Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Dominik Skoda

Simulink Block Library for LEGO NXT

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Toméas Bures
Study programme: Software Systems

Specialization: Dependable Systems

Prague 2014

I give a special thanks to my supervisor doc. RNDr. Tomas Bures, Ph.D. for
his dedicated help and guidance. I also thank my parents and closest for their
support that allowed me to create this work.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date July 29, 2014 signature of the author

Nazev prace: Simulink Block Library for LEGO NXT
Autor: Dominik Skoda
Katedra: Katedra distribuovanych a spolehlivych systému

Vedouci diplomové prace: doc. RNDr. Tomas Bures, Ph.D., Katedra distribuo-
vanych a spolehlivych systému

Abstrakt: Cilem této prace je vytvorit podporu platformy LEGO NXT ve vyvojar-
ském prostredi Simulink. Takovato podpora cilové platformy jiz existuje, ale ma
nékolik nevyhod. Predevsim je urcena vyhradné pro operacni systémy Windows
a jeji implementace je uzaviend, tudiz se neda rozsitit ani prizpusobit. Duraz, v
tomto projektu, je kladen predevsim na podporu opera¢nich systému zalozenych
na Linuxu a na otevienosti celého feseni umoznujici rozsiteni a prizpusobeni pro-
jektu. Modelem ftizeny vyvoj systému pro platformu LEGO NXT za pomoci
tohoto projektu zahrnuje testovani modelu pomoci simulace a generovani kodu v
prostiedi Simulinku s vyuzitim jeho standardnich nastroju a nasazovani hotovych
programu na cilova zafizeni. Systémy vygenerované s pomoci tohoto projektu se
fadi mezi systémy realného casu.

Klicova slova: Modelem tizeny navrh, Simulink, LEGO NXT

Title: Simulink Block Library for LEGO NXT
Author: Dominik Skoda
Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Tomas Bures, Ph.D., Department of Distributed and
Dependable Systems

Abstract: The goal of this work is to create a support for the LEGO NXT plat-
form in Simulink development environment. Such support of the target platform
already exists, but it suffers from several disadvantages. At first it is provided
exclusively for Windows operating systems, and the implementation is closed,
therefor neither extensible nor customizable. The main premise of this project
is the support of Linux operating systems. The project is also opened to ensure
the extensibility and customizability. The model-driven development of systems
for the LEGO NXT platform using this project comprises the model testing in
a simulation and code generation in Simulink environment by using its standard
tools, and deployment of completed programs to target devices. The systems
generated with the help of this project are categorized as real-time systems.

Keywords: Model-driven development, Simulink, LEGO NXT

Contents

6

Project Structur_d

6.1 Parts of the Simulink Block Library for Lego NXT

6.2 Tmplemented Blockd

‘65 Code Structura .

tachments

12
13
13

17
17
18
19

21

24
26
26
27
29
31
34
39

43

45

1. Introduction

A model-driven development is a modern approach to design software. This
method keeps the developer during the software design process on the highest
abstraction level. The solution is being modeled in the problem space instead
of the solution space which is on the lowest abstraction level. This approach to
problem solving has evolved and was enabled over the last few years, as tools and
technologies have evolved.

Another aspect of model-driven development is that the developer doesn’t
write code by hand. The code is automatically generated from the model. Such
generated program is called prototype and is considered as a particular instance
of the model. Code generation process accelerates the software development and
brings some other benefits such as elimination of some common coding errors.

It is essential for model-driven development to have an environment for model
creation and tools that can generate code from such created models. Since the
model representation takes a form of a diagram it also eases the presentation and
explanation of the solution to the problem. And it can also serve as a graphical
documentation of the software behavior.

One of the environments supporting the model-driven development is
Simulink [2]. Tt is a component of MATLABI Simulink is tightly integrated with
MATLAB. MATLAB is an interactive environment for numerical computation,
visualization and programming. It has in has a vast documentation [I]. The name
MATLAB is a composition whose origin is in the phrase Matrix Laboratory.

Simulink comprises a data flow graphical programming language. It allows
modeling, simulating and analyzing multidomain dynamic systems. It is an envi-
ronment allowing modeling block-based diagrams, simulation of the model behav-
ior, signal processing, code generation and other tasks of the system development
process.

There is an effort to teach the model-driven development approach students
who are interested in the work with embedded and real-time devices. Simulink
represents suitable environment for this task. It comprises the necessary func-
tionality and allows the students to focus on the problems of the development
method rather than on problems of the used tool. But still it is a tool which
enables a fast development of professional systems.

However, in order to educate this subject there need to be a device for which
the models are developed. Without such device students would be unable to
exercise the prototype upload on the target, test it and tune the model parameters
to make the device function.

The prototype performance on the target device may very differ from the
model performance when simulated on computer. It may partially be due to
the significantly lower hardware performance of the target device comparing to
the modern computer and partially due to different target device architecture,
such as lacking the ability of performing floating point arithmetic operations, and
also due to the imperfections of the simulated environment that doesn’t precisely
express the real environmental conditions.

LEGO NXT is a low-cost but full-featured platform. It comprise a hardware
configuration that was used in real products of automotive industry. In addition

there are various compliant sensors that can be used when building a robot based
on this platform. For this reasons it is a suitable hardware platform for teaching
the model-driven development approach.

The LEGO NXT platform is supported in Simulink by an official block set
and environment configuration. But this support is granted only on the Win-
dows operating systems. It doesn’t work on Linux. Another down side is that
this provided support is not opened and therefor is not customizable and extensi-
ble. Already there are NXT sensors that has no block representation among the
provided blocks.

The aim of this work is to devise a method how to design software using the
model-driven development approach in Simulink for the LEGO NXT devices. It
is desired to support and emphasize the educational aspect of the model design
of real-time systems for embedded targets.

The solution should extend Simulink with seamless support of the LEGO NXT
target that will work under Linux operating systems. There are the following
steps that needs to be done to accomplish this goal. A set of blocks for Simulink
must be created. These blocks will represent needed features of the LEGO NXT
brick, sensors and actuators. There must be provided a|System Target File (STF)|
which configures the Simulink environment for the LEGO NXT target. Such
configured environment will support simulation and code generation tailored to
the LEGO NXT platform. The code generation process needs to be supported
via various scripts. And finally there must be supplied a program for software
upload to the LEGO NXT brick that will work on Linux operating systems.

2. Model-Driven Development

In the latest sense of the conceptual modeling, a model is anything used in any way
to represent anything else. In our perspective the model refers to the algorithms
and equations used to capture the behavior of the modeled system. The model
should be independent of the implementation concerns, for example, concurrency
or data storage. The model becomes a stable basis for subsequent development
of applications in the domain. The concepts of the model can be mapped into
physical design or implementation constructs using either manual or automated
code generation approaches. As systems have become increasingly complex, the
role of modeling has dramatically expanded. It is reflected by the increasing
effectiveness of capturing the system fundamentals in models.

A model-driven development is an approach to design a software which keeps
the programmer on a higher level of abstraction during the software development
process in the contrast to traditional code writing. The model-driven development
approach is meant to increase the productivity by maximizing the compatibility
between systems. One model may be used as a subsystem in another model which
exploits its functionality. This allows the formation of standard models with
universally needed and well defined behavior. It is the same concept as in the
most programming languages are the libraries of functions and data structures.

The model-driven development simplifies the process of design and promotes
the communication between individuals and teams working on the system. The
modeling paradigm is considered effective if its models make sense from the point
of view of the user who is familiar with the domain, and if they can serve as a
basis for implementing systems.

The model describes a solution to the problem in the problem space. It
enables the developer to think in concepts rather than in statements of some
programming language. This method enables the developer to design the model
of desired software. The model then serves as a template from which the source
code of the software system is generated. A program compiled from the generated
source code is an instance of the model and is called the prototype. A nice study
about the model-driven development approach is done in [§].

Our interest is focused on model-driven development of embedded and real-
time systems. An embedded system is a computer system with a dedicated func-
tion within a larger mechanical or electrical system. Embedded systems often go
hand by hand with real-time computing constraints. Embedded systems contrast
a general-purpose computers. An embedded device may interact and influence the
environment where it is used. Information about the environment are acquired
via various sensors. The gathered information is processed by the controller and
the environment can be influenced by the device via actuators. A diagram of this
general concept is in figure 2Jl As said before embedded systems are often sub-
jected to real-time computing. A system is said to be real-time if the correctness
of its function depends not only on its logical correctness, but also on the time
in which it is performed. These systems must guarantee a response within strict
time constraints. Real-time systems, as well as their deadlines, are classified by
the consequence of missing the deadline.

e Hard — missing a deadline is a total system failure.

e Firm — infrequent deadline misses are tolerable, but may degrade the sys-
tems quality of service. The usefulness of a result is zero after its deadline.

e Soft — the usefulness of a result degrades after the deadline thereby degrad-
ing the systems quality of service.

Real-time systems are often governed by a real-time operating system that is
responsible for planning the available tasks to run on the processor. Tasks may be
periodical or triggered by an event. Tasks have an assigned priority which helps
the real-time operating system to decide which task should be planned next. It
needs to ensure that each deadline will be met regardless of the system load.

The development of embedded and real-time systems goes through well defined
phases specific to the model-driven development. At first the problem needs to
be specified and well described. If the problem depends on any input, e.g. from
the environment, the representative sample of these data needs to be gathered
and analyzed. This is important for the later adjustment of the model. It is also
desirable to have the model of the environment. This model will be used in the
simulation and test phase of the development to interact with the model of the
system. After these steps the model of the desired system itself can be designed.

The model itself represents the behavior description of the designed system.
The behavior of the model can be simulated on the computer and debugged before
the prototype, generated from the model, is uploaded into the target device. It
makes the development phase easier and faster.

After the design phase there follow test phases. There are many test tech-
niques designed to ensure high quality of the final system. Most of the following
procedures are used in the context of the development of control systems. It
means software that interact with a mechanic system. Typically these are re-
ferred to as the controller and the plant respectively.

[Model in the Loop (MIL)|is a test where the model of the controller is simu-
lated in the model of the plant (environment). The simulation runs entirely on
the computer. Extremely fast development occurs at this stage as changes can be
made to the model of the controller and the system can be immediately tested.

[System in the Loop (SIL)|is a test of the slightly more real controller. The
model of the controller is transformed into a program (typically in C or C++).
The program is compiled into an instance of the model (for the computer archi-
tecture), and inserted back into the overall plant simulation. This is basically the
test of the coding system. The coding may be done either using code generation
or hand writing the source code. At this stage the design iteration slows down
slightly but coding failures become evident.

[Processor in the Loop (PIL)| is a test where the controller system no longer
runs on the computer but is deployed to the target microprocessor. While the
controller is running on the target microprocessor the [nput/Output (10) to the
plant is connected to the plant simulation on the computer using some high speed
bus. This test is designed to expose problems with execution in the embedded
environment. Design iteration now slows noticeably since each change leads to
recoding and deploying the system. This test exposes execution issues on the
embedded processor.

[Hardware in the Loop (HIL)| tests the fully installed controller. The control
system interacts with the plant through the proper[[QOJof the controller. The plant

is running on a real-time computer with simulations to make the controller
believe that it is installed on the real plant. [HIT]is often used only for the software
validation rather than development since the design iteration is very slow at this
point.

There may be other test techniques but the above are the main that are com-
monly used. All these test techniques are wonderfully explained in [9]. After each
test the design iteration involves the correction of found errors. Sometimes pa-
rameter tuning solves the exposed problem, sometimes there is a need to slightly
alter the model. In extreme cases the test proves the model completely wrong
and puts the design process to its start.

When the model is ready it can be used as a template for code generation.
Code generation is an automated process of creating files with source code in
some common programming language, typically C. C is particularly suited for this
purpose because of its constructs efficiently map on typical machine instructions
and a low-level hardware features can be easily exploited by C constructs.

The code generation has some advantages in the contrast to the code writ-
ing. The programmer can focus more on the model behavior instead of the code
structure. It also eliminates some errors made by coding mistakes, such as using
a wrong variable, forgetting data initialization and cleanup, etc ...

Typically the model can be created in a graphical form using some develop-
ment environment dedicated to this purpose. The representation may use various
notations. Some representatives of such notations are:

e |Unified Modeling Language (UML)| [11]

e [Object-Role Modeling (OMR)| [12]

e [Object-Modeling Technique (OMT)| [I3]

e [Integration Definition for Information modeling (IDEF1X)| [14]

e [Entity-Relation model (ER model)| [15]

e [Data Flow Diagram (DFD)| [16]

e and more...

The idea of the model-driven development of embedded and real-time systems
stands on the premise that the behavior of the target device depends directly on
the input data from sensors. It is handy to model the device behavior with a data
driven model, because it corresponds to the paradigm of embedded systems. An
embedded system interacts with the environment using sensors and actuators.
The behavior of the embedded system is provided by an controller (algorithm),
that reads data from the sensors and based on the data drives the actuators.
Data flow diagrams are well suited for the model design for embedded devices. A
diagram of the interaction of an embedded system can be seen in figure 211

Simulink is an development environment that uses Data Flow Diagrams to
represent models. An example of such diagram is shown in figure The dia-
gram represents a model of discrete derivative. Each block in the model represents
some functionality. The blocks are interconnected by lines that represent the data

Controller System

| D/A HActuator
{A/D HSensor

Feedback

Figure 2.1: Embedded System Interaction

signals. A signal carries either a scalar value or a vector of values. The values
change with the time.

The block U represents the input signal. The input signal represents some
time-dependent function. The block Y represents the output signal, it carries the
time-dependent value of the first derivative of the input signal U.

The block TSamp transforms the signal by dividing it by weighted sample
time. It ensures correct computation of the derivative when the time steps are
not uniform.

The block UD stands for unit delay. It remembers the input signal value in its
inner state and outputs the signal with the previously stored value. In another
words this block delays the signal for one time step.

The block Diff subtracts the value of the delayed signal from the value of
the current signal. The result produced by this block represent the difference
between the signal in this time step and the signal in the previous time step.

The last block Data Type Duplicate forces all input signals to have the same
data type. It ensures that the output signal of this model has the same data type
as the input signal has.

>+
»(1)
D) b uTs o 1 >l (U(K) - U(k-1)) 5
U U(k) z | Uk-1)
TSamp uD Diff

Same

7l DT

Data Type
Duplicate

Figure 2.2: Discrete Derivative Model

Models such as the model in figure can be encapsulated into a subsystem
block. Then the whole functionality defined by the model is represented by a
single block and can be easily used in another model. In fact this is exactly the
case of the model of discrete derivative in figure 2.2l It is one of the blocks from
the set of standard blocks supplied in Simulink block library.

2.1 Model-Driven Development in Simulink

As already said above there is an environment for model-driven development
called Simulink in MATLAB. Simulink is focused on the model-driven develop-
ment of embedded and real-time systems.

The model in Simulink is represented using data flow diagrams. It is a graph-
ical representation of the elements of the system with their interconnections. The
data flow diagram describes the system from the data flow point of view. Algo-
rithms in the system are driven by the incoming data.

A model is there represented by a block diagram. Each block accounts for a
physical component (e.g. sensor), or a simple functionality (e.g. constant value)
or a subset of blocks which are gathered into a single block to provide a complex
functionality. A block can have some inputs and outputs. In the model the
blocks are connected output to input by links representing signals. An example
of a simple model is in figure The model consists of three blocks connected
together. The first block Sine Wave generates the sine wave. It only has one
output. The value of the output is time dependent and can be configured via
various options. The value from the first block is transported to the next block
via a data signal represented by the arrow connecting these blocks. The next
block named Gain multiplies the value carried by the signal from the first block
by a constant, in this case by the number two. Such modified signal is then passed
to the last block in the diagram. The Scope block gathers all values carried by
the signal during the simulation of the model and after then it can show a graph
plotted from the gathered values with respect to the time when each value arrived.
This block is very useful for visual evaluation of the simulation.

>0

Sine Wave Gain Scope

Figure 2.3: Sine Times Two

A block can have a number of associated parameters. These parameters can
be comfortably set after double clicking the block with the left mouse button.
Parameters of the Sine Wave block are illustrated in figure 2.4 There is also
detail description of the block along with its parameters.

Another representation that can be used in Simulink is so called Stateflow di-
agram. Stateflow was developed by MathWorks and it is a control logic tool used
to model reactive systems as state machines using a flow chart within Simulink
model. Stateflow uses a variant of the finite-state machine notation, enabling the
representation of hierarchy, parallelism and history within a state chart. State-
flow also provides state transition tables and truth tables. Stateflow is generally
used to specify the discrete controller in the model. An example of the State-
flow diagram is in figure The model contains two main states: PowerOn and
PowerO0ff. These two states are exclusive, meaning the system can be in one of
these states at a time. The exclusivity is represented by the full border line of the
states. The PowerOn state is subdivided into three parallel sub-states. System is
in all these states when it is in the state PowerOn. The parallel states are repre-
sented by the dashed border lines. The states Fanl and Fan2 can be either in the

o~ Source Block Parameters: Sine Wave
Sine Wave

Output a sine wave:
1
0O(t) = Amp*Sin(Freg*t+Phase) + Bias

| Sine type determines the computational technique used. The
|| parameters in the two types are related through:

{ Samples per period = 2*pi / (Frequency * Sample time)
Number of offset samples = Phase * Samples per period / (2*pi)

Use the sample-based sine type if numerical problems due to running
for large times (e.g. overflow in absolute time) occur.

Parameters

Sine type: | Time based -
Time (t): | Use simulation time -
Amplitude:

1

Bias:
0

Frequency (rad/sec):
1

Phase (rad):
0

Sample time:
o001

| % Interpret vector parameters as l*DE

Cancel Help Apply

Figure 2.4: Sine Wave Parameters

state On or 0ff. The arrows between the states represent transitions. Each tran-
sition may be driven either by an event (SWITCH) or by an condition (temp>=120).
In the diagram there are defined actions that are performed when the system is in
the corresponding states. In the state Power0ff there is an assignment to a vari-
able which happens only once when the system transits into this state (entry).
When the system is in the state FansOn there is also an assignment to a variable
but the assignment is performed at each time step when the system is at that
state (during).

When the model is simulated it is the test. During the simulation the
Scope block records all the signal values it obtains. After the simulation the
course of the signal can be studied. After double clicking the Scope block with
the left mouse button the graph of the signal function is displayed. The graph is
shown in figure The X axis represents the time of the simulation. The Y axis
represents the value of the signal.

The simulation of the model behavior in Simulink is possible thanks to the
existence of solvers. Solvers are an important part of Simulink. A solver is an
engine that runs the simulation of created model. The simulation runs under
MATLAB environment and serves to test and evaluate the model. There is a
great number of solvers in Simulink. The main difference between them is the
principle how they evaluate the model. There are discrete and continuous solvers.
Both sets of solvers rely on the model blocks to compute the values of any discrete
state. Blocks that defines discrete states are responsible for computing the values
of those states at each time step. However, unlike discrete solvers, continuous

fPowerOn N

{Fant \= I,’f:;ﬁé _____________________________ N
I i 1 (On i
i [temp<120] { | o e S i
i 1 | VU
! ‘ off i R off i
! = [H 1
i — - M T {
i [temp>=120] § i [temp>=150] i
‘\“ -------------------------------- /’ \\\ -------------------------------- /’
(Fanson 3
during: fans_on = in(Fan1.0n) + in(Fan2.0n); E
i
I I
‘\ ___ I{
\ .. J
SWITCH | SWITCH ’
PowerOff

entry: fans_on = 0;

Figure 2.5: Stateflow Diagram

solvers use numerical integration to compute the continuous states defined by the
blocks. These sets of solvers can be either fixed-step or variable-step, depending
on the step characteristic of the simulation. Discrete solvers are suitable for
digital systems, continuous solvers are suitable for analog ones.

As the name implies a fixed-step solver uses fixed time steps between the
computation of the states of the model. In opposite to that a variable-step solver
uses time steps with variable length between the computation of the states of the
model. The variable-step solver increases or reduces the size of steps to meet the
specified error tolerance.

There are many solvers in Simulink. They cover a range of methods that
can be used to solve the model. For numerical integration there are the following
methods: Euler’s method, Heun’s method, Bogacki-Shampine formula and others.
Other methods include Numerical Differentiation Formulas, Jacobian method, etc

Simulink also supports the code generation. The component that handles
this task is called a coder. The coder is used for code generation from the model
into a prototype. Two main coders in Simulink are the Simulink Coder and
the Embedded Coder. The Simulink Coder is the default coder included in the
Simulink. The Embedded Coder [4] is provided separately but still it is an official
component of Simulink. These two coders offers the automated generation of C
and C++ source code. The Embedded coder generates compact code that is
efficient enough for the use with an embedded device. A code generated from

10

Scope

R EREFEERE

Figure 2.6: Sine Wave Scope

the model can be compiled into a binary program and uploaded into the target
device and run.

If the code generation is intended for the embedded device, it is typical that
the compilation needs to use a compiler toolchain to provide the binary code
for the target platform. The code generation process then needs to be config-
ured for the target platform. The Simulink Coder and the Embedded Coder
supports various platform standards. Beside the generic real-time target there
is the [Automotive Open System Architecture (AUTOSAR)| target, the Tornado
(VxWorks) target and other.

11

3. NXT OSEK a framework for
Embedded Coder

The LEGO NXT is a programmable robotics kit. The base kit is provided in
two versions: the retail version and the education base set. The main compo-
nent of the platform is a computer with the [Advanced RISC Machines (ARM)H
architecture, it is called the NXT intelligent brick. It can read signals from up
to four sensors and drive up to three servo motors. The brick has an embedded
monochrome |Liquid-Crystal Display (LCD)| and four buttons. The connectivity
is ensured by a bluetooth and [Universal Serial Bus (USB)| (type B). There is also
a speaker. The brick can run on the power from batteries inside. The embed-
ded computer has the following hardware configuration: 32-bit ARM7TDMI-core
Atmel AT91SAMT75256 microcontroller with 256KB of flash memory and 64KB
of [Random Access Memory (RAM)| plus an 8-bit Atmel AVR ATmega48 micro-
controller.

LEGO has released the firmware for the NXT intelligent brick as an open
source, along with schematics of all hardware components. This gave the rise to
alternative, unofficial firmwares that will be discussed later.

LEGO, the vendor of the platform, provides the associated programming envi-
ronment NXT-G. It is a simple drag and drop graphical environment, that defines
actions that can be put into a sequence to form the program. A simple programs
can be created using this environment. The process of program creation is very
fast and simple. LEGO provides this NXT-G environment only for the Windows
and OS X operating systems. The main drawback of the NXT-G is that the
programs created using this environment are not real-time. On the other hand
the development process in this environment is model-driven since the developer
creates a model of the program.

Over the time there was formed a great number of unofficial ways to pro-
gram the NXT intelligent brick. Microsoft Robotics Development Studio [17]
enables to program the NXT intelligent brick using the C# programming lan-
guage. [Bricx Command Center (BricxCC)|enables programming it in the
Next Byte Codes (NBC)| [Not Quite C (NQC)| and [Not eXactly C (NXC)| pro-
gramming languages. ROBOTC [I8] is another programming language based
on C. It was created for the software development for VEX Robotics Design Sys-
tem, but there was added the support for the development for the LEGO NXT.
Most of the approaches above does not support the model-driven development
and some of them are again available only for Windows. Simulink supports the
model-driven approach, but the official MATLAB support of development for
LEGO NXT is also provided only for Windows.

The nxtOSEK [3] is a project that implements the [OSERH standard for
use with the LEGO NXT programmable robotics platform. It includes the
[TOPPERSIISPlreal-time operating system for the ARM7 (ATMEL AT91SAM7S256),
and the C/C++ [Application Programming Interface (API)| for the LEGO NXT

Reduced Instruction Set Computing (RISC)|
20ffene Systeme und deren Schnittstellen fiir die Elektronik in Kraftfahrzeugen;
English: Open Systems and their Interfaces for the Electronics in Motor Vehicles

12

sensors, motors, and other devices. The nxtOSEK forms a framework for a devel-
opment of software for the LEGO NXT devices. It provides a library of methods
that ensures the communication with various LEGO NXT sensors and meth-
ods that allow manipulation with LEGO NXT actuators. Using the nxtOSEK
the NXT brick can be programmed in a C and C++ programming languages.
The final program is compiled together with an real-time operating system, this
means that the NXT robot running such program will be compliant to real-time
computing constraints. Since the development using the nxtOSEK requires C or
C++ it allows the developer to use a low-level hardware features. This is consid-
ered as another benefit of the nxtOSEK. This development approach meets the
requirements for real-time, but does not satisfy the modeling approach.

is a standard specification, described in [6], for an embedded operating
system, communication stack, and network management protocol for embedded
systems in automotive industry. was designed to provide a standard soft-
ware architecture for the various electronic control units throughout a car. It is
an open standard founded by the automotive industry.

A part of the standard is the [OSEK Implementation Language (OIL)|
specification [7]. Tt is a concept for the description of the [OSEK]real-time systems,
capable of multitasking and communication, which can be used for motor vehicles.
The aim of is to provide a mechanism to configure an application. In
an [OIT] file there can be specified the [Central Processing Unit (CPU)| operating
system, tasks, events, alarms, resources and others. All these together form the
real-time application for an embedded target device.

3.1 Firmwares for LEGO NXT

The official LEGO NXT firmware can be used to upload and run only programs
created in the official NXT-G environment. This forced the formation of unofficial
firmwares that support programs created by other means. For example there is a
firmware for the ROBOTC. This firmware is highly optimized and it allows the
NXT brick to run programs very quickly. Like other NXT languages, ROBOTC
requires this firmware to be downloaded into the NXT brick in order to run the
programs created using the ROBOTC development tool.

The 1eJOS NXJ is another firmware. It includes Java virtual machine, which
allows the NXT brick to be programmed in the Java programming language.

For the use with the nxtOSEK there are two firmwares. The first one is the
Enhanced NXT firmware. It allows an upload of multiple nxtOSEK programs, but
the program size is limited to 64 kB. The second one is the nxtOSEK NXT
There can be uploaded only a single nxtOSEK program using this firmware, but
it can take up to 224 kB.

3.2 nxtOSEK application

An example of simple application for LEGO NXT brick using the nxtOSEK
framework is discussed in this section.

The application written using the nxtOSEK framework needs only three files
to be created. A main program file written in C or C++ programming language.

13

From now on, we will focus only on source files written in C. The main program
file refer to the nxtOSEK files and exploits its functionality. The next file that is
needed is the file containing configuration of the application. And the last
file is the Makefile which defines the build process. It must include source files
and tools from the nxtOSEK. The build process uses the GNU[ARM] toolchain to
cross compile the sources to the target platform. The simplest application
that will be described below is the hello world program, which is is also included
as an example in the nxtOSEK project. The hello world project has the directory
structure shown in figure B.11

example
t nxt0SEK
helloworld
helloworld.c

helloworld.oil
Makefile

Figure 3.1: Hello World Project Structure

The nxtOSEK directory is included in the hello world project structure to
illustrate the need to include its files and to use its tools during the compilation.

/* helloworld .c for TOPPERS/ATK(OSEK) x/
#include " kernel .h”

#include ”kernel_id .h”

#include " ecrobot_interface.h”

/* nxtOSEK hook to be invoked from an ISR in category 2 x/
void user_lms_isr_type2(void){ /+ do nothing =/ }

TASK(OSEK_Task_Background)
{
while (1)
{
ecrobot_status_monitor ("OSEK HelloWorld!”);
systick_wait_ms (500); /* 500msec wait =/

The main program file has some specific constructs required by the nxtOSEK
framework. Above there is the source code from the helloworld.c file. The
first part of the program file contains includes of files from the nxtOSEK. The
kernel .h contains definitions and macros that are used to define Tasks, Events,
Counters, etc. The ecrobot_interface.h file defines the functions that imple-
ments the functionality of the LEGO NXT features, sensors and actuators. Next
there is a function user_1ms_isr_type2. It is a hook routine that is invoked from
the nxtOSEK real-time operating system [TOPPERS/ISP] that is in conformi-
ty with the m(ﬁ specification [I0]. This method is invoked every 1 ms
from the interrupt service routine and typically there are counters, defined for

9The Real-time Operating system Nucleus (TRON)|

14

the program in the file, being incremented in this method. And finally there
is the definition of task that specifies the program behavior. In this case the task
contains infinite loop in which the hello world message is displayed on the NXT
brick display. There is a half a second wait between refreshing the message.

The program written in the helloworld.c file needs to be configured for
the nxtOSEK real-time operating system. There is a task used, which needs
to be defined in the operating system in order to be handled as a task. This
configuration is defined in the helloworld.oil file. The content of this file is
shown bellow. The syntax of files is defined by the Implementation
Language Specification [7]. The file contains definitions of objects and
their attributes. The object is the container for all the other
objects. It implies that for each there is one description. In the
example below there is specified an operating system, application mode and the
task. All these together will form the final system.

#include "implementation. oil”

CPU ATMEL_AT91SAM7S5256

{
0S LEJOS.OSEK

{
STATUS = EXTENDED;
STARTUPHOOK = FAILSE:
FRRORHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE:
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;
USERESSCHEDULER = FALSE;

}s

/% Definition of application mode x/

APPMODE appmodel { };

/* Definition of OSEK_Task_Background x/
TASK OSEK_Task_Background

{
AUTOSTART = TRUE
{
APPMODE = appmodel ;
}s
PRIORITY = 1; /% lowest priority =/
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512;
¥

b

In this example there is no counter nor an alarm since the hello world task

15

is not periodical. The task is planned once and it runs forever. If there was a
periodical task it would be planned by the operating system in the period defined
by the corresponding alarm in the file, and the alarm would depend on some
counter, which would be increased in the user_ims_isr_type2 hook routine.

The last file needed in the project is Makefile. The nxtOSEK project comes
with a makefile hierarchy. There is defined the whole build procedure, using the
[ARM] compiler toolchain. In the makefile for the hello world project, there
only needs to be defined the name of the final program, the list of source files
outside the nxtOSEK and the file. Finally there is included the makefile of
the nxtOSEK that defines the whole build procedure. The content of the makefile
of the hello world program follows.

Target specific macros

TARGET = helloworld_OSEK

TARGET-SOURCES = \
helloworld . c

TOPPERS_OSEK_OIL.SOURCE = ./ helloworld . oil

Don’t modify below part
OPATH 7= build
include ../nxtOSEK/ecrobot/ecrobot .mak

After compilation there is created a single binary file that can be uploaded
into the NXT brick. The binary contains the real-time operating system together
with the hello world task.

In order to use the nxtOSEK as an underlying framework for model-driven
development there is the need to generate at least these three files: the main C
program, the description of the program and the makefile.

16

4. Related Work

In this chapter we will focus on other existing approaches. There exists two
Simulink extensions that support the model-driven development of embedded and
real-time systems exploiting the functionality of the development environment of
Simulink. Both these solutions are targeted on the Windows operating systems,
as well as is the official LEGO development environment that will be mentioned.

In this project we want to deliver the ability of software development for the
LEGO NXT target platform in the Simulink development environment under
Linux operating systems. We want to support NXT sensors and actuators that
are used for the education at our university. The supported abilities of the de-
velopment process must include the model simulation and code generation. This
functionality should be seamlessly integrated into Simulink.

4.1 LEGO NXT-G

The official LEGO NXT-G programming environment allows the creation of pro-
grams for the NXT brick. The program is created by sequencing the blocks. The
blocks don’t represent sensors and actuators, but they represent actions. For
example: move, wait, play a sound and so on. There are also blocks representing
classical programming constructs such as if-else, switch-case, mathematical oper-
ations, writing and reading a variable, and so on. Creation of a basic programs is
very simple and fast. Thanks to the presence of advance programming constructs,
there can be developed more complex programs. The more complex the program
is the less readable the diagram becomes. Figure [Ilshows the NXT-G program-
ming environment. The environment is simple, the left side panel contains all the
blocks that can be used to create the model. The main area serves as a canvas
where the model is created, using drag and drop method of placing the blocks.
The bottom panel contains all the properties of currently selected block from the
canvas. There is a group of buttons in the bottom right corner. These buttons
can be used to download the program to the robot, to run or to stop the program
in the robot.

The example in figure [A.1] represents a program for a robot with two motors
and ultrasonic sensor. The behavior of the robot is programmed to do this se-
quence of actions: go strait, wait, turn right, wait, play sound. This sequence
is repeated until the ultrasonic sensor detects an obstacle before the robot. The
final action after the cycle is broken is playing different sound.

The NXT-G environment supports the model-driven development approach.
The interface is rather simple and the created models are not represented in
a standardize modeling language. One of the handicaps is also the absence of
the support of Linux. Programs created using the NXT-G environment doesn’t
comply to the real-time computation constraints. There is no underlying real-
time operating system that would manage the tasks of the program. The NXT-G
environment doesn’t support the simulation of the behavior of created models.

The ROBOTC environment supports the LEGO NXT platform and can inter-
operate with the NXT-G environment. It can emulate the NXT brick, into which
the program from NXT-G environment can be downloaded. The downloaded

17

[5]) LEGQ MINDSTGRMS NXT [(=[E] =])
Fle Edt Took Help |
ETTEE T T UsmPofle [k []] =
‘Common i=1 GoRound
e
e O W sl B e (= r S e B
D/ @omcs Sl 6% (eEl e el e) e
@) © ¢ 1 o« ¢ 1 M) B] i I
-
—_—
=
R
P
==
Pl
Q|
—_—
—_—
@
tep # Conwol: 1E pori Ci1 02 O3 G4 Need help? 2
Qﬁ B e ﬁm [[Urvasoric Sensor [=]] [unee e O— o Wl S S T T T e
e m More help »
o ET show: DEE] courcer X show)

Figure 4.1: NXT-G Programming Environment

program then can be simulated in the ROBOTC environment.

4.2 Official Simulink support

There is an official Simulink support for developing models for LEGO NXT plat-
form. After installing the package for LEGO NXT into Simulink, there appears
a new set of blocks representing LEGO NXT sensors and actuators. Also there
becomes available a new configuration of the overall development process for the
NXT target. This configuration affects simulation and code generation. In figure
there is one of the example models from the LEGO NXT block library. The
model drives the NXT robot to play two different sounds. It switches between
them as the robot detects a laud sound (a clap).

The Simulink support of the NXT platform is provided only for Windows
operating systems. It uses the nxtOSEK framework for the compilation of the
generated code. This ensures the real-time requirements on the created systems.
The provided solution is not open source, there are almost no source files, it
is distributed mostly in the binary form. In addition when using the Simulink
configuration for the NXT there cannot be kept the generated source files for
further analysis or modifications. The created model can only be compiled, the
source code files created in the intermediate step are deleted without any option
to preserve them. Already there are sensors that are not included in the provided
blocks. It becomes a problem especially for the HiTechnic color sensor version 2,
which is used for the education at our university.

18

-
4, lega_communication - =6 =B
File Edit View Display Diagram Simulation Analysis Code Tools Help
g T = = inf External - v | e ¥
lego_communication |
& iiilegu_communicatiun 4 -
® Communicating with LEGO MINDSTORMS NXT Hardware
E3
=g
Z * | Sound Level Songt LEGD
Fodin Sslact =0 | Frag ‘1)]
Sound Sersor w mm— {
Detect Clapping Spesker
Song2
= =
Threshcld Scope
To run this model on hardware, on the Simulink Editor toolbar, click the
"Run" button. Note that the simulation mode is "External”. This mode
allows you to tune parameters and monitor signals in the model while
the application is running on hardware.
Copyright 2011-2012 The Msthiorks, Inc.
=
Ready 100% ode3

Figure 4.2: LEGO NXT Official Simulilnk Support

4.3 Villanova University
LEGO Real Time Target

[Villanova University LEGO Real Time Target (VU-LRT)|is an unofficial support
for model-driven development of LEGO NXT brick in Simulink. It was created by
Prof. James Peyton-Jones of Villanova University. This project was introduced
for MATLAB version R2010a before MathWorks came up with the official support
of the LEGO NXT target described above. This solution was targeted to work
under Windows operating systems (32-bit version). Since there is the official
support of the LEGO NXT target under Windows operating systems, this project
was abandoned. From the beginning it was distributed as an open source. There
was the support for model simulation and code generation. With the newer
versions of MATLAB the VU-LRT] project become less reliable.

The [VU-LRT] project also relies on the nxtOSEK framework. The compiled
models are therefor could be proper real-time systems. For the upload of the
binary into the NXT brick there is used a Fantom Driver, the official driver
from LEGO which is compliant only with the Windows operating systems. The
development process using the VU-LRT]is the same as the development process
using the official MathWork support. Figure shows the blocks implemented
in the project.

The handicap of the WU-LRT] project is the way how an [OIL] file is generated.
For all models the file looks the same. It contains definition of only one task,
that represents the behavior of the whole model. The task is not invoked by the
real-time operating system in intervals but only once and then it runs until the

19

r . N
'Pi Library: leqo_nxt lib | ':'| CI
y| File Edit View Display Diagram Analysiss Help

lego_nxt_lib |
® iiilego_nxt_lib -
.
E3d d d d d
Battery Volts Time Run Buttan E nter Button
4 Rxp
AT T
size ¢ ize ¥

USBRx USE Tx BT Tx BTRx

1 1 1 1
Light Sensor Sound Sensor Touch Sensor SonarSensor

Em Nir % ﬂ | >W" :
A A

o —

12C Interface Sound Tone E ncoder DC Motor

W W b !

Accel Sensor Colo Sensor Compass Sersor Gyro Sensor

-v—'v'—v
WV

b - bwADC Couy pw ADC Coufs
A 3 1
FWHW Ouput Anslog et Viarmier Sersor
» | o
Ready 100%

Figure 4.3: VU-LRT Block Library

NXT brick is turned off. If the model contains blocks that have a different period
of sample time the generated prototype is multitasking. This fact is emulated
in the main source file, which contains the definition of the only task. The
program task cycles without any lags, meaning that the sample times configured
in the model are ignored. This solution ties the hands of developers. During
the education, students can’t observe system runtime performance dependence
on the sampling period of individual tasks. This approach also doesn’t exploit
the possibilities that are offered by the configuration.

20

5. Model-Driven Development
for Lego NXT

The model-driven development methods are independent of the system they are
used for. Models are much less bound to the underlying implementation tech-
nology. However the development environment used for modeling must support
the target platform. Since there exist a wide field of different hardware platforms
and systems the producers of the development environments can’t provide the
support for all of these. This situation is therefor handled by different means.
The development environment may be designed to be easily extended by its users
to support systems they require. This is also the case of Simulink and it was the
main prerequisite for this project.

Simulink generally contains a great number of blocks that can be used to create
models. In order to support the LEGO NXT target there has to be supplied
a set of blocks that represent sensors and actuators specific to this platform.
Together with these new blocks it is possible do design models that exploits the
functionality of the desired hardware. But the development process only begins
with the construction of the model. There are many steps that separates the first
model draft from the final working system deployed in the target device.

As described in chapter 2 the model can be and should be tested. There is
described a number of test approaches that are specific to a different stages of
the model-driven development process. Simulink by default offers the simulation
of the model in the host computer, which is basically the [MIL] test. In addition
Simulink supports the two standard approaches for verifying software: model-to-
software verification and runtime error detection in the source code.

Model-to-software verification techniques like [SIT] and [PI[] testing can be used
to confirm that the behavior of the software matches the behavior of the model.
The Simulink Design Verifier brings the formal analysis methods and automates
the generation of [SI[] and [PIT] tests from the model.

From these possibilities of testing the designed system this project implements
the support for the simulation of the model in the simulated environment on the
host computer [CPUL This [MIL] test takes place at the early stage of model
design and it represents an empirical approach to verification. It is critical to
be able to do this on highly abstract and incomplete models that arise early in
the development cycle, because this is when software designers make most of the
fundamental design decisions. Using this testing method promises the fastest
development iterations and helps discover the main design errors, mistakes and
false assumptions. For educational purposes this testing has the higher value.

There are two sets of blocks provided in this project to ensure the support of
model simulation. The relevant blocks come in two variants. One to design the
model of the system and one to design the environment for the model necessary
for the simulation. These two block variants are internally connected in such a
way, that the input of one block becomes the output of the other. There is no
need to explicitly connect these blocks in the model.

The next important step in the model-driven development process is automat-
ed code generation. It is essential to support the complete, rather than partial

21

or just structural (skeletal), code generation to avoid the model becoming merely
documentation of the system. Such models would have limited value since the
documentation too easily diverges from reality.

We can attain the full benefits of model-driven development only if we fully
exploit it potential for automation. The complete code generation simply means
that the generated code is ready to be compiled into a binary without any need
for adjustments and manual editing. For the code generation there are dedicated
tools called Coders in Simulink. These tools are capable to generate complete
source code from the model. The performance and effectiveness of the generated
code depends on the used coder. Since our aim is to enable designing embedded,
real-time systems for the LEGO NXT hardware platform we decided to use the
Embedded Coder which is the most suitable for this purpose.

Because the code generation process is already dependent on the target system
this project needs to provide the necessary support for the LEGO NXT hardware
platform. The Embedded Coder produces code with the well defined interface.
This project supplies scripts, that adjust the code generation for our target. It
adds the generation of a main file within which are the tasks of the model called.
There is also defined the generation of the configuration file which is required
due to the use of the nxtOSEK as an framework for the generated code.

Our concerns in this project aim also the issue of real-time systems. Em-
bedded systems are most often also real-time systems. The model-driven devel-
opment techniques are well suited for the design of real-time system, however,
real-time systems require special attention during the code generation phase.
The source code generated by the Embedded Coder defines tasks that are in-
tended to be scheduled and executed in a real-time system, but they can be
called within a simple program in a loop without any real-time awareness. The
[Real-Time Operating System (RTOS)| that would host these tasks must be pro-
vided explicitly. One of the reasons why is the architecture dependence of oper-
ating systems. A detailed look at the subject of real-time operating systems is
in [19].

For the reasons below we decided to rely on the nxtOSEK project. It comprises
an real-time operating system [TOPPERS/IISPl This system conforms to the
[LITRONHK.O real-time kernel specification. It is de-facto industry standard in
the embedded systems field. The [uITRONK.0 Specification was designed by the
Kernel Specification Working Group under the [ullTRONR.0 Specification Study
Group. The [TOPPERS/ISP] is designed to be easily ported to different target
processor architectures, and the LEGO NXT hardware platform is supported in
the version of the TOPPERS/ISPlincluded in the nxtOSEK project. This kernel
excels in performance efficiency and low usage, it is very important aspect
since the hardware resources of the LEGO NXT platform are limited.

The nxtOSEK project also includes support for the standard. Using
this support the target system can be configured in an file. This file defines
the main components of the system for the of the target device. There
is specified the used [RTQOS| resources, events, tasks, counters and alarms. The
manages and governs all the components of the whole system. Tasks define
the work to be performed. Resources are used to delimit critical sections in the
program. Events can be used to trigger an action. Counters and alarms define
periods within which to execute specified tasks.

22

All the above make the nxtOSEK very useful and powerful framework for
developing real-time embedded systems for the LEGO NXT devices. In addition
the nxtOSEK also provides the C and C++ [AP]Il for LEGO NXT sensors, actua-
tors and other devices. This[APIl can be easily used in the source code generated
from the Simulink blocks representing the NXT hardware, and this project takes
the full advantage of this provided functionality.

In order to exploit some of the configuration abilities of the file it was
decided to constraint the structure of models that are targeted to the LEGO
NXT platform. Simulink provides the parameter Sample time for many of its
blocks. This parameter defines the period and optionally a time offset specifying
the points in time when the block is simulated (executed). The value of this
parameter is exactly the one needed to specify the period and time offset of
tasks in the final system. To avoid different sample times for each block in the
model and to ensure task compactness, the structure of the model at the top
level is strictly dictated. All the top level blocks in the model are restricted to
be Subsystem blocks. Semantically these blocks represent the tasks in the final
system. There must be specified a valid sample time and optionally the time
offset for these blocks. The rest of the model must be placed inside these top
level subsystem block and all the blocks must inherit their sample time.

Such a constraint to the model structure is beneficial for one more reason.
When students are designing the model, they have to keep in mind the real-
time aspects of the system and they can visually express the tasks in the created
system, and at the same time they have the way to configure the timing for the
tasks.

The final step of the development process covered in this project is the program
deployment, in this case an upload to the LEGO NXT brick. There is an program
for software upload in the nxtOSEK project, but it works only on Windows.
Therefor there was written a new program that handles this task on Linux. This
program is called appflash and uses the to communicate with the LEGO
NXT brick. The appflash program relies on the unofficial installed on the
LEGO NXT brick. This, nxtOSEK NXT [BIOS| is also a part of the nxtOSEK
project, but it can be flashed on the LEGO NXT brick only in Windows.

The next chapter is devoted to the structure of this project, describing all the
parts that are needed to enable Simulink to support the new target platform.

23

6. Project Structure

To support a custom target in Simulink there has to be developed a library
of the target specific blocks. There must be specified the build process fitting
the target. The Simulink model simulation engine needs to be configured with
various parameters in such a way that the simulation corresponds to the target
capabilities and behavior.

This project is composed of parts devoted to different function or role in the
development process. These parts are separated into a directory structure de-
scribed below. The root of the structure is named siblilen it is an abbreviation
of the project name: Simulink Block Library for LEGO NXT. The directory
structure of the project is shown in figure

siblilen
. _doc
| _src
| LEGO_NXT_Library.pdf
| Tutorial.pdf
| _install
| _+nxt_blocks
| _nxtOSEK_patch
| altered files
| _samples
| _scripts
| src
tblocks
nxt_comm
. _nxt_remove.m
| nxt_settings.m
,__nxt_setup.m

Figure 6.1: Project Structure

The doc directory contains documentation of this project, the
LEGO_NXT_Library.pdf file, and the tutorial describing how to create the first
model using the LEGO NXT support of this project in Simulink, the Tutorial.pdf
file.

There are installation scripts in the form of MATLAB functions in the install
directory. The installation process involves compilation of blocks, copying scripts,
downloading additional tools and files. All these activities are separated into own
MATLAB script file. In the install directory there are two other directories:
+nxt_blocks and nxtOSEK_patch. The first one contains MATLAB functions for
programmatically masking the blocks from this project. The second one contains
patch files of the nxtOSEK that needs to be applied in order to support com-
pilation of programs using the nxtOSEK under Linux operating systems. The
included patches also add the support of the HiTechnic Color Sensor version 2
into the nxtOSEK. The subdirectory altered_files includes all the altered nx-
tOSEK files that have the patch file in the super directory, these files are included
only for the purpose of reviewing these files.

24

The samples directory contains the example Simulink models that are ana-
lyzed in section These models illustrate the capabilities of this project.

The scripts directory contains a variety of scripts needed for the code gen-
eration process and for the configuration of Simulink for the new target.

Finally there is the src directory that contains source files of the blocks in
the blocks subdirectory, and source files of the program utility appflash in the
nxt_comm subdirectory. The upload utility is written in C programming language
and handles the upload of programs into the LEGO NXT brick under Linux
operating systems. The source code of a block is divided into two files: a C
source code file defines the block behavior during the simulation of the model in
Simulink, and a Target Language Compiler file defines the code generated during
the code generation process that represents the block in the model.

The installation of this project is automated in a MATLAB script nxt_setup.m.
It includes the download and installation of the [GNUI[ARM compiler toolchain,
download and patch of the nxtOSEK, compilation of the appflash utility, cre-
ation of the set of blocks from source files and their insert into Simulinks library
of blocks. The installed project has the structure illustrated in figure The in-
stallation process can be configured in the nxt_settings.m file, where is a section
devoted to a user settings. The nxt_remove.m script contains the functionality to
uninstall this project. How to use these scripts is described in the documentation
file LEGO_NXT_Library.pdf.

NXT_LEGO_Library
.__blocks

| _documentation
| gnuarm

. nxt0OSEK

| _samples

| _scripts

| nxtlLego.slx
| slblocks.m

Figure 6.2: Installed Project Structure

During the installation there is a replacement of references to [GNUI [ARMI
toolchain in the nxtOSEK and a replacement of references to nxtOSEK in the
[Template Makefile (TMF')] These references are updated with the current path
of the installed solution.

The nxtLEGO. s1x file is the Simulink block library containing all the compiled
and masked blocks from this project. The slblocks.m file is a MATLAB script,
that registers the library in the Simulink Library Browser. MATLAB automati-
cally loads the s1blocks.m file when the Library Browser os opened for the first
time since the MATLAB startup. Therefor the s1blocks.m file must be placed
on the MATLAB search path before the Library Browser is opened.

25

6.1 Parts of the Simulink Block Library for Lego
NXT

The main component which Simulink needs to be supplied with in order to sup-
port a new target is a System Target File. This file contains the overall settings of
Simulink environment for the target, and describes the code generation process.
In this project there is the nxt_ert.tlc a System Target File for the LEGO NXT
target. Code generation process specified by this file uses the Embedded Coder.

There is also a template of a makefile the nxt_ert_default.tmf file. During
the code generation phase there is a makefile being generated from this template.
Such generated makefile is used afterwards to compile the program. Except the
generated sources there are included sources from the nxtOSEK framework and
sources from MATLAB that are referenced within the generated files. The make-
file imports other partial makefiles from the nxt OSEK framework where the
cross compiler is specified. During the compilation there is also being in-
voked the parser of files. This parser scans the [OIT] description of the project
being compiled and composes the final program whose structure is defined in the
file. The makefile generated from the nxt_ert_default.tmf file is named
<model_name>.mk.

The next file supplied in this project is the nxt_main.tlc. This file serves
as template for generation of the program main file. In such main file there are
definitions of individual tasks for the real-time operating system. From these
tasks are called the task methods generated from the model. The file generated
from the nxt main.tlc file is named <model name> main.c.

The last template file which is part of this project is the template of an
file the nxt_0IL.tlc. The generation of the file reflects the number of tasks
specified by the model. For each task defined by the model there is a task defined
in the generated file. For each task there is a counter and alarm which is
responsible for the periodical task invocation. The period and time offset of each
task is also defined by the model. The file generated from the nxt_0IL.tlc
is named <model_name>.oil.

6.2 Implemented Blocks

There is a block library provided by MathWorks with Simulink with a variety of
blocks such as mathematical operations, signal generating blocks, signal monitor-
ing blocks and other signal processing blocks. These blocks are ready to use for
a model design.

To create a block there must be written a C or MATLAB file that de-
fines the behavior of the block during the simulation. Next there is a need
for [Target Language Compiler (TLC)| file that defines the code generated for
the block during the code generation process. These files utilize the nxtOSEK
function library. The block is created by compiling the simulation code into
a [MATLAB Executable (MEX)| file and adding it into a library. Thus created
blocks can be afterwards masked for a more comfortable use. These two files
(MEXI file and .tlc file) together are needed in the library of blocks.

The blocks implemented in this project are separated into two groups. One

26

group of blocks is used to create the model of desired system, while the other group
is used to model the environment to simulate the model of the system. These
groups are named Model and Environment. Each block from the Environment
group is interconnected with the corresponding block from the Model group. The
connection of these blocks is implicit, meaning that it is not represented in the
model. The blocks from the Environment group are used only for the simulation
of the model, they do not participate in the code generation process. The list of
implemented blocks together with their description is placed below.

6.2.1 Model

The Motor block showed in figure represents the LEGO NXT servo motor. It
has one input signal that drives the speed and direction of the motor revolutions.
The direction of the motor revolutions is defined by the sign of the signal value,
the speed is defined in percentage. Therefor the signal value ranges from -100 to
100. In the parameters of the block there can be specified the port to which the
motor is connected and the break mode. The break mode is either break or coast.
Is the break value is selected the motor stops immediately when the input signal
is 0. If the coast value is selected the motor fluently slows down and stops when
the input signal is 0.

LEGO

) Motor

Port B
Motor

Figure 6.3: Servo Motor

The Encoder block showed in figure represents the LEGO NXT servo
motor encoder. The block has one output signal that carries the servo motor
revolution count in degrees. The only parameter of this block is the port to
which the motor is connected.

LEGO
Encoder >

Port B
Encoder

Figure 6.4: Encoder

The Display block is shown in figure [0 It represents the display on
the NXT brick. This blocks displays the value of the input signal alongside with
some label on one line of the NXT brick display. The type of the input signal
has to be integer. The block has three parameters: label, line and number format.
The label parameter specifies the label of the value to be displayed. The label is
limited to eight letters. The line parameter specifies the number of the line on
the NXT brick display on which the labeled signal value will be displayed.
There are eight lines on the display to be chosen from. The last parameter is

27

the number format. 1t specifies the format of displayed values. It can be either
decimal or hexadecimal.

LEGO

). Display

line2
Display

Figure 6.5: Display

Figure illustrates the Color Sensor block. This block represents the
LEGO NXT Color Sensor. This sensor can operate in different modes. These
modes can be specified in the block parameters. There are two parameters that
can be set to this block: port and mode. The mode parameter specifies the
operation mode of the sensor. It can be selected from the following set:

e ColorSensor — the sensor provides [Red, Green, Blue (RGB)| components
of measured color.

e LightSensor_RED - the sensor measures the color only in the red spec-
trum.

e LightSensor GREEN - the sensor measures the color only in the green
spectrum.

e LightSensor BLUE - the sensor measures the color only in the blue spec-
trum.

e LightSensor WHITE - the sensor measures the color in the white spec-
trum.

e LightSensor NONE - the sensor doesn’t use the illumination diode.

e ColorSensor DEACTIVATE - the sensor is deactivated.

The sensor uses a[RGB|[Light-Emitting Diode (LED)|diode to illuminate the area
that is scanned by the sensor. The color of the light produced by the diode
depends on the selected mode. The second parameter of this block is the port
into which the sensor is connected. If the mode of the block is ColorSensor then
the block has three output signals. Each signal carries one color component (red,
green and blue). In any other mode the block has only one output signal that
carries the value of the color component defined by the mode.

LEGO R >

Color Sensor G)

Port 2 B >
Color Sensor

Figure 6.6: Color Sensor

28

There is a HiTechnic Color Sensor represented by the block in figure 6.7 This
block has three output signals, each for one of the color component (red, green
and blue). The HiTechnic Color Sensor brings better color recognition abilities
compared to the LEGO NXT Color Sensor. The HiTech Color Sensor has one
parameter specifying the port to which the sensor is attached.

LEGO

RP
HiTech Color Sensor G)
Port 2 Bp

HiTech Color Sensor

Figure 6.7: HiTechnic Color Sensor

There is also a HiTechnic Color Sensor version 2 provided by LEGO. It im-
proves the performance and color range of the previous version. The block that
represents this sensor is in figure As the previous block this block has three
output signals representing the red, green and blue color components. There is
also the single parameter specifying the port into which the sensor is connected.

LEGO R >
HiTech Color Sensorv2 G [»
Port 2 Bp

HiTech Color Sensor v2

Figure 6.8: HiTechnic Color Sensor v2

6.2.2 Environment

The set of blocks in the Environment group is used to model the simulation
environment of the model of the created system. Each block from this group is a
complement block to the block of the same name from the Model group of blocks.

The Motor block in figure represents the LEGO NXT motor in the simu-
lation environment. It has two output signals: speed and break. The speed signal
carries the value which is on the input of the Motor block from the Model group.
The break signal is either 0 or 1, depending on the value of the parameter in the
equivalent block from the Model group of blocks. This block has one parameter
specifying the port of the motor. The value of this parameter must correspond to
the value of the same parameter of the Motor block from the Model group used
in the model.

LEGO

speed [»
Motor

break [»
Port B
Motor

Figure 6.9: Servo Motor

29

The Encoder block in figure is the mirror block to the Encoder block
from the Model group. It has one input signal representing the number of motor
rotations in degrees. The value of the signal is passed into the Encoder block
from the Model group which has set the same port parameter value as this block

has.

LEGO

) Encoder

Port B
Encoder

Figure 6.10: Encoder

Figure illustrates the Color Sensor block from the Environment group
of blocks. It has two parameters: port and mode. The mode parameter can
have the same values as the Color Sensor from the Model group. If the mode
is set to ColorSensor the block has three input signals for red, green and blue
color. If the mode parameter has any other value there is only one input signal
corresponding to the color specified by the mode. The values of input signals are
passed to the Color Sensor from the Model group that has the same value of
the port parameter.

R LEGO
)G Color Sensor
> B Port 2
Color Sensor

Figure 6.11: Color Sensor

The HiTech Color Sensor in figure has one parameter port specifying
the port of the HiTech Color Sensor in the model of the system. This block
has three input signals for each for one of the red, green and blue component of
the color spectrum. The values of the input signals are passed into the HiTech
Color Sensor in the model of the system.

) R LEGO
NG HiTech Color Sensor

) B Port 2
HiTech Color Sensor

Figure 6.12: HiTechnic Color Sensor

The last of the blocks is the HiTech Color Sensor version 2 illustrated in
figure[6.I3l The block has one parameter specifying the port of the corresponding
block in the model of the system. There are three input signals in this block.
They carry red, green and blue component of the color. These values are passed
into the corresponding block in the model of the system.

30

IR LEGO

MG HiTech Color Sensor v2

>B Port 2

HiTech Color Sensor v2

Figure 6.13: HiTechnic Color Sensor v2

6.3 Model Creation and Simulation

To create the model of desired system, we need to set up new Simulink model, we
name it ”ExampleMdl”. The top level block in the model will be a Subsystem set
to be treated as atomic. All the blocks describing the system will be placed into
this top level block. The reasons for this structure are explained in section
The model that will be created will drive the robot in a strait line. To achieve
this goal we will start with a constant connected to two motors. And for analysis
we will insert encoder blocks connected to a scope. The model described here is
shown in figure We need to ensure signal type consistency. In order to do
it we will change the constant output type from double to int8 (the input signal
type of the motor blocks). Before we continue the model must be saved.

LEGO LEGO
» Motor Encoder
Port B Port B
Motor Encoder
100 ’
Constant Scope
LEGO LEGO
» Motor Encoder
Port C Port C
Motor1 Encoder1

Figure 6.14: ExampleMdl Model

To simulate the created model we also need to model the environment in
which the robot will operate. We will create second Simulink model named
"ExampleEnv’. We start by inserting two motor blocks. The break signal of
either motor block will be ignored. And the speed signal will accumulate the
motor revolution count in a memory block. This accumulated revolution count
will be passed into corresponding encoder of each motor block. We will alter
the signal from the second motor to a 90% of the original value, simulating
physical difference between these motors. Finally we insert a model block that
will reference our previously created model. The ” ExampleEnv” is shown in figure
6.15

Such created solution is ready for simulation. Since we didn’t tune the sample
time of individual blocks the simulation will be continuous. The preset simulation
time is 10 seconds. After we click the Run button in the ”"ExampleEnv” model
the simulation will take place. After the simulation ends we can analyze the
result. In the " ExampleEnv” model we go into the block Model and we continue
into the block Scope. The graph that has opened contains two linear functions

31

L 1

speed >+ 1'—_|
LEGO

Motor Add Memory

break Encoder
Port B -

Terminator
Motor Port B
Encoder

LEGO L’ + J
speed p + ‘l'—_l
LEGO

, Add1

Motor Gain Memory1

break »— » Encoder
Port C .

Terminator1
Motor1 Port C
Encoder1
ExampleMdI
Model

Figure 6.15: ExampleEnv Model

representing the number of revolutions of each motor. We can instantly see that
one motor is faster than the other. The graph is shown in figure [6.16

To fix this problem we need to introduce a [Proportional Integral (PIl)| con-
troller into the ”ExampleMdl” system. The [P] controller corrects the input
values by adjusting the output values with respect to the accumulated error. To
achieve this goal the [Pl controller uses the numerical integration. The [P1 con-
troller contains two parameters (K; and K,) that can be tuned to obtain the best
results. The formula to calculate the correct value is in equation

ult) = Kpe(t) + K; [e(t) dt (6.1)
Where the variables in the equation are the following:
e u(t) — controller output signal as a function of time t.
e K, — controller proportional gain, a tuning parameter.
e ¢(t) — current controller error, defined as SP — PV.

— SP — set point value.

— PV — measured process value.

e K; — controller integral gain, a tuning parameter.

We will create the [Pl controller subsystem in the ”ExampleMdl” with the
functionality defined above. And the signal produced by the subsystem will be
used to correct the motor speed. The adjusted ”ExampleMdl” model is shown in
figure and the [P1 controller subsystem is in figure [6.I8]

Such altered model produces correct output during the simulation. After the
simulation from the ” ExampleEnv” model the signal values from the encoders are

32

R EREEEERE >
5000

2000

GO0 | e e e

2000 et S O OO PO SO O ST

o T P P S R TIERITIR TP TTITTE RPPES i

4 I i i] i I i i]
0 1 2 3 4 5 [7 g k=] 10

Time offset: 0

Figure 6.16: Encoder Values

LEGO
LEGO
70 P+
_ > Motor
Encoder Speed
Subtract1
Port B
Port B Motor
Encoder
Scope LEGO
LEGO
L encoder >+
correction ﬂ' . > Motor
Encoder | R encoder
Add
Pl Controller Port C
Port € Motor1
Encoder1

Figure 6.17: ExampleMdl Model with PI Controller

very similar. The robot driven by that model will go in a strait line. The model
is still not completely correct though, because it operates in continuous time and
the robot executes the task in discrete time steps. More about this is discussed
in section

To exploit and illustrate the ability of task configuration we add a new
Subsystem block to the top level of the model and name this block Task2. We
configure this block to be treated as atomic and to have a different sample time
than the previous one. Figure illustrates the shape of the model at its top
level.

Inside the Task2 subsystem we place two Display blocks representing different
lines on the NXT[LCDldisplay. These blocks will display the value of the encoders.
In order to accomplish that behavior we add two Encoder blocks, configure the
ports they are connected to and connect them to the previously added Display
blocks. Figure illustrates the model in the newly added subsystem.

The generated code from this model will be more illustrative since there are
two tasks, yet still simple to comprehend. Section[6.5]is devoted to the description

33

1
L encoder + Kp x

Error function w + ’-

Subtract Product Addl correction
R encoder 1
» g » X
| L
ntegrator Producti
4
Ki
Figure 6.18: PI Controller
Task1 Task2

Figure 6.19: ExampleMdl Model Top Level

of the generated code.

6.4 Code Generation

The engine of the code generation process is a coder. There are many coders that
can be used in Simulink. The basic one, that is shipped with Simulink, is the
Simulink Coder. In this project we use the Embedded Coder. The code generated
by the Embedded Coder is more efficient and is suitable for embedded systems.

The build process in Simulink employs more tools as it is divided into a several
steps. The overall process of code generation is illustrated in figure and the
individual stages of the process are described below. The tool that drives all
these steps is called [Real-Time Workshop (RTW)|and the command to invoke it
is typically make_rtw.

1. RTW] compiles the block diagram and generates a model description file,
<model_name>.rtw.

2. RTWlinvokes the[TLC|[3] to generate target-specific code, processing <mod-
el name>.rtw as specified by the selected [STE]

3. BRTW] creates a makefile, <model_name>.mk, from the selected [TMEI

4. make is invoked. make compiles and links the program from the generated
code, as instructed in the generated makefile.

The Real-Time Workshop uses [TLCl files to translate the Simulink model into
code. The Target Language Compiler uses two types of [TLCl files during the
code generation and build process. The system target file, which describes how
to generate code for a chosen target, is the entry point for the [TLC] program that

34

LEGO LEGO

Encoder P Display
Port B line1
Encoder Display
LEGO LEGO
Encoder » Display
Port C line2
Encoder1 Display1

Figure 6.20: ExampleMdl Task 2

creates the executable. Block target files define how the code looks for each of
the Simulink blocks in your model.

The code generation process has a lot of options, through these options the
process can be adjusted to fit the target platform. There is the [STE], which
defines the coder that will be used for the code generation, callback handlers that
perform variety of actions during the code generation, and additional files entering
the code generation process. This project includes the named nxt_ert.
It defines the code generation process for the LEGO NXT platform using the
Embedded Coder. Selecting this[STE] configures the Simulink for the LEGO NXT
target. The [STE] can be set on the Code Generation pane in the Configuration
Parameters window (illustrated in figure [6.22)). The nxt_ert defines the [TME]
used to generate the makefile for the generated code. Also there are included two
additional source templates that enter the code generation process: nxt_main.tlc
and nxt_0IL.tlc.

From these templates there are generated the <model name> _main.c source
file and the <model name>.o0il configuration file.

The nxt main.tlc template is included in appendix The file is written
in the [TL{l language. The coder will generate code based on the description in
this language. Each line in the [TLCl language starting with the %% sequence
represents a comment. These lines are ignored by the coder and their significance
is only to improve the readability and comprehensibility of the code. Each word
starting with the % character is a directive for the coder similarly as keywords
in classic programming languages. The expressions surrounded between %< and
> are [TL{ tokens, and they are replaced during the code generation process.
Ellipses (...) at the end of a line means the continuation of a statement and
ensure that the line break is not printed in the code generation process. All other
text in the [TL{ file, if it is not an argument to some [TLC] directive, is simply
printed by the coder as is.

In the nxt_main.tlc file we can see that at first there is checked whether
a valid tasking mode is specified. Following this check there is a directive that
opens the file <model name>_main.c and it also redirects the output of the coder
into that file. Next there is a section that prints out the includes of necessary
header files. Below these includes there are declarations of nxtOSEK constructs.
There are counters and tasks, depending on the tasking mode, being defined. The

35

- - - — — — — — — o
MATLAB Simulink 74— C code S-functions
model .mdl
Real-Time Workshop v
system.tmf —p—‘ Real-Time Workshop build Ii
¢ model .rtw
Target Language T
. arget
C ler (TL.C :
ompiler () program Langgage
* System target file Compiler
* Block target files
- - model .c
* Function library R

model private.h

Run-time interface » meke i LI ol
supportt files
1t
model .exe

Download to target hardware

v

Start execution using Simulink external mode
1

Figure 6.21: Code Generation Process

next section defines the nxtOSEK hook routines:
e ecrobot_device_initialize
e ccrobot_device_terminate
e user_Ims_isr_type2

The initialize routine is invoked by the once at the beginning of the pro-
gram execution, and it simply calls the initialize method generated from the
model. The terminate routine is invoked once at the end of the program execu-
tion, and it calls the terminate method generated from the model. The interrupt
service routine (isr) is called by the every 1 ms and it increments the de-
fined counter. The rest of the file is divided by the tasking mode of the model. If
the mode is single tasking there is generated one task that calls the step function
generated from the model, and terminates the task in order to allow its invocation
in the next period. However, if the mode is multi tasking there are generated
multiple tasks that calls the corresponding step functions.

At the end of this file there is the directive to close the <model name>_main.c
file. This directive redirects the output of the coder back to the location where
it pointed before.

36

Configuration Parameters: ExampleMdl/ConFfiguration (Active)

Select: Target selection 1=
- Solver S
*_ Data Import/Export System target file: nxt ert.tic Browse...
- Optimization . =
= Diagnostics Language: &
- Hardware Implementation Description: Embedded Coder
- Model Referencing
& Simulation Target Build process
= Code Generation . .
.- Report Toolchain settings
- Comments
‘- Symbols Toolchain: Automatically locate an installed toolchain - Validate...
- Custom Code L
- Debug GNU gecc/g++ v4.4.x | gmake (64-bit Linux)
o Interface Build configuration: | Faster Builds ~| Show settings
i Verification o S TSI
- Code Style Minimize compilation and linking time
- Templates
. Code Placement) X .
- Data Type Replacement Data specification override
Moy, Stchions [l Ignore custom storage classes [l Ignore test point signals &
Code Generation Advisor
Prioritized objectives: Unspecified Set objectives ...
Check model before generating code: | Off - Check model ...
|| Generate code only Build

| Package code and artifacts 'E‘
9 m Cancel Help Apply

Figure 6.22: Code Generation Options

The <model_name>.oil template is included in appendix[@ At the beginning
of this file there is also a check whether the used tasking mode is supported. There
follows the definition of local variable that defines the coefficient factor for the
conversion of seconds into milliseconds. This coefficient is needed since Simulink
defines the sample time of a block in seconds and the configuration defines
the task period in milliseconds. Next there is the directive for the redirection
of the coder output into the <model_name>.oil file. The next lines define the
configuration of the system and they are printed by the coder. There is definition
of the [RTQOS] the counter, and the tasks and alarms for these tasks depending
on the tasking mode of the model. The values of the ALARMTIME and CYCLETIME
are taken from the model. At the end of the script the <model name>.oil file
is closed and the output of the coder is redirected back where it pointed before.

The coder generates the code from the model block by block. The support
of the blocks from this project (discussed in section [6.2)) is ensured by the [TLC]
files (each for every block). These files define the code generated for those blocks.
For each different sample time in the model, the code generation process creates
functions for handling the process running in the sample time period. These
functions are:

e <model_name>_initialize
e <model_name>_step
e <model_name>_terminate

There needs to be generated a main file that will define the tasks for the real-time

operating system and will call the corresponding step functions in those tasks.
To exploit the power of an file to define multiple tasks the structure of

the model is bounded to have all top level elements the Subsystem blocks that

37

are set to be treated as atomic. Each this block represents an task in the final.
system. Each this block has defined a sample time and optionally a time offset.
The sample time directly defines the period of the task it represents. Every block
in the model, except the top level Subsystem blocks, has to inherit its sample
time. During the code generation process there is an callback handler that checks
the model. It verifies that the top level blocks are Subsystem blocks and that
these blocks have valid sample time. It also checks that every other block in the
model inherits its sample time. If any of the constraints above is not true, the
code generation process is aborted.

Let’s name the top level Subsystem block in the model ” ExampleMdl” Task1.
To generate code for the model, we must set a discrete sample time to the block
Taskl. For such altered model the simulation won’t work now, because the
integrator block (figure [BI8) requires continuous time. To correct the model
we must replace the integrator block by the Discrete-Time integrator block.
In figure there are shown the options of the Task1 block with defined sample
time and time offset. The value of the Sample Time option is set to [0.05,0.01]
where the first number defines the period and the second number defines the time
offset. Both these values are in seconds. If the time offset value is omitted there
is only one number specified (without the brackets) standing for the period.

File Edit View Display Diagram Simulation Analysis Code Tools Help

Normal >

Model Browser = ExampleMd|

® |FalExamplemd| » -
B Pa| Taskl
a o Block Parameters: Task1
& Subsystem b
= Select the settings for the subsystem block. To enable parameters
3 Taskl on the Code Generation tab, on the Main tab, select ‘Treat as

atomic unit'.

Main | Code Generation

Show port labels :FromPorticon -

Read/Write permissions: ReadWrite -

Name of error callback function:

Permit hierarchical resolution: | All .
x Treat as atomic unit
Minimize algebraic loop occurrences
Sample time (-1 for inherited):
[0.05, 0.01]

J [oK Cancel Help Apply

Ready [100% odeds| ,

Figure 6.23: Taskl Sample Time

The multitasking ability of the system can be influenced within the setting of
the model. In the Configuration Parameters window there is a pane Solver. On
this pane there are options for the simulation solver of the model. The option
Tasking mode for periodic sample times can be either MultiTasking, Single Tasking
or Auto. The value of this option influences the code generation, if there are
defined more than one task in the model. If the option is set to be MultiTasking

38

then the generated main and the file contains one task definition for each
task in the model and the tasks are called by the real-time operating system
according to the rules of real-time constraints. The period and time offset of each
task corresponds to the values of the task in the model. If the SingleTasking
value of the option is selected than there is configured only one task in the main
and in the file. This task has the period of the greatest common divisor of
all the sample times. All the tasks defined in the model are called within this
one generated task, but the period of invocation of concrete task corresponds to
the period defined in the model. Finally if the option if set to Auto the code
generation process creates a single task if there is only one distinct sample time
and it creates a multiple tasks if there is more distinct sample times defined in
the model.

After the code is generated it can be compiled together with the real-time op-
erating system from the nxtOSEK. The compilation can be invoked automatically
after the code generation. Whether MATLARB starts the compilation depends on
the option Generate code only. This option can be found in the Code Genera-
tion Options showed in figure If the option is selected MATLAB doesn’t
invoke the compilation, but it stops after the code is generated. Otherwise the
make is called within MATLAB automatically. In the makefile generated in the
project there are definitions, that are read by MATLAB, and that configures the
invocation. There is specified the make command, the host OS and other options.

In the case when the user selects the Generate code only for any reason. The
generated project can be easily compiled from the command line. To accomplish
the manual build there needs to be called the following command within the
directory with the generated project.

make all -f <model_name>.mk

The build procedure will parse the configuration file, configure and compile
the kernel of the and the source files of the generated project. After the
process finishes the resulting binary can be uploaded into the NXT robot using
the appflash utility. During the compilation there is created also an script, that
calls the appflash program with correct parameter and it knows where is the
appflash located. It is convenient for the user because he/she aren’t concern
with this details. The script is named appflash.sh and it is always generated in
the project folder. The robot needs to be prepared for the program upload as
described in the nxtOSEK documentation as well as in the documentation of this
project.

6.5 Code Structure

During the code generation process the coder creates a directory
<model_name>_nxt_ert_rtw where it puts all the generated source code files. The
suffix of the directory is unique for the LEGO NXT target, and is composed
from three parts. The nxt stands for the target platform LEGO NXT. The
ert expresses the used coder: the Embedded Coder. The ert stands for the
Embedded Real-Time. And finally the rtw which stand for Real-Time Workshop.
The Real-Time Workshop is legacy, it is former Simulink Coder. The structure
of the generated project is illustrated in figure

39

<model name> nxt_ert_rtw
| <model_name>.h

| <model_name>.c

| <model_name>_data.c

| <model_name>_private.h
| <model_name>_types.h
| <model_name>_main.c

| <model_name>.oil

| <model_name>.mk

Figure 6.24: Generated Project Structure

There are other files generated from the model that contain necessary types
and data structures, but the files above contain the principal implementation of
the model. The description of these files follow:

e <model_name>.h — Declares model data structures and a public interface
to the model entry points and data structures.

e <model_ name>.c — Contains entry points for all code implementing the
model algorithm.

e <model_name>_data.c — It contains the declarations for the parameters
data structure and the constant block 1/O data structure. If these data
structures are not used in the model, this file is not generated.

e <model_name>_private.h — Contains local macros and local data that
are required by the model and subsystems.

e <model_ name>_types.h — Provides forward declarations for the real-
time model data structure and the parameters data structure.

e <model_name>_main.c — This file is generated from the template in this
project. It contains definitions of tasks and hook routines for the
From this file there are called the entry point methods from the <mod-
el_name>.c file.

e <model name>.oil — This file is also generated from the template in this
project. It contains configuration of the final system.

e <model name>.mk — The makefile is generated from the [TMFE] in this
project. This makefile defines all the generated source files that needs to
be compiled and references the dedicated makefile in the nxtOSEK project,
which prescribes the overall compilation process.

There is an example of generated source code of the main file in appendix
This file is taken from the example model in section At the beginning of the
file there is a section with necessary includes. There is included the header file
generated for the model, in that file there are defined the entry point methods to
the model initiation, step execution and termination. The next two includes de-
fine the header files of the RTQS| its features are used in the main file as well. The

40

last include concerns the nxtOSEK header file with the method interfaces for the
LEGO NXT sensors and actuators. The next section takes care of the declaration
of tasks for the[RTOSl There is defined a counter, that counts the time, and since
the model was multi tasking there is a multiple declared tasks. Follows the section
with hook routines. The ecrobot_device_initialize method is called
once at the beginning of the program execution. This method calls the initialize
method on the generated code of the model. The ecrobot_device_terminate
method is called once at the end of the program execution. This method calls the
terminate method on the generated code of the model. The user_ims_isr_type2
routine is called by the each 1 ms and it serves to increment the defined
counter. At the end of the file there are definitions of the tasks. Each task
calls the step function on the model code with the process id as a parameter.
The Taskl and the Task2 performs the behavior of the tasks in the model. But
the TaskO only switches flags that indicate which task should run next. This
functionality is however covered by the present [RTOS], and therefor the flags are
ignored.

There is also an example of generated configuration file in appendix
This file is taken from the example model in section 6.3 as well. At first there is an
include of the implementation.oil file. This file is generated at the beginning
of the compilation process and it contains the version and implementation
standard. The rest of the configuration in this file is encapsulated in the definition
of[CPUl This way it is ensured by the standard that there is one[OIl] configuration
file per target [CPUL As the first item of the following configuration there is the
specified the used Next there is an application mode, which is empty.
We don’t need to configure any application modes for our purposes. There is
the definition of timer counter. This counter is updated in the interrupt service
routine placed in the main file mentioned above. This single timer counter is
used for all the alarms defined below. Now there are pairs of task and alarm.
These pairs are identified by the same anding number in their name. The alarm
is always used to activate the corresponding task when the time for its execution
occurs. The TaskO is only a task that handles flags indicating the next task to be
executed. Therefor the cycle time of this task is the greatest common divisor of
the cycle times of the remaining tasks. And the cycle time of each remaining task
is the sample time defined in the model. The definitions in the configuration
files corresponds to the declarations in the main file.

Appendix [[shows a simplified example of the generated makefile. This make-
file is from the example model in section At the beginning of the makefile
there is a variable defining the location of the nxtOSEK project installed on the
computer. This reference is substituted into the [TMF] during the installation of
this project. The next section of the file is prefaced with a comment that describes
the items in this section. There are definitions that are parsed by MATLAB after
the code generation process. These definitions configure the build process and
MATLAB is able to invoke the makefile and start the compilation of the project.
The rest of the makefile contains definition of the source files that needs to be
compiled. The last statement includes the makefile from the nxtOSEK project
which defines the compilation process.

The compilation of the generated project creates other files that are mixed
among the source files. The additional files are shown in figure The de-

41

scription of these files follows:

<model_name>_nxt_ert_rtw
.__build

| appflash.sh

| <model_name>_rom.bin
| <model_name>_rom.elf
| <model_name>_rom.map
| _implementation.oil

Figure 6.25: Compiled Files

e build — Directory containing all the object files compiled from the generated
source code file and from the sources that are required from the nxtOSEK
project, including the sources of the [RT'OS]

e appflash.sh — Shell script that invokes the appflash utility program for the
upload of the created program.

e <model_name>_rom.bin — The binary program that is the result of
the compilation. This program encapsulates the together with the
tasks defined by the model. It is targeted to the LEGO NXT hardware
architecture.

e <model name>_rom.elf — The [Executable and Linkable Format (ELF)|
version of the compiled program targeted to the LEGO NXT hardware
architecture.

e <model_ name>_rom.map — The virtual memory map file describing the
layout of the compiled binary program.

e implementation.oil — Defines the [OIL] version and implementation stan-
dard.

42

7. Evaluation

The goal of this project was to enable developing software system for LEGO NXT
robots using the Simulink development environment exploiting the model-driven
development approach. The support of the LEGO NXT target platform was re-
quired to work seamlessly within the Simulink under Linux operating systems.
There was required to provide a set of Simulink blocks that employ sensors and
actuators of the LEGO NXT robotics kit. Simulink models using these blocks
must support the simulation and code generation steps of the model-driven de-
velopment process.

There are two sets of blocks provided in this project. The first set of blocks
represents the LEGO NXT sensors and actuators which are used to model the
system for the NXT robot. These blocks constitute the sensors and actuators of
the robot during the model simulation, and are used for the code generation when
the prototype of the model is created. The second set of blocks also represents the
sensors and actuators of the NXT robot, but are opposite to the blocks from the
first set. These blocks are used to model the simulation environment for the model
of the created system. These blocks are interconnected with the corresponding
blocks from the first set. For example if the Encoder block from the Environment
set of blocks acquire some signal the Encoder block from the Model set of blocks
will provide the same signal in the model of the system. The condition which
must be satisfied is that both these blocks have to have set the same port in their
parameters.

The code generation process is supported by the blocks as mentioned above,
but there is more about the code generation process to be supplied to ensure that
the generated code defines complete system that can be compiled into binary.
There are provided needed files which guides the code generation of the program
main source file, the[OIT] configuration file and the makefile. The overall course of
the code generation process is governed by the supplied System Target File. This
file also defines the setting of needed parameters of Simulink to adjust the envi-
ronment to LEGO NXT target platform. The code generation and subsequential
compilation is realized within the Simulink development environment using the
means dedicated to this purpose.

For the software systems generated from the models created in Simulink there
is used nxtOSEK project as a framework. The nxtOSEK defines functions in-
terfacing the NXT sensors and actuators, that are used in the generated code to
interact with those peripheries. The nxtOSEK also provides the real-time oper-
ating system (TOPPERSIISP]) which is compiled together with the generated
code and handles the resource management and scheduling of the tasks from the
model. The nxtOSEK assures that the created systems are executed as real-time
tasks.

There is a patch of the nxtOSEK in this project. The patch adds the support
of the HiTechnic Color Sensor version 2 and modifies the nxtOSEK in such
a way to preserve its functionality under Linux operating systems.

The final part of this project brings an utility application appflash that is
able to upload the created binary of the model into the NXT robot using the
connection. This application works under Linux operating systems, thereby

43

supplies the functionality of the Fantom driver provided by LEGO which works
only in Windows and OS X operating systems. The upload of the program into
the NXT robot is triggered from the command line by calling the appflash script
in the directory of the compiled program.

This project enables developers to use the model-driven development approach
to design systems for the LEGO NXT target platform within Simulink develop-
ment environment in Linux operating systems. There is support of this devel-
opment steps: system modeling, model simulation, code generation, compilation
and deployment. System modeling is supported by the standard Simulink means
and by the supplied set of blocks. Model simulation can be used, because there
are two sets of LEGO NXT blocks, to represent the sensors and actuators in the
model and in the environment, and because the behavior of the block in the sim-
ulation is defined in the code behind each block. Because there is a [TLC file for
each supplied model block the code generation is supported as well. Compilation
is possible thanks to the patch of the nxtOSEK, and that there is a makefile being
generated for each model. The appflash application ensures the deployment of
compiled systems. These all steps of model-driven development are supported
and enabled by this project. Using this project students can create, test and
deploy their real-time embedded system designs under Linux operating system
without the need to write a single line of code.

The software of this project is provided along with this thesis on the included
[CDl Appendix [l summarizes the content of the

44

Bibliography

[1] MATLAB Documentation,
http://www.mathworks.com/help/matlab/index.html

[2] Simulink Documentation,
http://www.mathworks.com/help/simulink/index.html

[3] Target Language Compiler,
http://www.mathworks.com/help/pdf_doc/rtw/rtw_tlc.pdf

[4] Embedded Coder Getting Started Guide,
http://www.mathworks.se/help/pdf_doc/ecoder/ecoder_gs.pdf

[5] nxtOSEK Documentation,
http://lejos-osek.sourceforge.net/

(6] OSEK/VDX Operating System
http://portal.osek-vdx.org/files/pdf/specs/0s223.pdf

[7] OSEK Implementation Language
http://portal.osek-vdx.org/files/pdf/specs/0il25.pdf

[8] The Pragmatics of Model-Driven Development,
http://www.computer.org/csdl/mags/so0/2003/05/s5019.pdf

[9] Model-Driven Development Testing Methods,

https://www.linkedin.com/groups/Difference-between-MIL-SIL-PIL-109866.S.167229094

[10] uITRON4.0 Specification,
http://www.ertl.jp/ITRON/SPEC/mitron4-e.html

[11] Introduction to OMG’s Unified Modeling Language,
http://www.omg.org/gettingstarted/what_is_uml.htm

[12] HALPIN, Terry. Object-Role Modeling: an Overview
http://www.orm.net/pdf/0RMwhitePaper.pdf

[13] RUMBAUGH, James; BLAHA, Michael; PREMERLANI, William; EDDY, Fred-
erick; LORENSEN, William. Object-Oriented Modeling and Design. Prentice
Hall, 1990. ISBN 0-13-629841-9.

[14] Federal Information Processing Standards Publication 184 | 1993.
http://www.idef.com/pdf/Ideflx.pdf

[15] CHEN, Peter. The Entity-Relationship Model - Toward a Unified View of
Data, 1976. doi:10.1145/320434.320440.

[16] Bruza, P. D., VAN DER WEIDE, Th. P. The Semantics of Data Flow Dia-
grams. University of Nijmegen, 1993.

[17] Microsoft Robotics Documentation,
http://msdn.microsoft.com/en-us/library/bb881626.aspx

45

http://www.mathworks.com/help/matlab/index.html
http://www.mathworks.com/help/simulink/index.html
http://www.mathworks.com/help/pdf_doc/rtw/rtw_tlc.pdf
http://www.mathworks.se/help/pdf_doc/ecoder/ecoder_gs.pdf
http://lejos-osek.sourceforge.net/
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://www.computer.org/csdl/mags/so/2003/05/s5019.pdf
https://www.linkedin.com/groups/Difference-between-MIL-SIL-PIL-109866.S.167229094
http://www.ertl.jp/ITRON/SPEC/mitron4-e.html
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.orm.net/pdf/ORMwhitePaper.pdf
http://www.idef.com/pdf/Idef1x.pdf
http://msdn.microsoft.com/en-us/library/bb881626.aspx

[18] ROBOTC Documentation,
http://www.robotc.net/wiki/Main_Page

[19] Liu, Jane W. S. Real-Time Systems Prentice Hall, 2000. ISBN-10:
0130996513.

46

http://www.robotc.net/wiki/Main_Page

List of Abbreviations

API Application Programming Interface. 2]
ARM Advanced RISC Machines. [12] [[3] 16 25
AUTOSAR Automotive Open System Architecture. [I]

BIOS Basic Input/Output System. [I3]

BricxCC Bricx Command Center.

CD Compact Disc. 44
CPU Central Processing Unit. [I3], [[3] 21, 22 (4]

DFD Data Flow Diagram.

ELF Executable and Linkable Format.

ER model Entity-Relation model.
GNU GNU’s Not Unix. [13] [I6], 5]
HIL Hardware in the Loop.

IDEF1X Integration Definition for Information modeling.
IO Input/Output.

puITRON Micro Industrial TRON. [I4]
JSP Just Standard Profile. [[2] [[4] 2]

LCD Liquid-Crystal Display. 2], 27,

LED Light-Emitting Diode.

MATLAB Matrix Laboratory.
MEX MATLAB Executable.
MIL Model in the Loop. Bl @ 2]

NBC Next Byte Codes.
NQC Not Quite C.

NXC Not eXactly C.

OIL OSEK Implementation Language. [3HIG, 19 22 23] 26] B6H39, ETHA3]

47

OMR Object-Role Modeling.
OMT Object-Modeling Technique.

OSEK Offene Systeme und deren Schnittstellen fiir die Elektronik in Kraft-
fahrzeugen; English: Open Systems and their Interfaces for the Electronics

in Motor Vehicles. [12 3] [I5]

PI Proportional Integral.

PIL Processor in the Loop. Bl 211

RAM Random Access Memory. [[2]

RGB Red, Green, Blue.

RISC Reduced Instruction Set Computing.
RTOS Real-Time Operating System. 22] [36]
RTW Real-Time Workshop. B4

SIL System in the Loop. Bl 2]
STF System Target File. 3] B4]

TLC Target Language Compiler. 26] 34 B3] 37, 44]
TMF Template Makefile. 25 B34, B5] [0, [4T]

TOPPERS Toyohashi Open Platform for Embedded Real-time Systems. [12]
14 22

TRON The Real-time Operating system Nucleus. [I4]

UML Unified Modeling Language.
USB Universal Serial Bus. 2], 23]

VU-LRT Villanova University LEGO Real Time Target. [I8]

48

Attachments

1 Generated Makefile: ExampleMdl.mk

nxtOSEK_ROOT = /opt/MATLAB/NXT_LEGO_Library /nxtOSEK

Macros read by make_rtw

#

The following macros are read by the build procedure:
#

MAKECMD — This is the command used to invoke
the make utility

HOST — What platform this template makefile
is targeted for

(i.e. PC or UNIX)

BUILD — Invoke make from the build procedure
(yes/no)?

SYS.TARGET_FILE — Name of system target file.

MAKECMD = make all

HOST = UNIX

BUILD = yes

SYS_.TARGET_FILE = nxt_ert. tlc

Makefile Content

MATLABROOT = /opt/MATLAB/R2013b

MODEL = ExampleMdl
MODULES = ExampleMdl_main.c rtGetInf.c rtGetNaN.c
EXTMODE = 0
RT_NONFINITE = \
$(shell test —e rt_nonfinite.c && echo 1 || echo 0)

Target specific macros
TARGET = ExampleMdl
TARGETSOURCES = \
$ (MODEL) . ¢ \
$ (MODULES)
TOPPERS_OSEK_OIL_SOURCE = ./ExampleMdl. oil
USER_INC_PATH = \
$ (MATLABROOT) / extern /include \
$ (MATLABROOT) / simulink /include \
$ (MATLABROOT) /rtw /c/src

49

ifeq ($(RTNONFINITE),1)
TARGET SOURCES += rt_nonfinite.c
endif

Don’t modify below part
OPATH 7= build
include $(nxtOSEK_ROOT)/ecrobot/ecrobot .mak

50

2 Main File Template: nxt_main.tlc

%% Check that allowed solver 1is set

%if CompiledModel. Solver != "FixedStepDiscrete”
%error ”Only fixed step discrete solver allowed.”

%endif

%if (CompiledModel. FixedStepOpts.SolverMode != 7 SingleTasking”
&& CompiledModel. FixedStepOpts. SolverMode != ”MultiTasking”)
%error ”Only MultiTasking and SingleTasking options allowed.”

%endif

%openfile nxt_main = "%<CompiledModel.Name>_main.c”, "w’

#include "%<CompiledModel.Name>.h”
#include ”kernel .h”

#include " kernel_id.h”

#include ”ecrobot_interface.h”

/4 */
/* OSEK declarations * /

) gl

DeclareCounter (SysTimerCnt);

%if CompiledModel. FixedStepOpts.SolverMode = " SingleTasking”
DeclareTask (Taskl);
%elseif CompiledModel. FixedStepOpts.SolverMode = " MultiTasking”

%foreach index = CompiledModel. NumSampleTimes
DeclareTask (Task%<index >);
%endforeach
%endif

/* nxtOSEK hook x/
void ecrobot_device_initialize (void)

{
}

/* nxtOSEK hook x/
void ecrobot_device_terminate (void)

{
}

/* nxtOSEK hook to be invoked from an ISR in category 2 x/
void user_lms_isr_type2 (void)

{

%<CompiledModel . Name> _initialize ();

%<CompiledModel . Name>_terminate ();

StatusType ercd;

o1

/*

* Increment OSEK Alarm System Timer Count

*/
ercd = SignalCounter(SysTimerCnt);
if(ercd != EOK)

{
}

ShutdownOS (ercd);

}

070/7070707070707070707070707/0707/070,/070,/0707/0707070707/0707/070,/0707/0707/07070707/0707070707/07070707/070,/070,7/070/0707/070;7
TSI ST TSI TSI TSI ST ST ST TSTSITTITTITS o

I %%
9% SINGLE TASKING TASK VO

TSI TSI TS TSI TS TSI TSI TS TSITISTSTSTSTI TS o
%if CompiledModel. FixedStepOpts.SolverMode = " SingleTasking”

/* Background Task x/
TASK(Task1)

%% ecrobot_status_monitor (”OSEK HelloWorld!”);
%<CompiledModel . Name>_step ();
TerminateTask ();

}

I %%
9% MULTI TASKING TASKS Y%

VST TSI TSI TSI TSI TSST TSI TSI TSI SIS TSI TSI TS STSSI TSI TSTSTTS o
%elseif CompiledModel. FixedStepOpts.SolverMode = ” MultiTasking”
%foreach index = CompiledModel. NumSampleTimes

/* Background Task x/
TASK(Task%<index >)

{

%<CompiledModel . Name>_step (%<index >);
TerminateTask ();

}

Y%endforeach
Y%endif

%closefile nxt_main

52

3 Generated Main File: ExampleMdl_main.c

#include ”ExampleMdl.h”
#include ”kernel .h”

#include ”kernel_id .h”
#include 7 ecrobot_interface.h”

/* */
/* OSEK declarations * /
/% */
DeclareCounter (SysTimerCnt);
DeclareTask (Task0);
DeclareTask (Taskl);
DeclareTask (Task2);

/* nxtOSEK hook x/
void ecrobot_device_initialize (void)

{

ExampleMdl_initialize ();

}

/* nxtOSEK hook x/
void ecrobot_device_terminate (void)

{

ExampleMdl_terminate ();

}

/* nxtOSEK hook to be invoked from an ISR in category 2 x/
void user_lms_isr_type2 (void)

{

StatusType ercd;

/%
x Increment OSEK Alarm System Timer Count
y
ercd = SignalCounter(SysTimerCnt);
if (ercd != EOK) {
ShutdownOS (ercd);
}

}

/* Background Task x/
TASK(Task0)
{
ExampleMdl_step (0);
TerminateTask ();

}

53

/* Background Task x/
TASK (Task1)
{
ExampleMdl_step (1);
TerminateTask ();

}

/* Background Task x/
TASK(Task2)
{
ExampleMdl_step (2);
TerminateTask ();

}

o4

4 OIL File Template: nxt_OIL.tlc

%% Check that allowed solver is set

%if CompiledModel. Solver != "FixedStepDiscrete”
%error ”Only fixed step discrete solver allowed.”

%endif

%if (CompiledModel. FixedStepOpts.SolverMode != 7 SingleTasking”
&& CompiledModel. FixedStepOpts.SolverMode != "MultiTasking”)
%error ”Only MultiTasking and SingleTasking options allowed.”

%endif

%% conversion factor between seconds and milliseconds
%assign s2ms = 1000

7 v

%openfile oil_file = "%<CompiledModel.Name>.0il”, "w

#include 7implementation.oil”

CPU ATMEL_AT91SAMT75256

{
OS LEJOS_OSEK

{
STATUS = EXTENDED;
STARTUPHOOK = FALSE;
FRRORHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE:
POSTTASKHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE:;
USERESSCHEDULER = FALSE;

}s
APPMODE appmodel{ };

COUNTER SysTimerCnt

{
MINCYCLE = 1;
MAXAILLOWEDVALUE = 10000
TICKSPERBASE = 1;

b
TSI TSI TSI IS SIS TSI SATSISTTSTSISTITISTTSTTITI TS o

VO SINGLE TASKING TASK VI
%70 %%

TS TTTISTTTISSTTIS ST SIS TSI SIS SIS ST IS S ST SIS ST IIS SIS ST TS o

95

%if CompiledModel. FixedStepOpts.SolverMode = 7 SingleTasking”
%assign alarmCycle = ...
%<CompiledModel. FixedStepOpts . FixedStep> x %<s2ms>
%assign alarmCycleNum = CAST(” Number”, alarmCycle)

TASK Taskl

{
AUTOSTART = FALSE;
SCHEDULE = FULL;
PRIORITY = 5;
ACTIVATION = 1;
STACKSIZE = 512;

}s

ALARM cyclic_alarm

{
COUNTER = SysTimerCnt ;
ACTION = ACTIVATETASK

{

}
AUTOSTART = TRUE

{

TASK = Taskl;

%% Alarm offset
ALARMTIME = %<alarmCycleNum >;
%% Alarm cycle
CYCLETIME = %<alarmCycleNum >;
APPMODE = appmodel ;
b
}s

TS TTTISTTTISSTTIS SIS ST IS SIS ST IS S ST SIS SIS ST TSI TS o

I VAL
%0 MULTI TASKING TASKS %%
%6/0 %6/0

((%/(%%‘%%%%%%%%‘%%

%elseif CompiledModel. FixedStepOpts.SolverMode = " MultiTasking”

%foreach index = CompiledModel. NumSampleTimes

%assign sampleTime = ...

%<CompiledModel. SampleTime [index |. Period AndOffset>
%assign alarmCycle = %<sampleTime >[0] * %<s2ms>
%assign alarmCycleNum = CAST(” Number”, alarmCycle)
%assign alarmOffset = %<sampleTime >[1] * %<s2ms>
%if alarmOffset = 0

%assign alarmOffset = alarmCycle
%endif

56

%assign alarmOffsetNum = CAST(” Number” , alarmOffset)

TASK Task%<index>

{
AUTOSTART — FALSE:
SCHEDULE = FULL;
PRIORITY = 5:
ACTIVATION = 1;
STACKSIZE = 512;
4
ALARM cyclic_alarm%<index>
{
COUNTER = SysTimerCnt ;
ACTION = ACTIVATETASK
{
TASK = Task%<index >;
}s
AUTOSTART = TRUE
{
%% Alarm offset
ALARMTIME = %<alarmOffsetNum >;
%% Alarm cycle
CYCLETIME = %<alarmCycleNum >;
APPMODE = appmodel;
}
}s
%endforeach
%endif

b

%closefile oil_file

o7

5 Generated OIL File: ExampleMdl.oil

#include "implementation. oil”

CPU ATMEL_AT91SAMT7S5256

{
OS LEJOS.OSEK

{
STATUS — EXTENDED:
STARTUPHOOK = FALSE:
FERRORHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE:;
USERESSCHEDULER = FALSE;

b

APPMODE appmodel { };

COUNTER SysTimerCnt

{
MINCYCLE = 1;
MAXALLOWEDVALUE = 10000;
TICKSPERBASE = 1;

}s

TASK TaskO

{
AUTOSTART = FALSE;
SCHEDULE = FULL;
PRIORITY = 5;
ACTIVATION = 1;
STACKSIZE = 512;

}s

ALARM cyclic_alarm0

{

COUNTER = SysTimerCnt ;
ACTION = ACTIVATETASK
{

}
AUTOSTART = TRUE

{

TASK = Task0;

ALARMTIME = 10;

CYCLETIME = 10;

APPMODE = appmodel;
b

58

TASK Taskl

{
AUTOSTART = FALSE;
SCHEDULE = FULL;
PRIORITY = 5;
ACTIVATION = 1;
STACKSIZE = 512;

b

ALARM cyclic_alarml

{
COUNTER = SysTimerCnt ;
ACTION = ACTIVATETASK
{

}
AUTOSTART = TRUE
{

TASK = Taskl;

ALARMTIME = 30;
CYCLETIME = 30;
APPMODE = appmodel ;
i
i
TASK Task?2
{
AUTOSTART = FALSE;
SCHEDULE = FULL;
PRIORITY = 5;
ACTIVATION = 1;
STACKSIZE = 512;
i
ALARM cyclic_alarm?2
{
COUNTER = SysTimerCnt ;
ACTION = ACTIVATETASK
{

}
AUTOSTART = TRUE
{

TASK = Task2;

ALARMTIME = 50;
CYCLETIME = 50;
APPMODE = appmodel ;

59

6 Content of Included CD

README. txt
E Thesis_Dominik_Skoda.pdf
siblilen
. _doc
| srC
| LEGO_NXT_Library.pdf
| Tutorial.pdf
| _install
| +nxt_blocks
| nxtOSEK_patch
| altered_files
| _samples
| _scripts
| srCc
t blocks
nxt_comm
. _nxt_remove.m
| nxt_settings.m
,__nxt_setup.m

The README. txt file contains the basic information how to get started using
this project. The Thesis_Dominik_Skoda.pdf file is the electronic version of this
text. The siblilen directory contains the software project that is the subject of

this work.

60

	Introduction
	Model-Driven Development
	Model-Driven Development in Simulink

	NXT OSEK a framework for Embedded Coder
	Firmwares for LEGO NXT
	nxtOSEK application

	Related Work
	LEGO NXT-G
	Official Simulink support
	Villanova University LEGO Real Time Target

	Model-Driven Development for Lego NXT
	Project Structure
	Parts of the Simulink Block Library for Lego NXT
	Implemented Blocks
	Model
	Environment

	Model Creation and Simulation
	Code Generation
	Code Structure

	Evaluation
	Bibliography
	Attachments
	Generated Makefile: ExampleMdl.mk
	Main File Template: nxt_main.tlc
	Generated Main File: ExampleMdl_main.c
	OIL File Template: nxt_OIL.tlc
	Generated OIL File: ExampleMdl.oil
	Content of Included CD

