and marshals game on a hypergraph H we restricted
the robber’s movement to the underlying graph H. However, we can lift this
restriction and instead choose any graph G with V (G) = V (H) as the ‘game
board’ for the robber. With this, we generalize our setting from hypergraphs to
hypergraph pairs; a setting used previously by Isolde Adler [Adl08] to define a
common generalization of tree-width and hypertree-width.

This allows us to handle both hypertree-depth of hypergraphs and tree-depth
of graphs at the same time. Moreover, we will use this slightly more flexible
framework in Section 4.4.4 to capture both minors in hypergraphs and (traditional)
minors in graphs.

A hypergraph pair is defined as a pair (G,H) consisting of a graph G and a
hypergraph H with V (G) = V (H). There is no other restriction on the edges or
the hyperedges. A hypergraph pair (G′, H ′) is an (induced) subhypergraph pair of
(G,H) if G′ is an (induced) subgraph of G and H ′ is an (induced) subhypergraph
of H.

4.4.1 Hypertree-depth of hypergraph pairs
We also extend the definition of hypertree-depth to hypergraph pairs (G,H) and
give some intuition below the definition.

A decomposition forest of (G,H) is a triple (F,B,C), where F is a rooted
forest, B : V (F ) → 2V (G), and C : V (F ) → E(H) are mappings, satisfying the
following conditions.

(pdec0) B(t) ⊆ C(t) for every t ∈ V (F ),

(pdec1) For every vertex v ∈ V (G) there is a node t ∈ V (F ) such that v ∈ B(t).
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(pdec2) For every edge e ∈ E(G) there are ≤F -comparable nodes s, t ∈ V (F )
such that e ⊆ B(s) ∪B(t),

(pdec3) All s, t ∈ V (F ) with s 6= t satisfy B(s) ∩B(t) = ∅.

The hypertree-depth hd(G,H) of a hypergraph pair (G,H) is the minimum
height of a rooted forest F , taken over all decomposition forests (F,B,C) of
(G,H).

Note that hd(G,H) = 1 if and only if for every connected component C ⊆ V (G)
of G, there exists a hyperedge e ∈ E(H) such that C ⊆ e. hd(G,H) is bounded
from above by the minimum number of hyperedges of H necessary to cover V (G).

The forest F and the mapping C play the same roles as on hypergraphs, and
intuitively, B(s) indicates which of the vertices of C(s) are ‘covered’ in the branch
of F containing s. If G 6= H, we may have a hyperedge e with G[e] disconnected
and e present as C of multiple nodes si. In this case, B distinguishes which
connected components of G[V \B(↓ ti)] (with ti the parent of si) are covered by
the nodes above si.

This ‘entire connected components’ property of B is illustrated in the following
lemma.

Lemma 62. Let (G,H) be a hypergraph pair with a decomposition forest (F,B,C),
and let X ⊆ V (G) be connected in G.

1. There exists precisely one connected component T of F such that X∩B(T ) 6=
∅ and we have X ⊆ B(T ).

2. If T is a connected component of F and t ∈ V (T ) with X ⊆ B(Tt) \B(↓ t),
then t has precisely one child s such that X ⊆ B(Ts).

Proof. 1. If there were two trees T1, T2 of F with B(T1) and B(T2) intersecting
X, then by (pdec3) we have |X| > 1, and there is an edge {u, v} ∈ E(G[X])
with u ∈ B(T1) and v ∈ B(T2), contradicting (pdec2).

2. Similarly, if there are two child nodes s1 and s2 with B(Ts1) and B(Ts2)
intersecting X, there is an edge {u, v} ∈ E(G[X]) with u ∈ B(Ts1) and v ∈ B(Ts2),
which is impossible by (pdec2) and (pdec3).

We say that a decomposition tree (F,B,C) of (G,H) is small, if B(t) 6= ∅ for
every t ∈ V (F ). Leaving out all the nodes with B(t) = ∅ (possibly contracting
the edge to the parent of t) yields a small decomposition tree with smaller or
equal depth.

Replacing condition (pdec3) with the following condition (pdec3′) we obtain
another definition of decomposition forest which more closely resembles that of a
decomposition forest of a (single) hypergraph. Trivially, any decomposition forest
satisfying (pdec3) satisfies (pdec3′). On the other hand we get the following
lemma.

(pdec3′) All s, t ∈ V (F ) satisfy: If B(s) ∩ B(t) 6= ∅ then the node s ∧ t exists
and B(s) ∩B(t) ⊆ B(↓ (s ∧ t)),

69



Lemma 63. For every decomposition forest (F,B,C) that satisfies (pdec0),
(pdec1), (pdec2) and (pdec3′), but not necessarily (pdec3), there is a mapping
B′ such that for all t ∈ V (F ), B′(t) ⊆ B(t) and (F,B′, C) is a decomposition
forest.

Proof. We set B′(t) = B(t) \ ⋃s<F t B(s). Now (pdec3) is satisfied: for any
s, t ∈ F , B′(s) ∩ B′(t) ⊆ B(s) ∩ B(t) ⊆ B(↓ (s ∧ t)) and these vertices have
been removed from at least one of B′(s) or B′(t). It is easy to see that (pdec0),
(pdec1) and (pdec2) are preserved by going from B to B′.

Now we finally connect the hypertree-depth of hypergraphs and hypergraph
pairs.

Lemma 64. Let H be a hypergraph. Then hd(H) = hd(H,H).

Proof. We may assume that H is connected, or proceed with individual compo-
nents.

Towards a proof of hd(H) ≤ hd(H,H), let (F,B,C) be a small decomposition
forest of (H,H) such that the height of F is hd(H,H). We claim that (F,C) is
a decomposition forest of H witnessing hd(H) ≤ hd(H,H). By (pdec2), (F,C)
satisfies (dec2).

Towards showing that condition (dec3) is satisfied, let s, t ∈ V (F ) be vertices
in the same component of F and let v ∈ C(s) ∩ C(t). Since (F,B,C) is small,
there exists a vertex w ∈ B(s) \ (⋃r<s B(r)). By (pdec0), {v, w} ∈ E(H). Hence
by condition (pdec2) we must have v ∈ B(Ts) ∪ (⋃r∈↓s B(r)). Applying the
analogous argument to t, we must have v ∈ B(Tt) ∪ (⋃r∈↓t B(r)).

Since B is a partition of V (G), we have a unique u with v ∈ B(u), u ≤ s ∧ t,
and we are done.

Conversely, if (F,C) is a decomposition forest of H of height hd(H), let
B(t) := C(t) for all t ∈ V (F ). Then (F,B,C) is a decomposition forest satisfying
(pdec3′) instead of (pdec3). By Remark 63, there is a decomposition forest
(F,B′, C) of (H,H) witnessing hd(H,H) ≤ hd(H).

Note that in the hypergraph pair framework, we can actually have td(G) =
hd(G,H) for H a hypergraph consisting of all singletons over V (G):

Lemma 65. Let (G,H) be a (1-uniform) hypergraph pair where E(H) = {{v} |
v ∈ V (G)}. Then hd(G,H) = td(G).

Proof. A small decomposition forest (F,B,C) of such (G,H) has B = C, both
maps to singletons. Let F ′ be a copy of F with the set V (G) obtained by replacing
v ∈ V (F ) with the only element of B(v). Then we directly have G = clos(F ′).

On the other hand, if F is optimal such that G = clos(F ′), then (F, s, s) is a
decomposition forest of (G,H), where s(v) = {v}.

4.4.2 Alternative characterisations of hypertree-depth
In spirit of Nešetřil et al. [NdM06], we present alternative characterisations
of hypertree-depth. We give an inductive definition together with definitions
based on vertex-hyperrankings and centred hypercolourings. For brevity, we give
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the definitions only for hypergraph pairs, but the definitions and properties for
hypergraphs follow easily by using (H,H) as the hypergraph pair.

These characterisations and their similarity to those of Nešetřil et al. are
indication that our notion of hypertree-depth is the correct hypergraph general-
isation of tree-depth. Note that the corresponding definitions for graphs G are
obtained by using the hypergraph pair (G, (V (G), {{v}, v ∈ V (G)})) (1-uniform
hypergraphs as in Lemma 65).

Recursive definition

Similarly to tree-depth of graphs [NdM06], hypertree-depth has an inductive
definition.

Lemma 66. Let (G,H) be a hypergraph pair satisfying V (G) = ⋃
E(H) and

|V (H)| > 0. Let G1, . . . Gp be the connected components of G. Then

hd(G,H) =



1, if there exists e ∈ E(H)
with V (G) ⊆ e,

1 + min
e∈E(H)

hd
(
G \ e,H[V (G) \ e]

)
, if p = 1 and V (G) \ e 6= ∅

for all e ∈ E(H),
max

i∈{1,...,p}
hd
(
Gi, H[V (Gi)]

)
, otherwise.

Proof. We show this by induction on hd(G,H). If hd(G,H) = 1 then we are in
the first case. Now let hd(G,H) = k > 1 and assume the lemma has been proven
for all hypergraph pairs with hypertree-depth at most k− 1. If G is connected, by
Lemma 62 there exists a decomposition tree (T,B,C) of height k for hd(G,H).
Let r be the root of T and let F := T \ r be the rooted forest obtained from T
be deleting r and choosing the children of r as the new roots of F . Then the
restriction (F,B|V (F ), C|V (F )) shows that hd

(
G \ C(r), H[V (G) \ C(r)]

)
≤ k − 1

and hd(G,H) ≥ hd
(
G \ C(r), H[V (G) \ C(r)]

)
+ 1.

Conversely, let e ∈ E(H) and let (F,B,C) be a decomposition forest of height
hd(G \ e,H[V (G) \ e]) for (G \ e,H[V (G) \ e]). Let T be the rooted tree obtained
from F by introducing a new node r as the new root and connecting r to all
old roots of F by edges. Letting B(r) = C(r) = e we see that hd(G,H) ≤
hd
(
G \ e,H[V (G) \ e]

)
+ 1.

If G is not connected, it is easy to see that the third case applies.

Vertex-hyperrankings and centred hypercolourings

Let (G,H) be a hypergraph pair. A vertex-hyperranking of (G,H) is a (not
necessarily proper) colouring c : V (G)→ {1, . . . k} such that for every i ≤ k and
for every connected component X of Gi := G[{v ∈ V (G) | c(v) ≥ i}] there is a
hyperedge e ∈ E(H) such that {v ∈ X | c(v) = i} ⊆ e.

Let (G,H) be a hypergraph pair. A centred hypercolouring of (G,H) is a (not
necessarily proper) colouring of V (G) such that for every induced subhypergraph
pair (G′, H ′) where G′ is connected, there exists a colour a = a(G′, H ′) colouring
at least one vertex of G′ and a hyperedge e ∈ E(H ′), such that {v ∈ V (G′) |
v has colour a} ⊆ e.
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Theorem 67. For every hypergraph pair (G,H), the following are equivalent:

• hd(G,H) has a vertex-hyperranking with labels {1, . . . k},

• (G,H) has a centred hypercolouring with at most k colours, and

• hd(G,H) ≤ k.

Proof. We may assume that G is connected. Assume that (G,H) has a centred
hypercolouring with k colours. Then there exists a colour a and a hyperedge
e ∈ E(H) such that ∅ 6= X := {v ∈ V (G) | v has colour a} ⊆ e. If k = 1, then
V (G) ⊆ e and hence hd(G,H) ≤ 1.

Let k > 1 and assume that we have proved the theorem for all hypergraph
pairs having centred hypercolourings with k − 1 colours. Since the induced
subhypergraph pair (G \ X,H \ X) has a centred hypercolouring with k − 1
colours, we know that hd(G \X,H \X) ≤ k − 1, witnessed by a decomposition
forest (F,B,C). We create a new root r with B(r) = X and C(r) = e, and we let
the old roots of F be the children of r. In this way we obtain a decomposition
tree witnessing hd(G,H) ≤ k.

Now assume that hd(G,H) = k, witnessed by a decomposition forest (F,B,C).
Rank a v ∈ V (G) with the minimum depth of a node t ∈ V (F ) with v ∈ B(t). We
claim that this is a vertex-hyperranking: Let (G′, H ′) be an induced subhypergraph
pair of (G,H) such that G′ is connected. By Lemma 62 there is a connected
component T ⊆ F with V (G) ⊆ B(T ) and T is the unique component with
V (G) ∩ B(T ) 6= ∅. Let t in V (T ) be the node of minimum depth such that
B(t) ∩ V (G) 6= ∅. From (pdec2) we get that all V (G′) are above t and we have
a proper vertex-hyperranking.

The last of the three implications follows from the fact that every vertex-
hyperranking of a hypergraph pair (G,H) is a centred hypercolouring.

4.4.3 Marshals and robber game on hypergraph pairs
The ultramonotone robber and marshals game on a hypergraph pair (G,H)
is played like the ultramonotone robber and marshals game on a hypergraph
introduced in Section 4.3.3, with the difference that the marshals ‘play on H’
while the robber ‘plays on G’: The marshals occupy the hyperedges of H and the
robber moves via paths in G, but only on the vertices not blocked by the already
placed marshals.

Formally, in a play of the ultramonotone robber and k-marshals game on a
hypergraph pair (G,H), the robber begins by choosing a vertex r0 ∈ V (H) and
placing the robber on r0. Then, in every round of the game with the robber on r
and the marshals on M , the marshals select a hyperedge e′ ∈ E(H) and reveal
it to the robber. The robber then selects a vertex r′ ∈ V (H) that is connected
to r by a path in G \ ⋃M . He moves the robber to r′ and the marshals place a
marshal token on e′.

Again, the marshals win if they reaches a position with r ∈ ⋃M , the robber
wins if the marshals run out of their k tokens before that. The winning strategies
are defined as in Section 4.3.3 When the the robber is on r and the marshals are
on M , the component of G \ ⋃M containing r is called the robber space (with
respect to M).
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This is a generalization of the game for hypergraphs, as stated by the following
straightforward observation:

Observation 68. For a hypergraph H, k marshals have a winning strategy on H
if and only if k marshals have a winning strategy on (H,H).

We now present and prove the equivalence of the ultramonotone robber and
marshals game and the hypertree-depth on hypergraph pairs. This also yields the
proof of the equivalence on hypergraphs (Theorem 60).

Theorem 69. A hypergraph pair (G,H) has hd(G,H) ≤ k if and only if k
marshals have a winning strategy for the ultramonotone robber and marshals game
on (G,H).

Proof. If a vertex of V (G) is not contained in any hyperedge of H, then hd(G,H) =
∞ and there is no marshals’ winning strategy. From now on we assume that
V (G) ⊆ ⋃E(H).

First, let (F,B,C) be a decomposition tree of (G,H) of height hd(G,H). We
now describe a strategy for the marshals. Intuitively, the marshals play along the
C-labels of a branch of F , starting at a root and always following the robber.

First, the robber selects a vertex r0 ∈ V (G) and the play is in position (r0, ∅).
Since the robber is only allowed to move along paths in G, he will now stay in
the connected component X0 ⊆ V (G) with r0 ∈ X0.

By Lemma 62, there exists precisely one component T of F such thatX ⊆ B(T ).
The marshals select t to be the root of T and announce their move to C(t). The
robber moves to a vertex r that is connected to r0 in G and the marshals complete
their move.

If r ∈ C(t), the marshals win. Otherwise, by Lemma 62, there is a unique
child s of t such that r ∈ B(Ts), and the marshals announce their move to C(s).
Continuing in this way along a chain in T , the marshals capture the robber in at
most k rounds.

Towards a proof of the other implication, suppose that k marshals have a
winning strategy S in the ultramonotone robber and marshals game on (G,H).

First, observe that we may assume that the marshals’ moves according to S
depend only on the robber space, that is the component of V (G) \⋃M containing
r. Indeed, a robber on r1 and r2 from the same robber space has exactly the same
possibilities to move before the marshal token is placed.

Second, we may assume that in each move played according to S the robber
space size decreases by at least one vertex as any marshal moves not shrinking
the robber space can be omitted.

Now we construct the nodes of a tree T while keeping track of a game position
for every node constructed. We construct a separate rooted decomposition for
every connected component A of G with a root vertex t0 as follows. Suppose in
the first move, the robber chooses a vertex r0 ∈ V (A). The node t0 corresponds
to the game position (r = r0,M = ∅).

Now for every node t of T corresponding to a position (r,M) we recursively
define C(t), B(t), the set of t’s children and their corresponding game positions.
Let X be the robber space. Let e = S(r,M) be the next marshals’ move according
to S. Then set B(t) = e ∩X and C(t0) = e. Also, let Xi be the components of
X \e. For every Xi, choose arbitrary ri ∈ Xi and add a node ti to T as a child of t.
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The position corresponding to ti is (ri,M ∪ {e}). Note that a node corresponding
to a position winning for marshals (when r ∈ ⋃M) has no children.

Let F be the rooted forest obtained by doing this for all connected components
of G. We claim that (F,B,C) is a decomposition forest of height at most k for
(G,H). Condition (pdec0) is satisfied by construction.

Condition (pdec1) is satisfied, because S is a winning strategy and hence the
robber is captured in one leaf node of F , regardless on which vertex he chooses to
reside.

Condition (pdec3) is satisfied: B(s) and B(t) for s, t comparable are disjoint
by the construction, for s, t incomparable we have that the robber spaces Xs at s
and Xt at t are disjoint.

For (pdec2), let {u, v} ∈ E(G). Assume the robber has the strategy to play
staying inside the set {u, v} through the entire game. Since S is a winning strategy,
there are hyperedges e and f taken by the marshals in a single play with u ∈ e
and v ∈ f . By construction of (F,B,C), there are nodes s, t with e ∈ C(s) and
f ∈ C(t) in a chain corresponding to the play above.

Since any play of S has at most k rounds, F has height at most k.

4.4.4 Hypergraph pair minors
We now generalise the notion of graph minors to hypergraph pairs along the lines
of Section 4.3.4, and provide additional general properties and examples.

We start with the operations: Let (G,H) be a hypergraph pair and let
v ∈ V (G). The hypergraph pair (G \ v,H[V (G) \ v]) is called the hypergraph pair
obtained from (G,H) by deleting vertex v, denoted (G,H) \ v. For e ∈ E(G), the
hypergraph pair (G \ e,H) is called the hypergraph pair obtained from (G,H) by
deleting edge e. Let e ⊆ V (H), then (G,H+e), where H+e = (V (H), E(H)∪{e}),
is the hypergraph pair obtained from (G,H) by adding hyperedge e. If e, e′ ∈ E(H)
and e ( e′, then (G,H \e) is the hypergraph pair obtained from (G,H) by deleting
hyperedge e. Let e = {x, y} ∈ E(G). Then the hypergraph pair obtained from
(G,H) by contracting edge e, denoted by (G,H)/e, is the hypergraph pair obtained
by contracting e in both parts, i.e. (G,H)/e = (G/e,H/e).

A hypergraph pair (G′, H ′) is a minor of (G,H), denoted by (G′, H ′) 4 (G,H),
if (G′, H ′) can be obtained from (G,H) by a sequence of the following operations:

• vertex deletion,
• graph edge contraction,
• graph edge deletion,
• hyperedge addition, and
• deletions of a proper sub-hyperedge.

Note that if H is a hypergraph and (G,H ′) is a hypergraph pair with (G,H ′) 4
(H,H), then G is not necessarily the underlying graph of H ′ (for example, G
could be obtained from H by deleting an edge).

The intuitive motivation for these operations is similar to hypergraph minor
operations, viewing the graph as defining the complexity and the hypergraph as
the means of decomposition or covering it. Namely, the first two and the last
operations are the same as for hypergraphs; the third decreases the complexity
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a) a hypergraph pair

Figure 4.2: Example of minor operations on a hypergraph pair (edges of the graph
are dotted).

of the underlying structure without decreasing the covering potential; and the
fourth is similar to ‘addition of hyperedges on cliques’ in hypergraph minors, but
here we need not restrict it by the underlying graph.

The following lemma shows a direct connection between hypergraph minors
and hypergraph pair minors.

Lemma 70. Let H and H ′ be hypergraphs. Then H 4 H ′ if and only if (H,H) 4
(H ′, H ′).

Proof. The “only if” follows from the fact that the hypergraph minor operations
are special cases of minor operations in hypergraph pairs of the form (H,H).

For the “if” part, let o1, . . . ok be a sequence of hypergraph pair minor operations
taking (G0, H0) = (H ′, H ′) to (Gk, Hk) = (H,H). We modify the sequence to
only contain the operations for hypergraph minors, showing H 4 H ′. Notice that
in any intermediate state (Gi, Hi), we have Gi ⊆ Hi.

First, we make sure that all the vertex deletions come first in the sequence by
“bubbling” every vertex deletion to front, adjusting the sequence locally to get the
same result in the following way.

When swapping v′-deletion with uv-edge contraction resulting in v′, drop both
operations and replace them with u-deletion and v-deletion. When swapping
v-deletion with uv-edge-deletion, drop the edge deletion. When swapping v-
deletion with e-hyperedge-addition such that v ∈ e, replace e-addition with
e \ {v}-addition. When swapping v-deletion with e-hyperedge-deletion such that
e is a proper subhyperedge, we either replace it with e \ {v}-deletion (if v ∈ e),
remove (if e ∪ {v} is a hyperedge), or leave it as-is (otherwise). Swapping two
operations on disjoint vertex sets requires no changes.

Second, in a similar manner, we make sure all the edge contractions come
just after the vertex deletions. Assume we “bubble” a uv-contraction resulting
in vertex v′. When swapping with vw-edge-removal, replace the removal with
v′w-removal (if uw is not an edge) or drop the edge removal (if uv is an edge).
Swapping with hyperedge operations and independent edge contractions requires
no changes.

Now we have a modified sequence still resulting in (Gk, Hk) = (H,H). Notice
that all vertex deletions and edge contractions now preserve Gi = Hi. If this is
true for all the operations, it is easy to see that there are no edge deletions and
the hyperedge operations satisfy the required conditions and we are done.
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Otherwise, let i be first such that Gi 6= Hi and take uv ∈ E(Hi)− E(Gi). All
subsequent operations (hyperedge addition, removal of a proper subhyperedge,
edge deletion) preserve the fact that uv 6∈ E(Gj) and uv ∈ E(Hj) for all j > i, a
contradiction with (Gk, Hk) = (H,H).

The following example shows some basic properties of minors.

Example 71. 1. If H is an induced subhypergraph of H ′ then H 4 H ′.

2. Let n ∈ N. Any hypergraph pair (G,H) with |V (G)| ≤ n is a minor of
(Kn, In).

3. We have P3 4 K3, but (P3, P3) 64 (K3, K3).

However, minors in hypergraph pairs do generalise minors in graphs in the
following sense.

Observation 72. Let G and F be graphs. Then

G 4 F ⇐⇒ (G,K0
V (G)) 4 (F,K0

V (F ))
⇐⇒ (G,K1

V (G)) 4 (F,K1
V (F ))

where Ki
V = (V,

(
V
i

)
) is the complete i-uniform hypergraph on V .

Minor maps and models

Minor maps and minor models are well-known concepts for graph minors. We
generalise them to the hypergraph pair setting. The hypergraph variants are not
specified explicitly and can be obtained by specialising the pair concepts and
properties to (H,H).

We first recall the definitions graphs.
Let G and G′ be graphs. A minor map (from G to G′) is a function µ defined

on V (G) ∪ E(G), that takes a vertex v ∈ V (G) to a non-empty connected subset
µ(v) ⊆ V (G′) and an edge e ∈ E(G) to an edge µ(e) ∈ E(G′) such that

• any vertices u, v ∈ V (G) with u 6= v satisfy µ(u) ∩ µ(v) = ∅, and

• for every edge {u, v} ∈ E(G) the image µ({u, v}) connects the vertex images
µ(u) and µ(v).

It is straightforward to verify that there is a minor map from G to G′ if and only
if G 4 G′.

The subgraph ⋃v∈V (G) G
′[µ(v)] ∪ ⋃e∈E(G) µ(e) of G′ is called a minor model of

G in G′.
Now for hypergraph pairs: Let (G,H) and (G′, H ′) be hypergraph pairs, and

let µ be a minor map from G to G′. We say that µ is a minor map from (G,H)
to (G′, H ′), if for every hyperedge e ∈ E(H ′), the set {v ∈ V (G) | µ(v) ∩ e 6= ∅}
is a subset of some hyperedge of H or empty.

We call a hypergraph pair (M,F ) a minor model of (G,H) in (G′, H ′), if M
is a model of G in G′ and F = H ′[V (M)].

The following lemma connects minor maps and minor models to minors. We
only sketch the (otherwise straightforward) proof.
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Lemma 73. Any two hypergraph pairs (G,H) and (G′, H ′) satisfy

(G,H) 4 (G′, H ′) ⇐⇒ there is a minor map from (G,H) to (G′, H ′).

Proof. First the ‘only if’ part. Assume a minor operation sequence. We compute a
minor map (G,H)→ (G′, H ′) for every prefix of the operation sequence, starting
with identity and adapting it locally with every minor operation. These modifica-
tions straightforwardly follow for every operation and we omit the discussion.

For the ‘if’ part, assume a minor map µ. To get the minor, first delete all
vertices not in the image of µ, contract the individual images of µ (arbitrarily) and
then remove edges and hyperedges as necessary. Again, we omit the details.

4.5 Computational complexity and minor order-
ing

For graphs, a famous result by Robertson and Seymour shows that testing for a
fixed minor is solvable in cubic time, i.e. for a fixed graph G, given a graph G′,
there is a cubic time algorithms that decides whether G 4 G′ holds [RS95].

In contrast, testing for a fixed hypergraph minor can be NP-hard. Fellows et
al. [FKMP95] show that there exists a graph G0 such that testing for G0 as an
induced minor is NP-complete. We extend this to the following.

Lemma 74. There exists a graph G0 such that deciding whether a given hypergraph
pair (G,H) has (G0, G0) as a minor is NP-complete.

Proof. For NP-hardness, observe that for any pair of graphs G0 and G the graph
G0 is an induced minor of G′ if and only if (G0, G0) 4 (G′, G′), and use the result
of Fellows et al. [FKMP95]. The hypergraph pair minor problem is obviously in
NP.

The induced minor ordering is known to have infinite antichains, as shown by
Matoušek et al. [MNT88]. This implies that the minor orderings of hypergraphs
and hypergraph pairs have infinite antichains as well. Here we give an explicit
example of an infinite 4-antichain of hypergraph pairs.

Remark 75. For every integer n ≥ 0 let Gn be an arbitrary graph with n vertices
and let Ki

V = (V,
(

V
i

)
) as in Observation 72.

Then the sequence
(
(Gn, K

n−1
V (Gn))

)
n∈N

of hypergraph pairs is an infinite 4-
antichain. In particular, the sequence

(
Kn−1

n

)
n∈N

is an infinite hypergraph 4-
antichain.

Proof. Let i, j ∈ N with i < j. To obtain Gi as a minor of Gj, we have to use at
least one vertex deletion or edge contraction. The first operation of either kind
leaves a hyperedge covering all the vertices of Gj (or such hyperedge was created
before the operation). We cannot remove this hyperedge so we cannot produce
(Gi, K

i−1
V (Gi)) as a minor.
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4.6 Interaction with other invariants
In this section we compare hypertree-depth to generalised hyperpath-width [Mik88]
and to generalised hypertree-width [GLS03], and show that these invariants do
not increase under taking minors. These properties are shown in the more general
setting of hypergraph pairs, but trivially follow for hypergraphs as well.

We first recall the definition of tree decomposition, hyperpath-width and
hypertree-width.

Given a graph G, (T, χ) is a tree decomposition of G when T is a tree and
χ : V (T )→ 2V (G) such that

1. ⋃v∈V (G) χ(v) = V (G)

2. ∀e ∈ E(G)∃t ∈ T (V ) : e ⊆ χ(t)

3. ∀v ∈ V (G) : the set Tv = {t ∈ V (T ) | v ∈ χ(t)} induces a connected subtree
of T .

For more information on tree-width and tree decomposition, refer to Graph
Theory [Die10] or the original publication of Robertson and Seymour [RS86].

Let (G,H) be a hypergraph pair. A generalised hypertree decomposition [Adl08]
of (G,H) is a triple (T, χ, λ) where (T, χ) is a tree decomposition of G and
λ : V (T )→ 2E(H) is a mapping such that

(ghd) Every t ∈ V (T ) satisfies χ(t) ⊆ ⋃λ(t).

The width of (T, χ, λ) is defined as

w(T, χ, λ) = max
{
|λ(t)|

∣∣∣ t ∈ V (T )
}
.

The generalised hypertree-width ghw(G,H) of (G,H) is then the smallest width
of a generalised hypertree decomposition of (G,H).

Note that any hypergraph pair (G,H) with an edge e ∈ E(H) such that
V (G) ⊆ e satisfies ghw(G,H) = 1. Moreover, any graph G satisfies tw(G) + 1 =
ghw(G,K1

V (G)) where tw(G) is the tree-width of G. For a hypergraph H we let
ghw(H) := ghw(H,H), and we obtain the original notion of generalised hypertree-
width of a hypergraph, as defined by Gottlob, Leone and Scarcello [GLS03].

If we alter the definition of generalised hypertree decompositions by requiring
that T be a path, we obtain the notions of generalised hyperpath decomposition
and the generalised hyperpath-width of (G,H), denoted by hpw(G,H). This
concept is also introduced by Adler [Adl08]. Again, for a hypergraph H we let
hpw(H) := hpw(H,H).

Theorem 76. Any hypergraph pair (G,H) satisfies

ghw(G,H) ≤ hpw(G,H) ≤ hd(G,H).

Proof. The first inequality follows immediately from the fact that every generalised
hyperpath decomposition is a generalised hypertree decomposition.

Towards the second inequality, let (F,B,C) be a decomposition forest of (G,H)
of height k. Let `1, . . . `r be an enumeration of the leaves of the trees in F , i.e.

78



of the nodes of F with degree 1 that are not roots, together with all nodes of
degree 0. We define a path P with vertices V (P ) = {`1, . . . `r}, connecting `i to
`i+1 by an edge, for 1 ≤ i < r. For every 1 ≤ i ≤ r we let χ(`i) := B(↓ `i) and
λ(`i) := {C(t) | t ∈ ↓ `i}. It is easy to see that (P, χ, λ) is a generalised hyperpath
decomposition of width ≤ k of (G,H).

In general, these inequalities are sharp:

Example 77. Let T be the class of all trees. It is easy to see that the generalised
hypertree-width of T is bounded by 1, but T has unbounded generalised hyperpath-
width. Similarly, the generalised hyperpath-width of the class P of all paths is
bounded by 1, but P has unbounded hypertree-depth, since the hypertree-depth of a
path of length n is blog2(n+ 2)c. This follows from the definition and properties
of vertex hyperranking by induction on the length of the path.

None of our hypergraph pair and hypergraph invariants can increase when
taking minors, as shown by the following two lemmas.

Lemma 78. Let (G′, H ′) 4 (G,H). Then hd(G′, H ′) ≤ hd(G,H), hpw(G′, H ′) ≤
hpw(G,H), and ghw(G′, H ′) ≤ ghw(G,H).

Proof. Let µ be a minor map from (G′, H ′) to (G,H) and for X ⊆ V (G), let
η(X) = {v ∈ V (G′) | µ(v) ∩ X 6= ∅}. Observe that if η(X) 6= ∅ and there is a
hyperedge e ∈ E(H) with X ⊆ e, then there exists e′ ∈ E(H ′) with η(X) ⊆ e′.
Generally, if η(X) 6= ∅ and some k hyperedges of H cover X, then there are at
most k hyperedges of H ′ covering η(X).

We first show the inequalities for ghw and hpw. We assume that ghw(G,H) <
∞ (hpw(G,H) < ∞, respectively). Let (T, χ, λ) be a generalised hypertree
decomposition of (G,H) with width ghw(G,H). Let T ′ = T and for t ∈ T , let
χ′(t) = η(χ(t)). Now (T ′, χ′) is a tree decomposition of G′: For v′ ∈ V (G′), let S
be all the nodes t′ of T ′ with χ′(t′) ∩ µ(v′) 6= ∅. Since µ(v′) is connected in G, it
follows from the properties of a tree decomposition that S is connected in T .

Let S ′ be the nodes of T ′ containing v′. From definition, we have S ′ = S
and the occurrences of v′ in T form a subtree. The other conditions for tree
decompositions are satisfied trivially. We let λ′(t) be the hyperedges covering
η(λ(t)) from the observation above, satisfying (ghd) for (T ′, χ′, λ′).

Now we have that (T ′, χ′, λ′) is a hypertree decomposition of (G′, H ′) showing
ghw(G′, H ′) ≤ ghw(G,H). This also proves the inequality for hpw, since if T is a
path, T ′ is a path as well.

Finally, we show that hd(G′, H ′) ≤ hd(G,H). Assume that hd(G,H) < ∞.
Let (F,B,C) be a decomposition forest of (G,H) with depth hd(G,H). Let
F ′ = F and for t ∈ V (F ′), define C ′(t) to be the hyperedge covering η(C(t)).
Define B′ recursively on F ′ (from the roots up) as B′(t) = η(B(t)) \ ⋃s<t B

′(s).
Now (F ′, B′, C ′) trivially satisfies (pdec0) and (pdec1). For (pdec2), let

e′ = (x′, y′) be an edge of G′, e = µ(e′) ∈ E(G) and take s, t ∈ V (F ) as in (pdec2)
for (G,H) and e. From definition of B′, we have x′ ∈ ⋃B′(↓ s) and y′ ∈ ⋃B′(↓ t)
or vice-versa.

For (pdec3), suppose that there are s, t ∈ F with v′ ∈ B′(s) ∩ B′(t) 6= ∅.
From definition of B′, s and t are incomparable in F . In (G,H), B(s) and B(t)
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are separated by S = ⋃
B(↓ (s ∧ t)). But µ(v) is connected, intersects both B(s)

and B(t) and avoids S – a contradiction with Lemma 62.
Therefore, (F ′, B′, C ′) is is a decomposition forest of (G′, H ′) showing that

hd(G′, H ′) ≤ hd(G,H).

Lemma 79. Let H ′ 4 H. Then hd(H ′) ≤ hd(H), hpw(H ′) ≤ hpw(H), and
ghw(H ′) ≤ ghw(H).

Proof. This follows directly from Lemma 78 on (H,H).

4.7 Remarks and open problems
We introduced the notion of hypertree-depth of hypergraphs and hypergraph
pairs and we characterised it using the ultramonotone robber and marshals game,
and using vertex-hyperrankings and centred hypercolourings. We believe that
hypertree-depth is a very natural notion with potential applications in other areas,
such as databases or constraint satisfaction.

Moreover, we introduced minors in hypergraphs and hypergraph pairs and
studied their properties. In particular, neither generalised hypertree-width, nor
generalised hyperpath-width, nor hypertree-depth increase under taking hypegraph
minors.

Within the new framework of minors in hypergraph pairs, many open questions
arise. Since testing for minors in hypergraph pairs is NP-hard, a natural question
to ask is, for which classes of hypergraph pairs the problem is in PTIME. (For
example, this is obviously the case for pairs as in Observation 72.)

A similar question arises for the minor ordering 4 in hypergraph pairs
(cf. [FHR09]): Which classes of hypergraph pairs have no infinite 4-antichains?

Let C be a class of graphs closed under taking minors, and let O be the
obstruction set for C (i.e. O is the set of 4-minimal graphs that are not in C).
Robertson and Seymour show [RS04] that O is always finite. Similarly, for a class
C ′ of hypergraph pairs that is closed under taking minors, we let the obstruction
set of C ′ be the set of all 4-minimal hypergraph pairs that are not in C ′.

Example 80. Let C be a class of graphs closed under taking minors with ob-
struction set O. Then the class of all pairs (G,H) with G ∈ C and H any
hypergraph satisfying V (G) = V (H) is closed under taking minors, and it has a
finite obstruction set {(G,H) | G ∈ O,H hypergraph with V (H) = V (G)}.

Which classes C ′ of hypergraph pairs that are closed under taking minors have
a finite obstruction set? And in particular, what is the obstruction set for the
hypergraph pairs of generalised hypertree-width (hyperpath-width, hypertree-
depth) at most 1? Would a weaker notion of a minor relation (e.g. by allowing
more minor operations) have some finiteness property while preserving game
monotonicity?
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Notation

General notation

R,R+,N real, positive real and natural numbers 6
O(f) functions asymptotically at most f 6
dist(u, v) shortest-path distance (number of edges) 7
clos(X) topological set closure 6
int(X) topological set interior 6
G�S graph restriction to a subset or a region 34
X ground set for an intersection graph 10
I set of possible representatives, I ⊆ 2X 10
ϕ(v) geometric object representing v 10
ϕ[S] ⋃

v∈S ϕ(v) 11
ϕ−1(X) vertices v with ϕ(v) ∩X 6= ∅ 11
P class of polinomially solvable problems
NP class of non-deterministically polynomial problems
PSPACE problems solvable in polynomial space
EXPTIME problems solvable in exponential time
XP problems solvable in time O(nk) with (fixed) parameter k
FPT problems solvable in time O(f(k)nc) with (fixed) parameter k
W[k] parametrized complexity hardness classes related to FPT
INT interval graphs 11
CHORDAL chordal graphs 12
cn(G) cop-number of graph G 20
max-cn(G) maximal cop-number among connected graphs of G 20

Chapter 2 specific notation

IFA interval filament graphs 13
CIRCLE circle graphs 12
FUN function graphs 12
CIRCARC circular arc graphs 12
STRING string graphs 14
OUTER-STRING outer-string graphs 14
GENUS-k-STRING string graphs on genus k surface 14
PLANAR planar graphs 10
GENUS-k graphs on genus k surface 10
BOXICITY-k graphs of boxicity k 41
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Chapter 3 specific notation

A attack family in A-defensive domination 46
B set of bases in the ∞-fast robber game 52
C(C, r) game state on cops’ turn 52
R(C,A) game state on robber’s turn 50
S cops’ strategy 8
WIN game state won for the cops 51
ϕ̃(i, j), ϕ̃(X) intervals contained in (i, j) or in a set X 11
L(u) left interval endpoint 12
R(u) right interval endpoint 12
(i, j,) open interval l to r 51
ξ(B) cover of a base 51
R̃((l1, r1), . . . ) restricted game state on robber’s turn 52
C̃(l, r) restricted game state on cops’ turn 52
canon(l, r) canonical state C(ϕ−1(l) ∪ ϕ−1(r), ϕ̃(l, r)) 51
<R,≤R, . . . intervals ordered by right endpoints 12
<L,≤L, . . . intervals ordered by left endpoints 12
opt an optimal solution to a problem 49
alg the solution found by the examined algorithm 47

Chapter 4 specific notation

clos rooted forest closure 63
H1 4 H2 minor relation 64
td tree-depth 63
hd hypertree-depth 65
hpw hyperpath-width 78
ghw generalised hypertree-width 78
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