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nosti a matematické statistiky
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Introduction

At the stock market, investors’ intention is to create a portfolio with the

highest possible return and simultaneously to achieve the lowest risk of loss.

These are contradictory requirements and a trade-off is necessary. The optimal

portfolio of assets can be composed in different ways according to investors’ risk

aversion and approach to expected return.

Many models of portfolio optimization are based on the expected return of

the portfolio and variance as the risk measure. In this thesis we will include

the skewness of a portfolio as another criterion into the models. The investors’

attitude towards the skewness is not as evident as their attitude towards the

expected return and the variance. The higher skewness of the portfolio’s return

signifies a lower probability of a large negative return. That means, that is only

natural, when the investors prefer positive skewness.

In the first chapter, we introduce Mean-Variance framework for portfolio opti-

mization and basic notation. The Markowitz model for searching for the optimal

portfolio is presented as a baseline optimization model.

In the second chapter, we establish the concept of a Mean-Variance-Skewness

optimal portfolio and optimization models based on this idea.

The third chapter deals not only with the models, which search for an opti-

mal portfolio, but also with methods for measuring the performance of a given

portfolio.

The fourth chapter contains the numerical part of this thesis. Selected models

are applied to the stock data and an approximation of the efficient frontier from

each model is shown.

In the last chapter, we summarize the models and compare them from the

theoretical and computational point of view.
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Chapter 1

Mean-Variance Portfolio

Selection Problem

Harry M. Markowitz was the first who introduced a portfolio model in Markowitz

(1952) and Markowitz (1959). Markowitz model chooses an optimal portfolio and

is considered a foundation stone of the portfolio theory. Its main principle is di-

versification, which reduces the risk of the whole portfolio by investing in variety

of assets disposable in the market.

In this thesis we assume that the market is efficient. There are some assump-

tions to be held: there are no transaction and tax costs, the assets are marketable

and infinitely divisible, all relevant information is equally available for each in-

vestor and the investment time is one period (see Dupačová et al. (2002)). We

expect rational behavior of investors, which means they choose a portfolio with

the highest expected return among all portfolios with the same risk or a portfolio

with the smallest risk among all portfolios with the same expected return.

Unless otherwise stated, shortsales are disabled and we do not include risk

free assets.

The existence of transaction or tax cost can influence the investor’s decision.

When costs are fixed regardless of the amount invested, it is more profitable to

invest in less titles. Consequently, the resulting portfolio is less profitable and

more risky than in case of assuming no costs. Other situation is, when costs are

float. In that case they can be proportinally included in weights of particular

assets.

In stated models we consider amounts invested in particular assets not in

units or lots, but in proportions of an initial investor’s amount. In real world the

amount possible to invest is not infinite (if short sales are disabled) and also the

amount of assets possible to buy is bounded. Therefore in our models we require

the assumption of infinite divisibility, although it is hardly satisfied in reality.

In this chapter we consider only expected return and variance of returns to
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formulate a model. We search for an optimal Mean-Variance portfolio (MV).

1.1 Notation

Let’s denote random variable Rj as a relative return of an asset j = 1, . . . , n

and R = (R1, . . . , Rn)
T as a vector of returns. We seek for a portfolio x =

(x1, . . . , xn)
T , where weight xj expresses, how much the investor invests in an

asset j.

Since short sales are excluded, we assume weights of assets are non-negative

xj ≥ 0. Investor disposes an amount of 1, which means
∑n

i=1 xi ≤ 1. Impos-

ing condition, that the whole amount is invested in portfolio, we get the weights

xi, i = 1, . . . , n in form proportions of the total amount invested into correspond-

ing assets.

n
∑

i=1

xi = 1 (1.1)

Let’s denote ℑ as a set of admissible portfolios identified by the weights:

ℑ = {x ∈ R
n;

n
∑

i=1

xi = 1,x ≥ 0} (1.2)

Return of a portfolio is a random variable given by the sum of random returns

of particular assets multiplied by corresponding asset’s weights:

R(x) =
n

∑

j=1

Rjxj.

The expected return of the portfolio is calculated:

E[R(x)] = E

[

n
∑

j=1

Rjxj

]

=
n

∑

j=1

E[Rj]xj. (1.3)

A parameter µ0 represents investor’s required minimal expected return, which

creates the following contraint:

E[R(x)] ≥ µ0. (1.4)
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The variance of the portfolio x is calculated:

V ar[R(x)] = E





{

n
∑

j=1

Rjxj − E

[

n
∑

j=1

Rjxj

]}2


 =

= E[(R(x)− (E[R(x)])2] =
n

∑

i,j=1

Ωijxixj = xTΩx,

(1.5)

where Ωi,j = cov(Ri, Rj), i, j = 1, . . . , n.

1.2 The Markowitz Model

Investor’s preference is to have the highest possible return with the lowest

possible risk. These two requirements goes against each other; the higher re-

turn of a portfolio often means the higher risk and vice-versa. Simulataneous

minimizing variance of the portfolio’s return and maximazing expected return

of the portfolio’s return is a problem of multiobjective optimization. To solve

this optimization problem we can fix one of the criteria and the second mini-

mize/maximize. Hence, we can either minimize risk and fix the expected return

or maximize expected return and fix the risk. Markowitz focused at the first

possibility and he minimizes risk, while setting a condition of required minimum

expected return of the portfolio.

There are several options, which risk measure can be used for evaluation the

risk of the portfolio. For example: variance, mean absolute deviation or Value-

at-Risk. Since the Markowitz model uses variance, the problem of searching for

an optimal portfolio is a problem of quadratic programming. The model can be

formulated as follows:

min V ar[R(x)]

s.t E[R(x)] ≥ µ0,
n

∑

j=1

xj = 1,

xj ≥ 0, j = 1 . . . n.

(1.6)

Parameter µ0 reflects the investor’s preference on the expected return of the

6



portfolio. But it must be chosen prudently, because the model is feasible only

when µ0 satisfies:

min{E[Ri], i = 1, . . . , n} ≤ µ0 ≤ max{E[Ri], i = 1, . . . , n}

The model 1.7 can be rewritten as:

min
n

∑

i,j=1

Ωijxixj

s.t
n

∑

j=1

E[Rj]xj ≥ µ0,

n
∑

j=1

xj = 1,

xj ≥ 0, j = 1 . . . n

(1.7)
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Chapter 2

Mean-Variance-Skewness

Portfolio Selection Problem

In this chapter we add skewness to the standard Mean-Variance framework.

We will search for an optimal Mean-Variance-Skewness portfolio (MVS). There

are many studies i.e. Lau et al. (1990) or Campbell and Hentschel (1992), which

show, that stocks returns are not normaly distributed in general. Skewness mea-

sures the assymetry of the distribution around the mean of the random variable.

Investors prefer positive skewness, since it means, that the probability of large

negative return is lower contrary to portfolio returns with non-positive skewness

under the same expected return and skewness.

Let SK[R(x)] denotes skewness1of return of a portfolio:

SK[R(x)] = E





{

n
∑

j=1

Rjxj − E

[

n
∑

j=1

Rjxj

]}3


 = E[(R(x)− E[R(x)])3] =

=
n

∑

i,j,k=1

xixjxkE
[

(Ri − E[Ri])(Rj − E[Rj])(Rk − E[Rk])
]

=

=
n

∑

i,j,k=1

xixjxkcSKi,j,k

(2.1)

where

cSKi,j,k = E
[

(Ri − E[Ri])(Rj − E[Rj])(Rk − E[Rk])
]

are co-skewnesses for i, j, k = 1, . . . , n, where n is again number of assets.

1 The skewness of random variable X is mostly defined as (E[X −EX]3)/(
√

E[X − EX])3.
Contrary to the skewness defined in (2.1), which is the third central moment of the random
variable, this is normalized by third power of standard deviation. In this thesis we defined
models and derived further results using skewness from (2.1).
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Since the covariance matrix Ω is a symmetric matrix with a dimension (n, n),

there are
(

n+1
2

)

= n(n+ 1)/2 coefficients to be computed. The coskewness

tensor has rank (n, n, n), so number of elements to be computed is
(

n+2
3

)

=

n(n+ 1)(n+ 2)/6. By adding skewness to the optimization model, we obtain a

problem of nonlinear (cubic) programming.

2.1 Motivation For Skewness – Taylor’s Series

Let’s begin with a definition of the utility function. In case of portfolio the-

ory, the utility means a welfare from investments. The vectors x = (x1, . . . , xn)
T

and y = (y1, . . . , yn)
T represents two different portfolios with amounts invested

in assets j = 1, . . . , n. The unequality x % y means that x is weakly preferred to

y, x ≻ y means that x is preferred to y (Dupačová et al. (2002)) and indifference

x ∼ y means, thath x % y and x - y.

Definition 1. The utility function (ordinal utility function) is defined as U :

R → R:

(U(R(x)) ≥ U(R(y)) ⇔ x % y) ∧ (U(R(x)) = U(R(y)) ⇔ x ∼ y),

where R(x) is return of the portfolio x.

Let u : R → R and R(x) be such an investor’s utility function, which is

infinitely differentiable. The representation of the utility function in a form of

Taylor series around its expected value follows:

u(R(x)) = u (E[R(x)]) + u′(E[R(x)])(R(x)− E[R(x)]) +

+
u′′(E[R(x)])

2!
(R(x)− E[R(x)])2 +

u′′′(E[R(x)])

3!
(R(x)− E[R(x)])3

+
∞
∑

k=4

u(k)(E[R(x)])

k!
(R(x)− E[R(x)])k

(2.2)

Let mk(x) denotes k-th central moment of R(x). Further we assume, that for

all k = 1, . . . the central moments mk(x) < ∞. The expectation of (2.2) is:
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E[u(R(x))] = u(E[R(x)]) +
u′′(E[R(x)])

2!
V ar(x) +

u′′′(E[R(x)])

3!
SK(x)+

+
∞
∑

k=4

u(k)(E[R(x)])

k!
mk(x).

(2.3)

The approximation 2.3 up to the third order:

E[u(r(x))] ∼= u(E[R(x)]) +
u′′(E[R(x)])

2!
V ar(x) +

u′′′(E[R(x)])

3!
SK(x) (2.4)

is an increasing function of skewness of the portfolio (SK(x)) for a decreas-

ingly risk averse investor (see Arditti (1967))). This corresponds to: u′′(.) ≤ 0

and u′′′(.) > 0 as the investor’s utility function is decreasing in the variance and

increasing in skewness of portfolio’s return distribution.

2.2 Mean-Variance-Skewness Model

When searching for an optimal portfolio from assets i = 1, . . . , n, we want to

maximize the expected return and skewness and minimize variance of the return

of a portfolio. That is a task of multi-objective optimization, where the compo-

nents of the model conflict against each other.

There are many ways how to solve this task. One commonly chosen option is

to minimize variance while fixing expected return and skewness. The model can

be formulated as follows:

min V ar[R(x)]

s.t E[R(x)] ≥ µ0,

SK[R(x)] ≥ τ0,
n

∑

j=1

xj = 1,

xj ≥ 0, j = 1 . . . n

(2.5)
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Same as in the mean-variance Markowitz model (1.7), parameter µ0 is the in-

vestor’s minimal required expected return. In addition, there is parameter τ0,

which represents required minimal skewness. One can choose to maximize ex-

pected return or skewness, but the option (2.5) corresponds better to investors

reasoning and is common for mean-variance models.

For the purpose of calculation, the model can be rewritten as:

min
n

∑

i=1

n
∑

j=1

σijxixj

s.t
n

∑

j=1

E[Rj]xj ≥ µ0,

n
∑

i=1

n
∑

j=1

n
∑

k=1

cSKi,j,kxixjxk ≥ τ0,

n
∑

j=1

xj = 1,

xj ≥ 0, j = 1 . . . n

(2.6)

The next model, we introduce, is based on expected value of taylor approximation

of utility function in (2.4). Contrary to (2.5), it does not fix any of variables

expected return, variance or skewness, but maximize their linear combination

with parameters µ, ρ, τ > 0, given by investor.

max µE[R(x)]− ρV ar[R(x)] + τSk[R(x)]

s.t
n

∑

j=1

xj = 1,

xj ≥ 0, j = 1 . . . n

(2.7)

The model (2.7) is nonlinear optimization problem. It corresponds to negative

marginal utility for variance and positive marginal utility for expected return and

skewness2. The ratio ρ

µ
represents degree of absolute risk aversion of investor, the

ratio τ
ρ
represents degree of investor’s prudence.

2Investor’s utility function decreases while variance of the portfolio’s return increases and
investor’s utility function increases while the expected return of the portfolio increases.
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The formulation of (2.7) is called Aggregate function approach (Messac et al.

(2000)), where the objective function is an aggregation of some conflicting cri-

teria. In this case the structure of aggregation is weighted sum of three central

moment of the portfolio’s relative return.

Admissible portfolios, lending, borrowning Until now we assumed, that

short sales are disabled a no risk free asset is included. How to put the as-

sumptions concerning the risk free asset and shortsales into the formulation of a

model?

For lending, but no borrowing (shortsales excluded, risk free asset’s weight

xrf ∈ R):
n

∑

i=1

xi + xrf = 1, xi ≥ 0, i = 1, . . . , n, rf.

For no lending and no borrowing (shortsales excluded, no risk free asset):

n
∑

i=1

xi = 1, xi ≥ 0, i = 1, . . . , n.

For lending and borrowing (shortsales included, risk free asset presence):

xi ∈ R, i = 1, . . . , n, rf.

2.3 The Polymial Goal Programming Model

Another approach to solve the multiobjective optimization problem is from Lai

(1991), where he introduced Polynomial Goal Programming approach (PGP). Lai

focuses at searching for a feasible MVS portfolio by maximizing both, expected

return and skewness for a given level of variance.

In this section the presence of a risk free asset is assumed. Further short sales

are allowed, it means that investor can borrow assets, sell them and later buy

them back, in case he/she expects decreasing returns (bear strategy). The port-

folio has weights x′ = (x1, . . . , xn, xrf )
T , x

′ ∈ R
n+1, the vector of returns is then

R′ = (R1, . . . , Rn, Rrf )
T . The return of risk free asset Rrf has zero covariances

and coskewnesses with all other assets including itself3. As a result, the three

first central moments of return of a portfolio are computed as follows:

3Return of a risk free asset Rrf is non-random, it is often denoted as rrf .
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E[R(x′)] =
n

∑

i=1

xiE[Ri] + xrfRrf , (2.8)

V ar[R(x′)] = E
[

R(x′)− E[R(x′)]
]2

=
n

∑

i,j=1

xixj Ωi,j, (2.9)

Sk[R(x′)] = E
[

R(x′)− E[R(x′)]
]3

=
n

∑

i,j,k=1

xixjxk cSKi,j,i. (2.10)

where Ωi,j are the same covariances as in (1.5) and cSKi,j,k the same coskew-

nesses as in (2.1). Therefore V ar[R(x′)] = V ar[R(x)] and Sk[R(x′)] = Sk[R(x)].

It is not always possible to maximize both variables, expected return and

skewness, simultaneously. The model PGP covers such compromise and intro-

duces weights α, β, which represents investor’s preferences. If the investor is

more return-oriented, the parameter α is higher than β. Analogically the param-

eter β for skewness is higher than α for more skewness-oriented investors.

Since the shorting is included, the expected return of portfolio E[R(x′)] is

unbounded. To guarantee the model is feasible and the optimal solusion exists,

Lai (1991) imposed additional restriction, namely rescaling the variance to unit

variance.

For given parameters α, β ∈ R the PGP model is defined:

PGP (α, β) = min
xi

{

dα1 + dβ3 ; d1 = Z⋆
1 − E[R(x′)],

d3 = Z⋆
3 − Sk[R(x)], V ar[R(x)] = 1

}

,
(2.11)

with

Z⋆
1 = max

xi

{

E[R(x′)];V ar[R(x)] = 1
}

(2.12)

and

Z⋆
3 = max

xi

{

Sk[R(x)];V ar[R(x)] = 1
}

(2.13)
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The PGP model contains three separated portfolio optimization problems.

First, maximizing expected return by fixing unit variance. Second, maximizing

skewness by fixing unit variance. And last, the main model PGP minimizes difer-

rences of expected return and skewness from maximized value of expected return,

resp. skewness calculated beforehand.

Considering not only the unit variance, but a target variance V0 > 0, the

extension of PGP Model from (2.11) was introduced in Briec et al. (2013). For

given parameters α, β ∈ R and variance level V0 > 0, the generalized PGP model

is defined:

PGP V0(α, β) = min
xi

{

dα1 + dβ3 ; d1 = Z⋆
1(V0)− E[R(x′)],

d3 = Z⋆
3(V0)− Sk[R(x)], V ar[R(x)] = V0

}

,
(2.14)

with

Z⋆
1(V0) = max

xi

{

E[R(x′)];V ar[R(x)] = V0

}

(2.15)

and

Z⋆
3(V0) = max

xi

{

Sk[R(x)];V ar[R(x)] = V0

}

(2.16)

To guarantee the generalized PGP model is feasible, the given level of vari-

ance V0 must be between the maximal and minimal value of observed variance of

individual assets.
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Chapter 3

Measuring Portfolio’s

Performance

Until now we were searching for optimal portolio x, given the returns of all

single assets. Let us consider a situation, that for given portfolio x, we are inter-

ested to find out, whether the portfolio is efficient, and in case of inefficiency, how

inefficient the portfolio is. As a measure of portfolio performance we will define

the distance between portfolio and Pareto efficient frontier.

The Pareto frontier contains such portfolios, that cannot be better in one

criterion, unless they are worse in another criterion. In this thesis we focus on

minimalizing variance, while fixing other two criteria. Therefore Pareto efficient

portfolios are such portfolios, which cannot have lower variance, unless the ex-

pected return or skewness is lower.

In this chapter we again ignore the presence of a risk free asset and assume

that short sales are disabled.

3.1 The Variance Ratio Model

Mean-variance portfolio is possible to visualize in two dimensional plot, where

the efficient frontier can be plotted as a curve. By adding skewness, a third di-

mension into portfolio framework, the efficient frontier becomes a surface.

Joro and Na (2006) came with an approach of measuring MVS portfolio effi-

ciency. They showed, that it is sufficient for each asset to consider its projection

into the efficient frontier instead of searching for the whole frontier. Based on the
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distance between the point of portfolio (image of the portfolio in MVS space) and

its projection onto the efficient frontier, it is possible to measure the performance

of the particular portfolio.

To describe their approach (Joro and Na (2006)), let’s imagine a two dimen-

sional space with dimensions for expected return and variance of the portfolio.

We consider assets i = 1, . . . , n and denote Ai a trivial portfolio containing only

i’th asset. Then Ai
⋆ is the projection of Ai onto the efficient frontier with the

same expected return. For the purpose of measuring efficiency they defined a

variance ratio:

θ =
σ2
i⋆

σ2
i

, i = 1. . . . , n, (3.1)

where σ2
i⋆ is the variance of the projection Ai

⋆, and σi
2 is the variance of the

asset i. Since the expected return remains the same and the variance satisfies

σ2
i⋆ ≤ σ2

i , θ is from the interval [0, 1]. The equality σ2
i⋆ = σ2

i and θ = 1 occurs,

when portfolio Ai lies on the frontier.

The following model of measuring efficiency using ratio θ was suggested in

terms of Data Envelopment Analysis (DEA), which is a non-parametric tool for

accessing efficiency. DEA is expressed by optimization problem with multiple

inputs and multiple outputs (Charnes et al. (2013), Chapter 2).

First, we introduce a basic input-oriented formulation of DEA:

min θ − ǫ (
m
∑

r=1

s+r +
s

∑

i=1

s−i )

s.t
n

∑

j=1

yrjλj − s+r = yr0, r = 1, . . . , s

n
∑

j=1

xijλj + s−i = θ xi0, i = 1, . . . ,m

n
∑

j=1

λj = 1

s+, s− ≥ 0

(3.2)

where xij is i-th input, yrj is r-th output, s+ is a vector of output slack vari-

ables, s− is a vector of input slack variables. An infinitesimal constant ǫ allows
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the optimization program involving slack varibles to minimize θ simultaneously

with maximizing sum of slack variables. The variable θ measures possible im-

provement in all inputs for the given level of outputs.

Let’s return to the previous portfolio notation. Parameters µ0, ρ0, τ0 are ex-

pected return, variance, respectively skewness of a portfolio under evaluation.

Taking variances ratio (3.1) as θ, return and skewness as outputs, variance as

input and an admissible portfolio x ∈ ℑ as λ, we get a model presented in Joro

and Na (2006):

min θ − ǫ(s1 + s2 + s3)

s.t E[R(x)]− s1 = µ0

V ar[R(x)] + s2 = θρ0

Sk[R(x)]− s3 = τ0
n

∑

j=1

xj = 1

xj ≥ 0, j = 1 . . . n

(3.3)

When the resulting θ ∈ [0, 1), the portfolio under evaluation is inefficient. In

case of θ = 1, we distinguish two situations. One occurs, when all slack variables

s1, s2, s3 are equal to 0. In that case the porfolio is efficient. In the case when

at least one slack variable si 6= 0 , then the portfolio is inefficient and the slack

variables identify the closest efficient portfolio.

The model (3.3) can be rewritten as follows:

min θ − ǫ(s1 + s2 + s3)

s.t
n

∑

i=1

E[Ri]xi − s1 = µ0

n
∑

i,j=1

Ωi,jxixj + s2 = θρ0

n
∑

i,j,k=1

CSki,j,kxixjxk − s3 = τ0

n
∑

j=1

xj = 1

xj ≥ 0, j = 1 . . . n

(3.4)
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For the purpose of calculation in Chapter 4 and comparison of MVS model

and MV model without skewness, we define MV Variance Ratio model, which is

formed from the model (3.4) by omititng the skewness criterion:

min θ − ǫ(s1 + s2)

s.t
n

∑

i=1

E[Ri]xi − s1 = µ0

n
∑

i,j=1

Ωi,jxixj + s2 = θρ0

n
∑

j=1

xj = 1

xj ≥ 0, j = 1 . . . n

(3.5)

3.2 The Shortage Function Model

In this section we introduce shortage function in Mean-Variance-Skewness

framework according to Briec et al. (2007). Most of derivation and results come

from the prior Briec et al. (2004), where the shortage function was derived and

applied in two dimensional mean-variance framework. First, let’s introduce a

notation, mostly taken from these two sources.

For given porfolio x, the function representing its expected return, variance

and skewness, is a vector Φ : Rn → R
3:

Φ(x) = (E[R(x)], V ar[R(x)], SK[R(x)]). (3.6)

For admissible portfolios ℑ, defined in (1.2), we denote a Mean-Variance-

Skewness representation of portfolios as

ℵ = {Φ(x);x ∈ ℑ} (3.7)
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Extension of the set ℵ by adding a cone is denoted as a portfolio disposal

representation:

DR = ℵ+ (R+ × (−R+)× R+) (3.8)

For the purpose of the definition of weakly efficient frontier for mean-variance

skewness portfolio, it is useful to rewrite the set of disposal representation of

portfolios (3.8) as follows:

DR = {(E, V, S) ∈ R
3; ∃x ∈ ℑ,

(E,−V, S) ≤ (E[R(x)],−V ar[R(x)], SK[R(x)])}

(3.9)

It can be shown (see Briec et al. (2004)), that portfolio disposal representation

DR satisfies free disposal rule (monotonicity):

∀y ∈ DR, ∀y′ ∈ R
3 : y′ ≤ y ⇒ y′ ∈ DR (3.10)

Definition 2. The weakly efficient frontier is defined as

∂M(ℑ) = {(E, V, S); (E⋆,−V ⋆, S⋆) > (E,−V, S) ⇒ (E⋆, V ⋆, S⋆) 6∈ DR}

Definition 2 says, that the weakly efficient frontier is a subset of MVS portfo-

lios, which are not dominated by any other portfolio.

Definition 3. The set of weakly efficient portfolios is denoted:

ΘM(ℑ) = {x ∈ ℑ; Φ(x) ∈ ∂M(ℑ)}

Figure 3.1 is taken from Briec et al. (2004) and illustrates the set of admissi-

ble portfolios (V,E) from ℑ in Mean-Variance framework. The set R denotes the

set of disposal MV portfolio representation analogical to DR for MVS portfolios.

In Mean-Variance-Skewness framework the set DR is an subset of R3 and the
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Figure 3.1: Mean-Variance illustration of the set of disposal portolio representa-
tion and weakly efficient frontier. Figure borrowed from Briec et al. (2004).

weakly efficient frontier is a surface.

3.2.1 Shortage Function

Now we can introduce a shortage function:

Definition 4. Let g = (gE,−gV , gS) ∈ R+ × (−R+) × R+. The function Sg :

ℑ → R+ defined as Sg(x) = sup{δ; Φ(x) + δg ∈ DR} is the shortage function

for portfolio x in the direction of vector g.

The shortage function measures the distance in given direction g between an

image of a portfolio x in MVS space and the Pareto efficient frontier. Let’s for-

mulate basic properties of the shortage function.

Proposition 1. Shortage function Sg in the direction g defined on ℑ satisfies the

following properties:

(i) If (gE, gV , gS) ∈ R
3
++

1 and x ∈ ℑ ⇒ Sg(x) < ∞

(ii) If (gE, gV , gS) ∈ R
3
++, then Sg(x) = 0 ⇔ x ∈ ΘM(ℑ) (weak efficiency)

(iii) Sg is MVS weakly monotonic, i.e,

(E[R(x′)],−V ar[R(x′)], Sk[R(x′)]) ≤ (E[R(x)],−V ar[R(x)], Sk[R(x)])

implies, that 0 ≤ Sg(x) ≤ Sg(x
′

)

(iv) If (gE, gV , gS) ∈ R
3
++, then Sg is continuous.
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Proof. (i) From the definition 3.8 of disposal representation set, if x ∈ ℑ then

the subset

{

(E
′

, V
′

, S
′

) ∈ DR; (E
′

,−V
′

, S
′

) ≥ (E[R(x)],−V ar[R(x)], Sk[R(x)]
}

is bounded, since the set of admissible portfolios ℑ defined in (1.2) is

bounded. Then it follows, that Sg(x) < ∞.

(ii) Assume that x /∈ ∂M(ℑ). Then there exists portfolio (E
′

, V
′

, S
′

) ∈ DR

such that

(E
′

,−V
′

, S
′

) > (E[R(x)],−V [R(x)], S[R(x)])

Then from Definition 4 of shortage function and assumption gE > 0 or

gV > 0 or gS > 0 directly follows, that Sg > 0.

Thereupon, Sg = 0 ⇒ x ∈ ∂M(ℑ).

To prove the second implication, let’s assume Sg > 0, (gE, gV , gS) ∈ R
3
++

and x ∈ ℑ. Consider a point of portfolio in MVS:

Φ(x′) = (E(R(x)) + Sg(x)gE, V (R(x))− Sg(x)gV , SK(R(x)) + Sg(x)gS)

then we get

(E(R(x)) + Sg(x)gE,−V (R(x)) + Sg(x)gV , SK(R(x)) + Sg(x)gS) >

> (E(R(x)),−V (R(x)), SK(R(x))),

From definition of Sg we know, that Φ(x′) ∈ DR, which implies, that port-

folio x does not lie on the efficient frontier, so x /∈ ΘM(ℑ).

(iii) See Luenberger (1995).

(iv) Let’s consider function T : DR → R+ defined as

T (E, V, S) = sup{δ; (E + δgE, V − δgV , S + δgS) ∈ DR}],

1
R

3
++ means that at least one element is positive and all of the elements are non-negative:

(gE , gV , gS) > 0, we talk then about strict positivity of the vector g = (gE , gV , gS)
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assuming (gE, gV , gS) ∈ R
3
++. Since DR satisfies free disposal rule (mono-

tonicity), and expected return, variance and skewness are continous with

respect to x, function T is continuous. Hence Sg is continuous (Briec et al.

(2007)).

In other words, Proposition 1 tells, that shortage function for admissible port-

folio x is always definite and non-negative, which follows from the Definition 4

of Sg. When the shortage function is equal to 0, the portfolio is weakly efficient.

When portfolio x
′ is dominated by portfolio x, which means, that portfolio x is

closer to efficient frontier in a direction g than x
′ (in terms of euclidean distance

in MVS space), then 0 ≤ Sg(x) ≤ Sg(x
′

). When g = (gE, gV , gS) ∈ R
3
++ the

shortage function is continuous.

3.2.2 Computation Of Shortage Function

Again portfolio can be compound from a sample of assets i = 1, . . . , n. Let

consider a specific portfolio y = (y1, . . . , yn)
T ,

∑n

i=1 yi = 1, whose performace we

want to measure. Further we consider a direction vector g = (gE, gV , gS) ∈ R
3
++.

The disposal representation set DR expressed in (3.9) together with Defini-

tion 4 specified the form of the model for computation the shortage function.

We seek for a portfolio x, whose distance in a given direction g from a given

benchmark portfolio y, we maximize. Additionally the condition of admissibility

of the portfolio x has to be satisfied.

We denote the model of calculating the shortage function as MVS Shortage

model and formulate it as follows:

max
xi

δ

s.t E[R(y)] + δgE ≤ E[R(x)]

V ar[R(y)]− δgV ≥ V ar[R(x)]

Sk[R(y)] + δgS ≤ Sk[R(x)]
n

∑

i

xi = 1

xi ≥ 0, i = 1 . . . n

(3.11)
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If δ > 0, the evaluated portfolio y is inefficient and its image in MVS space

is below the efficient frontier. If δ = 0 and y ∈ ℑ, then the portfolio is a part

of the weakly efficient frontier. The model is infeasible, when Φ(y) of evaluated

portfolio y is outside of set DR (above the weakly efficient frontier).

The model 3.11 can be rewritten as:

max
xi

δ

s.t
n

∑

i=1

yiE[Ri] + δgE ≤

n
∑

i=1

xiE[Ri]

n
∑

i,j=1

Ωi,i yiyj − δgV ≥

n
∑

i,j=1

Ωi,j xixj

n
∑

i,j,k=1

CSki,i,i yiyjyk + δgS ≤
n

∑

i,j,k=1

CSki,j,k xixjxk

n
∑

i

xi = 1

xi ≥ 0, i = 1 . . . n

(3.12)

The Shortage model (3.12) is nonlinear (cubic) optimization problem. Ac-

cording to Briec et al. (2007) it can not be formulated as a standard convex

problem of nonlinear programming. Therefore it is necessary to show, that local

optimum is also a global optimal solution.

Proposition 2. Assume that x is not a strict local maximum of the skewness

on ℑ. If (δ,x) is a local optimum of Shortage model (3.11), then it is a global

solution.

Proof. Available as a part of online appendix to Briec et al. (2007).

For computational purposes we state also MV Shortage model (without the

condition corresponding to the skewness criteria). The model as well as the prop-

erties of the two dimensional shortage function were derived in Briec et al. (2004).

23



max
xi

δ

s.t E[R(y)] + δgE ≤ E[R(x)]

V ar[R(y)]− δgV ≥ V ar[R(x)]
n

∑

i

xi = 1

xi ≥ 0, i = 1 . . . n

(3.13)

3.2.3 Choice Of The Direction Vector

The choice of the direction vector should reflect the investor’s preferences.

When the assumption of strict positivity of vector g is satisfied, the shortage

function simultanously decreases the given portfolio in variance and increases it

in expected return and skewness. It measures possible improvement of the bench-

mark portfolio. By choice of the elements of direction vector g, we can also pick

the variable, which should be minimize/maximize and fix other variables. For

(gE, 0, 0) we obtain model of maximizing return, for (0, gV , 0) model of minimiz-

ing variance and (0, 0, gS) model of maximizing skewness.

When the elements of direction vector are less or equal to zero, it cannot

be guaranteed that shortage function correctly indicates the efficiency, since the

shortage function does not have to be continuous (see (ii) in Proposition 1).

If an element of direction vector g is negative it would contradict with utility

theory derived in Chapter 2. The cases of one positive element and two zero ele-

ments, mentioned in this section, increase the chance of projection the portfolio

to the nonconvex part of a frontier (in horizontal or vertical direction), whereas

the shortage function is equal to zero.

Briec et al. (2007) suggests to take as a direction vector the absolute value of

the expected return, the variance and the skewness itself: |E[R(x)]|, |V ar[R(x)]|

and |SK[R(x)]|. The absolute value is necessary for the condition of strict pos-

itive elements of the direction vector g. The shortage function then measures

the maximum percentage of improvement in expected return and skewness and

reduction in variance.
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Figure 3.2: Illustration of the direction for shortage function (Briec et al. (2004)).

The figure 3.2, stated in Briec et al. (2004), shows an illustration of projections

of inefficient portfolios in common direction for MV portfolio. For inefficient port-

folios (V0, E0), . . . , (V3, E3), where Ei and Vi are expected return and variance of

the portfolio, optimal portfoliosM0, . . . ,M3 are calculated using the MV Shortage

model (3.11) and the same direction vector g = (gE, gV ). From the formulation of

the model is obvious, that the projection is in direction (gE,−gV ). By symbol R

is denoted two dimensional representation set of MV portfolios (analogy to three

dimensional DR stated in 3.8). The portfolio denoted in the picture as (V0, E0) is

projected onto the vertical part of the frontier. This projection is only weakly ef-

ficient, since there exists a porfolio with the same risk, but higher expected return.

For MVS portfolio the situation is analogical. Set DR is a three-dimensional

subset of R
3 and portfolios are projected onto the surface of weakly efficient

frontier.
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Chapter 4

Modelling

In this chapter we apply the models described in the previous chapters and

find optimal solutions for some initial investor’s preferences. By generating se-

ries of portfolio’s projections onto the efficient frontier, we draw two and three

dimensional representation of the Mean-Variance and Mean-Variance-Skewness

efficient frontier.

To solve the optimization models we used GAMS (The General Algebraic

Modeling System), a high-level modelling system for mathematical programming

and optimization. GAMS is designed for linear, nonlinear and mixed integer

optimization problems. In GAMS we used solver CONOPT. All other tasks as

preparation of the data, analysis of the results, graphical outputs and other com-

putations was executed in Wolfram Mathematica 10.

The stated results from the models are rounded on 4 to 6 decimal digits such

that, the results have still predicative values. The non-rounded results can be

found in electronic appendix in Mathematica script.

4.1 Data

Data used in this thesis come from National Association of Securities Dealers

Automated Quotations (NASDAQ), which is an American only electronic stock

exchange. NASDAQ is the second largest stock exchange in the world by market

capitalization1.

The data contains daily historical dividend-adjusted and split-adjusted stock

prices of titles from NASDAQ-100. This includes 100 largest non-financial com-

1The World Federation of Exchanges [http://www.world-exchanges.org].
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Figure 4.1: Trivial portfolios of individual assets in MV space.

panies listed in NASDAQ with 109 stocks in total — a few companies issued more

than one stock. We ommitted three of them (KHC, LILA, LILAK), because of

their very short history. We used prices of 106 stocks in a period from 11.7.2014

till 13.7.2015, i.e. 253 business days — one full year.

For the purpose of searching for an optimal portfolio we calculate relative

changes on a daily basis. We denote Pi(t) the price of the share i = 1, . . . , n in

time t. The relative return of i-th asset for a period (t, t+ 1) is:

ri(t) =
Pi(t+ 1)− Pi(t)

Pi(t)
, t = 1, . . . , 252

Basic descriptive statistics for all input assets used in the models: expected

return, variance and skewness (defined in (2.1)) are provided in Table A.2, A.3

and A.4. Extreme values of these statistics can be found in Table 4.1. According

to investor’s utility function, we are interested in following values: the highest

return 0.0029 has the asset MNST (Monster Beverage Corporation), the highest

skewness 0.00014 has SIAL (Sigma-Aldrich Corporation) and the lowest variance

0.00004 has DTV (DIRECTV ).
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min max
Mean -0.002243 SNDK 0.002946 MNST
Variance 0.000041 DTV 0.001107 VIP
Skewness -0.000042 SNDK 0.000144 SIAL

Table 4.1: Extreme values of expected return, variance and skewnes among indi-
vidual stocks.

4.2 The Variance Ratio Model

In this section we focus on the Mean-Variance-Skewness model (3.3), where

we minimize the variance ratio θ from (3.1) for a given portfolio and its projection.

4.2.1 Index NASDAQ-100

As a target portfolio we take NASDAQ-100 index. The weights of the individ-

ual stocks are given by their market capitalization. The Table A.1 in Appendix

A contains the weights calculated for the slightly modified index, from 106 stocks.

We calculated both MVS and MV Variance Ratio model subject to the target

portfolio. Optimal portfolios for both models consist of the same number of 19

stocks. The non-zero weights can be found in Table 4.2. First two columns are

rounded, the difference between them begins from the eighth order as we can

see in the third column. The weights from model MSV does not diverse much

from weights of the model MV. Also the minimized objective variable θ defined

in (3.1), which measures the portfolio performance is equal for optimal portfolio

from both models and θ is equal to 0.06867 (9 digits accuracy).

Table 4.3 contains expected return, variance and skewness of the target portfo-

lio (NASDAQ-100 index). Optimal portfolios found using MV and MVS Variance

Ratio model did not increase in expected return, but decreased significantly in

variance and increased in skewness. The NASDAQ-100 portfolio is inefficient.

4.2.2 Other Target Portfolios

We study improvement of the first three central moments of return of a port-

folio also in other situations. We consider a target portfolio, where the weights

of all assets are identical: xi = 1/106, i = 1, . . . , 106. The expected return of

the target portfolio is 0.00049 and again the optimal portfolios does not improve

the original portfolio in expected return, it remains the same. Optimal portfo-
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assets MV MVS MVS-MV
ALTR 0.0191 0.0191 1.5 ×10−8

CHKP 0.0314 0.0314 4× 10−9

COST 0.0303 0.0303 1.5× 10−8

DTV 0.4590 0.4590 2.6× 10−8

EA 0.0172 0.0172 3× 10−9

ESRX 0.0092 0.0092 0.
ISRG 0.0013 0.0013 0.
MDLZ 0.0226 0.0226 −4× 10−9

MNST 0.0083 0.0083 −8× 10−9

NFLX 0.0198 0.0198 8× 10−9

REGN 0.0074 0.0074 9× 10−9

ROST 0.0375 0.0375 −7× 10−9

SBUX 0.0422 0.0422 −1.2× 10−8

SIAL 0.0896 0.0896 5× 10−9

SPLS 0.0102 0.0102 −2× 10−8

SRCL 0.0954 0.0954 −2.1× 10−8

VRSK 0.0751 0.0751 6× 10−9

WFM 0.0161 0.0161 −7× 10−9

YHOO 0.0081 0.0081 −4× 10−9

Table 4.2: Weights of optimal portfolios according to MV and MVS Variance
Ratio models with the target NASDAQ-100 portfolio. The models chose the
same set of assets with only a small difference in weights. Stocks not listed in the
table have weights equal to 0.
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NASDAQ-100 MV optimal portfolio MVS optimal portfolio
E[R(x)] 0.00078 0.00078 0.00078
Var[R(x)] 0.00044 0.00003 0.00003
Sk[R(x)] -2.59×10−7 3.3×10−8 3.3×10−8

Table 4.3: Expected return, variance, skewness of optimal portfolios (index port-
folio).

lios found by the models are better in variance and skewnes with respect to the

investor’s utility function. See Table 4.5. The objective θ is in both models MV

and MVS equal to 0.380855. Both, MV and MVS optimal portfolios computed

for the same-weight target, has the same number of non-zero weights: 21. Table

4.4 contains the weights and also the difference between them.

We also examined a Variance Ratio Model’s behavior, in situation when the

expected return of the target portfolio is negative. The central moments of the

optimal porfolios found by models can be seen in Table 4.6. The improvement

occurs in all three central moments of the portfolio. Minimized objective variable

θ is equal to 0.380415.

4.2.3 Representation of Efficient Frontier Using Trivial

Portfolios

We calculated 106 models with the initial parameters µo, ρ0, τ0 (as target)

equal to the first three central moments of the trivial portfolios for each asset

i = 1, . . . , 106. As an example of GAMS code, this particular programme is on

view in Appendix B. All other source codes are available in electronic appendix.

The weights of the optimal portfolios are omitted due to the large output,

which could not be well-arranged and synoptic. Instead we provide table con-

taining information about numbers of assets in particular projections. Table 4.7

shows number of non-zero weights in the optimal portfolios, where trivial port-

folios xi, i = 1, . . . , 106 were taken as targets. There are 75 stocks which do not

occur in any solution of MV model and 73, which do not occur in solutions of

MVS model. Other 31, respectively 33 assets vary in the optimal portfolios. In 54

cases the optimal MV portfolios is compound from the same assets as the MVS.

In 47 cases is the optimal MV portfolio composed from more assets then MVS

optimal portfolio. For 5 target portfolios (AVGO, BBBY, EA, MNST, VRTX) is

the situation reverse, so the MV optimal portfolio is composed from more assets

than MVS optimal portfolio. In many cases MVS models creates more diverse
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asset MV MVS MVS-MV
ALTR 0.0135 0.0135 1.9 ×10−9

CHKP 0.0260 0.0260 2.9 ×10−9

COST 0.0202 0.0202 -5.0 ×10−9

DTV 0.4922 0.4922 7.0 ×10−9

FOXA 0.0015 0.0015 0
GMCR 0.0221 0.0221 0
GRMN 0.0054 0.0054 -9.9 ×10−10

LBTYK 0.0030 0.0030 0
MAT 0.0166 0.0166 - 2.0 ×10−9

MDLZ 0.0332 0.0332 9.9 ×10−10

NFLX 0.0100 0.0100 9.9 ×10−10

NTAP 0.0055 0.0055 3.9 ×10−10

ROST 0.0043 0.0043 -9.9 ×10−10

SBAC 0.0023 0.0023 9.9 ×10−10

SBUX 0.0214 0.0214 9.9 ×10−10

SIAL 0.0810 0.0810 9.9 ×10−10

SPLS 0.0002 0.0002 0
SRCL 0.1386 0.1386 1.9 ×10−9

VRSK 0.0605 0.0605 -6.9 ×10−9

WFM 0.0285 0.0285 6.0 ×10−9

YHOO 0.0142 0.0142 -4.0 ×10−9

Table 4.4: Weights of optimal portfolios according to MV and MVS Variance
Ratio models with the target same-weight portfolio. The models chose the same
set of assets with only a small difference in weights. Stocks not listed in the table
have weights equal to 0.

Target MV optimal portfolio MVS optimal portfolio
E[R(x)] 0.00049 0.00049 0.00049
Var[R(x)] 0.00008 0.00003 0.00003
Sk[R(x)] -1.93×10−7 3.2×10−8 3.2×10−8

Table 4.5: Expected return, variance, skewness of optimal portfolios (same-
weights-target).

Target MV optimal portfolio MVS optimal portfolio
E[R(x)] -0.001 0.00044 0.00044
Var[R(x)] 0.00008 0.00003 0.00003
Sk[R(x)] -1.93×10−7 3.3×10−8 3.3×10−8

Table 4.6: Expected return, variance, skewness of optimal portfolios (target with
negative expected return).
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Figure 4.2: Optimal portfolios from MV Variance Ratio Model

portfolios than MV models.

Tables 4.8 and 4.9 contain a Variance ratio θ for each stock from a trivial port-

folio targets computed in models without skewness (MV θ) and with skewness

(MVS θ). The last column contains resulting θ for MV Variance Ratio model,

where the target is our found MVS portfolio. The lower the value θ of MV model

is, the larger is the distance of the target portfolio from its optimal portfolio in

terms of variance. The value θ of the MV model corresponding to MNST is equal

to 1, which says, that this trivial portfolio is efficient in MV space. All other

single-asset portfolios are inefficient according to the MV Variance ratio model.

The title MNST has the highest return among the other assets, but in the model

with skewness, is not evaluated as efficient.

Figure 4.2 shows the original trivial portfolios, together with the resulting op-

timal portfolios from the MV Variance ratio model (without skewness equation)

in the MV space. The projections of the original portfolios represent the efficient

frontier.

Figure 4.3 contains again original portfolios and the projection points calcu-

lated with MVS models (including skewness). The plot is for comparison also

displayed in two dimensional MV space. Not all the portfolios are projected onto

the MV efficient frontier as in Figure 4.2. It is due to the inclusion of skewness cri-

terion in a model. The efficient frontier is not a curve, but a surface in MVS space.

Figure 4.4 shows additional optimal MV portfolios, where targets were the

already optimized portfolios using MVS. That means, the blue points are origi-
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portfolio MV MVS portfolio MV MVS portfolio MV MVS
AAL 19 18 EA 4 5 NVDA 20 18
AAPL 19 19 EBAY 20 19 NXPI 16 15
ADBE 20 18 ESRX 19 19 ORLY 16 16
ADI 18 18 EXPD 19 18 PAYX 20 20
ADP 19 18 FAST 19 19 PCAR 19 19
ADSK 19 19 FB 17 17 PCLN 19 18
AKAM 20 20 FISV 17 17 QCOM 19 19
ALTR 16 2 FOX 19 19 QVCA 21 18
ALXN 19 16 FOXA 19 19 REGN 13 10
AMAT 19 19 GILD 17 17 ROST 16 16
AMGN 19 19 GMCR 19 18 SBAC 19 19
AMZN 17 17 GOOG 19 18 SBUX 17 17
ATVI 19 18 GOOGL 19 18 SIAL 17 1
AVGO 8 9 GRMN 19 19 SIRI 19 19
BBBY 18 19 HSIC 19 18 SNDK 19 19
BIDU 19 18 ILMN 19 16 SPLS 16 16
BIIB 19 16 INTC 19 18 SRCL 22 22
BRCM 17 15 INTU 19 19 STX 19 19
CA 19 19 ISRG 19 15 SYMC 19 19
CELG 17 17 KLAC 19 19 TRIP 19 12
CERN 18 18 LBTYA 20 18 TSCO 16 15
CHKP 19 18 LBTYK 19 19 TSLA 20 20
CHRW 19 18 LLTC 19 19 TXN 19 19
CHTR 19 18 LMCA 19 19 VIAB 19 19
CMCSA 19 19 LMCK 19 19 VIP 19 14
CMCSK 19 19 LRCX 19 19 VOD 19 19
COST 20 18 LVNTA 22 22 VRSK 19 18
CSCO 21 18 MAR 19 19 VRTX 17 19
CTRX 17 15 MAT 19 19 WBA 19 19
CTSH 19 19 MDLZ 20 18 WDC 19 19
CTXS 19 18 MNST 1 2 WFM 19 18
DISCA 19 18 MSFT 19 18 WYNN 19 19
DISCK 19 18 M 19 19 XLNX 19 19
DISH 19 18 MYL 17 11 YHOO 20 20
DLTR 17 16 NFLX 16 12
DTV 19 18 NTAP 19 19

Table 4.7: Number of titles in optimal portfolios
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Name MVS θ MV θ MV⋆ θ
AAL 0.07714 0.04342 0.57651
AAPL 0.19975 0.19709 0.98670
ADBE 0.20704 0.14166 0.68862
ADI 0.23467 0.12251 0.52206
ADP 0.31868 0.31472 0.98757
ADSK 0.11497 0.11497 0.99999
AKAM 0.19843 0.13558 0.68324
ALTR 0.68584 0.11522 0.20441
ALXN 0.12381 0.06845 0.55288
AMAT 0.10076 0.10076 0.99999
AMGN 0.20070 0.15482 0.77144
AMZN 0.27886 0.10246 0.36742
ATVI 0.20056 0.11109 0.56271
AVGO 0.38944 0.27119 0.69636
BBBY 0.17478 0.16401 0.93841
BIDU 0.15049 0.07538 0.51700
BIIB 0.22556 0.07936 0.35181
BRCM 0.52555 0.12345 0.23491
CA 0.20416 0.20416 0.99999
CELG 0.13988 0.13988 1.00000
CERN 0.26313 0.26313 1.00001
CHKP 0.25852 0.23413 0.90567
CHRW 0.15284 0.14265 0.93449
CHTR 0.16614 0.11453 0.69810
CMCSA 0.21987 0.21987 1.00001
CMCSK 0.23349 0.23349 0.99999
COST 0.41730 0.34711 0.83179
CSCO 0.32670 0.18888 0.59058
CTRX 0.62479 0.12180 0.19495
CTSH 0.10939 0.10939 0.99999
CTXS 0.17995 0.15441 0.86129
DISCA 0.10589 0.08634 0.82000
DISCK 0.12351 0.09615 0.78424
DISH 0.26552 0.12391 0.48421
DLTR 0.34974 0.33252 0.95074

Name MVS θ MV θ MV⋆ θ
DTV 0.72697 0.69877 0.96168
EA 0.77215 0.71585 0.92708
EBAY 0.25227 0.15813 0.62683
ESRX 0.25388 0.22835 0.89943
EXPD 0.19015 0.17927 0.94368
FAST 0.15962 0.15962 0.99999
FB 0.18599 0.18599 0.99999
FISV 0.45684 0.45684 0.99999
FOX 0.17174 0.17174 0.99999
FOXA 0.15690 0.15690 0.99999
GILD 0.10179 0.10179 1.00001
GMCR 0.13025 0.07027 0.55412
GOOG 0.21346 0.19582 0.91891
GOOGL 0.20947 0.18793 0.89927
GRMN 0.10593 0.10593 0.99999
HSIC 0.39652 0.30434 0.76752
ILMN 0.16291 0.09531 0.58503
INTC 0.20971 0.11074 0.54309
INTU 0.26142 0.24099 0.92185
ISRG 0.45958 0.11472 0.24962
KLAC 0.11779 0.11779 0.99999
LBTYA 0.17764 0.13964 0.78789
LBTYK 0.15921 0.15921 0.99999
LLTC 0.16534 0.16534 0.99999
LMCA 0.19099 0.19099 0.99999
LMCK 0.17195 0.17195 0.99999
LRCX 0.10516 0.10516 1.00000
LVNTA 0.09536 0.09536 0.99999
MAR 0.18836 0.17253 0.91594
MAT 0.10901 0.10901 0.99999
MDLZ 0.29725 0.21964 0.74576
MNST 0.77500 1.00000 0.13506
MSFT 0.18308 0.12861 0.71086
MU 0.04645 0.04645 0.99999
MYL 0.44176 0.10289 0.23292

Table 4.8: Efficiency measure - Variance ratio model I
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Name MVS θ MV θ MV⋆ θ
NFLX 0.27527 0.09986 0.36278
NTAP 0.12624 0.12624 0.99999
NVDA 0.12327 0.09030 0.73972
NXPI 0.21359 0.10018 0.46903
ORLY 0.45685 0.36225 0.79292
PAYX 0.35320 0.35320 0.99999
PCAR 0.17382 0.17382 0.99999
PCLN 0.15206 0.11564 0.76683
QCOM 0.12463 0.12463 0.99999
QVCA 0.26870 0.15020 0.57059
REGN 0.28526 0.25502 0.89400
ROST 0.40500 0.32219 0.79553
SBAC 0.25967 0.20618 0.79402
SBUX 0.35990 0.31723 0.88144
SIAL 1.00000 0.10533 0.10533
SIRI 0.22152 0.22152 0.99999
SNDK 0.05180 0.05180 0.99999
SPLS 0.17619 0.13273 0.75334

Name MVS θ MV θ MV⋆ θ
SRCL 0.44260 0.44260 1.00000
STX 0.10686 0.10686 0.99999
SYMC 0.13848 0.13848 0.99999
TRIP 0.30535 0.04044 0.16757
TSCO 0.42919 0.18758 0.43705
TSLA 0.05846 0.05846 1.00001
TXN 0.15094 0.15094 0.99999
VIAB 0.14511 0.14511 0.99999
VIP 0.13139 0.02605 0.22957
VOD 0.15868 0.15868 1.00000
VRSK 0.37222 0.28306 0.76048
VRTX 0.11617 0.08310 0.71533
WBA 0.11518 0.11518 0.99999
WDC 0.11540 0.11540 0.99999
WFM 0.24959 0.11474 0.47755
WYNN 0.05023 0.05023 0.99999
XLNX 0.09291 0.09291 0.99999
YHOO 0.09061 0.09061 1.00000

Table 4.9: Efficiency measure - Variance ratio model II

Figure 4.3: Optimal portfolios from MVS Variance Ratio Model
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Figure 4.4: MV projections of MVS optimal portfolios

Figure 4.5: MVS Variance ratio model in 3D

nal trivial portfolios, red points are their projections using MVS Variance Ratio

Model and green points are the previous projections optimized using MV Vari-

ance Ratio Model.

Figure 4.5 shows red points as the MVS optimal portfolios found by Variance

Ratio Model in three dimensional MVS space, together with the surface repre-

senting the approximated weakly efficient frontier.

The points of optimal portfolios found by MVS Variance Ratio model are not

equidistantly distributed. The surface generated using Wolfram Mathematica’s

function ListPlot3D is not smooth. For the purpose of better graphical repre-

sentation of the three dimensional MVS weakly efficient frontier, we generated a

grid of one hundred equidistant admissible portfolios in MVS space. Afterwards
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we found optimal portfolios for each of these points and computed the expected

return, variance, and skewness of the optimal portfolios. The geometric represen-

tation of a part of the efficient frontier in three dimensional space MVS is shown

in Figure 4.6.

Figure 4.6: 3D representation of MVS efficient frontier

4.3 The Shortage Model

Model 3.11 maximizes objective δ, which measures a distance between a given

portfolio y and the weakly efficient frontier. Vector g = (gE, gV , gS) determines

the direction of the improvement of the portfolio.

In the section 3.2.3 we discussed the choice of the direction vector. We calcu-

late the shortage model for different choices of vector g and compare the results.

First we choose a target portfolio.

4.3.1 NASDAQ-100 Target

As a direction vector g we take the absolute value of the expected return,

the variance and the skewness of the portfolio itself: |E[R(x)]|, |V ar[R(x)]| and

|SK[R(x)]|. Table 4.10 shows the statistics for the target portfolio and then for

optimal portfolios found by MV and MVS model. We can see increase of expected

return and decrease of variance for both models. Skewness is much lower in MV

model, since there is no criteria for skewness included. Skewness of the MVS
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portfolio remains the same.

Target MV optimal portfolio MVS optimal portfolio
E[R(x)] 0.00049 0.00078 0.00084
Var[R(x)] 0.00008 0.00003 0.00008
Sk[R(x)] 0.00008 3.3 ×10−8 0.00008

δ 0.0687 0.0724

Table 4.10: Optimal portfolios of Shortage model - target NASDAQ-100 I

The optimal portfolio obtained by MV shortage model is composed from 19

assets, the MVS optimal portfolio from 40 assets. The resulting shortage function

can be found in the last row of the Table 4.10.

Now, we set the direction vector to g = (1, 1, 1). Table 4.11 gives the resulting

statistics. The MV shortage model improved the target portfolio in expected

return and variance, but not in skewness.

Target MV optimal portfolio MVS optimal portfolio
E[R(x)] 0.00049 0.00084 0.00078
Var[R(x)] 0.00008 0.00003 0.00009
Sk[R(x)] 0.00008 0.00003 0.00009

δ 0.00006 < 10−9

Table 4.11: Optimal portfolios of Shortage model - target NASDAQ-100 II

4.3.2 Same-Weights Target

Let g = (|E[R(x)]| , |V ar[R(x)]| , |SK[R(x)]|) and y be same-weights target

portfolio, where the weights of all titles are identical: yi = 1/106, i = 1, . . . , 106.

The MV and MVS Shortage models evaluate the portfolios with δ = 0.6562. Both

optimal portfolios are composed from 17 assests and also the first three central

moments are the same. In Table 4.12 are shown the computed values.

For the same target we now consider a direction vector g = (1, 1, 1). From

Table 4.13 we can see, that from both models the variance and skewness are al-

Target MV optimal portfolio MVS optimal portfolio
E[R(x)] 0.00078 0.0014185 0.0014185
Var[R(x)] 0.00009 0.0000456 0.0000456
Sk[R(x)] 0.00009 7 ×10−8 7 ×10−8

δ 0.65622 0.65622

Table 4.12: Optimal portfolios of Shortage model - Same-weights target I
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Figure 4.7: MV Shortage model for trivial portfolios in direction (1,1)

most the same (they differ from the -7th order).

Target MV optimal portfolio MVS optimal portfolio
E[R(x)] 0.00078 0.00053 0.00049
Var[R(x)] 0.00009 0.00003 0.00008
Sk[R(x)] 0.00009 0.00003 0.00008

δ 0.00005 < 10−9

Table 4.13: Optimal portfolios of Shortage model - Same-weights target II

4.3.3 Graphical Representation

Figure 4.7 shows the projections calculated using Mean-Variance Shortage

model from trivial portfolios. As a direction vector is taken g = (1, 1, 1).

The same trivial portfolios with the direction vector g=(1,1,1) is projected

by MVS Shortage model. Figure 4.8 displayed these MVS optimal portfolio in

MVS space. The optimal points does not reach the weakly efficient frontier in

MV space. Again, that is because of inclusion of the third criteria of skewness in

the model.

Figure 4.9 shows the previous projections of trivial portfolios in the direction

g = (1, 1, 1) three-dimensionally. Red points represent the MVS optimal portfo-

lios.
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Figure 4.8: MVS Shortage model for trivial porfolios in direction (1,1,1)

Figure 4.9: Shortage Model - direction (1,1,1) - optimal points from trivial port-
folios
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Figure 4.10: Generated direction for MV and MVS model

4.3.4 Approximation of the Efficient Frontier Using Short-

age Model

As a target porfolio we take portfolio y = ( 1
n
, . . . , 1

n
), where each asset has

the same weight. The expected return, variance and skewness of such portfolio y

is Φ(y) = (4.876511 ∗ 10−4, 7.552755 ∗ 10−5,−1.92736 ∗ 10−7).

For the purpose of generating the greatest possible part of the efficient frontier

under the satisfied condition of strict positivity for direction vector g, we took

as target such portfolio y, with the lowest positive expected return and skewness

and the highest variance. Φ(y) = (0.00013, 0.013, 0.00005).

Futher we generated 100 directions g = (gE, gV ) for the MV Shortage model,

that they cover angle [0, 2π], for illustration see Figure 4.10. In order to have all

vector normalized to 1, we computed directions as follows:

gi = (cos(αi), sin(αi)), αi =
π

2 ∗ 100
∗ i, i = 1, . . . , 100. (4.1)

For MVS model, we generated random directions for uniformly distributed

points on the part of unit sphere, where all elements of a direction vector are

positive. Directions for θi ∈ R[0, π
2
], ui ∈ R[0, 1], i = 1. . . . , 100 are computed as:

gi = (
√

1− ui
2 cos(θi),

√

1− ui
2 sin(θi), ui). (4.2)
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Figure 4.11: Shortage model generated direction (2D) from one point

Figure 4.12: Shortage model generated direction (3D sphere) from one point in
2D

Using directions from (4.1), we calculated Mean-Variance Shortage model for

a target portfolio y, wtih Φ(y) = (0.00013, 0.013, 0.00005). The projections are

displayed in Figure 4.11.

The MV Shortage model approximates the Pareto MV efficient frontier. By

including skewness, the projections from MVS Shortage model in directions (4.2),

displayed in two dimensional space does not form an efficient MV frontier, see

Figure 4.12.

Next Figure 4.13 shows these projected MVS optimal porfolios in 3D space.

Additionaly, there are added optimal portfolios calculated by MV Shortage model

also in generated directions. These red points indicate prolonged surface of the

MVS frontier. Note the missing surface between the MV efficient frontier (red

points) and MVS efficient surface. This is because of the minimal required skew-

ness in MVS model was higher than the skewness of the optimal portfolios found

on MV efficient frontier.
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Figure 4.13: Shortage model generated direction (3D sphere) from one point in
3D
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Chapter 5

Summary Of The

Mean-Variance-Skewness Models

In this chapter we summarize theoretical and experimental findings, which we

examined along this thesis. All stated models find an optimal potfolio. On the

top of this, Variance Ratio model and Shortage model also provide a measure of

portfolio’s performance, based on the distance between a given portfolio and the

Pareto efficient frontier, resp. the weakly efficient frontier.

In following sections we summarize three main models, we stated in this thesis.

We also remind the three-dimensional analogy to the Markowitz model, which

we defined in (2.5). This model minimizes the variance of the portfolio’s return

and takes the investor’s preferences into account as criteria of minimal required

return and minimal required skewness.

The model (2.7), called also an Indirect MVS utility function, simultaneously

minimizes variance and maximizes expected return of a porfolio. Investor’s pref-

erences are reflected in corresponding coefficients, which can be interpreted as

absolute risk aversion and prudence of the investor.

5.1 The Variance Ratio Model

The MVS Variance ratio model, defined in (3.3), is based on an idea of the

portfolio’s projection onto the Pareto efficient frontier and its formulation results

from Data Envelopment Analysis. For a given portfolio y the Variance ratio

model projects y onto the Pareto efficient frontier.

This model reflects the investor’s preferences only by the choice of portfolio
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y, i.e of the first three central moments of the portfolio y, which can be unde-

stand as criteria of required minimal expected return and minimal skewness and

maximal allowed variance of the return of an optimal portfolio.

The improvement of the portfolio’s utility function for an investors is only in

horizontal direction (of variance), unless the criteria corresponding to expected

return or skewnees is not satisfied. Then the models search for the higher ex-

pected return and skewness.

We compared the results for MVS and MV Variance Ratio models. In most

cases the optimal porfolios obtained using MVS models was composed from less

or equal number of assets as the MV portfolio. The expected return, variance and

skewness of the resulting portfolios from both models MV and MVS were very

similar. They differs from order of 10−9 just as the objective functions, which is

considered to be an efficiency measure.

5.2 The Shortage Model

The Mean-Variance-Skewness shortage model in (3.11) is based on Defini-

tion 4 of Shortage function and the disposal represantion set DR. The model

maximized the objective function δ, which corresponds to the shortage function.

Intputs for the model are a target portfolio y and strictly positive direction vector

g. Choice of the direction vector expresses the investor’s preference concerning

expected return, variance and skewness of the return of his/her portfolio. Vector

g determines the direction of the projection of the target portfolio y onto the

Pareto efficient frontier.

For shortage functions Sg1 , g1 = (gE, gV ) defined in mean-variance space

and Sg2 , g2 = (gE, gV , ·) defined in mean-variance-skewness space holds, that

Sg1 < Sg2 as one more constraint conserning skewness is added.

The Shortage model compared to the Variance Ratio model better reflects the

investor’s preferences. The investor can choose the direction vector and also the

target portfolio. The target portfolio, as by Variance ratio model, can be under-

stand as criteria of required minimal expected return and minimal skewness and

maximal allowed variance of the return of an optimal portfolio.
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The objective functions of the Shortage model and the Variance Ratio model

give the measure of a porfolio’s performance. In case of Shortage Model, it is the

the variable δ, which is maximized. The lower the resulting δ is, the better the

target portfolio y is according to investor’s preferences. For Variance ratio model

the efficiency measure is a variance ratio θ defined in (3.1), which is from interval

[0, 1]. The higher the θ, the better the target portfolios in terms of risk aversion

of the investor.

5.3 The Polynomial Goal Programming Model

The Polynomial Goal Programming model (2.14) is another approach to solve

the multiobjective optimization problem for Mean-Variance-Skewness portfolio.

The optimization is divided into three separate problems. First is maximiza-

tion of expected return for fixed variance, second is maximization of skewness

for fixed variance and the last is minimization differences between the resulting

objective values from the first two problems and corresponding expected return

resp. skewness of the portfolio’s return. The differences in the objective function

(for expected value and skewness) are polynoms of the degree α, respectively β.

When using PGP model investor chooses the variance as a fix value and the

resulting optimal portfolio, in case of feasibility, does have the same variance. The

investor can affect the computation of an optimal porfolio by the specification of

parameters α and β. When α > β then he/she prefers high expected return to

high skewness.
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Conclusion

In this thesis we studied optimization models for portfolio selection. Contrary

to the classical portfolio optimization models based on the expected return of the

portfolio and a risk measure, we included skewness as an additional criterion. For

all our models considered in this thesis we used variance as the risk measure and

the third central moment of portfolio’s return as skewness.

As the main motivation for including skewness into the models we showed the

link between third derivative of the utility function and skewness. Skewness of

portfolios’s return has a positive marginal utility for an investor. The probability

of large negative return decreases with higher skewness.

We described and compared Mean-Variance-Skewness optimization models

and focused mainly on the Variance Ratio model and the Shortage model. These

two models provide also a measure of portfolio’s performance.

In the experimental part of the thesis we applied the models to the historical

stock data of NASDAQ-100 index taken from the world biggest electronic stock

market NASDAQ. We compared optimal portfolios computed using models with

and without inclusion of the skewness. We provided a graphical representation

of the Pareto efficient frontier for these models in 2D Mean-Variance and 3D

Mean-Variance-Skewness space.

Portfolios created by optimization models with skewness criterion achieved

lower or equal expected return and higher or equal variance than the Mean-

Variance model. The inclusion of skewness allows investors with high level of

absolute prudence to compose portfolios, which has lower probability of large

negative return. We consider the Shortage model to be the most suitable among

the stated models from the investor’s perspective, since the construction of the

model allows to set the minimal required expected return and skewness, variance

and also to choose a direction for improvement of the portfolio.
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Appendix A

Additional tables
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AAL 0.0075 EA 0.0069 NVDA 0.0039
AAPL 0.21 EBAY 0.0126 NXPI 0.0111
ADBE 0.0055 ESRX 0.005 ORLY 0.0026
ADI 0.0045 EXPD 0.0012 PAYX 0.002
ADP 0.0029 FAST 0.0015 PCAR 0.0027
ADSK 0.0032 FB 0.0446 PCLN 0.0161
AKAM 0.0024 FISV 0.0018 QCOM 0.017
ALTR 0.023 FOX 0.0015 QVCA 0.0013
ALXN 0.0055 FOXA 0.0072 REGN 0.0074
AMAT 0.0057 GILD 0.0227 ROST 0.0028
AMGN 0.0138 GMCR 0.0026 SBAC 0.0014
AMZN 0.022 GOOG 0.0215 SBUX 0.0093
ATVI 0.0056 GOOGL 0.0181 SIAL 0.0041
AVGO 0.0206 GRMN 0.0013 SIRI 0.0028
BBBY 0.0033 HSIC 0.0008 SNDK 0.0031
BIDU 0.0227 ILMN 0.0063 SPLS 0.0019
BIIB 0.0118 INTC 0.0304 SRCL 0.0012
BRCM 0.0148 INTU 0.0031 STX 0.0027
CA 0.001 ISRG 0.0014 SYMC 0.0028

CELG 0.0083 KLAC 0.0012 TRIP 0.0019
CERN 0.0021 LBTYA 0.0017 TSCO 0.0025
CHKP 0.0036 LBTYK 0.0031 TSLA 0.0193
CHRW 0.0014 LLTC 0.0021 TXN 0.0244
CHTR 0.0029 LMCA 0.0021 VIAB 0.0045
CMCSA 0.0155 LMCK 0.0007 VIP 0.0002
CMCSK 0.003 LRCX 0.0032 VOD 0.0024
COST 0.0104 LVNTA 0.0003 VRSK 0.0011
CSCO 0.0121 MAR 0.0027 VRTX 0.0045
CTRX 0.0079 MAT 0.0023 WBA 0.0204
CTSH 0.0041 MDLZ 0.0049 WDC 0.0036
CTXS 0.0024 MNST 0.0019 WFM 0.0045
DISCA 0.002 MSFT 0.0322 WYNN 0.0063
DISCK 0.0006 M 0.0178 XLNX 0.0032
DISH 0.0016 MYL 0.007 YHOO 0.0142
DLTR 0.0045 NFLX 0.0345
DTV 0.0109 NTAP 0.0032

Table A.1: NASDAQ-100 index – weights
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stock Mean Variance Skewness
AAL 0.0003 0.0007 0.1701
AAPL 0.0012 0.0002 0.0654
ADBE 0.0006 0.0002 0.5522
ADI 0.0007 0.0002 1.0255
ADP 0.0006 0.0001 0.1094
ADSK -0.0001 0.0003 -0.0604
AKAM 0.0007 0.0002 0.5361
ALTR 0.0018 0.0006 6.8606
ALXN 0.0008 0.0004 0.3773
AMAT -0.0006 0.0003 -0.5293
AMGN 0.0011 0.0002 0.4602
AMZN 0.0013 0.0004 1.8212
ATVI 0.0006 0.0003 0.7361
AVGO 0.0025 0.0005 0.8258
BBBY 0.0006 0.0002 0.1115
BIDU 0.0002 0.0004 0.5276
BIIB 0.0011 0.0005 1.3337
BRCM 0.0014 0.0004 5.4033
CA 0.0004 0.0001 -0.2707
CELG 0.0014 0.0003 -0.1572
CERN 0.0012 0.0001 -0.1664
CHKP 0.0008 0.0001 0.2978
CHRW 0.0001 0.0002 0.0889
CHTR 0.0005 0.0003 0.3851
CMCSA 0.0007 0.0001 -0.1506
CMCSK 0.0007 0.0001 -0.1877
COST 0.0009 0.0001 1.0135
CSCO 0.0005 0.0002 1.4339
CTRX 0.0015 0.0004 7.2135
CTSH 0.0008 0.0003 -0.9871
CTXS 0.0004 0.0002 0.2098
DISCA -0.0005 0.0003 0.1197
DISCK -0.0006 0.0003 0.1786
DISH 0.0002 0.0002 1.3185
DLTR 0.0015 0.0001 0.3424
DTV 0.0004 0. 0.6357
EA 0.0028 0.0003 1.3399
EBAY 0.0009 0.0002 0.9468
ESRX 0.0011 0.0002 0.3328

Table A.2: Descriptive Statistics I.
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stock Mean Variance Skewness
EXPD 0.0001 0.0002 0.1105
FAST -0.0005 0.0002 -0.7645
FB 0.0014 0.0002 -0.0944
FISV 0.0013 0.0001 0.0348
FOX -0.0002 0.0002 -0.1774
FOXA -0.0002 0.0002 -0.2228
GILD 0.0012 0.0004 -1.6708
GMCR -0.0019 0.0004 0.3927
GOOG -0.0003 0.0001 0.1729
GOOGL -0.0002 0.0002 0.2002
GRMN -0.0011 0.0003 -1.3878
HSIC 0.0008 0.0001 1.1823
ILMN 0.0011 0.0004 0.5604
INTC 0.0001 0.0003 0.8218
INTU 0.0011 0.0001 0.2859
ISRG 0.001 0.0003 4.2668
KLAC -0.0001 0.0002 -0.8125
LBTYA 0.0005 0.0002 0.3032
LBTYK 0.0004 0.0002 -0.0197
LLTC -0.0002 0.0002 -0.5024
LMCA 0. 0.0002 0.0118
LMCK 0.0002 0.0002 0.0082
LRCX 0.0006 0.0003 -0.536
LVNTA 0.0005 0.0003 -1.2375
MAR 0.0006 0.0002 0.1577
MAT -0.0013 0.0003 -0.0652
MDLZ 0.0005 0.0001 0.7801
MNST 0.0029 0.0007 5.7487
MSFT 0.0004 0.0002 0.4271
MU -0.0022 0.0006 -1.4702
MYL 0.0015 0.0005 1.7774
NFLX 0.0019 0.0007 0.7373
NTAP -0.0005 0.0002 -1.3744

Table A.3: Descriptive Statistics II.
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stock Mean Variance Skewness
NVDA 0.0005 0.0003 0.2131
NXPI 0.0016 0.0005 1.0614
ORLY 0.0017 0.0002 1.4831
PAYX 0.0007 0.0001 -0.2319
PCAR 0. 0.0002 -0.3442
PCLN -0.0002 0.0002 0.2627
QCOM -0.0008 0.0002 -1.9396
QVCA 0.0005 0.0002 1.1211
REGN 0.0021 0.0004 0.358
ROST 0.0017 0.0002 1.2251
SBAC 0.0006 0.0001 0.5277
SBUX 0.0013 0.0001 0.6616
SIAL 0.0015 0.0004 15.2405
SIRI 0.0004 0.0001 -0.2582
SNDK -0.0022 0.0006 -3.1975
SPLS 0.0016 0.0004 0.414
SRCL 0.0005 0.0001 -0.1649
STX -0.0007 0.0003 -0.5493
SYMC 0.0003 0.0002 -0.4542
TRIP -0.0003 0.0007 2.4842
TSCO 0.0016 0.0003 3.1705
TSLA 0.0009 0.0005 -0.0637
TXN 0.0003 0.0002 -0.7659
VIAB -0.0012 0.0002 -0.4916
VIP -0.0019 0.0011 0.6633
VOD 0.0006 0.0002 -0.0651
VRSK 0.0007 0.0001 1.0779
VRTX 0.0012 0.0005 0.2468
WBA 0.001 0.0003 -2.0058
WDC -0.0005 0.0002 -0.1566
WFM 0.0003 0.0003 1.2167
WYNN -0.0022 0.0006 -0.9238
XLNX -0.0002 0.0003 -2.2024
YHOO 0.0005 0.0003 -0.2759

Table A.4: Descriptive Statistics III.
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Appendix B

GAMS script

Skript in GAMS for the MVS Variance Ratio Model. This program projects

trivial portfolios onto the efficient frontier.

Sets

t cas /1*253/

j akcie /MU, INTC, AAPL, ODP, FB, QQQ, SIRI, MSFT, CY, CSCO,.../

ALIAS (j,i,k,c);

*loading data, settings for d,dd

$onecho > taskin.txt

par=d rng=A1:T253

par=dd rng=A1:T253

$offecho

Parameter d(t,j)

dd(t,c) ;

$call GDXXRW.EXE gams-adjusted.xls @taskin.txt

$GDXIN gams-adjusted.gdx

$LOAD d dd

$GDXIN

* -----------------------------------------;

Parameter

r(j) ocekavany vynos;

r(j) = sum(t,d(t,j))/CARD(t);

Parameter

V(j,i) rozptylova matice;

V(j,i)= sum(t, (d(t,j)-r(j))*(d(t,i)-r(i))/ CARD(t) );

Parameter
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CSK(j,i,k) tensorova matice sikmost;

CSK(j,i,k)=sum(t,(d(t,j)-r(j))*(d(t,i)-r(i)*(d(t,k)-r(k)))/CARD(t));

* -----------------------------------------;

Parameter

rr(c) return of particular asset c;

rr(c)= sum(t,dd(t,c))/CARD(t);

Parameter

VV(c) variance of particular asset c;

VV(c)= sum(t, (dd(t,c)-rr(c))*(dd(t,c)-rr(c))/ CARD(t) );

Parameter

CCSK(c) variance of particular asset c;

CCSK(c)=sum(t,(dd(t,c)-rr(c))*(dd(t,c)-rr(c))*(dd(t,c)-rr(c))/CARD(t));

Scalar

m0 return of asset under evaluation / 0.05 /

s0 variance of asset under evaluation /0.001/

k0 skewness of asset under evaluation /0.02 /;

variable

theta objective function;

Positive variables

x(j) portfolio weights;

* -----------------------------------------;

Equations

er expected return

va variance

sk skewness

bc budget constraint ;

er.. sum(j, r(j)*x(j)) =g= m0;

va.. sum((j, i), x(j)*V(j,i)*x(i) ) =l= theta*s0;

sk.. sum((j,i,k), CSK(j,i,k)*x(j)*x(i)*x(k) )=g= k0 ;

bc.. sum(j, x(j)) =e= 1;

* -----------------------------------------;

Model MVSJORO mean-variance-skewness model / er,va,sk,bc/ ;

* save results into a text file;

File Result /Res_JORO.txt/;
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put result;

* -----------------------------------------;

Loop(c,

s0=VV(c);

k0=CCSK(c);

m0=rr(c);

Solve MVSJORO using NLP minimizing theta;

Display theta.l, x.l;

*put gamma ’ ’;

Loop(i,put x.l(i):6:3 ’ ’);

put theta.l;

put sum(j, x.l(j)*r(j) ):12:9;

put sum((j,i),x.l(j)*V(j,i)*x.l(i)):12:9;

put sum((j,i,k), x.l(j)*CSK(j,i,k)*x.l(i)*x.l(k)):12:9;

put /;

)
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