CHARLES UNIVERSITY
 FACULTY OF PHARMACY IN HRADEC KRÁLOVÉ
 Department of Inorganic and Organic Chemistry

UNIVERSITY OF LIMOGES
 FACULTY OF PHARMACY
 Laboratory of Natural Substances Chemistry

DIPLOMA THESIS

Synthesis and characterisation of flavonoids as potential anticancer agents

Supervisors:
prof. RNDr. Milan Pour, Ph.D.
Dr. Christelle Pouget

DECLARATION

I declare that this thesis is my original work. All used literature and sources are listed in the list of used literature at the end of the thesis and are properly cited. This work has not been used to obtain equal or different degree.

Hradec Králové 2016

Signature:

Acknowledgement

I would like to thank Dr. Christelle Pouget for the opportunity to work in her research group, for her guidance and ethusiastic support. I am also grateful to Benjamin Rioux for his everyday assistance and support, and to Yves Champavier for the measurement of the spectra.

I would like to express my sincere thanks to prof. RNDr. Milan Pour, Ph.D., for giving me the opportunity and support in completing this work. I would like to thank PharmDr. Marcel Špulák, Ph.D., Mgr. Jiří Kratochvíl, Ph.D., Mgr. Zuzana Rania Hrušková and Mgr. Zbyněk Brůža for helping me over the past three years.

Last, but not least, I would like to thank Lucie and my family for all their support and patience during my studies.

Abstract

Abstrakt Univerzita Karlova Farmaceutická fakulta v Hradci Králové Katedra anorganické a organické chemie Université de Limoges Faculté de Pharmacie Laboratoire de Chimie des Substances Naturelles Školitelé: prof. RNDr. Milan Pour, Ph.D., Dr. Christelle Pouget Student: Lukáš Novotný Název diplomové práce: Syntéza a charakterizace flavonoidů jako potenciálních protinádorových látek

Nádorová onemocnění představují ročně s více jak 3 miliony nových případů a 1,7 milionu úmrtí druhou nejčastější příčinu úmrtí v Evropě. Hledání nových protinádorově působících látek je jednou z nejdůležitějších cest pro zlepšení léčby a zvládání této nemoci. V současné době okolo 50 \% používaných protinádorových léčiv jsou přirodní látky nebo sloučeniny z přírodních látek odvozené. Flavonoidy, deriváty 2 -fenyl-1,4-benzopyronu, jsou známy pro své antioxidační, protizánětlivé, vaskuloprotektivní, antimikrobní a protinádorové účínky. Tento projekt se zaměřuje na flavonoidy s otevřeným kruhem C, zvané chalkony. Zahrnuje syntézu dvou originálních látek, bichalkonu a chalkonu navázaného na polyamin, za účelem budoucího testování jejich potenciální antiproliferativní aktivity na nádorových buněčných koloniích. Deriváty chalkonů byly získány pomocí Claisenovy-Schmidtovy kondenzace a Suzukiho reakce. Různé syntetické přístupy jsou komentovány. V současné době jsou obě získané sloučeniny předmětem biologického hodnocení.

Abstract
Charles University
Faculty of Pharmacy in Hradec Králové
Department of Inorganic and Organic Chemistry
University of Limoges
Faculty of Pharmacy
Laboratory of Natural Substances Chemistry
Consultants: prof. RNDr. Milan Pour, Ph.D., Dr. Christelle Pouget
Student: Lukáš Novotný
Title of Thesis: Synthesis and characterisation of flavonoids as potential anticancer agents

With more than 3 million new cases and 1.7 million deaths each year, cancer represents the second most important cause of morbidity in Europe. Search for new anticancer agents is one of the most important ways to improve treatment and management of cancer. At present, around 50% of drugs against cancer are natural compounds or have a natural origin. Flavonoids, 2-phenyl-1,4-benzopyrones derivatives, are known for their antioxidant, anti-inflammatory, vasculoprotective, antimicrobial and anticancer properties. This project focuses on flavonoids with open C ring, named chalcones. The synthesis of two original molecules is described: one bichalcone and a combined chalcone-polyamine, prepared for the purpose of screening antiproliferative effect on cancer cell lines. The chalcone derivatives were made using ClaisenSchmidt condensation and Suzuki reaction. Different synthetic approaches are discussed. Presently, the two products are being subjected to biological evaluation.

TABLE OF CONTENTS

TABLE OF CONTENTS 6
LIST OF ABBREVIATIONS 8

1. INTRODUCTION 10
1.1 Cancer 10
1.1.1 Definition and epidemiology 10
1.1.2 Cancer treatment 11
1.1.3 Natural compounds in cancer therapy 12
1.1.3.1 Tubulin binding drugs 12
1.1.3.2 Topoisomerase inhibitors 13
1.2 Polyamines 15
1.3 Flavonoids 16
1.3.1 General information 16
1.3.2 Biological properties 18
1.3.3 Flavonoids and cancer 19
1.3.4 Biflavonoids and bichalcones 19
1.4 LCSN Research 21
1.5 Aims of the work 23
2. RESULTS AND DISCUSSION 25
2.1 Synthesis and characterisation of bichalcone $\mathbf{1 7}$ 25
2.1.1 Plans of synthesis 25
2.1.2 Synthesis of bichalcone $\mathbf{1 7}$ by Suzuki coupling 26
2.1.2.1 Preparation of bromo chalcone 20 26
2.1.2.2 Preparation of chalconyl boronic acid 23 27
2.1.2.3 Synthesis of bichalcone $\mathbf{1 7}$ by Suzuki coupling 28
2.1.3 Synthesis of bichalcone $\mathbf{1 7}$ from a biphenyl derivative $\mathbf{2 6}$ 32
2.1.3.1 Preparation of biphenyl 26 32
2.1.3.2 Preparation of bichalcone $\mathbf{1 7}$ by the Claisen-Schmidt condensation 33
2.2 Synthesis and characterisation of chalcone $\mathbf{1 9}$ 34
2.2.1 Preparation of chalcone $\mathbf{1 8}$ 34
2.2.1.1 Protection of hydroxy group by acetal formation 35
2.2.1.2 Synthesis of chalcone $\mathbf{3 4}$ 36
2.2.1.3 Deprotection of hydroxy group 36
2.2.2 Synthesis of bromo chalcone 35 36
2.2.3 Coupling with spermidine $\mathbf{3 8}$ 37
3. CONCLUSION 39
4. EXPERIMENTAL PART 40
4.1 General methods 40
4.2 Synthesis 41
5. REFERENCES 51

LIST OF ABBREVIATIONS

Boc	tert-butyloxycarbonyl protecting group
CA-4	combretastatin A-4
calcd	calculated
d	doublet
dd	doublet of doublets
DEGBG	diethylglyoxal bis(guanylhydrazone)
DMF	dimethylformamide
DNA	deoxyribonucleic acid
ED 50	median effective dose
eq.	equivalent
exp.	experiment
Hex	hexane
IC 50	half maximal inhibitory concentration
IR	infrared spectroscopy
L	ligand
LCSN	Laboratory of Natural Substances Chemistry
m	multiplet
MNs	malignant neoplasms
MS	mass spectroscopy
MTT	$3-(4,5-$ dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
	bromide
MW	microwawe
NMR	nuclear magnetic resonance
Nu	nucleophile
ODC	pornithine decarboxylase
PAO	padicanine oxydase
PPTS	p-toluenesulfonic acid
PTSA	R

r.t.	room temperature
RNA	ribonucleic acid
s	singlet
SAME-DC	S-adenosylmethionine decarboxylase
t	triplet
THF	tetrahydrofuran
TLC	thin layer chromatography
Tol	toluene
UV	ultraviolet
X	halogen

1. INTRODUCTION

1.1 Cancer

1.1.1 Definition and epidemiology

Cancer is the name given to a group of diseases involving abnormal and uncontrolled cell growth and multiplication. The life of cells is normally regulated by a multitude of control mechanisms. They lead to the death of old or damaged cells by apoptosis or phagocytosis and to the formation of new cells when it is needed. In a cancer process, the cells become either resistant to the control mechanisms and differentiate and multiply abnormally, or these mechanisms do not function properly. The outcome of the process usually is the formation of masses of tissues, called solid tumors. The tumors can progressively invade surrounding tissues. In addition, some cancer cells can break off and travel to distant places in the body to form new tumors there. This process is called metastasis and is the major cause of death by cancer. ${ }^{1,2}$

As regards molecular level, a cancer cell is a cell which has been affected by certain modifications. The following factors can be listed among the reasons: sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, enabling replicative immortality, inducing angiogenesis and resisting cell death. These modifications are the result of the genetic load of the cell and of external factors (physical carcinogens, such as ultraviolet and ionizing radiation, chemical carcinogens, biological carcinogens). ${ }^{1,2,3}$

Cancer is the second main reason of death in the Czech Republic after cardiovascular diseases. ${ }^{4}$ In 2014, 27600 people died because of cancer which amounts to 26.1% of deaths in that year. ${ }^{4}$ The statistics concerning the European Union is similar. ${ }^{5}$ The mortality by cancer has remained unchanged in the Czech Republic since 2004, unlike the European Union, where the mortality has decreased. ${ }^{4,5}$ Concerning the incidence, the number of new cases in the Czech Republic between 1985 and 2011 doubled and considerably grew up in the European Union. The discrepancy between the trends of mortality and incidence can be explained by the improvement of the diagnostics and therapy over the last decades (Fig. 1). ${ }^{6}$ These data are in agreement with the unfavourable prognosis of the World Health Organization which predicts a 70% increase in new cancer cases expected over the next two decades worldwide. ${ }^{3}$

Trends of Incidence of MNs in Males and Females (1985-2011)

Fig. 1: Trends of mortality and incidence of MNs in the Czech Republic and the

European Union

1.1.2 Cancer treatment

As regards cancer treatment, a number of options exists. Surgery, chemotherapy and radiation therapy are traditionally and widely used. Immunotherapy, stem cells transplants, photodynamic therapy or targeted therapy are among the more recent, promising therapies, generally with fewer side effects. ${ }^{7}$

Targeted therapy is a special type of chemotherapy that takes advantage of small differences between normal and cancer cells. It is sometimes used alone, but most often also in combination with other procedures. ${ }^{7}$

Chemotherapy includes the use of chemical drugs. Anticancer drugs can be divided into several groups on the basis of their mechanism of action. Alkylating agents directly damage DNA and disable cell proliferation. Antimetabolites interfere with DNA and RNA replication through providing „false" building blocks. Cytotoxic antibiotics act by altering the DNA inside cancer cells. Topoisomerase inhibitors interfere with enzymes called topoisomerases, which help to separate the strands of DNA so that they cannot be copied during the S phase. Mitotic inhibitors work by stopping mitosis in the G2/M phase. The last two groups include a number of plant alkaloids and other compounds derived from nature. ${ }^{8}$

1.1.3 Natural compounds in cancer therapy

A number of natural molecules have served as anticancer drugs or their prototypes. At present, circa 50% of drugs against cancer are natural compounds or have a natural origin. ${ }^{9}$

1.1.3.1 Tubulin binding drugs

One of the targets of anticancer drugs is the microtubule system. Microtubules are key components of the cytoskeleton of eucaryotic cells which have various cellular functions, such as intracellular transport. They play a crucial role in cell division by being involved in the movement and attachment of the chromosomes during various stages of mitosis. ${ }^{10,11}$

The drugs can be divided into several groups according to their chemical structure.
Vinca alkaloids are a group of compounds obtained from the Madagascar periwinkle plant Cataranthus roseus. There are four major vinca alcaloids in clinical use: vincristine (1, Fig. 2), vinblastine, vinorelbine, vindesine, and a semisynthetic derivative vinflunine. The vinca alkaloids inhibit the polymerization of tubulin into microtubules, which results in the G2/M arrest within the cell cycle and eventually in cell death. ${ }^{12}$

Combretastatin A-4 (CA-4) (2, Fig. 2) is a polyphenol present in the bark of Combretum caffrum. Similar to vinca alcaloids, it belongs to a group of tubulin polymerization interfering drugs. This substance differs from vinca alcaloids in its binding site on the tubulin protein. For

CA-4, the corresponding domain is the colchicine binding site. CA-4 phosphate, more soluble and bioavailable form of CA-4, is currently under clinical trials. ${ }^{13}$

vincristine 1

combretastatin A-4 2

Fig. 2: Structures of vincristine 1 and combretastatin A-4 2
Paclitaxel (3, Fig. 3) and docetaxel (4, Fig. 3) represent the taxane family of drugs originally isolated from Taxus brevifolia. Cabazitaxel is another, semisynthetic drug of this group. Similar to previous examples, tubulin is the target of taxane compounds. However, in this case, the molecules act by attaching to tubulin within existing microtubules. As a result, the polymer is stabilized and depolymerization to tubulin becomes impossible. ${ }^{14}$

paclitaxel 3

docetaxel 4

Fig. 3: Structures of paclitaxel 3 and docetaxel 4

1.1.3.2 Topoisomerase inhibitors

Beside the microtubule system, topoisomerase I and topoisomerase II may be targets of certain natural compounds used in cancer therapy. These are referred to as topoisomerase inhibitors. They inhibit either topoisomerase I, an enzyme which controls the structure of DNA by cutting one of the two strands of double-stranded DNA, breaking the strand and religating it, or topoisomerase II, which controls the structure of DNA by cutting and religating the two
strands of DNA. These alkaloids form a ternary complex with DNA and topoisomerase, and prevent religation of the DNA strand(s). This disruption prevents DNA replication and leads to cell death. ${ }^{15}$

Camptothecin is a quinoline alcaloid isolated from the bark and stem of Campthoteca iluminata. Two analogues with fewer side effects and better bioavailability have been approved for the treatment of cancer: topotecan (5) and irinotecan (6) (Fig. 4). Both inhibit topoisomerase I. ${ }^{15}$

topotecan 5

irinotecan 6

Fig. 4: Structures of topotecan 5 and irinotecan 6
Podophyllin is a non-alkaloid lignan extracted from the rhizomes of Podophyllum species such as Podophyllum hexandrum, whose structures paved the way towards two semisynthetic derivatives with fewer side effects: etoposide and teniposide. Unlike podophyllin which acts via tubulin binding, etoposide (7, Fig. 5) and teniposide are topoisomerase II inhibitors. ${ }^{15,16}$

F14512 (8, Fig. 5) is a new topoisomerase II inhibitor which is currently in clinical trials in patients with acute myeloid leukemia. ${ }^{17}$ It is a derivative of etoposide containing a polyamine moiety. It has been shown that polyamines linked to an active compound have the ability to target the compound into tumor, to improve the bioavailability of the compound, and therefore to increase topomerase II inhibition. ${ }^{18}$

etoposide 7

F14512 8

Fig. 5: Structures of etoposide 7 and F14512 8

1.2 Polyamines

Polyamines are small molecules having one hydrocarbon aliphatic chain and at least two amino groups. They play multiple roles in mammalian physiology, especially in the proliferation and development of cells. The compounds are ubiquitous in the liver of poultry, fermented soybeans, wheat germs and mushrooms. Apart from diet, polyamine level is maintained via microbial production and de novo synthesis in the cells. Polyamines synthesized in mammalian cells are putrescine 9 , spermine 10 and spermidine 11. Endogenously, putrescine is formed from ornithine. The latter is, in turn, formed from arginine by the action of ornithine decarboxylase (ODC) which is a highly regulated step in maintaining polyamine level. Putrescine is converted to spermidine by spermidine synthesis, while spermidine is further converted to spermine by spermine synthase. The synthesis of polyamines declines with age. The structure of major polyamines and their synthesis is depicted in Scheme 1. ${ }^{19}$, 20,21

9

10

11

Scheme 1: Structures of putrescine 9, spermidine 10, spermine 11, and scheme of their biosynthesis

Polyamines are positively charged at physiological pH. Electrostatic interactions through cationic amino groups are therefore dominant. For this reason, polyamines may act as ligands at multiple sites on DNA, RNA, proteins, phospholipids and nucleotide triphosphates. It has been proven that lack of polyamines causes a retardation or inhibition of cell growth. Supply of exogenous polyamines can restore the growth of these cells. The cells have a polyamine transporter system on their membrane which enables the intake of exogenous polyamines, and which thus influences polyamine level in the cells. This system is highly active in rapidly proliferating cells, for example in the cells of foetus, and particularly in tumor cells because endogenous polyamine synthesis, even though enhanced, is insufficient. ${ }^{20,22}$

Besides the effects on growth and proliferation, polyamines activate angiogenesis in tumor cells, and have a role in the process of metastasis. These effects can be explained by the influence of cationic amino groups on the conformation of DNA, and thus on the expression of certain genes or stabilisation of DNA related to resistance against apoptosis. ${ }^{23}$

For all these reasons, research on polyamines has considerably intensified in recent years. The main area of research is the relationship between polyamines and cancer. ${ }^{22}$ Several approaches are possible. One approach could be based on an effort to decrease the concentration of polyamines in tumor cells. Another approach is based on the possibility of using the hyperactivation of the transport system. As the transport system is not specific enough, it can be the target of drugs having a polyamine moiety linked to an active compound. Using this principle, the anticancer drug can be transported specifically to tumor cells. ${ }^{24}$ By way of example, the compound F14512 8 (see the previous section 1.1.3.2) acts via this mechanism. ${ }^{17}$

1.3 Flavonoids

1.3.1 General information

Flavonoids are the most commonly distributed group of plant phenolic compounds having a 4 H -benzo[b]pyran structure. ${ }^{25}$ More specifically, flavonoids are compounds derived from 2-phenyl-chromen-4-one, whereas the substances derived from 3-phenylchromen-4-one are termed isoflavonoids (Fig. 6). ${ }^{26}$

flavonoids

isoflavonoids

Fig. 6: Basic structures of flavonoids and isoflavonoids
Flavonoids can be divided into several groups depending on the degree of oxidation and unsaturation of the C ring. Substitutions of the core structure (flavones) include hydroxylation in position 3 (flavonols), reduction of 2(3) carbon-carbon double bond (flavanones), sometimes simultaneously complemented with hydroxylation in position 3 (flavanonols). Hydroxylation of the skeleton without oxo group in various positions (flavan-3-ols, flavan-4-ols, flavan-3,4diols) or a cationic form (anthocyanidins) can also occur. Finally, the flavonoids with open C ring are named chalcones (Fig. 7) ${ }^{25,26}$

flavones

flavonols

flavanones

flavanonols

flavanols

anthocyanidins

chalcones

Fig. 7: Basic structures of different groups of flavonoids
Flavonoids are widely spread in Nature as the major coloring components of flowering plants. ${ }^{25}$ More than 6000 different compounds have been identified. ${ }^{27}$ They are an integral part of human and animal diet consumed in the form of fruit, vegetables and drinks such as wine and tea. ${ }^{25}$

As regards the physico-chemical properties, flavonoids are reducing agents, which results in limited stability. The compounds are weakly acidic with pKa between 8 and 10. For this reason, they are not stable under alcaline conditions. Because of the double bonds and aromatic ring, flavonoids emit fluorescence upon exposure to UV light. The substances are also
able to form chelate complexes with metals. Finally, low water solubility of flavonoid aglycones have essential influence on their bioavailability. Hence, the development of semisynthetic, more soluble forms has been a challenge for modern research. ${ }^{28,} 29$

Due to their structure and physico-chemical properties, flavonoids possess the ability to modulate the activity of some enzymes, hormones and neurotransmiters, and to modify the behaviour of many cell systems. As a consequence, they exhibit a broad variety of biological activities. ${ }^{30}$

1.3.2 Biological properties

Undoubtedly, the capacity of flavonoids to act as antioxidants is their best described property. The arrangement of functional groups influences mechanisms of antioxidant activity based on radical scavenging and metal ion chelation ability (Fig. 8). The B ring hydroxyl donates hydrogen to hydroxy, peroxy and peroxynitrite radicals, stabilizing them with concomitant formation of relatively stable flavonoid radicals. ${ }^{25}$

Fig. 8: Binding sites of flavonoids for the chelation of metal ions
Secondly, flavonoids have anti-inflammatory effects. Besides their ability to inhibit reactive oxygen and nitrogen compounds, they suppress enzymes such as cyclooxygenase and lipoxygenase, which are responsible for the production of pro-inflammatory metabolites of arachidonic acid. ${ }^{31}$

Furthermore, flavonoids are known for their vasculoprotective effects which are caused, among other factors, by their capacity to increase the concentration of the potent vasodilatator nitric oxide by inhibiting its degradation and stimulating nitric oxide synthase. Recent papers have shown curative efficiency of flavonoids in the treatment of endothelial dysfunction which is a cause of circulatory diseases. ${ }^{32}$

Moreover, flavonoids have been shown to be effective antimicrobial agents against a wide array of bacterias, fungi and viruses. ${ }^{25}$

Finally, flavonoids have a part in the prevention and treatment of cancer. ${ }^{25}$

1.3.3 Flavonoids and cancer

Flavonoids may have a role in the treatment of hormone-dependent cancers. Estrogens have an important role in the proliferation of tumor cells. Two mechanisms of action exist. The first mechanism is based on an effect on the estrogen receptors of the tumor cells. In this case, the substance has the role of a receptor antagonist acting upon hormone receptors. A molecule binds strongly to a hormone receptor, but does not activate this receptor and makes it unresponsive to the hormone. The second mechanism is based on the effect on aromatase, an enzyme which converts androgens to estrogens. A substance binds to the enzyme at the same site as testosteron. As a result, less testosterone is bound to aromatase, and, consequently, less testosterone can be converted to estradiol. ${ }^{33,34}$

In addition, flavonoids can also affect all other forms of cancer. One of their anticancer mechanisms is based on their antimitotic ability. Similar to some other natural compounds used in cancer treatment, they have the ability to inhibit the formation of the mitotic spindle by causing the inhibition of the polymerization of tubulin into microtubules, resulting in the G2/M arrest. Like combretastatins, some flavonoids bind to tubulin at the colchicine domain. ${ }^{21,35}$

1.3.4 Biflavonoids and bichalcones

Biflavonoids are flavonoid dimers, which vary in the oxidation and unsaturation degrees of the monomers and in the interflavonyl linkage. The linkage may involve rings $\mathrm{A}, \mathrm{B}, \mathrm{C}$ at various positions through carbon-carbon or ether bridges bonds. Therefore, the compounds can be classified by indicating the rings involved (AA, AB, BB, etc.). Biflavonoids are widely distributed in plants. Most of them contain a linkage between two A-rings (AA type) or between an A-ring of one and the B-ring of another flavonoid moiety (AB type). Two examples of structures can be shown: the first known biflavonoid ginkgetin (12, Fig. 9), isolated by Furukawa in 1929 from Ginkgo biloba, representing the AB type with a carbon-carbon linkage,
and ochnaflavone (13, Fig. 9), isolated from various species of Garcinia, representing the AA type with an ether bridge. ${ }^{36}$

ginkgetin 12

ochnaflavone 13

Fig. 9: Structures of ginkgetin $\mathbf{1 2}$ and ochnaflavone 13
Similar to flavonoids, biflavonoids may have many biological properties (antimicrobial, antioxidant, antiallergenic, anticancer, etc.), sometimes enhanced in comparison with the corresponding monomers. This also concerns synthetic biflavonoids. Due to a considerable number of structures of biflavonoids, that have been unexplored, a renewed interest in their biological activities is logical. ${ }^{36}$

Unlike the wide number of natural biflavonoids, natural bichalcones are rare and less studied class. It is possible to mention rhuschalcones I-VI (14, Fig. 10), six bichalcones isolated from Rhus pyroides. All the rhuschalcones exhibit varying degrees of cytotoxic activity on some cell lines. As a group, they show more activity especially on the colon cancer cell lines HT-29 (ED $50: 3 \mu \mathrm{~g} / \mathrm{ml}$ for rhuschalcones I, III) and HCT-116 (ED $50: 5 \mu \mathrm{~g} / \mathrm{ml}$ for rhuschalcones I, III, VI). ${ }^{37}$

Fig. 10: Structure of rhuschalcone I 14
As regards the synthesis of biflavonoids (bichalcones), literature reports include a plethora of conditions, usually based on aldol (Claisen-Schmidt) and Ullmann condensations
of suitable precursors. The strategies are based on the synthesis of biaryl compounds followed by condensation resulting in a biflavonoid structure, or preparation of a flavonoid monomer followed by coupling of two molecules. ${ }^{36,38}$ However, following the studies on structurally similar molecules, a different approach using Suzuki coupling can also be proposed. ${ }^{39,} 40$ Application of the Claisen-Schmidt condensation is attractive, since the reaction generates (E) isomer from the commercially available substituted benzaldehydes and acetophenones. ${ }^{41}$

1.4 LCSN Research

The LCSN Research on anticancer properties of chalcones follows the earlier promising results obtained with these compounds.

A large number of chalcones were synthesized and screened on the K562 myelogenous leukemia cell line for cell growth inhibitory properties. The most active substance was chalcone 15 (Fig. 11). The study has demonstrated the importance of the three methoxy groups attached to the A-ring for antiproliferative activities and suitable physicochemical properties. Additionally, a mechanism of action based on the inhibition of polymerisation of tubulin into microtubules has been demonstrated. ${ }^{41}$

In addition, chalcone 16 (Fig. 11) inhibits cell growth and motility, and induces cell cycle arrest and apoptosis of human ovarian cells. The chalcone was tested on A2780 (IC ${ }_{50}: 1.3$ $\mu \mathrm{mol} / \mathrm{l}$ after 48h exposure), A2780/CDDP and SKOV3 cell lines. Compared to the biological tests of its mother compound, 1,3-diphenylprop-2-en-1-one, this substance exhibited better water solubility and much stronger effect. The tests also showed that this chalcone did not interrupt tubulin polymerization. Therefore, two structurally similar molecules can act by multiple mechanisms. ${ }^{38}$

combretastatin A-4 2

chalcone 15

chalcone 16

Fig. 11: Structures of combretastatin A-4 2, 3-hydroxy-4,3',4',5'-tetramethoxychalcone 15 and 4,3', 4',5'-tetramethoxychalcone 16

Within LCSN research, the last two chalcones were synthesized and tested on different cell lines (MTT assay). The resulting IC_{50} values, concentrations of the compounds that are required for 50% inhibition in vitro, reach $0.87 \mu \mathrm{~g} / \mathrm{ml}$ after 48 h exposure for chalcone 15 (HCT116 cell line) and $6.4 \mu \mathrm{~g} / \mathrm{ml}$ for chalcone 16 (HT-29 cell line) (Fig. 12). The criteria to categorize the cytotoxic activity of the substances are as follows: $\mathrm{IC}_{50} \leq 20 \mu \mathrm{~g} / \mathrm{ml}=$ highly active, $\mathrm{IC}_{50} 21-200 \mu \mathrm{~g} / \mathrm{ml}=$ moderately active, $\mathrm{IC}_{50} 201-500 \mu \mathrm{~g} / \mathrm{ml}=$ weakly active and IC_{50} $>501 \mu \mathrm{~g} / \mathrm{ml}=$ inactive. ${ }^{42}$ These results opened a new area in anticancer drug research.

HT-29 48h

PC-3 48h

HCT-116 48h

DU-145 48h

Fig. 12 Biological evaluation of chalcones 15 and 16

The chalcones 15 and 16 were also used as lead molecules in the design of new antiproliferative agents. For example, they were coupled to polyamine moieties through different linkers. The new derivatives always possess the structure of trimethoxylated A-ring, but vary in the substitution of the B-ring, in the nature of the polyamine and in its connection to the molecule of the chalcone (Fig. 13).

Fig. 13: Some of the chalcones prepared within LCSN research

1.5 Aims of the work

The aim of this work was to synthesize and characterise two new chalcones.
Firstly, we decided to couple two molecules of chalcone 16 and to obtain the spectral characteristics of the resultant bichalcone (17, Fig. 14).

Fig. 14: Structure of $4,3^{\prime}, 4^{\prime}, 5^{\prime}, 4^{\prime \prime}, 3^{\prime \prime \prime}, 4^{\prime \prime \prime}, 5$ '"'-octamethoxy-3-3''-bichalcone 17

Secondly, we focused on the synthesis and characterisation of chalcone 18, and its conjugate with spermidine $\mathbf{1 9}$ (Fig. 15). Chalcone $\mathbf{1 8}$ is a demethoxylated positional isomer of the previously prepared chalcone $\mathbf{1 5}$.

18

19

Fig. 15: Structures of 4-hydroxy-3',4',5'-trimethoxychalcone 18 and 4-(4',9', $13^{\prime \prime \prime}$ -triazatridecyl)-3',4',5'-trimethoxychalcone 19

2. RESULTS AND DISCUSSION

2.1 Synthesis and characterisation of bichalcone 17

2.1.1 Plans of synthesis

Two different approaches were followed in order to obtain bichalcone 17. Using the first of them, Suzuki coupling was chosen to couple two monomers. The two building blocks should have been, in turn, prepared by aldol condensation. The retrosynthetic strategy is outlined in Scheme 2.

$A B$

A

B

CD

C

D

Scheme 2: Retrosynthetic strategy towards bichalcone 17

The second plan was based on a Suzuki reaction with substituted benzaldehydes as the coupling partners. The resultant biphenyl derivative would subsequently be subjected to an aldol condensation with a substituted acetophenone. The strategy is depicted in Scheme 3.

Scheme 3: Alternative retrosynthetic strategy leading to bichalcone 17

2.1.2 Synthesis of bichalcone $\mathbf{1 7}$ by Suzuki coupling

2.1.2.1 Preparation of bromo chalcone 20

The preparation of bromo chalcone $\mathbf{2 0}$ is based on a base-catalyzed Claisen-Schmidt condensation between acetophenone 21 and benzaldehyde 22. The reaction mechanism includes the formation of an enolate from acetophenone 21, and subsequent addition of the enolate to benzaldehyde $\mathbf{2 2}$ followed by dehydratation (Schemes 4 and 5).

Scheme 4: Synthesis of 3-bromo-4, 3',4',5'-tetramethoxychalcone 20

Scheme 5: Mechanism of the Claisen-Schmidt condensation

The product $\mathbf{2 0}$ was obtained in 61% yield.

2.1.2.2 Preparation of chalconyl boronic acid $\mathbf{2 3}$

The chalconyl boronic acid 23 was formed by Claisen-Schmidt condensation from acetophenone 21 and boronic acid 24 . The reaction is outlined in Tab 1.

exp.	$\mathbf{2 1}$ (eq.)	$\mathbf{2 4}$ (eq.)	time (h)	mobile phase	yield
1.	1.0	1.2	2.0	Tol:EtOAc 8:2 (1x)	53%,
2.	1.0	1.2	1.0	Tol:EtOAc 8:2 (1x) + Tol:EtOAc 6:4 (1x)	86%, impure
3.	1.0	0.8	3.5	Hex:EtOAc 8:2 (2x) Tol:EtOAc 7:3 (2x)	50%, pure

Tab. 1: Synthesis of $4,3^{\prime}, 4^{\prime}, 5^{\prime}$-tetramethoxychalcon-3-ylboronic acid 23

The product 23 was initially obtained in 86% yield, its purity, however, was insufficient, since traces of acid $\mathbf{2 4}$ were detectable in the product despite extensive purification. The presence of this impurity complicated the next step of the synthesis, the Suzuki coupling between the two chalcones.

To exclude the presence of acid boronic 24 in the product, we reduced its initial quantity so that it became the limiting reagent (experiment 3, Tab. 1). Consequently, the resulting chalconyl boronic acid $\mathbf{2 3}$ was obtained in a considerably better purity (higher than 98%, as judged by ${ }^{1} \mathrm{H} N M R$), adequate for the next step of the synthesis.

2.1.2.3 Synthesis of bichalcone $\mathbf{1 7}$ by Suzuki coupling

The final step of the proposed synthesis of the bichalcone 17 was a coupling between the building blocks 20 and 23. For this purpose, Suzuki coupling was applied (Tab. 2).

For syntheses of structurally similar compounds by Suzuki coupling, literature mentions use of PdCl_{2}-dppf or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in 0.1 eq. as catalysts, $\mathrm{K}_{2} \mathrm{CO}_{3}$ or NaOH in 3 eq. as bases, and THF as solvent. ${ }^{40}$

17

exp.	$\mathbf{2 0}$	$\mathbf{2 3}$	base	PdCl $_{2}$-dppf	time	mobile phase	result
(eq.)	(eq.)	$(3$ eq.)	$($ eq. $)$	$($ min $)$			
1.	1.0	1.1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	0.1	50	$\mathrm{Hex}: \mathrm{EtOAc}$ $6: 4(1 \mathrm{x})$	$<3 \%$, impure
2.	1.0	1.1	NaOH	0.1	20	$\mathrm{CHCl}_{3}: \mathrm{EtOAc}$ $19: 1(2 \mathrm{x})$	$<3 \%$, impure
3.	1.0	2.0	NaOH	0.2	20	$\mathrm{CHCl}_{3}: \mathrm{EtOAc}$ $19: 1(2 \mathrm{x})$	19%, impure
4.	1.0	1.1	NaOH	0.2	50	$\mathrm{CHCl}_{3}: \mathrm{EtOAc}$ $19: 1(2 \mathrm{x})$	41%, pure

Tab. 2: Preparation of $4,3^{\prime}, 4^{\prime}, 5^{\prime}, 4^{\prime \prime}, 3^{\prime \prime \prime}, 4^{\prime \prime \prime}, 5^{\prime \prime \prime}$-octamethoxy-3-3''-bichalcone 17

In our first two experiments, using impure chalconyl boronic acid 23, we obtained only a very small ($<3 \%$) amount of the desired bichalcone 17. By changing the reaction conditions (amounts of chalconyl boronic acid 23 and the catalyst), we improved the yield of the bichalcone 17, but did not achieve an adequate purity (exp. 3, Tab. 2).

Since we suspected that insufficient purity of acid $\mathbf{2 3}$ was the reason for the low yield (see the previous section 2.1.2.2), we attempted the proces again with material of better purity (exp. 4, Tab. 2).

Finally, the bichalcone $\mathbf{1 7}$ was obtained in 41% yield and in adequate purity (impurities in the order of several per cent by the ${ }^{1} \mathrm{H}$ NMR).

The Suzuki reaction is a Pd-catalyzed coupling reaction in which the coupling partners are an organoboron species and a halide (Scheme 6).

$$
\mathrm{R}^{1}-\mathrm{X}+\mathrm{R}^{2}-\mathrm{BY}_{2} \xrightarrow[\text { base }]{\text { Pd catalyst }} \mathrm{R}^{1}-\mathrm{R}^{2}
$$

In our case with the following substituents:
R^{1}, R^{2} : 5-formyl-2-methoxyphenyl
$X:-B r$
Y: -OH

Scheme 6: General scheme of the Suzuki reaction

The course of the reaction is composed of several parts (Scheme 7). The first step is oxidative addition of the palladium catalyst to the organohalide to form an organopalladium species. In this part, palladium is oxidized from palladium(0) to palladium(II) (1). Subsequently, the base present attacks palladium and exchanges with the halide. This step is known as metathetic exchange (2). The resultant organo-organoxo-palladium intermediate is subject to transmetallation providing diorgano-palladium compound (3). Finally, the palladium(II) complex eliminates the product $\mathrm{R}-\mathrm{R}$ ' and regenerates the palladium(0) catalyst (4). ${ }^{43}$
NaOt

Scheme 7: Catalytic cycle of Suzuki reaction

In experiments 1-3(Tab. 2), the major isolated product was chalcone 25, arising from the reaction of chalcone 20 and boronic acid 24 (Fig. 16).

25
Fig. 16: 3-(5-formyl-2-methoxyfenyl)-4, 3',4',5'-tetramethoxychalcone 25

2.1.3 Synthesis of bichalcone $\mathbf{1 7}$ from a biphenyl derivative 26

2.1.3.1 Preparation of biphenyl 26

Biphenyl 26 had to be prepared first. Suzuki reaction, in which the two substituted benzaldehydes 27 and 28 served as the coupling partners, was applied. The reaction is depicted in Tab. 3.

exp.	$\begin{gathered} 27 \\ \text { (eq.) } \end{gathered}$	$\begin{gathered} 28 \\ \text { (eq.) } \end{gathered}$	catalyst (eq.)	$\begin{aligned} & \text { time } \\ & (\mathrm{min}) \end{aligned}$	mobile phase	yield (\%)
1.	1.0	2.0	$\begin{gathered} \mathrm{PdCl}_{2} \text {-dppf } \\ 0.1 \end{gathered}$	30	Hex:EtOAc $7: 3(2 x)$	55
2.	1.0	3.0	$\begin{gathered} \mathrm{PdCl}_{2} \text {-dppf } \\ 0.1 \end{gathered}$	20	$\begin{gathered} \text { CHCl3:EtOAc } \\ \text { 19:1 (2x) } \end{gathered}$	63
3.	1.0	2.5	$\begin{gathered} \mathrm{PdCl}_{2} \text {-dppf } \\ 0.2 \end{gathered}$	10	Hex:EtOAc $7: 3(3 x)$	78
4.	10	2.5	$\begin{gathered} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \\ 0.2 \end{gathered}$	20	Hex:EtOAc 6:4 (1x)	50

Tab. 3: Preparation of 6,6'-dimethoxybiphenyl-3,3'-dicarbaldehyde 26

The results in Tab. 3 show that PdCl_{2}-dppf appears to be a somewhat better catalyst for this reaction than $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. The product was obtained in 78% yield.

In addition to the desired substance 26, some degradation products were isolated. Two of them were identified by NMR spectra ($\mathbf{2 9}, \mathbf{3 0}$, Fig. 17).

29

30

Fig. 17: 6-methoxybiphenyl-3-carbaldehyde 29 and 4-methoxybenzaldehyde 30

2.1.3.2 Preparation of bichalcone $\mathbf{1 7}$ by the Claisen-Schmidt condensation

The second step of the synthesis of the bichalcone 17 was the Claisen-Schmidt condensation between biphenyl 26 and the acetophenone 21. Two experiments were performed. The individual reaction conditions and the results are summarised in Tab. 4.

26
21

17

exp.	$\mathbf{2 6}$	$\mathbf{2 1}$	time	mobile phase	yield
(eq.)	(eq.)	(h)		$(\%)$	
1.	1.0	2.0	4	x	x
2.	1.0	4.0	5	CHCl $_{3}:$ EtOAc 19:1 $(2 \mathrm{x})$	$51^{\mathrm{a}} / 15^{\mathrm{b}}$

a after one purification
b after two purifications
Tab. 4: Preparation of $4,3^{\prime}, 4^{\prime}, 5^{\prime}, 4^{\prime \prime}, 3^{\prime \prime \prime}, 4^{\prime \prime \prime}, 5$ '"'-octamethoxy-3-3''-bichalcone 17

During the first experiment, the formation of the desired bichalcone $\mathbf{1 7}$ was observed according to TLC, but a degradation occurred at the end.

The second attempt was more successfull, a certain amount of $\mathbf{1 7}$ was isolated. Its purity, however, was insufficient, since traces of reagents were detectable in the product despite extensive purifications.

2.2 Synthesis and characterisation of chalcone 19

2.2.1 Preparation of chalcone 18

Fig. 18: Structure of 4-hydroxy-3',4',5'-trimethoxychalcone 18

A retrosynthetic strategy for chalcone $\mathbf{1 8}$ is outlined in Scheme 8.

A

BC

Scheme 8: Retrosynthetic strategy of chalcone 18

2.2.1.1 Protection of hydroxy group by acetal formation

The first step in the synthesis of the intended chalcone was the protection of the hydroxy group of benzaldehyde $\mathbf{3 1}$ to prevent its deprotonation in the subsequent Claisen-Schmidt condensation. For this purpose, acetal formation was used. To this end, benzaldehyde (31) was treated with dihydropyrane 32 in the presence of PPTS at reflux to give protected compound 33 in 69% yield (Scheme 9).

Scheme 9: Synthesis of 4-(tetrahydro-2H-pyran-2-yloxy)benzaldehyde 33

2.2.1.2 Synthesis of chalcone $\mathbf{3 4}$

The next step was the Claisen-Schmidt condensation between benzaldehyde $\mathbf{3 3}$ and acetophenone 21 induced by $\mathrm{Ba}(\mathrm{OH})_{2}$. The product was obtained in a favourable 62% yield (Scheme 10).

Scheme 10: Preparation of 3 ',4',5'-trimethoxy-4-(tetrahydro-2H-pyran-2-yloxy)chalcone 34

2.2.1.3 Deprotection of hydroxy group

In order to remove the acetal protective group, chalcone 34 obtained in the preceding step was exposed to PTSA (10%) in MeOH for 3.5 hours to give chalcone 18 in 77% yield (Scheme 11).

Scheme 11: Preparation of 4-hydroxy-3',4',5'-trimethoxychalcone 18

In summary, the preparation of the building block 18 via the proposed strategy was feasible. Total yield of the product was 33% over 3 steps.

2.2.2 Synthesis of bromo chalcone 35

In order to install the linker for the attachment of a polyamine, bromo chalcone $\mathbf{3 5}$ was prepared via Williamson synthesis. Chalcone 18 was therefore treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the ensuing enolate was then reacted with 1,3-dibromopropane $\mathbf{3 6}$ (Scheme 12).

Scheme 12: Synthesis of 4-(3-bromopropoxy)-3',4',5'-trimethoxychalcone 35

Besides the desired substance 35, alkene $\mathbf{3 7}$ was formed by elimination (Scheme 13).

Scheme 13: Degradation of 4-(3-bromopropoxy)-3',4',5'-trimethoxychalcone 35 to 4-allyloxy-3',4',5 '-trimethoxychalcone 37

Hovewer, the yield of $\mathbf{3 5}$ remained high (96%).

2.2.3 Coupling with spermidine 38

The next step of synthesis, reaction between the alkyl halide $\mathbf{3 5}$ and spermidine 38, was aliphatic nucleophilic substitution. Amine $\mathbf{3 8}$ acted as a nucleophile and attacked the electrophilic carbon of the alkyl halide $\mathbf{3 5}$ displacing the bromide and forming a new $\mathrm{C}-\mathrm{N}$ bond. Subsequently, the present base deprotonated the ammonium center. As a result, the alkylation product 39 was obtained.

Two experiments were performed. The second attempt resulted in the formation of the coupled product 39 (Tab. 5). The yield was, however, small (18 \%).

exp.	$\mathbf{3 5}$	$\mathbf{3 8}$	solvent	time	mobile phase	yield
(eq.)	(eq.)			$(\%)$		
1.	1.0	4.0	DMF	6 h,	$\mathrm{CHCl}_{3}: \mathrm{MeOH}$	
10 ml	reflux	97.5:2.5 (1x)	x			
2.	1.0	1.1	acetonitrile 5 ml	40 min, MW heating	$\mathrm{CHCl3}: \mathrm{MeOH}:$ $\mathrm{NH} 4 \mathrm{OH} 94: 5: 1(1 \mathrm{x})$	18

Tab. 5: Synthesis of 4-(9,13-bis-Boc-4,9,13-triazatridecyl)-3',4',5'-trimethoxychalcone 19

3. CONCLUSION

The main purpose of the work, syntheses of two chalcones derivatives, bichalcone $\mathbf{1 7}$ and coupled chalcone 19, was achieved.

The bichalcone $\mathbf{1 7}$ was prepared in sufficient amount and purity for the subsequent biological tests. However, the reaction conditions can still be more optimised in order to increase the yield. Of the two synthetic pathways explored, the first one using the coupling between two chalcones ($\mathbf{2 0}, \mathbf{2 3}$) seems to be more convenient. Using the second approach, we were unable to obtain the product in desirable purity.

All the products were characterised by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS spectra.
At present, the biological evaluation of the prepared substance is in progress.
As regards the synthesis of the chalcone coupled with a polyamine moiety $\mathbf{1 9}$, an optimisation has to be performed in order to increase the yield and also the purity of the product. Moreover, the molecule has to be deprotected to remove the Boc groups.

4. EXPERIMENTAL PART

4.1 General methods

All reagents and solvents were commercial products (Alfa Aesar, Sigma Aldrich, Fischer, Acros, Carlo Erba) and were used as received. THF was predried prior to use.

Reactions were monitored by thin layer chromatography (TLC) on 0.2 mm E. Merck silica gel plates ($60 \mathrm{~F}_{254}$). Products were detected by UV lampe (254 and 366 nm). The detection of amine functional groups was performed by the ninhydrin test.

Products were isolated using TLC silica gel glass preparative plates ($20 \mathrm{~cm} \times 20 \mathrm{~cm}$) uniformly coated with 0.5 mm layer of silica gel (Silica gel 60, Merck 1.09385.2500), dried and activated in laboratory oven with $120^{\circ} \mathrm{C}$ for 12 hours.

Flash column chromatography was carried out using CombiFlash Companion, serial number 205G20190, and GraceResolv 24g Silica cartridges.

NMR spectra were recorded on Bruker DPX-400 NMR spectrometer (500.15 MHz for ${ }^{1} \mathrm{H}$ NMR and 125.78 MHz for ${ }^{13} \mathrm{C}$ NMR). Chemical shifts (δ) were quoted in parts per million (ppm) downfield from trimethylsilane (TMS). Coupling constants (J) were quoted in Hertz $(\mathrm{Hz}) . \mathrm{CDCl}_{3}$ was used as solvent.

Mass spectra (MS) were determinated by electrospray ionisation (ESI-TOF) on Bruker maXis Impact spectrometer at Mass Spectroscopy Platform of Institute of Organic and Analytical Chemistry of the University of Orleans.

The melting points of products were not determinated as a considerable part of products had an oleaginous or amorphous character.

4.2 Synthesis

3-bromo-4,3', 4',5’-tetramethoxychalcone (20)

20

Chemical formula: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{5}$

Molecular weight: $407.255 \mathrm{~g} / \mathrm{mol}$

3,4,5-trimethoxyacetophenone (21, $100 \mathrm{mg}, 0.476 \mathrm{mmol}$) and $\mathrm{NaOH}(95.1 \mathrm{mg}, 2.378$ mmol, 5 eq.) were added to $\mathrm{MeOH}(8 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$. The mixture was stirred at r.t. for 30 min and 3-bromo-4-methoxybenzaldehyde ($\mathbf{2 2}, 122.8 \mathrm{mg}, 0.571 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added. The resultant mixture was heated under reflux for 2 hours. The reaction mixture was monitored by TLC. When TLC indicated the completion of the reaction, the solvent was evaporated and 20 ml of $\mathrm{H}_{2} \mathrm{O}$ were added to the residue. The mixture was acidified by 3 M HCl solution to pH 6, extracted three times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml each). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography (Tol:EtOAc 90:10) to give 20 as a light yellow amorphous solid ($117 \mathrm{mg}, 0.287 \mathrm{mmol}, 61 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500.15 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.05(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2), 7.70(1 \mathrm{H}, \mathrm{dd}, J=2.0 \mathrm{~Hz}, J=$ $8.5 \mathrm{~Hz}, \mathrm{H}-6), 7.70(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-\beta), 7.66(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right.$, H-6'), 7.08 ($1 \mathrm{H}, \mathrm{d}, ~ J=8.5 \mathrm{~Hz}, \mathrm{H}-5$), 3.94 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-9$), 3.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$)
${ }^{13} \mathbf{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 189.4$ (C=O), 157.9 (C-4), 153.2 (C-3', C-5'), 143.1 (Cβ), 142.5 (C-4'), 133.4 ($\mathrm{C}-1$ '), 132.8 (C-2), 129.9 (C-6), 129.0 (C-1), 120.2 (C- α), 111.9 (C-5), 111.8 (C-3), 106.1 (C-2', C-6'), 59.8 (C-8), 55.5 (C-10), 55.5 (C-7, C-9)

HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$407.0489, found 407.0487

4,3', $\mathbf{4}^{\prime}, \mathbf{5}^{\prime}$-tetramethoxychalcon-3-ylboronic acid (23)

Chemical formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BO}_{7}$

Molecular weight: $372.177 \mathrm{~g} / \mathrm{mol}$

3,4,5-trimethoxyacetophenone (21, $200 \mathrm{mg}, 0.951 \mathrm{mmol}$) and $\mathrm{NaOH}(190.2,7.76$ mmol, 5 eq.) were dissolved in $\mathrm{MeOH}(16 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$. The mixture was stirred at r.t. for 30 min and 5-formyl-2-methoxybenzeneboronic acid (24, $205.4 \mathrm{mg}, 1.142 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added. The resulting mixture was heated under reflux for 2 hours. The reaction mixture was monitored by TLC. When TLC indicated the completion of the reaction, the solvent was evaporated and 20 ml of $\mathrm{H}_{2} \mathrm{O}$ were added to the residue. The mixture was acidified by 3 M HCl solution to pH 6 , extracted three times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml each). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography (Tol:EtOAc 60:40) to give (23) as a light yellow amorphous solid (185 mg , $0,497 \mathrm{mmol}, 53 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500.15 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2), 7.81(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-$ β), $7.71(1 \mathrm{H}, \mathrm{dd}, J=2.5 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, \mathrm{H}-6), 7.42(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.28(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $2^{\prime}, \mathrm{H}-6$ ') , 6.97 ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-5$), 5.98 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 3.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 3.95 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 7, H-9), 3.94 (3H, s, H-8)
${ }^{13} \mathbf{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.4(\mathrm{C}=\mathrm{O})$, 166.2 (C-4), 153.2 (C-3', C-5’), 144.3 ($\mathrm{C} \beta$), 142.5 (C-4'), 137.0 (C-2), 133.8 (C-6), 133.8 (C-1'), 128.1 (C-1), 124.7 (C-3), 120.3 (C α), 110.5 (C-5), 106.2 (C-2', C-6'), 61.0 (C-8), 56.5 (C-7, C-9), 55.9 (C-10)

HRMS (ESI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BO}_{7}\left(\mathrm{M}+\mathrm{H}^{+}\right) 373.1456$, found 373.1459

17

Chemical formula: $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{10}$

Molecular weight: $654.70 \mathrm{~g} / \mathrm{mol}$

20 ($100 \mathrm{mg}, 0.245 \mathrm{mmol}$), 23 ($100 \mathrm{mg}, 2.69 \mathrm{mmol}, 1.1 \mathrm{eq}.), \mathrm{PdCl}_{2}$-dppf ($19.6 \mathrm{mg}, 0.027$ mmol, 0.2 eq.) and 3 M NaOH water solution ($134 \mu \mathrm{l}, 0.403 \mathrm{mmol}, 3$ eq.) were added to THF (6 ml). The reaction mixture was stirred using MW heating ($120^{\circ} \mathrm{C}, 150 \mathrm{~W}, 5 \times 10 \mathrm{~min}$), being monitored by TLC. When TLC indicated the completion of the reaction, the solvents were evaporated. 20 ml of $\mathrm{H}_{2} \mathrm{O}$ were added to the residue. The mixture was then acidified by 3 M HCl solution to pH 6 , extracted 4 times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}$ each $)$. The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{EtOAc} 19: 1\right)(2 \mathrm{x})$ to give $\mathbf{1 7}$ as a yellow oil ($64.8 \mathrm{mg}, 0.099 \mathrm{mmol}$, 41%).
${ }^{1} \mathbf{H}$ NMR ($500.15 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84\left(2 \mathrm{H}, \mathrm{d}, J=15.5, \mathrm{H}-\beta, \mathrm{H}-\beta{ }^{\prime}\right), 7.66(2 \mathrm{H}, \mathrm{dd}, J=2.0, J=$ 8.5, H-6, H-6''), 7.59 ($2 \mathrm{H}, \mathrm{d}, J=2.0, \mathrm{H}-2, \mathrm{H}-2$ ''), 7.38 ($2 \mathrm{H}, \mathrm{d}, J=15.5, \mathrm{H}-\alpha, \mathrm{H}-\alpha$ '), 7.26 (4H, s, H-2', H-6', H-2''’, H-6'''), 7.04 ($2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-5, \mathrm{H}-5^{\prime}$ '), 3.94 ($12 \mathrm{H}, \mathrm{s}, \mathrm{H}-7, \mathrm{H}-9, \mathrm{H}-7$ ', H-9'), 3.93 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-8, \mathrm{H}-8^{\prime}$), 3.85 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-10, \mathrm{H}-10^{\prime}$)

[^0]
6,6'-dimethoxybiphenyl-3,3'-dicarbaldehyde (26)

Chemical formula: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$

Molecular weight: $270.28 \mathrm{~g} / \mathrm{mol}$

3-bromo-4-methoxybenzaldehyde (27, $50 \mathrm{mg}, \quad 0.233 \mathrm{mmol}$), 5-formyl-2methoxybenzeneboronic acid ($28,104.6 \mathrm{mg}, 0.581 \mathrm{~mol}, 2.5$ eq.) , PdCl_{2}-dppf ($34 \mathrm{mg}, 0.0465$ $\mathrm{mmol}, 0.2 \mathrm{eq}$.), 3 M NaOH water solution ($233 \mu \mathrm{l}, 0.698 \mathrm{mmol}, 3 \mathrm{eq}$.) were added to THF (3 ml). The reaction mixture was stirred using MW heating ($120{ }^{\circ} \mathrm{C}, 150 \mathrm{~W}, 10 \mathrm{~min}$), being controlled by TLC. When TLC indicated the completion of the reaction, the solvent was evaporated. 20 ml of $\mathrm{H}_{2} \mathrm{O}$ and 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added to the residue. The mixture was then acidified by 3 M HCl solution to pH 6 and extracted three times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml each). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography (Hex:EtOAc 70:30) to give 26 as a white amorphous solid (49 mg , $0.18 \mathrm{mmol}, 78 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\left.500.15 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.93(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.92(2 \mathrm{H}, \mathrm{dd}, J=2.5 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{H}-$ 6, H-6'), 7.78 ($2 \mathrm{H}, \mathrm{d}, ~ J=2.5 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-2$ '), 7.10 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-5, \mathrm{H}-5$ '), 3.87 ($6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right)$
${ }^{13} \mathbf{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8$ (C=O), 162.0 (C-4, C-4'), 133.1 (C-6, C-6'), 131.9 (C-2, C-2'), 129.7 (C-1, C-1'), 127.2 (C-3, C-3'), 111.0 (C-5, C-5'), $56.7\left(\mathrm{OCH}_{3}\right)$

HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$271.0965, found 271.0964

Chemical formula: $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{10}$

Molecular weight: $654.70 \mathrm{~g} / \mathrm{mol}$

3,4,5-trimethoxyacetophenone (21, $258 \mathrm{mg}, 1.23 \mathrm{mmol}, 4$ eq.) and 3 M NaOH water solution ($513 \mu \mathrm{l}, 1.54 \mathrm{mmol}$, 5 eq .) were dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$ and left stirred 20 min at r.t. $26(83 \mathrm{mg}, 0.307 \mathrm{mmol})$ was then added and the mixture was heated under reflux, being monitored by TLC. After 5 hours, the solvent was evaporated. 20 ml of $\mathrm{H}_{2} \mathrm{O}$ was added to the residue. The mixture was acidified by 3 M HCl solution to pH 6 and filtrated. The resulting mixture was then extracted three times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml each). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography ($\mathrm{CHCl}_{3}: \mathrm{EtOAc} 19: 1$) to give 17 as a yellow oil ($29 \mathrm{mg}, 0.045 \mathrm{mmol}, 15 \%$).

4-(tetrahydro-2H-pyran-2-yloxy)benzaldehyde (33)

33

Chemical formula: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$
Molecular weight: $206.24 \mathrm{~g} / \mathrm{mol}$
4-hydroxybenzaldehyde ($\mathbf{3 1}, 1000 \mathrm{mg}, 8.19 \mathrm{mmol}$) and PPTS ($51 \mathrm{mg}, 0.205 \mathrm{mmol}$, 0.025 eq.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ and left stirred at r.t. for 30 min . 3,4-dihydro- 2 H pyrane ($\mathbf{3 2}, 2.24 \mathrm{ml}, 2.73 \mathrm{mmol}, 3 \mathrm{eq}$.$) was then added. The reaction mixture was stirred at r.t.$ for 24 hours. When TLC indicated the completion of the reaction, the mixture was diluted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ and washed three times by $0,3 \mathrm{M}$ solution of $\mathrm{NaOH}(20 \mathrm{ml}$ each). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give $\mathbf{3 3}$ as a white amorphous solid ($1177 \mathrm{mg}, 5.71 \mathrm{mmol}, 69 \%$).

3',4',5'-trimethoxy-4-(tetrahydro-2H-pyran-2-yloxy)chalcone (34)

34

Chemical formula: $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$
Molecular weight: $398.45 \mathrm{~g} / \mathrm{mol}$
3,4,5-trimethoxyacetophenone (21, $1000 \mathrm{mg}, 4.76 \mathrm{mmol})$ and $\mathrm{Ba}(\mathrm{OH})_{2}(4068 \mathrm{mg}$, $23.79 \mathrm{mmol}, 5 \mathrm{eq}$.) were dissolved in $\mathrm{MeOH}(15 \mathrm{ml})$ and left stirred at r.t. for 30 min .33 (1177 $\mathrm{mg}, 5.71 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added and the reaction mixture was heated under reflux for 30 min . When TLC indicated the completion of the reaction, the solvent was evaporated. 20 ml of $\mathrm{H}_{2} \mathrm{O}$ was added to the residue. The resulting mixture was then acidified by 3 M HCl to pH 6 and extracted three times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}$ each $)$. The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography on
silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $\mathbf{3 4}$ as a light yellow oil ($1175 \mathrm{mg}, 2.95 \mathrm{mmol}, 62 \%$) and a small amount of 18 as a light yellow oil ($25 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.02 \%$).

4-hydroxy-3', $\mathbf{4}^{\prime}, 5$'s-trimethoxychalcone (18)

Chemical formula: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$

Molecular weight: $314.33 \mathrm{~g} / \mathrm{mol}$

34 ($810 \mathrm{mg}, 2.03 \mathrm{mmol}$) and PTSA ($39 \mathrm{mg}, 0.203 \mathrm{mmol}, 0.1 \mathrm{eq}$.) were dissolved in $\mathrm{MeOH}(6 \mathrm{ml})$ and left stirred at r.t. The reaction was monitored by TLC. After 3.5 hours, when TLC indicated the completion of the reaction, the solvent was evaporated. 20 ml of $\mathrm{H}_{2} \mathrm{O}$ were then added to the residue. The resulting mixture was extracted three times by EtOAc (20 ml each). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to give 18 as a light yellow oil ($493 \mathrm{mg}, 1.57 \mathrm{mmol}, 77 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500.15 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-\beta), 7.57(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{H}-2, \mathrm{H}-$ 6), 7.36 ($1 \mathrm{H}, \mathrm{d}, J=15.6, \mathrm{H}-\alpha$), 7.27 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$), 6.90 ($2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{H}-3, \mathrm{H}-5$), 5.85 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 3.95 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-7, \mathrm{H}-9$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$)
${ }^{13}$ C NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.5$ (C=O), 158.1 (C-4), 153.1 (C-3', C-5'), 144.8 (C- β), 142.4 (C-4'), 133.8 (C-1'), 130.5 (C-2, C-6), 127.7 (C-1), 119.4 (C- α), 116.0 (C-3, C-5), 106.1 (C-2', C-6'), 61.0 (C-8), 56.4 (C-7, C-9)

4-(3-bromopropoxy)-3',4',5'-trimethoxychalcone (35)

Chemical formula: $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{BrO}_{5}$

Molecular weight: $435.308 \mathrm{~g} / \mathrm{mol}$
$\mathbf{1 8}(100 \mathrm{mg}, 0.318 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(87.9 \mathrm{mg}, 0.636 \mathrm{mmol}$, 2 eq.) were added to DMF $(10 \mathrm{ml})$ and left stirred for 10 min . 1,3-dibromopropane ($\mathbf{3 6}, 323 \mu \mathrm{l}, 3.18 \mathrm{mmol}, 10$ eq.) was then added. The resulting reaction mixture was stirred at r.t. for 1.5 hours, being monitored by TLC. When TLC indicated the completion of the reaction, the solvent was evaporated, $\mathrm{H}_{2} \mathrm{O}$ (20 $\mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ were added to the residue. The mixture was extracted three times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml each). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was purified by chromatography (Hex:EtOAc 7:3) to give 35 as a light yellow oil ($132 \mathrm{mg}, 0.305 \mathrm{mmol}, 96 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500.15 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(1 \mathrm{H}, \mathrm{d}, J=15.5, \mathrm{H}-\beta), 7.61(2 \mathrm{H}, \mathrm{d}, J=9.0, \mathrm{H}-2, \mathrm{H}-6)$, $7.36(1 \mathrm{H}, \mathrm{d}, J=16.0, \mathrm{H}-\alpha), 7.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-3, \mathrm{H}-5), 4.17(2 \mathrm{H}$, t, H-1''), 3.95 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-7, \mathrm{H}-9$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), 3.61 ($2 \mathrm{H}, \mathrm{t}, \mathrm{H}-3$ '"), 2.37-2.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 2')
${ }^{13} \mathbf{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.3$ (C=O), 160.8 (C-4), 153.2 (C-3', C-5'), 144.5 (C- β), 142.4 (C-4'), 133.8 (C-1'), 130.3 (C-2, C-6), 127.9 (C-1), 119.6 (C- α), 115.0 (C-3, C-5), 106.1 (C-2', C-6'), 65.5 (C-1''), 60.1 (C-8), 56.4 (C-7, C-9), 32.2 (C-3'’), 29.7 (C-2'’).

4-(9,13-bis-Boc-4,9,13-triazatridecyl)-3', $\mathbf{4}^{\prime}, 5^{\prime}$ '-trimethoxychalcone (39)

Chemical formula: $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{3}$

Molecular weight: $699.874 \mathrm{~g} / \mathrm{mol}$

35 ($43.5 \mathrm{mg}, 0.10 \mathrm{mmol}$), N^{1}, N^{4}-bis-Boc-spermidine ($\mathbf{3 8}, 38 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added to acetonitrile (5 ml). The reaction mixture was stirred using MW heating ($90{ }^{\circ} \mathrm{C}, 120 \mathrm{~W}, 20 \times 2 \mathrm{~min}$), being monitored by TLC. When TLC indicated the completion of the reaction, the solvent was evaporated, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added to the residue. The mixture was then acidified by 3 M HCl to pH 6 and extracted three times by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}$ each). The combined organic portions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography [CHCl3:MeOH:NH4OH 94:5:1 (1x)] to give 39 as a light yellow oil ($12 \mathrm{mg}, 0.0171 \mathrm{mmol}, 18 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.500.15 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(1 \mathrm{H}, \mathrm{d}, J=15.5, \mathrm{H}-\beta), 7.59(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-2, \mathrm{H}-6)$, 7.36 ($1 \mathrm{H}, \mathrm{d}, J=15.5, \mathrm{H}-\alpha$), 7.27 ($2 \mathrm{H}, \mathrm{d}, J=3.5, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}$), 6.92 ($2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-3, \mathrm{H}-5$), 4.66 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 4.10 ($2 \mathrm{H}, \mathrm{t}, \mathrm{H}-1$ '’), 3.95 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-7, \mathrm{H}-9$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), 3.23-3.09 (6 H , m, C-8'', C-10', C-12'’), 2.94 ($2 \mathrm{H}, \mathrm{t}, \mathrm{C}-3$ '"), 2.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-5$ '"), 2.09 (2 H , pseudoquintuplet, C-2', 1.65 (2 H , pseudoquintuplet, C-11''), 1.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}-6^{\prime \prime}, \mathrm{C}-7$ ''), 1.45 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Boc} \mathrm{CH}_{3}$), $1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc} \mathrm{CH}_{3}\right)$
${ }^{13} \mathbf{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.3$ (C=O), 160.9 (C-4), 153.2 (C-3', C-5'), 156.1 (Boc $\mathrm{C}=\mathrm{O}$), 144.5 ($\mathrm{C}-\beta$), 142.4 ($\mathrm{C}-4$ '), 133.8 ($\mathrm{C}-1$ '), 130.3 (C-2, C-6), 127.8 (C-1), 119.5 (C- α), 114.9 (C-3, C-5), 106.1 (C-2', C-6'), 79.8 (Boc quaternary C), 79.1 (Boc quaternary C), 66.1 (C-1''), 61.0 (C-8), 56.4 (C-7, C-9), 48.8 (C-5''), 46.7 (C-8''/C-10''/C-12'), 46.1 (C-3'),
44.0 (C-8''/C-10'"/C-12'’), 37.6 (C-8'’/C-10''/C-12'’), 28.6 (C-11'"), 28.5 ($\mathbf{B o c ~ C H}_{3}$), 28.3 (C-2''), 26.2 (C-6'/C-7'’), 25.6 (C-6''/C-7'')

5. REFERENCES

1. Hanahan D., Weinberg R. A., Hallmarks of cancer: the next generation. Cell. 2011, 144 (5), 646-674
2. What is Cancer?. National Cancer Institute. [online]. 9.2.2015 [cit. 2016-01-17]. Available from: http://www.cancer.gov/about-cancer/what-iscancer
3. Cancer. World Health Organization. [online]. 2.2015 [cit. 2016-01-17]. Available from: http://www.who.int/mediacentre/factsheets/fs297/en/
4. Zemřelí podle seznamu příčin smrti, pohlaví a věku v ČR, krajích a okresech - 2005 až 2014. Český statistický úřad. [online]. 16.11.2015 [cit. 2016-01-17]. Available from: https://www.czso.cz/csu/czso/ceska-republika-podle-pohlavi-a-veku-2005-2014
5. Causes of death - standardised death rate, 2012 (per 100000 inhabitants). Eurostat Statistics Explained. [online]. 24.6.2015 [cit. 2016-01-17]. Available from: http://ec.europa.eu/eurostat/statisticsexplained/index.php/File:Causes_of_death_\�\�\�_standardised_d eath_rate,_2012_(per_100_000_inhabitants)_YB15.png
6. Cancer Incidence in the Czech Republic, 2011. Praha: Institute of Health Information and Statistics of the Czech Republic, 2015.
7. Treatment types. American Cancer Society. [online]. [cit. 2016-01-17]. Available from:
http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/ treatment-types-landing
8. Chemotherapy Drugs: How They Work . American Cancer Society. [online]. 2.6.2015 [cit. 2016-01-17]. Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/002995$p d f . p d f$
9. Newman D. J., Giddings L. A. Natural Products as Leads to Antitumor Drugs, Phytochem. Rev., 2013, 13, 123-137
10. Jordan M. A. Mechanism of Action of Antitumor Drugs that Interact with Microtubules and Tubulin, Curr. Med. Chem. Anticancer Agents, 2012, 2 (1), 1-17
11. Nogalez E.. Structural insight into mikrotubule function, Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 397-420
12. Moudi M., Go R., Yien C. Y. S., Nazre M. Vinca Alkaloids. Int. J. Prev. Med. 2013, 4 (11), 1231-1235
13. Ducki S. et al., Combretastatin-like chalcones as inhibitors of mikrotubule polymerization. Part 1: synthesis and biological evaluation of antivascular aktivity. Bioorg. Med. Chem, 2009, 17, 7698-7710
14. Fauzee N. J. S., Dong Z., Wang Y. Taxanes: Promising Anti-Cancer Drugs, Asian Pac. J. Cancer Prev., 2011, 12, 837-851
15. Pommier Y., Leo E., Zhang H., Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17 (5), 421-33
16. Nagar N. et all. Podophyllotoxin and their glycosidic derivatives. Pharmacophore, 2011, 2 (2), 124-134
17. Tierny D. et all. Phase 1 clinical pharmacology study of F1412, a new polyamine-vectorized anti-cancer drug, in naturally occuring canine lymphoma. Clin. Cancer Res., 2015, 21 (23), 5314-5323
18. Barret J. M. et all. F14512, a Potent Antitumor Agent Targeting Topoisomerase II Vectored into Cancer Cells via the Polyamine Transport System. Cancer Res. 2008, 68 (23), 9845-9853
19. Pegg A. E. Mammalian Polyamine Metabolism and Function. IUBMB Life, 2009, 61 (9), 880-894
20. Minois N., Carmona-Gutierrez D., Madeo F. Polyamines in aging and disease. Aging. 2011, 3 (8), 716-732
21. Yuan Q., Ray R. M., Viar M. J., Johnson L. R. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells. Am. J. Physiol., 2001, 280 (1), 130-138
22. Moulineux J. P., Cipolla B., Simonnet G. Polyamines and cancer scientific basis and therapeutic potentialities. La Révue de Geriatrie, 2010, 35 (6)
23. Kuniyasu S.. The mechanisms by which polyamines accelerate tumor spread. J. Exp. Clin. Canc. Res. 2011, 30 (95)
24. Casero R. A, Marton L. J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. rev. drug discov., 2007, 6 (5), 373-390
25. Kumar S., Pandey A. K. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal. 2013. 1-16
26. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"): flavonoids (isoflavonoids and neoflavonoids).IUPAC [online]. Oxford: Blackwell Scientific Publications, 2014 [cit. 2016-01-31]. Available from: http://goldbook.iupac.org/F02424.html
27. Ferrer J., Austin M., Stewart C. J., Noel J. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem., 2008, 46 (3), 356-370
28. Havsteen B. H. The biochemistry and medical significance of the flavonoids. Pharmacology \& Therapeutics, 2002, 96 (2-3), 67-202
29. Bruneton J. Pharmacognosie, phytochimie, plantes médicinales (4e éd.), 2009, Lavoisier, p. 1268
30. Ghedira K. Les flavonoïdes: structure, propriétés biologiques, rôle prophylactique et emplois en thérapeutique. Phytothérapie, 2005, 3 (4), 162-169
31. Izzi V. et all. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosci. 2012, 17 (7), 2396-2418
32. Stoclet J. C., Schini-Kerth V. B. Flavonoides alimentaires et santé humaine. Ann. Pharm. fr. 2011, 69 (2), 78-90
33. Yahiaoui S., Fagnere C., Pouget C., Buxeraud J., Chulia A. C. 7,8benzoflavanones as potent aromatase inhibitors: Synthesis and biological evaluation. Bioorg. \& Med. Chem., 2008, 16, 1474-1480
34. Pouget C. et all. Synthesis and Aromatase Inhibitory Activity of Flavanones. Pharm. Res., 2002, 19, 286-291
35. Gupta K., Panda G. Perturbation of Microtubule Polymerization by Quercetin through Tubulin Binding: A Novel Mechanism of Its Antiproliferative Activity. Biochemistry, 2002, 41 (43), 13029-13038
36. Sagrera G. et all. Synthesis and antifungal activities of natural and synthetic biflavonoids. Bioorg. \& Med. Chem. 2011, 19 (10), 3060-3073
37. Mdee L. K., Yeboah S. O., Abegaz B. H. Rhuschalcones II-VI, Five New Bischalcones from the Root Bark of Rhus pyroides. J. Nat. Prod. 2003, 66 (5), 599-604
38. Qi Z. et all. Tetramethoxychalcone, a Chalcone Derivative, Supresses Proliferation, Blocks Cell Cycle Progression, and Induces Apoptosis of Human Ovarian Cancer Cells. PLoS ONE. 2014, 9 (9), 106-206
39. Freundlich J. L., Landis H. E.. An expeditious aqueous Suzuki-Miyaura method for the arylation of bromophenols. Tetrahedron Lett., 2006, 47, 4275-4279
40. Zhuravel M. A., Nguyen. S. T. Preparation of 3-aryl-substituted salicylaldehydes via Suzuki coupling. Tetrahedron Lett., 2001, 42(45), 7925-7928
41. Ducki S. et all. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg \& Med. Chem. Lett., 1998, 8 (9), 1051-1056
42. Geran R.I., Greenberg N.H., MacDonald M.M., Schumaker A.M., Abbott B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep. 3, 1972, 3, 59-61.
43. Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis (vol. 2), 2002, Wiley-Interscience

[^0]: ${ }^{13} \mathbf{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.3$ (C=O), 159.2 (C-4, C-4'), 153.2 (C-3', C-5', C-3'’", C-5'’'), 144.5 ($\mathrm{C} \beta, \mathrm{C} \beta$ '), 142.5 (C-4', C-4'"'), 133.8 ($\mathrm{C}-1^{\prime}, \mathrm{C}-1$ '"'), 131.1 ($\mathrm{C}-2, \mathrm{C}-2$ ''), 130.5 (C-6, C-6''), 127.8 (C-1/C-3, C-1'", C-3''), 127.5 (C-1/C-3, C-1''/C-3''), 119.8 ($\mathrm{C} \alpha, \mathrm{C} \alpha^{\prime}$), 111.1 (C-5, C-5'’), 106.2 (C-2', C-6', C-2'"', C-6'"'), 61.0 (C-8, C-8'), 56.5 (C-7, C-9, C-7', C-9'), 55.9 (C-10, C-10')

