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1 Introduction 

1.1 Smart Cyber-Physical Systems 

Advancements in cloud computing together with an increasing number of intercon-

nected devices alter the way we perceive and use things that surround us. More and 

more ideas are conceived every day, creating usage scenarios and business models, that 

few decades ago would not be possible. With the ongoing development in hardware 

electronics, which continuously get miniaturized, less energy-demanding, and most of 

all cheaper, successively we find new areas for their application.  Moreover, a relatively 

low cost of electronic device interconnection allows for interfacing cars, washing ma-

chines, microwave ovens or even much simpler devices such as lighting bulbs and socket 

plugs. Ericsson predicts that the number of Internet-connected devices will grow 10 

times from now on reaching the number of 50 billion in 2020 [Eri11]. In a similar vein, 

the SAP foretells the fourth industrial revolution, where technology merges physical and 

digital worlds connecting systems, networks and machines to enable a more autono-

mous and self-organizing approach to production [Ber13].  Therefore, more devices are 

Figure 1. Connectivity in the Internet of Things.  
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getting manageable from any point in the world being agnostic to user’s location. This 

emerging phenomenon of device interconnectivity is often termed as Internet of Things 

(IoT) [AIM10, McE14]. The WhatIs.com [1] defines IoT as “a scenario in which objects, 

animals or people are provided with unique identifiers and the ability to transfer data 

over a network without requiring human-to-human or human-to-computer interac-

tion…”. The “things” are no longer fully-fledged computers but devices equipped with 

fewer resources and providing much simpler functionality – e.g. sensors and actuators. 

Being able to sense and actuate a physical property of a deployment environment is 

the domain of cyber-physical systems (CPS) [Bro13, LS10], which can be defined as “a 

system of collaborating computational elements controlling physical entities" [ML15]. 

While IoT focuses on devices interconnectivity and accessibility, CPS concentrate 

more on relations between cyber and physical worlds. Those two research domains, 

however, blend and complement each other providing for distributed systems that are 

highly interconnected, accessible and capable of altering the environment they “live” in. 

A home control system (also referred as “Smart Home”) is one of the examples of this 

blend, where home appliances, sensors, and actuators (the CPS part) are steered re-

motely (the IoT part) to ensure safety and provide for user’s comfort. 

From the perspective of system architecture, each device can be seen as a component 

that interacts with other components in the system via connectors. As such, referring to 

the home control example, each home appliance is a separate component that interacts 

with a user or his personal device also represented as a component. There, the interac-

tions and connectors are fairly simple and fixed. In nowadays emerging systems, how-

ever, we observe more sophisticated component interactions. Connectors are no longer 

static as in the aforementioned case, but they appear and disappear during the system 

lifetime. This stems from the deployment infrastructure, which is usually built over a 

wireless network, characterized by the unreliability of the communication medium (i.e. 

radio waves). In addition, to accommodate more devices and support new functionali-

ties, such systems need to be open-ended allowing components to join and leave at any 

time, making the system (at least theoretically) unlimited with respect to the number of 

its components. The last cause for component connector transiency comes from system-

level design, which assumes that components interact with each other only in some par-

ticular circumstances (i.e. in an ad-hoc manner).  Since connectors embody those inter-

actions, once the goal (specified at the design time of the system) of such interaction is 

achieved the connectors disappear. 

An example illustrating this case comes from automotive industry and considers 

interconnected vehicles, cooperating with each other in order to optimize parking space 

selection process, which subsequently allows for an overall journey time reduction. As-

suming distributed deployment of such system, it is not possible for a single component 

(in this case a vehicle) to have a global view on the system state. Thus, the components 

need to organize themselves into collaborative groups, delineated by some property of 
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the system (e.g. geographical proximity). Within such groups, they would then exchange 

necessary data (e.g. occupancy of already visited parking spaces) being used for select-

ing a parking space.  

The cooperativeness becomes crucial not only when considering the semantic level 

of the system purpose but also when we take into account heterogeneity of devices, in 

terms of their hardware and available resources. Mobile phones, single-board, and per-

sonal computers, or large units used in data centers create a full spectrum of devices that 

vary not only in usage profiles but also in terms of available processing power and en-

ergy consumption. Thus, the need for computation off-loading from less capable hard-

ware to one that is underutilized and equipped with more resources becomes pressing 

especially when considering resource sharing in order to secure, optimize and prolong 

system operability. 

In addition, components themselves can contribute to the aforementioned system 

operability by making it more resilient to unexpected situations or situations regarded 

as abnormal.  As such, components may implement different self-adaptation techniques 

[CCG+09, GSC09] that allow them to adjust autonomously their behavior (based on both 

self- and context- awareness [VH15]) to the current state of the system (or its observable 

part) and possibly undertake actions to restore its normalcy (i.e. its correct behavior with 

respect to system specification). 

To sum up, the aforementioned aspects comprise the kind of cyber-physical systems 

that are highly interconnected, architecturally dynamic and composed of cooperative, 

heterogeneous components. Already mentioned, smart homes or smart vehicles are just 

a few examples of those. Because of their application in many smart-* cases, we will refer 

to this kind of systems as smart cyber-physical systems (SCPS). 

1.2 Communication in SCPS (Challenges) 

With the advent of SCPS, there is a demand for methods and tools that would address 

the SCPS entire lifecycle starting at the early stage of requirements gathering and ending 

at the product maintenance phase. “Old methods” (such as classical component-based 

Figure 2. An example of vehicles coordinating with each other in order to optimize the 

parking place selection process. 
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software engineering) in software development that have been used to engineer distrib-

uted systems do not fit very well as they fail to cope with the new characteristics intro-

duced by SCPS. As described previously, design-level architectural dynamicity, open-

endedness, and unreliability of the communication infrastructure impose a new set of 

challenges unprecedented (at least in combination and in such a scale) before, that need 

to be addressed by proposing appropriate methods and tools facilitating the entire life 

cycle of an SCPS. In this work, we will focus on the category of challenges that relate 

mainly to the problems of inter-component communication and its realization in the con-

text of SCPS. 

The first challenge here is to come up with an adequate representation of an SCPS 

component and a formal description of its interactions with other components. Such ab-

stractions need to correspond semantically to the aforementioned nature of the SCPS, 

meaning mainly autonomy of components and transiency of their interactions. Moreo-

ver, they need to account for open-endedness of SCPS reflected by having no assump-

tions with respect to system scale.  

Furthermore, in order to be able to decide with whom a particular component 

should interact, we need to have at least a partial view on the system – i.e. information 

about other components. Then based on their state, we can decide whether two compo-

nents should interact or not. In other words, a state of a component needs to drive the 

decision on creating or removing a connector between two components.  

As an illustration, let us consider the example from the previous section and assume 

that vehicles there interact with each other based on the distance from their destination. 

Specifically, a vehicle should interact (i.e. exchange information on parking space occu-

pancy) only with vehicles, which are in a proximity (given by some arbitrary value) to 

the vehicle’s destination, as they are likely to possess most recent information about 

parking space occupancy in the area. However, to fulfill the “proximity” condition, we 

need to know about other vehicles in the system and their geographical location, which 

is expressed in the state of a vehicle component. 

Ideally, each component has an access to the global, a relatively recent view of the 

system (i.e. state of all other components), which is possible if the deployment infrastruc-

ture provides some guarantees over the communication reliability. In such cases, the 

access to the global state can be realized either in a centralized or distributed manner. 

SCPS, however, are built over wireless infrastructures, which provide no guarantees 

over the communication, as the communication medium there (i.e. a radio channel) is 

limited in range and prone to electromagnetic interference. Moreover, the mobility of 

components reduces the duration of communication links, which adds to the overall in-

stability of the inter-component connectivity.   

In the end, we get a highly unreliable environment where any network-level proto-

cols (e.g. Ad-hoc On-Demand Distance Vector Routing [PR99], Dynamic Source Routing 

[JM96]) are of no use as they fail to cope with infrastructural dynamism. For the same 

reason, in such settings, any centralized solution is out of consideration as well. There-

fore, another challenge in the context of SCPS realization is to disseminate component 
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state across the network in a distributed manner assuming nothing about network con-

figuration as well as its participants and at the same time provide for system correctness 

in correspondence to its requirements.  

The last challenge identified in this work, assuming the aforementioned setup, is to 

provide means for analyzing SCPS with respect to its system requirements. Very often, 

SCPS, apart from general system requirements, may require providing guarantees for 

some of its non-functional properties (e.g. timely reaction to an event in the system). 

Staying in the context of the vehicles example, we could imagine a simple scenario con-

sisting of a leader and follower, where one vehicle automatically follows another vehicle 

ahead. In this case, components (i.e. vehicles) need to exchange information about their 

position, speed, acceleration, etc. in order to maintain a safe distance between each other 

and avoid collisions. To ensure that system is correct and its implementation corre-

sponds to the requirements drawn during the design phase of the system, we need a 

method that would verify the system with respect to its specification and possibly sug-

gest a configuration (if such exists) that would ensure satisfiability of its requirements. 

Again, taking into account the nature of the deployment infrastructure, this is not an 

easy task to achieve, as the method needs to account for peculiarities of the eventual 

communication model and the aforementioned characteristics of the underlying net-

work. 

To sum up, there are three main challenges identified in the context of inter-compo-

nent communication that are the focus of this work and are defined assuming the 

distribution of components within an SCPS deployed over an unreliable network infra-

structure. 

 C1 – Abstraction & Semantics. In order to support design and development of 

SCPS, adequate abstractions for components and their interactions are required. 

They need to be tailored to support component autonomy and transiency of com-

ponent interactions. 

 C2 – Realization. SCPS components, in order to interact with each other, have to 

have an access to an up-to-date and ever changing system view (i.e. know the 

state of other components in the system) or, at least, its relevant parts. This would 

then drive the decision-making on component interactions creation and disposal.    

 C3 – Analysis. To support validation of SCPS with respect to its both functional 

and non-functional requirements, methods that facilitate this process are needed. 

1.3 Research Goals 

Keeping in mind the assumption of component distributed deployment across unrelia-

ble infrastructure; the thesis takes up the following goals as means of contributing to a 

solution addressing the challenges C1, C2, and C3 from the previous section. 
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 G1 – Component Model for SCPS development. Propose a set of modeling ab-

stractions for an SCPS component representation and its interaction (with other 

components) specification. The abstractions need to account for and support the 

autonomy of SCPS components as well as architectural dynamicity stemming 

from component connectors temporality. 

 G2 – Execution and Deployment Platform. Propose a technique that apart from 

providing a deployment and execution environment for SCPS components 

would automate the component state dissemination process across other com-

ponents, allowing for distributed decision making about interactions between 

them (as described in C2). The dissemination process should align with the con-

tinuous evolution of a component state, and account for heterogeneous network 

support. As such the following two specific goals are further formulated: 

o G2a – Heterogeneous network support. The method should provide 

support not only for infrastructure-based networks, where network-

level protocols (e.g. IP) exists and can underlay the proposed data dis-

semination process but also networks of an ad-hoc nature, where no 

communication protocol is available (i.e. Mobile Ad-hoc NETworks – 

MANETs). 

o G2b – Optimize Data Dissemination. The whole technique should op-

timize the data dissemination process to account for limitations of the 

deployment infrastructure. Ideally, the optimization method shall ac-

count for the specifics of the underlying network as described in G2a. 

Since, in such settings, it is not possible for a component to have access 

to the global view of the system, the parts of it that are available to a 

component should be relevant with respect to their usability from the 

component’s perspective. 

 G3 – Simulation framework for SCPS. Deliver a method for assessing the cor-

rectness of a developed SCPS – i.e. correspondence to its both functional and 

non-functional requirements. 

1.4 Structure 

This work is delivered as a collection of published papers, which altogether describe the 

DEECo component model and its realization. In particular, the collection consists of 

computation and communication semantics of the model, its implementation and simu-

lation environment allowing for system validation. 

To further extend the scope of the papers and provide a unified view, the thesis 

gives a comprehensive description of the state-of-the-art in Chapter 2. It presents related 

work in the area of distributed system development. In particular, the chapter focuses 
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on revising the existing software architectures (i.e. component-based and agent-based) 

and identifying their advantages and disadvantages in relation to their application in the 

context of the SCPS development (Sections 2.1.1 and 2.1.2). In the last subsection (i.e. 

Section 2.1.3), the ensemble-based architecture is introduced and its current realizations 

are again assessed against the SCPS implementation. The second part of Chapter 2 sur-

veys over the well-known communication paradigms used in the context of distributed 

systems. The selection of the methods was based on their correspondence to the imple-

mentation part of the contribution, which included (or took into account) those ap-

proaches at any stage of the research and realization process. In the last part of Chapter 

2, simulation-based verification methods are described and their applicability in the con-

text of SCPS is assessed. Generally, Chapter 2 is structured to be in line with the research 

goals from Section 1.3. 

Further, Chapter 3 provides a brief overview on the author’s contribution consider-

ing challenges and goals specified in Section 1.3. It describes parts of the DEECo frame-

work that the author has contributed to. In addition, the chapter consists of a short iter-

ation over the main publications of the author, and their relevance with respect to the 

research goals.  

Chapter 4 lists co-authored publications that detail more on the author’s contribu-

tion briefed in Chapter 3. 

Finally, Chapter 5 provides conclusions on the research delivered and presented in 

the thesis. It also consists some possibilities for future directions, continuing the work 

initiated by the author in the area of SCPS development.
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2 State of the Art 

2.1 Software Architectures for SCPS 

The following section gives an overview on available software architectures that are tai-

lored for building distributed systems in general. Based on this brief survey, pros and 

cons of each of the approach are then summarized and its applicability to SCPS design 

and development process is assessed. The main purpose of this survey is to set a context 

for the goal G1 and provide argumentation on decisions made while proposing the so-

lution (see Chapter 3). 

2.1.1 Component-based Architectures 

Broadly recognized and adopted component-based software architectures divide com-

plex systems into smaller reusable parts that can be used across different applications. 

By separation of concerns, they provide means for building and maintaining both large 

and small software products, which are much easier to comprehend through all the 

stages of their lifecycle. The basic element in this approach is a component, which has 

earned many different interpretations and as such does not have a single unequivocal 

definition. Below, there are just a few such interpretations of a component available in 

literature:  

"A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a 

clear function in the context of a well-defined architecture. A component conforms to and provides 

the physical realization of a set of interfaces." – Philippe Krutchen [BW98] 

"A software component is a unit of composition with contractually specified interfaces and ex-

plicit context dependencies only. A software component can be deployed independently and is 

subject to the third-party composition." – Clemens Szyperski [BW98] 

"A component is a unit of distributed program structure that encapsulates its implementation 

behind a strict interface comprised of services provided by the component to other components in 
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the system and services required by the component and implemented elsewhere. The explicit dec-

laration of a component's requirements increases reuse by decoupling components from their op-

erating environment." – Steve Crane and Nat Pryce [PC98] 

 

From the architectural perspective, the component is described as a piece of soft-

ware that encapsulates some functionality, hides its exact implementation from the rest 

of the world and provides its behavior through so-called interfaces. Each component may 

have two types of interfaces, which can be either provided or required. Provided inter-

faces are used to deliver functionalities to other parts of the system while required ones 

describe a functionality needed by the component implementation. From the outside 

world, a component is perceived as a black box, which communicates with other com-

ponents through its interfaces, being the only interaction points with that component. 

This way, while designing an application we can focus only on functionalities disregard-

ing all implementation related aspects and component internal architecture. Compo-

nents can be composed hierarchically, defining a new component that aggregates func-

tionalities delivered by each of its inner building blocks (see Figure 3). This kind of per-

spective or view on a component, where its internal structure is exposed, is called gray 

box approach and is handy when dealing with a single component development. 

To sum up, in Component-Based Software Engineering (CBSE) different aspects can 

be separated from each other and contained in logical boundaries, constituted by a com-

ponent. This allows for simplifications in the entire software development process, be-

ginning with the design phase and ending at final product maintenance. 

2.1.1.1 Selected representatives 

There are many different solutions, available nowadays, designed for component-based 

software engineering. They offer various kinds of utilities for facilitating the entire ap-

plication development process as well as provide means for their efficient execution. In 

their basics, they rely on the elementary assumptions of component-based software en-

gineering, such as component interfaces, which by definition need to be well specified. 

Typical examples of component models, that implement most of the concepts of 

CBSE, are SOFA 2 [BHP06], Palladio [RBB+11] and Fractal [BCS04]. Those mostly aca-

demic component models support both vertical (i.e. component nesting) and horizontal 

component composition and rely on strong dependencies (expressed by their interface 

Figure 3. A composit component.  
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specification) between components. Conceptually, they build over static architectures, 

defined usually in a dedicated ADL (Architecture Description Language). 

 

OSGi 

 

An example of a technology that adopts the ideas of CBSE and allows for relaxation 

in terms of component architecture is OSGi (Open Services Gateway Initiative) [2] 

[Boc11]. It uses the approach of service components, which in contrast to the standard 

CBSE paradigms, does not require system architecture to be defined at the design time 

and assumes a component instance appearance and disappearance during system 

runtime. OSGi was initially designed to introduce modularization for Java-based appli-

cations via so-called bundles. It loosens the dependency between components, by sup-

porting reaction mechanisms on both communication link creation and its deletion dur-

ing the application execution time.  

As OSGi is just a specification, throughout the time, it has earned multiple imple-

mentations such as Equinox [3] or Felix [4]. While those are centralized distributions of 

OSGi, there is also a distributed version called Distributed OSGi (DOSGi) with the im-

plementation provided by Apache CXF [5]. OSGi has also been used as a ground for 

component models realizations that encapsulate parts irrelevant (considering CBSE) 

from the perspective of actual usage and making it more suitable for a component driven 

design and development – e.g. iPojo [EHL07].  

 

Progress 

 

Another solution that leverages on the idea of components and concentrates on em-

bedded systems is Progress [HPB+10]. Due to the support of real-time aspects, Progress 

comes with both time and reliability related analyzes that allow for verification and val-

idation of a modeled system early at the design phase of the system lifecycle. As a frame-

work, it delivers both a component model called ProCom [BCC+08, Led15] and a set of 

tools supporting the entire development process of embedded real-time systems. Pro-

Com is based on two perspectives, differing in the level of granularity of the system 

being modeled. The fine-grained view is given by ProSave, which deals with low-level 

and passive (i.e. its activity is triggered externally) hierarchies of components. At this 

level, the functionality of each component is given as a set of independently running 

services that component supports. The inter-component communication is realized via 

data and triggering ports. A ProSave service is decorated with a single group of input 

and (possibly) several output group ports. A higher level of reasoning in ProCom is pro-

vided by the ProSys view. It describes the coarse-grained perspective of the system com-

posed of concurrently running (potentially) distributed subsystems that communicate 

via channels supporting multiple senders and receivers. A ProSys subsystem (or com-

ponent) can deliver its functionalities in a timely manner (i.e. periodically) or in a trig-

gered fashion and can be modeled as a ProSave component. 
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SOFA HI 

 

To support the development of component-based systems targeting embedded de-

ployments, the SOFA HI (High Integrity) [PWT+08] has been proposed as an extension 

to the SOFA 2 [BHP06] component model. SOFA 2 itself builds on the hierarchical com-

position of components and is designed to support distributed system design, 

development, and deployment. SOFA 2 introduces the concept of the component repos-

itory, which manages SOFA 2 artifacts (i.e. components) and delivers them to the asso-

ciated runtime environment. SOFA 2 components are described by the proprietary ADL 

that specifies both provided and required interfaces as well as the internal structure of 

the component (in the case of composites) or its realization given by an implementer (in 

the case of simple components). Moreover, each component in SOFA 2 is equipped with 

so-called micro-components, which encapsulate the control part of a component. Based 

on SOFA 2, SOFA HI is a constrained version of the original model, which is necessary 

in order to address the low-impact factor requirement in the embedded and real-time 

settings. At the same time, however, SOFA HI introduces extensions that are specific to 

this kind of deployment – i.e. specification of non-functional properties (e.g. timing as-

pects of component execution). Components in both SOFA 2 and SOFA HI communicate 

via connectors, which due to performance restrictions can by dynamically generated 

only in the original SOFA 2, supporting dynamic architectural reconfigurations. SOFA 

HI components are developed in C programming language aided by a set of develop-

ment tools, including a dedicated IDE (Integrated Development Environment) and tools 

providing formal analysis and verification of the implemented system. 

 

Kevoree 

 

To mitigate the problem of architectural information centralization, the idea of mod-

els at runtime (models@run.time) [BFCA14] has emerged. The principle behind is that 

the data about the system architecture is encoded into the application model, which is 

then distributed across the system deployment units (i.e. physical nodes across which 

Figure 4. A ProSys subsystem internally modelled by ProSave.  

mailto:models@run.time
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system is deployed). Whenever, a change to the application model occurs, the system 

triggers an adaptation mechanism that adapts its current state to the new one that re-

flects the most recent changes in the application architecture. The updated model is then 

synchronized across the system, which if required executes necessary actions that adjust 

its parts to stay in conformance with the current model. The key assumption here is that 

a change to the model may occur anywhere in the system, triggering a model update in 

the rest of it. 

This approach has been implemented by the Kevoree framework [FMF+12] [6], 

which consists of the dedicated component model, deployment environment and a set 

of tools facilitating the whole development process and final product deployment. The 

elementary concepts in Kevoree are component, channel, node and group. While the com-

ponent resembles components from other CBSE models, in Kevoree both the channel 

and node are seen as deployment abstractions. Channel is a component connector that 

allows for modeling different communication styles (i.e. synchronous or asynchronous) 

between components. Node, on the other hand, abstracts a component deployment unit. 

Nodes can be associated into groups, which delineate the application model consistency 

meaning that nodes of the same group have their application models synchronized. 

While in Kavoree a single point of failure does no longer exists, as each node holds 

the information about the system architecture (i.e. the application model), the problem 

of strong inter-component dependency remains. Moreover, as every change into a sys-

tem is followed by model adjustments and synchronization process, which are time-

consuming (especially in the case of a large and complex system), there is a limitation 

with respect to the scale of system dynamism being supported. This prevents Kevoree 

from being used in scenarios, which include for instance node mobility. 

Figure 5. Kevoree models@run.time framework.  
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2.1.1.2 Summary 

CBSE is well-known and broadly used approach, which benefits, such as reusability 

or complexity reduction, have been recognized in the industrial software development, 

ranging from general-purpose applications to very specialized safety-critical embedded 

systems. This recognition comes from the advantages that CBSE brings to the software 

development, which are mainly separation of concerns and reusability.  

There are few limitations, however, constraining CBSE methods application in the 

context of SCPS engineering process. The main issue is the assumption of centralized 

ownership and deployment of components. As mentioned in the above representatives, 

when building a component-based system, the usual scenario is to describe the system 

in terms of components, find appropriate component realizations (possibly in some re-

pository) or implement them yourself. This holds in the case of systems that are distrib-

uted but the full control over the deployment environment is centralized and the system 

architecture is known beforehand. SCPS do not satisfy any of those conditions. By as-

sumption, they are fully distributed, open-ended and their architecture changes contin-

uously and unanticipatedly.  

Another important drawback of CBSE is a strong inter-component dependency, 

which comes from the component interfaces that needs to be well specified. In order to 

support open-endedness of SCPS and future flexibility in terms of supported function-

alities, the SCPS possible participants (i.e. components) stay unrestricted after the design 

time. As such, component dependencies cannot be fully specified at this point, which 

effectively makes CBSE techniques unsuitable. 

Finally, CBSE requires some level of guarantees over the communication infrastruc-

ture that the system is deployed on. Network failures are allowed and tolerated but only 

to some respect. Again, this is violated in the context of SCPS. Most of the scenarios for 

SCPS assume mobility of components, which implies a high degree of unreliability con-

sidering communication link stability. In other words, SCPS adopts the idea of oppor-

tunistic (or best-effort) approach towards inter-component communication.  
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2.1.2 Agent-based Architectures 

Another approach in building distributed systems is Agent-Oriented Software Develop-

ment (AOSD). It relies on the concept of a software agent, which performs its actions on 

behalf of an external authority (i.e. host). Formally, “a software agent is a persistent, 

goal-oriented computer program that reacts to its environment and runs without con-

tinuous direct supervision to perform some function for an end user or another pro-

gram” [1]. From outside, an agent can be perceived as an entity, which exhibits some 

degree of autonomic behavior and is capable of co-operating with other agents in order 

to achieve both individual and collective goals.  

There exist different types of software agents, which may be classified according to 

their main traits like for example intelligent agents [Gil97], being able to learn and reason 

or distributed agents [Min98], which act on physically distinct machines. In terms of 

communication between agents, the most popular mechanism is messaging, which is 

utilized through programming abstractions provided for example by agent-oriented lan-

guages [ABH+06, BBD+06, Hin09].  

Similar to component-based software engineering, the agent-based approach builds 

over the explicit communication, which means that the whole communication procedure 

needs to be handled by an agent, who explicitly decides when and whom to communi-

cate with. In the case of agents, however, communication is more flexible (comparing to 

the standard CBSE) as a message recipient can be established during the application ex-

ecution time, but still explicit addressing is required (see Figure 6). With that respect, 

they resemble service components (see the previous section). 

Semantically, the difference between agent and component lays in the nature of in-

teractions with their peers. Components provide a functionality to the system and are 

expected (usually) to be available through the entire lifecycle of an application. Their 

role is rather passive and constrained to serving requests from other components when 

needed. Agents, on the other hand, are active, and more autonomous in their actions. 

Figure 6. Messaging in agent-based systems.  
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Comparing to a component which is triggered by either event in the system or a request 

occurring on one of its provided interfaces, an agent is assumed to execute continuously 

and is capable of initiating interactions with other agents at any time of during its pres-

ence in the system. There is no strict dependency between agents that need to exist 

throughout the entire lifecycle of the system. As such, agents may appear and disappear 

from the system at any time, which results in more dynamic and resilient systems but 

this comes at the cost of complexity, which is the main issue when designing an agent-

based system. 

2.1.2.1 Selected representatives 

 

BDI model 

 

Being a focal point in the AOSD development process agents require a specialized ap-

proach that would support the autonomy and self-adaptation throughout the entire 

agent lifecycle. The well-known technique in this area is Belief-Desire-Intention (BDI) 

software model [PBL05, RG95]. Belief corresponds to agent’s perception of the environ-

ment, which due to possible inaccuracies stemming from limited agent sensing capabil-

ities is differentiated from the actual environment state. Agent’s desires refer to its goals 

that the agent strives to achieve. Finally, the intentions are given in the form of plans 

containing a sequence of actions that would lead to achieving agent goals. The whole 

reasoning in the BDI model loops around sensing the environment (i.e. agent context) 

and forming a belief about it. Next, the analyzing step is triggered in which the agent’s 

goals corresponding to the current situation are selected. Then the plans referring to 

those goals are followed by executing corresponding actions introducing changes to the 

agent‘s context. The whole reasoning cycle is illustrated in Figure 7. 

Figure 7. BDI execution cycle.  
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The BDI model conforms to the MAPE-K (Monitor, Analyze, Plan, Execute, and 

Knowledge) model [ARS15, IBM06], which serves as a general adaptation pattern used 

to engineer autonomic and self-adaptive systems [WSG+13]. As depicted in Figure 8, the 

MAPE-K model consists of a cycle, built out of four main steps. During the monitoring 

phase, information about the execution context is gathered, via sensors available in the 

system. Then, the data is analyzed and actions to be taken are planned. Finally, the actions 

are executed, potentially introducing changes to the context via a set of actuators. 

While the MAPE-K model is a general prescription on performing the adaptation 

process, the BDI can be seen as its specialization, defining self-adaptation realized in the 

context of multi-agent systems. 

 

Holons 

 

Due to the high degree of autonomy, agents exhibit an interesting property of self-

organization and collective behaviors [KGJ09]. Those two characteristics allow develop-

ers to build complex systems out of very simple agents, which, on their own, have no 

capabilities (or they are highly limited) to perform tasks given to the system. As such 

they need to organize themselves and cooperate by splitting bigger tasks into smaller 

Figure 8. MAPE-K loop.  

Figure 9. Holons and their holarchies.  
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ones (a.k.a. Divide and Conquer technique [ER94]) that can be executed by an individual 

agent. 

The Holonic Multiagent Systems (HMS) [Fis99, FSS03] provide for whole theory and 

terminology that allows for reasoning about dynamic organizations of agents and their 

collective behaviors. The term holon stands for Greek “holos” translating to “whole” and 

suffix “-on” that means “part”. The HMS changes the AOSD paradigm of an agent to a 

hierarchical structure called holon. The holon can be either a simple agent or a composi-

tion of agents. Sustaining the agent autonomy agents decide themselves, whether it is 

beneficial to become part of a holon or not. Moreover, agents can belong to multiple 

holons at the same time. The hierarchies of holons termed as holarchies introduce the 

concept of vertical composition, where each holarchy level (i.e. holon) is a composition 

of other holons and composes the upper-level of the holarchy (see Figure 9).  

As such, in terms of the structural hierarchy, the HMS extends the approach of CBSE 

and composite components, with a possibility of an agent belonging to multiple super-

agents (i.e. holons), which is not the case in CBSE where a component instance being a 

part of one super-component cannot compose another one. 

Due to high complexity and a lack of adequate modeling abstractions, to this end, 

there exist only a few implementations [Fis98, GGHK09] of the HMS approach in the 

context of multi-agent systems and they are mainly used for simulation purposes. 

2.1.2.2 Summary 

The advantage of AOSD over CBSE lays in the autonomy of agents, easing the de-

velopment of adaptive and more resilient systems. By design, agents are meant to exe-

cute in a collective, providing the system with emergent behaviors that would not be 

possible otherwise. Those characteristics are also desired in case of SCPS. 

The main issue with AOSD is the aforementioned lack of adequate programming 

constructs that would map the concepts of autonomy, adaptation, and collective coop-

eration, into modeling constructs that would ease the whole design process. Because of 

this missing expressiveness, it is a complicated task to build a system composed of het-

erogeneous agents, which would be equipped with more than trivial logic. 

Moreover, the complexity of the system is affected, due to explicit communication 

imposed by message-based approaches used in AOSD. Agents, in order to exchange 

messages, need to know the recipient of a message beforehand. This implies the presence 

of so-called the “yellow pages“ service that would provide an agent with its peers in the 

system. Consequently, the whole approach is centralized and together with the over-

grown complexity stemming from the aforementioned factors, usage of AOSD in the 

context of SCPS development is effectively constrained.  
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2.1.3 Ensemble-based Architectures 

The Ensemble-Based System Engineering (EBSE) is a new method in design and 

development of dynamic distributed systems. It adopts some elements from the afore-

mentioned component- and agent-based techniques. Researched under the EU FP7 pro-

ject focusing on Autonomic Service Component Ensembles (ASCENS) [7], it introduces 

a set of tools dedicated to supporting the entire lifecycle of systems built of cooperative 

and autonomic components.  

The core concepts behind the ensemble-based systems are component and ensemble 

of components. A component in the view of EBSE is an active and autonomous entity 

just like agents in AOSD. Nonetheless, it is still a unit of encapsulation that is reusable 

and replaceable. In EBSE approach, a component is composed of both knowledge, which 

is a set of attributes reflecting the component state and processes comprising the logic of 

the component. Processes execute continuously upon the component knowledge, read-

ing and modifying its attributes and effectively altering the component state.  

EBSE follows some of the CBSE development process rules – e.g. separation of con-

cerns. Moreover, the concept of a component interface exists also in EBSE, and similarly 

to CBSE, defines a set of attributes provided externally by a component reifying the in-

terface. Furthermore, interfaces are part of ensemble specification, which is a prescrip-

tion on inter-component data exchange. An ensemble is formed dynamically depending 

on the state of components. Components are continuously monitored (i.e. their attributes 

exposed by interfaces) against ensembles membership. Those, belonging to an ensemble, 

exchange data between each other and based on that, undertake cooperative actions that 

lead to emergent behaviors in the system. The basic concepts of EBSE are depicted in 

Figure 10.  

Figure 10. Components and ensembles in EBSE.  
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2.1.3.1 Selected representatives 

 

SCEL 

 

The cornerstone for EBSE has been laid by formulating Service Component Ensemble 

Language (SCEL) [DNFLP13] where the concept of the component ensemble was first 

introduced. SCEL is a formalism providing constructs for ensemble-based system spec-

ification and its main goal is to allow for system analyzes and verification at the early 

stage of the system lifecycle – i.e. system design and modeling. As a language, SCEL is 

built over few basic constructs, which mainly are component, knowledge, processes, in-

terfaces, ensembles and policies. Since SCEL introduced most of those concepts to EBSE, 

their descriptions provided in the previous section remain valid also in the context of 

SCEL. The only extra item given in that list are policies [LMPT14], which are considered 

as an additional feature enriching the whole EBSE idea. In SCEL, communication be-

tween components is taken down to the level of component knowledge access (i.e. reads 

and writes of component attributes). Policies allow for restrictions in component 

knowledge access, which extends system analyzes by security related aspects.  

SCEL has its realization in the Java framework called jRESP [8]. jRESP is an agent-

based solution allowing to develop and execute SCEL components. Unlike another rep-

resentative, it builds over an explicit form of communication, where agents (reifying the 

idea of SCEL components) initiate message-based data exchange process. The most fla-

grant case study developed in jRESP is the ASCENS Self-Aware Robots scenario simu-

lating collaboration within a robot swarm executing in the context of a search and rescue 

mission [9]. 

 

HELENA 

 

Driven by the same core concepts (i.e. component and ensemble) of the ASCENS 

project, the HELENA approach [HK14, KMH14] proposes an alternative view on the 

way we develop systems composed of autonomous components. While in SCEL (and 

Figure 11. Component in SCEL.  
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jRESP) ensemble specification was blended into the components themselves, in HEL-

ENA ensembles are first class constructs that describe components involved as well as 

the whole communication flow between them. An HELENA component (or component 

type as types and instances are distinguished in HELENA) is given as a triple composed 

of a component name, state (being a set of attributes) and operations that the component 

support. Operations can be of the following types: internal (implementing component’s 

autonomous logic) and two external (i.e. incoming and outgoing) encompassing bi-di-

rectional communication with other components. Each component may take several 

roles, which is a new construct (in EBSE) proposed by HELENA. A role is dynamically 

adopted by components and is used to decide on component’s ensemble membership. 

It consists of a set of attributes required from the component, operations supported by 

the component and component types that are allowed to adopt this particular role. As a 

component can reify multiple roles, it can participate in multiple ensembles at the same 

time, which is also the case in SCEL.  

An HELENA ensemble, on the other hand, is defined by roles (including their mul-

tiplicities), component types and connectors. The latter details about the communication 

flow, specifying the source, target, and format of that communication. On top of that, the 

ensemble definition is extended by its behavioral description given as a labeled transi-

tion system consisting of states defined by role attributes and transitions annotated by 

specific role operations. By externalizing communication from the logic of a component, 

Figure 12. An overview of HELENA ensemble.  
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the whole process of data exchange between components becomes implicit, which sim-

plifies considerably the design process of a system. 

The HELENA approach has been validated in jHELENA [KCH15], which is an ex-

ecution platform developed in Java. It supports system specification given in a DSL (Do-

main Specific Language) defined over HELENA abstractions, which are then translated 

into Java constructs that can be deployed and executed. 

2.1.3.2 Summary 

The EBSE delivers excellent means for modeling highly dynamic systems. By introduc-

tion of the idea of the ensemble as a description of temporal component grouping, it al-

lows to express system dynamism in terms of logical predicates defined over compo-

nent attributes. Moreover, defining components as active entities, EBSE assumes com-

ponent autonomy, which resembles the AOSD approach (see Section 2.1.2). 

Nevertheless, being a novel idea, EBSE lacks its proof of concept that would validate 

its general ideas and propose different realizations targeting especially real-life deploy-

ments. Existing solutions (i.e. SCEL and HELENA) omit technicalities such as those re-

lated to communication unreliability, which in the end affect the entire lifecycle of an 

SCPS.  
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2.2 Communication in SCPS 

The following section gives an overview on different techniques that are currently 

adopted in the domain of distributed system communication. The examples presented 

here were selected as they served as an inspiration for building a solution that addresses 

goal G2 (see Chapter 3). 

2.2.1 Message Passing 

One of the basic paradigms in distributed system communication is Message Passing 

[10]. It relies on a simple idea of message exchange between two communicating peers. 

The sender of a message needs to be aware of its recipient unless the message is ad-

dressed to everyone who is reachable from the sender. In that case, we say that the mes-

sage is broadcasted. Message broadcast, even though being the simplest way of data dis-

semination has been proved inefficient in case of networks with unreliable communica-

tion medium or with limited data bandwidth [TW11]. A better solution in that respect, 

that is able to cope with communication failures, is the Gossip protocol. 

 

Gossip Protocol 

The Gossip protocol [DGH+87, LPR10] is an algorithm that combines interval-based 

message sending together with message forwarding. Relying on periodic messaging and 

selective message propagation (i.e. the message is sent only to a subset of possible recip-

ients, selected for instance probabilistically [GKM03]), the main issues of the broadcast 

(i.e. network flooding and proneness to network failures) are mitigated in Gossip. Add-

ing message forwarding, applied by each recipient, data is effectively disseminated 

among all the recipients. There exist different variations of the Gossip protocol that are 

designed for infrastructure-based networks (e.g. LAN) [GKG02] but also for infrastruc-

ture-less deployments such as wireless environments [LM11]. The most distinguishing 

factor in Gossip implementations is the message sending interval calculation. Some use 

probabilistic-based period selection, other (for instance those designed for wireless net-

Figure 13. Broadcast vs Gossip protocol.  
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works) rely on signal strength when deciding how long to wait message (re) transmis-

sion.  Furthermore, in wireless settings, there is a limitation on recipient selection only 

to those being currently in the radio communication range.  

 

Wireless Sensor Network Protocols 

 

Considering existing approaches that build over the idea of message passing, it is 

necessary to mention the Wireless Sensor Networks (WSN) [RSCB14]. This kind of net-

works is built over simple devices that are able to sense and actuate some physical prop-

erties of the environment that they are deployed in. 

One of the prominent technologies used in this area is ZigBee [BPC+07], which is a 

communication protocol tailored specifically for WSN. It is built over the LowPAN (Low 

power Personal Area Network) [HC08] both physical and media access layer (MAC) 

protocol – IEEE 802.15.4 [SV08]. Features of the ZigBee protocol (considering its possible 

applicability in SCPS) fall into low energy consumption (comparing for instance to Wi-

Fi), long communication range (up to 100m [BPC+07]) and short network association 

time (i.e. around 50ms), which becomes important when dealing with the mobility of 

network nodes. Those features, however, stem mainly from the lower stacks of the 

ZigBee protocol - essentially physical and MAC layers. The ZigBee network layer comes 

with a proprietary solution for maintaining logical networks of devices. It allows for 

different network topology organizations (i.e. start, mesh, cluster tree – see Figure 14), 

which are centered around a dedicated management node called coordinator. Therefore, 

as a coordinator is necessary for network creation, the ZigBee protocol turns out to be 

Figure 14. ZigBee network topologies.  
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limited with respect to ad-hoc scenarios, where devices establish a network without any 

prior infrastructure. 

 

Vehicular Area Networks 

 

From the perspective of SCPS, the Vehicular Area Network (VANET) [GSB12, 

KAE+06] is another interesting approach leveraging on the message-passing communi-

cation paradigm. Its differentiating factor is the assumption of node mobility and, more 

importantly, mobility with the assumption of a relatively high velocity. This, subse-

quently, translates to short network association times, which require dedicated tech-

niques, being able to cope with such a requirement. Communication in VANET is of two 

sorts: infrastructure-based and infrastructure-less. The former allows vehicles to com-

municate with the roadside infrastructure (V2I), which is interconnected and serves as a 

network backbone for VANET. The latter one is formed between vehicles themselves 

(V2V) and relies on short-range radio transceivers mounted in the vehicles. It is charac-

terized by low-latency, which makes it dedicated mainly for traffic carrying some critical 

information (e.g. emergency event detected by a vehicle ahead). The infrastructure-

based network can also be used to provide an update on current road situation but ad-

ditionally is meant to provision additional non-critical service data (e.g. weather or traf-

fic updates). 

VANET is an interesting example of combining the two kinds of communication 

realizations based on the aforementioned infrastructure-based and infrastructure-less 

networks. It seems to be an appealing approach also from the perspective of SCPS as the 

assumptions about the deployment environment are often similar – especially with re-

spect to nodes mobility.  Therefore, splitting the data dissemination into two types sup-

ported by different networking techniques, looks like a beneficial implementation strat-

egy for SCPS communication. It gives more flexibility in data distribution comparing to 

only shared and limited short-range wireless communication usage. 

2.2.1.1 Summary 

The message-passing paradigm is close (in terms of the abstraction level) to the net-

work-layer protocols of the OSI model [11]. By that, it provides a flexibility with respect 

Figure 15. VANET communication.  
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to the communication protocols implementation. An example of such a protocol is the 

aforementioned Gossip protocol. However, in terms of its usability in the context of the 

SCPS development, the message-passing is too complex to be considered as a sole solu-

tion for component communication implementation. Since message delivery requires 

some prior knowledge about recipients (i.e. their addresses), it increases dramatically 

the complexity of the entire engineering process. As discussed in Section 2.1.2, one of the 

main drawbacks identified in AOSD preventing this approach to be implemented in the 

context of SCPS is the complexity that stems from the message-passing paradigm used 

in its pure form. Nevertheless, the message-passing paradigm remains usable as an un-

derlying solution that could be hidden behind higher-level abstractions waiving away 

the complexity related to the message handling. 
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2.2.2 Publish-Subscribe 

One of the most prominent technique in centralized message-passing is the Publish-Sub-

scribe model [CSS11, She10]. The principle behind assumes a set of producers publishing 

messages to some centralized entity (usually called broker), and a set of consumers sub-

scribing to that entity for messages of their interest. Usually, however, those two roles 

are combined into prosumer who can both produce and consume messages. The main 

advantages of the method are scalability allowing (theoretically) for an unlimited 

number of protocol participants and loose coupling which comes from the existence of 

the broker, which acts as a demarcation line between participants, often unaware of each 

other explicitly. The same broker, however, is the source of issues for the Publish-Sub-

scribe. As participants of the communication protocol register with the broker their in-

terest in some particular type of messages (usually expressed by message attributes), the 

whole mechanism imposes a strict message structuring, which in the end limits the flex-

ibility of the method. Also, other limitations apply to broker configuration, which is to 

be chosen before system deployment, and it is meant to remain unchanged throughout 

the system lifetime. 

There are multiple implementations of the Publish-Subscribe model, where most 

popular one is Java Messaging Service specification [12], being further embodied by Ac-

tiveMQ [13] or more recently developed for the purpose of the LinkedIn social service 

[14] – Kafka [15]. 

2.2.2.1 Summary 

In terms of SCPS development, the Publish-Subscribe model becomes beneficial 

when considering deployment model that assumes some fixed, reliable and pre-existing 

infrastructure. An example could be a home LAN (Local Area Network) allowing for 

dynamic device association. In such a case, thanks to broker’s loose coupling feature, 

SCPS components could join and disjoin the messaging system with no limitations. Nev-

ertheless, being considered as a full-fledged and sole solution for SCPS is impossible due 

to broker’s centralization. 

Figure 16. Publish-Subscribe.  
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2.2.3 Tuple spaces 

The main idea behind tuple spaces [16] is to bring a unified and as simplest as possible 

view over memory, which is shared among different processes of some bigger system. 

It is a core concept of Linda languages [ACG86] that deal with the coordination problems 

between processes communicating over a shared memory. Processes are equipped with 

a set of operations that they can execute on the memory, which from their perspective is 

perceived as a black box. The operations include reading a tuple (i.e. a key-value pair) 

from a space – read, inserting a new tuple into a space – write and removing a tuple from 

a space – take (see Figure 17). This approach allows for separation of the internal realiza-

tion of the shared memory (possibly distributed) from the application logic. Different 

implementations bring extensions (such as blocking or non-blocking operations) to the 

main principle of tuple spaces; however, the core idea stays the same. 

 

Centralized Tuple Spaces 
 

Considering centralized approaches towards Tuple Space, one of the well-known 

solutions is JavaSpaces [17] specification. JavaSpaces has set the ground for future reali-

zations of the Tuple Space technique in the context of Java language. Its implementation 

is part of the Apache River project [18].  

Other, centralized realization of the Tuple Space concept include GigaSpaces [19], 

SQLSpaces [20], SemiSpace [21]... Their common denominator is that the clients of a 

Figure 17. Tuple spaces.  
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space connect to some central point in the network and perform their actions remotely 

(e.g. via RPC - Remote Procedure Call). The general idea is illustrated in Figure 18. 

 

Distributed Tuple Spaces 

 

This is different comparing to what is understood under the distributed realizations 

of Tuple Spaces. In these cases, peers hold their own replicas of a space (or its part) and 

perform synchronizations based on periodic and reactive triggers (e.g. whenever clients 

are able to communicate). The principle applied here, is to disseminate data to everyone 

(see Figure 19), so there is a risk for an overhead imposed over the network infrastruc-

ture as (due to the lack of a central communication orchestrator) each network node 

needs to rebroadcast every data coming from any other node. To tackle this problem, 

Figure 18. Centralized Tuple Space architecture.  

Figure 19. Distributed Tuple Space architecture.  
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few techniques reducing the amount of data propagated over the network has been pro-

posed – e.g. through context awareness [CMMP09]. Examples of such approach imple-

menters are EgoSpaces [JR06] or LIME (Linda In Mobile Environments) [MPR06].  

2.2.3.1 Summary 

Both approaches have their pros and cons. In the case of centralized solutions, the 

advantage is a lack of data replication, while their downside gets to the common issue 

of a single point of failure. In the case of distributed techniques, on the other hand, the 

main considerations are the aforementioned network overhead caused by data rebroad-

casts and possible data desynchronization between its owner and replicas. 

In the frame of SCPS development, both approaches become applicable depending 

on the deployment. While centralized implementations support performance and lesser 

resource utilization (e.g. network bandwidth, device local storage), the distributed ones 

go in hand with SCPS component autonomy and mobility.  
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2.3 Simulation frameworks for SCPS 

This section covers the state of the art with respect to the goal G3. It gives a short 

discussion on currently available tools that facilitate verification process of a developed 

component-based system. In particular, it focuses on, assessing their applicability with 

respect to the SCPS validation. 

 

As mentioned in the introductory section SCPS, unlike other component-based 

distributed systems, are meant to be open-ended and run in unpredictable settings. At 

the same time it is expected that the system remains resilient and its functionality avail-

able regardless to the aforementioned unpredictability. Thus, it becomes crucial to vali-

date the system and assess its behavior with respect to various properties (e.g. network 

quality, component mobility etc.) of the deployment environment. To address this chal-

lenge, an approach based either on formal or experimental methods needs to be devised.  

Formal methods are used to verify system model (most often at the early stage of 

the software engineering process – i.e. design phase) against some particular properties 

usually drawn from the system requirements specification. An outcome of such a verifi-

cation delivers a mathematical proof on system correctness and can be used to certify 

correspondence of system implementation to its requirements. Despite being an undis-

putable (proof based on mathematical theorems) and inexpensive (i.e. any flaws in sys-

tem design can be detected at the beginning of the development process) method, the 

formal verification suffers from the inability of system validation against multiple prop-

erties and simplified system models used during the process. This stems of course from 

exploded complexity, which grows together with the number of variables taken into ac-

count. Moreover, discrepancies in models descriptions defining system behavior (e.g. 

physical domains are usually expressed using continuous mathematics while computa-

tional or cyber elements are expressed using discreet one) add to the overall difficulty of 

the method [Lam05].  

To overcome this issue, experimental methods provide a reasonable compromise 

between assurance level concerning the method outcome and the scope of properties 

that the system is validated against. The most common technique used in the experi-

mental methods is a simulation. It allows for testing a developed system in simulated 

settings, which ought to resemble target (i.e. real-life) deployment. Unlike formal meth-

ods, simulations require a complete realization of a system (not only its model). They are 

usually executed multiple times under different scenarios that vary in deployment con-

ditions reflected in the simulation configuration. 

The focus of this thesis concentrates around final stages of the SCPS development 

process – i.e. realization and deployment. Since SCPS are relatively a novel concept it 

still lacks a tool support that would allow to position this work to. In terms of IoT 

simulators, there are first encounters (e.g. SimpleIoTSimulator [22]) trying to solve the 

problem of pre-deployment system validation using simulation-based techniques, 

however, they neglect some of the important aspects (e.g. detailed network models) 
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throughout the simulation process.  As such, in the remainder of this section, few exam-

ples of the simulation tools used in the (related) area of cyber-physical systems is pre-

sented. 

CPS (and as such SCPS) combines two different domains: cyber and physical. There-

fore, it is crucial that during the simulation process both of those domains are equally 

addressed. Until this date, there are not many simulation frameworks that would solve 

this issue holistically (i.e. provide comprehensive representations of the two domains). 

Those few that are there (e.g. TrueTime [HCeA03]), are limited in the scope and the level 

of details of the simulated domains.  

There exist, however, so-called co-simulation frameworks that combine two (or 

more) simulation tools each addressing different aspects of the simulated environment. 

 

PiccSim 

 

PiccSim (Platform for integrated communications and control design, simulation, 

implementation, and modeling) [23] is an excellent example of a co-simulation platform 

that combines two well-known simulation tools: Simulink [24] that takes care of simu-

lating control systems and ns-2 [IH08] for network simulations. Simulink on its own is a 

block diagram environment for multi-domain simulation and design of real-time em-

bedded systems. Among its main features, the most notable are support for modeling, 

model-based simulation, automatic code generation, and continuous testing combined 

with verification of developed systems. Simulink facilitates the entire development pro-

cess by providing a graphical editor, customizable block libraries, and a variety of solv-

ers for dynamic systems modeling and simulation. Being integrated with MATLAB [25], 

Figure 20. PiccSim architecture.  
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it enables incorporation of MATLAB algorithms into its own models and export simula-

tion results to MATLAB for further analyzes. 

ns-2, on the other hand, is a discrete-event network simulator that supports 

simulations of TCP, routing, and multicast protocols over wired and wireless networks. 

It provides detailed models for different communication protocols available nowadays 

in the networking domain. 

Due to this synergy with ns-2, Simulink capabilities have been extended making a 

simulation outcome more accurate with respect to the component communication. 

Figure 20 illustrates the architecture of the PiccSim framework. 

In a similar vein, other platforms such as Modelica [26] for modeling and simulating 

physical systems and ADEVS [27], which is a general purpose discrete-event simulator, 

also bind with ns-2 and build on the idea of co-simulation. 

 

Veins 

 

Targeting a particular kind of systems and reusing the concept of co-simulation, the 

Veins framework [28] provides a facility for simulating vehicular area networks 

(VANETs). For that purpose, it combines two well-established simulators: OMNeT++ 

[29] and SUMO [30]. The former one is an extensible, modular network simulator coming 

with different libraries extending its simulation possibilities. An example is MiXiM [31] 

– a physical layer modeling toolkit equipped with low-level wireless communication 

protocols (e.g. ZigBee).  

SUMO, on the other hand, is a road traffic simulator designed to simulate large-

scale vehicular mobility scenarios. It is highly customizable and allows for creation of 

Figure 21. Veins architecture.  
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different traffic profiles over real geographical locations (support for OpenStreetMap 

maps [32]).  

Veins provides for bi-directional binding between the two simulators, where 

vehicular network influences the road traffic and vice versa. This way complex vehicle-

2-vehicle (V2V) and vehicle-2-infrastructure (V2I) interactions can be modeled and 

analyzed. 

The general architecture of the Veins simulator is illustrated on Figure 21. 

2.3.1 Summary 

In the context of SCPS validation and verification, the co-simulation technique 

seems to be a promising approach, since it provides a possibility for reusing detailed 

models for both cyber and physical domains. Moreover, the aforementioned reusability 

of existing tools and their co-execution solves the problem of complexity that one needs 

to face when trying to develop from scratch a tool support for SCPS verification. In ad-

dition, the ampleness of possible SCPS scenarios requires a considerable flexibility in 

terms of simulated features. Specifically, if one is to consider use-cases from areas that 

differ in terms of physical characteristics of the deployment environment - such as 

VANETs and home automation, where the former heavily relies on component mobility 

while the other not so much. In that sense, co-simulations facilitate creation of a tool that 

would support feature enabling depending on requirements of a simulated scenario. 

In general, however, existing co-simulation tools do not provide appropriate ab-

stractions for self-organizing architectures. This comes as one of the main limitations 

when considering application of any of those in the context of SCPS verification. 
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3 Overview of the Contribution 

3.1 DEECo Framework 

The results of the author’s research work around SCPS contribute to the overall devel-

opment of the DEECo (Dependable Emergent Ensembles of Components) framework. 

The main purpose of DEECo is to deliver a set of tools that would facilitate different 

tasks performed by a designer and developer at each of the stages of the SCPS lifecycle. 

As such, the framework proposes the DEECo component model delivering appropriate 

abstractions that allow for reasoning about SCPS constituents and their dynamic inter-

actions yet at the design phase of the system. Furthermore, the jDEECoSim platform en-

ables simulation-based techniques for system validation and verification. Finally, the 

jDEECo runtime environment provides for deployment and execution of a developed 

SCPS. In the remainder of this section, brief descriptions are given for each of those parts 

of the DEECo framework. More detailed descriptions follow in Section 4, being incorpo-

rated across the collection of published papers. 

3.1.1 DEECo component model 

In its very basics, the DEECo component model [33] introduces two first class constructs 

for modeling stakeholders of an SCPS scenario and for expressing dynamic interactions 

between them. For that, DEECo uses the concepts of component and ensemble (intro-

duced by EBSE – see Section 2.1.3), which correspond to the SCPS constituents and their 

ad-hocly formed groups of communication. 

Components in DEECo are autonomous units of computation and deployment. 

They consist of a state, which is expressed by a set of attributes (also referred as 

knowledge) and a functionality defined by processes that can be triggered either in a 

periodic manner or in reaction to a change in component knowledge. Processes update 

the state of the component and as such their both input and output are particular attrib-

utes from component knowledge. Knowledge of a component is accessed via interfaces, 

enabling restrictions allowing a component to expose only some parts of its state. Both 
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component knowledge and its functionality are extensible, which improves the overall 

reusability. 

To handle components interactions, DEECo builds over the idea of an ensemble, 

seen in DEECo as a first-class concept. In a nutshell, DEECo ensemble is a binary relation 

defined over a state of two components, where one takes the role of the ensemble coordi-

nator and another takes the role of its member. It consists of a logical predicate called 

membership condition formulated using the attributes from both the coordinator’s and the 

member’s knowledge. A positive evaluation of the ensemble membership condition (i.e. 

its logical predicate is satisfied) triggers the execution of the second part of the ensemble 

specification, which corresponds to the knowledge exchange between the coordinator 

and member. DEECo assumes ensembles being the only form of inter-component com-

munication description and realization. As such components exchange data implicitly 

(similarly to HELENA – see Section 2.1.3.1), which allows system designers to reason 

about each component independently. This simplifies not only system design phase but 

also the component development process. Figure 22 illustrates an example of an SCPS 

modeled with the use of DEECo components and ensembles. 

The DEECo component model brings all the advantages of the architectures de-

scribed in Section 2.1. If we take into account CBSE and its main characteristics (de-

scribed in more details in Section 2.1.1), components in DEECo semantics also allow for 

separation of concerns, which in turn improves the development of components as they 

can be engineered independently and in isolation. As already mentioned, each compo-

nent in DEECo is extensible and reusable making them deployable in different contexts.  

Furthermore, looking at DEECo components from the perspective of AOSD, the 

DEECo component model, in that respect, builds heavily on the ideas of autonomous 

Figure 22. An example of the DEECo design.  
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agent and applies similar approaches in the context of its components. As a result, com-

ponents in DEECo can be regarded as agents, which makes the DEECo framework an 

alternative solution for AOSD development. Unlike agents, however, DEECo compo-

nents do not use an explicit form of communication. As a matter of fact, components 

there are unaware of any communication-related aspects, as all of those have been ex-

tracted into ensembles. This improves considerably the design process and mitigates the 

complexity-related issues in AOSD (see Section 2.1.2). Finally, the DEECo component 

model is a reification of the EBSE, as its main constructs (i.e. component and ensemble) 

are another interpretation of the ideas of EBSE. 

3.1.2 jDEECo 

The DEECo framework delivers also the jDEECo runtime environment [34]. It is a dis-

tributed Java realization of the DEECo component model that provides for (i) mapping 

between model-level abstractions and Java language constructs, (ii) automated process 

execution and ensemble evaluation as well as (iii) component knowledge and network 

management. 

Tuple Spaces and their distributed implementations have inspired the way the 

jDEECo runtime manages component states (see Section 2.2.3). In order to achieve a full 

distribution of the runtime environment, the jDEECo platform relies on a component 

state replication technique that is applied by each of the jDEECo deployment unit (i.e. 

an instance of the jDEECo runtime). Every such a unit communicates the state of its local 

and remote components (that it is aware of) to the network incorporating the Gossip 

style (see Section 2.2.1) of data dissemination. By that, components have access to (at 

least partial) state of the system. This idea is illustrated in Figure 23. 

The runtime leverages on the layered architecture design where data access layer is 

provided with simple interface methods allowing only for component data retrieval or 

Figure 23. The jDEECo component knowledge replication mechanism 
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update. This has been decided by taking into account the fact that the whole data man-

agement part of the runtime is actually the most complex one, thus, it seemed reasonable 

to façade it with the LINDA-like operations (see Section 2.2.3) and hide its complexity 

from the rest of the system. Moreover, in the case of future changes to the jDEECo im-

plementation, its replacement, in such a case, is a straightforward task. As a matter of 

fact, most recently, the jDEECo platform has been refactored to support custom exten-

sions, allowing jDEECo developers to provide their own solutions for different parts of 

the platform – including the data management layer. 

At the bottom of the jDEECo layered architecture is the communication layer, which 

builds on the message passing paradigms (see Section 2.2.1), and provides its own spe-

cialized solution for inter-component data dissemination that is tailored to support com-

ponent autonomy and mobility, open-endedness of SCPS, and deployment infrastruc-

ture. Like in VANET networks, the jDEECo supports two deployment types: infrastruc-

ture-based and infrastructure-less. The prototype implementation is designed to distrib-

ute component state information over two different channels: one dedicated for the for-

mer network type and other to the latter one. Therefore, the jDEECo platform supports 

heterogeneous deployments, which comprise a combination of both infrastructure-

based and infrastructure-less networks.  

As a proof of the concept, the infrastructure-less network has been evaluated (and 

its support is a part of the jDEECo implementation) on the MAC layer of WSN ZigBee 

protocol complying with the IEEE 802.14.5 specification [35]. Its selection was based 

mainly on the characteristics of the protocol (i.e. supported communication range, mes-

sage size etc.) as well as its popularity in the domain of LoWPAN (Low power Wireless 

Personal Area Network) [HC08, Mul07]. Resignation from the use of existing higher-

level protocols (like the aforementioned ZigBee [36] or Z-Wave [37]) has been justified 

mainly by the lack of support for channel-level broadcast, where data is propagated only 

to the most immediate neighbors (i.e. those in the radio range). This allowed for drop-

ping costly routing algorithms (e.g. AODV [PBRD03]) in favor of a proprietary solution 

tailored to component state replication and dissemination.  

Finally, the upper-level message exchange algorithm implements the Gossip proto-

col (see Section 2.2.1), in order to deal with the opportunistic nature of the MANETs. It 

is implemented in two versions supporting both deployment types (i.e. infrastructure-

based and infrastructure-less). 

On top of those, two optimization techniques have been introduced to the whole 

process of the component data exchange (see Sections 4.3 and 4.5). Their main goal is to 

reduce the amount of data being sent to the network, improving its overall utilization 

and reducing delays in data passing. The Publish-Subscribe model has been used to im-

plement one of the optimization techniques. In principle, the method reduces the 

amount of messages produced by the Gossip protocol in the infrastructure-based net-

works. The idea behind is to use broker-like entities to decide centrally on components 

membership to a particular ensemble or in other words, to say which components are 
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supposed to communicate with each other. It is important to note, that the entire tech-

nique is optional and is not crucial for system operability. More details on this particular 

idea can be found in Section 4.5. 

3.1.3 jDEECoSim 

The last part of the author’s contribution and at the same time one of the tools provided 

by the DEECo framework is the simulation framework called jDEECoSim [34]. To this 

date, it integrates the jDEECo runtime environment, the OMNeT++ network simulator 

[29] and the MATSim traffic simulator [38]. All knowledge exchange passed between 

components is routed through OMNeT++, which is meant to provide close-to-real net-

work latency estimates w.r.t. to network topology, the geographical position of compo-

nents, network collisions, and packet drops, etc. Moreover, by including the INET [39] 

and MiXiM [31] – OMNeT++ extensions, jDEECoSim allows for simulating deployments 

in a mixed network environment combining infrastructure-based and infrastructure-less 

networks. MATSim, on the other hand, facilitates mobility simulation and allows for 

modeling large-scale traffic scenarios. Accessing appropriate information (e.g. current 

position, trajectory) is provided to DEECo components by a convenient concept of sen-

sors and actuators. 

In the end, jDEECoSim is a tool that can be applied at the post-development stage 

to verify SCPS behavior with respect to its specification just before deploying it in real-

life settings.  

Figure 24. jDEECoSim architecture overview 
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3.2 Research goals revisited 

In terms of goal G1, the author has provided several proves of concept for the DEECo 

component model. Its applicability, in the design phase of an SCPS, has been validated 

on multiple scenarios scattered across author’s publications.  

The main contribution of the author, however, is the prototype implementation of 

the jDEECo deployment and execution environment that addresses challenge C2, by 

achieving the goal G2 (including sub-goals G2a and G2b). As stated in G2 (and 

described in the previous section), the runtime environment automates component state 

interchange across the network, building over the gossip protocol. Regarding the sub-

goal G2a, the runtime environment supports heterogeneous deployment over both 

infrastructure-based and infrastructure-less networks, exemplified by utilizing the IP 

network-layer protocol and 802.15.4 link-layer protocol for LoWPAN respectively. 

To satisfy the sub-goal G2b the environment implements two optimization mecha-

nisms, specialized with respect to both DEECo component model and supported net-

work types (i.e. infrastructure-based and infrastructure-less). The optimization tech-

niques concentrate on reducing the amount of data propagated over the network, which 

results in better utilization of the communication medium (see Sections 4.3 and 4.5). 

Regarding the goal G3, the runtime environment has been integrated with the sim-

ulation tool jDEECoSim (contributed also by the author and being a part of the jDEECo 

framework) that allows for experimentations during the final stages of the SCPS devel-

opment process. By integrating together two well-known simulation frameworks, the 

platform is capable of simulating simultaneously two aspects of the developed system: 

the network infrastructure and mobility of components, which combined are meant to 

resemble the real-life deployment. jDEECoSim itself does not provide any guarantees 

over the critical aspects satisfiability of a developed SCPS. However, it can support any 

formal analyzes by delivering their validation through an experimental evidence. In gen-

eral, the platform is designed to facilitate the system behavior verification process and 

assessment of its (non-critical) requirements satisfiability. 

The runtime environment and the simulation platform have already been evaluated 

on multiple case studies that stemmed from different projects involvement, where some 

of them were conducted under the umbrella of the EU FP7 Programs (i.e. ASCENS and 

RELATE) and some were part of a bilateral cooperation with partner institutions (e.g. 

Volkswagen AG, Chemnitz University). Moreover, both served also as a proof of concept 

for other ideas (e.g. a design technique for DEECo-based systems – Invariant Refinement 

Method [KBP+13], and inaccuracy analyses for component belief [AABG+14c]), re-

searched separately but also in the context of the DEECo component model. 
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3.3 Selected Publications 

The following list of publications consists of items that are considered to consist of a 

major author’s contribution reflected mainly in their evaluation parts.  

The first two articles introduce the DEECo component model together with its core 

abstractions – component and ensemble, addressing goal G1. In the second publication, the 

jDEECo runtime is introduced (partially addressing goal G2), which has been solely pro-

totyped by the author. 

 [KBPK12] Keznikl J., Bureš T., Plášil F., Kit M.: “Towards Dependable Emergent En-

sembles of Components: The DEECo Component Model”, In Proceedings of 

WICSA/ECSA 2012, Helsinki, Finland, August 2012 

 [BGH+13] Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M., Plášil F.: 

“DEECo - an Ensemble-Based Component System”, In Proceedings of the 16th Inter-

national ACM Sigsoft Symposium on Component-Based Software Engineering 

(CBSE 2013), Vancouver, Canada, June 2013 

Furthermore, the next publication introduces an extension to the DEECo component 

model by the concept of communication boundary that allows for communication optimi-

zation when it comes to system realization over an infrastructure-less networks. Specif-

ically, the author has contributed in the evaluation part of the article, which is the first 

time when a simulation technique has been used in the context of the DEECo component 

model and as such setting the foundations for the jDEECoSim simulation platform. In 

particular, the work presented in this publication addresses the goal G2 including both 

G2a and G2b. 

 [BGH+14b] Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M., Plášil F.: 

“Gossiping Components for Cyber-Physical Systems”, In Proceedings of the 8th Eu-

ropean Conference on Software Architecture (ECSA 2014), Best Research Paper 

Award, Vienna, Austria, August 2014 

The next item, on the publication list, is a technical report that formally specifies the 

DEECo computational model. It has been formulated along with the [BGH+14b] and 

serves as a formal description of DEECo and starting point for any further extensions 

(modifications) introduced to the model. It addresses the semantic part of the goal G1. 

 [BGH+14a] Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M., Plášil F.: 

“Computational Model for Gossiping Components in Cyber-Physical Systems”, 

Tech. Report No. D3S-TR-2014-03, Dep. of Distributed and Dependable Systems, 

Charles University in Prague, April 2014 

 To argument on addressing of goals G2a and G2b, the following work introduces 

an extension to the DEECo component model that in a similar vein as [BGH+14b] strives 
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to optimize component state dissemination across the deployment network. This time, 

however, the focus is centered around the infrastructure-based networks. 

 [KPM+15] Kit M., Plášil F., Matěna V., Bureš T., Kováč O.: “Employing Domain 

Knowledge for Optimizing Component Communication”, In Proceedings of the 18th 

International ACM Sigsoft Symposium on Component-Based Software Engineering 

(CBSE 2015), Montreal, Canada, May 2015  

 The next publication is a tool presentation, introducing the DEECo framework as a 

solution supporting the implementation of self-adaptive techniques in the context of 

general CPS development. It also introduces the jDEECoSim platform as a verification 

tool using the co-simulation method by combining the two well-known simulators OM-

NeT++ and MATSim (see Section 3.1.3). This article arguments addressing of both G2 

and G3. 

 [KGB+15] Kit M., Gerostathopoulos I., Bureš T., Hnětynka P., Plášil F.: An Architec-

ture Framework for Experimentations with Self-Adaptive Cyber-Physical Systems, 

In Proceedings of the 10th International Symposium on Software Engineering for 

Adaptive and Self-Managing Systems (SEAMS 2015), Florence, Italy, May 2015 

 As the final item on the list of the author’s major contributions, is the following pub-

lication being a result of a collaborative research work between the author’s research 

group and the group from the Chemnitz University. This work proposes a DEECo pro-

prietary method for analyzing an SCPS system with respect to its critical aspects – i.e. 

timely aspects specified in its non-functional requirements. Similarly, the author contrib-

uted mainly in the evaluation part, providing for simulation-based experiments for the 

method, which addresses goal G3 from Section 1.3. 

 [MKM+16] Masrur A., Kit M., Matěna V.,  Bureš T., Hardt W.: “Component-Based 

Design of Cyber-Physical Applications with Safety-Critical Requirements”, To ap-

pear in Microprocessors and Microsystems, Elsevier, 2016  

Furthermore, the following list of publications is considered to have minor author’s 

contribution: 

 [BDNG+13] Bureš T., Rocco de Nicola, Gerostathopoulos I., Nicklas Hoch, Kit M., 

Nora Koch, Giacoma Valentina Monreale, Ugo Montanari, Rosario Pugliese, Nikola 

Serbedzija, Martin Wirsing, Franco Zambonelli: “A Life Cycle for the Development 

of Autonomic Systems: The e-Mobility Showcase”, In Proceedings of the 3rd Work-

shop on Challenges for Achieving Self-Awareness in Autonomic Systems, Philadel-

phia, USA, IEEE, September 2013  



3.3. Selected Publications 

43 

 [AAGGH+14] Al Ali R., Gerostathopoulos I., Gonzalez-Herrera I., Juan-Verdejo A., 

Kit M., Surajbali B.: “An Architecture-Based Approach for Compute-Intensive Per-

vasive Systems in Dynamic Environments”, In Proceedings of International Work-

shop on Hot Topics in Cloud service Scalability, ICPE '14, Dublin, Ireland, 2014 

 [GKB+14] Gerostathopoulos I., Keznikl J., Bureš T., Kit M., Plášil F.: “Software Engi-

neering for Software-Intensive Cyber-Physical Systems”, Presentation at the 

CPSData Workshop: Big Data Technologies for the Analysis and Control of complex 

Cyber-Physical Systems, September 2014 

 [AABG+14b] Al Ali R., Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M., 

Plášil F.: “DEECo: an Ecosystem for Cyber-Physical Systems”, In companion pro-

ceedings of the 36th International Conference on Software Engineering (ICSE 2014), 
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Summary of the Paper 

This work is a first attempt to introduce the idea behind components ensembles deliv-

ered by the DEECo component model and its abstractions. It relies on a simplistic case 

study of autonomous robots coordinating between each other on a crossroad and decid-

ing on the order in which robots cross the intersection. The problem is fully distributed, 

which means that there is no centralized entity that the robots could refer their decisions. 

They need to rely purely on the exchanged information and make decisions based on 

that. The scenario and its requirements are drawn in sections II and III accordingly. Fur-

thermore, in Section IV, the scenario is modeled using the DEECo constructs – i.e. com-

ponents and ensembles – expressed in the dedicated DSL. In addition, a brief explanation 

on the communication model is given, however, it is not yet backed by any proof of the 

concept. This is highlighted in Section V, which consists the envisioned plan for the fu-

ture and challenges that need to be addressed. 

Author Contribution and Goals Addressed 

The author’s contribution to this paper was participation in the formulation of the 

DEECo component model and its main features. Although, this work does not consist 

any realization proving the proposed ideas, it has been prototyped and validated by the 

author. However, due to the immaturity of the solution, it has not been included in the 

final version of the paper. 

In reference to the research goals defined in Section 1.3 of this thesis, the goal G1 is 

addressed by the work published in this article. By delivering the DEECo component 

model and its abstractions (i.e. components and ensembles), the SCPS characteristics 

specified in the goal definition (i.e. component autonomy and architectural dynamicity) 

are considered to be satisfied. 
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Abstract—In the domain of dynamically evolving distributed 

systems composed of autonomous and (self-) adaptive compo-
nents, the task of systematically managing the design complexi-
ty of their communication and composition is a pressing issue. 
This stems from the dynamic nature of such systems, where 
components and their bindings may appear and disappear 
without anticipation. To address this challenge, we propose 
employing separation of concerns via a mechanism of dynamic 
implicit bindings with implicit communication. This way, we 
strive for dynamically formed, implicitly interacting groups – 
ensembles – of autonomous components. In this context, we 
introduce the DEECo component model, where such bindings, 
as well as the associated communication, are managed in an 
automated way, enabling transparent handling of the dynamic 
changes in the system.  

Keywords—component; ensemble; adaptation; dynamic 
architecture; implicit communication; implicit bindings 

I.  INTRODUCTION 
In component-based software architecture design, we still 

face many challenges, particularly in the case of large, dis-
tributed and dynamically changing applications, where both 
components and bindings may appear/disappear without 
anticipation. Therefore, components are often designed as 
autonomous [1] so that they stay operable regardless of the 
changes in their operating environment. This in turn implies 
the need for a (self-) adaptation mechanism [2]. 

In this context, a challenge is to find suitable paradigms 
for engineering such systems to overcome the design com-
plexity of their communication and composition, specifically 
in terms of their autonomic and dynamic nature. 

As for autonomy and (self-) adaptation, these have been 
partially addressed by agent-based approaches [3][4] where 
actors leveraging on messaging establish explicit bindings 
for data and code exchange. As for coping with dynamism, 
techniques utilizing implicit bindings while focusing on 
explicit communication have been proposed [5]. Further-
more, separation of concerns was to some extent achieved by 
introducing implicit communication (driven by a third-party 
entity) via explicit bindings [6]. Intuitively, it is desirable to 
combine all of these approaches in order to take advantage of 
the benefits they offer simultaneously.  

Contributing to the ASCENS project [7], our goal is to 
respond to this challenge by elaborating on the idea of dy-
namic implicit bindings with implicit communication. To do 
so, we introduce the DEECo component model (Dependable 
Emergent Ensembles of Components). 

The basic idea of DEECo is to facilitate separation of 
concerns by extracting component bindings and communica-
tion from the component implementation, expressing them 
implicitly, and managing them in an automated way via the 
DEECo runtime framework. Specifically, we consider bind-
ings to be declaratively-expressed first-class entities, captur-
ing component communication by implicit data exchange. 
This way, a component can be considered as an autonomous 
and self-aware entity, relying solely on its local data, which 
are modified in the background by the runtime framework 
according to the implicit component bindings. Similar to 
self-organizing architectures [8], such bindings facilitate 
dynamic forming of implicit groups – ensembles – of auton-
omous components.  

Moreover, stemming from the need for autonomy while 
allowing for dependability, in DEECo we aim at supporting 
(self-) adaptation, code mobility, and verification of safety 
(reachability) properties. 

The rest of this paper is structured as follows: Section II 
describes our motivating case study, in Section III the re-
quirements for effectively addressing the outlined goals, 
demonstrated by the case study, are summarized, Section IV 
provides a brief description of the DEECo component model, 
while the concluding Section V outlines a long term DEECo 
vision and identifies the key challenges to be addressed. 

II. CASE STUDY 
As our motivating case study we consider a robotic play-

ground scenario, stemming from the e-mobility demonstra-
tor [9] in ASCENS. Basically, it pertains to several 
autonomous robots moving on roads with crossings. When 
approaching a crossing, all the robots in the same situation, 
or already on the crossing, have to cooperate in order to 
avoid collision. An assumption is that the robots can com-
municate only with those within a short range, since they 
typically have limited communication signal coverage. Thus 
the architecture of the system of robots and crossings is dy-
namic, determined by their actual positions. The work was partially supported by the EU project ASCENS 257414, the 

Grant Agency of the Czech Republic project P202/11/0312. The work was 
partially supported by Charles University institutional funding SVV-2012-
265312.  
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(a)  

 
(b) 

 
(c) 

In the basic case (Fig. 1.a), we assume that the robots 
give priorities according to the “right-hand rule” (e.g., R1 
has the highest priority). Furthermore, we consider also other 
(more elaborate) variants for the crossing strategy (Fig. 1.b), 
where the robots are advised by the crossing itself (similar to 
crossings with specific arrangements of traffic lights; e.g., 
the robot R2 is advised by C to continue as the first). These 
variants are handled by self-adaptation of the robots, includ-
ing both short-term and permanent adaptation. As an exam-
ple of the former case, the crossing provides the 
corresponding robots with a strategy for interacting with it 
only for the time the robots are at/in the crossing; in the latter 
case, robots exchange strategies for interacting with new 
variants of crossings, and these strategies are adopted per-
manently. Finally, we also expect the robots to form dynamic 
convoys (Fig. 1.c); i.e., if two robots drive in the same direc-
tion, one behind the other, the robot behind (e.g., R1) should 
adjust its speed to the one in front (e.g., R2). We will use this 
robot playground case study as the running example 
throughout this paper. 

In addition to the robot scenario, we also seek inspiration 
from a more elaborate case study of a self-aware and self-
adaptable cloud platform [9]. We consider several client 
applications running on a cloud platform, continuously stor-
ing their logging data via a logging service. An important 
part of the scenario is that the application processes, as well 
as the processes implementing the logging service, can mi-
grate between the nodes of the cloud according to various 
optimization criteria. These processes should migrate auton-
omously and be able to adapt the migration strategy accord-
ing to the impact of previous migrations. During migrations, 
client applications should not be affected by the changes in 
the cloud architecture. 

III. OVERVIEW OF REQUIREMENTS 
Based on the case studies, we have identified several 

general requirements to be met by the DEECo component 
model. These include the capability to: 

� allow for convenient design with a suitable level of 
abstraction and proper concepts, coping efficiently 
with dynamic and parallel activities. 

� provide appropriate means for continuous self-
adaptation of the system. This implies the need for 
separation of concerns, so that adaptation is separat-
ed from business logic. 

� achieve dynamic updates of behavior by means of 
both (self-) adaptation and code mobility. 

� ensure a high level of dependability by supporting 
methods for formal verification of safety (reachabil-
ity) properties. 

As the requirements are also partially targeted by the 
SCEL [10] specification language proposed for ASCENS, 
we will reuse some of its related concepts. However, since 
SCEL is a low-level generic theoretical model, it does not 
provide any higher-level abstractions for system design. 
Supporting only low-level primitive operations for compo-
nent communication without considering any programming 
environment, it is not, as such, suitable for direct develop-
ment of non-trivial software systems. 

IV. DEECO COMPONENT MODEL 
In this section, we target the requirements identified in 

Section III by introducing the DEECo component model. Its 
basic idea is to manage the dynamism of a system by exter-
nalizing the (potentially distributed) communication among 
components. Specifically, a component accesses only its 
local data, which are communicated in the background to 
other components in an automated way by the DEECo 
runtime framework. Hence, a component is logically an 
autonomous unit, oblivious to the way data are exchanged, 
which makes it robust and adaptable with respect to dyna-
mism. Moreover, the DEECo data exchange mechanism 
supports code mobility and adaptation. 

A. Component Structure 
A component is a unit of design and deployment, consist-

ing of knowledge and processes. 
Knowledge represents the internal state and functionality 

of the component. It is a hierarchical data structure, similar 
to a tuple space [10], mapping identifiers to (potentially 
structured) values. Values are either statically-typed data or 
functions; both being first-class entities. Only pure functions 
with no global variables are considered.  

A process, being essentially a “thread”, operates locally 
upon the knowledge by calling a specific function (being a 
part of the knowledge) to perform its task. Since global vari-
ables are disallowed, a process assigns a part of the 
knowledge to the actual parameters of the function (input 
knowledge), and on its completion updates a part of the 
knowledge (output knowledge) by the return value. 

The example from Fig. 2 describes the component Robot 
(a singleton instance; multiple instances are expected to be 
created by cloning) in the DEECo DSL. It illustrates that a 
component is defined solely by its initial knowledge, which 
also syntactically contains the definition of the component’s 
processes. Here, the Robot component’s knowledge contains 

Figure 2. Example of a DEECo component

component�Robot�=�{
���id:�RobotId�=�”R1”;�
���info:�RobotInfo�=�{�
������position:�Position�=�{�x�=�1,�y�=�1};�
������path:�list�Position�=�[];���
���};�
���otherRobots:�map�RobotId��>�RobotInfo�=�{};�
���stepf:�fun(inout�i:�RobotInfo,�in�o:�map�RobotId�>RobotInfo)�=�{�
������...�};��
���processes�=�{�
������step:�Process�=�{�
���������function�=�stepf;�
���������inputKnowledge=[info,�otherRobots];�
���������outputKnowledge=[info];��
���������scheduling�=�PERIODIC(100ms);�
}; }; };

Figure 1. Robot Case Study: (a) autonomous robots, (b) robots advised  by 
a crossing, (c) convoy 
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the actual position of the robot and the list of remaining 
waypoints the robot has to drive through (info), and similar 
information about the robots in its close perimeter 
(otherRobots). The Robot’s only process step moves the 
robot (via the stepf function) by updating its info.position 
according to the info.path while considering otherRobots in 
order to avoid a crash (by applying the right-hand rule). 

B. Component Composition 
In DEECo, the composition of components is flat, in the 

form of component ensembles – groups of components, 
consisting of a single (unique) coordinator and multiple 
member components. At the same time, a component may 
play the role of a coordinator or member in several ensem-
bles. 

Supporting separation of concerns, an ensemble mediates 
communication between the coordinator and members. In 
consequence, two components can communicate only if they 
are involved in the same ensemble and one of them is the 
coordinator (direct communication among the members is 
not possible). Most importantly, such an involvement is 
expressed implicitly via a membership condition, evaluated 
in an automated way by the runtime framework.  

Similarly, the inter-component communication is realized 
by implicit knowledge exchange (i.e., a part of the 
knowledge of one component is copied to the other compo-
nent in an automated way). Such exchange may also include 
a knowledge transformation. 

In compliance with the principle of knowledge exchange 
solely between the coordinator and a member, an ensemble 
is described pair-wise, defining the couples coordinator – 
member. Syntactically, an ensemble prescription consists of 
the desired knowledge interface of the coordinator (coordi-
nator interface), the desired interface of a member (member 
interface), membership function, and mapping function. 

Interface constitutes a structural prescription for a partial 
view on a component’s knowledge. Specifically, it is associ-
ated with the knowledge by means of duck typing (structural 
subtyping); i.e., if a part of the component’s knowledge 
matches the structure prescribed by the interface, then the 
component reifies the interface. For example, Robot from 
Fig. 2 reifies the IRobot interface from Fig. 3. 

Membership function declaratively expresses the mem-
bership condition, under which two components form a pair 

coordinator – member of the ensemble. This condition is 
defined upon the knowledges of the components and is to be 
evaluated by the runtime framework (potentially in a distrib-
uted fashion). For example, in Fig. 3 the components r and c, 
reifying the IRobot interface, have to be in the proximity 
lower than THRESHOLD in order to form a coordinator-member 
pair. 

Mapping function determines the knowledge exchange 
between the coordinator and a member. Specifically, it de-
scribes which part of the knowledge of one component is to 
be transferred to the other and how it is potentially trans-
formed. We assume a separate mapping for each of the direc-
tions, coordinator-to-member and member-to-coordinator. 
Also, the mapping function is to be executed by the runtime 
framework. This basically ensures that relevant knowledge 
changes in one component are propagated to the other in 
the background. As an example, consider the coordinator�
to�member and member�to�coordinator mapping functions 
from Fig. 3 which ensure an exchange of knowledge neces-
sary to avoid robot collisions (i.e., the positions and remain-
ing paths of the robots in a close perimeter).  

In general, components form an ensemble whenever they 
satisfy the ensemble condition of an ensemble prescription, 
i.e., one of them reifies the coordinator interface, the other 
components reify the member interface, and the membership 
condition holds for each coordinator – member pair. There-
fore, multiple ensembles based on the same prescription can 
be formed simultaneously. 

As an example, consider an ensemble prescription of au-
tonomous robots where the membership condition requires 
the member robots to be in close proximity to the coordina-
tor robot. In Fig. 4.a, R2 is too far from the coordinator R3 
so it is not (yet) included in the ensemble [R1, R3]. After R2 
reaches the required proximity, all three robots will form a 
single ensemble as shown in Fig. 4.b and Fig. 4.c (bigger 
ensembles are preferred to smaller ones and the coordinator 
is selected randomly if multiple candidates are eligible). 
Assuming the crossing strategy, where components are ad-
vised by the crossing, the ensemble will potentially look like 
the one in Fig. 4.d, where the crossing component is the 
coordinator. 

In the situation where a component satisfies the ensemble 
condition for multiple ensembles (Fig. 4.b and Fig. 4.c), we 
envision a mechanism for deciding whether all or only a 
subset of the candidate ensembles should be formed. Cur-
rently, we employ a mechanism based on a partial order over 
ensembles (the ensemble with higher order is preferred; 
incomparable ensembles are formed simultaneously). 

 (a) (b) (c) (d)

interface�IRobot�=�{�
���id:�RobotId;�
���info:�RobotInfo;�
���otherRobots:�map�RobotId��>�RobotInfo;�
};�
ensemble�AutonomousRobotsEnsemble�{�
���member�interface:�IRobot;�
���coordinator�interface:�IRobot;�
���membership:�fun(in�r:�IRobot,�in�c:�IRobot,�out�ret:�Boolean)�=�{�
������ret�=�proximity(r.info.position,�m.info.position)�<=�TRESHOLD;�
���};�
���coordinator�to�member:�fun(inout�m:�IRobot,�in�c:�IRobot)�=�{�
������m.otherRobots=m.otherRobots.merge(c.otherRobots).except(m.id);�
���};�����
���member�to�coordinator:�fun(in�m:�IRobot,�inout�c:�IRobot)�=�{�
������c.otherRobots[m.id]�=�m.info;��
};�};�

Figure 3. Example of an ensemble prescription 

Figure 4. Ensemble Examples: (a) two-robot ensemble with coordinator 
R3, (b) autonomous robots ensemble with coordinator R2, (c) autonomous 

robots ensemble with coordinator R3, (d) crossing ensemble 
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C. Computational Model 
The computational model of DEECo is based on asyn-

chronous knowledge exchange and process execution, stem-
ming from the asynchronous nature of dynamic distributed 
systems. Specifically, the processes of all components exe-
cute in parallel as independent threads either periodically or 
when triggered by modification of (a part of) their input 
knowledge.  In a similar vein, a binding in an ensemble is 
accomplished by a separate activity, running the mapping 
function again either periodically or when triggered by a 
change in the knowledge of the coordinator/member. 

Due to the asynchrony, it is necessary to ensure that 
knowledge is accessed consistently. Thus, at its start, a pro-
cess is atomically provided with a copy of its input 
knowledge so that its computation is not affected by later-
occurring knowledge modifications. When finishing, the 
process atomically updates its output knowledge. The same 
atomic copy-on-start and update-on-return semantics also 
applies to the membership and mapping functions of ensem-
bles. Technically, this semantics can be implemented for 
instance via messaging. 

For the time being, we envision employing the “single 
writer, multiple readers” rule for knowledge access, meaning 
that at any time each value in the knowledge of a component 
has at most one writer while being accessed by potentially 
multiple readers. Note that this rule applies to obtaining input 
and writing output knowledge of component processes, as 
well as to knowledge exchange via mapping functions. Since 
all the readers and writers are well defined, we envision that 
compliance with this rule will be verified. 

Consequently, based on the computational model, an en-
semble is created when the ensemble condition starts to hold, 
and is discarded when the condition gets violated. Technical-
ly, as the whole system is asynchronous and potentially dis-
tributed, techniques for handling inherent delays, while 
creating/discarding ensembles, have to be carefully chosen. 

V. DISCUSSION: VISION AND CHALLENGES 
We assume DEECo will be employed in the design of 

systems of autonomous self-adaptive components, such as 
a self-managing cloud platform and self-organizing car shar-
ing [9], where it aims at simplifying the design process.  

Specifically, we expect DEECo to effectively handle 
knowledge exchange among distributed components, includ-
ing code mobility in support of adaptation, while putting a 
strong emphasis on separation of concerns. Although similar 
to software connectors [11], DEECo ensembles capture 
component composition implicitly and thus allow for han-
dling of dynamic changes in an automated way. Similar 
benefits result from the implicit knowledge exchange. 

Currently, we foresee two possible methods for handling 
distributed knowledge exchange: message passing and dis-
tributed tuple spaces, both already adopted by the state-of-
the-art agent-oriented frameworks such as [3] and [12], re-
spectively. Although supporting dynamic features such as 
code mobility, these frameworks lack high-level abstractions 
allowing for implicit dynamic composition and communica-
tion. Nevertheless, since DEECo components resemble 

agents with respect to autonomy, we consider partially em-
ploying these frameworks in the DEECo runtime framework. 
Currently, we already have prototypes for both types of these 
methods for handling knowledge exchange1 . 

In order to support controlled architecture evolution, we 
aim to incorporate mechanisms for dynamic addition, modi-
fication, and removal of ensemble prescriptions.  

In addition, we envision supporting formal verification of 
DEECo applications. As for model checking of temporal 
properties, we assume a mapping of applications to SCEL 
and intend to exploit its means [12] for this purpose. Moreo-
ver, we anticipate also employing stochastic model check-
ing [13][14] for quantitative verification.  

Finally, inspired by the cloud and e-mobility case studies, 
we intend to introduce, in addition to abstractions for per-
formance awareness, other forms of implicit knowledge-
based communication such as distributed consensus. 
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Summary of the Paper 

The aim of the following publication is to introduce the DEECo component model as a 

solution for designing and building architecturally dynamic systems (which is the case 

of SCPS) built over the idea of component ensembles. The core concepts of the DEECo 

component model (i.e. components and ensembles) are illustrated on the e-mobility case 

study, being one of the three key example scenarios of the ASCENS Project. The scenario 

consists of vehicles and parking lots as the stakeholders. Vehicles coordinate with park-

ing lots in order to reserve parking space. The selection of the parking lot is based on its 

proximity to the vehicle’s point of interest and the occupancy of the parking lot. The full 

description of the scenario can be found in Section 2 of the paper. The scenario serves as 

an example for introducing the DEECo component model abstractions detailed in Sec-

tion 3. Apart from the descriptive presentation of the abstract features of the model, the 

publication delivers a prototype implementation of the jDEECo runtime environment as 

well as the first implementation of the e-mobility scenario – Section 4. Further, in Section 

5, the IRM (Invariant Refinement Method) [KBP+13] is described and exemplified on the 

use-case scenario. The IRM method is researched separately to the work presented in 

this thesis. Nevertheless, being a part of the DEECo framework, these two topics are 

complementary and strongly related, even though, they address different stages of the 

software engineering process. While jDEECo and jDEECoSim focus on the development 

and deployment phases, the IRM addresses the design and modeling part of the process. 

Section 6 gives a short discussion on the observations and experience gained during the 

work on the implementation of the e-mobility example using the jDEECo approach. Fi-

nally, the state of the art is given in Section 7, which is then followed by conclusions and 

future work. 

Author Contribution and Goals Addressed 

The research goals addressed in this work are goals G1 and G2. They talk about 

proper modeling abstraction for SCPS development as well as the demand for deploy-

ment platform that would support automation in SCPS component management. Spe-

cifically, Section 3 delivers the DEECo component model as the means for modeling en-

semble-based systems, which are in the context of this thesis an alias for SCPS. Moreover, 

taking into account, the very first prototype implementation of the jDEECo runtime 

given in Section 4 of the paper, also goal G2 is addressed at least partially. 

The author’s contribution to this work consists of participation in the DEECo com-

ponent model formulation as well as the implementation of the prototype for the jDEECo 

platform together with the realization of the e-mobility case study. 

The e-mobility case study presented in this paper has been continued (later after 

this work has been published) in the form of multilateral agreement between the au-

thor’s research group, German research institute – Fraunhofer FOKUS [40] and the 

Volkswagen [41] research group. It has been extended with different aspects including, 

the Volkswagen proprietary (hence a reference is not available) route planning utility 
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designed for next generation electric vehicles as well as global and local level optimiza-

tions with respect to vehicle route planning and parking lot occupancy. This, coopera-

tion with the industrial partner brought precious experience that was beneficial for fur-

ther research on the DEECo framework. Specifically, in the context of the thesis, this 

refers to the component model, jDEECo runtime environment, and jDEECoSim plat-

form. 
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ABSTRACT 
The recent increase in the ubiquity and connectivity of computing 
devices allows forming large-scale distributed systems that 
respond to and influence activities in their environment. 
Engineering of such systems is very complex because of their 
inherent dynamicity, open-endedness, and autonomicity. In this 
paper we propose a new class of component systems (Ensemble-
Based Component Systems – EBCS) which bind autonomic 
components with cyclic execution via dynamic component 
ensembles controlling data exchange. EBCS combine the key 
ideas of agents, ensemble-oriented systems, and control systems 
into software engineering concepts based on autonomic 
components. In particular, we present an instantiation of EBCS – 
the DEECo component model. In addition to DEECo main 
concepts, we also describe its computation model and mapping to 
Java. Lastly, we outline the basic principles of the EBCS/DEECo 
development process. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications; D.2.6 [Software 
Engineering]: Programming Environments – integrated 
environments; D.2.9 [Software Engineering]: Management – life 
cycle; D.2.11 [Software Engineering]: Software Architectures. 

Keywords 
Component model; emergent architecture; component ensembles; 
autonomic systems; development process; runtime framework 

1. INTRODUCTION 
The significant increase in the ubiquity and connectivity of 
computing devices has opened new possibilities for addressing 
social and environmental challenges (e.g., ambient assisted living, 
smart city infrastructures, emergency coordination, environmental 
monitoring) by providing hardware and infrastructures necessary 
for building large-scale Resilient Distributed Systems (RDS) that 
respond to and influence activities in the real world. As RDS have 
to cope with very dynamic and open-ended environments, they 
exhibit a high degree of adaptivity and autonomicity.  

Although developing RDS has become relatively feasible from the 
perspective of hardware and network infrastructures, there still 
remain significant challenges in developing software for RDS. In 
particular, the problem is to feature the appropriate computation 
models and development processes which would address the 
requirements of scalability, distribution, and well-defined 
architecture, while, at the same time, would deal with the 
requirements of dynamicity, open-endedness, robustness, and 
autonomicity. 

1.1 Towards EBCS 
In this paper, we advocate using components for engineering 
RDS. The use of components has been proven efficient for the 
design and development of large-scale systems with well-defined 
architectures. However, due to the dynamic and autonomic nature 
of RDS, traditional approaches to component architectures [38] as 
well as existing component models [6][7][30][31][32] do not 
scale. Therefore, inspired by the work in the field of formal 
coordination languages [14], in this paper we address this issue by 
identifying a new class of component-based systems – Ensemble-
Based Component Systems (EBCS) – specifically tailored for 
designing RDS. Moreover, we present the DEECo (Distributed 
Emergent Ensembles of Components) component model [8][25] 
as our instantiation of EBCS.  

The characteristic of EBCS is that the “traditional” explicit 
component architecture is replaced by the composition of 
components into so-called ensembles [14][20], each of which is an 
implicit, inherently dynamic group of components mutually 
cooperating to achieve a particular goal. To cope with the 
dynamism, the components in EBCS become autonomic entities, 
building on agent-oriented concepts [39], while featuring 
execution model based on feedback loops (e.g., MAPE-K [23], 
soft real-time control systems [33]) in order to achieve (self-) 
adaptive and resilient operation. 

In this view, the EBCS can be defined as “Distributed systems 
composed of components that feature autonomic and (self-) 
adaptive behaviors and are organized into emergent ensembles to 
achieve cooperation.” 

EBCS thus naturally combine relevant concepts from a number of 
research areas (Figure 1). Namely:  

From component-based software engineering [11] EBCS adopt 
the software engineering concepts of the system architecture 
based on components (which themselves are seen as well-
encapsulated, reusable, and substitutable entities) and the 
component-based development process.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada. 
Copyright © ACM 978-1-4503-2122-8/13/06...$15.00. 
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From agent-oriented computing [39] EBCS derive the 
autonomous aspects, where the individuals maintain only a partial 
view on the whole system in order to guide their decisions – the 
belief, and self-* behavior [10]. This way, the overall behavior of 
EBCS is an emergent result of the behaviors of the individual 
components, enabling thus for efficient decentralized execution.  

Building on the ensemble-oriented systems [14][20] EBCS rely on 
the attribute-based communication, which models the 
communication as best-effort and localized to dynamically 
changing ensembles of components; as opposed to existing agent-
based systems [4] which at the deployment level resemble 
service-oriented architectures employing explicit communication 
channels. This helps to effectively cope with the assumption that 
the deployment (and thus also architecture) of RDS changes very 
dynamically. 

From control system engineering [33] EBCS adopt the idea of 
achieving robustness by employing (soft real-time) control 
feedback loops [23] that maintain the operational normalcy of a 
component. Here, operational normalcy refers to the property of 
being within certain limits that define the range of normal 
functioning of the component. The required level of robustness is 
achieved by adjusting the periods of the loops. As extreme 
dynamism is assumed, the core attribute of EBCS is employing 
the concept of feedback loops both at the level of individual 
components and ensembles. Thus, an EBCS-based system can be 
understood as a distributed system of conditionally interacting 
feedback loops. 
As a result, EBCS provide the following key features important 
for development of RDS: 

• System architecture (represented by components and 
their bindings) emerges at runtime. The system 
architecture is however not arbitrary – it complies with 
explicit interaction patterns of ensembles specified at 
design time. 

• Components maintain a belief about the rest of the 
system and the environment. The belief is managed 
outside the component behavior by the underlying 
runtime framework. 

• Component execution is performed in isolation based 
solely on the component’s belief. This strengthens the 
autonomicity of components (e.g., in the context of 
unreliable communication and/or rapid architecture 
changes).  

1.2 Goals and Structure of the Text 
The goal of the paper is to describe our instance of EBCS – the 
DEECo (Distributed Emergent Ensembles of Components) 
component model [8][25] and its framework – and to share with 
the reader our experience with its application. 

In particular, after describing a running example (Section 2), we 
present: (i) the core DEECo concepts along with its abstract 
execution model (Section 3), (ii) a Java-based DEECo framework, 
which allows engineering DEECo components and ensembles in a 
Java environment (Section 4), and (iii) an outline of a design 
process, which drives the architectural design of EBCS (DEECo-
based systems in particular) from high-level requirements  
(Section 5).  Finally, we share with the reader our experience with 
an industrial case study (Section 6). After presenting a survey of 
related work (Section 7), the paper concludes with a summary and 
a brief overview of our intentions in future work (Section 8). 

2. RUNNING EXAMPLE 
We illustrate the main concepts of EBCS/DEECo with the help of 
the electrical vehicle navigation case study featured by the 
ASCENS project [37]. We describe the fundamentals of the case 
study in this section and articulate the running example that we 
use in the rest of the paper.  

The objective of the e-mobility case study is to coordinate the 
planning of journeys in compliance with parking and charging 
strategies in a highly dynamic and heterogeneous traffic 
environment, where information is distributed. The case study 
consists of drivers, navigating around a city in their electric 
vehicles (e-vehicles). Drivers have to reach particular Points Of 
Interest (POIs) within time constraints, specified as the expected 
POI arrival and departure times. Every driver possesses his/her 
daily meetings schedule (calendar), where POIs and their 
respective constraints are listed. Vehicles are equipped with 
sensors of basic capabilities, e.g., monitoring the battery level and 
energy consumption of the car, but also more sophisticated ones, 
e.g., monitoring the traffic level along the route. Vehicles can only 
park and recharge in designated parking spaces and charging lots, 
organized into parking/charging stations. They also communicate 
with each other and with relevant parking/charging stations, e.g. 
those that are close to their respective POIs. Such communication 
is necessary, e.g., in order for a vehicle to obtain the availability 
of the parking station and potentially reserve a place there. It is 
important that in this setting no central coordination point is 
assumed; there is no global control or global planning. Instead, 
every e-vehicle plans and executes its route individually, based on 
the data available. 

The whole system can be seen as a set of (distributed) nodes, 
which form ensembles (dynamic communication groups) in order 
to allow drivers to arrive at their POIs in time while leveraging the 
available resources in a close-to-optimal way. This is illustrated in 
Figure 2 – each vehicle forms an ensemble with available parking 
stations close to their respective POIs. Figure 2.b further shows an 
evolution of the scenario, where vehicles have moved along the 
route and a parking station has become unavailable leading to 
dynamic changes of the ensembles. 

 

Figure 1: Areas combined into Ensemble-Based Component 
Systems and their strong points. 

  
Figure 2: E-mobility: Potential ensembles and their dynamic 
changes (available parking stations close to respective POIs). 
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As our running example, we consider a simplified version of the 
case study by making the following assumptions: i) car sharing is 
not allowed, so drivers are bound to the vehicles they drive, ii) 
parking and charging stations are modeled together as Parking 
Lot/Charging Station (PLCS) elements, iii) drivers do not reserve 
a place in the PLCSs, but only obtain their availability 
information in order to plan accordingly, and iv) PLCSs are 
relevant w.r.t. a vehicle if they are within a fixed distance to one 
of the vehicle’s POIs. 

Although simplified, the running example features a number of 
important challenges targeted by EBCS. In particular, the physical 
architecture of the system constantly changes as the cars move 
around the city; cars and PLCSs maintain a partial view over the 
whole system, according to the information they obtain from 
components they interact with; trip planning and decision making 
in general is localized to the drivers (cars), as no central 
coordination is assumed.   

3. DEECo COMPONENT MODEL 
To refine the principles of EBCS into a systematic approach for 
building software for RDS, we have proposed a new component 
model called DEECo [25]. DEECo embodies the main concepts of 
EBCS, while giving them a suitable semantics in order to turn 
them into proper software engineering constructs that can be 
employed in the real-life development of RDS. 

3.1 General Concepts 
DEECo is built on top of two first-class concepts: component and 
ensemble. A component is an independent and self-sustained unit 
of development, deployment and computation. An ensemble acts 
as a dynamic binding mechanism, which links a set of 
components together and manages their interaction. A grounding 
idea in DEECo is that the only way components bind and 
communicate with one another is through ensembles. The two 
first-class DEECo concepts are in detail elaborated below. An 
integral part of the component model is also the runtime 
framework providing the necessary management services for both 
components and ensembles. 

3.1.1 Component 
A component in DEECo comprises knowledge, exposed via a set 
of interfaces, and processes, as illustrated in Figure 3.   

Knowledge reflects the state and available functionality of the 
component (lines 8-16). It is organized as a hierarchical data 
structure (resembling a tuple space [15]), which maps knowledge 
identifiers to values. Specifically, values may be either potentially 
structured data or executable functions. Technically, we use 
structured identifiers to refer to internal parts of the structured 
values (e.g., plan.isFeasible   in line 18). In this context, the term 
belief refers to the part of a component’s knowledge that 
represents a copy of knowledge of another component, and is thus 
treated with a certain level of uncertainty as it might become 
obsolete or invalid. 

A component’s knowledge is exposed to the other components 
and environment via a set of interfaces (lines 7, 29). An interface 
(e.g., lines 1-2) thus represents a partial view on the component’s 
knowledge.  Specifically, interfaces of a single component can 
overlap and multiple components can provide the same interface, 
thus allowing for polymorphism of components.  

Component processes are essentially soft real-time tasks that 
manipulate the knowledge of the component. A process is 
characterized as a function (lines 19-21) associated with a list of 
input and output knowledge fields (line 18). Operation of the 

process is managed by the runtime framework and consists of 
atomically retrieving all input knowledge fields, computing the 
process function, and atomically writing all output knowledge 
fields. A process may have side effects in terms of sensing and 
actuating, however, it is not supposed to explicitly communicate 
with other components or other processes of the same component 
in any other way than via knowledge. 

Being active entities of computation implementing feedback 
loops, component processes are subject to cyclic scheduling, 
which is again managed by the runtime framework. A process can 
be scheduled either periodically (line 27), i.e., repeatedly executed 
once within a given period, or as triggered (line 22), i.e., executed 
when a trigger condition is met. For brevity, we assume the 
change of input knowledge value as the only trigger condition. 

Referring to the e-mobility running example, the components 
(each occurring in multiple instances) are the Vehicle and the PLCS 
(Figure 3). A Vehicle maintains a belief over the availability of the 
relevant PLCSs (availabilities, line 12). It uses a Planner library to 
(re-) compute its journey plan according to the availability belief 
and its calendar (line 17) every time the availability belief or plan 
feasibility changes (line 22). The Vehicle also periodically checks 
if its plan remains feasible, with respect to its battery level and its 
current position (line 23). A PLCS just keeps track of its available 
timeslots for vehicle parking and charging (lines 33-37).  

3.1.2 Ensemble 
An ensemble embodies a dynamic binding among a set of 
components and thus determines their composition and 
interaction. In DEECo, composition is flat, expressed implicitly 

1. interface	  AvailabilityAggregator:  
2. calendar,  availabilities  
3.   
4. interface	  AvailabilityAwareParkingLot:  
5. position,  availability  
6.   
7. component	  Vehicle  features	  AvailabilityAggregator:  
8. knowledge:  
9. batteryLevel  =  90%,  
10. position  =  GPS(…),  
11. calendar  =  [  POI(WORKPLACE,	  9AM-‐1PM),  POI(MALL,	  2PM-‐3PM),  …  ],  
12. availabilities  =  [  ],  
13. plan  =  {    
14. route  =  ROUTE(…),    
15. isFeasible  =  TRUE  
16. }  
17. process	  computePlan:  
18. in  plan.isFeasible,  in  availabilities,	  in	  calendar,  inout	  plan.route  
19. function:  
20. if  (!plan.isFeasible)  
21. plan.route  ←  Planner.computePlan(calendar,  availabilities)  
22. scheduling:  triggered(  changed(plan.isFeasible)  ∨  changed(availabilities)  )  
23. process	  checkPlanFeasibility:  
24. in  plan.route,  in  batteryLevel,  in  position,	  out  plan.isFeasible  
25. function:  
26. plan.isFeasible  ←  Planner.isFeasible(plan.route,  batteryLevel,  position)  
27. scheduling:  periodic(  5000ms  )  
28.   
29. component	  PLCS  features	  AvailabilityAwareParkingLot:  
30. knowledge:  
31. position  =  GPS(…)  ,  
32. availability  =  …  
33. process	  observeAvailability:  
34. out	  availability  
35. function:  
36. availability←  Sensors.getCurrentAvailability()  
37. scheduling:  periodic(  2000ms	    )  
  
Figure 3: Examples of DEECo component definitions in a DSL. 
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via a dynamic involvement in an ensemble. Among the 
components involved in an ensemble, one always plays the role of 
the ensemble’s coordinator while others play the role of the 
members. This is determined dynamically (the task of the runtime 
framework) according to the membership condition of the 
ensemble. As to interaction, the individual components in an 
ensemble are not capable of explicit communication with the 
others. Instead, the interaction among the components forming the 
ensemble takes the form of knowledge exchange, carried out 
implicitly (by the runtime framework, Section 4.2). 
Specifically, definition of an ensemble (Figure 4) consists of: 

• Membership condition. Definition of a membership condition 
includes the definition of the interface specific for the 
coordinator role – coordinator interface (line 2), as well as 
the interface specific for the member role (and thus featured 
by each member component) – member interface (line 3), 
and the definition of a membership predicate (lines 4-7). 
A membership predicate declaratively expresses the 
condition under which two components represent a 
coordinator-member pair of the associated ensemble. The 
predicate is defined upon the knowledge exposed via the 
coordinator/member interfaces and is evaluated by the 
runtime framework when necessary. In general, as illustrated 
in Figure 5, a single component can be member/coordinator 
of multiple ensembles, so that ensembles form overlapping 
composition layers upon the components. 

• Knowledge exchange. Knowledge exchange embodies the 
interaction between the coordinator and all the members of 
the ensemble (lines 8-9); i.e., it is a one-to-many interaction 
(in contrast to the one-to-one form of the membership 
predicate). Being limited to coordinator-member interaction, 
knowledge exchange allows the coordinator to apply various 
interaction policies. In principle, knowledge exchange is 
carried out by the runtime framework; thus, it is up to the 
runtime framework when/how often it is performed. 
Similarly to component processes, knowledge exchange can 
be carried out either periodically or when triggered (line 10).  

Based on the ensemble definition, a new ensemble is dynamically 
formed for each group of components that together satisfy the 
membership condition.  

In summary, each component operates only upon its own local 
knowledge, which gets implicitly updated by the runtime 
framework (via knowledge exchange) whenever the component is 
part of an ensemble. This supports component encapsulation and 
independence. Further details are elaborated in [2]. 
The sole ensemble of the running example is the 
UpdateAvailabilityInformation ensemble listed in Figure 4. Its 
purpose is to aggregate the availability information of the 
members, i.e. PLCSs,  on the side of the coordinator, i.e., Vehicle 
(line 9). The ensemble is formed only when a PLCS is close 
enough to at least one of the POIs of the Vehicle (line 6) and there 

is an available slot in the PLCS, which can accommodate the 
respective POI arrival and departure time (line 7).  

3.2 Computational Model 
To allow for formal reasoning about DEECo applications, we 
have defined the operational semantics of DEECo, which models 
a DEECo application as a label transition system (LTS) with 
knowledge manipulation actions on transitions. The semantics 
further associates time with the LTS run and defines periodic and 
triggered processes and ensembles in terms of time constraints 
over traces generated by the LTS. 

We also define a subset relation over a set of traces of observable 
changes in the components’ knowledge. This allows us to build 
different implementations of DEECo (such as the tuple-space 
based implementation described in Section 4 and a messaging-
based implementation following the protocol outlined in [2]) 
while accommodating for and benefiting from the specifics of the 
communication middleware used. 
Due to space constraints we do not include the definition of the 
semantics in this paper, rather we refer the reader to the technical 
report [2], which describes it in full extent. 

4.  DEECo REALIZATION IN JAVA 
In order to bring DEECo abstractions to the practical use during 
the development of real-life RDS we provide a framework called 
jDEECo [13], which is a Java-based realization of DEECo 
component model. jDEECo delivers the necessary programming 
abstractions and the runtime environment to deploy and run 
DEECo-based applications.   

In this section, we describe how jDEECo maps definitions of 
DEECo components and ensembles to Java language primitives. 
In particular, we follow the developer’s perspective and show how 
the running example gets implemented using the jDEECo 
constructs. Further, we briefly discuss interesting aspects of the 
jDEECo runtime framework and supporting tools and the in-
memory representation of the DEECo concepts.  

4.1 Mapping of DEECo Concepts to Java 
By building on Java annotations, the mapping of DEECo concepts 
relies on standard Java language primitives and does not require 
any language extensions or external tools.  

4.1.1 Component 
A component definition has the form of a Java class (Figure 6). 
Such a class is marked by the @DEECoComponent annotation and 
extends the ComponentKnowledge class.  The initial knowledge 

1. ensemble	  UpdateAvailabilityInformation:  
2. coordinator:  AvailabilityAggregator  
3. member:  AvailabilityAwareParkingLot  
4. membership:  
5. ∃  poi  ∈  coordinator.calendar:  
6. distance(member.position,  poi.position)  ≤  TRESHOLD  &&  
7. isAvailable(poi,  member.availability)  
8. knowledge	  exchange:  
9. coordinator.availabilities  ←  {    (m.id,  m.availability)  |  m  ∈  members  }  
10. scheduling:  periodic(  5000ms  )    

Figure 4: An example of an ensemble definition in a DSL. 
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structure of the component is captured by means of the public, 
non-static fields of the class (lines 4-8). The id knowledge field, 
which is used for unique identification of a component, is 
inherited from the ComponentKnowledge class. As knowledge 
can be hierarchically structured, these fields represent the first 
level of this hierarchy, where each can take the form of a 
knowledge tree (recursively), map, or list. As for the knowledge 
tree form, the non-leaf nodes of this tree need to be instances of a 
class inheriting from Knowledge (lines 36-39). The non-structured 
knowledge values are represented as serializeable Java objects. At 
runtime, this initial knowledge structure is initialized either via 
static initializers or via the constructor of the class (lines 10-12). 

For convenience, the set of supported interfaces is implicit; i.e., all 
interfaces that structurally match the component’s knowledge are 
assumed to be featured by the component (similar to duck typing 
in dynamic languages). 

The component processes are defined as public static methods of 
the class, annotated with @DEECoProcess (e.g., lines 14-22). The 
requirement of the static modifier stems from the semantics of 
component process execution (Section 3.1.1). In particular, except 
for reading the input knowledge and writing the output knowledge 
(which is anyway managed by the runtime framework), 
a component process executes in isolation, without access to the 
knowledge. Thus, declaring the method as static prevents it from 
directly accessing the initial knowledge represented by the class 
fields (which are non-static). 
The input and output knowledge of the process is represented by 
the methods’ parameters. The parameters are marked with one of 

the annotations @DEECoIn, @DEECoOut or @DEECoInOut, in 
order to distinguish between input and output knowledge fields of 
the process (e.g., lines 16-19). Each annotation also includes an 
identifier of the knowledge field that the associated method 
parameter represents. As the input/output knowledge can consist 
of a knowledge field that is an internal node of a knowledge tree, 
the identifier of such a knowledge field is a dot-separated 
representation of the path to the node in the tree (e.g., line 16). 
When a non-structured knowledge field constitutes an inout/out 
knowledge of a process, the associated method parameter is for 
technical reasons (related to Java immutable types) passed inside 
an OutWrapper object (e.g., line 30). 

Periodic scheduling of a process is defined via the 
@DEECoPeriodicScheduling annotation of the process’s method, 
which takes the period expressed in milliseconds in its parameter 
(line 25). Triggered scheduling is defined via @DEECoTriggered 
annotation of the method’s parameter, change of which should 
trigger the execution of the process (lines 16-17). 

4.1.2 Ensemble 
The ensemble definition takes also the form of a Java class. In 
particular, the class is marked with the @DEECoEnsemble 
annotation and extends the Ensemble class (Figure 7). 

Both the membership predicate and the knowledge exchange are 
defined as specifically-annotated static methods of this class. 
While the method representing the membership predicate is 
annotated by @DEECoEnsembleMembership (line 5), the method 
representing knowledge exchange is annotated by 
@DEECoEnsembleKnowledgeExchange (line 19). Note that in the 
prototype implementation of jDEECo we assume for simplicity 
knowledge exchange between the coordinator and a single 
member (applied for each member separately); this is a 
simplification of the one-to-many knowledge exchange (one 
coordinator vs. many members) as introduced in Section 3.1.2. 
Thus, in the Java implementation of the 
UpdateAvailabilityInformation knowledge exchange we use a 
timestamp to distinguish current elements of the availabilities 

1. @DEECoComponent 
2. public	  class	  Vehicle  extends	  ComponentKnowledge  {  
3.   
4. public  List<CalendarEvent>  calendar;  
5. public	  Plan  plan;  
6. public	  EnergyLevel  batteryLevel;  
7. public	  Map<ID,  Availability>  availabilities;  
8. public	  Position  position;  
9.   
10. public  Vehicle()  {  
11. //  initialize  the  initial  knowledge  structure  reflected  by  the  class  fields  
12. }  
13.   
14. @DEECoProcess  
15. public	  static	  void	  computePlan(  
16. @DEECoIn("plan.isFeasible")  @DEECoTriggered  Boolean  isPlanFeasible,  
17. @DEECoIn("availabilities  ")  @DEECoTriggered  Map<…>  availabilities,  
18. @DEECoIn("calendar")  List<CalendarEvent>  calendar,  
19. @DEECoInOut("plan.route")  Route  plannedRoute  
20. )  {  
21. //  re-‐compute  the  vehicle’s  plan  if  it’s  infeasible  
22. }  
23.   
24. @DEECoProcess  
25. @DEECoPeriodicScheduling(5000)  
26. public	  static	  void	  checkPlanFeasibility(  
27. @DEECoIn("plan.route")  Route  plannedRoute,  
28. @DEECoIn("batteryLevel")  EnergyLevel  batteryLevel,  
29. @DEECoIn("position")  Position  position,  
30. @DEECoOut("plan.isFeasible")  OutWrapper<Boolean>  isPlanFeasible  
31. )  {  
32. //  determine  feasibility  of  the  plan    
33. }  
34. ...  
35. }  
36. public	  class  Plan  extends  Knowledge  {  
37. public  Route  route;  
38. public	  Boolean  isFeasible;  
39. }  

Figure 6: Example of a component definition in Java. 

1. @DEECoEnsemble  
2. @DEECoPeriodicScheduling(4000)  
3. public	  class	  UpdateAvailabilityInformation  extends	  Ensemble  {  
4.   
5. @DEECoEnsembleMembership  
6. public	  static	  boolean	  membership  (  
7. @DEECoIn("coord.calendar  ")  List<CalendarEvent>  calendar,  
8. @DEECoIn("member.position  ")  Position  plcsPosition,  
9. @DEECoIn("member.availability  ")  Availability  availability  
10. )  {    
11. for  (CalendarEvent  ce  :  eventsCalendar)  {  
12. if  (isClose(ce.poi.position,  plcsPosition,  DISTANCE_THRESHOLD)      
13. 	  	  	  	  	  &&  isAvailable(ce.poi,  availability))  
14. return  true;  
15. }  
16. return  false;  
17. }  
18.   
19. @DEECoEnsembleKnowledgeExchange  
20. public	  static	  void	  knowledgeExchange  (  
21. @DEECoIn("coord.calendar")  List<CalendarEvent>  calendar,  
22. @DEECoInOut("coord.  availabilities")  Map<…>  availabilities,  
23. @DEECoIn("member.id]")  ID  memberID,  
24. @DEECoIn("member.position")  Position  plcsPosition,  
25. @DEECoIn("member.availability")  Availability  availability  
26.   )  {  
27. availabilities.put  (memberID,  availability.clone(currentTimestamp()));  
28. }  
29. }  

Figure 7: Example of an ensemble definition in Java. 
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collection (line 27), instead of refreshing the whole collection 
(Figure 4, line 9). 

In contrast to the conceptual description of an ensemble 
(Section 3.1.2), Java definition of an ensemble does not comprise 
explicit definition of the member and coordinator interfaces. 
Instead, these interfaces are defined implicitly as a union of the 
knowledge fields represented by parameters of the methods 
representing the membership predicate and knowledge exchange. 
Since these parameters are annotated in the same way as 
parameters of component processes, the parameters relevant to the 
member/coordinator interface are distinguished by identifier 
prefixes (i.e., identifiers of knowledge of a coordinator/member 
interface are prefixed with “coord”/“member”). 

Scheduling of the knowledge exchange is defined similarly to 
component processes. The only difference is that the 
@DEECoPeriodicScheduling is applied to the whole class defining 
the ensemble, while the @DEECoTriggered is applied to a 
particular parameter of the membership method. 

4.2 Runtime framework 
The jDEECo runtime framework is primarily responsible for 
scheduling component processes, forming ensembles, and 
performing knowledge exchange. It also allows for distribution of 
components.  

As illustrated in Figure 8, it is internally composed of the 
management part and the knowledge repository. The management 
part is further composed of two modules. One is responsible for 
scheduling and execution of component processes and knowledge 
exchange of ensembles. The other is responsible for managing 
access to the knowledge repository. Exploiting the fact that all 
modules of the runtime framework implementation are loosely 
coupled, we are able to introduce implementation variants for 
each of them. As a result, different variants can be selected in 
order to reflect specific requirements imposed to the platform.  

The role of the knowledge repository is to store the component’s 
knowledge (e.g., CK1 – knowledge of component C1 – in 
Figure 8). Its responsibility is also to provide component 
processes and knowledge exchange of ensembles with access to 
this knowledge. In fact, we provide a local and a distributed 
implementation of the knowledge repository; the former is 
employed for simulation and verification of the code (Section 4.3) 
while the latter is used in case the runtime framework needs to run 
in a distributed setting (i.e., the distribution is achieved at the level 
of knowledge repository). Specifically, the distributed 
implementation of the knowledge repository allows each 
component to run in a different Java virtual machine (as illustrated 

in Figure 8). The distribution is achieved by employing the 
JavaSpaces1 middleware. JavaSpaces is a reification of the 
LINDA [15] paradigm, which aligns well with the way DEECo 
represents knowledge. For the time being, jDEECo relies on the 
ApacheRiver2 implementation of JavaSpaces.  

As to the scheduling module, each component process (e.g., C1P1 
– process P1 of component C1 – in Figure 8) is executed by the 
runtime framework within a regular Java thread. Thus, threads 
executing triggered processes are blocked till their triggering 
condition holds true, while threads executing periodic processes 
are blocked after completion till the beginning of their next 
period. Concerning knowledge exchange of ensembles (e.g., E1 in 
Figure 8), the scheduling and execution is similar to component 
processes. In addition, the membership predicate is evaluated 
before each run of the knowledge exchange, so that it is applied 
only to valid coordinator-member pairs of components. 

Further, to enable dynamic deployment of DEECo-based 
applications, Java classes with component/ensemble definitions 
can be provided to the runtime framework both during 
deployment and runtime. 

4.3 Tool support 
In addition to providing the runtime framework, jDEECo supports 
the development of DEECo-based applications via the ASCENS 
tool workbench (called SDE3), featuring modeling and analysis 
tools for RDS.  

Since SDE is based on Eclipse, the integration with jDEECo 
includes deploying jDEECo as an Eclipse plugin and providing 
additional Eclipse-specific features. Most importantly, these 
include the possibility of packaging and deploying DEECo 
components and ensembles as OSGi [17] bundles. This is 
complemented by a graphical packaging tool and a discovery 
mechanism based on OSGi service discovery. 

Furthermore, the tool palette is enhanced by the integration of 
jDEECo and Java PathFinder4 [18] which supports verification of 
properties related to knowledge. Currently, we are focusing on 
verification of reachability properties, encoded via assertions and 
exceptions in the component/ensemble code. Technically, we 
perform model-checking on a compound consisting of code of 
components and ensembles, and of the jDEECo runtime 
framework. The latter is included to represent the DEECo 
computational model. To minimize model-checking complexity, 
we perform the verification on a special configuration of the 
jDEECo runtime framework (its JPF-optimized variant); in 
particular, this concerns the local knowledge repository and 
scheduling module.  

5. SOFTWARE ENGINEERING PROCESS 
INTEGRATION 
To build EBCS-based systems (DEECo-based applications in 
particular) and reason about their properties in a systematic way, a 
high-level view of the target system is required. Such view should 
trace the (latent) system architecture, which will naturally 
comprise a number of DEECo components and ensembles, back 
to system requirements. 

                                                                    
1 http://river.apache.org/doc/specs/html/js-spec.html 
2 http://river.apache.org 
3 http://sde.pst.ifi.lmu.de/trac/sde/ 
4 http://babelfish.arc.nasa.gov/trac/jpf/ 

 
Figure 8: jDEECo runtime framework architecture. 
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To enable that, we have proposed a requirements-driven method 
for designing EBCS, called Invariant Refinement Method – IRM 
(elaborated in [9][24]). In this section, we augment the description 
of the DEECo component model and its jDEECo runtime 
framework implementation with a comprehensive development 
process based on IRM. In particular, for convenience we first 
provide a brief summary of IRM and then focus specifically on its 
integration with traditional Component-Based Development 
(CBD) process, as well as its strong points w.r.t. system evolution.  

5.1 Basic Concepts of IRM  
IRM is based on the systematic decomposition and refinement of 
system specification, ending up with system architecture – 
components and ensembles. It builds on the idea of iterative 
refinement of system goals, employed in goal-oriented 
requirements engineering. Contrary to classic goal-oriented 
approaches though, like KAOS [27] and Tropos/i* [5], IRM is 
tailored to the domain of EBCS. In particular, EBCS feature 
emergent system architectures, which cannot be systematically 
derived from system requirements using classic approaches [16]. 

The main goal of IRM is the identification of EBCS concepts of 
components and ensembles based on system requirements. This 
subsequently brings correct-by-construction guarantees of 
compliance with system requirements, and the possibility of 
automated preparation of EBCS artifacts (component skeletons, 
ensemble code) in the programming language of choice.   
IRM comprises system level design, ensemble level and 
component level design, followed directly by implementation.  
System level.  As a starting point of the design process, IRM 
focuses on the invariants to be preserved and the system 
constituents (components) responsible for preserving them.  
Invariants are descriptive statements of what should hold in the 
system at every time instant (not only at some point in the future) 
and reflect the system normalcy, i.e., the property of being within 
the bounds of normal operation. For example, the “The 
availability of relevant PLCSs is kept updated” invariant 
expresses that vehicles should keep having up-to-date availability 
information regarding the PLCSs close to their POIs. A 
component in IRM is a design construct encapsulating knowledge 
(its domain-specific data) that is referred from invariants; i.e., the 
component takes a role in the invariants.  

After identifying the invariants reflecting the top-level system 
goals/requirements, the design process continues by their 
refinement into sets of sub-invariants, forming a tree structure. 
The invariant refinement has the typical semantics used in 
software engineering, where the composition of the children 
exhibits all the behavior expected from the parent and potentially 
some more. An example of a possible decomposition of our 
running example is depicted in Figure 10.a.  

The iterative refinement process ends when all invariants are 
directly mappable to DEECo component processes and 
ensembles. In particular, an invariant needs no further refinement 
when a) it involves a single component and can be ensured by 
local manipulation of the component’s knowledge (via a 
component process) – local invariant  (e.g., (7) in Figure 10.a) – 
or b) the invariant involves exactly two components and can be 
ensured by mapping one component’s knowledge part(s) to the 
other (via knowledge exchange of an ensemble) – exchange 
invariant (e.g., (6) in Figure 10.a). 

Ensemble level. At this level, ensembles are identified and fully 
specified. For each exchange invariant, an ensemble is introduced. 
In particular, the coordinator and member interfaces are directly 

derived from the roles the components take in the respective 
invariant. The rest of the ensemble definition (membership 
predicate, knowledge exchange function) needs to be extracted 
from the invariant manually. For example, the “The availability of 
relevant PLCSs is kept updated” exchange invariant ((6) in 
Figure 10.a) can be refined into the UpdateAvailabilityInformation 
ensemble listed in Figure 4.  
Component level. At this level, the components are concretized.  
The component at this level necessarily comprises the knowledge 
identified at the system level. The component processes are also 
specified; these are derived from the local invariants the 
component takes a role in. For example, the Vehicle component 
from Figure 10.a can be concretized into the Vehicle component 
of Figure 3, comprising knowledge and processes determined at 
the system level. 

5.2 Integration with CBD Process 
Overall, the development process for EBCS as described above, 
and IRM in particular, introduces specific aspects into the 
traditional Component-Based Development (CBD) process.  Thus, 
in this section we elaborate on these specifics in the context of 
general CBD process and provide a concrete example for the 
waterfall-based CBD process as proposed in [12].  

CBD process builds on separation of system development process 
from component development process [11]. The traditional system 
development process includes the phases of Requirements, 
Analysis, Design, Implementation, Test, Release, and 
Maintenance. The component development process includes 
phases of Design, Implementation, Test, Delivery, and 
Maintenance. Several component development processes may be 
on course simultaneously, making it possible to develop several 
components at the same time. 

By employing IRM in design, we couple component development 
(exemplified on the reference CBD process of [12] in Figure 9) 
with ensemble development. To do so, we extend several phases 
of CBD to accommodate IRM (Table 1). Since the extensions do 
not rely on any specifics of CBD (they only assume requirements 
analysis and architectural/system design, traditional parts of 
development processes in general), we believe that they are 
applicable to any development process which involves 
components (e.g., agile variations of CBD). 

 
Figure 9: Example of IRM integration into the reference CBD 

process of [12]. 
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5.3 System Evolution 
Since EBCS are inherently open-ended and evolving systems, the 
aforementioned development process has to accommodate 
additional requirements that arise after the initial development 
cycle has been completed. A new requirement can arise when a 
new or modified functionality is required from the system. IRM 
provides an easy and effective way to deal with such evolution by 
introducing new invariants into corresponding branches of the 
IRM tree. 

For illustration, we consider an evolution scenario where the 
Traffic Information Provider component is added to the system, to 
represent the traffic monitoring stations scattered around roads. 
These stations provide information to the vehicles about traffic 
congestions in their vicinity. Recall that the e-mobility system 
from the running example has been originally designed and 
implemented without considering traffic level information 
(Figure 10.a).  In this case, the IRM design captures just the 
necessity to keep the vehicle’s plan updated ((4) in Figure 10.a) 
and to check whether the current plan remains feasible with 
respect to measured energy level ((5) in Figure 10.a).  

To address the evolution, the IRM tree is modified as follows 
(Figure 10.b): i) the new component is added, ii) the invariant (5) 
is modified to account for the traffic level, iii) three new 
invariants (i.e., (9), (10), (11)) are added. Out of these, one is an 
exchange invariant (10) and one is a local invariant (11), 
prescribing the addition of a new ensemble and a new process to 
the Vehicle component. 

To account for such kind of system evolution, the whole 
development process needs to follow an iterative approach, where, 
by integrating newly identified requirements, software is 
incrementally built, tested, and released.  

6. EXPERIENCE 
We have evaluated the DEECo approach (together with IRM) by 
developing a prototype of the e-mobility case study within the 
ASCENS project. As this case study has been conceived in 
cooperation with Volkswagen, the detailed designs and 
implementation are proprietary. For a concise description of the 
case study we refer the reader to [36]. Along with the case study, 
we have also implemented a number of example applications and 
a tutorial, which are all available at the jDEECo GitHub site [13]. 
Our experience shows that DEECo concepts well combine the 
encapsulation and modularity brought by components with the 
needs of autonomic behavior and highly dynamic architecture. 
IRM process well complements the DEECo concepts in providing 
an overall system-level view that can be easily translated to 
components and ensembles. The mapping to Java (by jDEECo) 
proved to be relatively straightforward. 

Our experience also indicated that although there is a strong 
conceptual difference between a component and an ensemble (in 
the sense that a component is state-full while an ensemble is 
stateless), the developers of the case-study had problems with 
differentiating between responsibilities of a component process 
and knowledge exchange. In particular, they incorrectly tended to 
reduce autonomy of components by pushing some of their 
functionality to ensembles (by employing complex knowledge 
transformations in the knowledge exchange). As a remedy, we 
adopted the following rule as a design guideline: The knowledge 
exchange should be ideally 1:1 knowledge assignment; complex 
knowledge transformations may be employed only in well-
justified cases (typically when integrating third-party 
components). 
Finally, our experiments with verification of jDEECo applications 
via JPF (performed on the example applications) indicate that the 
relatively strict DEECo computational model can be effectively 
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By applying the IRM method, the requirements are captured 
in terms of invariants and elaborated by iterative refinement. 
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The system architecture, in terms of (DEECo) ensembles and 
components, is identified. The analysis is both structural 
(which architectural entities should be present in the system) 
and behavioral (what should be their behavior, e.g., in terms 
of process & ensemble scheduling). It is important to 
distinguish between the components’ internal and external 
interfaces. An external interface comprises a part of the 
knowledge that can be exchanged (read or written) by 
ensembles. This knowledge must not be violated during 
implementation, as this would harm the system-wide 
contractual design. On the contrary, an internal interface 
comprises a part of the knowledge that must be present in the 
component, for the purpose of an internal computation.  
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Components & ensembles are designed in detail. This step 
can include elaboration of representation of the knowledge 
belonging to internal interfaces. 
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Components & ensembles are tested in isolation. The leaf 
invariants of the IRM tree can serve as a specification for unit 
testing. 
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System-wide tests are performed. The non-leaf invariants of 
the IRM tree can serve as a specification for integration 
testing. 

Table 1: IRM injection points into the CBD process. 
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Figure 10: Capturing system evolution in IRM. 
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exploited for increasing the performance of explicit model 
checking. 

7. RELATED WORK 
Since EBCS are a relatively new class of systems, we are 
currently not aware of any other approach that would be directly 
related to IRM and DEECo. However, as EBCS is a software 
engineering concept for developing Resilient Distributed Systems 
(RDS), in this section we survey approaches that deal with 
specific aspects of RDS.  

At the computational level, control engineering methodologies 
have been identified as a promising solution to implement self-
adaptive software systems [10] in a variety of application domains 
and with different performance requirements and control 
objectives [33]. In the domain of distributed systems, 
decentralized solutions based on feedback loops, ranging from 
cloud performance management [41] to embedded real-time 
systems [40], have been proposed to keep the system in the 
required steady state, while avoiding scalability issues and single 
points of failure. EBCS employ similar idea of cyclic execution of 
component processes and ensembles to maintain the operational 
normalcy of the system. At the architectural level, attempts have 
been made to instantiate the generic MAPE-K loop [23] to feature 
adaptation at a larger scale. Self-managing architectures [26], 
component-based approaches [3][34], and solutions that apply 
architectural models at runtime [29] are examples of this. The 
common denominator of these approaches is that they rely on 
explicit bindings among the system components, which get re-
organized in response to runtime stimuli. EBCS, on the other 
hand, do not consider explicit architecture, but let the architecture 
“emerge” during runtime, fitting better the dynamic, constantly–
changing system landscapes. 
Agent-oriented approaches provide useful notions (e.g., goals, 
plans), models (e.g., Belief-Desire-Intention [35]) and algorithms 
(e.g., DCOPs [21]) for reasoning in complex dynamic systems. In 
a distributed setting, multi-agent analysis is based on the 
conceptual autonomy and social ability of the parts constituting 
the system. A problem is that current agent implementation 
platforms [4] and methodologies [5] rely on guaranteed 
communication and explicit bindings among the agents, which 
typically take the form of messaging. In this view, EBCS/DEECo 
stands as an agent engineering platform, which handles the 
communication in an implicit and automatic way, making it 
possible for agents to operate in opportunistic environments where 
no guarantees are available.  

The concept of service-component ensembles has been recently 
proposed in order to allow for communication over unreliable 
communication channels and at massive scale [20]. Ensembles 
rely on attribute-based communication [14] to model a best-effort, 
dynamic coordination of components. An attempt to formally 
define this concept can be found in [19]. 

At the requirements phase, well-established methods and models 
exist for capturing and analyzing early requirements in terms of 
goals delegated to system agents. However, these models either 
do not map effectively to the later development phases [27], or do 
not support mapping to emergent architectures [5], which are 
typical in EBCS. Recent attempts in the area of EBCS have 
centered around a model termed Statement of the Affairs (SOTA), 
which provides the means to capture and analyze the early 
requirements of different component cooperation schemes, along 
with the architectural patterns that satisfy them by 
construction [1]. IRM stands as the intermediate method which 

guides the transition from early (high-level) requirements to 
system architecture in terms of components and ensembles. 

8. CONCLUSIONS AND FUTURE WORK 
In this paper, we have focused on Resilient Distributed Systems 
(RDS). We have argued that classic component-based approaches 
in design do not scale well in the area of RDS – mainly because 
RDS exhibit very high degree of dynamicity, adaptivity, and 
autonomy. 

For component-based development of RDS, we have introduced 
EBCS (Ensemble-Based Component Systems), a new class of 
component-based systems, which combine concepts from agent-
oriented, ensemble-oriented and control systems. In particular, we 
have presented an instance of EBCS – the DEECo component 
model and its framework. 

Overall, DEECo provides a comprehensive software engineering 
solution comprising (i) component and ensemble paradigms with 
well-defined formal semantics,  (ii) mapping to Java, (iii) 
distributed Java-based runtime framework (jDEECo), (iv) 
integration with analysis tools (SDE, JPF), (v) design method 
(IRM) for deriving components and ensembles from high-level 
requirements, and (vi) integration of the design method to 
traditional component-based development processes. We have 
successfully evaluated DEECo along with IRM on the e-mobility 
case-study of the ASCENS project. 

The experience with DEECo (and consequently EBCS) puts 
forward several research directions. In particular we would like to 
evaluate the robustness of DEECo in environments with highly 
unreliable communication and heterogeneous network 
infrastructure (e.g., MANETs [28]). Although this will most likely 
require employing some communication middleware for such 
networks (e.g., EgoSpaces [22]) at the implementation level, it is 
well aligned with the general DEECo computational model. Also, 
we are currently investigating the possibility of using formalized 
IRM invariants as the basis for monitoring the correctness and 
performance of a DEECo-based system and for guiding 
component adaptations. Furthermore, we intend to develop a 
metamodel of DEECo and employ model-driven-engineering 
techniques for elaborating the jDEECo implementation. 
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Summary of the Paper 

The paper introduces a gossip-based communication protocol for the DEECo compo-

nent model realization (i.e. jDEECo) extended by the idea of communication boundary 

that enriches the ensemble specification. The main principle, behind it, is to prevent the 

data propagation mechanism from polluting the underlying network with irrelevant 

(with respect to the application logic) data. It is important, especially, if the shared 

communication medium (such as a radio channel in case of wireless networks), is taken 

into account. The concept of the communication boundary has been validated on the 

firefighters use-case scenario that involves multiple rescue teams working in separate 

(but geographically close) locations – see Section 2 of the paper. The scenario main 

components (i.e. firefighters) have been expressed using DEECo abstractions and the 

main challenges of the approach have been identified there. Further, in Section 3, the 

gossip-based communication model is presented together with the distributed ensem-

ble evaluation method. Finally, the core idea of the communication boundary is given 

and proposed as an extension to the DEECo ensemble specification. Then, based on the 

firefighters scenario the proposed techniques have been evaluated using the prototype 

implementation of the jDEECoSim framework (the name was not explicitly used there), 

consisting the integration of the jDEECo runtime only with  OMNeT++ (Sections 4 and 

5). Section 6 gives an elaboration on the main challenges and open questions related to 

the proposed solution. The paper is then continued with the description of selected 

representatives of the state of the art (Section 7) and concluded with Section 8, drawing 

a plan for the future work.   

Author Contribution and Goals Addressed 

The work presented in this paper addresses the goal G2a as it targets the infrastruc-

ture-less deployment of the jDEECo platform. In addition, the goal G2b is addressed 

by the introduction and implementation of the concept of communication boundary 

that optimizes considerably the underlying network utilization. 

The author’s contribution in the context of this paper was the participation in the 

formulation and implementation of both the gossip-based communication protocol and 

boundary condition into the jDEECo platform. 

The paper has been awarded the best paper award at the ECSA'14 venue. 
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Abstract. Developing software for dynamic cyber-physical systems (CPS) is 

a complex task. One has to deal with the dynamicity and unreliability of the phys-

ical environment where the software resides in, while, at the same time, provide 

sufficient levels of dependability and scalability. Although emerging software 

engineering abstractions, such as dynamic ad-hoc component ensembles, provide 

a convenient way to structure software for dynamic CPS, they need to be mapped 

to robust decentralized execution schemes in real-life settings. A particular chal-

lenge in this context is the robust distributed data dissemination in dynamic net-

works. Gossip-based communication stands as a promising solution to this chal-

lenge. We argue, that exploitation of application-specific information, software 

architecture in particular, has a large potential for improving the robustness and 

performance of gossip-based communication. This paper proposes a synergy be-

tween high-level architectural models and low-level communication models to 

effectively enable application-specific gossiping in component-based systems. 

The synergy is exemplified on the DEECo component model which is tailored to 

the needs and specifics of CPS, and evaluated on an emergency coordination case 

study with realistic network configurations. 

 

Keywords: Component, Ensemble, Gossip, Cyber-Physical Systems, MANET.  

1 Introduction 

Cyber-physical systems (CPS) are complex networked systems where the interplay of 

software control with the physical environment has a prominent role. Examples range 

from intelligent navigation systems (cars that communicate with each other and with 

street infrastructure to minimize traffic congestion, fuel consumption, etc.) to emer-

gency coordination systems. Modern CPS are inherently distributed on a large scale 

and consist largely of mobile devices. They are also increasingly depending on software 

which has actually become their most intricate and extensive constituent [1].   

Building software for large-scale software-intensive CPS via systematic software 

engineering approaches is a notoriously difficult task. This stems from the fact that CPS 

invalidate most of the assumptions that typically hold in software engineering of gen-

eral-purpose systems [2]. Whereas the challenges and opportunities of CPS cover 
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a range of areas, in this paper we focus on the communication requirements of CPS. In 

CPS, the physical substratum continuously evolves following the movement of mobile 

devices. Locality of devices directly affects reachability and connectivity. Communi-

cation between devices is opportunistic; there are no guarantees regarding the stability 

and reliability of the established links. The network topology itself is dynamic and often 

relies on ad-hoc means without any managing infrastructure. Finally, the environments 

where CPS operate (e.g., road networks, emergency sites) are highly dynamic and in-

herently unpredictable.  

At the same time, CPS have also a number of specifics that can be advantageously 

exploited, such as the fact that by moving around in the environment, the wireless de-

vices effectively enlarge the physical area where information can be disseminated [3]. 

Physical locality and location-dependency of data offer also a natural way to partition 

the system and provide built-in scalability and robustness. 

Looking at the state-of-the-art in distributed communication, gossip and epidemic 

protocols provide an efficient way to address the aforementioned specifics. Gossip pro-

tocols cope with node and network failures, are scalable due to their symmetric nature, 

and can exploit the physical mobility of gossiping nodes [3]. The gossiping paradigm 

has already been applied with success in both Internet-based systems and wireless mo-

bile ad-hoc networks (MANETs) [4].  

The central idea in gossip protocols is the periodic and probabilistic data transmis-

sion from a source node to a set of selected peers [4–6]. They typically combine prob-

abilistic forwarding with counter-based, distance-based, and location-based mecha-

nisms. These mechanisms and configuration parameters are, however, only available at 

the lower level of the software stack, often transparent to the application/architecture 

layer. While this is reasonable for uniform data dissemination, it becomes problematic 

when the spread of data depends on the architectural configuration in question. 

 The problem lies in a significant abstraction gap between gossip protocols and ap-

plication-level architecture design using component models tailored to CPS. 

In this paper, we aim at bridging this gap by incorporating concerns of gossiping into 

sound software engineering abstractions, which allow for (i) systematic engineering of 

CPS via gossiping components and (ii) application-specific, scalable, and efficient gos-

sip-based communication. We do so in the context of DEECo [7] – a component model 

that specifically targets dynamic, ever-changing architectures of CPS by relying on the 

concepts of autonomous (soft) real-time components, and dynamic ad-hoc component 

ensembles. Our approach is not limited to DEECo though, since it is based on the ge-

neric synergy between a set of high-level architectural abstractions supporting dy-

namicity and low-level primitives of gossip-based protocols. 

The rest of the text is structured as follows. In Section 2, we elaborate on a scenario 

from an emergency coordination case study that provides the motivation for architec-

ture-based decentralized solution. Section 3 presents our approach and its integration 

into DEECo, while Section 4 outlines the implementation. Following, Section 5 pre-

sents the simulation-based evaluation results. Section 6 discusses key contributions and 

emerging related challenges. Finally, in Section 7 we survey the related work and in 

Section 8 we present our conclusions. 



Chapter 4. Collection of Papers 

68 

  

 

 

2 Motivating Scenario 

To illustrate the need for effective mapping of architecture-level concepts to decentral-

ized communication schemes in CPS, we use a scenario taken from a firefighter coor-

dination case study1, which is a real-world real-scale case study for evaluating distrib-

uted adaptive systems. 

In the scenario, firefighters belong to tactical groups corresponding to the mission in 

hand. In case of an emergency, a scouting team composed of a team leader and several 

team members is initially dispatched to the operation site with the goal to assess the 

criticality level of the situation in hand, so that appropriate strategic decisions can be 

taken (e.g., mission escalation, request for additional teams). A strong requirement for 

the effective cooperation of team members is efficient data dissemination – every mem-

ber has to be notified in a timely manner about important events and threats (e.g., low 

oxygen level in a particular room, firefighter in danger because of high temperature 

level) so that the team can act collaboratively and proactively.  

Firefighters are equipped with low-power devices with sensing and actuating capa-

bilities that are integrated into their personal protection equipment (being thus mobile). 

The devices communicate primarily via wireless mobile ad-hoc network (MANET) 

protocols (e.g., IEEE 802.15.4); additionally, some devices have IP connectivity. Ad-

vantageously, the firefighters may exploit other devices on the fire scene (e.g., on-site 

access points or devices of other emergency personnel) as network relays to boost their 

wireless coverage and performance. For illustration, consider an operation site that con-

sists of two buildings (Fig. 1).  

Obviously, the key challenges stem from the dynamicity of the whole scenario; in 

particular, the issues to be addressed include (i) MANET management and efficient use 

of the communication medium and (ii) seamless inclusion of the related concepts in the 

high abstraction level employed in the design of the corresponding software architec-

ture.  

                                                           
1 http://daum.gforge.inria.fr/ 

Fig. 1. Motivating scenario: Mobile and stationary nodes cooperate via ad-hoc coordination 

groups that span within designated boundaries. 
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2.1 A DEECo-Based Solution 

A promising approach for developing software of dynamic CPS is to employ the 

DEECo component model and its related methods and tools [7].  

The design process in DEECo starts with identifying the main system components 

and dynamic ad-hoc coordination groups – ensembles – that the components should 

establish in order to cooperate for a common goal. In the scenario, ensembles reflect 

the groups of firefighters exchanging measured data (e.g., temperature, oxygen level) 

and the groups of officers exchanging strategic information (e.g., mission updates, or-

ders from the chief officer). For illustration, consider the ensemble definition in Fig. 2, 

lines 25-32. Here, the goal is to enable the members of a firefighting team to propagate 

information on the measured temperature to the leader of the team so that the leader 

can determine which firefighters are in danger. In general, an ensemble definition in 

DEECo contains a condition specifying which components should be considered for 

membership (lines 28-29), and a function that specifies knowledge exchange among 

the members (lines 30-31). A particular ensemble (i.e., an instance of an ensemble def-

inition) is identified by its coordinator which features a specific role (line 26). It is 

instantiated and dissolved by the DEECo runtime environment (Runtime further on), 

1. role TemperatureSensor: 
2.  missionID, temperature 
3.  
4. role TemperatureAggregator: 
5.  missionID, firefightersInDanger, temperatures 
6.  
7. component Firefighter13 features TemperatureSensor: 
8. knowledge: 
9. ID = 13, missionID = 1024, position = {50.075306, 14.426948}, oxygenLevel = 90%, temperature = 35.2 
10. process measureTemperature (out temperature): 
11. temperature ← Sensor.read() 
12. scheduling: periodic( 1000ms ) 
13. … /* other process definitions */ 
14. … /* other firefighter definitions */ 
15.  
16. component Leader features TemperatureAggregator: 
17. knowledge: 
18. ID = 2, missionID = 1024, position = {50.075310, 14.426952}, firefightersInDanger = {1,3, …},  
19. temperatures = {{1,30.7}, {2,25.0}, {3,35.2},…} 
20. process findFirefightersInDanger(in temperatures, out firefightersInDanger): 
21. firefightersInDanger ← analyze(temperatures) 
22. scheduling: periodic( 500ms ) 
23. … /* other process definitions */ 
24.  
25. ensemble TemperatureUpdate: 
26. coordinator: TemperatureAggregator 
27. member: TemperatureSensor 
28. membership: 
29. member.missionID == coordinator.missionID 
30. knowledge exchange: 

31. coordinator.temperatures ← {  (m.ID, m.temperature) | m ∈ members } 
32. scheduling: periodic( 500ms )  

Fig. 2. Examples of DEECo components and ensembles of the firefighter coordination case 

study. 
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which periodically (line 32) checks the membership of potential groups of coordinator-

members. Within an established ensemble, Runtime periodically performs the 

knowledge exchange, which transfers data between the coordinator and members.  

A component in DEECo is an independent unit of computation and deployment. In 

the scenario, components correspond to the actors of the system (active firefighter, of-

ficer, relay node, etc.). For illustration, consider the two components in Fig. 2. Their 

state is captured by knowledge (lines 8-9, 17-19) and functionality by processes (lines 

10-12, 20-22). Every component features a number of roles, i.e., sets of knowledge 

fields (lines 1-2, 4-5), which are used as the contract between the component and en-

sembles.  Processes are executed by Runtime in a time- or event-triggered fashion (lines 

12, 22). Each process execution consists of atomically reading (a part of) the knowledge 

of the component, executing the process body, and atomically updating the knowledge 

with the result.  

Note that components in DEECo do not explicitly communicate with each other; 

their only means of communication is knowledge exchange mediated by the ensembles 

to which the components belong. A component may belong to a number of ensembles 

at a time (i.e., ensemble instances may overlap). 

2.2 Challenges in DEECo-Based Solution 

As shown above, DEECo provides a comprehensive set of concepts at a high level of 

abstraction, coping with the dynamicity by means of component roles and ensembles. 

However, mapping the concepts into a scalable and robust DEECo implementation is 

challenging. The particular challenge lies in how and where to evaluate the membership 

condition for every possible ensemble. This typically requires reasoning at the system 

level, exploiting some form of global view over the system state. If this reasoning is 

encapsulated into a special-purpose entity in Runtime, this entity becomes a bottleneck 

– single point of failure. In particular, such a centralized solution does not scale when 

ensembles are to be formed among large numbers of components.  

3 Gossiping in Ensembles 

In order to mitigate the above issue, we have adopted a fully decentralized and robust 

approach relying on gossiping for establishing ensembles and performing knowledge 

exchange. In principle, we replace the network communication layer of DEECo by gos-

sip-based communication and extend the DEECo architectural model (the definition of 

ensembles in particular) by the concept of a communication boundary so as to allow 

efficient functioning of the underlying gossiping mechanism.   

To connect components at the architectural level with their physical deployment, we 

define node as a hardware/software platform where a number of DEECo components 

are deployed (hosted in an instance of Runtime). Nodes communicate with each other 

via their network interfaces depending on the available networking infrastructure. Thus, 

component communication is constrained by the available networking infrastructure 
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between the nodes the components are deployed on. Inspired by the motivating sce-

nario, we focus on combinations of IP-based networks (wireless and wired) and 

MANET networks (which allow only for short range broadcast communication). As 

a product of distributed communication among nodes, each node obtains copies – rep-

licas – of the knowledge of components hosted on (some of) the other nodes. 

The main principles of our approach to gossip-based ensemble creation and 

knowledge exchange can be characterized by the following points:  

1. A node has its own awareness of ensemble instances existing in the system, specifi-

cally of those that include the components deployed on the node. This awareness is 

based on evaluating the membership with respect to the current knowledge of local 

components and replicas of other components. 

2. Based on the awareness obtained in (1), a node performs only knowledge exchange 

that results in updating the knowledge of the local components using, again, the cur-

rent knowledge of the local components and replicas of others.   

3. A node proactively disseminates component knowledge, so that every other node 

has the replicas necessary for realization of (1) and (2).    

The following describes the individual elements of our approach in more detail – points 

1 and 2 are explained in Section 3.1, while point 3 is elaborated in Sections 3.2 and 3.3. 

3.1 Decentralized Evaluation of Ensemble Membership/Knowledge Exchange  

Instead of forming ensembles by looking at a snapshot of the whole system (which 

would imply that a global view on the system has to be available), we take a node-

centric approach. Every node periodically iterates over all known ensemble definitions 

and checks whether a local component can act as a member or coordinator in an instance 

of the ensemble definition, given its replicas.  For each such ensemble instance, it per-

forms the corresponding knowledge exchange, which results in updating the local com-

ponents’ knowledge (but not the replicas).  

As an example, consider an instance of the TemperatureUpdate ensemble (Fig. 2) eval-

uated on the site of the coordinator. In this case, the knowledge exchange results into 

updating the coordinator’s field temperatures. 

Note that a consequence of this technique is that degradation of system performance 

when no connectivity is available (e.g., due to appearance/disappearance/mobility of 

nodes) is gradual: each Runtime effectively operates on the locally available replicas 

until they become too outdated to rely upon. Here, we count on one of the specifics of 

CPS, namely on the fact that the values of most magnitudes in CPS (e.g., temperature 

in Fig. 2) evolve gradually according to physical laws [8]. Practically this means that a 

belief which is not too old may still be at least partly relevant. Another consequence is 

that, due to belief outdatedness causing belief inaccuracy, it is possible for a component 

to behave as if it were in ensemble with a coordinator, which is not aware of it (and 

vice-versa). These consequences are further analyzed in Section 6.2.  
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3.2 Asynchronous Knowledge Dissemination via Gossip 

The decentralized solution presented in Section 3.1, requires that each node possesses 

all the necessary replicas from the components that can potentially participate in en-

sembles with its local components. We enable this by asynchronous gossip-based 

knowledge dissemination between all the components of a DEECo application. 

The main idea is that every node periodically publishes the knowledge of its local 

components on the network. For MANETs, this translates to periodic broadcast within 

the wireless range of the node. For IP networks, it translates to periodic sending to 

randomly selected nodes. Upon reception of a component’s knowledge, a node proba-

bilistically decides whether to retransmit the received knowledge. The nodes that per-

form such re-transmission then act as relays. Here, we rely on the probabilistic conver-

gence of gossip protocols [9], which ensures that every node will eventually receive the 

knowledge of every component in a bounded number of steps. The nodes that dynami-

cally appear in the system join the publication and re-transmission of knowledge auto-

matically. 

Note that this dissemination scheme dictates that all nodes potentially perform the 

retransmission, not only the ones that are interested in the disseminated knowledge (i.e., 

nodes hosting components that could be members of the ensemble which the dissemi-

nated knowledge relates to).  

3.3 Bounding the Gossip 

Although the aforementioned gossip-based knowledge dissemination successfully 

propagates the knowledge of all nodes to all nodes, it raises performance issues. Spe-

cifically, if a DEECo application is considered as a ubiquitous ecosystem in a real en-

vironment, the application is potentially boundless w.r.t. network reachability. In such 

a system, unlimited gossiping is not a viable option. Advantageously, in contrary to the 

assumption of traditional gossip protocols discussed above, not every node is interested 

in all the data being disseminated by all the components. Thus, certain application-

specific bounds should be established for knowledge dissemination.  

For this purpose, we define for each ensemble its communication group as the set of 

nodes to which the ensemble’s knowledge dissemination is limited. This set consists of 

all the nodes where components forming the ensemble are hosted and all the relays 

necessary for knowledge propagation. Relying on the fact that data is disseminated via 

gradual flooding, we define a communication boundary as the predicate determining 

the limits of a particular communication group w.r.t. network topology. The relays not 

satisfying the communication boundary will not participate in the dissemination. In a 

way, a communication group forms a dynamic, architecture-specific network overlay 

for knowledge dissemination. 

Naturally, a communication boundary includes all the nodes “potentially interested” 

in the disseminated replicas, while excluding as many of the other nodes as possible. 

Thus, a communication boundary forms a conservative approximation of the ensemble 

membership. For example, given the pervasive application from Fig. 1, the communi-

cation boundary for the ensemble definition in Fig. 2 can be formulated as follows: 
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“For every mission, include all components within all the areas  

in which the participants of the mission operate.” 

In this example, the communication boundary reflects the fact that all components 

satisfying the membership condition of the ensemble, i.e., those participating on the 

same mission, operate in one of the predefined areas. Note however, that the commu-

nication boundary predicate is generic w.r.t. a particular mission – it determines a num-

ber of different communication groups (thus approximating a number of different en-

semble instances), namely a distinct group per distinct mission. 

To achieve its desired functionality, a relay has to evaluate a communication bound-

ary much more efficiently than membership condition, preferably using exclusively lo-

cally-available information. Thus, we specify communication boundary as a predicate 

over the local knowledge of the relay and the particular knowledge being disseminated.  

Since “communication group” is an application-specific concept relating to applica-

tion architecture (namely to ensemble membership), we capture it by extending the en-

semble definition with a definition of the communication boundary. In addition, we 

extend the existing concept of “role” to be applicable also at the level of nodes – we 

say that a node supports a role if one of the components (representative) deployed on 

the node has structurally-matching knowledge (structural matching enables designing 

open-ended architectures).  

Technically, a communication boundary is defined by a set of predicates (lines 13-

16 in Fig. 3). Each of these predicates, given a relay role and a replica role, determines 

whether a node that has a representative matching the relay role meets the communica-

tion boundary for a replica that matches the replica role.  Formally, the communication 

boundary is a conjunction of these predicates (having the form of implications). A relay 

role has to be either the coordinator or member role.  

As an example, in Fig. 3 we show a revised version of the ensemble definition from 

Fig. 2. Specifically, given a replica corresponding to the member role (TemperatureSen-

sor), the communication boundary includes all relay nodes featuring the TemperatureRe-

lay role, which are in one of the mission areas specified by the replica. This is captured 

on lines 13-14, which semantically form an implication: the line 13 forms the anteced-

ent (i.e., “if the relay has the role TemperatureRelay and the replica corresponds to the 

member’s role”), while line 14 forms the conclusion. Note, that we have extended the 

TemperatureSensor role and the knowledge of all the related components to provide the 

information about mission areas. Similarly, on lines 15-16 the predicate prevents any 

relaying of replicas matching the coordinator role (as there is no knowledge exchange 

towards the member). This can be illustrated on Fig. 1 as follows. Provided that all 

nodes feature the TemperatureRelay role and given that the node 6 participates in a mis-

sion that is different to the mission of 9 and localized only to the building #1, then this 

communication boundary prevents 9 disseminating knowledge of 6 to building #2, as 

well as 3 from disseminating knowledge of 4. On the other hand, 9, as well as any node 

in building #1, will disseminate the knowledge of 6 within the building #1. Moreover, 

9 will disseminate knowledge of #4 and #7 also to the building #2 via IP. 

This part of specification of communication boundary aligns well with the 

knowledge dissemination in MANETs, where the set of potential recipients is limited 

by their geographical locality. On the other hand, in large networks that enable routing 



Chapter 4. Collection of Papers 

74 

  

 

 

based on global addressing, such as IP networks, a necessary performance optimization 

is to disseminate replicas only to recipients which themselves meet the communication 

boundary (rather than blindly pollute the entire IP network). To do this, given a replica, 

a sender has to be able to (at least partially) assess the validity of the communication 

boundary with respect to the recipient.  

To address this issue, we assume that well-known registries exist providing a relay 

node the information which other IP-based nodes are part of a communication group 

(given a particular replica). To avoid unnecessary centralization, such a registry is en-

semble specific. The registry either provides statically-defined recipients (well-known 

relay nodes) or evaluates the communication boundary with respect to a recipient. In 

the latter case, the potential recipient relay nodes provide the registry with the required 

relay knowledge. Syntactically, the communication boundary definition contains a set 

of IP addresses identifying the registries that are specific to the corresponding ensemble 

(line 17 in Fig. 3). Note that due to the nature of gossip, we do not require all the reg-

istries in a given ensemble specification to contain the same information. 

3.4 Gossip-based Semantics 

To allow for formal analysis of functional and timing properties and precise simula-

tions, as for instance given in Section 4, we have formalized the computational model 

described in the previous section in terms of operational semantics, which also acts as 

a thorough, detailed description of the computational model. Technically, based on our 

previous work [10] we represent the semantics via a state transition system generated 

by a set of inference rules. Additionally, considering (soft) real-time properties of CPS, 

the formalization allows only transition traces that are admissible with respect to real-

time periodic scheduling of the system processes, ensemble knowledge exchange, and 

(gossip-based) knowledge dissemination. In a way, these restrictions impose a fairness 

constraint on the transition traces. Due to space constraints, we refer the interested 

reader to the technical report [11] for a description of the semantics. 

1. role TemperatureRelay: 
2. position 
3.  
4. role TemperatureSensor: 
5. missionID, missionAreas, temperature  
6.  
7. ensemble TemperatureUpdate: 
8. coordinator: TemperatureAggregator 
9. member: TemperatureSensor 
10. membership: 
11. member.missionID == coordinator.missionID 
12. boundary: 
13. case relay: TemperatureRelay, replica: roleOf(member):   

14. ∃area ∈ replica.missionAreas: isInArea(relay.position, area) 
15. case relay: any, replica: roleOf(coordinator): 
16. false 
17. ip-registry: 10.10.16.35, 10.10.16.112 

Fig. 3. Example of a communication boundary definition in DEECo. 
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4 Implementation 

We have implemented2 the proposed approach by extending the current implementa-

tion of jDEECo (a Java implementation of DEECo Runtime). Specifically, we have 

added support for the concept of communication boundary and the gossip-based 

knowledge dissemination and ensemble evaluation presented in Section 3. Since these 

concepts are closely connected to the network layer, we have also integrated jDEECo 

with the OMNet++ simulation framework3 that provides an appropriate abstraction for 

the network infrastructure, enabling precise discrete-time simulations (Fig. 4).  

From the perspective of the OSI (Open Systems Interconnection) model [12], our 

implementation glues together the application layer given by jDEECo Runtime (along 

with the deployed components and ensembles) with the underlying layers implemented 

in OMNet++ (Fig. 4). An instance of jDEECo Runtime reflects a single unit of network 

deployment (e.g., a mobile device). Apart from managing components, scheduling of 

component processes’ execution and ensemble evaluations, jDEECo Runtime auto-

mates knowledge management, including network communication needed for 

knowledge replica dissemination. Each jDEECo Runtime continuously advertises the 

knowledge of the locally deployed components and, additionally, acts as a relay.  

At the network layer, each jDEECo Runtime is bound to its OMNet++ counterpart 

(namely OMNet host), with which it communicates via JNI (Java Native Interface) 

calls. Every OMNet host is equipped with two kinds of Network Interface Cards 

(NICs): one for MANET-based wireless (IEEE 802.15.4) and one for IP-based (Ether-

net) communication. Direct communication is implemented via UDP on top of 

the Ethernet NIC, while MANET-oriented broadcast communication is performed via 

the wireless NIC. For implementation, we relied on two extensions of OMNet++: 

                                                           
2 https://github.com/d3scomp/JDEECo 
3 http://omnetpp.org/ 
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the MiXiM plugin delivering a detailed model of the 802.15.4 protocol and the INET 

framework implementing the whole Ethernet stack. 

Each jDEECo Runtime gossips knowledge replicas obtained from the network. We 

specifically distinguish two cases: gossiping via MANET and direct gossiping.  In 

the case of MANET gossiping, a jDEECo Runtime calculates a probabilistic rebroad-

cast delay relying on RSSI (Radio Signal Strength Indicator); in case of direct gossiping 

the data is retransmitted to a random set of peers using a fixed delay. To prevent net-

work overload, the rebroadcast is aborted in case a newer replica is received from an-

other peer. Additionally, MANET gossiping is aborted if the same replica comes from 

the MANET NIC. The delay and aborting mechanism of MANET gossip is based on 

the counter-based algorithm proposed in [6]. 

5 Evaluation 

In this section, we show that our gossip-based ensemble evaluation is practically feasi-

ble by providing measurements that answer the following fundamental questions: (1) 

how the gossip-based ensemble evaluation scales with respect to the number of nodes 

in the system, and (2) how the communication boundary improves the scalability. Spe-

cifically, we do it by simulation and measurements of the motivating scenario model. 

Building on the implementation outlined in Sections 2 and 3, the evaluated scenario 

consists of several deployed firefighter teams that partially overlap in terms of radio 

signal coverage. Each team uses the other teams’ members as relays for knowledge 

dissemination in the overlapping areas to ensure the necessary wireless coverage. The 

objective of this scenario is to illustrate the performance gain of employing communi-

cation boundary, which limits data sharing strictly to the overlapping regions. Note that 

the communication boundary being used (Fig. 3) allows any node that monitors its po-

sition, such as a device of other emergency personnel, to be equally included into the 

scenario and act as a relay; for brevity we include only firefighters. The scenario com-

bines MANET-based gossiping (with evenly distributed nodes in the area) and direct 

gossiping realized by Ethernet-enabled nodes (a small fraction of the nodes). 

The scenario is affected a large number of factors, such as network density, size of 

the overlapping regions, wireless communication range, gossip protocol configuration, 

etc. Therefore, we have simulated our system under a variety of configurations; how-

ever, due the space limits, this paper presents results for configurations varying in the 

number of overlapping teams (thus also in the total number of nodes), while maintain-

ing a fixed node density (close to the highest density safely manageable by the imple-

mented MANET gossip protocol, as evaluated by Williams and Camp in [4]). The de-

tailed information on the configuration parameters, which were set to match the realistic 

case described in Section 2 as close as possible, as well as the simulation results for 

various set-ups, can be found on the DEECo project website4. 

The results presented in Fig. 5 show the leader-member end-to-end communication 

time in a firefighting team (in particular, the time it takes a leader node to learn that a 

                                                           
4  http://d3s.mff.cuni.cz/projects/components_and_services/deeco/simulations  
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member of its team is in danger, normalized by the hop distance between the two 

nodes). Specifically, we compare the cases with and without communication boundary. 

Not using communication boundary results into propagation of a team’s data across all 

nodes; this causes global degradation of end-to-end communication performance (cor-

responding to the performance limitations of the implemented gossip protocol). On the 

other hand, communication boundary localizes the team’s data dissemination and pre-

vents the communication channels from overloading, which results in stable perfor-

mance (as long as the dynamic communication boundary does not grow). Specifically, 

the communication boundary reduces the utilization of the shared communication me-

dium by preventing ”outside” data from penetrating deeper (than necessary) into the 

team’s area. This reduces the overhead of the communication medium; the freed capac-

ity can be now utilized to handle dissemination of the team’s data. 

6 Discussion 

In this section we review the key contributions of our approach and discuss the main 

related challenges that stem from the decentralized decisions on ensemble membership 

and gossip-based communication. 

6.1 Key Contributions 

Integrating the DEECo concept of ensemble with gossip-based communication enables 

for efficiently dealing with scenarios where system architecture is open-ended and 

changes continuously; e.g., systems with high mobility of components or largely unre-

liable communication links. To this end, the autonomicity of DEECo components and 

best-effort style of communication provided by the gossip-based implementation of en-

semble knowledge exchange deliver means for assuring high infrastructural resilience. 

Fig. 5.  Time for discovering a team Member in danger by a corresponding Leader.  
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Although, due to the dynamic nature of ensembles, the gossip-based implementation 

of knowledge exchange requires disseminating knowledge to all the potential members, 

possibly requiring all nodes to act as relays, communication boundary provides means 

to accurately reduce the dissemination to only those nodes, which are actually needed 

considering the application-logic point of view. Moreover, as the knowledge dissemi-

nation governed by the communication boundary exploits the contextual information 

available at the application level in the form of component knowledge (current position, 

temperature etc.), the possible set of relay nodes may change dynamically according to 

data being disseminated and the state of the relay nodes, as opposed to generic indica-

tors for limiting communication, such as timestamps and hop count. 

Consequently, by accurately preventing data from flowing to irrelevant parts of 

the system, the proposed communication boundary mechanism considerably improves 

the utilization of the shared communication medium within the MANET network. The 

gain in communication performance depends on how accurate estimate of a member-

ship the relevant communication boundary is. 

6.2 Related Challenges 

Belief inaccuracy in asynchronous knowledge dissemination. The belief a compo-

nent has about the knowledge of another component is essentially always outdated. This 

outdatedness is mainly rooted in (i) network infrastructure performance (e.g., band-

width, packet delays, medium access rate, etc.) (ii) MANET topology issues (e.g., large 

hop distance between sender and receiver), and (iii) ineffective tuning of the employed 

gossip algorithm (e.g., too long (re)transmission period).  

The outdateness of belief determines its inaccuracy, i.e. the difference between the 

value of the belief and the actual value of the knowledge. Depending on the nature of 

data (i.e., continuous or discrete domain, rate of change), slight incoherence between 

knowledge and belief might be tolerated or accounted for during design [8]. Advanta-

geously, this is the case with most of CPS where real-world phenomena (e.g., position, 

oxygen level, velocity) are to be captured. 

Split-brain situations in ensembles. Due to the belief outdatedness and isolated 

membership evaluation by each potential member, situations where different nodes ar-

rive at conflicting conclusions regarding ensembles may arise. This results in a member 

acting as if it were in an ensemble having a coordinator who is not aware of it (or vice-

versa). As an example, consider an ensemble that is formed of the firefighter compo-

nents (each hosted on a separate node) whose positions lie within a 10-meter perimeter 

from a leader (coordinator). When a firefighter node steps out of the designated area, 

the corresponding firefighter component should not be part of the ensemble. The coor-

dinator, however, will only learn about that at the next time its host node receives an 

up-to-date replica of that component. Until then, it will falsely consider the firefighter 

component as a legitimate member of its ensemble.  

In cases where belief outdatedness and topology dynamicity are not too high these 

“split-brain” situations are of temporal nature. For deeper analyses, system simulations 
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(see Section 4) and timing analysis can be used to provide measurements of the distri-

bution of such inconsistencies and their duration. 

Gossip implementation. For our experiments we employed a basic version of coun-

ter-based gossiping [6] without emphasis on its optimization, as we did not intend to 

evaluate the gossip protocol per se but rather the practical feasibility of gossiping en-

sembles and the impact of the communication boundary. One of such optimizations of 

the communication that we identified as an absolute necessity was stripping down the 

size of the disseminated replicas. This is especially critical in MANET settings, where 

the bandwidth is limited and larger replicas (more than approx. 128 bytes) lead to frag-

mentation. In combination with the CSMA/CA medium access technique and the hid-

den node problem [13] this leads quickly to network contention. 

7 Related work 

The solution presented in this paper brings about the convergence of software compo-

nent models for CPS and gossip-based communication. Although there are some at-

tempts to achieve synergy between the two areas ([14–16]), they are set on a signifi-

cantly different track than our approach. In [14], the authors propose a conceptual ar-

chitecture and design framework for gossip. The framework is based on reusable build-

ing blocks, where individual protocols are treated as monolithic black boxes. In [15], 

the authors propose an API for programming gossip-based systems by analyzing the 

identified recurrent design dimensions of gossip protocols – namely randomness, 

neighborhood, and communication. Finally, in [16], the authors introduce a component 

framework GossipKit, which aims at facilitating the development and testing of gossip 

protocols by relying on reusable and modular gossip abstractions and standard compo-

nent-based composition techniques. In all of these approaches the focus is on providing 

an architectural solution for building gossip-based middleware by means of ready-made 

components/interfaces. We, in contrast, focus on modeling application logic by means 

of autonomous components which use gossip internally and partially transparently as 

the primary means of their communication.  

Regarding the state of the art in gossip-based communication, different variations of 

the basic gossiping scheme have been proposed for different application domains and 

with slightly different semantics ([17–19]). In MANETs gossiping translates to proba-

bilistic broadcasting within the wireless range of each node [3]. Probabilistic forward-

ing is often combined with some other locally computable mechanism, such as counter-

based [6], location-based [20], distance-based [21], energy-based [22], or a combina-

tion of these, to further reduce the number of retransmitted messages (with respect to 

blind flooding). In our work we do not intend to extend or evaluate the state of the art 

in gossip-based communication, but provide a method for architecting CPS using ab-

stractions that facilitate the efficiency of the gossip by relying on the architecture-level 

context information. 

Regarding component models and architectures supporting distributed dynamic sys-

tems such as CPS, different approaches related to self-adapting/self-organizing systems 

[23, 24], self-managing architectures [25], component-based architectures [26, 27], and 
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architectural models at runtime [28] have been proposed. The common denominator of 

these approaches is the fact that they do not support high dynamicity (which does not 

scale with the ever-changing landscape of CPS) or they do not readily map to decen-

tralized architectures. DEECo, on the other hand, fits better the specifics of CPS by 

relying on dynamic component grouping and implicit component communication. 

8 Conclusions 

In this paper, we presented a synergy of software component model abstractions and 

gossip-based communication primitives as a promising solution for engineering scala-

ble dynamic decentralized cyber-physical systems. Our approach relies on providing 

architecture-level descriptions that feature communication groups (captured by com-

munication boundaries) and allow us “driving” the gossip efficiently. The presented 

experiments show that our approach is in principle feasible. Our current and future work 

involves improving the scalability of our approach by various optimizations of the gos-

sip protocol (e.g., employing location-based algorithms where GPS-enabled devices are 

required). Another direction is investigating timing constraints on the gossip-based 

knowledge dissemination and exchange which will supplement the strict real-time con-

straints already imposed on local component behaviors. 
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Summary of the Paper 

This is a technical report specifying the computational model showing an intersection 

between high-level architectural models and low-level communication models to ena-

ble application-specific communication in component-based systems. The report tar-

gets MANET deployment of a DEECo-based system and aims to provide an under-

standing and argumentation on the approaches selected for implementation. Section 2 

describes the core idea of the gossip-based communication and ensemble realization at 

the level of the jDEECo platform. In addition, it includes the description of the commu-

nication boundary introduced in the paper from Section 4.3. Following, the formal 

specification of the component behavior and ensemble evaluation is given. There, the 

details of component internals (i.e. knowledge and processes) as well as ensemble con-

stituents (i.e. membership condition and knowledge exchange) are expressed in a 

formal way. Using this representation, the asynchronous communication process in 

DEECo is described enabling potential formal analytical methods to be applied. Specif-

ically, the methods that would verify the system against its real-time properties given 

in the system requirements. 

Author Contribution and Goals Addressed 

Author contribution in this work includes participation in the main idea of the commu-

nication process formulation as well as its validation by delivering its realization in the 

form of the jDEECo platform. 

Considering the research goals addressed in this work, the goal G2 is addressed by 

this formalism. It complements the implementation of the jDEECo platform with its 

formal description allowing for early stage system analysis and ensuring both correct 

deployment and execution of the designed system. 
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1 Introduction 

Cyber-physical systems (CPS) are complex networked systems where the interplay of software 

control with the physical environment has a prominent role. Examples range from intelligent 

navigation systems (cars can communicate with each other and with street infrastructure units to 

minimize traffic congestion, fuel consumption, etc.) to emergency coordination systems and 

interactive distributed games. Modern CPS are inherently distributed and large-scale, and consist 

of both stationary and mobile devices. They are also increasingly depending on software which 

has actually become their most intricate and extensive constituent [3].   

Whereas the challenges and opportunities of CPS cover a range of areas, in this report we focus 

on the communication requirements of CPS. The main observation is that communication in CPS 

has to be robust in spite of frequent connection faults, transient network failures, and inherently 

unreliable communication mediums (e.g., wireless). At the same time, communication primitives 

should reflect and ideally take advantage of the CPS specifics, such as physical mobility and 

partitioning. 

Looking at the state-of-the-art in distributed systems communication, gossip or epidemic 

protocols provide an efficient way to address the aforementioned specifics. Gossip protocols cope 

with node and network failures, are scalable due to their symmetric nature, and can exploit the 

physical mobility of gossiping nodes [5]. Gossiping paradigm has already been applied with 

success in both Internet-based systems and wireless mobile ad-hoc networks (MANETs) [7]. The 

gossip protocols typically combine probabilistic forwarding with counter-based, distance-based, 

and location-based mechanisms. These mechanisms and configuration parameters are, however, 

only available at the lower level of the software stack, often transparent to the 

application/architecture layer, which is problematic when the spread of data depends on the 

architectural configuration in question. 

In this report, we aim at bridging the abstraction gap between gossip protocols (concerned with 

message sending/receiving, packet-based communication, peer selection, etc.) and application-

level programming using component models and architectures tailored to the specifics of CPS. 

Specifically, we do it by encompassing gossiping primitives into sound software engineering 

abstractions, which allow for (i) systematic engineering of CPS via gossiping components and (ii) 

application-specific, scalable, and efficient gossip-based communication. We do so in the context 

of DEECo [4] – a component model that specifically supports dynamic, ever-changing 

architectures and reflects the specifics of CPS within its abstractions by relying on the concepts of 

autonomous real-time components, and dynamic ad-hoc coordination groups (ensembles). For 

further information on DEECo, we refer an interested reader to [4, 6]. 
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2 Gossiping in ensembles 

To integrate the communication mechanisms of gossip-based protocols into DEECo, we have 

adopted a fully decentralized and robust approach relying on gossip for establishing ensembles 

and performing knowledge exchange. In principle, we replace the network communication layer 

of DEECo by gossip-based communication and extend the DEECo architectural model (the 

definition of ensembles in particular) by the concept of a communication boundary so as to allow 

efficient functioning of the underlying gossip. In this section, we describe our approach informally 

and formalize it in Section 3.  

To connect components at the architectural level with their physical deployment, we define node 

as a hardware/software platform where a number of DEECo components are deployed. Each node 

contains an instance of Runtime, taking the role of component container and communication 

middleware. A node contains both the knowledge of hosted components and copies (replicas) of 

the knowledge of components hosted on other nodes. Nodes communicate with each other via 

their network interfaces depending on the available networking infrastructure. Thus, component 

communication is constrained by the available networking infrastructure between the nodes the 

components are deployed on. Inspired by the motivating scenario, we focus on combinations of 

IP-based networks (wireless and wired) and MANET networks (which allow only for short range 

direct communication). 

The main principles of our approach can be characterized by the following rules pertaining to 

every node: 

(1) A node has its own awareness of ensemble instances existing in the system, specifically of those that 

contain components deployed on the node. This is based on evaluating the membership predicates with 

respect to the knowledge of (a) local components and (b) replicas. 

(2) A node performs knowledge exchange independently, based on the knowledge of both local components 

and replicas.  

(3) A node proactively disseminates component knowledge, so that every other node has the knowledge 

relevant for realization of (1) and (2).    

 

In the following, the individual elements of our approach are described in more detail – points 1 

and 2 are explained in Section 2.1and point 3 is elaborated in Sections 2.2 and 2.3. 
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2.1 Decentralized evaluation of ensemble membership and knowledge 

exchange  

Instead of forming ensembles by looking at a snapshot of the whole system (which would imply 

that a global view on the system has to be available), we take a node-centric approach. Every node 

periodically iterates over all known ensemble definitions and checks whether a local component 

can act as a member or coordinator in an instance of the ensemble definition, given its replicas.  

For each such ensemble instance, it performs the corresponding knowledge exchange, which 

results in updating the local components’ knowledge (but not the replicas).  

As an example, consider an instance of the TemperatureUpdate ensemble definition show in Fig. 1, 

evaluated on the site of the coordinator. In this case, the knowledge exchange results into 

updating the coordinator’s field temperatures. 

Note that a consequence of this technique is that degradation of system performance when no 

connectivity is available is gradual: each Runtime effectively operates on the locally available 

replicas until they become too outdated to rely upon. Here, we count on one of the specifics of 

CPS, namely that values of most magnitudes (e.g., temperature in Fig. 1) evolve gradually 

according to physical laws [1]. Practically this means that a belief which is not too old may still be 

at least partly relevant. 

Another consequence is that, due to belief outdatedness causing belief inaccuracy, it is possible 

for a component to behave as if it were in ensemble with a coordinator, which is not aware of it 

(and vice-versa).  

2.2 Asynchronous knowledge dissemination via gossip 

The decentralized solution presented in Section 2.1, requires that each node possesses all the 

necessary replicas from the components that can potentially participate in ensembles with its local 

components. We enable this by asynchronous gossip-based knowledge dissemination between all 

the components of a DEECo application. 

The main idea is that every node periodically publishes the knowledge of its local components on 

the network. For MANETs, this translates to periodic broadcast within the wireless range of the 

node. For IP networks, it translates to periodic sending to randomly selected nodes. Upon 

reception of a component’s knowledge, every node probabilistically decides whether to 

retransmit the received knowledge. The nodes that perform such re-transmission are then acting 
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as relays. Here, we rely on the probabilistic convergence of gossip protocols which ensures that 

every node will eventually receive the knowledge of every component in a bounded number of 

steps.  

Note that this dissemination scheme dictates that retransmission is potentially done by all nodes, 

not only from the ones that are interested in the disseminated knowledge (i.e., nodes hosting 

components that could be members of the ensemble which the disseminated knowledge relates 

to).  

2.3 Bounding the gossip 

Although the aforementioned gossip-based knowledge dissemination successfully conveys the 

knowledge of all nodes, it raises performance issues. Specifically, a DEECo application is 

considered as a ubiquitous ecosystem in a real environment, the application is potentially 

boundless w.r.t. network reachability. In such a system, unlimited gossiping is not a viable option. 

Advantageously, in contrary to the assumption of traditional gossip protocols discussed above, 

not every node is interested in all the data being disseminated by all the components. Thus, certain 

application-specific bounds should be established for knowledge dissemination.  

For this purpose, we define for each ensemble its communication group as the set of nodes to 

which the ensemble’s knowledge dissemination is limited. This set consists of all the nodes where 

1. role TemperatureRelay: 
2. position 
3.  
4. role TemperatureSensor: 
5. missionID, missionAreas, temperature  
6.  
7. ensemble TemperatureUpdate: 
8. coordinator: TemperatureAggregator 
9. member: TemperatureSensor 
10. membership: 
11. member.missionID == coordinator.missionID 
12. knowledge exchange: 

13. coordinator.temperatures ← {  (m.ID, m.temperature) | m ∈ members } 
14. boundary: 
15. case relay: TemperatureRelay, replica: roleOf(member):  
16. ∃area ∈ replica.missionAreas: isInArea(relay.position, area) 
17. case relay: any, replica: roleOf(coordinator): 
18. false 
19. ip-registry: 10.10.16.35, 10.10.16.112 
20. ...  
 

Fig. 1. Example of an ensemble definition in DEECo, extended with a communication boundary. 
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components forming the ensemble are hosted and all the relays necessary for knowledge 

propagation. Relying on the fact that data is disseminated via gradual flooding, we define a 

communication boundary as the predicate determining the limits of a particular communication 

group w.r.t. network topology. The relays not satisfying the communication boundary will not 

participate in the dissemination. In a way, a communication group forms a dynamic, architecture-

specific network overlay for knowledge dissemination. 

Naturally, a communication boundary includes all the nodes “potentially interested” in the 

disseminated replicas, while excluding as many of the other replicas as possible. Thus, a 

communication boundary forms a conservative approximation of the potential ensemble 

membership. For example, the communication boundary for the ensemble definition in Fig. 1 can 

be formulated as follows: 

“For every mission, include all components within all the areas  

in which the participants of the mission operate.” 

In this example, the communication boundary reflects the fact that all components satisfying the 

membership condition of the ensemble, i.e., those participating on the same mission, operate in 

one of the predefined areas. Note however, that the communication boundary predicate is generic 

w.r.t. a particular mission – it determines a number of different communication groups (thus 

approximating a number of different ensemble instances), namely a distinct group per distinct 

mission. 

To achieve its desired functionality, a relay has to evaluate a communication boundary much 

more efficiently than membership condition, preferably using only locally-available information. 

Thus, we specify communication boundary as a predicate over the local knowledge of the relay 

and the particular knowledge being disseminated.  

Since “communication group” is an application-specific concept relating to application 

architecture (namely to knowledge of a component), we extend the ensemble definition to capture 

communication group by definition of communication boundary. In addition, we extend the 

existing concept of role to apply at the level of nodes so that a node supports a role if one of the 

components (representative) deployed on the node has structurally-matching knowledge. The 

structural matching enables designing open-ended architectures.  

Technically, a communication boundary is defined by a set of predicates (lines 14-17 in Fig. 1). 

Each of these predicates, given a relay role and a replica role, determines whether a node that has 

a representative matching the relay role meets the communication boundary for a replica that 

matches the replica role.  Formally, the communication boundary is a conjunction of these 



Chapter 4. Collection of Papers 

90 

  
D3S Technical Report no. D3S-TR-2014-03 

7 

 

predicates (having the form of implications). A relay role has to be either the coordinator or 

member role.  

For example in Fig. 1, given a replica corresponding to the member role (TemperatureSensor), the 

communication boundary includes all relay nodes featuring the TemperatureRelay role, which are 

in one of the mission areas specified by the replica. This is captured on lines 15-16, which 

semantically form an implication: the line 15 forms the antecedent (i.e., “if the relay has the role 

TemperatureRelay and the replica corresponds to the member’s role”), while line 16 forms the 

conclusion. Note, that we have extended the TemperatureSensor role and the knowledge of all the 

related components to provide the information about mission areas. Similarly, on lines 17-18 the 

predicate prevents any relaying of replicas matching the coordinator role (as there is no 

knowledge exchange towards the member).  

This part of specification of communication boundary aligns well with the knowledge 

dissemination in MANETs, where the set of potential recipients is limited by their geographical 

locality. On the other hand, in large networks that enable routing based on global addressing, 

such as IP networks, a necessary performance optimization is to disseminate replicas only to 

recipients which themselves meet the communication boundary (rather than blindly pollute the 

entire IP network). To do this, given a replica, a sender has to be able to (at least partially) assess 

the validity of the communication boundary with respect to the recipient.  

To address this issue, we assume that well-known registries exist providing a relay node the 

information which other IP-based nodes are part of a communication group (given a particular 

replica). To avoid unnecessary centralization, such a registry is ensemble specific. The registry 

either provides statically-defined recipients (well-known relay nodes) or evaluates the 

communication boundary with respect to a recipient. In the latter case, the potential recipient relay 

nodes provide the registry with the required relay knowledge. Syntactically, the communication 

boundary definition contains a set of IP addresses identifying the registries that are specific to the 

corresponding ensemble (line 19 in Fig. 1). Note that due to the nature of gossip, we do not require 

all the registries in a given ensemble specification to contain the same information. 

3 Formalized Semantics 

Having informally outlined our approach in the previous section, we provide now a precise 

formulation of our solution. We resort to formalization using operational semantics, which allows 

us to do analysis of functional and timing properties and precise simulations. 
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Technically, we represent the semantics via a state transition system, where the transitions are 

generated by the inference rules presented in the rest of this section. Specifically, each rule defines 

the required state in which the transition is allowed and the state change entailed by the transition. 

3.1 Initial definitions 

Knowledge is a partial function 𝑘𝑛𝑤: 𝐹 ↛ 𝐷, mapping the domain of knowledge fields 𝐹 

(typically seen as identifiers) to the set of knowledge field values 𝐷. We denote 𝐾 as the set of all 

possible knowledge valuations. 

Knowledge update is a partial function 𝑢: 𝐹 ↛ (𝐷 ∪ {undef }), where undef represents a special 

value which signifies that a knowledge field should be removed from a knowledge. We denote 𝑈 

as the set of all knowledge updates. We further define the knowledge update operator ⊕ with the 

following semantics. Let 𝑘𝑛𝑤 ∈ 𝐾, 𝑢 ∈ 𝑈, and 𝑘𝑛𝑤′ = 𝑘𝑛𝑤 ⊕ 𝑢, then value of 𝑘𝑛𝑤′(𝑓) (for a 

knowledge field 𝑓) is: 

 𝑘𝑛𝑤(𝑓) if 𝑢(𝑓) is not defined; or 

 𝑢(𝑓)  if 𝑢(𝑓) ≠ undef ; or 

 ⊥ (not defined) if 𝑢(𝑓) = undef. 

3.2 Internal component behavior 

Component is a tuple 𝑐 = (𝑘𝑛𝑤, 𝑝𝑟𝑜𝑐, 𝑟𝑝𝑟𝑜𝑐), where 𝑘𝑛𝑤 is the knowledge of the component, 𝑝𝑟𝑜𝑐 

is the set of processes of the component, and 𝑟𝑝𝑟𝑜𝑐 is the state of running processes (definitions 

follow below). Note, that a component is understood as a singleton, i.e., a component instance. 

We denote the set of all components as 𝐶. 

 Process of a component 𝑐 is a function 𝑝: 𝐾 × 𝑅 → 𝑈, where 𝑅 denotes the domain of 

internal events which are not explicitly modeled on the level of the component model and 

thus from the perspective of the semantics remain non deterministic (e.g., responses from 

the operating system, readings from sensors, etc.). 

 The state of running processes is a partial function 𝑟𝑝𝑟𝑜𝑐: 𝑝𝑟𝑜𝑐 ↛ 𝐾, which maps each 

currently running process to its inputs (i.e., valuation of the knowledge at the time of the 

process start). If a process is not running, the value of 𝑟𝑝𝑟𝑜𝑐 is undefined. 

The inference rules below describe the semantics of the concurrent, asynchronous component process 

execution:  
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 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑐. 𝑝𝑟𝑜𝑐, 𝑐. 𝑟𝑝𝑟𝑜𝑐(𝑝) = ⊥

𝑐. 𝑟𝑝𝑟𝑜𝑐(𝑝) ← 𝑐. 𝑘𝑛𝑤
 (p-start) 

 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑐. 𝑝𝑟𝑜𝑐

𝑐. 𝑟𝑝𝑟𝑜𝑐(𝑝) ≠⊥, 𝑘 = 𝑐. 𝑟𝑝𝑟𝑜𝑐(𝑝), 𝑟 ∈ 𝑅

𝑐. 𝑟𝑝𝑟𝑜𝑐(𝑝) ←⊥, 𝑐. 𝑘𝑛𝑤 ← 𝑐. 𝑘𝑛𝑤 ⊕ 𝑝(𝑘, 𝑟)
 

(p-end) 

Each process executes in a cyclic manner. This is modeled in two steps: (1) inputs of the process 

are atomically retrieved from component’s knowledge (rule p-start), and (2) outputs of the process 

computation are atomically written to component’s knowledge (rule p-end). Essentially, this 

semantics of process execution is similar to our previous work [2]. 

Note that we use a shorthand form of the inference rules conclusions. We always assume the 

conclusion to be in form a state transition 𝑆 ⟶ 𝑆′, where 𝑆′ is the same state as 𝑆, except for 

assignment explicitly stated in the rule. For instance 𝑐. 𝑘𝑛𝑤 ← 𝑐. 𝑘𝑛𝑤 ⊕ 𝑢 means 𝑆′ is the same as 

𝑆, except for the knowledge of component 𝑐, whose new valuation is 𝑐. 𝑘𝑛𝑤 ⊕ 𝑢. We use the 

assignment operator ← also to remove an assignment from a partial function – i.e., 𝑓(𝑥) ← ⊥ means 

𝑓 ∖ ⋃ (𝑥, 𝑦)∀𝑦 . 

3.3 Decentralized execution of ensemble membership and knowledge 

exchange 

Ensemble definition is a tuple 𝑒 = (𝑚𝑒𝑚, 𝑘𝑒𝑥, 𝑐𝑏), where 𝑚𝑒𝑚 is the membership predicate, 𝑘𝑒𝑥 

is the knowledge exchange function, and 𝑐𝑏 is the communication boundary predicate (definitions 

of membership and knowledge exchange follow below, communication boundary is elaborated 

in Section 3.4). We denote the set of all ensemble definitions as 𝐸. 

 Membership is a predicate 𝑚𝑒𝑚 ⊆ 𝐾 × 𝐾 over knowledge of an ordered pair of 

components. The predicate determines whether the two components form the 

coordinator-member pair of an ensemble instantiated from 𝑒. 

 Knowledge exchange is a function 𝑘𝑒𝑥: 𝐾 × 𝐾 → 𝑈 × 𝑈, which for knowledge of the 

coordinator and a member (in this order) gives the knowledge updates corresponding to 

the effect of the knowledge exchange in ensemble definition.  

Computational node is a tuple 𝑛 = (𝑐𝑜𝑚𝑝, 𝑐𝑘𝑛𝑤, 𝑟𝑘𝑒𝑥), where 𝑐𝑜𝑚𝑝 ⊆ 𝐶 denotes the set of 

components deployed on the node, 𝑐𝑘𝑛𝑤 the knowledge replicas available to the node, and 𝑟𝑘𝑒𝑥 

is the state of running ensemble knowledge exchange (definitions follow below). We denote the 

set of all nodes as 𝑁. 
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 The knowledge replicas of the node 𝑛 is a partial function 𝑐𝑘𝑛𝑤: 𝐶 ↛ 𝐾, which for a 

component returns the replica of the component’s knowledge available to the node 𝑛. In 

case the component 𝑐 is deployed on the node (i.e, 𝑐 ∈ 𝑛. 𝑐𝑜𝑚𝑝), then 𝑐𝑘𝑛𝑤(𝑐) = 𝑐. 𝑘𝑛𝑤 

(i.e., the replica is equal to the actual knowledge of the component). If the node has no 

available replica for a component, the value is undefined. 

 The state of running ensemble knowledge exchange is a partial function 𝑟𝑘𝑒𝑥 ∶ 𝐸 × 𝐶 ×

𝐶 ↛ 𝐾 × 𝐾, which maps each currently running knowledge exchange to its inputs – 

knowledge of the coordinator and a member at the time of the knowledge exchange start. 

If knowledge exchange is not running, the value of 𝑟𝑘𝑒𝑥 is undefined.  

The inference rules below describe the semantics of the concurrent, asynchronous, and decentralized 

execution of knowledge exchange in scope of a single node, as described in Section Error! Reference source 

not found.:  

𝑛 ∈ 𝑁, 𝑐𝑙 ∈ 𝑛. 𝑐𝑜𝑚𝑝, 𝑒 ∈ 𝐸,

  𝑐𝑝 ∈ 𝐶: 𝑛. 𝑐𝑘𝑛𝑤(𝑐𝑝) ≠ ⊥, 𝑛. 𝑟𝑘𝑒𝑥(𝑒, 𝑐𝑙 , 𝑐𝑝) = ⊥

𝑐𝑙 . 𝑟𝑘𝑒𝑥(𝑒, 𝑐𝑙 , 𝑐𝑝) ← (𝑛. 𝑐𝑘𝑛𝑤(𝑐𝑙), 𝑛. 𝑐𝑘𝑛𝑤(𝑐𝑝))
 (e-start) 

𝑛 ∈ 𝑁, 𝑐𝑙 ∈ 𝑛. 𝑐𝑜𝑚𝑝, 𝑒 ∈ 𝐸,

 𝑐𝑝 ∈ 𝐶: 𝑛. 𝑟𝑘𝑒𝑥(𝑒, 𝑐𝑙 , 𝑐𝑝) ≠⊥= (𝑘𝑙 , 𝑘𝑝)

𝑐𝑙 . 𝑘𝑛𝑤 ← 𝑐𝑙 . 𝑘𝑛𝑤 ⊕ {

[𝑒. 𝑘𝑒𝑥(𝑘𝑙 , 𝑘𝑝)]
1

, 𝑒. 𝑚𝑒𝑚(𝑘𝑙 , 𝑘𝑝)

[𝑒. 𝑘𝑒𝑥(𝑘𝑝, 𝑘𝑙)]
2

, 𝑒. 𝑚𝑒𝑚(𝑘𝑝, 𝑘𝑙)

∅                           , otherwise

𝑛. 𝑟𝑘𝑒𝑥(𝑒, 𝑐𝑙 , 𝑐𝑝) ←⊥

 

(e-end) 

Specifically, the rule (e-start) describes the atomic read of knowledge exchange inputs at the start 

of its execution. Recall, that knowledge exchange is executed for all pairs of components in which 

one component (the local component, 𝑐𝑙) is deployed at the node itself while there is an available 

replica for the other (the peer component, 𝑐𝑝). Note that the peer component can be deployed on 

the node as well. The rule (e-end) describes the atomic update of the local component’s knowledge 

with the outcome of the process w.r.t. to the stored inputs, performed at the end. Note that the 

local component’s knowledge is actually updated only if the local and peer components meet the 

membership condition of the corresponding ensemble. If the local component acts in the 

knowledge exchange as the coordinator, the first knowledge update from the tuple returned by 

𝑘𝑒𝑥 is used; if it acts as a member, the second is used.  
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3.4 Asynchronous knowledge dissemination  

We abstract the network as a complete directed graph of nodes, where each edge corresponds to 

a unidirectional communication channel between two nodes. The communication channel is 

modeled as an unbounded, lossless queue. We denote the set of all channels as 𝑄. A channel may 

either represent a MANET communication link or an IP communication link. For convenience, we 

use the function 𝑐ℎ𝑎𝑛: {𝑚𝑎𝑛𝑒𝑡, 𝑖𝑝} × 𝑁 × 𝑁 →  𝑄 which for each channel type and each pair of 

nodes returns a distinct channel connecting the first node with the second. The communication 

over the channels is regulated by two conditions described below. 

The gossiping condition is a predicate 𝑔𝑜𝑠𝑠𝑖𝑝 ⊆ {𝑚𝑎𝑛𝑒𝑡, 𝑖𝑝} × 𝑁 × 𝑁 × 𝑅, which for a channel 

type, a sender node, and a recipient node establishes whether the sender should disseminate 

replicas to the recipient via a channel of that type, based on the employed gossiping scheme and 

network topology. For example, in case of a MANET channel, this predicate reflects whether the 

recipient is within the receiving range of the sender, etc. 𝑅 denotes the domain of internal events 

which are not explicitly modeled on the level of the component model and thus from the 

perspective of the semantics remain non deterministic (e.g., random algorithmic decisions, lost 

packets due to limited range and conflicts in wireless communication). Note, that the gossiping 

condition is system-specific (depending of the system’s network topology etc.). 

Ensemble communication boundary is an ensemble-specific predicate 𝑐𝑏 ⊆ 𝑁 × 𝐾, which for a 

node and a component’s knowledge replica establishes whether the node meets the 

communication boundary w.r.t. the replica; i.e., whether the replica should be disseminated by 

the node for the purpose of ensemble membership and knowledge exchange evaluation. Recall, 

that for every ensemble 𝑒, 𝑒. 𝑚𝑒𝑚 ⊆ 𝑒. 𝑐𝑏. The inference rules below describe asynchronous, 

gossip-based dissemination of knowledge as described in Section Error! Reference source not 

found. and Section Error! Reference source not found.:  

 𝑟 ∈ 𝑅, 𝑛𝑙 , 𝑛𝑟 ∈ 𝑁:  𝑛𝑙 ≠ 𝑛𝑟, 𝑐 ∈ 𝐶,  𝑘𝐶 = 𝑛𝑙 . 𝑐𝑘𝑛𝑤(𝑐)

 (𝑘1, … , 𝑘𝑛) = 𝑐ℎ𝑎𝑛(𝑚𝑎𝑛𝑒𝑡, 𝑛𝑙 , 𝑛𝑟),

𝑔𝑜𝑠𝑠𝑖𝑝(𝑚𝑎𝑛𝑒𝑡, 𝑛𝑙 , 𝑛𝑟, 𝑟), ∃𝑒 ∈ 𝐸:  𝑒. 𝑐𝑏(𝑛𝑙 , 𝑘𝑐)

𝑐ℎ𝑎𝑛(𝑚𝑎𝑛𝑒𝑡, 𝑛𝑙 , 𝑛𝑟) ← (𝑘1, … , 𝑘𝑛, 𝑘𝑐)
 

(manet-send) 

 𝑟 ∈ 𝑅, 𝑛𝑙 , 𝑛𝑟 ∈ 𝑁:  𝑛𝑙 ≠ 𝑛𝑟, 𝑐 ∈ 𝐶,  𝑘𝐶 = 𝑛𝑙 . 𝑐𝑘𝑛𝑤(𝑐)

 (𝑘1, … , 𝑘𝑛) =  𝑐ℎ𝑎𝑛(𝑖𝑝, 𝑛𝑙 , 𝑛𝑟), 𝑔𝑜𝑠𝑠𝑖𝑝(𝑖𝑝, 𝑛𝑙 , 𝑛𝑟, 𝑟)

∃𝑒 ∈ 𝐸:  𝑒. 𝑐𝑏(𝑛𝑙 , 𝑘𝑐) ∧ 𝑒. 𝑐𝑏(𝑛𝑟, 𝑘𝑐)

𝑐ℎ𝑎𝑛(𝑖𝑝, 𝑛𝑙 , 𝑛𝑟) ← (𝑘1, … , 𝑘𝑛, 𝑘𝑐)
 

(ip-send) 
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𝑛𝑙 , 𝑛𝑟 ∈ 𝑁, 𝑛𝑙 ≠ 𝑛𝑟, 𝑐 ∈ 𝐶,  𝑘𝑐 = 𝑛𝑙 . 𝑐𝑘𝑛𝑤(𝑐)

𝑡 ∈ {𝑚𝑎𝑛𝑒𝑡, 𝑖𝑝}, 𝑐ℎ𝑎𝑛(𝑡, 𝑛𝑟, 𝑛𝑙) = (𝑘𝑐
′ , 𝑘1, … , 𝑘𝑛) ≠⊥

𝑛𝑙 . 𝑐𝑘𝑛𝑤(𝑐) ← {
𝑘𝑐

′ , 𝑘𝑐
′  is newer than  𝑘𝑐

 𝑘𝑐 , otherwise

 𝑐ℎ𝑎𝑛(𝑡, 𝑛𝑟, 𝑛𝑙) ← (𝑘1, … , 𝑘𝑛)

 
(receive) 

The rules (send) and (ip-send) describe sending a replica via a channel whose endpoints meet the 

gossip condition (i.e., they are within wireless communication range, etc.). Here, sending is 

represented by adding the replica at the end of the channel’s queue. Specifically, according to 

(manet-send), the replica is sent via a MANET communication link only if the pair sender node-

replica meets the communication boundary of an ensemble. In case of an IP communication link, 

as described by (ip-send), both the pair sender-replica and receiver-replica need to meet the 

communication boundary for the replica to be sent (as explained in Section Error! Reference 

source not found., technically the receiver-replica pair is to be evaluated by querying a registry). 

The rule (receive) describes asynchronous reception of a replica from a non-empty channel, 

represented as removing the first element from the channel’s queue. Note that the node’s replica 

is only updated if the received knowledge is newer than the one stored in the replica. 

3.5 Real-time aspects 

Being completely non-deterministic, the transition system generated by the presented rules can 

also capture behaviors that are not realistic w.r.t. real execution. In particular, as DEECo targets 

in general real-time CPS we focus on real-time properties of the transition traces. In principle, we 

allow only those transition traces that are possible with respect to real-time periodic scheduling 

of the system processes, ensemble knowledge exchange, and knowledge dissemination. In a way, 

these restrictions impose a fairness constraint on the transition traces. The technical details on 

connecting the semantics with time can be found in [2]. 

4 Conclusions 

In this report, we presented a computational model representing a synergy of software component 

model abstractions and gossip-based communication primitives as a promising solution for 

engineering scalable dynamic decentralized cyber-physical systems. Our approach relies on 

providing architecture-level descriptions that feature communication groups (captured by 

communication boundaries) and allow us “driving” the gossip efficiently. Our current and future 

work involves experimentation with different gossip algorithms (e.g., a promising direction is to 

employ location-based algorithms where GPS devices are required). 
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Summary of the Paper 

The following paper is a continuation of the work done on communication optimization 

initiated by the idea of communication boundary given in Section 4.3. In this publication, 

the focus is centered around optimizing component data exchange over infrastructure-

based networks. The new concept of so-called communication groups is proposed to be 

added to the DEECo ensemble specification, which is then exploited by the jDEECo 

runtime to improve network utilization by routing component data between those com-

ponents that belong to a common ensemble. For that purpose, the jDEECo runtime in-

troduces dedicated nodes called groupers that are communicated (by the means of the 

Gossip protocol) by all other nodes in the network and as a response, groupers advise 

them with their potential peers hosting relevant (in terms of belonging to the same en-

semble) components. The example scenario (given in Section 2), on which the idea has 

been validated, consists of road trains, composed of vehicles capable of automatic driv-

ing. The vehicles within a road train need to organize between each other in a similar 

way as the road train themselves in order to form longer, compound trains when possi-

ble. Using the example scenario, the main concepts of the DEECo component model are 

also described in this section. Following, Section 3 of the paper presents the jDEECo plat-

form specifics corresponding to its heterogeneous (i.e. infrastructure-based and infra-

structure-less) deployment. In the infrastructure-based part, the main idea of the com-

munication group is presented on both the modeling level (i.e. the DSL ensemble speci-

fication amendments) and the jDEECo platform realization extended by the grouper 

nodes. Subsequently, the evaluation section (i.e. Section 4) provides the aforementioned 

extensions to the jDEECo as well as the implementation of the use-case scenario proving 

the validity of the main concept. Furthermore, scenario simulations performed within 

the jDEECoSim platform provide measurements showing a considerable gain of the im-

plemented optimization by reduced number of messages exchanged between remotely 

deployed components. Further, the discussion section elaborates more on the idea of 

communication groups and its possible implications compared to the communication 

boundary idea. 

Finally, some related work is given in Section 6, which is then followed by the plans 

on the future work and concluding remarks. 

Author Contribution and Goals Addressed 

Considering author's contribution in this work, it consists of participation in the final 

idea formulation, articulating the idea into the paper as well as taking the guiding role 

in the evaluation section implementation. 

In terms of this work correspondence to the goals formulated in Section 1.3, the idea 

of communication groups targets the goal G2b that speaks about component 

communication improvements.  
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ABSTRACT 
The emerging area of (smart) Cyber Physical Systems (sCPS) 

triggers demand for new methods of design, development, and 

deployment of architecturally dynamic distributed systems. Current 

approaches (e.g. Component-Based Software Engineering and 

Agent-Based Development) become insufficient since they fail in 

addressing challenges specific to sCPS such as mobility, 

heterogeneous and unreliable deployment infrastructure, and 

architectural dynamicity. The strong dependence on the underlying 

communication infrastructure, often combining ad-hoc established 

links typical for wireless connectivity with more reliable 

connections of infrastructural networks, requires a novel method to 

optimize system deployment. In this paper we propose such a 

method based on the domain knowledge elicited from design level 

specification. As a proof of concept, we have provided an extension 

to the DEECo (Dependable Emergent Ensembles of Components) 

model and validated it on a scenario from the domain of Vehicular 

Area Networks. 

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 

Systems – distributed applications; D.2.10 [Software 

Engineering]:  Design; D.2.11 [Software Engineering]: Software 

Architectures;  

Keywords 

Cyber-physical systems; Domain knowledge; Component 

communication 

1. INTRODUCTION 
Recent growth in connectivity of electronic devices results in the 

birth of new kind of distributed systems regarded often as the 

Internet of Things (IoT) or as (smart) Cyber Physical Systems 

(sCPS) [1]. There are already multiple examples of such systems, 

stemming from different usage domains such as assisted living, 

intelligent transportation, and (mobile and ad-hoc) cloud 

computation. They are usually composed of autonomous 

components designed to execute independently in order to support 

resilience of the system. Nevertheless, components need to 

communicate with each other, exchanging data that allows them to 

perform cooperative actions. The way components interact together 

along with the conditions under which their interaction occurs are 

usually grasped by an architecture description articulated during the 

design phase.  

After being implemented, components are deployed to physical 

nodes interconnected by the means of ad-hoc and/or infrastructure 

networks, each of these requiring a dedicated approach towards 

data dissemination. 

Problem statement: Depending on its scale, deployment of sCPS 

may involve a large number of physical nodes with different 

communication infrastructure. To optimize utilization of a network, 

some information about the communication aspects should be 

introduced yet at the design level when the application architecture 

is decided. This, however may violate infrastructural transparency 

needed to allow for deployment independency. In the end the 

challenge here is to find a solution that would sustain 

communication transparency at the architectural level and, at the 

same time, allow for its optimization at the infrastructure level. 

Goal: This paper aims to propose a method targeting the problem 

above and to show its feasibility on a case study implemented in 

the existing DEECo (Dependable Ensembles of Components) [2] 

component model and framework. Specifically, we address the 

problem by introducing communication groups based on adding 

domain-specific knowledge to the architecture; this allows 

optimization of the network use while preserving the level of 

abstraction typical for architectural design. 

The rest of the paper is structured as follows: Section 2 describes 

motivating example and overviews the background technology – 

DEECo. Section 3 introduces the idea of using domain specific 

knowledge for communication optimization and in Section 4 the 

benefits of the idea are evaluated. Section 5 discusses potential 

applications of the communication groups. Section 6 focuses on 

related work while Section 7 concludes the paper by summarizing 

its contribution. 

 
Figure 1: Road trains scenario – ad-hoc and infrastructure 

networks employment  
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2. MOTIVATION AND BACKGROUND 

2.1 Road - trains scenario 
As a running example, consider a scenario of emergency vehicles 

forming road-trains (a chain of vehicles heading towards the same 

destination). The purpose of a road train is to optimize movement 

(in terms of speed, safety, and traffic disruption) of emergency 

vehicles towards the site of an accident. We assume that each 

vehicle is equipped with the necessary hardware enabling both 

short-range wireless communication (via MANETs) as well as 

infrastructure-based connectivity (long range, dedicated to 

emergency services). Vehicles within a single road train 

communicate in order to maintain proper internal organization of 

the train and to ensure satisfiability of the safety requirements such 

as minimal distance between vehicle, maximal speed etc. 

Furthermore, all vehicles (also across different road trains) 

exchange information necessary to form a road train, including 

desired destination, current location etc. The scenario together with 

two types of data flows is illustrated in Figure 1. 

In this scenario, we focus on the organization of vehicles seen as 

autonomous components that need to communicate globally (to 

form a road train) and locally (while in a road-train). Whereas the 

local coordination requires low latency in data exchange, which is 

achieved by short-range communication, global coordination 

accounts for optimality in terms of network utilization. 

2.2 Background: DEECo  
Proposed for development of dynamic CPS, the DEECo 

(Dependable Emergent Ensembles of Components) component 

model and its framework was introduced [2] for designing 

applications of autonomous components and their dynamic ad-hoc 

groups (ensembles) that the components establish serving for their 

communication.  

A DEECo component is an independent unit of computation and 

deployment. In the scenario, components correspond to the main 

actors of the system (i.e. vehicles). The template of these 

components is specified in Figure 2 by the Vehicle specification. Its 

state is captured by knowledge (a set of attributes - lines 7-14) and 

operational functionality by processes (lines 15-20). Every 

component features a number of roles, i.e., sets of knowledge fields 

(lines 1-4, 6), which provide contract between the component and 

ensembles. Processes are executed by the runtime periodically or in 

a triggered manner. Line 19 demonstrates a specification of 

periodic execution of the processes with a given time period. Each 

process execution starts with atomic reading (a part of) of 

component knowledge, executing the process body, and ends with 

atomic writing the results back to the knowledge. 

In Figure 2, ensembles reflect the two types of communication 

groups of vehicles - within a road-train and across all the vehicles 

heading to the same destination. For instance, consider the 

SameDestination ensemble definition (lines 22-34). The goal here 

is to propagate information about the vehicle’s desired destination 

to other vehicles so that they can coordinate movement to form 

road-trains. The figure illustrates that an ensemble definition in 

DEECo contains a membership condition specifying which 

components can join the ensemble (lines 25-28), and a prescription 

of knowledge exchange between its coordinator and members 

(lines 29-33). The coordinator and potential members are 

characterized by specific roles (lines 23-24). An ensemble is 

instantiated and dissolved by the DEECo runtime framework, 

which periodically (line 34) checks the membership condition. 

Whenever the ensemble is formed (i.e. there is a coordinator and at 

least one member), the runtime framework periodically performs 

the knowledge exchange by transferring data form the members to 

the coordinator (and vice versa) as specified by the mapping in the 

ensemble definition. A component specification may feature 

multiple roles; consequently, a component may be a 

member/coordinator of many ensembles at a time. 

It should be emphasized that, knowledge exchange, realized by the 

ensembles to which a particular component belongs, is the only 

means of inter-component communication. 

3. COMMUNICATION EMPLOYING 

DOMAIN KNOWLEDGE 
Tailored for development of sCPS, the DEECo component model 

allows designing a system at the architecture level without 

considering aspects related to its actual deployment - component 

1. role OtherVehiclesAgregator: 
2. otherVehicles, position 
3. role LocalTrainAgregator: 
4. trainId, localVehicles, speed, position 
5.  
6. component Vehicle features OtherVehiclesAgregator, LocalTrainAgregator 
7. knowledge: 
8. ID = V1 
9. otherVehicles = [(V2, {50.0722, 14.4568}), (V4, {50.0745, 14.2356})] 
10. localVehicles = [(V3, {50.25636, 14,4568}, 45.6)] 
11. position = {50.075306, 14.426948} 
12. speed = 54.2 
13. destination = 109 
14. trainId = 5 
15. process measureSpeed 
16. out speed 
17. function: 
18. speed ← SpeedSensor.read() 
19. scheduling: periodic( 500ms ) 
20. … /* other process definitions */ 
21.  
22. ensemble SameDestination: 
23. coordinator: OtherVehiclesAgregator 
24. member: OtherVehiclesAgregator 
25. membership: 
26.       member.destination.Address = coordinator.destination.Address  
27.       AND !member.isRoadTrainMember  
28.       AND !coordinator.isRoadTrainMember  
29.  knowledge exchange: 

30. coordinator.otherVehicles ← { (m.ID, m.position) | m ∈ members } 

31. for(m ∈ members)  

32.  m.otherVehicles ←{ t ∈ coordinator.otherVehicles | t.ID ≠ m.ID } 
33.  m.otherVehicles ← (coordinator.ID, coordinator.positon) 
34. scheduling: periodic( 700ms )  
35.   
36. ensemble TrainManagement: 
37. coordinator: LocalTrainAgregator 
38. member: LocalTrainAgregator 
39. membership: 
40. member.trainId = coordinator.trainId 
41. knowledge exchange: 

42. coordinator.localVehicles ← { (m.ID, m.position, m.speed) | m ∈ members } 

43. for(m ∈ members)  

44.  m.localVehicles ←{ t ∈ coordinator.localVehicles | t.ID ≠ m.ID } 
45.  m.localVehicles ← (coordinator.ID,  
46.            coordinator.position,  
47.            coordinator.speed) 
48.   communication boundary: 
49.  (sender: LocalTrainAgregator, node: NodeKnowledge) =>  
50.        ∃ component ∈ node.components:  
51.              hasRole(component, LocalTrainAgregator) AND 
52.              component.knowledge.trainId = sender.trainId 
53. scheduling: periodic( 200ms )  
 

Figure 2: Examples of DEECo component and ensembles of the 

road trains scenario 
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distribution, communication infrastructure, and even its scaling in 

terms of the eventual number of component instances. Such an 

abstraction level simplifies modeling and development of the 

system, as it allows reasoning about components and ensembles in 

isolation, a crucial property when dealing with complex systems. 

Problems arise when it comes to deployment of the system, since 

there is a gap between the abstraction level of design and runtime 

infrastructure. This typically implies the need to apply standard 

generic methods for communication among distributed nodes. In 

particular in sCPS the efficiency of communication can be 

substantially improved by employing application domain data to 

optimize the deployment of the system.  

In this section, we present how this can be achieved in DEECo by 

employing the concept of communication boundary [3], and, as a 

key contribution, the novel idea of communication groups. 

3.1 Ad-hoc Networks 
DEECo and specifically its Java realization jDEECo [4], supports 

ad-hoc communication via MANETS. It relies on periodic channel-

level broadcasts (rebroadcasts) of component knowledge. In a 

system, this allows a node not only be aware of the knowledge of 

the components it hosts but also to learn about knowledge of other 

(remote) components. This approach is appropriate for MANETS 

that are not fully reliable and prone to frequent disconnections due 

to radio interference and mobility of nodes.  

The communication protocol in jDEECo is based on bounded 

gossiping [3], where components’ knowledge rebroadcasting is 

limited by communication boundaries articulated in ensemble 

specifications. A communication boundary is employed by a node 

for deciding whether or not to rebroadcast the component 

knowledge heard from other nodes. This way, by constraining 

component knowledge dissemination to a specific geographical 

area, this mechanism allows better utilization of the communication 

channel, which in wireless settings comes at a great price. 

An example of communication boundary is given in Figure 2 (lines 

48-52) when the component knowledge data dissemination is 

bounded to the nodes of the vehicles participating in the same road 

train. 

The specification of a communication boundary, is given as a 

predicate formulated on the component knowledge to be 

rebroadcasted and the knowledge of a rebroadcasting node. This 

way, the communication boundary reflects only the application 

domain-specific knowledge known at the architectural level. 

(Specifically, no information about future deployment is required.) 

In case of Figure 2, the domain-specific knowledge captures the 

fact that a road-train is a spatially connected structure and thus it is 

sufficient to involve only the road-train nodes in the rebroadcasting. 

As an aside, this is the only enhancement to the original semantics 

of the ensemble as specified at the architectural level. 

3.2 Infrastructure Networks 
The benefits of the communication boundary is apparent for ad-hoc 

networks; nevertheless the idea is also applicable when dealing 

with more reliable infrastructure networks (IN for short). In such 

settings, however, one can do more than just restrict data 

retransmissions. Having a topology that does not change often (in 

particular if established links hold for a relatively long time), a 

routing mechanism can be introduced to provide for optimality with 

respect to, e.g., bandwidth utilization, latency, and computation 

balancing. 

Therefore, jDEECo utilizes gossiping in case of infrastructure 

networks [5]. As a data dissemination protocol, gossiping is 

resilient to communication failures. Nevertheless, depending on the 

application, standard gossiping may still be costly, especially in 

terms of the amount of data being transmitted. Specifically, in 

jDEECo standard gossiping causes that component knowledge is 

published periodically to all nodes in a system, which does not scale 

well for large-scale systems. 

Communication groups: To mitigate the problem of unnecessary 

data transmission over the network, we propose an extension to 

ensemble definition by introducing communication group, 

delineated according to the component knowledge of the 

coordinator and members of an ensemble. The basic idea is to 

introduce the groups of components (members) that are related to 

each other in terms of a specific knowledge value (e.g. having the 

same value of the destination attribute). Such a group serves as a 

hint for optimizing deployment in terms of communication 

efficiency by restricting and localizing the area in which discovery 

of components to form an ensemble is performed. Defined again at 

the architecture level via component knowledge specified in roles, 

orthogonally to the membership, knowledge exchange, and 

communication boundary, the concept of communication group 

just enhances the original semantics of ensemble, not modifying the 

meaning of other DEECo abstractions. For illustration, consider 

line 4 in Figure 3, indicating that communication groups will be 

based on the destination value in the coordinator’s knowledge. In 

this case vehicles going to the same destination (expressed by the 

membership condition) compose communication groups, each of 

them corresponding to a specific value of the destination attribute 

in the coordinator’s knowledge. The situation is visualized in 

Figure 4, where ensembles of different emergency vehicles trains 

are heading to distinct locations in Prague 6 and in Prague 4 

districts. 

Groupers: Communication groups are utilized to optimize 

deployment, where they support the planning of inter-node 

communication links. For that reason an extension to the jDEECo 

runtime environment is proposed by introducing the concept of 

grouper. The basic idea is that a grouper limits the gossiping only 

to the nodes that host the components belonging to a particular 

communication group. Thus a grouper employs the communication 

group specification. Technically a grouper enhances the jDEECo 

runtime environment in the following way. The environment 

contains a set of jDEECo runtime instances (Figure 5). Each of 

them hosts a set of components, the knowledge of which is gossiped 

around, using the addresses of other nodes stored in its recipient 

table. In the enhancement, a grouper can also be referenced in the 

recipient table as illustrated in Figure 5. It is assumed that a grouper 

(i) is a representative of a communication group(s), (ii) is equipped 

with all the ensemble definitions in the system, (iii) has access to 

knowledge of all components needed to evaluate the membership 

1. ensemble SameDestination: 
2. coordinator: OtherVehiclesAgregator 
3. member: OtherVehiclesAgregator 
4. communication group: coordinator.destination.CityDistrict 
5. membership: 
6.       member.destination.Address = coordinator.destination.Address  
7.       AND !member.isRoadTrainMember  
8.       AND !coordinator.isRoadTrainMember  
9. knowledge exchange: 

10.       coordinator.otherVehicles ← { (m.ID, m.position) | m ∈ members } 

11.       for(m ∈ members)  

12.             m.otherVehicles ←{ t ∈ coordinator.otherVehicles | t.ID ≠ m.ID } 
13.   m.otherVehicles ← (coordinator.ID, coordinator.positon) 
14. scheduling: periodic( 700ms )  
 

Figure 3: An example of communication group specification  
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conditions, and (iv) can modify the recipient tables that contain a 

reference to it. The basic functionality of a grouper is to 

continuously monitor the current ensemble memberships of all the 

components in the groups it represents and update the recipient 

tables accordingly. By modifying the recipient tables, a grouper 

implicitly routes the component knowledge to the most relevant 

nodes (i.e. hosting the same ensemble components) in the network. 

Figure 5 exemplifies the whole idea on the SameDestination 
ensemble, the communication group of which depends on the 

destination field in the coordinator’s knowledge. In this case the 

grouper dedicated to Prague 6 continuously monitors the ensemble 

membership status of all the components it is aware of. If necessary, 

it updates the recipient tables of the respective jDEECo runtime 

instances on the nodes hosting the components in the 

SameDestination ensemble. The specification of the 

communication group allows a node to determine the groupers for 

a given pair of an ensemble type and a component hosted on the 

node. This way the knowledge of the component is routed only to 

a limited set of groupers (as opposed to being propagated 

throughout the whole system). Also, as communication groups are 

                                                                 

1 Source code of the scenario implementation used in the 

experiments is available at: http://github.com/d3scomp/cbse-

2015-tutorial 

typically geographically or network-wise localized, they lead to a 

decentralized solution, potentially characterized by low-latency. 

The decentralization also means that the operation is possible even 

in case that the infrastructure network gets partitioned into a 

number of disconnected subnets (i.e. without global internet 

connectivity). 

4. EVALUATION 

4.1 Proof of concept 
As a proof of concept we have simulated the road trains scenario 

and conducted several experiments, allowing us to assess the 

applicability of the method1. We used the total number of messages 

exchanged in the system as a metric for expressing communication 

efficiency. The simulation, conducted with use of MATSim [6], 

was focused on optimization of emergency vehicles’ routings 

across realistic road network of the Prague city provided by 

OpenStreetMap [7]. Firefighter, police, and ambulance vehicles 

were considered as the emergency vehicle types. The locations of 

ambulance, police and firefighter bases were set according to their 

real locations. For simplicity, all non-road objects and several 

minor roads were removed from the original map which yielded a 

road network covering the area of approximately 100km2. 

The simulation comprises three groups of experiments: (i) 

emergency call response by 3 vehicles, (ii) emergency call response 

by 5 vehicles, and (iii) single large road train (convoy with the right 

of the way). The groups (i) and (ii) encompass experiments 

differentiated by number of concurrent emergency calls (1, 2, 3, 5, 

10, 15, 20), while (iii) encompasses experiments with several road 

train sizes (3, 5, 10, 15, 20). 

As to (i) and (ii), when an emergency call is issued (e.g. a serious 

car crash), vehicles are dispatched to the accident site (destination). 

In the simulation, the emergency vehicles heading to the same 

destination aim at forming a road-train to make it easier to clear 

their path in heavy traffic by driving closely behind each other. The 

emergency vehicles are dispatched from the emergency service 

bases as close to the destination as possible. Specifically it is 

assumed that: in (i) one of each emergency vehicle type is sent to 

every destination, in (ii) two ambulance, two firefighter and one 

police vehicles are sent to every destination, in (iii) emergency 

vehicle types are not distinguished. 

Once a vehicle is on its way to the accident site, it aims at following 

another emergency vehicle heading to the same destination. A 

road train is established, when the distance between two solo 

vehicles heading the same destination is negligible in a street. A 

vehicle is allowed to join a road train only when its prolongation of 

its route to the destination is minor and has the ability to increase 

its speed temporarily. 

In order to show that the results do not depend on particular routing 

and destination choice, 10 different simulation runs parametrized 

by destination choice were executed. 

4.2 Experiment results and lessons learned 
In (i) and (ii) a key result of these sets of experiments is the proof 

of communication complexity reduction (from quadratic to linear). 

Recall that this complexity metric is the number of IN messages – 

in our case those were the IP messages. For the group (i) the number 

of IP messages was measured (Figure 6); for the group (ii) this 

 
Figure 4: Illustration of communication groups; each is 

associated with an instance of SameDestination  

 
Figure 5: jDEECo runtime instances – groupers associations  
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measurements are in (Figure 8). The reason for not considering 

MANET messages is that these are local and thus not influencing 

the infrastructure network load, even though small fraction of these 

is inherently rebroadcasted in MANET network. From these 

figures, it follows that when just gossip is applied, the number of 

IP messages grows quadratically with the number of vehicles. This 

is caused by the fact that IP messages from a vehicle are sent to all 

of other vehicles. On the contrary, when groupers are applied the 

IP messages are sent only to the vehicles sharing a particular 

destination, the number of IP messages is linear in number of 

groups while assuming the size of the group is constant. Moreover, 

here it is also visible that the effect of improvement starts at a 

minimal number of destinations (such as 3 in Figure 6), since there 

is an overhead of communication among groupers. 

Note that a system that enables message passing between the 

MANET and IN networks (such as jDEECo originally) needs to be 

configured in such a way that messages from different 

communication groups do not leak from one communication group 

to another, otherwise this would harm the positive effect of 

communication groups. As an aside, in this simulation this was 

ensured by preventing rebroadcasting of IP messages by MANET. 

Finally, domain specific knowledge can be further exploited by 

evaluating ensemble membership conditions in groupers. Such a 

feature would enable distribution of knowledge only to those nodes 

that host components satisfying a particular ensemble membership 

condition. In the road trains scenario (Figure 3), a vehicle that is a 

member of a road train is not a member of an instance of 

SameDestination any more, thus not being subject to the respective 

knowledge exchange, since only the “solo” vehicles and road-train 

leaders need to communicate via IN network. Therefore, thanks to 

ensemble membership condition evaluation in groupers, it is 

possible to exclude those vehicles from communication group. The 

effect of this optimization would be minimal in experiment groups 

(i) and (ii), since the road-trains considered are relatively short. In 

order to study this effect, the group (iii) was introduced. From 

Figure 7 it is clearly visible that introducing groupers evaluating 

ensemble membership condition further reduces the number of IP 

messages for larger road trains. (Note that due to a higher variance 

of results in Figure 7, we use box-plots instead of simple points. 

Results in Figure 6 and 7 exhibit very low variance; thus we show 

only the mean values.) 

5. DISCUSSION 
The idea of the communication groups is applicable in most sCPS, 

nevertheless it shows its full strength when a combination of both 

ad-hoc and infrastructure networks takes place. Advantageously, it 

accounts for infrastructural dynamicity and mobility of network 

nodes in particular. In the scenario described in Section 2, the 

communication groups are for simplicity static in the sense that 

when a vehicle is assigned its destination, it is rather unlikely that 

this will be modified. However, the approach equally supports 

situations where a communication group depends on a dynamically 

changing factor such as current position of a vehicle. For instance, 

it is possible to specify the group in such a coarse way that the 

current position of the vehicle is refers just a particular Prague 

districts. Then, depending on the current position of the vehicle, the 

jDEECo runtime instance - grouper associations would vary over 

time, optimizing the network traffic (with respect to data latency 

and amount of data sent) via the nearest grouper in the district. 

While communication boundary constrains the actual 

communication topology, communication groups provide for 

(context-aware) routing mechanisms. These two concepts 

complement each other, and in case of infrastructure networks can 

be used either separately or in combination, effectively providing 

for different scenarios of component knowledge dissemination. 

Communication group offers more flexibility in terms of the 

possible optimization strategies to be implemented during 

deployment process. Depending on non-functional requirements, 

deployment optimizing network traffic in terms of data latency can 

be achieved. In such cases, it is desirable to bring groupers as close 

as possible (considering geographical distance) to the relevant 

nodes. On the other hand, if the main concern is balancing (or 

optimizing) the utilization of computational resources, then the 

deployment would be based mainly on their availability. Such 

flexibility is useful in heterogeneous deployments, where a part of 

the network is to be latency sensitive and another latency tolerant. 

 
Figure 6: Communication complexity comparison of gossip 

and groupers; experiment group (i) – 3 vehicles per accident 

 
Figure 7: The effect of introducing groupers evaluating 

ensemble membership condition; experiment group (iii) – 

single large road train 

 
Figure 8: Communication complexity comparison of gossip 

and groupers; experiment group (ii) – 5 vehicles per accident 
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As an example consider imposing additional requirement to the 

scenario from Section 2 that intra-train communication should be 

latency sensitive and the communication between road trains 

latency tolerant. 

6. RELATED WORK 
The idea of communication groups relates to Distributed Hash-

Tables (DHT) which introduce key-space partitioning [8], [9] and 

overlay networks [10]. The former assign a range of keys to 

particular network nodes that take the responsibility for storing the 

actual value corresponding to a key. The latter store references to 

other nodes to allow each node to query another node during key 

lookups. In this context communication groups can be partially 

interpreted also as a key-value storage problem, where the key is 

the particular value of the communication group specification given 

in the ensemble DSL definition, while the value is the set of 

components forming the ensemble. Other commonalities of 

communication groups and DHT include: implementation 

transparency, topological dynamism and redundancy mechanisms 

(increasing the overall reliability of the system). All in all, DHT 

may serve as supporting technology for implementing the part of 

communication group functionality that provides a mapping 

between a particular group and a set of network nodes. The main 

difference thus lies in the level of abstraction, where 

communication groups are primarily an architectural concept, 

while DHTs belong to middleware. 

In terms of benefits of communication group, they go along the 

same lines as fog computing (also edge computing). Fog computing 

extends the concept of cloud computing by pushing the data and 

computation from centralized nodes (data centers) closer to end 

devices – i.e. to the edge of the network [11], [12]. Similar to cloud, 

fog provides data, computation power, and networking services 

more likely in a latency-free manner. Basically, communication 

group resembles the idea of fog computing of coping with demand 

for low latency but does it by different means (employing domain 

knowledge in particular). 

With respect to exploiting domain-specific knowledge to improve 

network utilization communication group resembles context-aware 

routing protocols [13], a technique used in wireless (mesh) 

networks or delay-tolerant mobile ad hoc networks. It uses various 

information from the environment (context) to discover optimal 

path from the source to a destination or to adapt to changes in 

network topology. In [14], the authors propose a method building 

on node mobility and the history of establishing links with other 

nodes including their location. In a similar vein, geographic routing 

(or geo-routing) [15] relies on the geographical position of nodes. 

In addition to classical packet addressing, it also employs indication 

of the actual geographic position of a target node. The concept of 

communication groups takes the idea of context-aware routing a 

step further. Driven by application domain knowledge, it is more 

flexible with respect to the information being exploited in order to 

provide for more accurate addressing. Even though context-aware 

routing is fully distributed, communication groups are dedicated to 

infrastructure networks (see Section 3.2), where communication 

links are relatively stable and reliable, making the centralization 

aspect of groupers not a big issue. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a DEECo dedicated method that 

introduces communication groups exploiting application domain 

knowledge in order to optimize communication infrastructure 

utilization. As an extension to the DEECo model, communication 

groups increse efficiency of sCPS with respect to their deployment. 

The method relies on providing architecture-level descriptions that 

define communication groups and allow component knowledge 

routing according to custom preferences (latency sensitivity, 

resource utilization). Our current and future work involves adding 

features such as key partitioning and improved data exchange to 

groupers. Further, we plan to apply OMNet++ based simulations to 

obtain measurements reflecting network latency. 

8. ACKNOWLEDGMENTS 
This work was partially supported by the EU project ASCENS 

257414 and by Charles University institutional funding SVV-2015. 

The research leading to these results has received funding from the 

European Union Seventh Framework Programme FP7-PEOPLE-

2010-ITN under grant agreement n°264840. 

9. REFERENCES 
[1] P. Barsocchi, S. Chessa, I. Martinovic, and G. Oligeri, “A 

cyber-physical approach to secret key generation in smart 

environments,” J. Ambient Intell. Humaniz. Comput., vol. 4, 

no. 1, pp. 1–16, 2013. 

[2] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. 

Kit, and F. Plasil, “DEECo – an Ensemble-Based 

Component System,” in Proc. of CBSE’13, 2013, pp. 81–90. 

[3] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. 

Kit, and F. Plasil, “Gossiping Components for Cyber-

Physical Systems,” in Software Architecture, vol. 8627, P. 

Avgeriou and U. Zdun, Eds. Springer International 

Publishing, 2014, pp. 250–266. 

[4] jDEECo [Online]: https://github.com/d3scomp/JDEECo. 

[5] S. Voulgaris, M. Jelasity, and M. van Steen, “A Robust and 

Scalable Peer-to-peer Gossiping Protocol,” in Proc. of 2nd 

AP2PC, Berlin, Heidelberg, 2004, pp. 47–58. 

[6] MATSim [Online]: http://www.matsim.org/. 

[7] OpenStreetMap [Online]: http://www.openstreetmap.org. 

[8] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and 

I. Stoica, “Looking Up Data in P2P Systems,” Commun 

ACM, vol. 46, no. 2, pp. 43–48, Feb. 2003. 

[9] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. 

Levine, and D. Lewin, “Consistent Hashing and Random 

Trees: Distributed Caching Protocols for Relieving Hot 

Spots on the World Wide Web,” New York, NY, USA, 

1997, pp. 654–663. 

[10] K. Dhara, Y. Guo, M. Kolberg, and X. Wu, “Overview of 

Structured Peer-to-Peer Overlay Algorithms,” in Handbook 

of Peer-to-Peer Networking, X. Shen, H. Yu, J. Buford, and 

M. Akon, Eds. Springer US, 2010, pp. 223–256. 

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog 

Computing and Its Role in the Internet of Things,” New 

York, NY, USA, 2012, pp. 13–16. 

[12] L. M. Vaquero and L. Rodero-Merino, “Finding Your Way 

in the Fog: Towards a Comprehensive Definition of Fog 

Computing,” SIGCOMM Comput Commun Rev, vol. 44, no. 

5, pp. 27–32, Oct. 2014. 

[13] C. Boldrini, M. Conti, and A. Passarella, “Social-based 

autonomic routing in opportunistic networks,” in Autonomic 

Communication, A. V. Vasilakos, M. Parashar, S. 

Karnouskos, and W. Pedrycz, Eds. Springer US, 2009, pp. 

31–67. 

[14] Y. Yang, J. Wang, and R. Kravets, “Designing routing 

metrics for mesh networks,” in In WiMesh, 2005. 

[15] M. Musolesi and C. Mascolo, “CAR: Context-Aware 

Adaptive Routing for Delay-Tolerant Mobile Networks,” 

IEEE Trans. Mob. Comput., vol. 8, no. 2, pp. 246–260, Feb. 

2009. 



 

105 

4.6 An Architecture Framework for Experimentations with 

Self-Adaptive Cyber-Physical Systems 

 

Michał Kit, 

Ilias Gerostathopoulos, 

Tomáš Bureš, 

Petr Hnětynka, 

František Plášil 

 

 

In proceedings of the 10th International Symposium on Software En-

gineering for Adaptive and Self-Managing Systems (SEAMS ‘15). 

 

Published by IEEE, 

pages 93-96, 

May 2015. 

 

The original version is available electronically from the publisher's site 

at http://dx.doi.org/10.1109/SEAMS.2015.28. 
 

  

http://dx.doi.org/10.1109/SEAMS.2015.28


Chapter 4. Collection of Papers 

106 

Summary of the Paper 

The following publication is an artifact paper that introduces the DEECo framework as 

a comprehensive solution for building self-adaptive cyber-physical systems. The 

framework, with its tooling, addresses each step of the system development cycle: (i) 

the system design with the IRM method, (ii) development with the jDEECo platform 

and finally (iii) the verification with the jDEECoSim tool. The whole explanation of the 

framework is based on a simple use-case example (given in Section II), which consists 

of collaborative vehicles working together to optimize their parking procedure. The 

main idea behind is that vehicles exchange locally gathered (via sensors) information 

and build a partial view on the system current situation with respect to parking spot 

occupancy. This allows them to make more accurate decisions on where to park. In 

Section III, the DEECo component model is introduced, describing its basic concepts 

(i.e. components and ensembles) and their usability in the context of modeling self-

adaptive systems. Furthermore, a brief note on the component and ensemble develop-

ment process in the jDEECo is given depicting some of the example code snippets. This 

is followed by Section IV, which informs a reader about the jDEECoSim tool and its 

main features. Finally, the IRM method is presented as a goal-based design technique 

for modeling self-adaptive systems built over the DEECo components and ensembles.  

Author Contribution and Goals Addressed 

The paper is a compilation of different tools/methods researched within the group and 

as such, the author’s contribution in this context goes mainly to sections related to au-

thor’s work. This includes the DEECo component model together with the jDEECo 

runtime environment part (Section III) as well as the description of the jDEECoSim tool 

(Section IV). 

In terms of goals addressed by this publication, the article is a collection of different 

aspects of the DEECo framework (including the DEECo model, jDEECo platform and 

jDEECoSim tool) and as such contributes to all three goals (G1, G2, and G3). As stated 

earlier, the focus of the article is to present the entire DEECo framework as a method for 

facilitating incorporation of self-adaptive techniques into a developed system. Self-

adaptation is one of the concerns of SCPS (see Section 1), and even though it is not 

explicitly formulated as a research goal can be also considered as partially addressed by 

this work. 
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Abstract—Recent advances in embedded devices capabilities 

and wireless networks paved the way for creating ubiquitous 
Cyber-Physical Systems (CPS) grafted with self-configuring and 
self-adaptive capabilities. As these systems need to strike a balance 
between dependability, open-endedness and adaptability, and 
operate in dynamic and opportunistic environments, their design 
and development is particularly challenging. We take an 
architecture-based approach to this problem and advocate the use 
of component-based abstractions and related machinery to 
engineer self-adaptive CPS. Our approach is structured around 
DEECo – a component framework that introduces the concept of 
component ensembles to deal with the dynamicity of CPS at the 
middleware level. DEECo provides the architecture abstractions 
of autonomous components and component ensembles on top of 
which different adaptation techniques can be deployed. This 
makes DEECo a vehicle for seamless experiments with self-
adaptive systems where the physical distribution and mobility of 
nodes, and the limited data availability play an important role. 

 
Index Terms—Component framework, self-adaptation, cyber-

physical systems 

I. INTRODUCTION 

Adaptation to different situations and environments has 
become a common necessity in smart Cyber-Physical Systems 
(CPS) [1] – i.e., systems closely interacting with physical world 
entities. Such systems are typically open-ended and have to be 
capable of supporting new requirements and needs. At the same 
time, these systems are deployed in heterogeneous and ever-
changing (sometimes even hostile) environments and thus have 
to promptly react to these changes. Due to limited connectivity, 
smart CPS typically have to perform adaptation in a 
decentralized manner, which adds to the overall complexity of 
designing the adaptation. Moreover, in complex enough systems 
such as modern smart CPS, the mutual dependencies of different 
local adaptation strategies may have an unexpected global 
impact – a behavior often referred to as emergent.  

To correctly design complex self-adaptive smart CPS is thus 
a challenging task, which is only partially addressed by existing 
software engineering models and approaches. This stems from 
the fact that a correct design of smart CPS has to apply a holistic 
view that takes into account the overall system goals, the 
operational models of the system and its environment (along 
with the uncertainty present in these models), and the employed 
communication models (along with issues related to latencies 
and communication unavailability). 

In this paper, we present DEECo (Dependable Emergent 
Ensembles of Components) [2] – a model and framework for 
developing complex smart CPS. In its model, DEECo provides 
the holistic view that combines the goals of a system, the 
system’s operational model (including real-time constraints), 
and realistic communication model (including limited 
communication and latencies). With its framework, DEECo 
allows large-scale simulations of complex CPS. Combined with 
the real-time perspective of DEECo and the network-accurate 
simulation of communication, DEECo offers accurate insight 
into the effects of adaptation strategies in complex smart CPS. 

The structure of the paper is as follows: Section II presents 
the running example of self-adaptive vehicles. Section III 
discusses the DEECo component model, while Section IV 
presents its reification delivered by the JDEECo simulation 
framework. Section V presents the IRM design method used in 
DEECo, while Section VI concludes the paper. 

II. RUNNING EXAMPLE 

To illustrate the DEECo models and significant features, we 
rely in this paper on a smart parking scenario. In the frame of 
this scenario, vehicles are equipped with vehicle-to-vehicle 
(V2V) communication and smart sensors to detect available 
parking spaces along the streets and exchange their knowledge 
about the available parking capacity (Figure 1). 

From the architectural perspective, vehicles are represented 
as autonomous components, each consisting of a belief and real-
time processes. While the belief (knowledge in DEECo) reflects 
the components’ perspective about the available parking spaces, 
the real-time processes take care of sensing the current position, 
free parking spaces in visible range, etc. In addition to direct 
sensing, component enrich their belief by exchanging the belief 
with other components – i.e., the information about the available 
parking capacity is exchanged between vehicles that are in 
proximity (typically via limited-range V2V communication). 

This information allows vehicles to adjust their route to 
effectively find a parking space. Also, the inter-component 
communication may be used to negotiate with other vehicles for 
selecting and reserving a parking space.  



Chapter 4. Collection of Papers 

108 

III. DEECO COMPONENT MODEL 

DEECo offers straightforward support for development of 
self-adaptive CPS thanks to the following aspects (structured in 
sub-sections) that it offers to system architects and developers. 

A. Dynamic ensemble-based component model 

DEECo is built on the concepts of autonomous components 
and ensembles [3]. A component is an independent unit of 
computation and deployment, while an ensemble is a group of 
components cooperating to achieve a particular goal.  

Ensembles are established/disbanded dynamically at runtime 
depending on the state of the environment and the state of the 
components. They can overlap, reflecting the fact that a 
component may take on multiple roles and pursue multiple goals 
at the same time (e.g., the goal of having up-to-date information 
about parking spaces and the goal of making sure that selected 
parking space is reserved). 

The concept of ensembles thus allows forming dynamic 
component architectures and provides a straightforward 
reflection of operational goals in the application architecture. 
The concept of ensembles is further backed by theoretical 
research in coordination logics [4], which makes it possible to 
apply related results from statistical model-checking [5] (outside 
the scope of the artifact presented in this paper). 

Figure 2 illustrates the concepts of DEECo’s autonomous 
components and ensembles. It shows the specification (in 
DEECo DSL) of the smart parking scenario. A vehicle is 
captured as a Vehicle component – subject to multiple 
instantiations. It consists of its knowledge (i.e., the state of the 
component and its belief about other components – lines 5-11), 
and of real-time processes (lines 12-16). Processes in DEECo 
are periodic (time-triggered and event-triggered). This makes it 
easy to implement both real-time CPS control logic and 
adaptation logic as MAPE-K [6] loops.  

Communication between components is not direct but 
happens via knowledge exchange between components in an 
ensemble. Figure 2 shows the CapacityExchangeEnsemble, 
which reflects the goal of vehicles having up-to-date information 
about the available parking spaces. 

Technically, an ensemble is defined by its membership 
condition and its knowledge exchange. Membership determines 
which components to involve in an ensemble (e.g., all vehicles 
in proximity), whereas knowledge exchange specifies which 

knowledge should be exchanged among these components. An 
ensemble may be instantiated multiple times if the situation 
described by membership occurs at different places (potentially 
involving different components). 

To ease the structural specification of an ensemble, DEECo 
features two principal roles – ensemble coordinator and 
ensemble member. Membership is then expressed as a condition 
over the knowledge of the coordinator and the knowledge of the 
members (lines 22-23). Similarly, knowledge exchange is 
specified as assignment from the knowledge of members to the 
knowledge of the coordinator and vice-versa (lines 24-27). 

The contract between ensembles and components is carried 
by component roles (lines 1-2). The role specifies the knowledge 
of a component that an ensemble can assume. 

An ensemble periodically (in real-time manner – line 28) 
evaluates the membership condition and executes the knowledge 
exchange. In evaluating the ensembles, the model takes into 
account network latencies, which means that the knowledge of a 
component is available to other components only after certain 
random time, which is further correlated with the intensity of 
other network traffic and the geographical distance (in case of 
multi-hop communication in V2V networks). 

B. Openness and extensibility for adaptation strategies 

DEECo is open to deployment of different adaptation 
algorithms or strategies. They can be implemented as component 
processes and seamlessly integrated with a DEECo application. 
They can be also dynamically switched in response to: (i) values 
that are directly sensed by a component (e.g., free parking spaces 
around a vehicle), (ii) the state of a component (e.g., destination 
where a vehicle wants to park), and (iii) the belief about the 
knowledge of other components, including their perception of 
the environment (e.g., free parking spaces in another street).  

 

Figure 1: Vehicles sharing data about parking space capacity. 

1. role LinkCapacityAggregator: 
2. linkCapacities, position 
3.  
4. component Vehicle features LinkCapacityAggregator 
5. knowledge: 
6. ID = V1 
7. linkCapacities = [(Link_21, 1), (Link_21, 2), …] 
8. position = {50.075306, 14.426948} 
9. speed = 54.2 
10. destination = Link_126 
11. selectedParking = P23 
12. process measureSpeed 
13. out speed 
14. function: 
15. speed ← SpeedSensor.read() 
16. scheduling: periodic( 500ms ) 
17. … /* other process definitions */ 
18.  
19. ensemble CapacityExchangeEnsemble: 
20. coordinator: LinkCapacityAggregator 
21. member: LinkCapacityAggregator 
22. membership: 
23.   distance(member.position, coordinator.position) < ENSEMBLE_RADIUS 
24. knowledge exchange: 

25. coordinator.linkCapacities ← { m.linkCapacities | m ∈ members } 

26. for(m ∈ members)  
27.   m.linkCapacities ←{ coordinator.linkCapacities } 
28. scheduling: periodic( 1000ms )  

Figure 2: Examples of a DEECo component and an ensemble. 
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While (i) and (ii) can be obtained by a component directly, 
the belief about the knowledge of other components (iii) comes 
as the result of ensemble evaluation and thus is subject to 
network latencies and limited network connectivity. This 
contributes to the realistic simulation of the adaptive behavior in 
decentralized smart CPS. 

The switching of the strategies is facilitated by DEECo’s 
“models@runtime” [7] approach, which makes it possible to 
inspect the architecture of an application at each time instant and 
modify the architecture as the result of an adaptation strategy.  

The runtime model further provides a global view on a 
DEECo application (including knowledge of components and 
grouping of components in ensembles). This makes it possible 
to easily evaluate adaptation strategies by comparing (i) the 
adaptation taken by a component based on its incomplete (and 
potentially outdated) belief of the system and (ii) the ideal 
adaptation that should have been taken if the complete 
knowledge of the complete up-to-date state of the system and its 
environment were available. 

C. Component and Ensemble Development 

DEECo provides a mapping of its concepts (as exemplified 
by the DSL in Figure 2) to the Java programming language. 
Figure 3 gives an example of implementing the smart parking 
scenario in Java. All metadata are captured by annotations, 
which removes the necessity of having any accompanying 
specification (in DSL or XML) additional to the Java 
implementation of components and ensembles.  

                                                           
1 JDEECo: http://github.com/d3scomp/JDEECo   
2 CDEECo: http://github.com/d3scomp/CDEECo 

In the mapping, each component becomes a single class. Its 
knowledge becomes the class fields and its processes become the 
static methods. The knowledge that is consumed and produced 
by a process is specified as process parameters. This processes-
knowledge separation allows DEECo runtime to manage 
snapshotting and atomic updating of knowledge. Similarly, each 
ensemble is represented as a Java class with a method for 
membership and a method for knowledge exchange. 

IV. JDEECO SIMULATION FRAMEWORK 

DEECo component model comes with two runtime 
frameworks – one in Java1, and one in C++2. While the C++ 
implementation targets actual deployment on embedded devices 
(e.g., STM32F4 MCU), the Java implementation (which 
constitutes the artifact presented in this paper) serves primarily 
for experimentations with autonomous components and self-
adaptation. The Java implementation (JDEECo) provides a 
simulation framework which allows experimentations with 
decentralized adaptive behavior of smart CPS. 

The simulation framework is integrated with OMNeT++3 
network simulator. All knowledge exchange passed between 
components is routed through OMNeT, which provides realistic 
estimates of network latency w.r.t. to network topology, 
geographical position of components, network collisions and 
packet drops, etc. By employing the INET and MIXIM 
extensions of OMNeT, JDEECo allows for simulating 
deployments in mixed network environment combining IP 
networks and mobile/vehicle ad-hoc networks (MANETS / 
VANETS), as found in modern smart-* systems. Figure 4 
illustrates the JDEECo runtime and OMNeT integration. 

A simulation of a DEECo application typically requires 
simulation of responses of the environment (e.g., simulation of 
car movement in a city). In rapid prototyping, this can be realized 
at the architectural level by including an “Environment” 
component, which, by means of models@runtime manipulation, 
gathers actuation from all components and feeds them with 
sensing. For more systematic simulations, JDEECo offers a 
generic sensor/actuator interface and access to the simulation 

3 OMNeT++ : http://www.omnetpp.org/ 

@Component 
public class VehicleComponent { 
   public String id; 
   public Map<…> linkCapacities; 
   public Coord position; 
   public Double speed; 
   public Link destination; 
   public Parking selectedParking;    

 
   @Process 
   @PeriodicScheduling(period=500) 
   public static void measureSpeed( 
      @Out("speed") Double speed)  
     {…} 
} 
 
@Ensemble 
@PeriodicScheduling(period=1000) 
public class CapacityExchangeEnsemble { 
 
   @Membership 
   public static boolean membership( 
      @In("coord.position") Coord cPos, 
      @In("member.position") Coord mPos)  

{…} 
 
   @KnowledgeExchange 
   public static void exchange( 
      @InOut("coord.linksCapacities") Map<…> cLinksCapacities, 
      @InOut("member.linksCapacities") Map<…> mLinksCapacities) 

{…} 
} 

Figure 3: Code snippets from DEECo component and ensemble 
specification in Java. 

 

Figure 4: JDEECo runtime. 
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scheduler, which allows plugging-in existing simulators. To 
date, we have integrated MATSim traffic simulator this way. 

V. INVARIANT REFINEMENT METHOD 

In order to reason about self-adaptation during the design 
phase, DEECo framework provides the Invariant Refinement 
Method (IRM). IRM is based on goal-oriented requirements 
elaboration that stems from methodologies such as KAOS [8] 
and Tropos/i* [9]. IRM captures goals and requirements of the 
system as invariants that describe the desired state of the 
system-to-be at every time instant. This corresponds to the 
operational normalcy of the system-to-be and thus aligns well 
with the need of continuous operation of autonomic component 
ensembles. IRM is based on iterative decomposition of abstract 
goals. It is primarily a top-down method, where top-level 
invariants constitute high-level (general) goals of the 
application and are further decomposed into more specialized 
(fine-grained) invariants, which eventually map into concrete 
component processes (reflecting component responsibilities) 
and ensembles.  

To induce self-adaptivity in architecture design so that the 
system would react to changing situations in the environment at 
runtime, IRM captures and exploits architecture variability (in 
certain potentially overlapping situations) by OR-
decompositions. In particular, the designed architecture 
configurations corresponding to distinct situations that can be 
encountered at runtime are further elaborated to produce 
alternative realizations of system requirements.  

In Figure 5, the IRM decomposition tree for the example 
scenario is depicted. There, a simple example of self-adaptation 
in practice is given. To determine available parking space a 
Vehicle has two possibilities: (i) to use its own parking space 
sensor, which is however constrained and provides only 
readings in the immediate proximity to the vehicle (i.e., current 
road link), or (ii) to use the information exchanged with other 
vehicles. As shown in the figure, in order to take advantage of 

those methods certain assumptions need to hold at runtime – 
i.e., the reading sensor or the antenna need to remain operational 
and available for method (i) or (ii), respectively. In the best case, 
both assumptions hold and as such both methods are used at the 
same time. However, in cases where there is a problem with 
ensuring either of those assumptions, the component remains 
operational and exploits only one of the possible alternatives. 
By this, Vehicle adapts itself to the situation in the deployment 
environment and tries to achieve the best possible output, 
selecting among the available parking spaces near to its 
destination, always according to the available information. 

VI. SUMMARY 

To correctly design complex self-adaptive smart CPS is a 
hard task stemming from the fact that a correct design of such 
systems has to apply a holistic view that takes into account 
multiple aspects, many times even conflicting ones. 

In this paper, we have briefly introduced DEECo framework, 
which is intended for development and simulations of such 
complex self-adaptive smart CPS. In contrast to other 
frameworks, DEECo (i) is open and easily extensible, (ii) offers 
a dynamic component model based on ensembles, (iii) has two 
implementations for experimenting with smart CPS and self-
adaptivity, (iv)  provides a goal-based design method taking into 
account self-adaptation, and (v) allows for simulations of real-
life deployment by evaluating the system behavior under 
different network configurations and settings (taking into 
account also network latency and limited connectivity). 

The paper comes together with the artifact containing the 
JDEECo implementation of the example from Section II and 
integrated with the JDEECoSim tool. It can be accessed from 
http://self-adaptive.org/exemplars/v2v-DEECo.   
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Figure 5: IRM tree for the smart parking scenario. 
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Summary of the Paper 

The following work presents a method for early-stage time requirements analyzes, en-

suring that the developed system satisfies critical properties given in its specification. 

The analysis proposed are tailored for the DEECo component model and the character-

istics of the jDEECo platform - i.e. its execution and communication models (all de-

scribed in Section 4 of the paper). However, the whole method is designed to be appli-

cable into any development loop of an SCPS. The analysis can be used to suggest a cor-

rect system configuration with respect to its time-related aspects. It has been evaluated 

on the Intelligent Crossing System (ICS) use-case scenario (Section 2), where vehicles are 

driven automatically by the ICS through the intersection, improving its overall through-

put. The idea of the scenario is that the ICS takes control over the approaching vehicles, 

which then operate in an automated mode unless abnormal situation takes place (e.g. 

communication fails), which results in returning control to a driver. After the use-case 

scenario description, the state of the art is presented and the main pitfalls (being ad-

dressed by the proposed method) of related approaches are identified. Next (i.e. Section 

5), a brief overview on system constraints with respect to its real-time aspects is given. 

Following, Section 6 describes the actual contribution of the paper where the details of 

the analysis are given. The goal of this analysis is to provide such a configuration (with 

respect to its timely aspects - i.e. component process period) of the DEECo-based system 

that would satisfy its safety-critical requirements. The described analysis accounts for 

different physical properties of the deployment settings (e.g. maximum velocity of a 

vehicle) and assumes data prioritization that extends the scenario to allow for instance 

for privileged vehicles to be recognized in the intersection. The analysis is extended by 

a brief argumentation on the method robustness considering communication unreliabil-

ity (i.e. Section 7). 

 The following part (i.e. Section 8) is the evaluation of the method done in the OM-

Net++ simulation framework. The scenario is modeled from the perspective of the data 

traffic in the network and different configurations are implemented in order to verify 

the validity of the method. Furthermore, in the evaluation part, the measurements taken 

during the simulation are described by different statistics and depicted in both graphical 

and tabular forms justifying the validity of the analysis. The paper is then closed by con-

cluding remarks. 

Author Contribution and Goals Addressed 

This work is a result of a cooperation between the author’s host institution and research-

ers from the Department of Computer Science of the Technical University of Chemnitz. 

The author’s contribution in this work was provisioning the evaluation part for the pro-

posed method. As already mentioned, the evaluation has been based on the OMNet++ 

simulation in which the ICS scenario has been modeled. The measurements taken during 

the simulation execution showed the correctness of the proposed analyzes. 



4.7. Component-Based Design of Cyber-Physical Applications with Safety-Critical 

Requirements 

113 

With reference to the goals of this thesis, the research effort contributed to this work 

conforms mostly to goal G3, as it has been the one of the initial attempts to use simula-

tion-based techniques to validate the correctness of a DEECo-based system. Eventually, 

it has paved the way for the jDEECoSim framework implementation. Moreover, pre-

sented analyzes can be seen as a step forward towards formal methods introduction into 

the DEECo-based system verification. 
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Abstract

Cyber-physical systems typically involve large numbers of mobile autonomous devices that
closely interact with each other and their environment. Standard design and development tech-
niques often fail to effectively manage the complexity and dynamics of such systems. As a result,
there is a strong need for new programming models and abstractions. Towards this, component-
based design methods are a promising solution. However, existing such approaches either do
not accurately model transitory interactions between components – which are typical of cyber-
physical systems – or do not provide guarantees for real-time behavior which is essential in
safety-critical applications. To overcome this problem, we present a component-based design
technique based on DEECo (Dependable Emergent Ensembles of Components). The DEECo
framework allows modeling large-scale dynamic systems by a set of interacting components and,
in contrast to approaches from the literature, it provides mechanisms to describe transitory inter-
actions between them. To allow reasoning about timing behavior at the component-description
level, we characterize DEECo’s closed-loop delay in the worst case, i.e., the maximum time
needed to react to a change in the environment. Based on this, we incorporate real-time analysis
into DEECo’s design flow. This further allows us to analyze the system’s robustness under un-
reliable communication and to design decentralized safety-preserving mechanisms. To illustrate
the simplicity and usefulness of our approach, we present a case study consisting of an intelligent
crossroad system.

Keywords: Cyber-physical systems, component-based design, safety-critical applications,
real-time and timing analysis, unreliable communication, reliability-aware design

1. Introduction

Cyber-physical systems (CPS) are characterized by close interactions with their environment
and can be found in different upcoming domains such as smart traffic and transportation, intelli-
gent buildings, smart grid, etc. CPS are inherently distributed, i.e., they rely on a large number
of autonomous, typically mobile, embedded devices that form an ecosystem. The joint opera-
tion of devices within this ecosystem provides functionality, which is otherwise unattainable by
individual devices in isolation.

On the other hand, CPS are highly adaptive, i.e., they constantly react to changes in their
environment by modifying its structure and/or behavior accordingly. The collaborative aspect
between parts or components of such systems, as well as the necessity for them to function

Preprint submitted to Microprocessors and Microsystems December 8, 2015
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autonomously (in case that, for example, the connection to other parts or components gets inter-
rupted), poses an entire new dimension of challenges for designers. Typically, these challenges
are regarded as separate problems of communication networks, distributed control, etc. As such,
they have been addressed separately in the respective research fields. However, a significant
aspect of modern CPS is that they often are software intensive [1], which still remains widely
overlooked in the literature.

This means that most of their functionality is embodied in the software, which in turn be-
comes the most complex and critical constituent. Due to the fact of being distributed and adap-
tive, software becomes even more complicated and the system starts exhibiting so-called emer-
gent behavior. This is the situation where the system’s behavior cannot be inferred any longer
from its individual parts or components, but their interplay and their joint influence on the envi-
ronment have to be taken into account.

As a result, there is a strong need for holistic design and development methods that rather
focus on the whole ecosystem and its overall behavior than on individual constituents. Especially,
these methods have to provide systematic software engineering practices that allow managing the
increasing complexity of such systems and help controlling emergent behavior. By systematic
software engineering, we envision the following four aspects:

i) high-level (requirements-oriented) design with special focus on autonomous behavior, adap-
tivity and distributed collaboration,

ii) architectural design where a system is modeled by distributed components with clear re-
sponsibilities and well-defined interaction patterns,

iii) framework for implementation of components that allows for a straightforward traceability
w.r.t. (i) and (ii), and

iv) methods for design-time and runtime analysis (e.g., functional verification, timing analysis)
that predict and control the adaptivity and related emergent behavior of these systems.

The basic prerequisite for such systematic software engineering is the existence of software
models providing an appropriate level of abstraction. In this respect, classical existing software
models (e.g., component-based models such as AUTOSAR [2] or formal process models such as
Petri Nets [3]) largely fail to address the needs of distributed adaptive systems. This is mostly
because of the fact that they rely on a static structure of the system and thus are unable to model
an open-ended system, which adapts its architecture to the current state of its environment.

On the other hand, new software models (such as DEECo [4], GCM [5]) appear gradually.
They have been specifically developed to capture the nature of distributed adaptive systems and
are more suitable for the design and development of CPS. However, by focusing on the coop-
erative aspects and dynamics of components, they operate at a high level of abstraction and do
not provide means to model real-time behavior – which is particularly relevant to safety-critical
applications.

Contributions. In this paper, continuing and extending our previous work [6], we bridge the
gap between a (high-level) component-based description of the system and the analysis of its
real-time behavior. In particular, we make use of DEECo (Dependable Emergent Ensembles of
Components) in the context of a safety-critical cyber-physical application, viz., an intelligent
crossroad system (ICS).

2
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Figure 1: DEECo’s design flow. A sharp rectangle represents a single step of the process. A rounded rectangle depicts
outcome of a previous step. While, gray shapes correspond to the general design flow, the green ones are their concrete
reifications into the DEECo framework.

DEECo allows for a component-based design of highly dynamic systems and provides deter-
ministic semantics supporting real-time behavior. DEECo is a comprehensive solution as shown
in Figure 1, which covers i) requirements engineering with IRM (Invariant Refinement Method)
[7], ii) design and development based on DEECo constructs (i.e., components, ensembles, etc.)
[4], iii) implementation and deployment with CDEECo (a C++ runtime environment) [8], and
iv) simulation and test with the jDEECoSim simulator [9].

We characterize DEECo’s closed-loop delay in the worst case, i.e., the maximum delay that
it takes to react to a change in the environment. This builds the foundation for our real-time
analysis of DEECo-based systems, which we illustrate in the context of our ICS. The results of
this analysis are fed back to the component-description level which then capture the application’s
timing requirements. To this end, we extend DEECo’s design flow as shown in Figure 1, where
the proposed real-time analysis connects the high-level description with a concrete implementa-
tion of the system.

In contrast to [6], in this paper, we provide a more detailed treatment of DEECo’s worst-case
closed-loop delay and of the ICS case study. In addition, we analyze the system’s robustness un-
der unreliable communication and determine an upper bound on the number of packets that may
be lost at the communication channel without compromising safety in our case study. Further,
we discuss how to implement decentralized safety-preserving mechanisms, which are triggered
when something goes wrong, e.g., communication is completely lost, etc. Finally, we validate
our analysis by an extensive OMNeT++ simulation considering a varying number of packet
losses at the communication channel.

The paper is structured as follows. Section 2 presents our case-study used as the running ex-
ample, whereas Section 3 discusses related work. In Section 4, we give an overview of DEECo’s
basic concepts and illustrate them on our case study. Section 5 deals with DEECo’s closed-loop
delay in the worst case. This is then used to set up our real-time analysis as proposed in Sec-
tion 6. In Section 7, we study the case of packet losses at the communication channel and discuss
how to implement decentralized safety-preserving mechanisms for open-ended CPS. Following,
in Section 8, we evaluate our approach by comparing it with results obtained by an OMNet++

simulation and, in Section 9, we present some conclusions.

3
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ICS 

Figure 2: Intelligent crossroad system (ICS)

2. Case-Study

We consider an application scenario in the context of Vehicular Ad-hoc Networks (VANets)
[10] and autonomous vehicles, where an ICS optimizes the car throughput at a road crossing.
This is illustrated in Figure 2, where cars approach a two-lane crossing managed by the ICS.

The idea is to replace traffic lights to a great extent by using car-to-infrastructure (C2I) com-
munication and synchronizing in what order cars cross the intersection for an uninterrupted flow
in all directions. Note that there are different ways of implementing this case study. In particular,
one can design the ICS to take full control over cars adjusting their speed and steering as con-
sidered in [6]. However, this concentrates almost all computation workload at the ICS – making
more expensive hardware necessary – and requires cars to be enabled for remote operation.

In this paper, we follow an alternative approach, where the ICS computes – taking traffic
conditions and regulations into account – and assigns a speed to an approaching car at the in-
tersection. The car will then have to keep this speed to cross the intersection without stopping.
This solution is more viable to implement the proposed case study, since it does not require cars
to be modified for a remote operation. On the contrary, each (autonomous) car is responsible for
driving along its own trajectory and keeping its speed as assigned to it. If necessary, however, a
car may stop to avoid a crash or accident.

The ICS assigns speeds to cars and these report their current speeds back to the ICS via C2I
communication. As discussed later, the ICS needs to keep track of cars’ speeds in order to detect
potential hazards and trigger safety mechanisms. To this end, we foresee two operation modes:

i) Automatic mode: This is the default mode where all cars at the crossing behave as expected,
i.e., they keep their corresponding speeds as computed by the ICS. Here, the highest possible
throughput is reached provided that speed limit regulations are observed and safety of all
traffic participants can be guaranteed.

ii) Manual mode: This is the exception mode where one or more cars do not keep their com-
puted speeds and/or there is no communication between a car and the ICS, e.g., conventional
cars with a human driver. In this mode, the ICS works as standard traffic lights.

We define the region of influence by the area in which the ICS controls/monitors all approach-
ing cars. We assume that this area consists of a 50 m radius around the intersection. In this region,

4
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vehicles are prioritized such that their priorities increase as they get closer to the center of the
intersection and drop when they move away of it. Some of the vehicles at the ICS might also be
privileged such as, for example, ambulances or police cars in an emergency situation, etc.

The ICS can detect when a car enters the region of influence, e.g., by radar, pressure sensors,
etc. If no communication is received from one car after it has entered the region of influence (in
particular, a car’s intended direction, its current speed, etc. are needed), the ICS assumes that
either there has been an error or it is a conventional car with no I2C communication and switches
to manual mode. The same happens if communication is lost to one or more cars; a more detailed
analysis of this is given in Section 7.

Pedestrians can be easily handled in the manual mode. In the automatic mode, the ICS can
detect when pedestrians stand at the crossing for some time, e.g., by pressure sensors, request
buttons, etc., and stop the traffic to let them cross in a safe manner. Again, each car is responsible
for itself and should be able to react to unpredicted situations, e.g., performing an emergency
break, according to valid traffic regulations.

This scenario exhibits different challenges that need to be faced when designing dynamic
distributed systems. One of those challenges is the description of architectural changes that
occur during runtime. In our case study, cars/vehicles arrive to and leave the system at different
points in time, their priorities vary according to their distances to the crossing, etc. Such details
need to be properly reflected in the system design.

Furthermore, this scenario exhibits real-time requirements imposed to the system. In partic-
ular, it is required that the reaction time between a car and the ICS is kept below a certain upper
bound in order to ensure the required responsiveness of the overall system, where unreliable
communication needs to be considered. In turn, meeting those real-time requirements allows us
to guarantee safety, which translates into a collision-free crossing in our case study.

Lastly, since it is not possible to guarantee a fully reliable communication, the system has
to be designed to be self-adaptive. This way, the system switches to manual mode when it
realizes that real-time requirements cannot be met. To this end, as discussed later, we configure
a watchdog timer at all components (cars and ICS) that triggers a switch to manual mode.

3. Related Work

To position the presented approach among a multitude of the existing component models, we
constrain our focus to those that enable analyzing timing aspects.

The most prominent example is certainly AUTOSAR [2], which is of common use in the
automotive industry. AUTOSAR serves as a specification for different layers (i.e., application
software, runtime environment and basic software) of a system constituted by hierarchical com-
ponents. AUTOSAR itself does not provide any means to perform timing analysis and for that
reason it has been enriched by the TIMing MOdel (TIMMO) [11], which builds on the Timing
Augmented Description Language (TADL).

Another widely used model supporting timing analysis is AADL (Architecture Analysis and
Design language) [12]. It relies on Real-Time Calculus (RTC) [13], which is a formalism that
allows for system-level performance analysis of stream-processing systems constrained by hard
real-time requirements. Essentially RTC models are extracted from AADL and subsequently the
RTC tools can be employed.

Similarly, timing analysis enabled at the model level are supported by the BIP (Behavior,
Interaction, Priority) framework [14]. BIP supports real-time aspects by using timed components,
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which allow for timing properties being specified using timed variables and transitions. Those
are accounted for during the validation within the real-time engine implementing operational
semantics of the BIP models.

An architectural approach to modeling systems is also taken by SysML, which integrates
with MARTE [15] to enable modeling non-functional properties such as power consumption,
performance and timing.

AUTOSAR, AADL, SysML and BIP assume, however, static component architectures, which
effectively hinders their application in case of modern CPS development. In contrast, our ap-
proach targets at open-ended CPS where the architecture changes continuously (e.g., cars appear
and disappear without anticipation) leading to emergent behavior in the system.

Another example of a component model that allows for timing estimates of a system is the
Palladio Component Model (PCM) [16]. The strongest point of PCM is the extra-functional
property prediction framework that allows estimating overall system performance. It relies on
different models, depending on what is required to be analyzed (e.g., reliability, performance,
throughput, etc.). These are decorated by non-functional properties specification, which serves as
an input for model analysis. Similar to our approach PCM builds on simulation-based techniques
for model validation, which allows exploring different designs for a given system or application.
However, in a similar manner as the related approaches above, PCM does not support dynamic
architectures, which again limits its applicability in today’s complex CPS.

An interesting approach is proposed by Etzien et al. in [17, 18]. The authors describe a mod-
eling method for evolutionary distributed systems using the concept of System of Systems (SoS).
In order to capture both static and dynamic properties of the developed system, they use the con-
tract paradigm for specifying legal configurations of a SoS and to describe architectural changes
during runtime. In [19], the authors extend their work by providing a method for schedulability
analysis. They based their technique on both analytical and model checking methods, which
combined with the SoS contracts provide for a compositional and scalable solution.

In order to perform the analysis of [19], one needs to deal with a full-fledged implementation
of the system, from which necessary parameters are extracted to construct a state machine for
analysis. Such method is rather suitable for verification and validation of an existing implemen-
tation. In our case, the proposed analysis is intended to be used at an early design phase where
mostly system requirements are known (see Figure 1). Moreover, our analysis addresses CPS
with a strong connection to the environment – see Section 6, whereas [19] focuses on more
general-purpose systems.

4. Modeling with DEECo

As stated above, we make use of the DEECo component model [4]. DEECo describes the
architecture of a CPS by means of components (i.e., encapsulated well-defined active entities,
which perform sensing, computation and actuation) and so called ensembles, which are dynam-
ically established groups of components that cooperate to achieve a particular goal. DEECo
further provides a special requirements engineering method and traceability of requirements to
components and ensembles – for further details, we refer to [7].
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4.1. Architecture Modeling
Components. To illustrate the principles behind DEECo, Listing 1 depicts a component us-
ing a DSL (Domain-Specific Language) description.1 In DEECo, each component consists of
knowledge – see lines 8-16 – reflecting its current state. Knowledge is expressed by attributes
organized into hierarchical data structures. Access to one or more such attributes of a component
is performed through interfaces – see lines 1-5 – that are featured by the component.

1 interface MovingUnit:
2 id, time, crossingId, crossingDistance, crossingDirection, speed, privileged, mode
3

4 interface MovingUnitAggregator:
5 id, time, vehicles, speeds, mode
6

7 component Vehicle features MovingUnit
8 knowledge:
9 id: 42,

10 time: 1440691842456 ms,
11 crossingId: 12
12 crossingDistance: 35 m,
13 crossingDirection: South−West,
14 speed: 50 Km/h,
15 privileged: FALSE,
16 mode: AUTOMATIC,
17 ...
18 process UpdateSpeed:
19 in speed
20 function:
21 Actuators.setSpeed(speed);
22 scheduling: periodic( 5 ms )
23 ...
24

25 component ICS features MovingUnitAggregator
26 knowledge:
27 id: 12,
28 time: 1440691842458 ms,
29 vehicles: [...],
30 speeds [...]
31 privileged: [...],
32 mode: AUTOMATIC,
33 ...
34 process findPrivilegedVehicles:
35 in vehicles, inout privileged
36 function:
37 for (v : vehicles)
38 if (v.privileged)
39 privileged.add(v)
40 scheduling: triggered( changed(movingUnits) )
41 ...

Listing 1: DEECo component definitions based on a DSL

In addition, each component has a set of processes (essentially real-time tasks) that manipu-
late its knowledge. A process is characterized by a function (e.g., lines 20-22), whose parameter
list consists of knowledge attributes. DEECo’s runtime environment manages the release of pro-
cesses and takes care of knowledge retrieval before a process is executed and knowledge update
– also referred to as knowledge exchange – when a process finishes executing. Each of the com-
ponent’s processes is executed in isolation meaning that it is not supposed to communicate with
other processes (either from the same or a different component) in any other way than via the
component’s knowledge.

1Note that this DSL specification serves for demonstration only. Later we discuss how to derive a C++ implementa-
tion from this specification, which can then be used on embedded devices.
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A process can be executed in response to a timer event (i.e., periodic execution) or as a reac-
tion to a change in one of its attributes. In our example, the Vehicle component has a process that
sets/updates the speed of the car or vehicle. This is repeated periodically every 5 ms (see line 22).
As another example the ICS process, shown in Listing 1, determines whether there are privileged
vehicles in its region of influence (lines 34-40) and is executed whenever the number of vehicles
changes (line 40). Once processes are released (by DEECo’s runtime environment), these are
handed over to the platform’s operating system (OS), which is responsible for scheduling them
according to a desired policy – see Section 4.2.

Ensembles. An ensemble in DEECo defines a semantic connector between components and
constitutes their composition. The composition in DEECo is flat and occurs implicitly by com-
ponents dynamically joining an ensemble at runtime. When specifying an ensemble, prospective
components are described by roles. One component in the ensemble has a coordinator’s role,
whereas the remaining components are members of the ensemble.

The roles are defined by the interfaces – in our example, MovingUnit and MovingUnitAg-
gregator – which are matched at runtime to the actual components (i.e., their knowledge) for a
structural coincidence. Later, those components with matching interfaces are considered for the
ensemble evaluation process, which is composed of two steps. The first step involves checking
the membership condition, which is expressed as a logic predicate formulated upon coordina-
tor’s and member’s attributes. This determines whether two components (a coordinator and a
member component) should form an ensemble. The second step depends on the results of the
membership condition check and consists of exchanging attribute values between coordinator
and member according to the description given in the knowledge exchange specification.

In the example in Listing 2, the coordinator role is determined by the interface definition
MovingUnitAggregator and the member role by MovingUnit. This way, during the ensemble
evaluation, only components featuring appropriate interfaces will be considered. The member-
ship condition further constraints the number of ensemble members to those, which are located
no more than 50 m from the coordinator’s location. Then, according to the knowledge exchange
description, the coordinator’s movingUnits attribute is updated with information about all com-
ponents that fulfill the membership condition (which is checked every pens,i time units – see line
8 – with i being an index representing the component). This way, the ICS is aware only of those
vehicles, which are currently in its close proximity.

1 ensemble UpdateMovingUnitInformation:
2 coordinator: MovingUnitAggregator
3 member: MovingUnit
4 membership:
5 coordinator.id = member.crossingId, member.crossingDistance < 50 m
6 knowledge exchange:
7 coordinator.movingUnits.add({member})
8 scheduling: periodic( pens,i )

Listing 2: A DSL example of an ensemble definition.

DEECo’s deterministic semantics. DEECo components are autonomous and rely only on data
that is present in their knowledge. As mentioned before, any interaction of a component with
other components is realized by ensembles, which is externalized from the component itself.
This property of DEECo’s component model suits very well to both the design and the imple-
mentation of distributed adaptive systems, since all technical aspects related to communication
between remote components are abstracted away from the design phase and left for the runtime
environment to deal with them.
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Technically, the runtime environment periodically propagates ensemble-relevant knowledge
to all other components or nodes in the system – note that gossip-based algorithms [20] might
be used for this purpose. In our case study, ensemble-relevant data are the car’s distance to the
crossing, its speed, and its intended direction, etc. This is used to evaluate whether cars are
heading in the direction of the crossing or not.

Each node then keeps relevant reference knowledge from all other nodes from which it has
received data. In other words, components or nodes join (and leave) the system in an implicit
manner without performing any explicit handshaking. Since ensemble-relevant information is
present at all nodes, DEECo’s runtime environment performs a local evaluation of an ensemble
membership condition. If this holds true, the local reference knowledge of the remote compo-
nents involved is used for the knowledge exchange process.

In this way, DEECo’s semantics separates decision taking (i.e., ensemble evaluation and its
eventual knowledge exchange) from information sharing (i.e., knowledge propagation) processes
at the components. Since a DEECo component takes decisions based on locally available data,
it does not need to synchronize with other components in the system. On the one hand, this has
the advantage of high flexibility and adaptability. On the other hand, clearly, local data might get
outdated at the different nodes, which needs to be analyzed carefully as illustrated in Section 5.

1 namespace VehicleComponent {
2 struct Knowledge: CDEECO::Knowledge {
3 VehicleId id;
4 Time time;
5 CrossingId crossingId;
6 Distance crossingDistance;
7 Direction crossingDirection;
8 Speed speed;
9 bool privileged;

10 Mode mode;
11 ...
12 };
13

14 class UpdateDistance: public
15 CDEECO::PeriodicTask<Knowledge, Distance> {
16 UpdateDistance(auto &component);
17 Distance run(const Knowledge in);
18 };
19

20 class SetSpeed: public CDEECO::PeriodicTask<Knowledge, void> {
21 SetSpeed(auto &component);
22 void run(const Knowledge in);
23 };
24

25 class Component: public CDEECO::Component<Knowledge> {
26 static const CDEECO::Type Type = 0x00000001;
27

28 UpdateDistance updateDistance = updateDistance(∗this);
29 SetSpeed setSpeed = SetSpeed(∗this);
30 ...
31

32 Component(CDEECO::Broadcaster &broadcaster,
33 const CDEECO::Id id,
34 bool remotelyOperable);
35 };
36 }

Listing 3: A C++ example of Vehicle component.

4.2. Implementation and deployment
The implementation and distributed deployment of DEECo systems are supported by the

CDEECo framework. This framework maps DEECo concepts to C++ and constitutes our run-
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Figure 3: DEECo distributed deployment.

time environment (taking care of periodically propagating knowledge, performing ensemble
evaluations, performing knowledge exchange if applicable, etc.). As depicted in Figure 3, CDEECo
relies on an OS providing hardware abstraction and other services. Clearly, this OS needs to sup-
port real-time behavior, i.e., real-time scheduling, interrupt handling, etc., to be used in safety-
critical applications.

With respect to CDEECo’s implementation in C++, components and processes are handled
as classes, while knowledge is treated as a static data structure (with a fixed size in bytes). Thus
it is possible to operate on knowledge within bounded time. Moreover, it is easy to fragment
knowledge to fit into network packets, also within bounded time.

1 namespace VehicleInfoAndSpeedExchange {
2 typedef CDEECO::Ensemble< ICS::Knowledge, Vehicle::Knowledge∗,
3 Vehicle::Knowledge, Speed> EnsembleType;
4

5 class Ensemble: EnsembleType {
6 Ensemble(CDEECO::Component<ICS::Knowledge> &coord,
7 CDEECO::KnowledgeLibrary<Vehicle::Knowledge> &lib);
8

9 Ensemble(CDEECO::Component<Vehicle::Knowledge> &mbr,
10 CDEECO::KnowledgeLibrary<ICS::Knowledge> &lib);
11

12 bool isMember(const CDEECO::Id coordId,
13 const ICS::Knowledge coordKnowledge,
14 const CDEECO::Id memberId,
15 const Vehicle::Knowledge memberKnowledge);
16

17 Vehicle::Knowledge∗ memberToCoordMap(
18 const ICS::Knowledge coord,
19 const CDEECO::Id memberId,
20 const Vehicle::Knowledge memberKnowledge);
21

22 Speed coordToMemberMap(
23 const Vehicle::Knowledge member,
24 const CDEECO::Id coordId,
25 const ICS::Knowledge coordKnowledge);
26 };
27 }

Listing 4: A C++ example of vehicle-crossroad ensemble

A component is represented by a class which inherits basic behavior from a template with
knowledge as an argument. Similarly, processes are represented by classes inheriting basic be-
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havior from a template, depending on the process type, while accepting input and output types
as template arguments. The process’s code is contained in a virtual method in the base class.
The component class, process classes, and the knowledge data structure can be wrapped in a
namespace to improve code readability as shown in Listing 3.

Similarly to components, ensembles are also implemented using classes inheriting basic be-
havior from a template. The membership method and a pair of knowledge mapping methods
are realized as virtual methods in the base class. In case of ensembles, template arguments are
more complex, since the data type have to capture the coordinator’s and the member’s input/out-
put knowledge types. In order to simplify the code, the complex type of the ensemble can be
defined using typedef and wrapped together with ensemble class in a namespace as displayed in
Listing 4.

CDEECo’s sources are located on GitHub2. So far, we have been using FreeRTOS3 as an
OS to schedule DEECo processes on the corresponding nodes. As mentioned above, CDEECo
periodically propagates knowledge over available communication channels, in our case study, a
VANet. To this end, it periodically broadcasts binary patches covering the whole corresponding
component’s knowledge. These are bulks of binary data with offset, size and source component
ID (i.e., an identification code). Patches are then used to update knowledge on the receiver
component when no packet is lost. Otherwise the knowledge can be just partially updated.

This solution was chosen to maximize knowledge propagation, while the consistency can be
achieved by storing dependent data in single packets. Knowledge that has been successfully re-
ceived from remote components is stored in a so-called knowledge library. A knowledge library
is a data structure holding predefined number of remote knowledge data sets; when an ensemble
is evaluated true, a knowledge exchange is triggered copying (locally available) data from the
knowledge library to the local component’s memory space.

5. DEECo’s Closed-Loop Reaction Time

In this section, we analyze DEECo’s closed-loop reaction time in the worst case. This is
defined as the maximum delay that it takes a DEECo-based system to react to changes in the
environment. The term closed-loop reflects the fact that DEECo components interact with one
another.

For example, if a component A experiences a change in its internal states, e.g., due to one
or more physical variables measured by its sensors, this will take some time to reach another
component B – connected by ensembles – in the system. Similarly, component B’s reaction to
the change in component A will take some additional time to reach back component A. The sum
of these two times is the closed-loop delay between A to B. In other words, component A and B
form a loop.

For ease of exposition, we first make use of our case study and then generalize our results to
make them independent of the application. In our case study, knowledge needs to be exchanged
from a car to the ICS and from the ICS back to the car for the system to work as expected.
However, knowledge exchange happens based on local data when the corresponding ensemble
condition is evaluated to true at both the ICS and the car nodes separately.

As discussed above, knowledge is propagated (from the car to the ICS and vice versa) and
the ensemble membership check is performed (at the car and at the ICS) on a periodic basis. Let

2https://github.com/d3scomp/CDEECo
3http://www.freertos.org/
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us denote by p̂pro the maximum period with which knowledge is propagated by any node in the
system. Similarly, let p̂ens be the maximum period with which ensembles are evaluated at any
node in the system. That is:

p̂pro = max
∀i

(
ppro,i

)
,

p̂ens = max
∀i

(
pens,i

)
,

where ppro,i and pens,i are the knowledge propagation and the ensemble evaluation period of a
node i, respectively, with i being an index that identifies the corresponding component/node.

DEECo eliminates the need for synchronization and handshaking between components while
enormously simplifying the design and development complexity. As a result, these two processes
are not synchronized with one another and we have the following conditions in the worst case:

i) A car propagates its knowledge to the ICS immediately after a membership evaluation has
been performed at the ICS. As a result, data is received p̂ens time later at the ICS, when the
next membership evaluation is performed.

ii) In a similar manner, the ICS propagates its knowledge to the corresponding car just after a
membership evaluation has been performed at the car. As a result, data is received p̂ens time
later at the car too.

iii) The knowledge of the car changes immediately after knowledge has been propagated to the
ICS. As a result, the current knowledge is propagated with a delay p̂pro from the car to the
ICS, when a new propagation is performed.

iv) The ICS’s knowledge changes immediately after knowledge has been propagated to the car.
Hence, the current knowledge is not propagated until a new propagation is started p̂pro time
later.

As a result, in the worst case, we have a delay due to the asynchronous nature of the DEECo
framework which is given by the following expression:

2 × p̂pro + 2 × p̂ens. (1)

In addition, there is also a process running at the ICS which computes the speed for the car
that guarantees no collisions at the current traffic situation. This process is triggered when a
knowledge exchange is executed at the ICS (i.e., when the ensemble is evaluated to true between
the car and the ICS). We denote by rICS the worst-case response time (WCRT) of this process.
Analogously, there is a process running at the car, which applies the new speed values to the
physical car. This process is also triggered when a knowledge exchange happens at the car and
its WCRT is rcar.

As a result, the worst-case delay Dmax for a closed-loop reaction in DEECo, i.e., a reaction
of a car to an input from the ICS computed based on the car’s current knowledge, is given by the
following equation also illustrated in Figure 4:

Dmax = 2 × p̂pro + 2 × p̂ens + cICS + ccar + rICS + rcar, (2)

where ccar is the communication delay from the car to the ICS and cICS is the communication
delay from the ICS to the car.

12



Chapter 4. Collection of Papers 

126 

  

ppro 

ppro 

pens 

pens 

ccar cICS 

rcar 

rICS pens 

ppro 

pens 

ppro 

Data 

propagation 

Ensemble 

evaluation 

Data  

propagation 

Ensemble 

evaluation 

A
t 

th
e
 I
C

S
 

A
t 

th
e

 c
a

r 

Communication 

Dmax 

Figure 4: Composition of DEECo’s closed-loop delay Dmax: In the worst case, data may change immediately after
knowledge has been propagated at the car. This data may also arrive after an ensemble evaluation has been performed at
the ICS. In addition, computation at the ICS may finish immediately after knowledge propagation and the resulting data
then reaches the car just after the end of an ensemble evaluation.

Since there is interference by other messages (from other cars), ccar is the maximum possible
communication delay in the network. However, from the ICS to the car, there is no interference
– assuming a full-duplex communication channel – and the communication delay cICS is equal
to the transmission time, since the ICS does not compete for accessing the network.

The term 2× p̂pro +2× p̂ens in Equation (2) is clearly intrinsic to DEECo and does not depend
on the application, but rather on how components are configured. In addition, cICS + ccar is the
total communication delay between the ICS and a car, whereas rICS + rcar is the delay due to
computation at the ICS and at the car. As a result, DEECo’s closed-loop delay in the worst-case
can be generalized, i.e., made independent of the application under consideration, as follows:

D̄max = 2 × p̂pro + 2 × p̂ens + Cmax + Rmax, (3)

where Cmax is the sum of the worst-case communication delay between any two DEECo compo-
nents and Rmax is the sum of the WCRTs of computation processes involved at the corresponding
components or nodes.

6. Real-Time Analysis

The purpose of performing a real-time analysis is to guarantee that timing constraints can be
met by the system, which is required in safety-critical applications. In the case of DEECo, this
boils down to checking that D̄max as per Equation (3) is below a given time upper bound, which
stems from physical processes involved and needs to be known to or obtained by the designer.
In turn, D̄max depends on Cmax and Rmax, i.e., on the delays incurred by communication and
computation processes involved – which are closely related to the technologies and techniques
used for implementing the system.

All in all, our real-time analysis consists of the following steps that we illustrate next in
the context of our case study: i) obtaining the worst-case computation delay, ii) obtaining the
worst-case communication delay, iii) determining system constraints, and iv) obtaining a feasible
DEECo configuration.
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6.1. Obtaining the worst-case computation delay

As discussed previously, CDEECo – DEECo’s runtime environment – is executed on top of
an OS at each node in the system. Among others, CDEECo is in charge of releasing component’s
processes as specified in the component description. Clearly, to be used in safety-critical appli-
cations, CDEECo relies on specific technologies that make real-time scheduling and real-time
communication possible. In particular, the OS needs to support real-time scheduling; otherwise,
it will not be possible to guarantee real-time behavior.

The techniques for schedulability analysis, i.e., testing whether processes meet their dead-
lines at the different nodes, strongly depend on the scheduling algorithm used. As mentioned
above, CDEECo makes use of FreeRTOS, which supports fixed-priority scheduling and allows
for the rate monotonic policy [21]. That is, processes are given fixed priorities according to the
following rule: The shorter a process’s period is, the higher the priority assigned to it.

Let us denote by T the set of processes on a given node. Further, τi is a process that belongs to
T where ei denotes its worst-case execution time (WCET) and pi denotes its period of repetition.
For T to be schedulable, the following has to hold for each τi and 1 ≤ i ≤ |T|, being |T| is the
number of elements in T: ∑

∀τ j∈T̂

⌈
pi

p j

⌉
e j ≤ pi, (4)

where by T̂ we denote the subset of processes from T which have a higher priority than τi.
This expression means that for each process τi to be schedulable (and, hence, for T to be

schedulable), the sum of all executions of higher-priority processes in a time interval equal to pi

plus its own execution ei should be less than its deadline pi. Note that Equation (4) is sufficient
but not necessary. A sufficient and necessary test can be achieved by response time analysis [22];
however, the sufficient test of Equation (4) is enough for the purpose of this paper. Now, since
the following holds: ∑

∀τ j∈T̂

⌈
pi

p j

⌉
e j ≤

∑
∀τ j∈T̂

(
pi

p j
+ 1

)
e j,

we can reshape Equation (4) to:

∑
∀τ j∈T̂

e j

p j
+

∑
∀τ j∈T̂(e j)

pi
≤ 1. (5)

Clearly, if Equation (5) holds, Equation (4) will also hold. However, Equation (5) is easier to
compute and operate with.

In our case study, to obtain Rmax = rICS + rcar, let us denote by TICS the set of computation
processes at the ICS. Further, we assume that a process τi is the one involved in the closed-loop
delay, i.e., the one computing the new speed for a given car. Considering that T̂ICS is the subset
with higher- or equal priority processes than τi at the ICS, we can compute rICS as follows:

rICS =

 ∑
∀τ j∈T̂ICS

e j

p j

 pi +
∑

∀τ j∈T̂ICS

e j. (6)
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Analogously, at the car, we can obtain rcar as follows:

rcar =

 ∑
∀τ j∈T̂car

e j

p j

 pi +
∑
∀τ j∈T̂car

e j. (7)

6.2. Obtaining the worst-case communication delay

Similar to computation delay, communication delay strongly depends on the underlying tech-
nologies and techniques used. In the context of our case study, a number of techniques have
been already proposed to realize collision-free communication or reduce packet loss in VANets.
For example, space division multiple access (SDMA) has been proposed for busy intersections,
which is based on assigning time slots to given locations on a road [23, 24]. That is, cars use
different time slots to communicate depending on where on the road they currently are. Other so-
lutions combine special antennas with a TDMA (time division multiple access) scheme to reduce
packet loss in a VANet [25, 26].

Since VANets are usually based on wireless communication [27], we assume that Ethernet
IEEE 802.1Q is the underlying protocol, which provides mechanisms to prioritize messages [28].
In general, we will normally have a number of access points (AP) which are connected to a
full-duplex switch via Ethernet. In this section, we consider that communication to the AP is
collision-free as per one of the above mentioned approaches – later we remove this assumption
to analyze the effect of packet loss. Assuming that wireless network provides 100 Mbps and that
messages are at most 1 Kbit (1024 bits), then the transmission time cW on the wireless network
is at most – considering a 144-bit protocol overhead:

cW =
1024 + 144
100 Mbps

= 11.68 µs.

However, the switch then sends messages to the ICS according to their priorities. Let us
consider that the ICS’s region of influence is divided into sectors with different priorities – see
Figure 5. Cars that are in the first sector (e.g., within 10 m from the intersection) have higher
priority than cars in the second sector (e.g., from 10 m to 20 m) and so on. At a given point in
time, if a car is in more than one sector simultaneously, it will be assigned the highest priority
among those sectors. The switch then sends messages to the ICS according to these priorities.

Let us now analyze the communication segment between the switch and the ICS. To this end,
let M denote the set of all messages being sent to the ICS over the switch. Further, mi denotes
one such message in M where ci is its transmission time – note that ci is constant for a given i
which results from the amount of bits to be sent and the bandwidth of the communication channel
– and zi denotes the minimum inter-arrival time between two consecutive such messages. The
deadline of a message is also given by zi.

Generally, for all messages in M to meet their deadlines, the following has to hold for 1 ≤
i ≤ |M|, where |M| is the number of elements in M:

bi +
∑
∀m j∈M̂

⌈
zi

z j

⌉
c j ≤ zi, (8)

where M̂ is the subset of M with higher- or equal priority messages than mi and bi denotes
blocking time on the communication channel. That is, whenever a message needs to be sent, a
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Figure 5: Priorities are given according to the proximity to the intersection

lower-priority message might eventually be using the communication channel. Since this lower-
priority message cannot be interrupted, there is a blocking time on the bus. Clearly, in worst
case, bi is given by the maximum transmission time among all lower-priority messages:

bi =
|M|

max
l=i

(cl). (9)

Considering that
∑
∀m j∈M̂

⌈
zi
z j

⌉
≤

∑
∀m j∈M̂

(
zi
z j

+ 1
)

holds, we can remove the ceiling function
and approximate Equation (8) as shown below:

∑
∀m j∈M̂

c j

z j
+

bi +
∑
∀m j∈M̂(c j)

zi
≤ 1. (10)

To demonstrate this in our case study, let us assume that the Ethernet link between the switch
and the ICS has a bandwidth of 1 Gbps. If messages have a length of at most 1 Kbit (1024 bits),
and the protocol overhead is of 144 bits, we have that the transmission time ci of a message mi is
given by čE :

čE =
1024 + 144

1 Gbits
= 1.168 µs.

Further, with help of Equation (10), we can compute the transmission time on the Ethernet
link taking contention by higher- and equal priority messages into account, which we denote by
ĉE :

ĉE =

 ∑
∀m j∈M̂

c j

z j

 zi + bi +
∑
∀m j∈M̂

c j. (11)

In addition to the transmission time, there is always a delay at the AP and at switches in
Ethernet – denoted by eAP and eS W respectively, which accounts for buffering and routing tasks.
This is typically in the order of 2 µs.

Cmax = cICS + ccar can now be obtained. To this end, recall that we have two Ethernet links:
one from the AP to the switch and another from the switch to the ICS. The ICS does not suffer
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from contention at the communication channel, since the connection from and to the APs is
assumed to be full duplex. As a result, cICS is given by:

cICS = 2 × čE + cW + eS W + eAP. (12)

On the other hand, cars share the communication channel and, hence, they may have con-
tention at the communication channel leading to a ccar as follows:

ccar = 2 × ĉE + cW + eS W + eAP. (13)

6.3. Determining system constraints
Timing constraints are clearly derived from the application. In our case, we consider that

a car needs to be provided with new speed values at every single meter of its trajectory (taking
vehicle dynamics into account such inertia, braking distance, etc.). If a car’s speed is at maximum
50 Km/h (assuming an urban scenario), we need to compute the time t1m that it needs to cover
1 m of its trajectory:

t1m =
1 m × 3600 s/h

50 · 103 m/h
= 72 ms. (14)

On the other hand, the computation and communication overhead depend on the number of
components, in particular, cars/vehicles in the system, which is the second constraint from the
application. Clearly, the more cars enter the ICS’s region of influence, the more computation and
communication overhead there will be. To compute the maximum possible number of cars at
the crossing, let us assume that a car is at least 2 m long and that there is a least a 1 m distance
between any two cars. As a result of this, in the worst possible case, the number of cars n
approaching the intersection from all directions is given by the following equation:

n = 4 ×
⌈
50 m
3 m

⌉
= 68. (15)

We can use Equation (15) to configure p̂ens and p̂pro in the next section and the timing con-
straint as per Equation (14) to perform a feasibility analysis as discussed later.

6.4. Obtaining a feasible DEECo configuration
There will be at most 68 different ensemble instances (between the ICS and each of the

cars) at the ICS – see Equation (15). In addition, there will be 68 processes to compute new
speed values for each car. Since the ensemble membership check triggers a knowledge exchange
– recall that knowledge exchange is based on locally available data and that knowledge/data
propagation (from the ICS to the cars and vice versa) is a separate and asynchronous process –
when evaluated true, we can assume that in the worst case all 68 ensemble processes trigger their
corresponding computation processes simultaneously. In addition, there will be one knowledge
propagation process for the ICS4.

Assuming that all processes have a WCET ei = 25µ s (note that most these processes consist
in checking logic conditions, assigning pointers to given memory spaces, etc., or are simple
computations), we can use Equation (5) applied to the ICS as follows:

0.025 ms
p̌pro

+ 68 ·
2 × 0.025 ms

p̌ens
+

(0.025 ms + 68 · (2 × 0.025 ms)
p̌ens

≤ 1, (16)

4Note that the knowledge propagation from cars does not produce any overhead at the ICS, but at the respective cars.
17
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where p̌pro and p̌ens are the minimum periods with which knowledge is propagated and with
which ensembles are evaluated in the system. That is:

p̌pro = min
∀i

(
ppro,i

)
,

p̌ens = min
∀i

(
pens,i

)
.

Note that if Equation (16) holds for p̌pro and p̌ens, it will also hold for any ppro,i and pens,i.
We obtain the following value for p̌ens assuming 2× p̌pro = p̌ens, i.e., that knowledge propagation
is done twice as frequently as any ensemble membership check5:

p̌ens ≥ 6.88 ms,

and, hence, p̌pro has to be greater or equal to 3.44ms. Note that there cannot be a pens,i that is
less than p̌ens. Similarly, ppro,i is bounded from below by p̌pro. Otherwise, Equation (16) will not
hold.

On the other hand, the upper bounds p̂ens and p̂pro,i need to fulfill the system’s feasibility
condition. That is, DEECo’s closed-loop delay must be at most equal to the timing constraint
t1m:

Dmax ≤ t1m. (17)

Dmax is DEECo’s closed-loop delay for our case study as per Equation (2), i.e., where Rmax =

rICS + rcar and Cmax = cICS + ccar in general expression D̄max as given in Equation (3).
We choose p̂ens = 14 ms – twice as much as p̌ens – and hence p̂pro = 7 ms, i.e., we again have

2 × p̂pro = p̂ens. With these values of p̂ens and p̂pro, we verify next whether Equation (17) can be
met. If not, new values of p̂ens and p̂pro need to be chosen – clearly, these should be greater than
or equal to their lower bounds p̌ens and p̌pro respectively.

To test whether Equation (17) holds for the chosen p̂ens and p̂pro, we need to compute the
corresponding rICS , rcar, cICS , and ccar. We can compute rICS using Equation (6) and assuming
that all processes are respectively released either at a p̂ens or a p̂pro rate6.

rICS = 14 ms ×
(

0.025 ms
7 ms

+ 68 ·
2 × 0.025 ms

14 ms

)
+ 0.025 ms + 68 · (2 × 0.025 ms) ≈ 7 ms. (18)

Similarly, we can compute rcar using Equation (7). In the car, there are only one ensemble
process, one process to update the speed with the new one assigned by the ICS, and a knowledge
propagation process. Again, we assume the ensemble process triggers the knowledge exchange
process at cars. Assuming again ei = 25 µs, we obtain:

rcar = 14 ms ×
(

0.025 ms
7 ms

+ ·
2 × 0.025 ms

14 ms

)
+ (0.025 ms + 2 × 0.025 ms = 0.18 ms.

Now we need compute ĉE , i.e., the transmission time on the Ethernet link taking contention
into account, using Equation (11):

ĉE = p̂pro × 68 ×
1.168 µs

p̂pro
+ 68 × 1.168 µs = 158.85 µs,

5This is a design decision that needs to be taken. In general, since ensemble membership checks rely on local
knowledge, it is meaningful that knowledge be updated as often as necessary to guarantee desired functionality.

6Note that processes with different rates are also possible; however, this is not meaningful in the context of our case
study, where each process stands for an approaching car at the intersection.

18



Chapter 4. Collection of Papers 

132 

  

where ci and zi have been replaced by cE and p̂pro respectively. Further, bi is zero according to
Equation (9), since we consider the lowest priority message for ĉE , i.e., the one suffering the most
contention by other messages. The communication delay from and to the ICS, can be computed
using Equation (12) and Equation (13):

cICS = 18.02 µs, ccar = 333.38 µs.

Finally, from Equation (2), we have that:

Dmax = 2 × 7 ms + 2 × 14 ms + 0.3334 ms + 0.0181 ms + 7 ms + 0.18 ms ≈ 50 ms,

which is less than t1m = 72ms – see Equation (14). That is, our ICS is able to meet all deadlines
in the worst case.

7. Robustness under Unreliable Communication

In general, if many consecutive packets are lost on the communication channel, the system
will experience malfunction putting safety into risk. In this section, we will determine the number
of consecutive packets that can be lost at maximum without compromising safety. In other words,
we quantify the system’s robustness under unreliable communication.

As discussed above, Equation (2) states the worst-case delay incurred by our DEECo-based
ICS in case of a fully reliable communication. This is obtained considering that data at a car
can be updated immediately after knowledge has been propagated – for the reason that processes
updating and propagating data are not synchronized with each other. As a result, this data will be
sent the next time a knowledge propagation is performed, i.e., p̂pro time later. If now this packet
is lost on the communication channel, data will incur an additional delay equal to p̂pro. Further,
if kcar denotes the number of consecutive packets that are lost, then data from the car to the ICS
incurs the following delay:

p̂pro + kcar × p̂pro + ccar, (19)

where again ccar denotes the delay on the communication channel from the car to the ICS.
In a similar manner, if kICS denotes the number of consecutive packets that are lost from the

ICS to the car, then data from the ICS incurs following delay to reach the car:

p̂pro + kICS × p̂pro + cICS , (20)

where, as discussed above, cICS is delay on the communication channel from the ICS to the car.
Let us denote by k = kcar + kICS the total number of packets lost between the ICS and the car.

We can now combine Equation (19) and Equation (20) to determine the closed-loop delay of the
system in case of unreliable communication:

D̂max = (2 + k) × p̂pro + 2 × p̂ens + cICS + ccar + rICS + rcar, (21)

where again rICS and rcar denote the maximum delay to finish computation at the ICS and the
car respectively. Note that Equation (21) reduces to Equation (2) for k = 0, i.e., when no packets
are lost on the communication channel.

Using the values of p̂pro, p̂ens, ccar, cICS , rcar, and rICS computed in the previous section,
we can now determine the maximum k that can be tolerated without affecting the system’s func-
tionality and safety. That is the maximum k that makes D̂max be at most equal to t1m as per
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Equation (14). We denote this maximum k by kmax:

kmax =

⌊
t1m − Dmax

p̂pro

⌋
= 3. (22)

Equation (22) indicates that the sum of kcar and kICS , each of which represents the number of
consecutive packets being lost in one or the other direction, cannot be more than 3 for the system
to operate correctly.

Safety Mechanisms. Note that we can use the previous results to implement safety mechanisms
at the ICS and at cars. In particular, whenever communication is lost for longer than t1m time
between the ICS and any car in the system or vice versa, both the ICS and the car switch to
manual mode, i.e., the ICS starts working as standard traffic lights.

This can be implemented by DEECo processes that run at the different cars and at the ICS and
trigger the manual mode in a decentralized manner. In other words, these processes behave as
watchdog timers at the different nodes. They force a switch to manual mode at the corresponding
node, if no packets have been received for longer than t1m time. Note that here, for ease of
exposition, we neglect the time which is necessary to process data at cars, i.e., p̂ens + rcar, and at
the ICS, i.e., p̂ens + rICS . Whereas there is only one such watchdog processes at a car, there are
multiple ones at the ICS; one for each car in the system.

It should be noticed that the ICS does not need to notify cars whenever it switches to manual
mode; it suffices if it stops assigning speeds to them and cars themselves will automatically
switch to manual mode. In the same way, if a car first switches to manual mode, the ICS will
detect this on its own without need for notification from the car.

In the worst case, since we do not know which packets may be lost, we may have up to 3× t1m
delay for the whole system, i.e., all cars and the ICS, to switch to manual mode in a decentralized
manner. This results from considering the following conditions:

i) A packet from ICS is sent to arrive exactly t1m time after its last packet at a given car.

ii) This packet from the ICS is lost at the communication channel such that the car (locally)
switches to manual mode.

iii) All packets from the car to the ICS also get lost such that the ICS realizes that the car is in
manual mode – and triggers itself a switch to manual mode – not until t1m time later.

iv) All packets from the ICS to the remaining cars get lost such that, in the worst case, all other
cars switch to manual mode t1m time after the ICS.

As discussed above, this delay corresponds to 3 m in the trajectory of a car in our case study.
Hence the ICS has to assign speeds to cars – in the automatic mode – such that there is sufficient
distance between them taking vehicle dynamics into account (e.g., if a car suddenly breaks, it
will not stop immediately due to its inertia, etc.).

Finally, only the ICS can decide to go back to the automatic mode whenever communication
to all cars has normalized. To this end, the ICS needs to notify or start assigning speeds to all
cars in the system. Note that the delay for switching to the automatic mode is given by t1m since
we assume a normal communication.
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Priority levels 7
Message length 1024 bits
Packet send interval 7 ms (p̂pro from the analysis)
ICS response delay p̂pro + p̂ens + rICS = 28 ms
A car response delay p̂pro + p̂ens + rcar = 21.18 ms
Bandwidth (Car to AP) 100 Mbps
Bandwidth (ICS to AP) 1 Gbps

Table 1: Simulation parameters

8. Experimental Evaluation

In this section, we validate the analysis presented in Section 6 by means of simulation. To
this end, we created an OMNet++ simulation [29] using INET hardware models.

We have set up an OMNet++ simulation by manually implementing DEECo components as
OMNet++ modules. In particular, we have implemented an OMNet++ module for each vehicle
at the intersection and for the ICS. While the ICS is stationary, vehicles and their correspond-
ing modules in OMNet++ move with given speeds. The modules generate network traffic that
emulates the communication of vehicles entering and exiting the ICS’s region of influence. This
reflects the knowledge/data propagation for our DEECo-based ICS, from which we collect end-
to-end communication latencies for a large set of simulated packet transmissions.

Our network topology consists of one ICS host connected by a full-duplex switch to three
AP – see Figure 6. Vehicles connect dynamically to the AP adjusting message priorities as they
get closer to the intersection. The communication from the switch to the ICS host is performed
under message prioritization according to the Ethernet 802.1Q standard. Our simulation scenario
spans different numbers of vehicles (20, 50 and 70 correspondingly) exchanging packets with the
ICS. Table1 summarizes the most important simulation parameters considered in our evaluation.

Figure 7 and Table 2 show the results of our simulation with respect to closed-loop reaction
time – i.e., the Car-ICS-Car delay – and for an increasing number of consecutive packet losses
at the communication channel. In the case that no packets are lost, this figure shows that our
Dmax = 50 ms – computed at the end of Section 6 – is safe. That is, in this case, all delay values
in the system are always less than 50 ms even for 70 cars, i.e., two more cars than what it is

AP1 AP2 AP3 

ICS 

Switch 

Figure 6: Simulated network consisting of three access points (APs) and a switch
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considered and allowed by the analysis presented in the above sections.

Evaluation under Unreliable Communication. Now, we discuss our simulation results for a
varying number of consecutive packet losses either from the car to the ICS or from the ICS to
the car. As it can be observed in Figure 7, the system operates properly – i.e., the Car-ICS-Car
delay is below below t1m = 72 ms – for up to 3 consecutive packet losses, which validates our
analysis in Section 7. Clearly, the more packets are lost, the higher the Car-ICS-Car delay is;
however, this is always less than the computed threshold t1m and, hence, the system can remain
in automatic mode.

For the case of 4 packets lost, also depicted in Figure 7, the Car-ICS-Car delay starts ex-
ceeding the threshold t1m = 72 ms – even when considering only 20 cars at the intersection. As
a result, the system cannot tolerate more than 3 consecutive packet losses without switching to
manual mode. This again is in accordance with the computed upper bound on packet losses given
in Equation (22).

Realism of the Evaluation. The above results are based on a simulation and, thus, they may
differ in reality. In particular, we have made a number of assumptions which may not hold and,
hence, have an impact on our evaluation results. In the following, we discuss this in more detail.

• The computed t1m may not hold. This is based on the assumption that cars/vehicles can
have speeds of up to 50 Km/h – see (14). However, since cars are responsible for their
speeds constant, in reality, it may happen that one or more cars exceed this speed limit by
some amount. A solution to this is to consider a safety margin and, for example, compute
a new t1m for 60 Km/h instead. However, it now may happen that the ICS cannot meet this
deadline anymore. To overcome this problem, the number of cars at the intersection can be
restricted to a safe value. If more cars than safe enter the ICS’s region of influence, it will
switch to manual mode. Clearly, this higher speed limit can also be exceeded, however,
this would fall into malicious behavior and, hence, the ICS would also switch to manual
mode.

• The computed maximum number of cars at the intersection n may also not hold. This
is based on an assumption on the minimum length of cars and on the maximum possible
distance between any two cars at the intersection – see (15). If these assumptions do not
hold in practice, the maximum number of cars at the intersection may potentially increase.
This has impact on the WCRT of the ICS rICS and on the worst-case communication delay
from a car to the ICS ccar. As a result, the ICS may probably not be able to meet deadlines
anymore and, hence, it will have to switch to manual mode, if more cars than expected
enter its region of influence.

• The WCET of processes at the cars and at the ICS may be greater than the assumed ei =

50 µs. This will have direct impact on the WCRT at the car rcar and at the ICS rICS . As a
consequence, the ICS may not be able to meet deadlines anymore and, again, it will have
to switch to manual mode, if a given number of cars is exceeded at the intersection.

• The bandwidths assumed for the different segments (either from the car to the AP or from
the AP to the ICS)are less than those assumed in Table 1. This leads to increased com-
munication delays in both directions from the car to the ICS and vice versa. The ICS may
stop being able to meet deadlines and, again, will have to restrict the number of cars at the
intersection.
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From the above discussion, it should be clear that we can account for discrepancies between
our simulated and a real-life ICS by taking a conservative estimate on the maximum number of
cars that the ICS can handle. If, in practice, this number is exceed, the ICS will switch to manual
mode.
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No packet lost 20 vehicles 50 vehicles 70 vehicles
Mean 49.2245 49.2507 49.2694

Std. Dev. 0,0157 0.00298 0.03723
Variance 2.42 · 10−7 8.88 · 10−7 13.86 · 10−7

1st Quartile 49.2124 49.2315 49.2449
Median 49.2182 49.2449 49.2582

3rd Quartile 49.2315 49.2716 49.285
Max 49.3117 49.4453 49.5121

1 packet lost
Mean 56.2245 56.2507 56.2692

Std. Dev. 0,0155 0.00299 0.0371
Variance 2.41 · 10−7 8.93 · 10−7 13.8 · 10−7

1st Quartile 56.2111 56.2315 56.2449
Median 56.2182 56.2449 56.2582

3rd Quartile 56.2315 56.2716 56.285
Max 56.3117 56.4319 56.4987

2 packets lost
Mean 63.2246 63.2508 63.2694

Std. Dev. 0,0156 0.00298 0.0372
Variance 2.441 · 10−7 8.91 · 10−7 13.9 · 10−7

1st Quartile 63.2124 63.2315 63.2449
Median 63.2182 63.2449 63.2582

3rd Quartile 63.2315 63.2716 63.285
Max 63.3117 63.4453 63.5121

3 packets lost
Mean 70.2246 70.2509 70.2693

Std. Dev. 0,0156 0.00298 0.0371
Variance 2.435 · 10−7 8.9 · 10−7 13.75 · 10−7

1st Quartile 70.2124 70.2315 70.2449
Median 70.2182 70.2449 70.2582

3rd Quartile 70.2315 70.2716 70.285
Max 70.3117 70.4453 70.4987

4 packets lost
Mean 77.2245 77.2507 77.2694

Std. Dev. 0,0156 0.00298 0.0372
Variance 2.418 · 10−7 8.9 · 10−7 13.85 · 10−7

1st Quartile 77.2124 77.2315 77.2449
Median 77.2182 77.2449 77.2582

3rd Quartile 77.2315 77.2716 77.285
Max 77.3117 77.4319 77.5388

Table 2: Reaction time statistics (values given in milliseconds)
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9. Concluding Remarks

In this paper, we have presented DEECo as a special-purpose, component-based, design and
development framework for open-ended CPS. DEECo specifically targets at dynamic distributed
systems and, thus, provides systematic software engineering mechanisms to describe and analyze
such complex application scenarios. These mechanisms mainly consist in modeling transitory
interactions between one or more components in the system.

We extended DEECo’s design flow by a technique to estimate worst-case, closed-loop, re-
sponse times between DEECo components. This effectively allows guaranteeing real-time re-
quirements from high-level DEECo-based designs provided that the underlying platform sup-
ports real-time, e.g., real-time OS, priority-based communication protocols, etc. Clearly, if the
underlying technologies are nondeterministic, then it is not possible to provide any timing guar-
antees and, as a consequence, no safety-critical applications can be implemented on their basis.

We illustrated our proposed technique based on an intelligent crossroad scenario. Towards
this, we derived the worst-case delay Dmax of a DEECo-based system – see Equation (2). This
analysis is general enough and can be used for other applications. Note that the term 2 × p̂pro +

2× p̂ens is the overhead by DEECo, whereas cICS + ccar and rICS + rcar stand for the communica-
tion and the computation overhead respectively. DEECo’s overhead is configurable by properly
choosing p̂pro and p̂ens which again need to be in accordance with the application requirements.
The communication and computation overhead will depend on the used technologies such as
communication protocols, scheduling algorithms, etc.

Based on our analysis, we evaluated the robustness of a DEECo-based design against packet
losses at the communication channel. Towards this, we analytically obtained a upper bound on
the number of packets that can be lost without affecting the system’s safety. We further validated
this bound by means of extensive experiments based on an OMNet++ simulation. In addition,
we proposed and discussed safety mechanisms that can be integrated into a DEECo design in
order to adapt to unpredicted communication loss between components.

We envision integrating the proposed technique into the existing ensemble development life
cycle [30], which provides a systematic approach (i.e., methodology) towards engineering open-
ended CPS. The presented work fits into the modeling part of that cycle, which is followed by
verification performed on the basis of simulation techniques – similar to the procedure shown in
this paper. An important aspect is also the requirements engineering part, which should besides
functional properties also account for extra-functional, in particular, real-time aspects.

Overall, the technique presented in this paper allows reasoning about real-time requirements
at the component level and constitutes a necessary step towards holistic software engineering
methods for modern cyber-physical systems.
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Appendix A. DEECo-based ICS implementation

In the following, we show an example of a DEECo model for the ICS case study. The study
is based on the CDEECo (C implementation of DEECo) library which provides scheduling via
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FreeRTOS7, deployment on the STM32F48 board, communication via the IEEE802.15.4 inter-
face and mapping of DEECo ensembles and components into the C++ language. The sources of
the case study draft and network traffic simulation are placed on the GitHub9. The main purpose
of the published code is to displays the way how DEECo application can be modeled as real-
time embedded application written in C++. In order to navigate in the repository please see the
README file.

Vehicle Component

id: Long
time: Long
mode: {AUTOMATIC, MANUAL}
crossingDistance:Long
crossingId: Long
crossingDirect: {S-E, S-W, N-E, N-W, …}
speed: Double
speedTime: Long
priviledged: Boolean

Knowledge

Processes

monitor(in speedTime, out mode)

Figure A.1: Vehicle component specification

DEECo components. Figure A.1 specifies the Vehicle component that is characterized by the
set of attributes (together with their types) listed in the figure and the following process:

• monitor(in speedTime, out mode)
The process is responsible for monitoring whether input data is obsolete or not (i.e., the
time of the last speed update must be less than a threshold given by our real-time analysis in
Section 6). If so, i.e., if the value from ICS is obsolete, then mode is set to the MANUAL.
As input parameter, it takes the ICS identifier, whereas it returns the vehicle’s mode.

ICS Component

id: Long
time: Long
mode: {AUTOMATIC, MANUAL}
vehicles: [{id, distance, direction}]
speeds: [{id, speed}]

Knowledge

Processes

schedule(in/out vehicles, out speeds, out mode)

Figure A.2: ICS component specification

Figure A.2 specifies the ICS component that is characterized by the set of attributes (together
with their types) listed in the figure and the following process:

7http://www.freertos.org/
8http://www.st.com/stm32f4
9https://github.com/d3scomp/ICS-CDEECo
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• schedule(in/out vehicles, out arrivals, out mode)
This process is responsible for computing and monitoring the speeds of approaching ve-
hicles/cars depending on the current traffic situation. Towards this, given cars’ current
speeds and directions, it computes the time at which they reach the intersection. Taking
cars’ lengths and widths into account, it adjusts their speeds to avoid conflicts. Which car
is allowed to cross first depends on which order they arrive at ICS’s region of influence
and on whether they are privileged or not. If the ICS detects that a car or vehicle does not
respect the assigned speed, it changes the value of mode to MANUAL, i.e., it starts work-
ing as standard traffic lights. The same happens, if communication is lost to one or more
cars. As input parameters, this process takes vehicles, i.e., a collection of the most recent
states of cars/vehicles at the crossing. As output parameters, it returns vehicles, where the
speed attribute of each vehicle is updated, and mode.

Coordinator

id: Long
speeds: [...]
mode:       {AUTOMATIC, MANUAL}

Member

id: Long
crossingId: Long
speed: Double
mode: {AUTOMATIC MANUAL}

Membership Condition

mbr.distance < 50 && mbr.crossingId = coord.id

Knowledge Exchange
mbr.speed ← coord.speeds[mbr.id]
mbr.mode ← coord.mode

ICS2Vehicle

Figure A.3: ICS2VehicleEnsemble specification

Figure A.3 and Figure A.4 show the specification of ensembles, i.e., interactions or relations,
between the ICS and Vehicle components. The attributes of the coordinator in these ensembles
match the attributes of the ICS component, while the member’s attributes match the Vehicle
component. Note that, in the end, this is the same interaction/relation but specified from the
perspective of the member – see Figure A.3 – and of the coordinator – see Figure A.4.
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Coordinator

id: Long
vehicles: [{id, speed, direction}]

Member

id: Long
direction: {S-E, S-W, N-E, …}
distance: Double
mode: {AUTOMATIC, MANUAL}

Membership Condition

mbr.distance < 50 && mbr.crossingId = coord.id

Knowledge Exchange

coord.vehicles[mbr.id].direction ← mbr.direction
coord.vehicles[mbr.id].distance ← mbr.distance
coord.mode ← mbr.mode

Vehicle2ICS

Figure A.4: Vehicle2ICSEnsemble specification

[8] C++ implementation of the DEECo runtime environment, available online: http://github.com/d3scomp/

CDEECo (2014).
[9] M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, F. Plasil, An Architecture Framework for Experimentations

with Self-Adaptive Cyber-Physical Systems, in: International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), IEEE, 2015.

[10] S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, A. Hassan, Vehicular ad hoc networks (VANETS): status, results, and
challenges, Telecommunication Systems 50 (4).

[11] K. Klobedanz, C. Kuznik, A. Thuy, W. Mueller, Timing modeling and analysis for AUTOSAR-based software
development - a case study, in: Proceedings of Conference on Design, Automation, and Test in Europe (DATE),
2010.

[12] O. Sokolsky, A. Chernoguzov, Performance analysis of AADL models using real-time calculus, in: Foundations of
Computer Software: Future Trends and Techniques for Development, Springer, 2010.

[13] L. Thiele, S. Chakraborty, M. Naedele, Real-time calculus for scheduling hard real-time systems, in: Proceedings
of the IEEE International Symposium on Circuits and Systems (ISCAS), 2000.

[14] A. Basu, M. Bozga, J. Sifakis, Modeling heterogeneous real-time components in BIP, in: Proceedings of the IEEE
International Conference on Software Engineering and Formal Methods (SEFM), 2006.

[15] H. Espinoza, D. Cancila, B. Selic, S. Gerard, Challenges in combining SysML and MARTE for model-based design
of embedded systems, in: Model Driven Architecture - Foundations and Applications, Springer, 2009.

[16] S. Becker, H. Koziolek, R. Reussner, The palladio component model for model-driven performance prediction,
Systems and Software 82 (1).

[17] C. Etzien, T. Gezgin, S. Froschle, S. Henkler, A. Rettberg, Contracts for evolving systems, in: IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2013.

[18] T. Gezgin, C. Etzien, Correct by prognosis: Methodology for a contract-based refinement of evolution models, in:
Complex Systems Design & Management (CSD&M), 2014.

[19] T. Gezgin, S. Henkler, A. Rettberg, I. Stierand, Contract-based compositional scheduling analysis for evolving
systems, in: G. Schirner, M. Gtz, A. Rettberg, M. Zanella, F. Rammig (Eds.), Embedded Systems: Design, Analysis
and Verification, Vol. 403 of IFIP Advances in Information and Communication Technology, 2013.

[20] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, Gossiping components for cyber-physical
systems, in: P. Avgeriou, U. Zdun (Eds.), Software Architecture, Vol. 8627 of Lecture Notes in Computer Science,
Springer International Publishing, 2014.

[21] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in hard real-time environments, Journal of the
Association for Computing Machinery 20 (1).

[22] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. Wellings, Applying new scheduling theory to static priority
pre-emptive scheduling, Software Engineering Journal 8 (5).

[23] N. Shah, F. Bastani, S. Kumar, I.-L. Yen, Real-time car-to-car communication protocol for intersecting roads, in:
Proceedings of the International Conference on ITS Telecommunications (ITST), 2008.

[24] N. Shah, S. Kumar, F. Bastani, I.-L. Yen, Optimization models for assessing the peak capacity utilization of intelli-

29



 

143 

 

gent transportation systems, European Journal of Operational Research 216 (1).
[25] S.-Y. Pyun, H. Widiarti, Y.-J. Kwon, D.-H. Cho, J.-W. Son, TDMA-based channel access scheme for V2I commu-

nication system using smart antenna, in: Proceedings of the IEEE Conference on Vehicular Networking (VNC),
2010.

[26] S.-Y. Pyun, H. Widiarti, Y.-J. Kwon, J.-W. Son, D.-H. Cho, Group-based channel access scheme for a V2I commu-
nication system using smart antenna, IEEE Communications Letters 15 (8).

[27] IEEE 802.11p standard: Wireless LAN MAC and PHY specifications amendment 6: Wireless access in vehicular
environments, http://standards.ieee.org/findstds/standard/802.11p-2010.html.

[28] IEEE 802.1Q standard: LANs and WANs – MAC bridges and virtual bridged LANs, http://standards.ieee.
org/findstds/standard/802.1Q-2011.html.

[29] A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in: Proceedings of the International
Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTOOLS),
2008.

[30] T. Bures, R. D. Nicola, I. Gerostathopoulos, N. Hoch, M. Kit, N. Koch, G. V. Monreale, U. Montanari, R. Pugliese,
N. Serbedzija, M. Wirsing, F. Zambonelli, A life cycle for the development of autonomic systems: The e-mobility
showcase, in: Proceedings of the Workshop on Challenges for Achieving Self-Awareness in Autonomic Systems
(AWARENESS), 2013.

30





Chapter 5 

145 

5 Conclusions & Open Challenges  

The work presented in this thesis focuses on delivering a realization platform for the 

DEECo component model. In a bigger frame, it contributes to the SCPS software engi-

neering process, by simplifying and automating both the development and deployment 

stages of that process. The resulting jDEECo platform provides (i) Java implementation 

constructs that map both DEECo components and ensembles, (ii) a runtime environ-

ment, which automates deployment and execution of components and ensembles as well 

as data coordination between deployment units, and (iii) the jDEECoSim - a simulation 

tool allowing for system validation with respect to its future real-life deployment. As the 

contribution of the thesis goes to all of those points, the biggest effort has been put into 

(ii) and, in particular, the distributed data coordination part. As a result, the jDEECo 

platform supports heterogeneous deployment environments, including infrastructure-

based and infrastructure-less networks. The implemented techniques have been vali-

dated on multiple scenarios that exemplified SCPS usage in real-life settings. 

As such, with respect to the research goals formulated in Section 1.3, the goal G1 

has been achieved by proposing the DEECo component model being the result of the 

collaborative work conducted within the author’s research group.  

The goal G2 (together with its sub-goals G2a and G2b) is addressed by delivering 

(i) and (ii). In particular, techniques introduced in Sections 4.3 and 4.5, designed to opti-

mize network utilization, address G2b. 

Similarly, the goal G3, which speaks about the validation stage of a developed SCPS, 

has been achieved by delivering (iii).  

With respect to the proof of the concept, the jDEECo platform has been validated on 

multiple use-case scenarios (some of them incorporated across publications presented in 

Section 4). All of them, were based on real-life examples of SCPS systems, stemming 

from different domains like catastrophe recovery [42], automotive industry [9] and cloud 

computation [9]. The jDEECo platform, in its current shape, is a result of many prototype 

implementations and iterations of the idea, which finally brought it to the state where it 

can be successfully used not only for SCPS development but also for other purposes (e.g. 

agent-based system simulation). 

In terms of future challenges, there is a wide range of possibilities that could poten-

tially contribute to the domain of SCPS development. Focusing on the DEECo compo-

nent model, an interesting research area is the component self-adaptation, with respect 
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to different contexts it executes in, using the idea of roles. As DEECo is designed to de-

liver means for SCPS development, there is not an explicit tool that would facilitate adap-

tive behavior modeling. The idea of a component role has already been brought up, in 

Section 2.1.3.1, describing the HELENA approach. It specifies a component role as a dy-

namically adopted feature, encapsulating different behaviors that potentially could form 

an inheritance hierarchy. Implementation (and further elaboration) of the idea of roles 

in the scope of the DEECo component model could simplify inclusion of adaptation tech-

niques into the DEECo-based SCPS design process. 

The idea of roles is related to another interesting topic, which is security. Currently 

in the DEECo component model, apart from the idea of component interfaces (limiting 

the view on component attributes), there are no proper means for implementing secure 

SCPS. An example approach that could possibly be reused (or adopted), for needs of the 

DEECo component model, is given by policies proposed in SCEL (see Section 2.1.3.1). In 

SCEL, polices coexists together with components and manage access to their data. This, 

applied in the context of DEECo, would allow for reasoning about component interac-

tion in terms of permissions and privileges yet during the design time of an SCPS. An 

additional aspect that goes rather to the jDEECo platform is component data encryption. 

Some initial work related to that topic has already been done by implementing into 

jDEECo a possibility for restricting access to component data and adding encryption for 

component data exchanged over the network [Stu15] 

Another challenge, which refers to early-stage analyzes of a system model, goes to 

data consistency. Taking into account that communication in case of SCPS is based 

mainly on unreliable wireless network infrastructure, which is prone to interference and 

delays in data transmission, it may happen that components deployed on different net-

work nodes have a different view on the same part of the system. Therefore, having a 

tooling, which would allow for assessment of possible discrepancies in component data, 

could forecast potential implications on system behavior yet at the design phase of the 

SCPS development process. The research work in this area has already been initiated 

and some of its results can be found in [AABG+14a]. 

Data inconsistencies are also an issue at the jDEECo platform level. Currently, when-

ever a component data is transmitted over the network, it is first divided into packets 

complying with the low-level communication protocol requirements (i.e. packet maxi-

mum size). It is obvious that packets could be dropped or corrupted during the trans-

mission process. Currently, however, the jDEECo runtime implements a simple ap-

proach, where data is assembled based on the order packets are received and disregards 

the sender identity and to which stream packets belong. In cases where data semantics 

matters, this may be problematic, as depending on particular use-case scenarios some 

parts of data are strongly related to each other. As a simple example, geographical coor-

dinates can be considered. It would not make much sense to send separately latitude 

and longitude, as one could change during the transmission process of other, leading to 

inconsistencies across component data. Thus, they need to be transmitted together to 

ensure data consistency. 
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Currently, the jDEECo platform lacks any support for automated division of data into 

packets consisting semantically related information, which would definitely improve 

the overall system reliability. 
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