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Introduction

Black-box optimization problems are fairly common in engineering. In such cases,
there is no information about the objective function provided (like smoothness,
convexity or number of local minima), nor is it explicitly given, for example
when taking the form of a finite-element model. Traditional optimization meth-
ods cannot be used here and so-called evolutionary methods are applied instead.
Introduction to evolutionary computing is the objective of chapter one.

Then we focus on one of the most powerful evolutionary algorithms of the day:
the Covariance Matrix Adaptation Evolution strategy. Its design is described in
detail in chapter two.

In chapter three, the reader is presented with a real-world hard optimization
problem – tuning multiple coupled PID controllers within combustion engine
models. To the author’s knowledge, it seems that this problem, on this level of
complexity, has not been resolved yet, despite the practical need. We show how
this problem may be formulated mathematically and how we apply and tune the
algorithm described in the previous chapter. We conclude with the method’s
verification on real engine models.
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1. Hard optimization problems

In this work, we focus on single-objective global numerical optimization of a
function f : D ⊂ Rn → R, further called the objective function [5]. Without loss
of generality, under optimization we shall always understand minimization.

In addition, the only requirement upon the objective function is that we can
evaluate the objective function f = f(x) in any point of its domain x ∈ D.
This allows us to deal with functions that appear in many real-world problems,
typically as numerical simulations. Clearly, in such cases derivatives do not exist,
are too costly to compute or their numerical computation is of little value (e.g.
when the objective function is noisy). Either way, we are forced to deal with a
problem hidden in a black box that we cannot further analyze – the so called
black-box optimization problem.

To complicate the task even further, we are tight on the time budget. That is,
the number of evaluations of the objective function is limited and usually required
to be as little as possible. This is a very pragmatic requirement, since it is not a
rare case when the objective function is represented by a numerical model that
takes significant time to be computed. Therefore, when it comes to comparing
algorithms, the most important measure of its quality is the number of function
evaluations required to reach given precision. Compared to that, computational
costs of the algorithm itself are usually negligible.

1.1 The optimization goal

The functions that arise in applications may have very unpleasant properties.
Usually, they are not separable, i.e. the optimization problem cannot be trans-
formed into a series of one-dimensional subproblems. Multimodality, i.e. having
multiple local or even global optima, is also a common feature. They may be
ill-conditioned or noisy or even have singularities at some points.

As a consequence, it makes little sense to use the classical definition of a global
minimum when setting the optimization goal. The minimum may not exist (e.g.
f(x) = x for x ∈ D = (0, 1)), it may not be unique (e.g. f(x) = sin(x) for
x ∈ D = R) or it may be impossible to approach in practice (e.g. f(x) = x2 for
x ∈ R \ {1} and f(1) = −1).

Therefore, we use the approach common in the measure theory and consider
classes of functions (rather than functions themselves). Two functions f and g
belong to the same class if and only if they are equal everywhere except on a
set of zero measure, i.e. µ

(
{x; f(x) 6= g(x)}

)
= 0, for µ Lebesgue measure on

D. Hereafter, we shall not distinguish between a function and its class [f ]. Also,
by minimum we shall further understand the essential infimum, which is gener-
alization of the term to the class of functions as defined above. More precisely,
we shall not distinguish between the minimum of the function class [f ] and the
essential infimum of any function of this class g ∈ [f ].

Definition. Essential infimum.

essinff = sup {b ∈ [−∞,∞], µ
(
{x ∈ D : f(x) < b}

)
= 0},
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where µ is the Lebesgue measure on D.

The optimization goal is to approach the point of global minimizer

x∗ ∈ D, f(x∗) = essinfx∈D f(x).

The necessary condition is that there is nonzero probability of reaching points
arbitrarily close to x∗, whose function values realize arbitrary closeup to the value
of essential infimum [5].

For simplicity, we further assume uniqueness of the global minimizer. Having
multiple global optima, we may simply divide D into subdomains, each one cor-
responding to a single global optimum. In practice, we usually do not care which
one of multiple global optima we reach, as long as it is feasible.

Let us stress out that by global convergence we will always mean convergence
to a global optimum (as opposed to the definition used in the context of determin-
istic optimization: convergence to a local optimum independently of the starting
point).

1.2 General approach to the problem

Having stated the problem, we can see that the traditional approach to optimiza-
tion, also called local search, fails here. First and foremost, looking for a global
optimum requires different tools than searching for a local optimum. Second,
there are no derivatives available and neither do we approximate them.

Therefore, algorithms discussed in this thesis are derivative-free and make use
of randomization. The range of possibilities is vast and the number of algorithms
countless, see e.g. [7].

For example, rigorous mathematical approach lead professor Powell to cre-
ate the interpolation-based class of algorithms (e.g. NEWUOA [47]). Other
algorithms, so called metaheuristic or evolutionary, are often inspired by nature.
Even though they are perfectly functional, there is little theory to support them.
And there are many other options, e.g. purely stochastic methods or neural
networks.

1.3 Evolutionary computing

When we look at the world around us, we realize that all objects, living or not,
optimize. Atoms and molecules tend to organize themselves to reach the state
with minimal energy – they form crystals. Ants developed a smart strategy to
look for food using pheromones, eventually finding the optimal path to the source.
Animals choose mates to maximize their offspring’s chances for survival. There
are very many optimization algorithms to be found in nature and they are an
endless source of inspiration.

The most obvious optimization method found in nature is the principle of
evolution. Generation after generation, individuals are tested by their environ-
ment. The fittest ones (the most stable in case of inanimate objects) reproduce
(or replicate), forwarding and spreading the successful traits, while the failed
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individuals are forgotten. Diversity, which is crucial for optimizing globally, is
ensured by mutations (i.e. small random perturbations) and recombination (i.e.
various combinations of parents’ genetic information or its equivalent).

In 1950s, these ideas gave rise to evolutionary computing that has branched
and developed greatly, being extremely successful when solving hard optimization
problems.

1.3.1 Vocabulary

First of all, let us go over the basic vocabulary of evolutionary computing. The
terms are usually intuitive and correspond with their real-world meanings.

• An individual is a candidate vector of variables.

• Population is the set of all individuals handled by an algorithm at a time.

• A generation is the population at a particular time. Generations can be
numbered and all individuals at a given time belong to the same generation.

• Parents are those individuals that are allowed to procreate and produce (in
some way or another) the offspring – the new generation. If a parent belongs
to the n-th generation, its offspring belongs to the (n+ 1)-th generation.

• The fitness function is a different name for the objective function within
the evolutionary computing framework. It evaluates the fitness of individ-
uals within a population. The fittest individuals become parents. Let us
emphasize that in the optimization literature the fitness function is often
same as the error function but in the control theory application described
in the latter sections, the error function has an entirely different meaning.
In that context, we shall not use these two terms interchangeably.

Many evolutionary algorithms use stochastic tools. If the reader is not familiar
with basic probability theory, they are strongly encouraged to see Appendix A
before continuing.

1.3.2 General scheme of randomized black box search

The general scheme of a randomized black-box search, where f is the fitness func-
tion can be described by the following pseudocode. The probability distribution
P defines the evolution method (e.g. in the case of CMA-ES, the main algorithm
described in this thesis, P is the multivariate normal distribution). Function Fθ
describes adjustment of the algorithm’s parameters.

Initialize distribution parameters θ(0)

For generation g = 0, 1, 2, . . .

Sample λ independent points from distribution P (x|θ(g))→ x1, . . . , xλ
Evaluate sample x1, . . . , xλ by objective function f

Update parameters θ(g+1) = Fθ(θ
(g), (x1, f(x1)), . . . , (xλ, f(xλ)))

Stop, if termination criterion is met
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1.3.3 Overview of some algorithms

There are great many algorithms that can be classified as evolutionary. Many
of them closely follow its biological inspiration and many others employ only the
basic idea of an evolving population and combine it with advanced stochastic
tools. The goal of this section is to provide the reader with a brief overview of
different approaches taken by evolutionary algorithms without the ambition of
being exhaustive. A very extensive overview of evolutionary algorithms including
their codes a and further references can be found in [7] and more information can
be found e.g. in [13, 10].

Genetic algorithm (GA)

The genetic algorithm is a search heuristic that parallels the principles of Dar-
winian evolution and Mendelian principles of genetics. It mimics how genes are
reproduced based on the fitness of individuals that carry them, and how chro-
mosomes are crossed over and randomly mutated in an attempt to produce yet
better-fitting offspring.

Since its beginning in 1960s, the basic GA has branched into numerous ver-
sions. For more information, see for example [29], [15] or [14].

Differential evolution (DE)

This technique from 1990s [53, 52] reminds us of GA but the gene recombination
process differs significantly.

For each individual x in a population, three other individuals a, b, c are chosen
and combined to get the vector y = a + W (b − c), where parameter W is called
the differential weight. With a given crossover probability P , each element of x is
replaced (or not) with the corresponding element of y. If the resulting individual
supersedes x, it takes its place in the new generation.

As a result, we can observe each individual moving over the generations,
hopefully converging to the global optimum in the end. For further information
on DE, see for example [48].

Swarm intelligence

The swarm intelligence can be observed in nature in behavior of bird flocks, fish
schools, ant colonies, honey bees foraging or bacterial growth. Each individual
moves by itself, yet the whole self-organized system acts as a single organism.

There are several algorithms based on swarm intelligence (see for example
[11, 9, 45, 41]) but lets briefly describe probably the most popular one for global
optimization: the particle swarm optimization (PSO).

Each particle within a swarm moves in the search space as it is assigned a
different “velocity” vector in each generation. This vector is defined as a com-
bination of the previous “velocity”, the individual’s best known position so far
and the swarm’s (or sub-swarm’s) best known position. This way, the whole
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swarm moves towards historically best areas. Tuning the combination’s weights
is a highly non-trivial matter that greatly affects the algorithm’s performance.
Further information on PSO may be found for example in [34, 46].

Estimation of Distribution Algorithms (EDA)

This family of algorithms builds explicit probabilistic models of the problem being
solved. The model is continually being improved using information mined in every
generation and it is used to guide further search for the optimum.

For example, the Bayesian optimization algorithm (BOA) uses Bayesian net-
works. Its purpose is to capture stochastic relationships between the components
of individuals within the search space. It is represented by a directed acyclic
graph. For more information, see e.g. [43, 44, 42].

Evolution strategies (ES)

In evolution strategies, whose origins date back to 1960s, the idea of evolution
is revisited from a different perspective than in GA. The mechanism of genetics
is omitted, and the focus is on the fitness-based selection process, mutation and
recombination.

Individuals within a generation are sampled stochastically, usually from a mul-
tivariate normal distribution. The fittest become parents of the new generation
by influencing parameters of the search algorithm (for example by shifting the
mean of the new distribution).

The most important design principles for evolution strategies is unbiasedness
(i.e. advancement towards better solutions is left only to the selection process)
and adaptive control of search parameters.

Despite its early origins, the field of ES is busy with ongoing research. The
current best representative of this family is also one of the most powerful algo-
rithms of today. It is called the Covariance Matrix Adaptation Evolution Strategy
and it is described in detail in the following chapter. For latest information on
ES and its theoretical background, see e.g. [5, 20].
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2. CMA-ES algorithm

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) uses tools of
probability theory and linear algebra to define optimally diverse population in
an area that seems to be most promising. The size of the area and its location
are determined based on the algorithm’s previous experience with the objective
function.

More precisely, CMA-ES is a stochastic method that samples new candidate
solutions from a multivariate normal distribution, whose mean and covariance
matrix are adapted in each generation.

The following picture is an illustration of an actual CMA-ES optimization run
on a simple 2D problem. The spherical optimization landscape is depicted with
solid isolines. The population (dots) is much larger than necessary, but clearly
shows how the distribution of the population (dashed line) changes during the
optimization. On this simple problem, the population concentrates over the global
optimum within a few generations.

Figure 2.1: Illustration of a CMA-ES run. [Source: Wikipedia]

2.1 Derivation of the basic method

The CMA Evolution Strategy uses the multivariate normal distribution to popu-
late a generation. Its parameters – the mean and the covariance matrix – evolve
based on the method’s progress.

This section is a combination of sources [19] and [22].

2.1.1 Sampling

The basic equation for generating new search points (i.e. sampling) is:
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x
(g+1)
k ∼ m(g) + σ(g)N (0, C(g)), (2.1)

for k = 1, . . . , λ within each generation g = 0, 1, . . ., and where:

∼ denotes the equality of distributions.

N (0, C(g)) is a multivariate normal distribution with zero mean and covariance
matrix C(g). It can be translated and scaled – it holds that:

m(g) + σ(g)N (0, C(g)) ∼ N (m(g), (σ(g))2C(g)).

x
(g+1)
k ∈ Rn is the k-th individual in the (g + 1)-th generation.

m(g) ∈ Rn is the mean value of the distribution in g-th generation – location
of the probability peak and the center of the probability isolines.

σ(g) ∈ R+ is the “overall” standard deviation and also the step size in the g-th
generation. It characterizes the overall size of the sampled area.

C(g) ∈ R is the covariance matrix in the g-th generation. Its eigenvectors
define the principal axes of the ellipses of the probability isolines.

λ ≥ 2 is the population size – the number of samples.

In the following sections, we derive how the mean m(g), the covariance matrix
C(g+1) and the step length σ(g+1) are to be updated.

2.1.2 Updating the mean

The mean in (g+1)-th generation is defined as weighted average of µ best-ranking

individuals (the parent set) from x
(g+1)
1 , . . . , x

(g+1)
λ :

m(g+1) =

µ∑
i=1

wix
(g+1)
i:λ ,

µ∑
i=1

wi = 1, (2.2)

where w1 ≥ w2 ≥ . . . ≥ wµ > 0 are weight coefficients and x
(g+1)
i:λ is the i-th

best (i.e. best ranking) individual among λ-sized population of the (g + 1)-th
generation. Larger weights always correspond with better ranking individuals,
but the relative values may differ. According to N. Hansen, the author of CMA-
ES, it is typical to set wi proportional to µ − i + 1 and µ to be approximately
λ
2
.
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Let us emphasize that the individuals are assigned rank based on their relative
fitness but the actual values of the objective function are not important and are
not used here or after. As a result, the whole method will be invariant to strictly
monotonous transformations of the objective function, i.e. such transformations
that do not change the relative ranking of the individuals.

For future use, we denote

µeff =
( µ∑
i=1

w2
i

)−1

. (2.3)

This constant effects the change rate (expected parameter change per sampled
search point) of the mean m. The larger is µeff the smaller is the possible change
rate [19].

Here, we use notation from [19] but in some important sources (e.g. [26]), µeff

is denoted as µW .

2.1.3 Updating the covariance matrix

Smart updates of the covariance matrix is what makes this method effective. The
updates must reflect what was learned about the underlying objective function.
There are two fundamental principles upon which CMA-ES is built.

• We want to maximize the probability of successful search steps and candi-
date solutions. Therefore, the first cornerstone is the maximum-likelihood
principle. Being given some data, we assume that it is normally distributed
with an unknown mean and variance (or covariance matrix). Then we look
for these parameters’ values, so the corresponding normal distribution not
only fits the given data, but it is also the distribution that would generate
this data with the highest probability of all normal distributions. Formally,
this (wanted) set of parameters maximizes the likelihood function, which
is essentially the probability density function but with the parameters per-
ceived as variables and vice versa.

• The other fundamental idea is the so-called evolution path. It reflects the
progress across the generations. It is used for updating the covariance
matrix and also for step size control.

Recall, how a covariance matrix is computed: the element on the ij-th position
is the covariance of the i-th and the j-th random variable

cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])]. (2.4)

This formula provides us with framework for covariance matrix estimates.

Basic estimates

We shall first describe how a covariance matrix can be estimated using only
information from a population, assuming this information is complete enough.
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We shall use the notation introduced in the above sections. Also, for now, let us
assume that σ(g) = 1 (for σ(g) 6= 1 all formulas hold but for a constant factor).

When we have a population (of distinct individuals) x
(g+1)
1 , . . . , x

(g+1)
λ , we can

(re)estimate the matrix C(g) by C
(g+1)
emp :

C(g+1)
emp =

1

λ− 1

λ∑
i=1

(
x

(g+1)
i − 1

λ

λ∑
j=1

x
(g+1)
j

)(
x

(g+1)
i − 1

λ

λ∑
j=1

x
(g+1)
j

)T
. (2.5)

Here, the mean of an actually realized sample 1
λ

∑λ
j=1 x

(g+1)
j (the sample mean)

approximates the mean value denoted E[Xi] in (2.4). Therefore C
(g+1)
emp estimates

the covariance matrix within the sampled points.
Now, let’s use the true mean value of the sampled distribution at generation g

as the reference mean value. We get another unbiased estimate of C(g) by C
(g+1)
λ :

C
(g+1)
λ =

1

λ

λ∑
i=1

(
x

(g+1)
i −m(g)

)(
x

(g+1)
i −m(g)

)T
. (2.6)

The difference from the previous approach is that now we estimate variances
of the sampled steps (from the mean of the old generation to the sampled points

of the new one: step vectors x
(g+1)
i −m(g)). As these vectors are column vectors,

matrix C
(g+1)
λ can be perceived as a linear combination of matrices.

We can improve the estimate by considering only µ best samples and also by
weighting the step vectors (changing the uniform weight of 1

λ
to more general wi):

C(g+1)
µ =

µ∑
i=1

wi

(
x

(g+1)
i:λ −m(g)

)(
x

(g+1)
i:λ −m(g)

)T
. (2.7)

Then C
(g+1)
µ shall tend to reproduce successful (selected) steps, so we can call it a

“better” estimate. Given wi = 1
µ
, the expected variance increases in the gradient

direction (for all µ < λ
2
), see figure 2.2.
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Figure 2.2: Left: sampling of λ = 150 N (0, I)-distributed points. Middle:

estimation of C
(g+1)
µ , µ = 50. Right: outlining the new distribution (the solid el-

lipsoid). The dotted diagonal lines are the contour lines of the objective function,
indicating that the strategy should move to toward the upper right corner. Source:

[19].

Rank-µ update

The approach used in the previous section needs large enough λ to be sensible (de-
tails in [19]). However, we want to achieve a fast/cheap search, i.e. to use as few
function evaluations as possible. We need to balance the opposing requirements.
We use memory to speed up the search.

Let

C(g+1) =
1

g + 1

g∑
i=1

1

σ(i)2
C(i+1)
µ (2.8)

to be the mean of the estimated covariance matrices from all generations, where
they are “normalized”, i.e. the step length is disregarded. After a sufficient
number of generations, it becomes an estimator of the selected steps.

In (2.8), all generations have the same weight. However, it is to be expected
that recent generations contain more up-to-date information and should therefore
be preferred. So, we modify the formula accordingly:

C(g+1) = (1− cµ) C(g) + cµ
1

σ(g)2
C(g+1)
µ , (2.9)

where we choose C(0) = I to be the identity matrix and cµ ∈ (0, 1] is the learning
rate for updating the covariance matrix.

For cµ = 1, no information of previous generations is used and we obtain

C(g+1) by simple normalization of C
(g+1)
µ . If it were cµ = 0, no learning would

take place and C(g+1) = C(0).
The choice of the learning rate is crucial. The matrix degenerates when too

large values are used and the method fails. On the other hand, small values result
in too slow learning. The authors of CMA-ES state that a good setting of the
learning rate seems to be independent of the objective function. They have found
the value of cµ empirically and it has been applicable to all functions tested so
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far. They assign

cµ ≈ min
{

1;
µeff

n2

}
,

where µeff was defined in (2.3) [19].
In formula (2.9), we can see that the effect of each generation diminishes in

accordance with its “age”. Thus, assuming fixed search costs, a small population
size is actually an advantage. It allows for a larger number of generations and
therefore (usually) faster adaptation – the covariance matrix is “younger” and it
(usually) reflects the current trends better. We shall see this effect later on in the
practical application.

Rank-one update

Previously, we used all samples from a single generation to estimate the covariance
matrix. Now, we shall look at the generation sequence and use only a single
selected step to update the covariance matrix. We shall apply the maximum
likelihood principle.

Let’s have vectors y1, . . . , yg0 ∈ Rn, g0 ≥ n, spanning Rn. Then, thanks to
properties of normal distribution [51], we have:

N (0, 1)y1 + . . .+N (0, 1)yg0 ∼ N (0,

g0∑
i=1

yiy
T
i ).

The left hand side is a sum of g0 normal “line” distributions

N (0, 1)yi ∼ N (0, yiy
T
i )

with zero mean and covariance matrix yiy
T
i . Each one is the distribution that,

of all normal distributions with zero mean, generates the vector yi with maximal
probability. Therefore it holds that N (0, 1)σyi ∼ N (0, σ2yiy

T
i ). Any other dis-

tribution cannot generate yi at all. Since yTi yi = ‖yi‖2, choosing the variance σ
is trivial: σ = 1. The matrix yiy

T
i has rank one, its only eigenvalue is ‖yi‖2 and

the corresponding eigenvector is a nontrivial multiple of yi.
On the right hand side there is a normally distributed random vector with

zero mean and covariance matrix
∑g0

i=1 yiy
T
i , which is a sum of rank-one matrices

yiy
T
i .
Now, we shall combine these rank-one updates with the rank-µ updates (2.9),

having C
(g+1)
µ as in (2.7).

Let’s denote

y
(g+1)
i :=

x
(g+1)
i:λ −m(g)

σ(g)
, (2.10)

where m(g) is the mean and σ(g) is the variance of the distribution of g-th gener-
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ation. When combined, we get

C(g+1) = (1− cµ)C(g) + cµ

µ∑
i=1

wiy
(g+1)
i y

(g+1)T

i . (2.11)

When we set µ = 1, we obtain

C(g+1) = (1− c1)C(g) + c1y
(g+1)
i y

(g+1)T

i . (2.12)

Apparently, the c1y
(g+1)
i y

(g+1)T

i summand (of rank one) adds the maximum

likelihood term for y
(g+1)
i . As a result, it increases the probability that y

(g+1)
i is

generated in the next generation.
We can iterate this process, always adding a rank-one matrix. Starting with

N (0, I) in the zeroth generation, the distribution of the first generationN (0, C(1))
will tend to reproduce y1 with greater probability than the initial distribution.

Then distribution N (0, C(2)) will tend to produce y2 with greater probability
than N (0, C(1)) and so on. In general, N (0, C(g)) will tend to reproduce the
previously selected (successful) steps y1, . . . , yg.

Evolution path

Let’s note that yyT = (−y)(−y)T . Therefore, there is no sign information con-
tained in the updates as derived in the previous sections. To exploit it, the
progress of the strategy is recorded in so-called evolution path.

Evolution path

It is a sequence of successive steps that
the strategy takes over a number of genera-
tions. Because we are interested in directions
alone, the influence of step size is eliminated
by normalization. The evolution path is then
cumulation of (normalized) consecutive steps
from m(i) to m(i+1). The näıve evolution path
p(g+1) ∈ Rn in generation g + 1 over s steps is

p(g+1) =

g∑
i=g+1−s

m(i+1) −m(i)

σ(i)

We can further improve it by using smoothing in the same way as when we
introduced the learning rate in (2.9). We start with p

(0)
c = 0 and then we define

p(g+1)
c = (1− cc)p(g)

c + Fc
m(g+1) −m(g)

σ(g)
, (2.13)

where p
(g)
c ∈ Rn is again the evolution path at generation g, cc ∈ (0, 1] is the

smoothing constant, and the factor

Fc =
√
cc(2− cc)µeff (2.14)
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is the normalization constant for pc. It is chosen such that in every generation
p

(g+1)
c ∼ N (0, C) (i.e. p

(g+1)
c is normally distributed with mean 0 and covariance

matrix C). That is, if p
(g)
c ∼ N (0, C), then the smoothing in (2.13) preserves this

property for(g + 1)-th generation.
The rank-one update of the covariance matrix (2.12) using the evolution path

(2.13) reads

C(g+1) = (1− c1)C(g) + c1p
(g+1)
c p(g+1)T

c . (2.15)

The author of CMA-ES notes that an empirically validated choice for the
learning rate in this formula is

c1 =
2

n2
.

For cc = 1 and µ = 1, this formula is identical with the formulae (2.11) and
(2.12).

Combining rank-µ update and cumulation

Finally, we simply combine the advantages of rank-µ update (2.11) and rank-one
update that uses the evolution path (2.15).

As in (2.9), we write the matrix C(g+1) as a weighted sum of its predecessors,
but this time we use c1 + cµ as the weight:

C(g+1) =
(
1− (c1 + cµ)

)
C(g) + (c1 + cµ)

1

σ(g)2
C(g+1)
µ .

As when deriving (2.11), we get

C(g+1) =
(
1− c1 − cµ

)
C(g) + (c1 + cµ)

µ∑
i=1

wiy
(g+1)
i y

(g+1)T

i .

Then we use the evolution path to transform

c1

µ∑
i=1

wiy
(g+1)
i y

(g+1)T

i −→ c1p
(g+1)
c p(g+1)T

c

just as was done to obtain (2.15). In the end, we have the following formula:

C(g+1) = (1− c1 − cµ)C(g) + c1p
(g+1)
c p(g+1)T

c + cµ

µ∑
i=1

wiy
(g+1)
i:λ y

(g+1)T

i:λ , (2.16)
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where

y
(g+1)
i:λ =

x
(g+1)
i:λ −m(g)

σ(g)

and

c1 ≈
2

n2
, cµ ≈ min

{µeff

n2
; 1− c1

}
.

The learning rates c1 and cµ generally do not depend on the population size or
the parent set size (even though these can be and are calculated from the problem
dimension too). It is easy to see that the learning rates explicitly influence the
change rate of the covariance matrix.

The rank-µ update exploits the information within the population of one
generation. It is especially important when handling large populations. The
information of correlation between generations is stored in the evolution path
rank-one updates. Its significance rises when the populations are small and thus
the number of generations increases. The learning rates c1 and cµ are to prevent
the degeneration even when small populations are used. Small populations usu-
ally cause the algorithm to converge faster, but larger populations are better for
avoiding local optima. The adaptation strategy following this equation should be
able to deal with badly scaled and non-separable functions.

2.1.4 Step length control

The matrix adaptation described above changes the shape of the distribution’s
contour lines. These ellipses are rotated and the relative lengths of their axes are
modified as a preferred direction is favored. Also, their center is moved according
to the mean updating rule. However, their overall scale – the step length – is being
changed only a little. The optimal step length cannot be well approximated by
formula (2.16) and even the largest reliable learning rate for the update in (2.16)
is too slow to adjust the overall step length at a competitive rate. Therefore, we
need an additional strategy to cope with the step length control.

The cumulative step length adaptation method utilizes the evolution path:

• When the evolution path is long, the single steps point to similar directions
(correlation). Prolong the step.

• When the evolution path is short, the single steps cancel each other out
(anti-correlation). Shorten the step.

• Desired situation: the individual steps are (approximately) mutually per-
pendicular and therefore uncorrelated.
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Figure 2.4: Three evolution paths of six steps in different selection situations (ide-
alized). The lengths of the individual steps are all comparable, but their sums
(the evolution paths) differ greatly. On the left, the evolution path is short and
thus the step size should be decreased. In the middle, we have (approximately)
the desired situation. On the right, all steps point in approximately the same di-
rection, making the evolution path very long — the step size should be increased.
Source: [19]

How do we decide, whether an evolution path is long or short? What does
it mean? We shall compare the actual evolution path with its expected length
(under random selection — the mean value of corresponding random walk). In
the optimal situation, the evolution path length is (approximately) as long as
expected. If it is biased to be longer than expected, the step size should be
increased and vice versa.

Before we can compare the evolution path length with its expected value, we
must construct it in a way that it is comparable. We use the same reasoning and
technique as when constructing p

(g+1)
c to get the formula:

p(g+1)
σ = (1− cσ)p(g)

σ + FσC
(g)−

1
2 m(g+1) −m(g)

σ(g)
,

where p
(g)
σ ∈ Rn is the conjugate evolution path at g-th generation, cσ ∈ (0, 1) is

the smoothing constant and

Fσ =
√
cσ(2− cσ)µeff

is the normalization constant similar to Fc in (2.14).

The transformation represented by C(g)−
1
2 rescales the step m(g+1) − m(g)

within the corresponding coordinate system given by the eigenvectors of C(g).
As a (desired) consequence, the expected length of p

(g+1)
σ does not depend on

its direction. Also, given that p
(0)
σ ∼ N (0, I), we get p

(g+1)
σ ∼ N (0, I) for any

sequence of realized covariance matrices up to g-th generation [19].

The realized path has the length ‖p(g+1)
σ ‖. The expected length, i.e. the mean
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value of random walk [51], is given by

E
[
‖N (0, I)‖

]
≈
√
n + O

( 1

n

)
.

To update the step size σ(g), we compare the realized path length and the
expected path length. If the realized path is longer than expected, we want
to shorten the step. If it is shorter, we prolong the step. Therefore we multi-
ply σ(g) by a factor either smaller or greater than one, respectively. This factor
shall depend exponentially on the ratio of the realized and expected path lengths.

σ(g+1) = σ(g) exp

(
cσ
dσ

(
‖p(g+1)

σ ‖
E
[
‖N (0, I)‖

] − 1

))
(2.17)

where dσ ≈ 1 is the damping parameter and the factor cσ
dσ

is based on deeper
investigation of the algorithm. Let us emphasize that the change rate of the
step size σ, explicitly controlled by dσ, is independent of the change rate of the
covariance matrix.

The exponential factor enables the step size to adapt very quickly. On the
other hand, due to its fast convergence, the starting step size σ(0) limits the area
that can be searched by the algorithm.

Choosing the step length based on the evolution path length is rather heuristic,
but it has been validated empirically. The step size control prevents premature
convergence of the population. However, it cannot prevent the algorithm from
ending up in a local optimum.

2.1.5 Stopping criteria

There are eight stopping criteria for the algorithm. Even though the correspond-
ing variables are assigned default values, it might be desirable to change their
setting to fit the problem at hand.

• EqualFunValues — range of the best objective function values of last 10 +
d30n/λe generations is zero, i.e. less than EqualFunValues.

• TolFun — range of the best objective function values of last 10 + d30n/λe
generations and also of all function values of the current generation is almost
zero, i.e. less than TolFun. Value of this parameter depends on the problem
but the default is 10−12).

• TolX — the standard deviation σ of the normal distribution N (µ, σ2C) is
less than TolX in every coordinate and also the evolution path vector σpc
is less than TolX in all its components. Default value is 10−12σ(0).

• NoEffectAxis — the mean value (m(g), given by equation (2.2)) remains
numerically constant when a small (0.1) standard deviation is added to it in
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the principal axis direction of the current covariance matrix. That is, when
m(g) = m(g) + 0.1σ(g)

√
λiui, where λi and ui are the i-th eigenvalue and

unit eigenvector of the covariance matrix C(g), respectively, i = 1 + gmodn,
n being the dimension.

• NoEffectCoor — the mean value does not change (numerically) when 0.2-
standard deviation is added to each coordinate (similar to NoEffectAxis).

• ConditionCov — the condition number of the covariance matrix exceeds
the limit of 1014 (larger conditioning leads to numerical errors [22].

• TolXUp — stopping if σmax(diag(D)) increases by more than TolXUp. It
indicates divergent behaviour or too small initial σ0. Default value is 104.

• Stagnation — we remember the history of the best and the median fitness
in each iteration over the last 20% generations (however, at least 120+30n/λ
and at most 20000 iterations). If the median of the most recent 30% values
is not better than the median of the oldest 30% in both histories, we stop.

2.2 Summary

In this section, we summarize the whole algorithm and point out its most impor-
tant properties.

Further theory of CMA-ES and evolution strategies can be found, for example
in [5, 20, 6]. However, even though many empirical results show that the perfor-
mance of CMA-ES-based algorithms is overall very good [22, 21, 3], there are no
convergence proofs available yet. According to Hansen et al. [20], they can be
expected in the upcoming decade or so.

2.2.1 Algorithm summary

There are many constants that control the algorithm’s behavior. Their default
settings are not recommended to be changed, except for λ. They are discussed in
detail in [22]. On the other hand, choice of the initial distribution mean m ∈ Rn

and step size σ ∈ R+ depends on the particular problem. For a good performance,
we want to bracket the optimum within the initial cube m± 3σ(1, . . . , 1)T .

Set constants (default setting):

λ = 4 + b3 lnNc . . . population size

µ =

⌊
1

2
λ

⌋
. . . parent set size

wi =
ln(µ+ 1)− ln i∑µ

j=1(ln(µ+ 1)− ln j)
, i = 1, . . . , µ, where

µ∑
i=1

wi = 1, wi > 0

. . . recombination weights
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µeff =

(
µ∑
i=1

w2
i

)−1

. . . variance effective selection mass; 1 ≤ µeff ≤ µ

cσ =
µeff + 2

N + µeff + 5
. . . smoothing for step size control

dσ = 1 + cσ + 2 max

{
0,

√
µeff − 1

N + 1
− 1

}
. . . damping for s. s. control

cc =
4 + µeff/N

4 + N + 2µeff/N
. . . smoothing in covariance matrix adaptation

c1 =
2

(N + 1, 3)2 + µeff

. . . rank-one learning rate

cµ = min

{
1− c1, 2

µeff − 2 + 1/µeff

(N + 2)2 + 2µeff/2

}
. . . rank-µ learning rate

Initialize:

pσ = 0 . . . conjugate evolution path for step size control

pc = 0 . . . evolution path for covariance matrix adaptation

C = I . . . initialize the covariance matrix as the identity matrix

g = 0 . . . generation number

Choose:

m ∈ Rn . . . distribution mean

σ ∈ R+ . . . step size

Until a termination criterion is met, g ← g+1, for every generation do:

• Sample new population. For k = 1, . . . , λ:

zk ∼ N (0, I)

yk = BDzk ∼ N (0, C), where C = BD2BT is eigendecomposition

xk = m+ σyk ∼ N (m, σ2C)
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• Select and recombine:

〈y〉w =

µ∑
i=1

wiyi:λ . . . distribution mean step disregarding σ

m ← m+ σ 〈y〉w =

µ∑
i=1

wixi:λ

. . . it is yi:λ =
xi:λ −m

σ
, where xi:λ is i-th best point out of x1, . . . , xλ

• Step size control:

pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeff C

− 1
2 〈y〉w

. . . it is C−
1
2

def.
= BD−1BT , so we use C−

1
2 〈y〉w = B

µ∑
i=1

wizi:λ

σ ← σ exp

(
cσ
dσ

(
‖pσ‖

E
[
‖N (0, I)‖

] − 1

))

• Covariance matrix adaptation:

pc ← (1− cc)pc + hσ
√
cc(2− cc)µeff 〈y〉w

. . .where the step function hσ is defined further in (2.18)

C ← (1− c1 − cµ)C + c1

(
pcp

T
c + (1− hσ)cc(2− cc)C

)
+ cµ

µ∑
i=1

wiyi:λy
T
i:λ

C = BD2BT . . . perform eigendecomposition

In their implementation, Hansen [19, 26] uses a minor improvement in updat-
ing pc. The idea is to prevent too fast increase of axes of C when the step size is
too small. That is, we limit the update of pc if ‖pσ‖ is too large. For that, the
step function hσ (2.18) is used.

hσ =

 1 if ‖pσ‖√
1−(1−cσ)2(g+1)

< (1, 4 + 2
n+1

)E
[
‖N (0, I)‖

]
0 otherwise

, (2.18)

where g is the generation number.
Usually [19], it is hσ = 1, which leaves the update of pc (and then also C) as
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they were in (2.13) and (2.16).

2.2.2 Invariance properties

Invariance means that the algorithm exhibits identical behavior and thus also
identical performance on classes of objective functions. Such properties are highly
desirable as they enable us to generalize empirical results.

It is its invariance properties that make CMA-ES so effective optimizing ob-
jective functions that are ill-conditioned, noisy or non-smooth, where many other
algorithms fail [21, 3].

The most important property is invariance to strictly monotonic transforma-
tions of the objective function [19]. This is implied by the fact that the method
does not use actual objective function values for anything but to assign relative
fitness ranking. Transformations of the objective function that have no effect
upon this relative ranking of individuals thus do not effect the method’s perfor-
mance.

Further, the method exhibits invariance to rigid transformations of the search
space (i.e. rotation, reflection and translation) and, in general, it is invariant to
invertible linear transformations of the search space. It is especially worthy to
notice that the method is invariant to scaling of variables (coordinate axes).

Of course, even though the performance remains intact, it is crucial that with
the transformations of either the search space or the objective function, the initial
parameters (σ(0), C(0),m(0)) or stopping criteria are adjusted accordingly.
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2.3 Upgrades of CMA-ES

In the previous sections, we have described the basic algorithm of CMA-ES,
which itself is a fast and robust method. However, there are many upgrades and
extensions that significantly improve its performance, especially when dealing
with global optimization. In this section, we shall look at the most important
ones. Let us point out that none of them spoil the important properties of CMA-
ES.

2.3.1 Restart strategies

When optimizing globally, it is essential to use restarts. The algorithm might
converge to a local minimum and by restarting it, we increase the chance of
finding the global minimum.

We can use a simple restart strategy, when the algorithm is always restarted
as it is, with no adjustment. Or we can learn from the experience and change the
algorithm’s parameters in the attempt to increase the probability of success.

The following restart strategies change, among other things, the size of the
initial population. There exist several more restart strategies for CMA-ES [35],
which can further somewhat improve the performance but the difference is not
great.

Increasing population size (IPOP)

The default population size for CMA-ES is given by formula

λdef = 4 + b3 log(N)c ,

where N is the problem dimension [22]. However, the optimal population size
may be much larger.

Therefore, the IPOP strategy gradually increases the population size [4]. Ev-
ery time an independent restart is launched, the population doubles in size. (The
factor of 2 is empirical.) Other parameters remain unchanged. In [4], superiority
of IPOP restart strategy over pure restarts is demonstrated.

The restart criteria are inherited from CMA-ES (see section 2.1.5), except for
Stagnation and TolXUp [4].

Bi-population multistart scheme (BIPOP)

The motivation for this improvement is better balance of exploration (exploring
as much of the vector space as possible) and exploitation (thorough investigation
of promising areas). To achieve that, two interlacing approaches are applied. One
regime uses increasing population size (as in the IPOP restart strategy described
above in section 2.3.1), while the other uses varying small populations [26].

In the beginning, a single run with default population size λdef is performed.
Then, a run under the first regime is started. After this run and every one af-
terwards, it is decided which of two regimes is to be applied next depending on
whose count of conducted function evaluations is lower (the initial run budget
does not count). Number of restarts under the first regime is limited, cutting
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the maximal population size and also possibly ending the restarts. If not termi-
nated earlier, the last restart is conducted under the first regime with maximal
population size.

Every time the first regime is run, the population size is doubled. By default,
the largest population size is λ = 29λdef. Lets denote the latest (large) population
size from the first regime λl.

The second regime uses small population size

λs =

⌊
λdef

(
1

2

λl
λdef

)U [0,1]2
⌋
,

where U [0, 1] denotes independently uniformly distributed numbers in [0, 1]. It is
clearly λs ∈ [λdef,

λ
2
].

Apart from the inherited stopping criteria NoEffectAxis, NoEffectCoor,
ConditionCov, TolFun, TolX (see section 2.1.5), we have several more [26].

• MaxIter — the maximal number of generations (= iterations) in each run
of CMA-ES. By default, MaxIter = 100 + 50(N + 3)2/

√
λ, where N is the

dimension and λ is the population size in the current restart. This criterion
is included to prevent excessively long runs.

• EqualFunVals — in more than a third of the last N generations, the ob-
jective function values of the best and the k-th best solution are equal,
k = 1 + d0, 1 + λ/4e.

• TolUpSigma — when σ/σ0 > TolUpSigma
√
l (where σ is the current step

length and l is the largest eigenvalue of the covariance matrix at a given
generation), it indicates “creeping” behavior. Default value is 1020.

• TolStagnation — when no improvement is observed over several (i.e. 100 +
100N1.5/λ by default) generations. That is, taking the Hansen’s new code
[18] as the source.

Apart from these criteria discussed in [26], the code [18] contains a few addi-
tional, possibly experimental, ones. However, in experiments described in chapter
3, they were never observed to have any effect.

2.3.2 Elitist selection

When choosing the parents, we have multiple options [20]. The basic algorithm
selects them from the current generation. When we want to speed up the con-
vergence, we can choose to select the parent set from the individuals of the cur-
rent generation and also its parents. That helps to preserve the exceptionally
good individuals until they are superseded and thus amplify their influence. The
downside of this approach is that it may lead to premature convergence to a local
optimum.
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2.3.3 Active covariance matrix adaptation

In the original algorithm, we use the information of the successful individuals to
adapt the covariance matrix. We increase the variance in directions that have
proven to be beneficial. As a result, these directions are preferred when sampling
next generation.

The idea of active updates is simple: we shall also exploit the information
hidden in the unsuccessful individuals [30]. As opposed to passive decay over
time, we actively decrease the variance in such directions. In other words, besides
telling the method where to go, we also tell it where not to go.

Equation (2.16) in section 2.1.3 gives us the update formula for the covariance
matrix:

C(g+1) = (1− c1 − cµ)C(g) + c1p
(g+1)
c p(g+1)T

c + cµ

µ∑
i=1

wiy
(g+1)
i:λ y

(g+1)T

i:λ ,

where the rank-µ update is given by the third term. Now, we replace this term
by

cµ

(
µ∑
i=1

wiy
(g+1)
i:λ y

(g+1)T

i:λ −
λ∑

i=λ+1−µ

wλ+1−i y
(g+1)
i:λ y

(g+1)T

i:λ

)
.

This way, µ worst solutions are assigned corresponding weights and used for
the negative update. Jastrebski and Arnold [30] use weights wi = 1/µ for all
i = 1, . . . , µ and µ = λ/4.

As a result of this change, the related constants must be adjusted in order
to maintain stationarity of the expectation of the covariance matrix. Detailed
description is to be found in [30]. This paper and [23] then contain experimental
comparisons.
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3. Real-world application:
automated tuning of PID
controllers in an engine model

This chapter is based on the author’s independent work for company Ricardo
Prague s.r.o., which supported this applied research. The goal was to investigate
possible improvements regarding automated PID controller tuning to program
WAVE, 1D engine and gas dynamics simulation software package by Ricardo
Software [49]. It enables engineers to model complex systems of car engines using
the finite element method.

I would like to give special thanks to those who counseled me all along the
way. First and foremost, I would like to thank Steve Amphlett, for it was him who
came up with the task and provided me with much support. Jǐŕı Navrátil, the
product manager of WAVE, gave his blessing to this adventure and together with
Martin Horáček of the WAVE customer support team initiated me to the world
of WAVE users and were willing to answer countless practical questions. Last
but not least, many thanks are to be given to control engineers Michal Vinklář,
Adam Kouba and Bohumil Hnilička, who mentored me on control theory and its
application in engine design.

3.1 The task

In a running engine, so called controllers ensure that certain quantities (such
as intake pressure, exhaust gas temperature and many others) remain constant
or within given range. WAVE models often include one or several PID (P –
proportional, I – integral, D – derivative) controllers as simple, yet powerful tools
of system control. Each PID controller has three parameters that need to be
“tuned” (i.e. set to near-optimal values) in order to have a well-controlled system.
In most cases, the “D” parameter is set to zero, leaving only two parameters to
be tuned. In general, this is an optimization problem, with the model being the
heart of the objective function.

The following picture shows a simple WAVE model of a six-cylinder engine
with a single PID controller. It controls pressure in the rail (measured by a
sensor) by controlling (the speed of) the turbine powered by exhaust gases.
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Figure 3.1: A simple WAVE model of a three cylinder engine with a single con-
troller (yellow “PID” box in the blue field).

3.2 Motivation

Besides posing an interesting challenge, there is strong practical motivation to
solve this task.

3.2.1 The current state

Currently, controllers are tuned manually (i.e. by trial and error) and using two
simple tools which are implemented in WAVE: the well-known Ziegler-Nichols rule
and Ricardo No Lag method (developed by Ricardo). The first one is essentially
an empirical rule of thumb, while the other takes an analytical approach and often
performs better. Simplifying assumptions are made for the problem to be solvable
analytically, possibly loosing essential information along the way. Solution found
this way cannot, in general, be the optimal one. Nonetheless, thanks to robustness
of PID controllers, this tuning usually provides good results that may be further
refined manually.

However, by these tools, only one controller at a time can be tuned. When
having a model with multiple coupled controllers, both these tools fail. Usually
an engineer seeks inspiration in library of older models to get an sensible first
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estimate and continues with manual tuning. This is a lengthy and tedious task
that requires a knowledgeable, experienced user.

3.2.2 Commercial motivation

In practice, not only a single controller but also two coupled controllers need to
be tuned relatively often and sometimes three or even more are needed. Ten
controllers within one system is maximum seen so far in our application. De-
pending on the user’s expertise and experience, the tuning process can take up
to several days of work. More than three interacting controllers are not to be
seen very often and it becomes virtually impossible to tune them by hand when
no additional information (e.g. inspiration by other models) is given. There-
fore, engineers could use a feature in WAVE that would take care of this chore.
Moreover, among WAVE users there are engineers that have little or no working
knowledge of controllers but have to have them tuned before they can carry on
with their own work.

On October 3, 2014, Steve Amphlett, one of the fathers of WAVE, wrote in
an email:

[It would be nice to have] “...some kind of clever/novel/interesting
system identification for control system design and tuning. Once we’ve
given our customers the ability to add controllers to their simulations
(e.g. the best timing of some device to get a target output of some
measure), the first thing they ask us is how to set it up and choose
the right parameters to make it work.”

Also according to Ricardo WAVE customer support, there is demand from the
customers to have such a controller tuning tool. None of our competitors have,
despite their effort, reached a satisfactory solution of this problem, so cracking it
would imply a significant competitive advantage.

3.3 Formulation of the problem

This section is to provide a rather compact formulation of the problem from the
global point of view. Reader who is not familiar with basics of control theory
is strongly encouraged to read the Appendix B first before continuing with this
chapter.

3.3.1 Main objective summary

PID controllers are simple, yet powerful tools that control behavior of an engine
or, in our case, a model of an engine (“the system”). The aim is to set up the
controllers, i.e. tune their gains (“the parameters” or “the variables”) such that
the system’s response to the control fits the requirements.

3.3.2 Assumptions

Theoretically, to choose the right type of a controller (and to tune it), we need
to know the properties of the system that we want to control — the order and

29



stability of the system, its transport delay etc. PID controllers might not even
stand a chance to fully control a high-order system. However, in practice, we are
not given the luxury of this knowledge. On the other hand, according to WAVE
support team, we can safely assume that a solution (i.e. controllers’ setup such
that the controlled quantities sooner or later converge to the target values) exists,
if our model in WAVE is set up correctly (from the engineering point of view).
We know typical uses of PID regulators in an engine model and we know that it
is possible, though sometimes very hard, to tune them. At the beginning of the
tuning process, the controllers are already a part of the model.

3.3.3 Basic requirements

First, we have to know how to observe controllers’ influence upon the system’s
behavior.

Step response

The system’s response to control is “measured” as so-called step response. Theo-
retically, it is the evolution of the system’s output when its control input changes
immediately from zero to one. When the response function converges, the corre-
sponding controller is stable.

Figure 3.2: Examples of stable and unstable step response.

Requirements

Our requirements for the response of a tuned system are straightforward. Each of
the controllers is to be stable and the step responses of the controlled quantities
(e.g. rail pressure) are to converge to the required value. In our case, the number
of controllers usually equals the number of controlled quantities.

3.3.4 MIMO problems

A multiple input multiple output (MIMO) system is characterized by equation

y = Hx+ n
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Where x is the input vector, y is the output vector, H is the matrix of functions
characterizing the system and n is the noise vector. In our case: x is the vector of
controllers’ parameters and y is the vector, whose elements correspond (in some
way or another) to the system’s responses to control. Each element of matrix H,
hij = hij(xi, yj) , is a function that describes the relationships between i-th input
and j-th output. Dealing with a noiseless model, we set n = 0.

When each output is determined by one input variable only, matrix H is
diagonal (when arranged appropriately) and the MIMO system is essentially only
a set of independent single input single output (SISO) problems that are easier
to solve.

Similarly, when the matrix H can be rearranged to block diagonal form, the
original, big MIMO problem can be broken down to smaller problems.

When there is only one variable on the output, i.e. matrix H is just a column
vector, it is called multiple input single output (MISO) problem.

Figure 3.3: A 4× 2 MIMO system (left) and a 4× 1 MISO system (right).

Tuning one PID controller is a SISO problem (lets consider all three gains of
a controller to be a single input). Tuning multiple coupled PID controllers is,
in general, a MIMO problem. When the controllers are coupled, it cannot be
transformed to a series of independent SISO problems, one for each controller
with three parameters, as the problem is non-separable.

Without loss of generality, we will further assume that the problem at hand
is a full MIMO problem. If it is not, i.e. some of the controllers to be tuned
are independents of others, the whole problem can be broken down into smaller
subproblems, each one to be solved separately. I.e. if the matrix H is block
diagonal, we take each of the blocks as a separate problem.

The question remains how to recognize (detect) which controllers are coupled,
which is not to be discussed in this thesis and might be subject of further research.
Now, we do not even attempt to break the problem into such subproblems –
instead, we take any given system as a MIMO system.

There of course is the problem how to deal with multiple outputs – multiple
objectives of optimization. There are tools that could be used but, in general,
multi-objective optimization is more (computationally) costly than an “ordinary”
single-objective optimization. Therefore, we want to transform the MIMO prob-
lem into a MISO problem. Due to specifics of our task, as it is useless to tune
only some controllers, while others diverge, it is only natural to try to describe
the whole task by a single objective.
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3.4 Objective function

The most difficult task is to find out what it is we want. That is, we need to define
the objective function that describes our requirements and ranks the fitness of
candidate solutions.

3.4.1 Controlling multiple objectives

Lets have a model with k controlled quantities (and also k controllers). Lets
assume for a moment that quality of the step response of i-th controller can be
described by objective function Fi. That provides us with k objectives that we
want to minimize. However, we want to use tools for single-objective optimiza-
tion, so the question remains how to combine these objectives into a single one.

The answer is rather simple. We shall define, and justify experimentally later,
the objective function describing the response of the whole model as

F (t) =
k∑
i=1

ni Fi(t), (3.1)

where ni is the “normalization” constant corresponding to the i-th controlled
quantity. Purpose of the constants ni is to make all the objective functions Fi
comparable, as they may significantly differ in range depending on the corre-
sponding units. Therefore, we set

ni =
1

|targeti|
,

where targeti is the target value of the i-th controlled quantity (e.g. i-th target
value 780◦K gives us ni = 1

780
).

There is also the option of prioritizing the individual objective functions Fi
– assigning different weights to them. Considering all the objectives to be equally
important, we shall set all the priorities equal to one, getting precisely formula
(3.1).

3.4.2 Step response based objective function

General framework for the definition of Fi, the objective function corresponding
to the i-th controller, is based on how the step response looks like (see figure 3.2)
and thus is naturally given by formula

Fi(t) =

∫ t

t0

T (τ) E(ei(τ)) dτ, t0 ≥ 0, (3.2)

where t0 is the initial time, T (τ) is a function of time and E(ei(τ)) is a function
of error

ei(τ) = |actuali(τ)− targeti(τ)|.
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Here, targeti is again the target value and actuali is the actual value (the value
measured by a sensor) of the i-th controlled quantity.

We could further add a weight function of time to the integral (e.g. w(t) = 1/t
to obtain average value), but we shall not use it now.

Function E(ei(τ)) describes our concern over the actual error size. On the
other hand, the function T (τ) characterizes how much we care about when the
particular error occurs. Its value at a given time can also be perceived as weight
assigned to the corresponding error function value.

Common criteria

There are multiple commonly used criteria of step response quality: IAE – In-
tegral of Absolute magnitude of Error, ITAE –Integral of Time times Absolute
magnitude of Error, ITSE – Integral of Time times Squared Error, and ISE –
Integral of Squared Error. They all fit the framework described above, giving us
common choices of functions E(ei(τ)) and T (τ):

IAE(t) =

∫ t

0

|e(τ)| dτ,

ITAE(t) =

∫ t

0

τ |e(τ)| dτ,

ISE(t) =

∫ t

0

e2(τ) dτ,

ITSE(t) =

∫ t

0

τe2(τ) dτ,

The ITAE criterion has been shown to be superior to the other criteria in [17].
It also fits our purpose the best. We need to tune the controllers to be stable but
we are not particularly concerned with other possible aspects (e.g. magnitude
of overshoot over the setpoint value). In the beginning of the time interval, we
do not really care about the error. As the time progresses, we want to place
increasing weight upon the error.
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Modifications of ITAE

We shall further modify the ITAE criterion to suit our needs better, but the idea
remains just the same. We shall discuss several objective functions in the form
of (3.2).

First, we consider the fact that we measure the step response over time interval
longer than one second. We do not want to diminish the error that happens when
t < 1s, while enlarging those at time t > 1s. For that reason (and simplicity of
notation), we slightly redefine the ITAE criterion:

ITAE(t) =

∫ t

0

(τ + 1)|e(τ)| dτ. (3.3)

We might want to disregard the beginning of the time interval, as the step
response may behave wildly in the beginning, regardless of its neat convergence
later. We shall see from the experiments, that this approach leads to better-suited
description of the optimization problem by the objective function as it removes
possible source of confusing information.

SITAE(t) =

∫ t

t0

(τ + 1)|e(τ)| dτ, (3.4)

where t0 > 0 marks the shifted beginning of measurement.
However, we may also take the opposite approach and instead of disregarding

the beginning of the interval, we may penalize the nonconvergence.

ITAEP (t) =

∫ t

0

(τ + 1)|e(τ)| dτ +

∫ t

tp

P
(
τ, e(τ)

)
(τ + 1)dτ, (3.5)

where P
(
τ, e(τ)

)
is the penalization function applied at the interval [tp, t]. We

shall set

P (τ) = p (τ + 1)
(
|e(τ)| − tol

)
+
, (3.6)

where p is the penalty constant, tol is the defined tolerance and (. . .)+ is the
positive part (i.e. the penalty is not applied, if the error is smaller than tolerance).
This criterion too fits the form (3.2) as it can be rewritten using characteristic
function of interval.

The penalty function causes the objective function to be steep at some points,
making it ill-conditioned (compared to the previous criteria). As verified exper-
imentally, this slows down the optimization and magnifies the cost differences
among the individual runs (e.g. within ten runs of the same test, half of the
trials takes ten times longer to complete than the other half).

We can also want to try higher-polynomial function of time to weight the
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error. Hence

IQTAE(t) =

∫ t

0

(τ + 1)2|e(τ)| dτ, (3.7)

and

SIQTAE(t) =

∫ t

t0

(τ + 1)2|e(τ)| dτ, (3.8)

The particular form of the penalty function is, of course, matter of one’s
opinion and taste. We try out this one and see that from the above reasons,
other objective functions perform much better. While there is still a possibility
of finding a better-suited penalty function, we do not need to search for it as we
already have a good objective function. For the same reason, we do not need to
experiment with higher-polynomial functions of time.

3.5 Choosing the right optimization method

According to “no free lunch” theorems [54], there is no algorithm that would
perform better than any other on all classes of problems. To choose the right op-
timization method, characteristics of the particular problem must be considered.

3.5.1 Problem characteristics

Given the problem described above, there are many natural constraints.

Black box

First and foremost, we cannot disassemble the model to look inside and analyze
what processes define its behavior, as it is too complex. We must take the model
as a black box. All we can do is to evaluate it when a set of controllers’ parameters
is given and see how the result fits our idea of “good” behavior.

No pretty properties

We know very little about the function we want to optimize, so any simplifying
assumptions could be misleading. It is certainly non-convex, non-linear, non-
quadratic and (highly) multimodal – there may be multiple local optima, where
we do not want to get stuck when searching for a global optimum. The function is
probably continuous, but possibly ill-conditioned (i.e. very steep at some points
– this happens especially when penalties are used). There are no derivatives
available and we can hardly assume that the function is smooth, so neither the
derivative approximations would necessarily be sensible. We do not expect the
objective function to be noisy. However, this is just guessing, we know nothing
in advance.
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Non-separability (coupling)

Definition. Separable function. A function f : Rn → R is separable if

arg min
(x1,...,xn)

f(x1, . . . , xn) =
(

arg min
x1

f(x1, . . .), . . . , arg min
xn

f(. . . , xn)
)
.

Our objective function is non-separable. We cannot tune one parameter inde-
pendently of the others and expect that all will be well in the end. One controller’s
parameter’s value strongly affects other parameters. Further, one controller’s set-
ting may affect the behavior of other controllers. This property is called coupling
and it is the reason why tuning multiple controllers is hard. However, relation-
ships between the variables are far from random. We would like the algorithm to
mine and use this information to improve its search for an optimum.

When the coupling is weak, it can be expected that “pre-tuning” the con-
trollers separately (i.e. using the simple tuning tools to one controller at a time,
while the others are fixed) can give sensible results. The stronger the coupling is,
the more useless is the pre-tuning.

Expensive evaluations

The function evaluations are expensive – they take a significant amount of com-
putational time (minutes) while the time budget is limited. Usually, we want an
overnight computation. Therefore, we must judge carefully when and where to
evaluate the function.

Robustness

Last but not least, the algorithm we will use must be robust. In our application,
we cannot tolerate an algorithm that would not provide us with any result in the
end of its computations. If unavoidable, it must not happen very often, since
every such case irritates the user – our customer.

3.5.2 Looking for a suitable method

Having considered the limitations and requirements described above, it is clear
that we need a very robust black-box derivative-free global optimization algo-
rithm. These requirements leads us to the large family of evolutionary methods.
However, how do we decide, which particular algorithm best fits our problem?

Black-box optimization benchmarking

In order to systematically compare global optimization algorithms, a platform
called COCO (COmparing Continuous Optimizers) has been developed [27]. It
provides benchmark functions and experimentation templates that are easy and
free to use for anybody who wants to plug in and test their algorithm.

There are 24 test noiseless and 30 noisy test functions provided. We are more
interested in the noiseless test suite. These functions are divided into five groups:

1. separable functions (e.g. sphere or Rastrigin functions)
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2. functions with low or moderate conditioning (e.g. Rosenbrock function)

3. functions with high conditioning and unimodal (e.g. Sharp Ridge function)

4. multimodal functions with adequate global structure (e.g. Weierstrass func-
tion)

5. multimodal functions with weak global structure (e.g. Schwefel function)

Definitions of the test functions along with illustrations are available at the
website of COCO [28]. More details and explanation are provided in [25].

The COCO platform has been used for BBOB (Black Box Optimization
Benchmarking) workshops that have been a part of the GECCO (Genetic and
Evolutionary Computation) conference since 2009.

The results of BBOB 2009 provide us with valuable comparison of many
well known algorithms. Later BBOBs provide further comparisons of dozens of
methods, including many variants of CMA-ES, which was the general “winner”
of BBOB 2009 [21, 2].

For the sake of self-containedness, we shall review the most important results
of BBOB 2009 that led the author to believe that CMA-ES is well suited for this
particular application. The following graphs are directly from [21]. List of all
tested algorithms can be found in Appendix C.

Figure 3.4: BBOB 2009: all noiseless test functions, dimension 10, stopping
tolerance within 100 and 10−8.

Figure 3.4 shows the performance of the methods on all the test functions in
dimension 10. Pure random search method (Monte Carlo) is provided for com-
parison. The algorithms’ run time is measured in number of function evaluations
per dimension. The vertical axis shows the success rate that characterizes the
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robustness – proportion of problems an algorithm is able to solve with given bud-
get. We can see that, given budget of at least 10×103 = 104 function evaluations,
BIPOP CMA-ES trumps the other algorithms.

Differences between the methods grow proportionately with dimension of the
problem. For small dimensions, CMA-ES does not perform best of all, though
it never fails (i.e. it always provides a solution, albeit later than other methods)
and the success rate is in general very high. Also the required precision affects
the success rate.

However, we are interested in multimodal functions. Figures 3.5 and 3.6 show
that BIPOP-CMA-ES wins this category.

Figure 3.5: Multimodal functions
in dimension 5.

Figure 3.6: Multimodal functions
in dimension 20.

Now we can look at the algorithms’ performance respective to the function
classes.

Figure 3.7: Separable functions
f1 − f5.

Figure 3.8: Functions with low or
moderate conditioning f6 − f9.
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Figure 3.9: Ill-conditioned functions
f10 − f14.

Figure 3.10: Multimodal structured
functions f15 − f19.

Figure 3.11: Multimodal weakly
structured functions f20 − f24.

Figure 3.12: Non-smooth functions f7,
f16, f23.

Conclusion

Following the results above, it is clear that (BIPOP-)CMA-ES is a good choice,
even though it can be outperformed for some sorts of problems (complete results
for this algorithm can be found in [26]).

Also in newer BBOBs, e.g. [3] (exhaustive list of all papers is available at
COCO’s website [27]), dozens of CMA-ES variants are compared and are highly
successful.

We will use the variant named elitist BIPOP-aCMA-ES-CSA, which was de-
scribed earlier. Its use (as opposed to using other variant) is based purely on
trial-and-error experiments and observations of the models’ behavior described
further in section 3.7. However, we shall see that its performance is excellent.

Of course, we would like to compare it with other methods’ performance.
However, tuning the CMA-ES method to fit our problem was a nontrivial task
that took several months. Implementing another method would too require sig-
nificant effort and, at the end, the comparison would only show how well we are
able to tune both methods and nothing more.
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Moreover, our task is to find a working solution to the problem, if it exists,
and to implement it in shortest time possible. Therefore it is not desirable to
spend months trying out and tuning other methods, once a satisfactory working
solution has been found and can be implemented.

Nevertheless, further research and improvements are possible and the possi-
bilities are foreshadowed in section 3.9.

3.6 Prototype implementation and testing mod-

els

Once we have the tools, we need to test if the suggested solution to our problem
is viable. We do this by implementing and testing a prototype.

3.6.1 Prototype implementation using Python

For convenient prototype implementation, we use scripting language Python that
is becoming a great tool for numerical computations. The necessary numerical
libraries are provided by SciPy ecosystem [32] and the most advanced CMA-ES
routine too is provided by Hansen as a Python script [18]. It also is a natural way
how to connect WAVE with external programs. Last but not least, this language
and its libraries are free and commonly used, also within the company, so the
prototype shall be easy to understand when implementing the final version as a
part of WAVE (planned for the autumn release in 2016).

3.6.2 Basic testing model

Models of real engines are very complicated and they take several minutes to run.
Therefore, we need a simple, quick model for testing purposes. However, it must
be complicated enough to be a good representative.

Our problem is primarily about tuning multiple controllers. Therefore, the
basic testing model we use has three coupled controllers. It takes about 11 seconds
to run, which is very fast compared to usual run time in minutes.
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Figure 3.13: Basic testing model in WAVE.

In this model, we can see a single cylinder (orange circle) engine. The blue
“clouds” on the left and on the right are called ambients and they contain in-
formation about the surroundings (e.g. ambient pressure and temperature or
initial fluid composition). The thick black lines connecting the ambients with
other elements are ducts, where the fluids flow. The green element is an orifice,
opening of variable diameter. The yellow PID elements are the controllers, whose
gains we want to tune. The inside of the element is shown in figure 3.14. The
“calibrate gains” button enables the user to use two simple tuning methods (fit
for one-controller systems only).

Figure 3.14: The PID element panel.
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The arrow-like elements are actuators that perform the actual mechanical con-
trol based on the control signal outputted by the corresponding PID controllers.
The first one controls the fuel injector, the second affects the compression ratio
(the ratio of the maximum to minimum volume in the cylinder and the third
controls the orifice diameter.

The controlled quantities are:

• Indicated mean effective pressure (IMEP) — the average pressure acting
upon the piston during its cycle. It is controlled by adjusting the fuel-air
ratio, i.e. how much fuel we inject into the rail.

• Exhaust gas temperature. We control the compression ratio, i.e. the ratio
of largest and smallest possible capacity of the combustion chamber.

• Volumetric efficiency — the ratio of the volume of fluid actually displaced
by a piston. We adjust the diameter (opening) of the orifice.

Clearly, they have nontrivial influence on each other, so the controllers are
coupled.

The actual values of these quantities during the process are measured by sen-
sors, which are depicted as gray circles. The sensors’ outputs are then forwarded
to the corresponding controllers and they are also plotted out by the “wvd” el-
ements. These are the step responses that we want to observe and evaluate by
the objective function.

In figure 3.15, we can see two step responses. Controllers tuned by an engineer
(hereafter called the baseline solution) result in the dark blue step response.
Solution found by our method is in light blue. Clearly, the cyan solution is much
better in two cases (i.e. the convergence to the target value is faster) and slightly
worse in one.
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Figure 3.15: Basic testing WAVE model: comparison of good solutions. Pink: the
target value, dark blue: tuned by engineer, light blue: tuned by the algorithm.

On the other hand, most of candidate solutions in the tuning process are not
acceptable. They may look for example like those in figure 3.16. The dark blue
solution converges but to a different value that is wanted. The light blue solution
oscillates. The green solution looks good for the fuel-air ratio and volumetric
efficiency step responses but it is unsatisfactory for the compression ratio.
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Figure 3.16: Basic testing WAVE model: unsatisfactory solutions.

3.6.3 Other models

We use more complicated and real world models for the final verification of the
method. However, we do not have very many real models with multiple con-
trollers available. Also, these tests are very time consuming. For these reasons
we leave thorough testing for the beta version where parallelization as well as
more benchmarks will be available.

Unfortunately, we cannot show the layout of the real world models as they
are confidential.

We will also use two WAVE example models to verify that (and how well)
the method works for models with a single controller in its typical and important
use in a turbocharger. One of them is shown in figure 3.17. This is a twin
turbocharger model, where the controller controls boost pressure (and thus the
engine’s efficiency and power output) by adjusting two turbines. These turbines
then force more or less air (and proportionately more fuel) into the combustion
chamber than atmospheric pressure alone.
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Figure 3.17: Twin turbocharger model with a single controller.

3.7 Experimental calibration of the method

Having settled what we want to do and how, the greatest amount of work is
yet awaiting us. We have to try out different objective functions and algorithm
variants and settings.

This section is about the process of experimental calibration of parameters of
both the algorithm and the objective function. Over the span of seven months,
hundreds of tests were run in search of a good setting and its verification on real-
world models. We will use selected data of the actual experiments to illustrate
gradual improvements of the method.

As the method uses randomness, each run is different and takes different
amount of time. It is therefore necessary to run the same test several times to
get a trustworthy result. In our experiments, we will always use ten runs of the
same test (unless stated otherwise) and show the minimal, maximal and average
run time until a target function value was hit. This value was set empirically to
0.5 based on what a good solution looks like for the given model.
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3.7.1 The goal of the experiments

As stated earlier, we search for a usable solution. That is, we do not need a
perfect solution, nor is it desirable to search for it once a satisfactory one has
been found, should it mean significant delay.

Regarding the performance/run time, it is highly desirable to have overnight
computation. There might be an exception for extra large models but roughly
16 hours is our limit. That is, having a one-minute model, we can perform 960
evaluations. For two-minute or three-minute models, the number decreases to 480
and 320 function evaluations, respectively. Longer models are not exceptional.

On the other hand, the algorithm is naturally parallelizable. All individuals
within one generation can be evaluated independently of each other. For two-
dimensional problem (i.e. one PI controller), there are at least 6 individuals in the
population (the number increases after restarts). Therefore, as model evaluations
take up most of the computation time making costs of the core algorithm negli-
gible, we can speed up the whole process six times. Larger models may require
more restarts with larger populations and/or the dimension is higher, magnifying
the effect of parallelization as well.

Considering one, two and three-minute models once again and using paral-
lelization of factor 6, we are provided with budget 5760, 2880 and 1920 func-
tion evaluations, respectively. Of course, these numbers give us only very rough
approximation, but lets consider 3000 function evaluations as the borderline of
usability for regular, small and medium-sized, models – the value that we must
reach, though it is still highly desirable to reach even smaller numbers.

3.7.2 Verification of the idea

At first, we did not know whether the suggested approach would work and be
practically usable. This was a serious threat since nobody had succeeded yet,
especially none of our competitors (according to WAVE support team and project
management). Therefore, the first step was to verify the whole idea, find out
whether it was viable, regardless of the run time.

For that purpose, the basic testing model was set up with a very good starting
point very close to the baseline solution. The ITAEP criterion (3.5) was chosen
as the objective function. For optimization, BIPOP-CMA-ES routine of software
package DEAP [12] was used.

After little adjusting (e.g. larger penalty constants seemed to produce better
results), these first trials proved that the strategy may work. However, the num-
ber of function evaluations was huge considering the excellent starting position:
about six thousand.

3.7.3 Tuning the algorithm

Over time, many improvements were made based on experiments with the ba-
sic testing model. We will look how some of the parameters that were tuned
and calibrated affect the overall performance of the method. In the following
tables, comparisons are always made with the best method found (i.e. when all
parameters of the algorithm are calibrated and so is the objective function), the
difference being just the particular parameter.
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There are many more parameters that can be, and some of which have to be,
adjusted. However, we leave this part confidential.

Hansen’s version of CMA-ES source code [18] is further used. It is slightly
more complicated than DEAP [12] but it provides better tools and gives the user
much more control over the algorithm.

Scaling

First and foremost, scaling of variables has to be introduced. The initial step
length is set to 1.0 and, as signs of the variables have a huge effect, the starting
point is fixed to always be the zero vector. Then the approximation of solution
that used to be the starting point becomes the vector of scale coefficients.

Example. Let the initial approximation of solution be:

(15.0, −0.24, 123.3, −0.0008).

By removing the signs, we create the vector of scales:

s = (15.0, 0.24, 123.3, 0.0008).

Then, when the algorithm uses (wants to evaluate) for example vector

(1.0, 0.1, −1.0, −20.0),

it is scaled element-wise by vector s to become vector of actual gains for the
model:

(15.0, 0.024, −123.3, −0.016).

In terminology of evolutionary computing, we thus have the genotype (what
numbers the algorithm sees and computes with) and the phenotype (the actual
parameters for the WAVE model).

Hereafter, we shall still call the initial approximation solution the starting
point, even though the starting point is actually the zero vector.

Unless stated otherwise, in the tests of the basic testing model in this chapter,
we use the same starting point/scales that is given by a simple one-controller
tuning method and is further discussed in section 3.7.4.

Elitist selection

Using non-elitist parent selection scheme was observed not to exploit the advan-
tage of a very good solution, if it is found early in the search. It would be used
as a parent within that one generation, which produced it and then be lost.

Elitist selection, as desribed in section 2.3.2, enables much faster convergence,
as the parent set is chosen from the current generation and also its parents.
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On the other hand, it may and does sometimes lead to premature convergence.
However, this is compensated for by execution of more restarts.

Active search

We further improve the search by using negative updates of the covariance matrix,
an upgrade described in section 2.3.3.

Table 3.1 summarizes the improvements of performance.

combination min max average

elitist & active 268 2269 1098

no upgrade 812 > 12000* > 5334

elitist only 327 5361 2184

active only 644 10877 4145

Table 3.1: *) Number of evaluations exceeded the maximum number of iterations
allowed. This affects the corresponding average value.

It is important to note that there are many satisfactory solutions. That is,
not every successful run ends with the same good solution.

Step size adaptation method

There are two options how to adapt the step size. Again, the default version CSA
(Cumulative Step-size Adaptation; described in section 2.1.4) gives better results
than the alternative TPA (Two-Point step-size Adaptation, [24], which, roughly,
implements a line search along the direction of the latest mean shift).

method min max average

CSA 268 2269 1098

TPA 926 > 12000 > 4724

Table 3.2

Population size

Experimenting with the initial population size showed that small populations fit
our problem better. They cause faster adaptation, as there are more generations
for the same cost than with a large population. The default size of the initial
population is

λ0 = λdef = 4 + b3 log(N)c ,
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where N is the problem dimension. Using smaller populations is discouraged by
Hansen [19].

Number of parents is by default given as

µ0 = 1/2λ0.

In table 3.3, we compare results of tests with double initial population size.
The parent set size µ0 is either doubled too (i.e. it is half of the new initial
population) or it stays the same (i.e. it becomes a quarter of the new initial
population).

λ0 µ0 min max average

λdef 1/2 λdef 268 2269 1098

2× λdef λdef 1533 8812 3273

2× λdef 1/2 λdef 697 10973 4181

Table 3.3

Restart criteria

An absolutely vital step is to tune the restart parameters. As this in particular is
know-how that is to be kept confidential (and it is not particularly interesting from
the mathematical point of view), we will not discuss it. However, lets illustrate
the point by table 3.4. It shows how slight changes of one restart parameter (its
best setting that was found) affect the number of evaluations.

parameter value min max average

best 268 2267 1098

0.8× best 987 8980 3147

1.2× best 674 4990 2058

2.0× best 871 4960 2837

Table 3.4

Termination criteria

Every model being different, it is impossible to set one objective function value
as the universal termination criterion. User’s judgment is necessary.

3.7.4 Calibrating the objective function

The choice of the objective function is not as straightforward as it may seem. Dif-
ferent numerical values must be reflected by different restart and stopping criteria
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of the algorithm, which themselves affect the total run time very much. There-
fore, though striving to create equal conditions for all the objective functions, it
is impossible to provide rigorous comparison.

Comparison of function values in three points

To have get some intuitive insight regarding the objective functions, lets look
at the outputs of the basic testing model with parameters given by the baseline
solution (tuned by an engineer), rough starting approximation (i.e. not very good
but also not too bad a solution) and a good solution found by the method.

The baseline solution of the basic testing model is

baseline = (−0.0001, 0.04, −0.2, −0.01, 0.1, −20.0). (3.9)

The first three elements are proportional gains and the other three integral gains;
the derivative gains are set to zero. For the testing purposes, “starting point”
given by Ricardo No Lag method was used. Its value is

RNL = (−0.557179, 0.134853, 231.682, −4.78055, 1.40074, 1287.91). (3.10)

To have also a comparison with a very good solution (there are many of them,
though), we use the vector

good = (−0.00736, 0.00365, −5.08174369, −0.04944, 0.06595, −37.36658).
(3.11)

The corresponding outputs are shown in figure 3.18.
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Figure 3.18: Basic testing WAVE model: comparison of three solutions of dif-
ferent quality. Pink: the target value, dark blue: baseline solution (tuned by an
engineer), light blue: good solution, green: RNL starting point – poor solution.

Table 3.5 summarizes the corresponding values of the objective functions de-
scribed in section 3.4.2. We can see what effect a large penalty has.

objective baseline RNL good

ITAE (3.3) 2.01847 8.13594 1.02137

SITAE #1 (3.4) 1.22473 7.33359 0.30324

SITAE #2 (3.4) 0.73805 6.96473 0.21377

ITAEP (3.5) 8.69438 2294.18 3.06164

IQTAE (3.7) 4.10874 36.75238 1.56846

SIQTAE #2 (3.8) 2.21393 35.06491 0.39313

Table 3.5

Comparison of performance

As reasoned above, results in table 3.6 illustrate rather than prove the compar-
isons of the objective functions and back up the resulting choice of the SITAE
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objective function (version #2, i.e. with greater shift than #1, for this particular
model).

objective min max average

ITAE 919 9567 3687

SITAE #1 354 11169 2963

SITAE #2 268 2267 1098

ITAEP 2661 > 12000 > 6449

IQTAE 1173 10685 4354

SIQTAE #2 703 4930 2485

Table 3.6

Unfortunately, choosing the best shift highly depends on the model.

3.7.5 Testing robustness

Now, having tuned both the algorithm and the objective function, we shall look
at the method’s robustness. By robustness, we understand how sensitive the run
time is to various starting points (i.e. various scaling of coordinates).

In the previous section, we used the RNL starting point (3.10) that was a
good representative of a poor, yet not utterly terrible, starting point. When we
compare orders of magnitude of the elements of the baseline solution 3.9 to RNL,
we get:

1. P element ...+3 orders of magnitude,
2. P element ...+1 orders of magnitude,
3. P element ...+4 orders of magnitude,
1. I element ...+2 orders of magnitude,
2. I element ...+1 orders of magnitude,
3. I element ...+2 orders of magnitude.

When we compare RNL to the good solution (3.11), we see that all the elements
are off by two orders of magnitude. This motivates our probes of robustness.

Robustness of PI controllers

We will take the baseline solution, multiply each of its elements by factors
10−3, 10−2, 10−1, 101, 102, and 103 and observe the changes in run time. Table
3.7 summarizes the results.
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starting point (scaling) min max average

baseline 12 168 76

101 baseline 540 2064 1049

102 baseline 821 5700 2061

103 baseline 11857 > 18000 > 17386**

10−1 baseline 61 816 317

10−2 baseline 222 1334 592

10−3 baseline 259 1617 812

Table 3.7: **) Nine out of ten runs did not finish within the budget of 18000
function evaluations.

We are interested in the shortest average run time and the changes of the
average run time with respect to the starting point.

We can see that for this model, the run times are good except for scaling by
103. Closer look at the behavior of the algorithm suggests that too large search
area causes it to look for a needle in a haystack and “get lost” very far from the
optimum.

Shorter run times when multiplying the baseline by small factors are also
caused by the fact that there are good solutions at the “10−1 level” too, while
there were none found at the “101 level” or “higher”.

We can conclude that when the starting point (scaling) is within a reason-
able range, the average run times are very usable. There was a single case of
5700 function evaluations but other than that, there was no run exceeding 3000
function evaluations.

Robustness of PID controllers

Now, we allow the solver to use PID instead of PI controllers, i.e. dimension of the
problem becomes 9 instead of 6. As we do not have a PID baseline solution with
nonzero D parameters, we estimate them based on the corresponding magnitudes
of P and I parameters. We set

PID baseline = (−0.0001, 0.04, −0.2, −0.01, 0.1, −20.0, 0.001, 0.1, 1.0).

Based on the above results, this time we will use only factors 10−3, 10−2, 10−1,
101, and 102. The results are summarized in table 3.8.
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starting point (scaling) min max average

PID baseline 32 256 67

101 PID baseline 62 1462 1102

102 PID baseline 953 4130 2022

10−1 PID baseline 141 782 343

10−2 PID baseline 202 941 580

10−3 PID baseline 416 2324 1138

Table 3.8

Surprisingly enough, we get results that are very similar to the above table.
We would expect the run time to prolong as the dimension of the problem in-
creases but this happens only at the “10−3” level. Other average values show no
significant difference. It seems that the PID problem complexity is made up for
by enabling overall better control of the system and thus also having more good
solutions available.

As in the PI control experiments, we get a single case of an very long run of
4130 function evaluations. All other runs finished within budget of 3000 function
evaluations.

Finding a good starting point

The question remains how to obtain a good starting point. In WAVE, we have
typical uses of controllers and we also know that the gains’ magnitudes are related
to the units used by the model. Given that, we can set up a database that can
further grow as more knowledge is added to it. Its implementation is now under
construction. Also, we can use the simple tuning tools to get a rough estimate,
especially when dealing with a few weakly-coupled controllers.

3.8 Testing real-world models

We conclude the testing phase with verifying the method’s usability on real-world
models. Our goal is not to perform thorough testing. That would require much
larger suit of real data that we do not have at hand and it would also be extremely
time consuming. Further experiments are left to the users of the beta version.

Our set of models consists of

• two models with 1 controller labeled M1.1, M1.2,

• three models with 2 controllers labeled M2.1, M2.2, M2.3,

• one model with 3 controllers labeled M3.1.

Even though our primary objective is to tune multiple controllers, we include
the single-controller models as they are very important in practical use and we
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want our method to work for them as well (as an upgrade of or alternative to the
current methods).

For all these models we have a baseline setting of controllers. Unless stated
otherwise, these baseline settings are always PI controllers, i.e. the derivative
gains are set to zero.

We will try five starting points (scaling) for the single-controller models: the
baseline solution and its element-wise multiples by factors 10−2, 10−1, 101 and 102.
For the larger, multi-controller models, we will try only three starting points: the
baseline solution and its multiples of 10−1 and 101.

Also, we will run each test only five times. Even though it is too little for
serious statistics, it is enough to have an approximate idea about the algorithm’s
performance.

The main termination criterion is hitting the target objective function value.
It was set empirically based on what a good solution looks like for each of the
models (i.e. it is a different value for each model). The backup criterion is the
maximum number of function evaluations.

3.8.1 Single-controller models

Model M1.1 is a turbocharger very similar to the one in figure 3.1 and M1.2 is
the twin turbocharger shown in figure 3.17. They represent the typical use of a
PI controller. Following tables summarize results of these models’ tests.

MODEL M1.1

starting point (scaling) min max average

baseline 2 68 28

101 baseline 35 153 79

102 baseline 95 519 225

10−1 baseline 20 120 66

10−2 baseline 49 296 123
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MODEL M1.2

starting point (scaling) min max average

baseline 1 22 9

101 baseline 4 28 11

102 baseline 80 225 187

10−1 baseline 34 100 51

10−2 baseline 57 181 94

All the run times are very short as the model dimension is only 2, especially
when starting with a fairly accurate baseline solution.

We can see that sensitivity to the starting point corresponds with table 3.7.
Here too we can see how enlarging the search area (by using larger scaling) effects
the performance much more negatively than “small” starting points – observe the
ratio between the average values for each model.

This behavior is especially apparent in model M1.2. The run time with the
baseline and 101 baseline starting points are essentially the same (because there
are good solutions at both these “levels”) but when moving to factor 102, the
number of function evaluations increases rapidly.

3.8.2 Multi-controller models

Models M2.1 and M2.2

A quick look at the first two two-controller models reveals that they do not pose
a harder challenge than the single-controller models.

MODEL M2.1

starting point (scaling) min max average

baseline 11 66 35

101 baseline 244 280 255

10−1 baseline 4 32 21
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MODEL M2.2

starting point (scaling) min max average

baseline 8 98 29

101 baseline 60 770 364

10−1 baseline 44 107 64

Here too, we can see how smaller scaling produces shorter run times. It is
caused by the distribution of good solutions as well as the fact that larger area
takes longer to search.

Comparing PI and PID control on a two-controller model M2.3

For model M2.3, we shall compare PI and PID control. The baseline value for PI
control is given, and the D gains estimates are added to it to provide the starting
point “PID baseline”. By comparing the “baseline” run times, we can see that
the D gains were chosen well.

MODEL M2.3

starting point (scaling) min max average

PI baseline 9 78 32

101 PI baseline 250 757 629

10−1 PI baseline 49 1188 347

PID baseline 10 91 57

101 PID baseline 274 857 522

10−1 PID baseline 82 1576 749

The extreme differences in minimal and maximal values of “10−1 PI baseline”
and “10−1 PID baseline” tests are caused by unsatisfactory setting of restart
parameter described in section 3.7.3. However, we can see that the same setting
of the parameter is fine in other cases and models. This is the reason why it is
so hard to estimate the restart parameters’ values that would work without user
interaction.

When adjusting the restart parameter to a more suitable value, the “10−1 PI
baseline” and “10−1 PID baseline” run times drop.
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starting point (scaling) min max average

10−1 PI baseline 49 149 80

10−1 PID baseline 51 597 234

With this setting, the results of PI control resemble those of M2.2. In this
case, the PID control does not improve the solution of PI control and its costs
are acceptable, but significantly higher. However, we have only five runs of each
so further testing might yet change the figures.

For this model, a different shift (described in section ss:objfun, equation (3.4))
was used. Choosing the right shift depends on the properties (speed of response)
of the model.

Large model M3.1 with three PID controllers

PI control may not be able to fully control the system, as it is not sufficient for
model M3.1. Here, one of the quantities does not converge – neither with the
baseline values, nor could be a better PI solution found by the method. When
we change the controller type to PID, getting a good solution is not a problem.
This effect is apparent in the first graph of figure 3.19.

Figure 3.19: PI (dark blue) vs. PID (light blue) controlled system of M3.1. Pink:
target value.
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The following table summarizes the test results on M3.1. The starting point
was obtained by estimating the D gains and adding them to the given PI baseline.

MODEL M3.1

starting point (scaling) min max average

PID baseline 41 331 152

101 PID baseline 827 1763 1268

10−1 PID baseline 179 3867 2476

It can be seen that this model is considerably harder to tune than the previous
models, possibly due to its complexity. Contrary to the previous models, it is
significantly easier to find an optimum with large scaling than small. Close look
at the program’s output reveals that this is due to problems of getting stuck in
local optima, whose objective values are nearly globally-optimal. In such cases,
farther solutions are not noticeably better and so the step size σ does not get
large enough to skip “over the hills”. While the algorithm has no trouble finding
engineer-like solutions depicted in figure 3.19, it is hard to find a better one,
where all three controllers converge.

Three out of five runs with the “10−1 PID baseline” starting point are longer
than the desired 3000 evaluations. The shortest run time can be considered a
happy coincidence. Another trial that had to be interrupted due to technical
problems reached over 5000 evaluations. However, we must take into account the
fact that this model is very large and an engineer was not able to tune it at all, so
sensibly longer waiting time is a small price. In that light, we may still consider
the algorithm successful.

3.8.3 Conclusion

The above results indicate that the method is usable for real-world models. For a
good run time it is essential to have a good starting point, i.e. coordinate scaling.
When each coordinate is off by one order, overall very good run time can be
expected. For easier models, two orders do not pose a problem either.

Under such conditions, it seems that using PID instead of PI control does not
make the problem much harder to solve. PID controllers may be able to control
systems that PI controllers cannot. The difference, as well as the total run time,
highly depends on the model.

3.9 Further improvements

There are multiple possible improvements that can be further investigated.
First and foremost, we can try out surrogate-assisted versions of CMA-ES.

One is described e.g. in [38, 39, 36] and tested in [37]. Another one is fairly recent
and much more promising combination of EGO (efficient global optimization
of expensive black-box functions using Gaussian processes, [33]) and CMA-ES
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explored and first tested in [40]. There is hope that the EGO part can be later
plugged in to increase the performance.

Secondly, there is room for improvement regarding restart and stopping cri-
teria and automatic detection of shift.
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Conclusion

In this work, we have looked at a real-world problem of hard optimization: tuning
of multiple coupled PID controllers within combustion engine models. We have
formulated the problem, identified its properties, chosen an appropriate algorithm
and tuned it to comply with strict practical limitations. In order to prove its
workability, the whole method was verified on real models. The resulting method
is now to be programmed as a part of WAVE simulation software by Ricardo
Prague, s.r.o.
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Appendix A: Basic vocabulary of
probability theory

The aim of this appendix is not to provide extensive overview or rigorous defini-
tions. It is included purely for the convenience of an educated reader, who is not
an expert on probability theory. It is to remind them of some basic tools that
are used in the description of CMA-ES. For more details see the textbook [51],
for nice intuitive explanations see [31].

A.1 Elementary terms

In this section, we shall introduce the random variable and other terms closely
related to it.

Random variable

A random variable or a stochastic variable is a variable, whose value is subject to
variations due to chance (randomness). It can take on a set of possible different
values, each with an associated probability.

Probability distribution

The probability distribution FX(x) is a function that associates the possible values
of a random variable X with their probabilities:

FX(x) = Pr(X ≤ x).

It is characterized by its probability density function f :

FX(x) =

∫ x

−∞
f(t) dt.

Generalization for multiple dimensions is straightforward. For example, in
two dimensions, it is

FXY (x, y) =

∫ x

−∞

∫ y

−∞
f(t, s) dtds.

Expected value

The expected value or mean E[X] (also µ or µX) of a random variable X is the
probability-weighted average of all its possible values. The definition for a discrete
random variable taking values x1, x2, . . . with probabilities p1, p2, . . . is

E[X] = µX =
∞∑
i=1

xipi.

62



The definition for a continuous random variable is

E[X] = µX =

∫ ∞
−∞

xf(x) dx,

where f(x) is the probability density function that characterizes the probability
distribution.

Having g(X) a measurable function of a continuous random variable X, its
expected value is

E
[
g(X)

]
=

∫ ∞
−∞

g(x)f(x) dx,

where f(x) is again the probability density function of X.
Generalization for random vectors, whose elements each are a random variable,

is again straightforward. For example, for two-dimensional random vector (X, Y ),
both X and Y are random variables, whose expected values can be computed as
above, for example:

E
[
X
]

=

∫ ∞
−∞

∫ ∞
−∞

xf(x, y) dxdy,

where f(x, y) is the corresponding probability density function of two (random)
variables. In general, expected value of any function g(X, Y ) is

E
[
g(X, Y )

]
=

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y) dxdy.

Variance

The variance var(X) (also σ2 or σ2
X) is the expected value of the squared deviation

from the mean:

var(X) = σ2
X = E

[
(X − E[X])2

]
.

I.e. for a continuous distribution, it is

σ2
X =

∫ ∞
−∞

(x− µX)2f(x) dx.

It measures how much are the variable’s values spread out. Small variance in-
dicates that the data are clustered close to the mean (and thus to each other).
Variance is always non-negative. The square root of the variance, σ, is called the
standard deviation.
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Covariance

Covariance cov(X, Y ) or σXY is a measure of how much two random variables
depend on each other:

cov(X, Y ) = σXY = E
[
(X − E[X])(Y − E[Y ])

]
.

I.e. for a continuous distribution, it is

σXY =

∫ ∞
−∞

∫ ∞
−∞

(
(x− µX)(y − µY )

)
f(x, y) dxdy.

Covariance of a variable with itself is, by definition, its variance, i.e. σXX = σ2
X .

The sign of covariance shows the tendency in their linear relationship. If the
variables tend to show similar behavior (greater values of one correspond with
greater values of the other), the covariance is positive. In the opposite case,
when greater values of one variable correspond with smaller values of the other
variable, the covariance is negative. The magnitude of covariance is usually not
interpreted, the correlation coefficient is referred to instead.

Correlation

Correlation or the correlation coefficient corr(X, Y ) or ρXY can be perceived as
the normalized version of covariance

corr(X, Y ) =
cov(X, Y )

σXσY
.

It describes the strength of the linear relation between two random variables.
If X and Y are independent, then cov(X, Y ) = corr(X, Y ) = 0. The converse
implication does not hold [51].

Sample mean and sample variance

When the true mean and variance of a distribution are unknown, we may need
to compute them from an actually realized sample of that distribution. Such
approximations are called the sample mean and sample variance [51].

Let X1, . . . , Xn be independent and identically distributed random variables
with mean µ and variance σ2. Then their sample mean is

X =
1

n

n∑
i=1

Xi

and it is again a random variable. Its mean is equal to µ and its variance is σ2/n.
The average square deviations of the sampled data is

1

n

n∑
i=1

(
Xi −X

)2
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and its expected value is not σ2 but rather

n− 1

n
σ2.

Therefore, the (unbiased) sample variance is

s2 =
n

n− 1

(
1

n

n∑
i=1

(
Xi −X

)2

)
=

1

n− 1

n∑
i=1

(
Xi −X

)2
.

A.2 Normal distribution

The normal distribution is a continuous probability distribution very common
in nature and it describes many phenomena. Due to this and its convenient
properties (and the central limit theorem, see [51] or [31]), it is often used to
represent real-valued random variable whose distribution is unknown.

Normal distribution in one dimension

The normal distribution is denoted by N (µ, σ2), where mean µ ∈ R and variance
σ2 > 0 are its parameters. Its (probability) distribution function is defined as

F (t) =

∫ t

−∞
ϕµ,σ2(x) dx, t ∈ R,

where the integrand is the probability density function that defines the normal
distribution:

ϕµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , −∞ < x <∞.

The standard (normalized) normal distribution is centered at zero and its
variance is equal to one: N (0, 1).

A random variable X with normal probability distribution is called normally
distributed (denoted X ∼ N (µ, σ2)).
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Figure A.1: The probability density function of normal distribution with various
parameters. Source: Wikipedia.

Multivariate normal distribution

The generalization to n-dimensional space is denoted N (µ,C), where

µ = (µX1 , . . . , µXn) ∈ Rn

is the mean vector and C is the covariance matrix:

C =

σX1X1 · · · σX1Xn
...

. . .
...

σXnX1 · · · σXnXn

 ∈ Rn×n,

where σXiXj is the covariance of i-th and j-th random variables, i, j = 1, . . . , n.

Figure A.2: The probability density function of multivariate (2D) normal distri-
bution. Source: Wikipedia.

An important property of normal distribution that we shall exploit later is
the following theorem [51].
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Theorem. Let X, Y be two random, normally distributed variables such that
X ∼ N (µX , CX) and Y ∼ N (µY , CY ). Then

X + Y ∼ N (µX + µY , CX + CY ).

This is also commonly denoted as

N (µX , CX) +N (µY , CY ) ∼ N (µX + µY , CX + CY ).

A.3 Link to linear algebra

The covariance matrix C ∈ Rn×n is positive definite, i.e.

xTCx > 0, ∀x ∈ Rn \ {0}.

For the eigenvectors vi ∈ Rn and positive eigenvalues θi ∈ R+, i = 1, . . . , n of the
matrix C it holds

Cvi = θivi,

i.e. the eigenvectors are such vectors that are not rotated by the transformation
represented by matrix C.

Lets make a simple, yet essential observation. There exists an orthogonal basis
of Rn defined by eigenvectors of C. In other words, they define a new orthogonal
coordinate system of the n-dimensional space. If we drew the probability density
isolines of the 2-dimensional function plotted in figure A.2, we would get circles.
In n dimensions, the isolines are n-dimensional balls: all n of its (coordinate)
axes are mutually perpendicular and all have the same length. That means there
is no mutual dependence of the individual variables, no covariance. The covari-
ance matrix C is an identity matrix and all its eigenvalues are identical. When
scaling its diagonal entries (while all others are still zeros), we scale the lengths
of the axes, stretching the ball to become ellipsoid. By filling in the non-diagonal
entries, the random variables become mutually dependent (correlated). The el-
lipsoid is rotated in space as its axes are aligned with the (mutually orthogonal)
eigenvectors of the covariance matrix and the axes’ lengths are determined by its
eigenvalues.

Figure A.3: Left: C is an identity matrix; middle: C is a diagonal matrix; right:
C is a general positive definite matrix.
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The normal distribution is by default isotropic (i.e. it is not biased towards
any direction) and it is centered around the mean value. However, the probability
density isolines are defined by the covariance matrix as described above – they
form concentric ellipses. Using non-identity covariance matrices is equivalent
to coordinate system transformations. Picture A.4 shows what this means in
practice.

Figure A.4: Sampling a bi-variate normal distribution with various correlation
coefficients r. Source: www.santiagobarreda.com/rstuff/rmvtnorm/rmvtnorm.html
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Appendix B: Pieces of control
theory

This section is to provide basics of control theory that are essential when try-
ing to understand the problem at hand. It is included for the purpose of self-
containedness, so that a reader unfamiliar with the control theory is conveniently
delivered a brief introduction. It not intended to be neither rigorous nor exhaus-
tive. Most information (and all definitions) come from [16], minor parts from
[1]. The excellent textbook [16] is especially recommended for more detailed
information.

B.1 The fundamental control problem

Definition. The fundamental control problem
The central problem in control is to find a technically feasible way to act on a

given process so that the process behaves, as closely as possible, as desired. Fur-
thermore, this approximate behavior should be achieved in the face of uncertainty
of the process and in the presence of uncontrollable external disturbances acting
on the process [16].

Figure B.1: Basic feedback control loop.

A simple example of a controlled process (system, plant) is keeping a steady
temperature in a room by adjusting the heating.

In our case, we do not deal with a real process but with its model. We want to
control “one-dimensional” finite-element models of engines. Our goal is to keep
one or more quantities within the model at the desired levels. Those can be, for
example, the temperature of exhaust gas, mean effective pressure (the average
pressure exerted by the working fluid in an engine cylinder throughout the cycle)
or volumetric efficiency (the volume of air -fuel mixture drawn into the cylinder
at atmospheric pressure during the intake strokes compared to the volume of the
cylinder).
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B.2 Description of a system

When given a control problem, the first task is to create a model. That is, describe
the process by a set of equations (usually ODEs or PDEs), define the input and
output (in figure B.1, those are functions u(t) and y(t), respectively).

B.2.1 Transfer function

Essential information about a system is contained in the so-called transfer func-
tion. It characterizes the system by describing its input versus output properties.

Definition. Transfer function
The transfer function of a continuous time system is the Laplace transform of

its response to an impulse (Dirac’s delta) with zero initial condition [16].

An impulse: ∆→ 0

However, as an impulse is implicitly an idealization
(and thus unrealizable), it is more practical and com-
mon to study a system’s dynamic behavior using the
step response

Y (s) =
1

s
G(s),

where G(s) is the transfer function.

B.2.2 Stability

Definition. Stability of a system
A system is stable if any bounded input produces a bounded output for all

bounded initial conditions [16].

Without further details, lets state that the stability of the system is (obvi-
ously) closely related to the properties of the transfer function and thus to the
corresponding stability theory for differential equations.

Figure B.3: Examples of stable and unstable step response.
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Since we are taking the system as a black box, we do not need to concern
ourselves with the theory describing stability. However, what is extremely im-
portant, is how a step response of a stable and unstable system looks like, see
figure B.3.

B.3 Prototype solution to the control problem

Let’s assume that:

• We know how an action at the input affects the system’s output.

• We have the desired behavior for the system output.

Then if we inverted the relationship between input and output, we could deter-
mine what input action is necessary to get the desired output.

Let u be the system’s input (the control signal) and y its output, d be the
disturbance and r be the setpoint (the desired value of y). Let f be a function
that (exactly) describes the system. Let both f and its inverse f−1 be well defined
(i.e. they both describe a stable system). Then we have

y = f(u) + d

Let y = r. Then

u = f−1(r − d).

Figure B.4: Prototype solution to the control problem.

This is a conceptual solution to the control problem. The idea is simple and
näıve and the requirements are extremely demanding (usually unsatisfiable). Yet
it plays a fundamental role in practical applications. Most control strategies try
to capture the intent of this inversion idea (approximate the inverse), while also
considering real-world limitations that occur along the way.

Quoting [16]:

“In principle, all controllers implicitly generate an inverse of the pro-
cess, in so far that this is feasible. Controllers differ with respect to
the mechanism used to generate the required approximate inverse.”
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B.4 PID controllers

A proportional-integral-derivative (PID) controller is a simple but powerful tool
of control. It is robust: a small change of its parameters does not usually have
a profound effect on the controlled system. Even very rough tuning usually
produces an acceptable setting.

B.4.1 Definition

The input for the controller is the error function e(t), i.e. difference between the
desired value (the setpoint) and the actual value of a quantity. Its output is called
the control signal, denoted C(t).

There are several ways how to describe the inner workings of a PID controller.
For the purposes of optimization, let’s keep to the traditional, though perhaps
old-fashioned, notation. The general equation can be written in the form

C(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
, (C)

where Kp, Ki and Kd are the proportional, integral and derivative gains, respec-
tively.

Figure B.5: PID controller scheme. The process (an engine in our application)
generates output (e.g. exhaust gas temperature). Its value is measured by sensors
and compared with the desired setpoint value (e.g. 760◦K). Their difference,
error function e(t), is the input for a PID controller. There, the error function
is processed as is given by equation (C), to obtain the control signal C(t). The
control signal then influences the process’ behavior so its output values match
the setpoint better. With this new output, the whole procedure is repeated.

However, there are other, equivalent ways how to describe a PID controller.
In engineering, it is much more common to use the following notation:

C(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
.
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Now K = Kp is again the proportional gain, Ti = Kp
Ki

is called the integral time
and Td = KpKd is the derivative time.

B.4.2 PID elements

The proportional element is the most important part of the controller. It provides
output proportional to the instantaneous value of the error. It alone could provide
basic control to a stable plant, but its performance is limited. In proportional
control, there is always a steady state error. That is the offset from the setpoint
when the response has converged. The error decreases with increasing gain but
the oscillation increases.

Figure B.6: Simulation of a closed-loop system with proportional control. The
process transfer function is G(s) = 1

(s+1)3
and Kp = K. [1]

The integral action is proportional to the accumulated error, so it reduces the
steady state errors. It is the slow control mode. Its main setback is the effect of
wind-up. With decreasing integral time Ti (that is increasing Ki), the oscillations
increase.

Figure B.7: Simulation of a closed-loop system with proportional and integral
control. The process transfer function is G(s) = 1

(s+1)3
and Ki = Kp

Ti
. The

proportional gain is set to K = Kp = 1. [1]

The derivative element represents the rate of change of the control error. It
is thus the fast mode of control. As it follows the error trend and improves the
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transient response through high frequency compensation, it can be interpreted as
providing prediction by linear extrapolation. Therefore, it is referred to as the
predictive mode. However, it is sensitive to noise, as a high-frequency control
errors may result in large derivative control signal response. For that reason, the
derivative element is often omitted and only PI control is used. Damping increases
with increasing derivative time, but decreases again when the derivative time is
too large.

Figure B.8: Simulation of a closed-loop system with proportional, integral and
derivative control. The process transfer function is G(s) = 1

(s+1

3
and Kd = KTd.

The proportional gain is K = Kp = 3 and the integral gain Ki = 3
2
. That

corresponds to setting the integral time Ti = 2. [1]

B.4.3 Coupled vs. decoupled PID controllers

Let’s have n PID controllers connected to the same system. When setting of
one influences another one, the controllers are coupled. When they do not inter-
act with each other, i.e. they control independent parts of the plant, they are
decoupled.

In case of decoupled controllers, each controlled variable can be linked to a
single controller. That means that the controllers’ matrix is diagonal:

C =

C11 0
. . .

0 Cnn

 ,

where Cii(t), i = 1, . . . , n, is the control signal function of the i-th controller as
described above. When coupling plays a role, off-diagonal elements appear.

Scholarly articles regarding tuning of PID controllers usually consider them to
be decoupled. Moreover, they usually assume that we know the system’s transfer
function [8]. Both these assumptions make the problem much easier.
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Appendix C: List of tested
algorithms in BBOB 2009

This part is copied directly from [21], where also further references for the indi-
vidual algorithms may be found.

Used acronyms:

GA/EA: Genetic Algorithm / Evolutionary Algorithm
EDA: Estimation of Distribution Algorithm
CMA: Covariance Matrix Adaptation
ES: Evolution Strategy
PSO: Particle Swarm Optimization

Tested algorithms:

1. ALPS-GA: Age-Layered Population Structure running a standard GA in 12
layers

2. AMaLGaM IDEA: Adapted Maximum-Likelihood Gaussian Model Iterated
Density Estimation Algorithm with no-improvement stretch, anticipated
mean shift and interlaced restarts with one large or several small popula-
tions

3. iAMaLGaM IDEA: with incremental model building

4. BayEDAcG: An EDA using Bayesian inference to learn the parameters of
the continuous Gaussian distribution

5. BFGS: Quasi-Newton method with MATLAB’s, more to be found in fmin-
unc [50]

6. Cauchy EDA: EDA with isotropic Cauchy sampling distribution

7. BIPOP-CMA-ES: CMA-ES restarted with budgets for small and large pop-
ulation size, more to be found in [26]

8. (1 + 1)-CMA-ES

9. DASA: Differential Ant-Stigmergy Algorithm using pheromones on the dif-
ferential graph that represents parameter difference

10. DEPSO: PSO with Differential Evolution variations

11. DIRECT: Axis-parallel search space partitioning procedure

12. EDA-PSO: hybrid of EDA and PSO with adapted probability of applying
one or the other

13. G3-PCX: Generalized Generation Gap with Parent Centric Crossover (local
search intensive variant)
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14. simple GA: binary coded GA

15. GLOBAL: Sampling, clustering and local search using BFGS or Nelder-
Mead

16. LSfminbnd: Axis-parallel line search with MATLAB’s fminbnd univariate
search

17. LSstep: Axis-parallel line search with the univariate STEP Select The Eas-
iest Point, based on interval division

18. MA-LS-Chain: Memetic Algorithm with Local Search Chaining using a
steady-state GA and CMA-ES for local search with a fixed local/global
search ratio

19. MCS: Multilevel Coordinate Search like DIRECT with additional local
searches by triple search

20. NELDER (Han): Nelder-Mead downhill simplex restarted using coordinate-
wise projections

21. NELDER (Doe): Nelder-Mead downhill simplex with restarted half-runs

22. NEWUOA: NEW Unconstraint Optimization Algorithm builds a second
order model using 2n+ 1 points and with minimal Frobenius norm

23. full NEWUOA: using (n2 + 3n+ 2)/2 points

24. (1 + 1)-ES: with 1/5th success rule for step-size adaptation

25. POEMS: Prototype Optimization with Evolved Improvement Steps using
hypermutations and stochastic local search

26. PSO: standard PSO with swarm size 40 and no restarts

27. PSO Bounds: as PSO and diving the search domain based on a concept
from PBIL

28. Monte Carlo: uniform random sampling

29. Rosenbrock: Local search algorithm maintaining an orthogonal basis for
the adaptation of search directions

30. IPOP-SEP-CMA-ES: CMA-ES restarted with Increasing POPulation size,
first run with SEParable CMA

31. VNS: Variable Neighbourhood Search combining CMA-ES, PBX-α-EA and
µCHC
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DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learning
Research, 13:2171–2175, jul 2012.

[13] F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, vol-
ume 57. Springer Science & Business Media, 2006.

77



[14] Goldberg, David E. The Design of Innovation: Lessons from and for Compe-
tent Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[15] Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine
Learning. Artificial Intelligence. Addison-Wesley Publishing Company, 1989.

[16] G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[17] D. Graham and R. C. Lathrop. The Synthesis of Optimum Transient Re-
sponse: Criteria and Standard Forms. Transactions of the American Institute
of Electrical Engineers, Part II: Applications and Industry, 72(5):273–288,
Nov 1953.

[18] N. Hansen. cma 1.1.06: Python Package. https://pypi.python.org/pypi/
cma.

[19] N. Hansen. The CMA Evolution Strategy: A Tutorial. https://www.lri.

fr/~hansen/cmatutorial.pdf, 2015.

[20] N. Hansen, D.V. Arnold, and A. Auger. Evolution Strategies. In J. Kacprzyk
and W. Pedrycz, editors, Springer Handbook of Computational Intelligence,
chapter 44, pages 871–898. Springer Berlin Heidelberg, 2015.

[21] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posik. Comparing Results of
31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009.
Workshop Proceedings of the GECCO Genetic and Evolutionary Computa-
tion Conference 2010, pages 1689–1696, 2010.

[22] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[23] N. Hansen and R. Ros. Benchmarking a Weighted Negative Covariance Ma-
trix Update on the BBOB-2010 Noiseless Testbed. In Proceedings of the 12th
Annual Conference Companion on Genetic and Evolutionary Computation,
GECCO ’10, pages 1673–1680, 2010.

[24] Nikolaus Hansen. CMA-ES with Two-Point Step-Size Adaptation. Research
Report RR-6527, INRIA, 2008.

[25] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions
Definitions. Research Report RR-6829, INRIA, 2009.

[26] Hansen, N. Benchmarking a BI-population CMA-ES on the BBOB-2009
Function Testbed. In Proceedings of the 11th Annual Conference Compan-
ion on Genetic and Evolutionary Computation Conference: Late Breaking
Papers, GECCO ’09, pages 2389–2396, 2009.

[27] Hansen, N. and Finck, S. and Ros, R. COCO - COmparing Continuous
Optimizers : The Documentation. Research Report RT-0409, INRIA, May
2011.

78

https://pypi.python.org/pypi/cma
https://pypi.python.org/pypi/cma
https://www.lri.fr/~hansen/cmatutorial.pdf
https://www.lri.fr/~hansen/cmatutorial.pdf


[28] Hansen, N. and Finck, S. and Ros, R. COmparing Continuous Optimisers:
COCO. http://coco.gforge.inria.fr/, 2015.

[29] Holland, J. H. Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence.
University of Michigan Press, 1975.

[30] G. A. Jastrebski and D. V. Arnold. Improving evolution strategies through
active covariance matrix adaptation. In IEEE Congress on Evolutionary
Computation – CEC 2006, pages 2814–2821, 2006.

[31] Jaynes, E.T. and Bretthorst, G.L. Probability Theory: The Logic of Science.
Cambridge University Press, 2003.

[32] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools
for Python. http://www.scipy.org/.

[33] Jones, D. R. and Schonlau, M. and Welch, W. J. Efficient Global Op-
timization of Expensive Black-Box Functions. J. of Global Optimization,
13(4):455–492, December 1998.

[34] Kennedy, J. and Eberhart, R. C. and Shi, Y. Swarm Intelligence. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[35] I. Loshchilov, M. Schoenauer, and M. Sebag. Alternative Restart Strategies
for CMA-ES. CoRR, abs/1207.0206, 2012.

[36] Loshchilov, I. and Schoenauer, M. and Sebag, M. Comparison-based Opti-
mizers Need Comparison-based Surrogates. In Proceedings of the 11th In-
ternational Conference on Parallel Problem Solving from Nature: Part I,
PPSN’10, pages 364–373, Berlin, Heidelberg, 2010. Springer-Verlag.

[37] Loshchilov, I. and Schoenauer, M. and Sebag, M. Black-box optimization
benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-
2012 noiseless testbed. In Workshop Proceedings of the (GECCO) Ge-
netic and Evolutionary Computation Conference, Philadelphia, Pennsylva-
nia, United States, July 2012.

[38] Loshchilov, I. and Schoenauer, M. and Sebag, M. Self-adaptive Surrogate-
assisted Covariance Matrix Adaptation Evolution Strategy. In Proceedings
of the 14th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’12, pages 321–328, 2012.

[39] Loshchilov, I. and Schoenauer, M. and Sebag, M. Intensive Surrogate Model
Exploitation in Self-adaptive Surrogate-assisted CMA-ES (Saacm-es). In
Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’13, pages 439–446, 2013.

[40] Mohammadi, H. and Le Riche, R. and Touboul, E. Learning and Intelligent
Optimization: 9th International Conference, LION 9, Lille, France, January
12-15, 2015. Revised Selected Papers, chapter Making EGO and CMA-ES
Complementary for Global Optimization, pages 287–292. Springer Interna-
tional Publishing, Cham, 2015.

79

http://coco.gforge.inria.fr/
http://www.scipy.org/


[41] Passino, K. M. Biomimicry for optimization, control, and automation.
Springer Science & Business Media, 2005.

[42] M. Pelikan. Hierarchical Bayesian optimization algorithm. Springer, 2005.

[43] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by
building and using probabilistic models. Computational Optimization and
Applications, 21(1):5–20, 2002.

[44] M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable optimization via prob-
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