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Abstract: Real numbers are usually represented by various discrete objects such
as floating points or partial decimal expansions. This is mainly because the clas-
sical computability theory relates to computers which work with discrete data.
Nevertheless, for theoretical purposes it is interesting to look at models of com-
putation that deal with real numbers as with objects of unit size. A very natural
such model was suggested by Blum, Shub and Smale in 1989.

In 2012 Grigoriev and Nikolenko studied various cryptographic tasks involving
real numbers (for example, biometric authentication) and they considered the
BSS machine model. In this work we focus on hard to invert functions in this
model of computation. Our main theme is to analyse whether there are real
functions of one variable that are easier to compute than to invert by a BSS
machine.
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Abstrakt: Reálná č́ısla jsou obvykle reprezentována r̊uznými diskrétńımi ob-
jekty, např́ıklad plovoućı řádovou čárkou nebo částečným desetinným rozvojem.
A to zejména proto, že se klasická teorie vyč́ıslitelnosti váže k poč́ıtač̊um, které
pracuj́ı s diskrétńımi daty. Nicméně z teoretického hlediska je zaj́ımavé uvažovat
i výpočetńı modely, které pracuj́ı s reálnými č́ısly jako s objekty velikosti jedna.
Blum, Shub a Smale v roce 1989 takový model navrhli.

V roce 2012 se Grigoriev a Nikolenko zabývali r̊uznými kryptografickými úlohami,
které se přirozeně týkaj́ı reálných č́ısel (např́ıklad biometrickou autentizaćı) a uva-
žovali při tom výpočetńı model BSS. V této práci se zaměřujeme na těžko inver-
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než invertuj́ı.
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Introduction

There are two main approaches how to model computations with real numbers.
In the first model, which is usually called the bit-model of real computation, we
treat real numbers as discrete objects. This is, indeed, a very realistic approach
since computations in the everyday life are done by computers, which work with
binary data. Thus, they can store a real number only with a finite precision.

In this work we consider the second approach of modelling computations with
real numbers, which is sometime called the algebraic approach. In contrast to the
bit-model, elements of R are now viewed as unit size objects which can be stored
with infinite precision. In addition, basic arithmetic operations with real numbers,
such as addition, subtraction, multiplication and division, are considered to be
unit time operations. Moreover, we can compare two real numbers in a unit of
time in this model. This abstract approach preserves the continuity property
of real numbers and authentically reflects “the difficulty” of computing a real
function from the theoretical point of view. On the other hand, let us emphasis
that this approach does not capture the everyday life computations performed by
computers and is investigated for theoretical purposes.

These two directions are, indeed, very different. Their relationship is studied
in detail for example in [3].

Several algebraic models of real computation have been presented in the liter-
ature. An algorithm computing with real numbers can be formally described for
example by an algebraic circuit or a computation tree. An overview of different
models of computation can be found in [4].

In this thesis we consider probably the most universal algebraic model of real
computation which was presented by Lenore Blum, Michael Shub and Steve Smale
in [2]. It was named after its inventors: the Blum-Shub-Smale model or briefly
the BSS model. Analogously to the Turing model of computation, algorithms
are formalized as machines which are called Blum-Shub-Smale machines or briefly
the BSS machines. They can be defined over an arbitrary commutative ring
with unit (for example over R,C,Q,Z or Z2). The BSS model over Z2 is equiva-
lent to the classical Turing model of computation. In addition, ordinary Turing
machines can be simulated by BSS machines over any ring with unit. However,
it is commonly expected that Turing machines cannot simulate BSS machines
over real numbers (not even if the inputs are only integers). We briefly discuss in
Chapter 5 why we agree with this conjecture. Due to this relation between BSS
and Turing machines, the BSS model over R is sometimes also called the “real”
Turing model.

In the book [1] Blum, Cucker, Shub and Smale showed that many concepts
of classical computational complexity theory can be naturally extended to the
BSS model of computation. For instance, computable function, decidable set
or complexity classes P and NP can be defined with respect to an arbitrary
commutative ring with unit in this model. The advantage of BSS machines is that,
although they are able to capture infinite computations, machines themselves
are finite objects. Moreover, BSS machines can be describe algebraically. In
particular, halting sets of BSS machines are countable unions of semi-algebraic
sets and input-output maps of BSS machines are piecewise rational maps.
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A fundamental object in the classical computability theory is a one-way func-
tion. It is a famous open problem whether such a function exits. It is unclear
how to even define a continuous analogy of this basic cryptographic primitive.
There appear several possible definitions in the literature; however, none of them
is widely accepted. Hard to invert continuous functions were studied for example
by Grigoriev and Nikolenko. The candidates which they suggested in [7] are based
on tropical and super-tropical circuits. Another point of view on cryptographic
primitives in an unbounded computation model can be found in [15].

One reason why it is interesting to study continuous hard to invert functions
is biometric authentication. We have a biological trait which changes a little over
time. The goal is to accept the traits which is “very close” to the original sample
and reject all others. There are several ways how to deal with this problem in
practice. A trait is usually described by a set of discrete patters which is then
compared with the original set of patters. Thus, the continuity is understood
in a discrete sense. Although real models of computation are not realistically
modelling everyday life computations, they are able to capture the continuity
property of the biometric authentication in a very natural way.

The main theme of this work is to study real functions which are “easy to
compute but hard to invert” in the BSS model of computation. Our aim is
to first formalize what is meant by “easy to compute” in the BSS model and
analyse which real functions satisfy our definition. Then we consider two possible
ways how to understand the term “invert” in the context of real numbers. The
first approach follows the classical model of computation and requires inversion
with infinite precision. By this we mean that, given a value f(x), the task is
to find an x′ such that f(x′) = f(x). The second approach corresponds better
with the motivation from biometric authentication since it reflects the continuity
property of real numbers. It allows inversion with an arbitrary but fixed precision
ε > 0. This means, given a value f(x), we have to find an input x′ such that
|f(x) − f(x′)| < ε. And finally, we discuss (from both points of view) the time
complexity of a BSS machine which inverts an easy to compute real function.
This is mainly done in Chapter 4. The organization of the rest of this thesis is
the following.

In Chapter 1 we establish the terminology and the notation used throughout
this work. Then we prove several technical statements about sets and rational
functions over real numbers which are useful in later chapters.

In Chapter 2 we introduce the BSS model of computation, explain the idea of
BSS machines on finite dimensional BSS machines and discuss the nice algebraic
properties of BSS machines. We also present an alternative point of view on BSS
machines which provides a useful framework for a detailed complexity analysis.

In Chapter 3 we study machines that compute the square root function
y 7→ √y. Or equivalently we can say that we focus on machines that invert
the square function x 7→ x2. We first prove that no BSS machine can compute
the square root function with infinite precision. Thereafter, we construct two BSS
machines which approximate the square root function with some fixed precision
ε > 0. The time complexity of the first machine is O(log2(y)− log2(ε)). The sec-
ond machine is more sophisticated. It uses Newton’s method and we prove that its
time complexity is O

(
(log2(loga(y)− loga(ε)))

2), where a ≈ 1.5625. Moreover,
we also discuss a lower bound on the time complexity of inverting x2 with an ar-
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bitrary but fixed precision ε > 0. Our bound is of the following form. A BSS
machine inverting x2 on the interval [0,

√
N ], for some N ∈ N, has to either

perform Ω(log2(log2(N) − log2(ε))) elementary operations or use more machine
constants than just 0 and 1.

And finally, in Chapter 5 we present some possible extensions of this work.
Before we proceed to the first chapter of this thesis, let us make two comments.

Chapters 3 and 4 discuss various algorithms described in the BSS model and this
is often accompanied by a number of detailed but elementary computations; this
is done in order to analyse the time complexity of the algorithms. We would
also like to emphasis that in Chapter 2 we present concepts and results from the
book [1] and not our work.
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1. Preliminaries

In this chapter we first establish the terminology and notation used through-
out this thesis. In Section 1.2 we focus on sets of real numbers. We introduce
some less common notation and state technical lemmas which will be useful in
later chapters. Finally, in Section 1.3 we briefly discuss what we know about
polynomials and rational functions over R. Moreover, we prove several auxiliary
statements needed further in the work.

In this thesis we assume basic knowledge of algebra, mathematical analysis, set
theory, complexity and computability theory in the Turing model of computation.

1.1 Terminology and notation

We use the standard notation for the most common sets of numbers which are
N,Z,Q,R,C. Let us specify that we do not consider zero to be a natural number;
this means that N = {1, 2, 3, . . . }. In this work R+ denotes the set of all positive
real numbers and R≥0 denotes the set of all non-negative real numbers.

By an interval with endpoints a ∈ R∪{−∞}, b ∈ R∪{∞} we understand ei-
ther an open interval (a, b), a half-closed interval (a, b], a half-closed interval [a, b)
or a closed interval [a, b]. As usual, the round bracket indicates that the endpoint
is not an element of the interval whereas the square bracket denotes the opposite.
We call an interval non-degenerated (or non-trivial) if a < b. An interval with
endpoint a, b is unbounded if a = −∞ or b = ∞. A non-degenerated interval is
bounded if its endpoints satisfy the inequalities

−∞ < a < b <∞.

By a sequence we mean an ordered list of objects of the same kind. Repetitions
are allowed. We consider both finite and infinite sequences in this work. The
following two examples establish the notation. The sequence(

1

2
,
√

2, π,
√

2, 39.09

)
is an example of a finite sequence of real numbers and the sequence(

2i
)
i∈N

is an example of an infinite sequence of natural numbers. It should be always clear
from the context whether (a, b) represents an open interval or a finite sequence
of length two.

Sometimes we will refer to the Turing model of computation as to “the clas-
sical model of computation”. We do not define basic notions, such as Turing
machine, one-way function, one-way permutation, complexity classes P and NP
and so forth. However, these definitions can be found in any textbook about
complexity and computability theory in the Turing model of computation. See,
for example, the book [10] written by M. Sipser or the book [8] whose author is
C. H. Papadimitriou.
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To measure the complexity of algorithms, we use the standard asymptotic
notation. Let f, g : N→ R+ be two functions. We write f(n) = O(g(n)) if there
exist c, n0 ∈ N such that for every n ≥ n0 the following inequality holds

f(n) ≤ c · g(n).

This notation is sometimes called the “Big-O” notation and it is used for asymp-
totic upper bounds. In this work we are also interested in lower bounds for which
we use the “Big-Ω” notation. We write f(n) = Ω(g(n)) if there exist c, n0 ∈ N
such that for every n ≥ n0 the following inequality holds

f(n) ≥ c · g(n).

For more details about asymptotic notation see one of the books [8] and [10].
As already mentioned, we assume basic knowledge of real mathematical anal-

ysis. We will use but not define notions such as continuous function, limit of
a real function, point of global extreme of a real function, derivation of a real
function and so on. We will refer to some important theorems, for instance, to
the “Intermediate Value Theorem” or to the “Algebraic Limit Theorem”. The
statements of these theorems can be found in any textbook of real mathematical
analysis, for example, in the book [9].

1.2 Sets of real numbers

In this section we first introduce basic arithmetic operations on subsets of R.
Then we recall the definition and main properties of semi-algebraic sets since sets
defined by polynomial equalities and inequalities will be very important in future
chapters of this work.

1.2.1 Basic arithmetic operations with sets

To avoid a confusion, sets will be denoted by bold capital letters. Throughout this
thesis, we consider only sets of real numbers containing 0 and 1 (if not explicitly
said otherwise). The reason of this convention is technical and will become more
clear later (see Observation 1.2).

Let us first define basic arithmetic operations on subsets of R.

Definition 1.1. Let A,B ⊆ R. Then we define binary operations · and + as
follows

A + B = {a+ b : a ∈ A, b ∈ B},
A ·B = {a · b : a ∈ A, b ∈ B}.

For t ∈ N we denote

tA = A + . . .+ A︸ ︷︷ ︸
t

and At = A · . . . ·A︸ ︷︷ ︸
t

.

In addition, we define one unitary operation − as

−A = {−a : a ∈ A} ∪ {0, 1}.
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Observation 1.2. Let A,B ⊆ R be two sets such that 0, 1 ∈ A ∩B. Then

A ⊆ A + B and A ⊆ A ·B.

Consequently, for s, t ∈ N such that s ≤ t we have the following two inclusions

sA ⊆ tA and As ⊆ At.

It the next lemma we introduce some basic properties of these operations.
Although many other observations can be made, we restrict ourselves only to
those that will be useful in future chapters.

Lemma 1.3. Let A,B,C,D be subsets of R and t, s, p be natural numbers. Then
the following four equations hold

1. A · (B + C) = A ·B + A ·C,

2. tA · sB = pC, where C = A ·B ⊆ R and p = t · s ∈ N,

3. (tA)s = tsAs,

4. (A ∪B)2 = A2 ∪ 2(A ·B) ∪B2.

Proof. The lemma follows directly from Definition 1.1.

In this work we often refer to the minimal or the maximal size of an element
in a set. Therefore, we establish the notation in the next definition.

Definition 1.4. Let A be a finite subset of R. Then the minimal and the maximal
size of an element in A are defined as

minA = min{|a| : a ∈ A \ {0}}, maxA = max{|a| : a ∈ A}.

In the rest of this section we consider only finite subsets of R. Let us now
make a few important observations. Because we assume that 1 ∈ A for every
A ⊆ R, we can observe the following.

Observation 1.5. Let A ⊆ R. Then both minA,maxA are defined and

minA ≤ 1, maxA ≥ 1.

In Definition 1.4 we are interested in the minimal (respectively, the maximal)
element in absolute value. Therefore, we can state the next observation.

Observation 1.6. Let A ⊆ R. Then

minA = min−A and maxA = max−A.

In addition, it will be useful to express the maximal and the minimal size of
an element of the sets tA,As in terms of the minimal and the maximal size of
an element in the set A. Note that for e ∈ R we have

|es| ≤ |e|, if |e| < 1 and

|es| ≥ |e|, if |e| ≥ 1.
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Observation 1.7. Let A ⊆ R and s, t ∈ N. Then

minAs = (minA)s, maxAs = (maxA)s and maxtA = t ·maxA.

We have a reason to believe that the value mintA is difficult to express for
a general set A. Notice that it is of a similar nature as several famous prob-
lems which are considered to be hard, for instance, the Shortest Vector Problem
(that is, the problem of finding find the shortest vector of a lattice given a basis
of the lattice). Nevertheless, the value mintA can be very easy to express for
a concrete set A. For example, if A ⊆ R≥0 then mintA = minA.

For a set A ⊆ R and a natural number t we define a new function µ as

µ(t,A) = mintA.

The only purpose of this new definition is the clarity of notation.

1.2.2 Semi-algebraic sets

A semi-algebraic set over an ordered ring R is a set of elements which satisfy
a finite system of equations and inequalities over R. There appear many equiva-
lent definitions of a semi-algebraic set in the literature. The definition introduced
below corresponds to the one presented in the book [1].

Definition 1.8 ([1, Chapter 2]). Let R be an ordered commutative ring with
unit and n ∈ N. A set S ⊂ Rn is a basic semi-algebraic set over R if

S = {x ∈ Rn : f1(x) < 0, . . . , fm(x) < 0, g1(x) ≥ 0, . . . , g`(x) ≥ 0},

were fi, gi are polynomials of n variables over R and m, ` ∈ N.
A semi-algebraic set is a finite union of basic semi-algebraic sets.

Semi-algebraic sets are generally very well studied and understood. They
are crucial for studying o-minimal structures. The theory of o-minimality is
developed in detail for example in the book [13].

Semi-algebraic sets have many nice properties, some of which we state in
the next lemma. Proofs and more general variants of the statements can be
found in the book mentioned above.

Lemma 1.9. Let R be an ordered commutative ring with unit and n ∈ N.

1. Let S ⊂ Rn+1 be a semi-algebraic set. Then π(S) ⊂ Rn is a semi-algebraic
set, where π : Rn+1 → Rn is the projection map on the first n coordinates.

2. The intersection of two semi-algebraic sets over R is a semi-algebraic set
over R.

Since we are mainly interested in sets over real numbers, let us make the fol-
lowing remark.

Remark 1.10. Every semi-algebraic subset of R is a finite union of open intervals
and points.
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1.3 Polynomials and rational functions over R
In this section we recall basic definitions and properties of polynomials and ra-
tional functions over R. More details can be found in every textbook of algebra,
for example, in the book [6].

1.3.1 Polynomials and rational functions of n variables

In this work we understand a non-zero polynomial p ∈ R[x1, . . . , xn] of degree
d ∈ N ∪ {0} as a sum of monomials

ai1,...,in · xi11 · . . . · xinn ,

where i1, . . . , in ∈ N ∪ {0} are such that
∑n

k=1 ik ≤ d and ai1,...,in ∈ R. The ex-
pression

xi11 · . . . · xinn ,

is called a term in variables x1, . . . , xn. By ordering of terms in variables x1, . . . , xn
we mean the lexicographic ordering, i.e. the inequality

xi11 · . . . · xinn < xj11 · . . . · xjnn ,

holds if and only if there exists a natural number k ∈ {1, . . . n} such that for all
` < k

i` = j` but ik < jk.

The leading term of a polynomial is the maximal term with a non-zero coefficient
of the polynomial according to the ordering defined above.

The real values ai1,...,in are called coefficients of the polynomial. The set of
all coefficients of a polynomial p is denoted by coef(p). For technical reasons
we always assume that 0, 1 ∈ coef(p). The coefficient by the leading term of
a polynomial p is called the leading coefficient of the polynomial. We denote it
lc(p). For the degree of a polynomial p we use the standard notation which is
deg(p).

For completeness, let us define the introduced terms for the zero polynomial
as well. The leading coefficient of the zero polynomial is defined as lc(0) = 0.
The set of coefficients of the zero polynomial is the set coef(0) = {0, 1}. And
the degree of the zero polynomial is defined as deg(0) = 0.

Remark 1.11. The symbol
p(x1, . . . , xn)

can be understood in two different ways. Either it refers to a polynomial p of
variables x1, . . . , xn or it can be the evaluation of the polynomial function p on
the vector (x1, . . . , xn) ∈ Rn. Although it might cause some confusion, we do not
strictly distinguish these two cases in this work. We believe that the intended
meaning will be clear from the context.

A rational function f of n variables over R is a function which can be writ-
ten as a fraction of two polynomials p, q ∈ R[x1, . . . , xn], where q is a non-zero
polynomial. The domain of the rational function f is

Dom(f) = Rn \ {x ∈ Rn : q(x) 6= 0}.
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While rational functions are elements of a particularly defined field, in com-
putations of machines they are always represented by some (fixed) pair of poly-
nomials as their quotient.

We define polynomial and rational maps in the standard way. Let p1, . . . , pm
be polynomials of n variables over R. Then the map p defined by polynomials
p1, . . . , pm is the map

p : Rn → Rm,

p((x1, . . . , xn)) = (p1((x1, . . . , xn)), . . . , pm((x1, . . . , xn))).

Rational maps are defined similarly. Let f1, . . . , fm be rational functions of
n variables over R. Then the map f defined by rational functions f1, . . . , fm is
the map

f : Rn → Rm,

f((x1, . . . , xn)) = (f1((x1, . . . , xn)), . . . , fm((x1, . . . , xn))),

whose domain is Dom(f) =
⋂

i∈{1,...,m}
Dom(fi).

1.3.2 Polynomials and rational functions of one variable

In this subsection we study polynomials and rational functions of one variable
over R. We state technical lemmas which will be useful in later chapters.

The first lemma describes what we know about the set of coefficients and
the degree of a polynomial which is a sum (respectively, a product) of two poly-
nomials.

Lemma 1.12. Let p, q ∈ R[x] be two polynomials and let us define an auxiliary
value

d := 1 + min{deg(p), deg(q)}.

Assume that the set A ⊆ R is such that coef(p), coef(q) ⊆ A. Then

1. coef(p+ q) ⊆ 2A and deg(p+ q) ≤ max{deg(p), deg(q)},

2. coef(p · q) ⊆ dA2 and deg(p · q) ≤ deg(p) + deg(q).

Proof. We have two real polynomials

p(x) =

dp∑
i=0

pix
i, q(x) =

dq∑
i=0

qix
i,

where pi, qi ∈ R and pdp , qdq 6= 0. Without lost of generality we can assume that
dp ≤ dq.

1. Let us first define a new polynomial r ∈ R[x] as

r(x) =
dr∑
i=0

rix
i = p(x) + q(x).

11



The sum can be expanded as

p(x) + q(x) =

dp∑
i=0

(pi + qi)x
i +

dq∑
i=dp+1

qix
i.

From here we see that

ri =

{
pi + qi, for 0 ≤ i ≤ dp,

qi, for dp < i ≤ dq.
(1.1)

Thus, the statement about coefficients follows from Definition 1.1 and Ob-
servation 1.2.

In addition, from the equation (1.1) we know that dr ≤ dq. Note that if
deg(p) = deg(q) and lc(p) + lc(q) = 0 then we have dr < dq. Otherwise
the degree of the polynomial r equals the degree of the polynomial q.

2. To prove the second part of the statement, let us define a polynomial
r ∈ R[x] as

r(x) =
dr∑
i=0

rix
i = p(x) · q(x).

We first discuss the special case when p or q is the zero polynomial. Then
their product is also the zero polynomial. Thus, the degree is deg(r) = 0
and the set of coefficients is coef(r) = {0, 1} by our definition. We can
conclude that the statement is true in this special case.

Assume now that both p and q are non-zero polynomials. Their product
can be expanded as

p(x) · q(x) =

dp+dq∑
k=0

 min{k,dp}∑
i=max{0,k−dq}

pi · qk−i

xk.

Hence, we derived that dr = dp + dq. Since coef(p), coef(q) ⊆ A, we have

pi · qk−i ∈ A2,

for every pair of indices (k, i). Consequently, every coefficient of the poly-
nomial r is a sum of at most dp + 1 elements of the set A2.

We can naturally extend the previous lemma from polynomials to fractions of
two polynomials; hence, to rational functions.

Lemma 1.13. Let p1, q1, p2, q2 ∈ R[x] be polynomials such that their coefficients
are elements of the set A ⊆ R and q1, q2 are non-zero polynomials. Let us define
two auxiliary values

dmax := max{deg(p1), deg(q1), deg(p2), deg(q2)},
d := 2 (1 + dmax) .

12



1. There exist polynomials p, q ∈ R[x] such that

p

q
=
p1

q1

+
p2

q2

,

coef(p) ⊆ dA2, coef(q) ⊆ d

2
A2,

deg(p), deg(q) ≤ 2dmax.

2. There exist polynomials p, q ∈ R[x] such that

p

q
=
p1

q1

· p2

q2

,

coef(p), coef(q) ⊆ d

2
A2,

deg(p), deg(q) ≤ 2dmax.

Proof. 1. We can express the sum of two rational functions as

p1

q1

+
p2

q2

=
p1 · q2 + p2 · q1

q1 · q2

.

From the second part of Lemma 1.12 we know that

coef(p1 · q2), coef(p2 · q1), coef(q1 · q2) ⊆ d

2
A2.

From the first part of Lemma 1.12 it follows that

coef(p1 · q2 + p2 · q1) ⊆ dA2.

Thus, for p = p1 · q2 + p2 · q1 and q = q1 · q2 we have

coef(q) ⊆ d

2
A2 and coef(p) ⊆ dA2,

which is exactly what we wanted to prove. The statement about the degrees
follows directly from Lemma 1.12.

2. Analogously, we can prove that the polynomials p and q defined as

p = p1 · p2 and q = q1 · q2,

satisfy the second part of the statement.

In the following lemma we study the composition of two rational functions.

Lemma 1.14. Let p, q, r, s ∈ R[x] be polynomials such that q and s are non-zero
polynomials. Then the composition

p

q
◦ r
s

is a fraction of two polynomials; thus, a rational function. Moreover, the numer-
ator and denominator of the composition are polynomials of degree less or equal
to

d3
max + 2d2

max,

where dmax = max{deg(p), deg(q), deg(r), deg(s)}.
Explicit computation yields the degree estimates stated in the lemma. We

omit the technical proof.
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1.3.3 Zeros of a polynomial

Now we state two well known lemmas, which are of great importance not only
in algebra. The proofs can be found in every algebraic textbook and also for
example in [1] or [13]. The first lemma tells us that the number of roots of
a polynomial is bounded by the degree of the polynomial. The second lemma
provides a bound on the size of the roots of a polynomial. The bound depends
on the size of the coefficients of the polynomial. Both lemmas can be stated more
generally, i.e. for complex polynomials, but we consider only the situation over R.

Lemma 1.15 ([1, Lemma 1 in Chapter 9]). Let p ∈ R[x] be a polynomial of
degree d ≥ 1. Then

|{x ∈ R : p(x) = 0}| ≤ d.

Lemma 1.16 ([13, Lemma 1.1]). Let α ∈ R be a zero of the polynomial

p(x) =
d∑
i=0

pix
i ∈ R[x],

where pd 6= 0 and d ≥ 1. Then

|α| ≤ 1 +
1

|pd|
max{|p0|, . . . |pd−1|}.

The next corollary will be useful later in this work. It follows from Lemma 1.16
and the Intermediate Value Theorem.

Corollary 1.17. Let p be the polynomial from Lemma 1.16 and let

L = 1 +
1

|pd|
max{|p0|, . . . |pd−1|}

be the bound on the size of zeros of the polynomial p. Then either

∀x > L : p(x) < 0 or

∀x > L : p(x) > 0.

Similarly, one of the following options is true. Either

∀x < −L : p(x) < 0 or

∀x < −L : p(x) > 0.

Let us end this section with a lemma in which we discuss when a rational
function of one variable over R is a constant function. To prove the statement,
we use Lemma 1.15.

Lemma 1.18. Let f be a rational function of one variable over R. If there exists
a non-degenerated interval I ⊆ Dom(f) and a constant c ∈ R such that

∀x ∈ I : f(x) = c,

then f is the constant function c on R which means that

∀x ∈ R : f(x) = c.
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Proof. Let p, q be two polynomials such that f = p
q
. First note that for every

x ∈ Dom(f) we have

p(x)

q(x)
= c⇔ p(x)− c · q(x) = 0.

Let I ⊆ Dom(f) be an open interval and c ∈ R be a real constant. We now define
a polynomial function

ψ(x) = p(x)− c · q(x).

Since Dom(f) = Dom(ψ), we have

f(x) = c⇔ ψ(x) = 0.

Hence, by our assumption
∀x ∈ I : ψ(x) = 0.

Because I is a non-degenerated interval, i.e. it is an uncountable subset of R,
the polynomial function ψ must be a constant function. Otherwise we would
yield a contradiction with Lemma 1.15. Thus, we derived that ψ is the zero
polynomial and consequently, the function f is the constant function c.
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2. The BSS model of
computation

The BSS model of computation was presented by Lenore Blum, Michael Shub
and Steve Smale in [2]. In this model of computation a real number is considered
to be a unit size object which can be stored with infinite precision. Moreover,
basic arithmetic operations with real numbers are done in a unit of time. We call
this model the BSS model of computation, where BSS stands for the surnames of
the authors, that is, for Blum, Shub and Smale.

Analogously to the Turing model of computation, the main pillar of the BSS
model is a BSS machine. Many concepts of the classical Turing model of compu-
tation can be extended to the BSS model in a natural way. In the next section
we will for example define the halting set of a BSS machine or the halting time
of a BSS machine. Moreover, just as in the classical model of computation, we
can define complexity classes in the BSS model and study their relationships.

The BSS model is a very general model of computation as it can be defined for
a general mathematical structure and not only for the real ordered field. We will
discuss in Section 2.4 that the BSS model over Z2 is equivalent to the classical
Turing model. Moreover, Turing machines can be simulated by BSS machines
over any ring with unit. This is the reason why BSS machines are sometimes
called “generalized Turing machines” or “real Turing machines” in case of BSS
machines over R.

The organization of this chapter is the following. Firstly, we introduce the
concept of BSS machines by defining finite dimensional BSS machines over R.
These machines will be of our main interest in the rest of this work; therefore, we
pay a lot of attention to them. In Section 2.2 we present an alternative point of
view on finite dimensional BSS machines which allows us to analyse the number
of arithmetic operations of a BSS machine more precisely. Consequently, we will
be able to study the number of connected components of the halting set of a BSS
machine. The is done in Section 2.3. We discuss the idea of general BSS machines
in Section 2.4 and thereafter we briefly introduce the complexity theory in the
BSS model of computation in Section 2.5. Furthermore, in Section 2.6 we explain
what we mean by machines with “built-in constants”. We close this chapter by
discussing the relationship between informal algorithms and BSS machines.

Throughout this chapter we follow the approach of authors of the book [1].

2.1 Finite dimensional BSS machines

In this section we define finite dimensional BSS machines over R and discuss their
main properties. Our aim is to introduce the concept of BSS machines on the
level of formalism needed for our further work. Therefore, we omit some technical
details and rather illustrate introduced notions on concrete examples. We believe
that this approach provides a better understanding of BSS machines and it will
not cause any confusion later in the work.

More details and formal definitions can be found in Chapter 2 of the book [1].
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2.1.1 Definition

We begin with the definition of a finite dimensional machine over the real ordered
field.

Definition 2.1 ([1, Definition 1 in Chapter 2]). A finite dimensional BSS ma-
chine M over R is a finite connected directed graph which has four types of nodes:
input, output, branch and computation. The machine M has exactly one input
node and at least one output node.

� The input node has no incoming edge and exactly one outgoing edge.

� A computation node has possibly several incoming edges and exactly one
outgoing edge.

� A branch node has possibly several incoming edges and exactly two outgoing
edges, one labelled “YES” and the other one with the label “NO”.

� An output node has possibly several incoming edges and no outgoing edge.

In addition, the machine M has three spaces: the input space IM = Rn, the state
space SM = Rm and the output space OM = R`, where n,m, ` ∈ N.

Every node of the graph has an associated map of theses spaces and a successor
node assignment.

� Associated with the input node is a linear map I : IM → SM and a unique
successor node β1.

� Every computation node η has an associated rational map gη : SM → SM
and a unique successor node βη.

� Every branch node η has an associated polynomial function hη : SM → R
which is non-zero.

– The condition hη(x) ≥ 0 coincides with the successor node β+
η along

the “YES” outgoing edge.

– The condition hη(x) < 0 coincides with the successor node β−η along
the “NO” outgoing edge.

� Every output node η has an associated linear map Oη : SM → OM and no
successor node.

In the following remark we establish the terminology, formulate several con-
ventions and discuss technical problems which come along with the definition of
a finite dimensional BSS machine.

Remark 2.2. 1. We defined finite dimensional BSS machines over the field of
real numbers R. However, BSS machines can be defined over an arbitrary
commutative ring with unit R. The definition is essentially the same as
Definition 2.1 except for two technical changes. Firstly, if the ring R is not
a field then the computation nodes are associated with polynomial maps
(not rational maps as in the case R = R). Secondly, if R is a ring without
order (for example if R = C) then we have to modify the successor node
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assignment associated with a branch node. In this case, the branch condi-
tion hη(x) = 0 is associated with the successor node β+

η and the condition
hη(x) 6= 0 corresponds to the successor node β−η .

2. We call BSS machines from Definition 2.1 “finite dimensional BSS ma-
chines” because the input space, the state and the output space are all
finite dimensional. This is not the case for general BSS machines which we
define later in this chapter; see Section 2.4 for more details.

3. In the rest of this thesis, if we say “a BSS machine”, we implicitly mean
a finite dimensional BSS machine over R.

4. We index the nodes of a BSS machine by natural numbers. The finite set of
all nodes of a machine M is denoted by NM ⊂ N. The unique input node
of a machine will always have the index 1.

5. Sometimes it is convenient to associate the identity map

id: SM → SM ,
x 7→ x,

with every branch node. Thus, for every branch node η ∈ NM we define
the map gη to be the identity map on the state space.

6. Every computation node has an associated rational map. In particular,
let g be a rational map associated with some computation node. Then

gη(x1, . . . , xm) = (g1(x1, . . . , xm), . . . , gm(x1, . . . , xm)) ,

where gi are rational functions represented by a fixed pair of polynomi-
als pi, qi ∈ R[x1, . . . , xm], where qi is a non-zero polynomial. Recall our
convention formulated in Section 1.3.

7. Every BSS machine has an associated finite set of constants, we denote it
by CM ⊂ R. The set consists of all coefficients of the maps associated
with the nodes of the machine (this is the reason why rational functions are
represented by fixed pairs of polynomials). We implicitly assume that every
BSS machine has 0 and 1 as machine constants. Recall our convention from
Section 1.2.

8. We have to make sure that we do not divide by zero in the computation
nodes; otherwise, the machine would not be well defined. Let us observe
that this technical problem can be solved by adding a new branch node in
front of every computation node.

Let η be a computation node with the associated rational map

gη =

(
p1

q1

, . . . ,
pm
qm

)
,

where pi, qi ∈ R[x1, . . . , xm] are real polynomials of m variables such that
for every i ∈ {1, . . . ,m} the polynomial qi is non-zero. Note that(

m∏
i=1

qi(x1, . . . , xm)

)2

≤ 0 ⇔ ∃i ∈ {1, . . . ,m} : qi(x1, . . . , xm) = 0.
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Therefore, we add a new branch node which has the associated function

h(x1, . . . , xm) = −

(
m∏
i=1

qi(x1, . . . , xm)

)2

.

It is a non-zero polynomial function since it is a product of non-zero polyno-
mial functions. The successor node β+ is an output node which returns some
error message. The other successor node β− is the computation node η. In
the rest of this work we implicitly assume that every computation node is
well defined.

Let us demonstrate the definition of a finite dimensional BSS machine on one
concrete example.

Example 2.3. Let M be the BSS machine defined by the graph in Figure 2.1. The
three spaces of the machine M are

IM = R, SM = R2, OM = R.
We see that the graph of the BSS machine M consists of four nodes. Thus,

the set of nodes is
NM = {1, 2, 3, 4}.

For every node η ∈ NM we discuss in detail the associated map and the successor
node assignment.

� We see that the input node η = 1 is associated with the linear map

I : R→ R2,

x 7→ (x, 0).

The successor node is β1 = 2.

� The node η = 2 is a branch node. The successor node coinciding with the
“YES” outgoing edge is the node number 3; thus, β+

2 = 3. The successor
node along the “NO” outgoing edge is the node number 4 and therefore
β−2 = 4. The associated function is

h2 : R2 → R,
(x, k) 7→ x− 1.

We see that
h2(x, k) ≥ 0 ⇔ x ≥ 1.

It follows that the condition h2(x, k) ≥ 0 coincides with the “YES” outgoing
edge as required.

� The node η = 3 is a computation node and its associated map is

g3 : R2 → R2,

(x, k) 7→ (x− 1, k + 1).

The successor node is in this case β3 = 2.

� And finally the node η = 4 is an output node whose associated map is

O4 : R2 → R,
(x, k) 7→ k.

The set of constants of the machine M is CM = {−1, 0, 1}.
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1
Input x
k ← 0

2
x ≥ 1

3
x ← x − 1
k ← k + 1

4
Output k

NO

YES

Figure 2.1: The graph of a BSS machine computing the floor function for non-
negative real numbers

2.1.2 Computation of a BSS machine

We defined a BSS machine as an oriented graph whose nodes have associated
linear, polynomial or rational maps and successor node assignments. In other
words, every node of the graph is associated with a pair: (map, successor node
assignment). This motivated the definition of computation of a BSS machine.
Since the formal definition is very technical, we restrict ourselves to a heuristic
definition and we illustrate it on an example. We believe that this approach does
not cause any confusion and provides a better understanding of the notion. The
formal definition can be found in the book [1].

Informally, given an input x ∈ IM we follow the graph of the machine step
by step. In every step of the computation we are in some “current node” and in
some “current state”. We execute the instruction which is associated with the
node and proceed to the successor node. Let us discuss this in detail.

Firstly, we accept the input of the machine in the input node η1 = 1 and
assign the state of the machine by evaluating the associated input map. Then
we proceed to the next node which is uniquely determined by the successor node
assignment of the input node. Thus, the “current state” and “current node” of
the machine after the first step are

s2 = I(x) and η2 = β1.

Suppose now that after i−1 steps we are in the state si and the node ηi for some
i > 1.

If ηi is a branch node then we do not change the state of the machine. Equiv-
alently, we can say that we apply the identity map gηi = id on the state of the
machine (recall Remark 2.2). Then we evaluate the branch function and, depend-
ing on the result, we decide which outgoing edge we should follow. The “current
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state” and “current node” after the i-th step of the computation are

si+1 = gηi(si) and ηi+1 =

{
β+
ηi
, if hηi(si) ≥ 0,

β−ηi , if hηi(si) < 0.

If the node ηi is a computation node then we reassign the state of the machine
by evaluating the associated computation map gηi . Then we move to the unique
successor node. Thus,

si+1 = gηi(si) and ηi+1 = βηi .

Finally, if the node ηi is an output node then we output the result which is
computed according to the output map associated with the output node. Then
the computation halts. This means that the result of the computation is Oηi(sηi).
Note that if we never enter an output node then the computation does not halt.

It follows from our description that the computation of a machine M on an
input x can be described by a sequence of pairs (si, ηi), where si ∈ SM and
ηi ∈ NM .

It is very useful to observe that the “current state” si can viewed as a com-
position of maps; that is,

si(x) = (gηi−1
◦ . . . gη2 ◦ I)(x).

Note that all maps in the composition are rational maps (the identity map and
polynomial maps can be understood as rational maps whose denominator is 1).
And composition of rational maps is a rational map (see Lemma 1.14).

Another important observation is that BSS machines (as we defined them
in Definition 2.1) are deterministic machines. In other words, every input has
a unique computation sequence.

Let us now perform a computation of the machine M which was defined in
Example 2.3 on a concrete input.

Example 2.4. Let M be the machine defined in Example 2.3. The step by step
computation of the machine M on the input π is illustrated in Figure 2.2.

2.1.3 Computation paths

By a computation path γ of a machine M we understand a sequence of nodes

γ = (η1, η2, . . . ),

where ηi ∈ NM and the first node of the sequence η1 is the unique input node
of the machine M (i.e. η1 = 1 according to our convention). Moreover, for every
other node ηi occurring in the sequence γ, one of the following is true:

ηi =


βηi−1

, if ηi−1 is an input or a computation node,

β+
ηi−1

, if ηi−1 is a branch node,

β−ηi−1
, if ηi−1 is a branch node.
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1 (π, 0)π

2 (π, 0) 3 (π − 1, 1)

2 (π − 1, 1) 3 (π − 2, 2)

2 (π − 2, 2) 3 (π − 3, 3)

2 (π − 3, 3)

4 (π − 3, 3)3

π ≥ 1

π − 1 ≥ 1

π − 2 ≥ 1

π − 3 < 1

Figure 2.2: The computation of the machine M defined in Figure 2.1 on the input
value π
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Since an output node has no successor node, it is clear that if a sequence
has an output node then it must be its last node; hence, the sequence is finite.
A computation path γ of a BSS machine M is a halting path of the machine M
if it is a finite sequence of nodes whose last node is an output node.

We define length of a path γ as the number of nodes in the sequence. If the
sequence is infinite then we define its length as ∞. We write len(γ) for length of
the path γ.

We denote by ΓM the set of all halting paths of a machine M . In addition,
for every T ∈ N we define the set of all time-T halting paths of a machine M as

ΓM,T := {γ ∈ ΓM : len(γ) ≤ T}.

We now state and prove one simple but very useful lemma.

Lemma 2.5. Let M be a BSS machine. Then for every natural number T ∈ N
the number of halting paths of length at most T is bounded by 2T . In particular,

|ΓM,T | ≤ 2T .

Proof. Length of a path is defined as the number of nodes in the sequence. Thus,
if a path has at most T nodes then it has at most T branch nodes. Every branch
node has exactly two successor nodes. It follows that the machine has at most
2T different paths of length at most T .

Note that every halting path has one input node and one output node. Hence,
we can prove that

|ΓM,T | ≤ 2T−2,

which is a tighter bound. However, the bound stated in the lemma is sufficient
for our purposes and it will be easier to work with in later chapters.

Corollary 2.6. The set ΓM is a countable set for every BSS machine M .

Proof. By Lemma 2.5 we know that the set ΓM,T is finite for every T ∈ N.
Therefore, the set

ΓM =
⋃
T∈N

ΓM,T

is a countable union of finite set; hence, a countable set.

We continue with our example by discussing the computation paths.

Example 2.7. Let M be the machine defined in Example 2.3. Consider four
different sequences:

γ1 = (1, 2, 3, 4), γ2 = (1, 2, 3, 2, 4),

γ3 = (1, 2, 3, 2, 3), γ4 = (1, 2, 3, 2, 3, . . . ).

We see that the only sequence which is not a valid computation path of the
machine M is the sequence γ1 (the successor node of the node 3 is the node 2
and not the node 4).

Lengths of the computation paths γ2, γ3 and γ4 are

len(γ2) = 5, len(γ3) = 5 and len(γ4) =∞.
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The set of all halting paths is

ΓM = {(1, 2, (3, 2)n, 4) : n ∈ N ∪ {0}} ,

where (3, 2)n denotes the concatenation of n sequences of the form (3, 2). We see
that only the path γ2 is a halting path (the last node of the path γ3 is not an
output node and the length of the path γ4 is infinite).

The set of all halting paths of length at most 6 is

ΓM,6 = {(1, 2, 4), (1, 2, 3, 2, 4)} .

Thus, the path γ2 lies also in the set ΓM,6.

At the end of the previous subsection we observed that every input x of a BSS
machine M determines a unique computation sequence; in particular, a sequence
of the form

((s2, η2), (s3, η3), . . . ),

where (si, ηi) ∈ SM×NM .We now consider the sequence of the second components
of the computation sequence, namely, the sequence of nodes (η2, η3 . . . ), and define
a new sequence γx as

γx = (1, η2, η3, . . . ).

It is easy to verify that γx is a computation path of the machine M (recall that the
input node is always the first node of a computation path and by our convention
we label it by the index 1). We call the path γx the computation path traversed
by the input x.

Note that for every input x ∈ IM , the path γx is either a halting path of the
machine M or its length is infinite. It is also important to mention that the path
traversed by an input x can be equal to the path traversed by a different input x′.
Let us demonstrate it on our example.

Example 2.8. Let M be the machine defined in Example 2.3. Then the compu-
tation path traversed by the input π is

γπ = (1, 2, 3, 2, 3, 2, 3, 2, 4),

as we can see in Figure 2.2. It is easy to observe that the input x = 16
5

traverse
the same path as the input π, i.e. that γx = γπ.

2.1.4 The halting set and computation time

By computation time of a machine M we understand the function TM which is
defined as

TM : I → N ∪ {∞},
x 7→ len(γx),

where γx is the computation path traversed by the input x. We say that a BSS
machine M halts on an input x if

TM(x) <∞.

24



A machine M does not halt on an input x if

TM(x) =∞.

Note that a machine M halts on an input x if and only if the path γx is a halting
path so the terminology is not confusing.

We define the halting set of a BSS machine M in a natural way as the set

ΩM = {x ∈ IM : TM(x) <∞}.

In addition, for every T ∈ N we define the time-T halting set of the machine M
as

ΩM,T = {x ∈ IM : TM(x) ≤ T}.
We say that the BSS machine M is a constant time BSS machine if there

exists a natural number T ∈ N such that

∀x ∈ ΩM : TM(x) ≤ T.

Or equivalently, the machine M is a constant time BSS machine if ΩM = ΩM,T

for some T ∈ N.
Moreover, for every halting path γ ∈ ΓM we define the set νγ ⊆ ΩM of all

inputs that traverse the path γ. In particular,

νγ = {x ∈ ΩM : γ = γx}.

Let us state and prove the following useful lemma.

Lemma 2.9 ([1, Lemma 1 in Section 2.2]). For every T ∈ N the time-T halting
set ΩM,T is a finite disjoint union of the sets νγ, where γ ∈ ΓM,T . In particular,

ΩM,T =
⋃̇

γ∈ΓM,T

νγ.

The halting set ΩM is a countable disjoint union of the sets νγ, where γ ∈ ΓM .
This means that

ΩM =
⋃̇
γ∈ΓM

νγ.

Proof. The sets νγ are disjoint since every input x traverses exactly one compu-
tation path γx as we observed in Subsection 2.1.2. From Lemma 2.5 we know
that the set ΓT is finite for every T ∈ N. This proves that⋃̇

γ∈ΓM,T

νγ

is a finite disjoint union of sets. We know that the path γx is a halting path if
and only if the machine M halts on the input x. This implies that the union
must be equal to the time-T halting set ΩM,T .

From Corollary 2.6 we know that ΓM is a countable set. Thus,⋃̇
γ∈ΓM

νγ

is a countable disjoint union of sets. We can use the same argument as above to
prove that the union is equal to the halting set ΩM .

25



Let us now have a closer look at the sets νγ, for γ ∈ ΓM . Two different inputs
x, x′ ∈ ΩM traverse the same path if in every branch node of their computation
the machine decides to take the same outgoing edge (the signs of the branch
function are the same). Thus, every path γ determines a finite set of inequalities
(sign conditions). One inequality for each branch node in the sequence. The set
νγ is then the set of the inputs which satisfy all these inequalities determined by
the path γ.

In fact, we can be more precise. Every set νγ is defined by finitely many
polynomial inequalities which means that it is a basic semi-algebraic set (recall
Definition 1.8). Let us briefly discuss why this is true.

Let γ = {η1, . . . , ηt} be a computation path whose `-th node is a branch node
and the (`+ 1)-st node is the successor node along the “YES” outgoing edge, i.e.

η`+1 = β+
η`
.

From Subsection 2.1.2 we know that the machine state after ` − 1 computation
steps can be viewed as the rational map

sη`−1
= (gη`−1

◦ · · · ◦ gη2 ◦ I).

Associated with the branch node η` is the polynomial function hη` . Thus, the
inequality associated with the branch node η` is the rational inequality

(hη` ◦ sη`−1
)(x) ≥ 0.

We can assume that the denominator of the rational function hη` ◦sη`−1
never van-

ishes (recall Remark 2.2). Consequently, one can prove that there is a polynomial
inequality which is equivalent to this rational inequality.

This informal discussion gives an intuition why the following lemma holds. We
would need to introduce more detailed description of BSS machines to present
the formal proof which can be found in the book [1].

Lemma 2.10 ([1, Lemma 1 in Section 2.2]). Let M be a BSS machine. Then
the set νγ is a basic semi-algebraic set for every halting path γ ∈ ΓM .

Let us discuss the semi-algebraic sets of the machine from our example.

Example 2.11. Let M be the BSS machine defined in Example 2.3. We assume
the path

γ = (1, 2, 3, 2, 3, 2, 3, 2, 4).

The inequalities determined by the path γ are

(h2 ◦ I)(x) ≥ 0 ⇔ x ≥ 1,

(h2 ◦ g3 ◦ I)(x) ≥ 0 ⇔ x− 1 ≥ 1,

(h2 ◦ g3 ◦ g3 ◦ I)(x) ≥ 0 ⇔ x− 2 ≥ 1,

(h2 ◦ g3 ◦ g3 ◦ g3 ◦ I)(x) < 0 ⇔ x− 3 < 1.

Hence, the set νγ is

νγ = {x ∈ R : x ≥ 1 ∧ x− 1 ≥ 1 ∧ x− 2 ≥ 1 ∧ x− 3 < 1}.
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We see that not all of the inequalities are needed in this case. In particular, we
have

νγ = {x ∈ R : x− 2 ≥ 1 ∧ x− 3 < 1} ⇔ νγ = [3, 4).

Recall from Example 2.7 that every halting path is of the form (1, 2, (3, 2)n, 4)
for some n ∈ N ∪ {0}. Therefore, it is not difficult to observe that

ν(1,2,(3,2)n,4) =

{
{x ∈ R : x < 1}, for n = 0;

{x ∈ R : n ≤ x < n+ 1}, for n ∈ N.

The halting set of the machine M is ΩM = R.

2.1.5 The input-output map

Every BSS machine M has an associated input-output map ΦM . It maps the
input space IM to the output space OM in the following way.

If a machine M does not halt on an input x ∈ IM then the value ΦM(x) is
not defined.

If a machine M halts on an input x ∈ IM then we define ΦM(x) as the value
outputted by the machine M whose input was x. In particular, let γx = η1, . . . , ηt
be the computation path traversed by the input x. Then we define

ΦM(x) :=
(
Oηt ◦ gηt−1 ◦ · · · ◦ gη2 ◦ I

)
(x).

We see that the map ΦM is a composition of the same maps for all inputs
which traverse the same path. Thus, for every halting path γ ∈ ΓM we define the
partial mapping

ϕγ := ΦM �νγ=
(
Oηt ◦ gηt−1 ◦ · · · ◦ gη2 ◦ I

)
.

Recall from Remark 2.2 that if ηi is a branch node then we define the map gηi
as the identity map on the state space. All maps Oηt , gηt−1 , . . . , gη2 , I are rational
maps; thus, their composition is a rational map (see Lemma 1.14). The next
lemma follows from this discussion.

Lemma 2.12. Let M be a BSS machine and γ ∈ ΓM its halting path. Then ϕγ
is a rational map such that Dom(ϕγ) ⊆ νγ.

Let us now analyse the input-output map of the BSS machine from our ex-
ample.

Example 2.13. Let M be the BSS machine defined in Example 2.3. We already
know that ΩM = R. For a halting path γ = (1, 2, (2, 3)n, 4), where n ∈ N ∪ {0},
we have

ϕγ = ΦM �νγ= O4 ◦ g3 ◦ · · · ◦ g3︸ ︷︷ ︸
n

◦I = n.

This follows from the definition of O4, g3 and I (see Exercise 2.3). In addition,
we know that g2 is the identity map id: R2 → R2. In other words, the value
ΦM(x) is equal to the number of times the machine M enters the computation
node during the computation on the input x.
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We can conclude that

ΦM(x) =

{
0, if −∞ < x < 0,

bxc, if x ≥ 0,

where bxc denotes the maximal non-negative integer smaller or equal to the real
number x.

In addition, we can express the computation time of the machine M as

TM(x) =

{
3, if −∞ < x < 0,

3 + 2 · bxc, if x ≥ 0.

Consequently, we see that the machine M is not a constant time BSS machine.
Using the asymptotic notation we can conclude that the halting time is O(x).

2.1.6 Computability in the BSS model

As in the classical Turing model of computation, we can introduce the notion of
computability in the BSS model of computation. We say that a map

ψ : X→ R`, X ⊂ Rn

is computable over R if it is an input-output map of some BSS machine M over R.
In particular, if

Rn = IM , R` = OM and X = ΩM ,

and if the map ψ equals the map ΦM on the set X. We can also say that the
machine M computes the map ψ.

So the BSS machine defined in Example 2.3 computes the floor function on
non-negative real numbers.

As usual, a set S ⊂ Rm is decidable if its characteristic function

χS(x) =

{
1, if x ∈ S,

0, otherwise;

is a computable function.

2.1.7 The Path Decomposition Theorem

We are now prepared to state the main theorem of this chapter, the Path Decom-
position Theorem. It summaries all the important properties of BSS machines
which we have already discussed in the previous subsections (see Lemma 2.9,
Lemma 2.10 and Lemma 2.12).

Theorem 2.14 ([1, Theorem 1 in Chapter 2]). Let M be a finite dimensional
BSS machine over R. Then M has the following properties.

1. For every T ∈ N the time-T halting set of the machine M

ΩM,T =
⋃̇

γ∈ΓM,T

νγ

is a finite disjoint union of basic semi-algebraic sets.
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2. The halting set of the machine M

ΩM =
⋃̇
γ∈ΓM

νγ

is a countable disjoint union of basic semi-algebraic sets.

3. For any halting path γ ∈ ΓM , the partial map

ϕγ = ΦM �νγ

is a rational map.

The theorem provides a very powerful proof technique and it has some inter-
esting corollaries. Let us briefly discuss some of them.

Corollary 2.15. Every decidable set is a countable union of semi-algebraic sets.

As a consequence, some famous sets such as the Mandelbrot set or most of
the Julia sets are not decidable over R (see [1, Section 2.4] for more details).

The next corollary follows from Remark 1.10 in which we observed that every
semi-algebraic subset of R is a finite union of open intervals and points.

Corollary 2.16. Let M be a BSS machine with one dimensional input space
IM = R. Then the halting set ΩM is a countable disjoint union of intervals and
points. In particular,

ΩM =
⋃̇
γ∈ΓM

νγ =
⋃̇
γ∈ΓM

 ⋃̇
i∈{1,...,mγ}

Iγ,i

 ,

where Iγ,i ⊆ νγ is an open interval or a point and mγ denotes the number of
components of the semi-algebraic set νγ.

If M is a constant time machine then its halting set is a finite disjoint union
of open intervals and points.

We will discuss the number of connected components of a halting set more
generally in Section 2.3.

We have already shown that the halting time of the BSS machine defined
in Example 2.3 is O(x). It is not difficult to prove that the floor function is
computable by a more efficient BSS machine whose halting time is O(log2(x)).
However, none of these machines is a constant time machine. Thus, a very natural
question arises. Can a constant time BSS machine compute the floor function
for every non-negative real number? In the next lemma we prove that there is
a negative answer to this question. It is an example how we can use the Path
Decomposition Theorem for proving a lower bound on the halting time of a BSS
machine.

Lemma 2.17 ([1, Proposition 3 in Chapter 2]). Let M be a BSS machine such
that given an input x ∈ R≥0 outputs bxc, i.e. the maximal non-negative integer
which is smaller or equal to x. Then the machine M is not a constant time BSS
machine.
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Proof. LetM be a BSS machine from the statement. Thus, its halting set contains
all non-negative real numbers, i.e. R≥0 ⊆ ΩM . Moreover, by Corollary 2.16 we
know that the halting set ΩM is a countable disjoint union of open intervals and
points.

Let us fix an arbitrary positive integer k ∈ N and consider the half-closed
interval [k, k + 1). Since the interval [k, k + 1) is a subset of the halting set
ΩM , the interval must contain an open subinterval J such that J ⊆ νγ for some
γ ∈ ΓM . This implies that the associated rational function ϕγ is such that

∀x ∈ J : ϕγ(x) = k.

Since J is an open subinterval of R, the function ϕγ is the constant function k
by Lemma 1.18.

It follows that we need at least K halting paths in order to compute the floor
function on the interval [0, K). Consequently, we need infinitely many halting
paths to compute the floor function for every non-negative real number. This
implies that M cannot be a constant time machine since the number of halting
paths of a constant time machine is bounded (recall Lemma 2.5).

An important consequence of the lemma is that in the BSS model of compu-
tation we cannot access the digits of a real number in constant time.

2.2 Elementary instructions

We claimed at the beginning of this chapter that in the BSS model of computation
we consider one arithmetic operation as a unit time operation. However, in the
previous section we defined the halting time of a BSS machine M on an input x
as the number of nodes on the computation path traversed by the input x. Every
node of a machine is associated with a linear, polynomial or rational map. Thus,
there are several arithmetic operations performed in every node.

Therefore, in this section we formally define what we mean by one elementary
instruction of a BSS machine and we introduce elementary BSS machines, this is,
machines performing only one arithmetic operation at a time. Then we discuss
the relationship between the halting time of BSS machines and the halting time
of elementary BSS machines.

In this section M denotes a finite dimensional BSS machine over R. Let us
recall that every finite dimensional machine has there spaces; the input space
IM = Rn, the state space SM = Rm and the output space OM = R` where
m,n, ` ∈ N. In addition, it has the set of constants CM . We will omit the indices
and write only I,S,O,C to simplify the notation.

Let s = (s1, . . . , sm) ∈ S be a state of a BSS machine M . We call si ∈ R
a component of the state s, where i ∈ {1, . . . ,m}. Usually, we will refer to
a component of the state s in a general manner. If we need to be more specific,
we say the i-th component of the state s. Components of an input and an output
are defined analogously.

In the following definition we formalize what we mean by an elementary in-
struction of a BSS machine.
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Definition 2.18. Let M be a BSS machine with a set of machine constants C
such that 0, 1 ∈ C. Let y be a component of a machine state. By an elementary
instruction we mean one of the following assignments

1. y ← c, where c ∈ C is a machine constant,

2. y ← y1 + y2, where y1, y2 are components of a machine state,

3. y ← y1 · y2, where y1, y2 are components of a machine state,

4. y ← 1
y1

, where y1 6= 0 is a component of a machine state,

5. y ← −y1, where y1 is a component of a machine state.

For technical reasons if c ∈ C is a constant then 1
c

is considered to be a rational
function defined by the fixed pair of constant polynomials 1 and c.

Intuitively, an elementary BSS machine is a BSS machine which performs
arithmetic operation only in computation nodes. Moreover, every computation
node coincides with exactly one elementary instruction. Let us be more precise
in the following definition.

Definition 2.19. Let M be a BSS machine with the input space I = Rn, the
state space S = Rm and the output space O = R`. The set of machine constants
is denoted by C and set of nodes is denoted by N . We call the BSS machine M
an elementary BSS machine if the following holds.

� The map I : I → S associated with the input node is defined by linear
functions f1, . . . , fm which are such that for every i ∈ {1, . . . ,m}

fi((x1, . . . , xn)) =

{
xj, for some j ∈ {1, . . . , n} or

c, for some c ∈ C.

� Every computation node η ∈ N performs exactly one elementary instruc-
tion. In particular, the associated map gη : SM → SM is defined by rational
functions f1, . . . , fm, where exactly one of them is not of the form

fi((x1, . . . , xm)) = xi.

The remaining function, let us call it fj, is such that

fj((x1, . . . , xm)) =



c, for some c ∈ C or

xk + xl, for some k, l ∈ {1, . . . ,m} or

xk · xl, for some k, l ∈ {1, . . . ,m} or
1
xk
, for some k ∈ {1, . . . ,m} or

−xk, for some k ∈ {1, . . . ,m}.

� Every branch node η ∈ N has an associated function hη : SM → R which is
of the form

hη((x1, . . . , xm)) = xj, for some j ∈ {1, . . . ,m}.
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� Every output node η ∈ N has an associated map Oη : SM → OM which is
of the form

Oη((x1, . . . , x`, x`+1, . . . , xm)) = (x1, . . . , x`).

It follows from the definition that computation nodes of elementary machines
can be viewed as elementary instructions.

2.2.1 The number of elementary instructions

Let us now discuss that every standard BSS machine can be simulated by an el-
ementary BSS machine. By a standard machine we mean a BSS machine as
defined in Definition 2.1.

We know that every node of a standard BSS machine is associated with a map
(linear, polynomial or rational). We claim that each of these maps can be ex-
pressed by a set of elementary instructions. Let us demonstrate it on an input
node.

Assume that M is a standard BSS machine with the machine spaces I ⊆ Rn

and S ⊆ Rm. The input node coincides with a linear map

I : I → S.

Since the map is linear, every component si of the initial state s can be expressed
as

si =
n∑
i=1

aixi + b,

where a1, . . . , an, b ∈ C and x1, . . . , xn are input components. We see that at
most 2 · n elementary instructions are needed to initialize one component of the
machine state. All together, at most 2 ·m · n elementary instructions are needed
in order to compute the linear map which corresponds to the input node.

Similarly, we can argue that every computation, branch and output node can
be expressed by a set of elementary instructions. We omit the details since, espe-
cially for computation nodes, the analysis becomes rather lengthy and technical.

Nevertheless, the example gives an intuition why the number of elementary
instructions depends on the dimension of the input space, the state space and
the output space and the degree of the maps associated with the nodes of the
machine. For every finite dimensional machine M all these parameters are fixed
(they do not depend on the input). Let us conclude this discussion with the
following observation.

Observation 2.20. Let M be a finite dimensional BSS machine. Then there is
an elementary BSS machine M ′ such that

1. the machines M and M ′ has the same machine constants, i.e. CM = CM ′;

2. the machines M and M ′ has the same input-output map and the same
halting set, i.e.

ΦM = ΦM ′ and ΩM = ΩM ′ ;

3. the halting times of the machines M and M ′ differ only by a constant factor,
i.e. for every x ∈ ΩM = ΩM ′ the following inequalities hold

TM(x) ≤ TM ′(x) ≤ O(TM(x)).
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2.2.2 The degree and coefficients of the input-output map

We will now study the following question. How does one elementary instruction
influence the degree and the coefficients of the input-output map? This technical
analysis will be useful later in the work where we will study functions that can
be computed by BSS machines with one dimensional input spaces. Therefore,
we restrict ourselves to this special case and for the rest of this subsection we
assume that M is a finite dimensional elementary BSS machine whose input
space is I = R.

Recall from Subsection 2.1.2 that every component of a machine state at any
time can be viewed as a rational function over R.

Let us first discuss the degree and the coefficients of a component of a ma-
chine state before the first computation node (i.e. before the first elementary
instruction).

Lemma 2.21. Let M be an elementary BSS machine with the input space I ⊆ R,
the state space S ⊂ Rm and the set machine constants C. Let s denote the state
of the machine M after the input node. Let y be a component of the state s. Then
y ∈ R[x] is a polynomial such that

deg(y) ≤ 1 and coef(y) ⊆ C.

Proof. By definition we know that either y = x, where x is the input of the
machine, or y = c, where c ∈ C is a machine constant. In the first case

deg(y) = 1 and coef(y) = {0, 1} ⊆ C

In the case when y = c we have

deg(y) = 0 ≤ 1 and coef(y) = {0, 1, c} ⊆ C.

In the next lemma we study how one elementary instruction (one computation
node) influences the degree and the set of coefficients of a machine state.

Lemma 2.22. Suppose that M is an elementary BSS machine in a state s ∈ S.
Let A ⊆ R and dmax ∈ N be such that for every component y of the state s there
exist polynomials p, q ∈ R[x] such that

y =
p

q
,

deg(p), deg(q) ≤ dmax, (2.1)

coef(p), coef(q) ⊆ A. (2.2)

Let s′ be a state of the machine M after exactly one elementary instruction. Then
for every component y′ of the new state s′ there exist polynomials p′, q′ ∈ R[x]
such that

y′ =
p′

q′
,

deg(p′), deg(q′) ≤ 2dmax, (2.3)

coef(p′), coef(q′) ⊆ dB2, (2.4)

where d = 2(1 + dmax) and B = A ∪ −A.
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Proof. Since y is a component of the state s, we know by Lemma 2.21 that C ⊆ A.
In addition, by Lemma 1.3 we know that

(A ∪ −A)2 = A2 ∪ 2A(−A) ∪ (−A)2.

It follows that A2 ⊆ B2 and −A ⊆ (−A)2 ⊆ B2.
Let us now proceed by a case analysis splitting on the type of elementary

instruction.

1. Let y′ = c, where c ∈ C is a machine constant. Then the constant polyno-
mials p′ = c and q′ = 1 trivially satisfy the statement.

2. Let y′ = y1 + y2, where y1, y2 are components of the state s. Then from the
first part of Lemma 1.13 we know that there exist polynomials p′, q′ ∈ R[x]
such that p′

q′
= y1 + y2, the inequality (2.3) holds and

coef(p′) ⊆ dA2, coef(q′) ⊆ d

2
A2,

which implies that the inclusion (2.4) is true.

3. Let y′ = y1 · y2, where y1, y2 are components of the state s. Then from
the second part of Lemma 1.13 we know that there exist polynomials
p′, q′ ∈ R[x] such that p′

q′
= y1 · y2, the inequality (2.3) holds and

coef(p′), coef(q′) ⊆ d

2
A2,

which proves the inclusion (2.4).

4. Let y′ = 1
y1

, where y1 6= 0 is a component of the state s. Then by our

assumption there exist polynomials p, q ∈ R[x] such that y1 = p
q

and the

equalities (2.1) and (2.2) hold. It is easy to observe that polynomials p′ = q
and q′ = p satisfy the statement. Note that p is a non-zero polynomial since
y1 6= 0.

5. Let y′ = −y1, where y1 is a component of the state s. Then by our assump-
tion there exist polynomials p, q ∈ R[x] such that y1 = p

q
and the equalities

(2.1) and (2.2) hold. Observe that

coef(−p) ⊆ −coef(p) ⊆ −A ⊆ B

holds. It follows that polynomials p′ = −p and q′ = q satisfy the statement.

In the next theorem we generalize the previous lemma.
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Theorem 2.23. Assume that M is an elementary BSS machine with the set of
constants C. Let k be a positive integer. Suppose that s ∈ S is a state of the
machine M after k − 1 elementary instructions. Then for every component y of
the state s there exist polynomials p, q such that the following is true:

y =
p

q
,

deg(p), deg(q) ≤ 2k,

coef(p), coef(q) ⊆ 22k+1

C̃2k ,

where C̃ = C ∪ −C.

The proof of the statement consists of many technical computations. For
better orientation, we first establish some notation which will be used in the
proof.

By yk we denote a component of a state after k elementary instructions. Let
dk ∈ N ∪ {0} be such that for every yk there exist polynomials pk, qk with the
following properties

yk =
pk
qk

and deg(pk), deg(qk) ≤ dk.

And finally, for k ≥ 2 we define an auxiliary value Dk = 2(1 + dk−1).
Let us now prove the theorem.

Proof. From Lemma 2.21 we know that before the first elementary instruction,
i.e. for k = 1, there exist polynomials p1, q1 such that y1 = p1

q1
and

deg(p1), deg(q1) ≤ 1 < 21 and coef(p1), coef(q1) ⊆ C.

Thus, the theorem holds for k = 1.
Let us now prove an auxiliary statement. For every k ≥ 2 there exists poly-

nomials pk, qk such that yk = pk
qk
, deg(pk), deg(qk) ≤ 2k and

coef(pk), coef(qk) ⊆

(
k−2∏
i=0

(Dk−i)
2i

)
C̃2k , (2.5)

where C̃ = C ∪ −C. We proceed by induction on k.

� By Lemma 2.22 we know that there exist polynomials p2, q2 such that

y2 =
p2

q2

,

deg(p2), deg(q2) ≤ 2 · 2,
coef(p2), coef(q2) ⊆ D2C̃

2.

� Now we assume that the auxiliary statement is true for k − 1. Then by
Lemma 2.22 there exist polynomials pk, qk such that

yk =
pk
qk
,

deg(pk), deg(qk) ≤ 2k,

coef(pk), coef(qk) ⊆ Dk

((
k−3∏
i=0

(Dk−i−1)2i

)
C̃2k−1

)2

.
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By Lemma 1.3 we can modify the expression on the right hand side of the
inclusion as follows

Dk

((
k−3∏
i=0

(Dk−i−1)2i

)
C̃2k−1

)2

= Dk

((
k−3∏
i=0

(Dk−i−1)2i+1

)
C̃2k

)
.

This can be further simplified as

Dk

((
k−3∏
i=0

(Dk−i−1)2i+1

)
C̃2k

)
=

(
k−2∏
i=0

(Dk−i)
2i

)
C̃2k .

We derived that the inclusion (2.5) holds and hence proved the auxiliary
statement.

To complete the proof of the theorem we need to show that for every k ≥ 2
the following inequality holds

k−2∏
i=0

(Dk−i)
2i ≤ 22k+1

. (2.6)

Let us fix an arbitrary value k ≥ 2. We have already proved that dk−1 ≤ 2k−1.
Therefore, be can bound the value Dk as follows

Dk = 2(1 + dk−1) ≤ 2(1 + 2k−1) ≤ 2k+1.

This implies that

k−2∏
i=0

(Dk−i)
2i ≤

k−2∏
i=0

(2k−i+1)2i =
k−2∏
i=0

2(k−i+1)·2i = 2
∑k−2
i=0 (k−i+1)·2i

holds. The sum in the exponent can be expanded as

k−2∑
i=0

(k − i+ 1) · 2i = k
k−2∑
i=0

2i −
k−2∑
i=0

2ii+
k−2∑
i=0

2i. (2.7)

Recall the following two well known sums

n∑
i=0

2i = 2n+1 − 1,

n∑
i=0

2i · i = 2 · (2nn− 2n + 1).

Using these general formulae, we can modify the equality (2.7) as

k−2∑
i=0

(k − i+ 1) · 2i = k(2k−1 − 1)− 2(2k−2(k − 2)− 2k−2 + 1) + (2k−1 − 1)

= 2k−1k − k − 2k−1k + 2k + 2k−1 − 2 + 2k−1 − 1

= 2k+1 − k − 3

≤ 2k+1.
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Thus, we proved the inequality (2.6).
And finally, using this inequality in the relation (2.5) we achieve that

coef(pk), coef(qk) ⊆

(
k−2∏
i=0

(Dk−i)
2i

)
C̃2k ⊆ 22k+1

C̃2k ,

which is exactly what we wanted to prove.

Let us make one important remark. All the proofs in this subsection were
constructive. This means that they provide an algorithm how to find a pair of
polynomials with stated properties for every component of a machine state. From
now on, by the fixed pair of polynomials whose quotient represents a component
of the machine state we understand the polynomials defined by this algorithm.

2.3 The number of connected components of the

halting set

In this section, we study the number of connected components of the halting set
of a constant time BSS machine. Recall first what we know from Theorem 2.14
(the Path Decomposition Theorem). Let M be a constant time BSS machine.
Then its halting set ΩM is a finite disjoint union of semi-algebraic sets νγ, where
γ ∈ ΓM .

Since the machine M is a constant time machine, there must exist a natural
number T which bounds the number of nodes on a path γ ∈ ΓM . The number
of branch nodes, let us denote it B, must be less or equal to the number of all
nodes; i.e. B ≤ T . Every branch node has two successor nodes and therefore the
number of paths (respectively, semi-algebraic sets) is bounded by the value 2T .
It follows that the number of connected components of the halting set ΩM is less
or equal to

2T · max
γ∈ΓM
{the number of connected components of the set νγ}.

Thus, it is sufficient to find an upper bound on the number of connected compo-
nents of a semi-algebraic sets νγ.

We begin with a lemma that bounds the number of connected components
of a general semi-algebraic set. We omit the proof which can be found in the
book [1].

Lemma 2.24 ([1, Proposition 3 in Chapter 16]). Let S ⊂ Rn be a semi-algebraic
set defined by

f1(x) = 0, . . . , fp(x) = 0,

fp+1(x) ≥ 0, . . . , fp+k(x) ≥ 0,

fp+k+1(x) > 0, . . . , fp+`(x) > 0,

where fi are polynomials. Let d := max{2, deg(f1), . . . , deg(fp+`)}. Then the
number of connected components of the semi-algebraic set S is at most

d(2d− 1)n+`−1.
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Now we are prepared to state and prove the main theorem of this section.

Theorem 2.25. Let M be a constant time elementary BSS machine with the
input space I = Rn. Let T ∈ N be the time bound of the machine M , i.e. for
every x ∈ ΩM it holds that TM(x) ≤ T . Then for every halting path γ ∈ ΓM the
number of connected components of the semi-algebraic set νγ is at most

2 · 3n+T−1.

The main idea of the proof is similar to the idea used in the proof of Theorem 2
presented in the book [1, Chapter 16].

Proof. Let x ∈ Rn and let γx = (η1, . . . , ηt) be the path traversed by the input x.
From our assumption we know that t ≤ T . Let us construct a system of quadratic
equations and inequalities. For every i ∈ {1, . . . , t} we do one of the following:

� if ηi is an input node or an output node then do nothing;

� if ηi is a computational node performing an elementary instruction of the
first type (i.e. the instruction y ← c, where c is a machine constant) then
do nothing;

� if ηi is a computational node performing any other elementary instruction
then add a new variable yi and the equation

yi = s1 + s2, if ηi performes addition,

yi = s1 · s2, if ηi performes multiplication,

yi = −s1, if ηi performes negation,

s1 · yi = 1, if ηi performes inversion,

(2.8)

where s1, s2 ∈ {x1, . . . , xn, y1, . . . , yi−1};

� if ηi is a branch instruction then add a new inequality

sk ≥ 0, if ηi+1 = β+
ηi
,

sk < 0, if ηi+1 = β−ηi ,
(2.9)

where sk ∈ {x1, . . . , xn, y1, . . . , yi−1} is the value whose sign is tested.

Let h denote the number of computational nodes which do not perform an
elementary instruction of the first type. It is clear that the inequalities

h ≤ t ≤ T

hold. Let S be the semi-algebraic set defined by the system of quadratic equali-
ties (2.8) and inequalities (2.9). Note that the set of variables is

{x1, . . . , xn, y1, . . . , yh};

hence, S ⊂ Rn+h. The set S is a semi-algebraic set defined by polynomial in-
equalities and equations of degree at most 2. Therefore, by Lemma 2.24 the set S
has at most

2(2 · 2− 1)n+h−1 ≤ 2 · 3n+T−1
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connected components. The semi-algebraic set νγ is the projection onto the
first n coordinates of the set S. The number of connected components can-
not increase during the projection; therefore, we can conclude that the number
of connected components of νγ is at most 2 · 3n+T−1 as stated in the theorem.

Corollary 2.26. Let M be a constant time elementary BSS machine with the
input space I = Rn. Let T ∈ N be the time bound of the machine M , i.e. for
every x ∈ ΩM it holds that TM(x) ≤ T . Then the number of connected components
of the halting set ΩM is bounded by

2T+13n+T−1.

2.4 General BSS machines

An important result in the classical Turing model of computation is the existence
of a Turing machine which is able to compute any computable function; a uni-
versal Turing machine. We claimed in the introduction that the BSS model of
computation generalize the Turing model of computation. Therefore, it is natural
to ask whether there is a universal BSS machine.

One of the basic properties of a universal machine is that it accepts every finite
dimensional input. However, the input space of a BSS machine, as we defined it
in Section 2.1, is of fixed dimension over R. To achieve a universal BSS machine,
we need to generalize our definition. Therefore, we introduce BSS machines which
can store and work with finite but unbounded sequences of elements of R, where
R is an arbitrary commutative ring with unit. We call these machines general
BSS machines over R.

Later in this work we will always consider finite dimensional BSS machines.
Therefore, we present only an informative introduction to the theory of general
BSS machines. Formal definition and all the details can be found in the book [1,
Chapter 3].

As already mentioned, we would like to work with finite but unbounded se-
quence of elements of R. Following the approach of authors of the book [1], we
introduce two spaces R∞ and R∞.

The space R∞ is defined as the disjoint union

R∞ =
⋃̇
n≥0

Rn,

where R0 is the 0-dimensional space with just one element 0. For x ∈ Rn ⊂ R∞

we call n the length of x.
The R∞ is defined as the bi-infinite directed sum space over R. In particular,

the elements of the space R∞ have the form

x = (. . . , x−2, x−1, x0 � x1, x2, x3, . . . ),

where xi ∈ R for all i ∈ Z and xk = 0 for |k| large enough. The symbol “ � ” is
the distinguished marker between x0 and x1.

The definition of a general BSS machine over R is similar to the definition
of a finite dimensional BSS machine over R (see Definition 2.1). There are two
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main changes. Firstly, the spaces associated with a general machine have to be
infinite dimensional spaces R∞ and R∞. This allows a machine to input, store
and output unbounded sequences. However, to access and compute with these
sequences, we need introduce another type of node; a shift node. Its function is
to shift the state of the machine one coordinate to the left or to the right. Let us
be more precise.

A general BSS machine M is a finite connected directed graph which has five
types of nodes: input, computation, branch, output and shift. The machine has
three associated spaces: the input space IM = R∞, the state space SM = R∞
and the output space OM = R∞.

The first four types of nodes are defined as in the finite dimensional case
except for the associated maps.

The input node is associated with a map I : R∞ → R∞ defined as

(x1, . . . , xn) 7→ (. . . , 0, 1, . . . , 1︸ ︷︷ ︸
n

� x1, . . . , xn, 0, . . . ).

The output node is associated with a map O : R∞ → R∞ defined as

(. . . , 0, 1, . . . , 1︸ ︷︷ ︸
`

� x1, . . . , x`, . . . ) 7→

{
(x1, . . . , x`) ∈ R`, if ` > 0;

0 ∈ R0, if ` = 0.

A branch node η is associated with a polynomial function hη : Rm → R for
some m ∈ N. The polynomial function hη is non-zero and it defines a polynomial

function ĥη : R∞ → R as follows

ĥη((. . . , x0 � x1, . . . xm, xm+1, . . . )) = hη(x1, . . . xm).

A computation node η is associated with a rational map gη : Rm → Rm for
some m ∈ N. The rational map gη defines a rational map ĝη : R∞ → R∞ as
follows

ĝη((. . . , x0 � x1, . . . xm, xm+1, . . . )) = (. . . , x0 � gη(x1, . . . xm), xm+1, . . . ).

Let us now define the fifth type of node. A shift node η has possibly several
incoming edges and one outgoing edge. Thus, it is associated with a unique suc-
cessor node βη. In addition, the shift node η has an associated map gη ∈ {σr, σ`},
where σr, σ` are the shift maps defined as follows. The right shift map

σr : R∞ → R∞,

(. . . , x−1, x0 � x1, x2, . . . ) 7→ (. . . , x−1, x0, x1 � x2, . . . ),

shifts all the elements of the sequence one coordinate the left (equivalently we
could say that it shifts the distinguished mark to the right). The left shift map

σ` : R∞ → R∞,

(. . . , x−1, x0 � x1, x2, . . . ) 7→ (. . . , x−1 � x0, x1, x2, . . . ),

shifts all the elements of the sequence one coordinate the right (i.e. it shifts the
distinguished mark to the left).
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Note that a general BSS machine without shift nodes is essentially a finite-
dimensional BSS machine. It can store sequences of arbitrary length; however,
without shift nodes it cannot access them. Thus, the strength of general machines
comes from the combination of infinite machine spaces and the fifth type of node.

These two changes also enable general BSS machines to simulate classical
Turing machines. The distinguished mark (the symbol “ � ”) in elements of R∞
of a general BSS machine corresponds to the position of the read-write head of
a Turing machine and the shift nodes simulate the shift operations of the read-
write head, i.e. the instructions “move left” and “more right”.

All notions defined for finite dimensional machines (for example computation
path, halting set, input-output map) can be extended to general machines. In
addition, a variant of Theorem 2.14 (the Path Decomposition Theorem) holds for
general machines. We do not introduce this theory here since we do not need it
in the rest of our work. However, it can be found in the book [1, Chapter 3].

2.5 Complexity theory in the BSS model

As in the classical (Turing) model of computation, we can talk about the com-
plexity of a general BSS machine and consequently define complexity classes.

By complexity of a function or a map we intuitively mean the cost of com-
puting it by a machine. The term “cost” typically refers to the optimal number
of elementary operations of a machine or the optimal amount of space which is
needed during the computation.

In the classical model of computation, complexity is expressed as a function
of size of the input. Thus, before we formalize the notions “cost of computation”
and “complexity of a map” in the BSS model of computation, we need to specify
what we mean by “size of an input”.

We introduce the theory of complexity in the BSS model only briefly since
the direction of our work is different. In this section we follow the approach of
authors of the book [1] in which more details can be found.

Let R be an arbitrary commutative ring with unit. Suppose that we have
a hight function htR defined on R, i.e. a function that maps elements of R to
non-negative integers. For a vector x = (x1, . . . , xn) ∈ Rn we define the hight
function as

htR(x) = max
i∈{1,...,n}

htR(xi).

In this work we consider the following hight functions

∀x ∈ R : htR(x) = 1,

∀x ∈ Z2 : htZ2(x) = 1,

∀x ∈ Z : htZ(x) = dlog(|x|+ 1)e.

Recall from Section 2.4 that for x ∈ Rn ⊂ R∞ we define

length(x) = n.

We define the size of x ∈ Rn ⊂ R∞ as

size(x) = length(x) · htR(x).
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Over R an Z2 we consider the unit hight; thus, size of an input x is equal to its
dimension. Over Z we consider the logarithmic hight; hence, size of an input x
is approximately the bit length of the sequence x.

Now we are prepared to define what we mean by cost of computation. For
x ∈ Rn ⊂ R∞ we define

costM(x) = TM(x) · htmax(x),

where TM(x) is the halting time of the machine M on an input x and htmax(x)
is the maximal hight of any element occurring in the computation of M on the
input x. For machines over R and Z2, the cost of computation and the halting
time of a machine M on an input x are the same.

A machine M over R is a polynomial time machine on X ⊂ R∞ if

∃c, q ∈ N ∀x ∈ X : costM(x) ≤ c(size(x))q.

The authors of the book [1] pay a lot of attention to complexity theory in
the BSS model. As already mentioned in the beginning of this section, we can
define complexity classes over an arbitrary ring with unit in the BSS model of
computation. As one would expect, many interesting questions regarding their
relationships arise. Is PR = NPR true? Does PC = NPC hold? Are these two
questions related to each other? Would an answer to one of these questions
tell us anything about the famous P = NP problem in the classical model of
computation?

These and many other questions were intensively studied especially in the
early 1990s. And some of them were answered. For example, in 1991 Felipe
Cucker proved that PR 6= NCR, see [5] for more details. However, it is a widely
recognized conjecture that results from the complexity theory over real numbers
do not bring an insight into the famous problems of the classical complexity
theory.

At the end of this section, let us discuss the time complexity of finite dimen-
sional BSS machines, which will be of our main interest in the rest of this work.
Finite dimensional machines have a fixed dimension of the input space so the
size of an input is fixed (bounded). Therefore, it makes little sense to talk about
complexity classes for finite dimensional machines. However, it is still interesting
to study the time complexity of these machines. Recall that the BSS machine
defined in Example 2.3 is a finite dimensional machine whose halting time is not
bounded. Thus, it make sense to ask how the halting time of a machine depends
on the input of the machine.

Let us summarize. For finite dimensional machines we distinguish the follow-
ing three situations:

1. The map is not computable by a finite dimensional machine.

2. The map is computable by a finite dimensional machine but not in constant
time.

3. The map is computable by a finite dimensional machine in constant time.

We will see examples of all three kinds of maps later in the work.
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2.6 Machines with built-in constants

In this work we will often study machines that, given an input, have to output
an ε-approximation of some value that was derived from the input. More precisely.
Let ε > 0 be a fixed constant and f : A → B, where A,B ⊆ R, a real function.
A BSS machine that approximates the function f with the precision ε is given an
input x ∈ A and it has to output a value y ∈ B such that

|y − f(x)| < ε.

Example 2.27. Let ε = 1 and f : R+ → R+ defined as f(x) =
√
x. Then a BSS

machine computing the square root function with the precision ε = 1 is a machine
that, given x ∈ R+, outputs y ∈ R+ such that

|y −
√
x| < 1.

Note that the precision ε > 0 is fixed; hence, it does not depend on the
input y. Therefore, it is natural to understand the precision ε as a machine
constant. Recall that every BSS machine has a set of machine constants. These
constants appear as coefficients of the maps corresponding to the nodes of the
machine.

Another way how to understand the precision ε is to consider it as “a part
of hardware”. Let us discuss this alternative point of view in more detail and
explain what we mean by the expression “ a part of hardware”.

Let us first recall that for every real number ε ∈ R+ there exists a rational
number ε′ ∈ Q+ such that the inequalities

0 < ε′ ≤ ε

hold. It follows that we can restrict ourselves to rational ε > 0. The next lemma
explains why we are interested in this simplification.

Lemma 2.28. Let ε ∈ Q+ be fixed. Then for every elementary BSS machine M
such that ε ∈ CM there exists an elementary BSS machine M ′ such that

1. the machines M and M ′ has the same machine constants except for ε which
is not a machine constant of the machine M ′, i.e.

CM ′ = CM \ {ε};

2. the machines M and M ′ have the same input-output map and the same
halting set; in particular,

ΦM = ΦM ′ and ΩM = ΩM ′ ;

3. the time complexities of both machines are proportionally the same, i.e. for
every x ∈ ΩM = ΩM ′ we have

TM(x) ≤ TM ′(x) ≤ TM(x) +O(1).
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Proof. Let p, q ∈ N be smallest possible natural numbers such that ε = p
q
. We

know that such natural numbers exist since ε ∈ Q+. The natural numbers p, q
can be expressed as

p = 1 + · · ·+ 1︸ ︷︷ ︸
p

, q = 1 + · · ·+ 1︸ ︷︷ ︸
q

. (2.10)

Recall that we assume that every BSS machine has 0 and 1 as machine constants.
Thus, from (2.10) we see that the value ε can be computed in p + q + 1 elemen-
tary instructions from the constant 1. Note that this is an upper bound on the
number of elementary instructions since there might be a more efficient way how
to compute the values p, q from the constant 1.

We are given a BSS machine M and we construct a BSS machine M ′ in the
following way. All appearances of the constant ε in the input node of the machine
M are replaced by the constant 0. Then the machine M ′ performs the following
sequence of p+ q + 4 elementary instructions

(s1, s2, s3)← (1, 1, 1); (s1, s2, s3)← (s1, s2 + s3, s3);

(s1, s2, s3)← (s1 + s3, s2, s3);
... q

... p (s1, s2, s3)← (s1, s2 + s3, s3);

(s1, s2, s3)← (s1 + s3, s2, s3); (s1, s2, s3)← (s1/s2, s2, s3) .

Note that the first instruction represents in fact three elementary instructions.
The machine M ′ stores the computed value ε in one component of the machine
state, let us denote this component s′. Thereafter, the machine M ′ performs
the elementary instruction s ← s′ for every component s of the machine state
which was assigned by the constant 0 instead of the constant ε in the input node.
Observe that there are at most m instructions of this kind needed, where m is
the dimension of the state space of the machine M .

Now the machine M ′ copies all nodes of the machine M . When a computation
node performing the instruction s ← ε occurs, the machine M ′ replaces it with
the instruction s← s′.

It follows from our construction that CM ′ = CM \ {ε}. The second part of
the lemma follows from the fact that the only elementary instructions that were
changed do not influence the input-output map or the halting set. The machine
M ′ has at most (p+ q + 4) +m additional elementary instructions, i.e. for every
x ∈ ΩM = ΩM ′ we have

TM(x) + (p+ q + 4) +m = TM ′(x).

Since the value ε is fixed, the values p, q are fixed as well. Since M is a finite
dimensional machine, the dimension m is also fixed. The third part of the lemma
follows.

We say the BSS machine M ′ from the proof above has ε as a built-in constant.
Based on the previous discussions, let us establish the following convention.

In the rest of this work, when we talk about a BSS machine which has a fixed
precision ε > 0 then

1. we assume that ε ∈ Q+;
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2. the BSS machine has ε as a built-in constant. In particular, ε is not in the
set of the machine constants but it is computed from the constant 1 at the
beginning of the computation.

At the end of this section, let us discuss what we understand by the time
complexity of an approximation problem (such as for example the approximation
of a zero of a real polynomial).

Intuitively, when we study the time complexity of an approximation prob-
lem, we expect it to depend on the input value and the required precision of our
approximation. However, this does not match with the theory which we intro-
duced in this section. Observe that we were taking about BSS machines that
have a fixed precision ε > 0. Time bounds may depend on ε but we shall treat ε
as a fixed parameter, not as a variable.

Therefore, if we want to study the time complexity of an approximation prob-
lem then we implicitly consider a family of BSS machines M = {Mε}ε∈Q+ . All
machines in the family M solve the same approximation problem but each of
them with a different precision. Hence, it make sense to talk about the general
time complexity of the family, which is now a function of the input and the pre-
cision. Note that the precision determines which BSS machine in the family we
refer to.

2.7 Informal algorithms

Let us close this chapter about BSS machines with a technical convention. We
introduced the theory of BSS machines to formally capture algorithms which op-
erates with real numbers. However, it is impractical to describe every algorithm
formally as a BSS machine. Therefore, in the rest of the work we write down al-
gorithms informally in “pseudo-code”. It should be always clear that the informal
algorithm can be formalized as a BSS machine.

So for example the BSS machine defined in Example 2.3 would be informally
describe by Algorithm 2.1.

We will also frequently use the informal notion “while-loop”. We believe that
the meaning of this expression is intuitively clear. In this concrete example, by
one “while-loop” we understand the sequence of nodes (2, 3), i.e. the sequence
(branch node, computation node).

Input: x ∈ R
k ← 0;
while x ≥ 1 do

x← x− 1;
k ← k + 1;

end
return k

Algorithm 2.1: Pseudo-code of the BSS machine defined in Figure 2.1,
which computes the floor function for non-negative real numbers
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3. The square root function

Our main aim is to analyse the functions from R to R which are easy to compute
with a BSS machine but hard to invert. In the previous chapter we showed that
BSS machines compute maps that are piecewise rational. Therefore, polynomials
and rational functions over R are of our interest.

Let us first assume that we have a non-zero rational function ψ which can be
represented by two polynomials p, q ∈ R[x] which are both of degree less or equal
to one. The rational function ψ is certainly easy to compute with a BSS machine.
Since ψ is a non-zero function, the polynomial p must be non-zero as well. Let
ϕ be a rational function such that ϕ = q

p
. Then clearly ψ · ϕ = 1. Moreover,

the rational function ϕ is as easy to compute in the BSS model as the rational
function ψ.

This discussion explains why it makes no sense to consider linear polynomi-
als or rational functions which can be represented by a fraction of two linear
polynomials. We are naturally led to study polynomials of higher degree.

In this chapter, we focus on BSS machines which try to invert the most simple
non-linear polynomial, i.e. the polynomial x2 ∈ R[x]. In other words, we are
interested in BSS machines which compute the square root of a non-negative real
number. In Section 3.2 we study if there exists a BSS machine which computes
the square root function with infinite precision. In Section 3.3 we focus on BSS
machines which compute an ε-approximation of the square root function, where
ε > 0 is an arbitrary but fixed constant.

Before we start, let us introduce one important convention about notation.

3.1 Notation

In the rest of this work M0 denotes the BSS machine which we are trying to invert
and M denotes a candidate for an inverting machine. The input of the machine
M0 will be denoted by x and the output will be denoted by y. Therefore, we
understand the input-output map of the machine M0 as a real function whose
variable is x and the input-output map of the machine M as a real function whose
variable is y. This convention is illustrated in Figure 3.1.

Hence, in this chapter M0 is a BSS machine that computes the square function,
i.e. ΦM0(x) = x2 and ΩM0 = R. In Section 3.2 we study whether there exists
a BSS machine M such that ΩM = R≥0 and ΦM(y) =

√
y. In this case we have

the following equivalence

ΦM(y) =
√
y ⇔ (ΦM(y))2 = y.

Consequently, it does not matter if we study the problem of inverting the square
function or the problem of computing the square root function.

We have to be more careful in Section 3.3. Note that if there exists a BSS
machine M such that for every y ∈ R≥0

|ΦM(y)−√y| < ε,

where ε > 0 is the fixed precision, then there also exists a BSS machine M ′ such
that for every y ∈ R≥0

|(ΦM ′(y))2 − y| < ε.
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M0

M

M0

x′ = ΦM(ΦM0(x))

x y = ΦM0(x)

ΦM0(ΦM(ΦM0(x)))

%

ε

Figure 3.1: Illustration of the used notation

Since the square function is injective on R≥0, the opposite holds as well. So if
we are interested only in the existence of a computing (respectively, an inverting)
machine then it does not matter which of these two points of view we consider.
However, for a fixed precision ε > 0, the time complexity of computing the
square root function with the precision ε is not the same as the time complexity
of inverting the square function with the precision ε. To distinguish these two
complexities and avoid confusion, we will use the letter % in the first case and the
letter ε in the second case. It is not difficult to prove that for y ∈ R≥0 and ε > 0
the implication

|ΦM(y)−√y| < %⇒ |(ΦM(y))2 − y| < ε

holds if 0 < % ≤
√
y + ε−

√
ε.

Figure 3.1 summarizes the established convention.

3.2 A square root with infinite precision

In this section we study the following problem. Is there a BSS machine which,
given an input y ∈ R≥0, outputs a value x′ ∈ R such that (x′)2 = y?

Let us first focus on constant time BSS machines.

Theorem 3.1. The set

{y ∈ ΩM : (ΦM(y))2 = y}

is finite for every constant time BSS machine M .

Proof. Without lost of generality we can assume that M is an elementary BSS
machine (see Observation 2.20 for more details).

Let γ ∈ ΓM be an arbitrary halting path and consider the set

{y ∈ νγ : (ϕγ(y))2 = y}.

We define a new polynomial ψγ ∈ R[y] as

ψγ(y) = p2
γ(y)− q2

γ(y) · y,

where pγ, qγ ∈ R[y] are such that ϕγ = pγ
qγ

. Observe that

deg(p2
γ(y)) 6= deg(q2

γ(y) · y)
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since the value deg(p2
γ(y)) is even whereas the value deg(q2

γ(y) · y) is odd.
Recall that M is a constant time machine. Thus, there exists a natural number

T ∈ N such that TM(y) ≤ T for every y ∈ ΩM . Consequently, the number of
elementary instructions performed by the machine M on an input y ∈ ΩM is also
bounded by the value T . Then we know by Theorem 2.23 that

deg(pγ) ≤ 2T and deg(qγ) ≤ 2T .

Thus, we derived the following bound

degψγ = max{2 deg(pγ), 2 deg(qγ) + 1} ≤ 2T+1 + 1.

Since the rational function ϕγ is defined on νγ, we have the following equality of
sets

{y ∈ νγ : (ϕγ(y))2 = y} = {y ∈ νγ : ψγ(y) = 0}.
We can bound the cardinality of these sets using Lemma 1.15 as

|{y ∈ νγ : (ϕγ(y))2 = y}| = |{y ∈ νγ : ψγ(y) = 0}| ≤ 2T+1 + 1.

The Path Decomposition Theorem implies the equality

|{y ∈ ΩM : (ΦM(y))2 = y}| =
∑
γ∈ΓM

|{y ∈ νγ : (ϕγ(y))2 = y}|.

We know from Lemma 2.5 that |ΓM | ≤ 2T . Consequently, we have

|{y ∈ ΩM : (ΦM(y))2 = y}| ≤ 2T · (2T+1 + 1).

Hence, we proved that the set {y ∈ ΩM : (ΦM(y))2 = y} is finite.

Let us now state one important consequence of the theorem.

Corollary 3.2. No BSS machine computes the real function
√
y exactly on any

non-trivial subinterval of R≥0.

Proof. Let M be an arbitrary BSS machine and let T ∈ N. From Theorem 3.1
we know that the set

{y ∈ ΩM,T : (ΦM,T (y))2 = y}
is finite. Hence,

{y ∈ ΩM : (ΦM(y))2 = y} =
⋃
T∈N

{y ∈ ΩM,T : (ΦM,T (y))2 = y}

is a countable union of finite set which means that it is a countable set. However,
every non-trivial subinterval of R is uncountable.

Does it mean that the square function is an “easy to compute and hard to
invert function”? There is only one elementary operation needed in order to
compute x2 but, as we just proved, there is no BSS machine that can compute
the inverse. So the answer to the question can be “Yes”.

Nevertheless, the situation in which we allow the inverting machine to make
a small mistake seems to be more natural when working with real numbers. Recall
that one of our motivations is biometric authentication. We have a biological trait
which changes a little over time. Then the requirement of equality with infinite
precision does not make a lot of sense. Mainly, because we would not be able to
authenticate ourselves.

Let us therefore study the case in which a small error is allowed.
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3.3 A square root with an arbitrary but fixed

precision

We are now in the situation in which % > 0 is a fixed constant and we study if
there is a BSS machine M such that for every y ∈ R≥0 it holds

|ΦM(y)−√y| < %.

The reason why we now use % instead of ε is explained in Section 3.1.
We prove in Subsection 3.3.1 that no constant time machine can approximate√
y with the precision % for all y ∈ R≥0. Then a natural question arises; is there

any BSS machine that computes the square root function with the precision %?
And if so, what is its time complexity?

We show that there is a positive answer to the first question. To answer the
latter, we present both an upper bound (in Subsection 3.3.2) and a lower bound
(in Subsection 3.3.3) on the time complexity of this problem.

3.3.1 Constant time machines

Let % > 0 be an arbitrary fixed constant. Firstly, we prove that for every constant
time BSS machine M the set

{y ∈ R≥0 : |ΦM(y)−√y| < %}

is bounded. As a consequence, no constant time machine can compute the square
root function for all non-negative real numbers.

Theorem 3.3. Let % > 0. For every constant time BSS machine M there exists
δ > 0 such that for every y > δ it holds that |ΦM(y)−√y| > %.

Let us first observe that by the definition of limit it is sufficient to show that

lim
y→∞
|ΦM(y)−√y| =∞.

Before we prove the theorem, let us state an auxiliary lemma about limits.

Lemma 3.4. Let a, b ∈ R[y] be two polynomials such that

a(y) =
n∑
i=0

aiy
i, b(y) =

m∑
i=0

biy
i,

where ai, bi ∈ R, n,m ≥ 0 and an, bm 6= 0. Then

lim
y→∞

∣∣∣∣a(y)

b(y)
−√y

∣∣∣∣ =∞.

Proof. a) If n > m then by the Algebraic Limit Theorem we have

lim
y→∞

a(y)− b(y) · √y
b(y)

= lim
y→∞

(
yn

ym
·
a(y)
yn
− b(y)·√y

yn

b(y)
ym

)
=
an
bm
· lim
y→∞

yn−m,

which equals ±∞ depending on the sign of an
bm

. Recall that an, bm 6= 0.
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b) If n ≤ m then again by the Algebraic Limit Theorem we have

lim
y→∞

a(y)− b(y) · √y
b(y)

= lim
y→∞

ym · √y
ym

·
a(y)
ym·√y −

b(y)·√y
ym·√y

b(y)
ym


=
−bm
bm
· lim
y→∞

√
y

which equals −∞.

We proved that lim
y→∞

(
a(y)
b(y)
−√y

)
= ±∞ and the statement follows.

Now we are prepared to prove Theorem 3.3.

Proof (Theorem 3.3). Let M be a constant time BSS machine. By definition
there is a natural number T ∈ N such that TM(y) ≤ T for all y ∈ ΩM . We know
from Theorem 2.14 that ϕγ is a rational function for every γ ∈ ΓM . So according
to Lemma 3.4 there exists δγ > 0 such that for all y ∈ νγ the following implication
holds

y > δγ ⇒ |ϕγ(y)−√y| > %.

Let us define the value δ as
δ := max

γ∈ΓM
δγ.

By Lemma 2.5 we have the bound |ΓM | ≤ 2T . Consequently, the set {δγ : γ ∈ ΓM}
is finite and thus the maximum exists.

Next, fix an arbitrary real number y > δ. Then by Theorem 2.14 the equality

|ΦM(y)−√y| = |ϕγ(y)−√y|

holds for exactly one γ ∈ ΓM . Because y > δ ≥ δγ, we derived that

|ΦM(y)−√y| > %.

3.3.2 Upper bound on the time complexity

The aim of this section is to construct a concrete BSS machine which approxi-
mates

√
y with the precision %, where % > 0 is fixed. Secondly, we bound the

time complexity of the constructed machine. And finally, we analyse the set of
machine constants.

In fact, we present two algorithms (BSS machines) in this section. The first
one is essentially the half-interval search algorithm which has the time complexity
O (log2(y)− log2(%)). The second algorithm is based on Newton’s method which
has a better time complexity O (log2 (log2(y)− log2(%))). Nevertheless, Newton’s
method does not always converge. In order to solve this problem, we first have to
make some non-trivial precomputations. In total, we achieve the time complexity

O
(
(log2 (loga(y)− loga(%)))2) ,

where a ≈ 1.6.
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In sake of proving the claimed time complexities, we need to include many
technical and rather lengthy computations in this subsection.

Before we start with the first method, let us recall some technical conventions
from the previous chapter. An algorithm (written down in “pseudo code”) will
informally describe a family of BSS machines M = {M%}%. A BSS machine
M% ∈ M approximates the square root function with the precision %. Moreover,
a machine M% has % as a built-in constant. And finally, when we talk about
the time complexity of the algorithm then we mean the time complexity of the
corresponding family of machines (i.e. it depends both on the input y and the
precision %). See Section 2.6 and Section 2.7 for more details.

The half-interval search method

Let % > 0 be fixed. The idea of this algorithm is very simple. We start with
a closed interval which contains

√
y. In every step we take the middle of the

interval and decide which subinterval contains
√
y. Then we apply the same

procedure on this subinterval. We continue until the length of the interval is
smaller than %. We end up with an interval that contains

√
y and every point of

the interval approximates
√
y with the precision %.

Input: y ∈ R≥0

Output: z ∈ R such that |z −√y| < %

zL ← 0;

zR ← max{1, y} ;

while zR − zL ≥ % do

zM ← zL + zR−zL
2

;

if z2
M < y then

zL ← zM ;

end

else

zR ← zM ;

end

end

return zL

Algorithm 3.1: Approximation of
√
y based on the half-interval search

method

Theorem 3.5. Algorithm 3.1 halts on every valid input y ∈ R≥0 and it outputs
a value z ∈ R such that

|z −√y| < %.

Its time complexity for y ≥ 1 is O
(

log2

(
y
%

))
while the set of the constants is

{0, 1}.
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Proof. Let us denote z
(m)
L , z

(m)
R , z

(m)
M the values zL, zR, zM after the m-th while-

loop. By induction on m we first prove that

z
(m)
L ≤ √y ≤ z

(m)
R ,

for every m ≥ 0.
For m = 0 we have to distinguish two cases. If y ≥ 1 then 0 ≤ √y ≤ y.

This is what we want since z
(0)
R = y. The other case follows from the fact that if

0 ≤ y < 1 then also 0 ≤ √y < 1.

Let us now assume that the inequalities z
(m)
L ≤ √y ≤ z

(m)
R hold. According to

the algorithm, the value z
(m+1)
M is computed as

z
(m+1)
M ← z

(m)
L +

z
(m)
R − z(m)

L

2
.

Since the square root function is strictly increasing, the following implication
holds (

z
(m+1)
M

)2

< y ⇒ z
(m+1)
M <

√
y.

By setting z
(m+1)
L ← z

(m+1)
M and z

(m+1)
R ← z

(m)
R we achieve

z
(m+1)
L = z

(m+1)
M <

√
y
IH

≤ z
(m)
R = z

(m+1)
R .

Analogously, the implication(
z

(m+1)
M

)2

≥ y ⇒ z
(m+1)
M ≥ √y

holds. By assigning z
(m+1)
L ← z

(m)
L and z

(m+1)
R ← z

(m+1)
M we have

z
(m+1)
L = z

(m)
L

IH

≤ √y ≤ z
(m+1)
M = z

(m+1)
R .

We proved that
√
y ∈

[
z

(m)
L , z

(m)
R

]
for every m ≥ 0.

According to the algorithm, we proceed until z
(m)
R − z(m)

L < %. Then for any

z ∈
[
z

(m)
L , z

(m)
R

]
it holds that |z − √y| < % which implies the correctness of the

algorithm.
Note that for every m ≥ 0 we have

z
(m+1)
R − z(m+1)

L =
z

(m)
R − z(m)

L

2
.

Consequently, the following equality holds

z
(m)
R − z(m)

L =
z

(0)
R − z

(0)
L

2m
.

For y < 1, we can assume that % < 1 (otherwise we can just output y). In
this case the algorithm stops when

1

2m
< %.
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This means that the algorithm stops after m = d− log2(%)e while-loops.

When y ≥ 1, the initial difference z
(0)
R − z

(0)
L equals y. So the algorithm stops

in this case when
y

2m
< % ⇔ log2(y)− log2(%) < m.

Thus the number of while-loops equals dlog2(y)− log2(%)e.
For studying the time complexity, we are interested only in the case in which

y ≥ 1. From the discussion above we know the number of performed while-loops.
There are only constantly many elementary instructions (computation nodes) and
one branch node needed in every while-loop. Thus, we can conclude that the time

complexity of the algorithm is O
(

log2

(
y
%

))
as stated in the theorem.

Finally, note that the constant 2 can be computed by one elementary instruc-
tion from the constant 1 and recall that we assume % to be a built-in constant.
As a result, the set of machine constants is the set {0, 1}.

We proved that there exists a very simple BSS machine that approximates
the square root for any y ∈ R≥0 with some fixed accuracy % > 0. Next, we try to
find a BSS machine which does the same but more efficiently.

Newton’s method

It will be useful to rephrase our problem in the following way. Approximate the
positive root of the polynomial f(z) = z2 − y ∈ R[z] with precision % > 0. This
equivalent task is, indeed, very well know and studied. There are many methods
in numerical analysis for root approximation of a real polynomial.

One of these methods is Newton’s method (know also as the Newton-Raphson
method). Authors of the book [1] pay a lot of attention to Newton’s algorithm;
mainly, in Chapters 8 and 9. Because we base our second algorithm on this
method, we introduce its main ideas and state important theorems. Nevertheless,
technical proofs are omitted and can be found in the book mentioned above.

Definition 3.6. Given a one-variable polynomial f over R we define the Newton
endomorphism Nf : R→ R as

Nf (z) = z − f(z)

f ′(z)
.

As usual, the f ′ denotes the first derivative of the function f . The Newton
endomorphism is defined if f ′(z) 6= 0.

Let us establish the following notation. For k ∈ N we denote

zk = N
(k)
f (z0) = (Nf ◦ · · · ◦Nf︸ ︷︷ ︸

k

)(z0).

The idea is to choose a good starting point z0 ∈ R and apply the Newton
endomorphism iteratively until we find a point that is % close to a zero of the
polynomial f . Algorithm 3.2 makes this idea more formal.

The problem is that Algorithm 3.2 is generally not convergent. Let us demon-
strate it on an example.
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Input: z0 ∈ R
Output: z ∈ R such that |f(z)| < %
z ← Nf (z0);
while |f(z)| > % do

z ← Nf (z);
end
return z

Algorithm 3.2: Newton’s algorithm

Example 3.7 ([1, Section 1.2.3]). For the polynomial f(z) = z3 − 2z + 2 ∈ R[z]
we have

Nf (z) = z − z3 − 2z + 2

3z2 − 2
.

If we choose z0 = 0 then z1 = Nf (z0) = 1 and z2 = Nf (z1) = 0. We see that
zi ∈ {0, 1} for every i ∈ N. Thus, the sequence (zi)

∞
i=0 does not converge to any

root of the polynomial f .

This shows that there are bad starting points for which Newton’s method
does not work. It turns out that if we start sufficiently close to a zero of the
polynomial then the sequence (zi)

∞
i=0 converges. We formalize what we mean by

“sufficiently close” in the next definition.

Definition 3.8 ([1, Definition 1 in Chapter 8]). We call z ∈ R an approximate
zero of a polynomial f if the sequence z0 = z, zi = Nf (zi−1) is defined for all
i ∈ N and there is a real number ξ such that f(ξ) = 0 and

|zi − ξ| ≤
(

1

2

)2i−1

|z − ξ|.

We call ξ the associate zero.

The following lemma studies the time complexity of Newton’s algorithm as-
suming that the input is an approximate zero.

Lemma 3.9. Let z ∈ R be an approximate zero of a polynomial f with associated
zero ξ. Let L ∈ R be such that |z − ξ| ≤ L. Then we can approximate the zero ξ
to any accuracy % > 0 in

dlog(| log(%)|+ log(L) + 1)e

iterations of the Newton endomorphism.

Proof. We want to find i ∈ N such that |zi − ξ| < %. Since z0 := z is an
approximate zero and |z − ξ| ≤ L, we know that

|zi − ξ| ≤
(

1

2

)2i−1

· L.

It is sufficient to find i ∈ N such that

2−(2i−1)L < % ⇔ 2i > − log(%) + log(L) + 1.
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Note that − log(%) ≤ | log(%)|. Thus, it suffices to find i ∈ N such that

2i > | log(%)|+ log(L) + 1 ⇔ i > log (| log(%)|+ log(L) + 1) .

A natural question arises. How to find an approximate zero of a polynomial?
This is, indeed, a non-trivial question on which we concentrate in the rest of this
subsection.

Following the approach of authors of the book [1], let us first define auxiliary
quantities γ(f, z), β(f, z) and α(f, z). For a polynomial f and a point z ∈ R we
define

γ(f, z) = sup
k≥2

∣∣∣∣ f (k)(z)

f ′(z) · k!

∣∣∣∣
1

k−1

, (3.1)

β(f, z) =

∣∣∣∣ f(z)

f ′(z)

∣∣∣∣ , (3.2)

α(f, z) = β(f, z) · γ(f, z). (3.3)

where f (k) denotes the k-th derivative of f as usual.
The following theorem is crucial for our algorithm since it gives a criterion for

z to be an approximate zero.

Theorem 3.10 ([1, Theorem 2 in Chapter 8]). There is a universal constant
α0 such that if α(f, z) < α0 then z is an approximate zero of f . Moreover, the
distance of z from the associated zero is at most 2 · β(f, z).

Remark 3.11 ([1, Remark 6 in Chapter 8]). A lot of research have been done
in order to prove Theorem 3.10 with the constant α0 as large as possible. The
authors of the book [1] give a proof for α0 = 0.03. S. Smale proved in [11] that
the theorem holds for a larger constant, i.e. α0 ≈ 0.130707. Furthermore, the
author of [14] improved the bound to α0 ≈ 0.157671. For our purposes it is
important that the constant exists, that it lies in the interval

(
0, 1

4

)
and that it

is only constantly times smaller than 2.

We will now apply this general theory to our concrete problem. For a given
real number y ∈ R≥0 and fixed precision % > 0, we want to approximate the
non-negative root of the polynomial z2 − y ∈ R[z] with precision % > 0. Let us
therefore set

f(z) = z2 − y.
At this point we should mention that this special case of Newton’s method is also
known as the Babylonian method. It is one of the oldest method of square root
approximation. Interestingly, this method is still widely implemented and used
nowadays.

Let us now apply the general theory from above on this special case. For
f(z) = z2 − y we have

f (k) =


2z, for k = 1;

2, for k = 2;

0, for k > 2.
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The Newton endomorphism is in this case

Nf (z) = z − f(z)

f ′(z)
= z − z2 − y

2z
=
z + y

z

2
.

Note that it this special case, the Newton endomorphism is in fact the average of
z and y/z.

We can also express the quantities γ, β, α. Using formulae (3.1), (3.2) and
(3.3) on the polynomial f(z) = z2 − y, we achieve

γ(f, z) =

∣∣∣∣ f (2)(z)

f ′(z) · 2!

∣∣∣∣ =
1

2 · |z|
,

β(f, z) =

∣∣∣∣z2 − y
2z

∣∣∣∣ ,
α(f, z) =

1

2 · |z|
·
∣∣∣∣z2 − y

2z

∣∣∣∣ =
|z2 − y|

4z2
.

Finally, Theorem 3.10 gives us the condition

|z2 − y|
4z2

< α0.

Thus, for 0 < α0 <
1
4

we have the following inequalities

y

1 + 4α0

< z2 <
y

1− 4α0

.

We know from Remark 3.11 that the constant α0 can be chosen from this interval.
Note that for y > 0 both

y

1 + 4α0

< y and y · (1 + 4α0) <
y

1− 4α0

hold. It follows that it is sufficient to find z such that

y ≤ z2 ≤ y · (1 + 4α0). (3.4)

Lemma 3.12. Let a ∈ R be such that 1 ≤ a ≤ 1 + 4α0. For y ≥ a, let b ∈ N
denote the maximal positive integer with the property ab ≤ y. Then

z = a
b+1
2

satisfies the inequalities (3.4).

Proof. The square of the z from the statement is z2 = ab+1. Thus, from the
maximality of b we know that y ≤ z2. To prove the other inequality, recall that
a ≤ 1 + 4α0 which implies that

z2 ≤ ab · (1 + 4α0).

Moreover, we know that ab ≤ y. We derived that

z2 ≤ y · (1 + 4α0).
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Lemma 3.12 tells us that, in order to find an approximate zero of the polyno-
mial f(z) = z2 − y, we need to

I.) find a constant a such that 1 ≤ a ≤ 1 + 4α0 and then

II.) find the value a
b+1
2 where b is the maximal integer such that ab ≤ y.

We study each part separately. Let us first focus on the task I.). In fact we show
how to construct a constant a using only constants from the set {0, 1}. It will be
useful to have the value

√
a as well (the reason becomes clear later). Therefore,

our approach is to first construct a value c such that 1 ≤ c2 ≤ 1 + 4α0 and then
set a = c2.

The construction, indeed, depends on the constant α0. According to Re-
mark 3.11 the best known constant α0 is approximately 0.157671. In that case
(1 + 4α0) ≈ 1.630684. Let us therefore introduce one concrete procedure that
will output constants c and a such that a ≤ 1.630684. The idea is to set
c = 1 + 1

2
· 1

2
= 1.25. Then a = c2 = 1.5625 < 1.630684. Algorithm 3.3 de-

scribes the construction of c in detail as a sequence of elementary instructions.

(s1, s2)← (1, 0) ;
(s1, s2)← (s1, s1 + s1) ; // (1, 2)
(s1, s2)← (s1, 1/s2) ; // (1, 1/2)
(s1, s2)← (s1, s2 · s2) ; // (1, 1/4)
(s1, s2)← (s1 + s2, s2) ; // (5/4, 1/4)
(s1, s2)← (s1, s

2
1) ; // (5/4, 25/16)

return s1, s2

Algorithm 3.3: Construct the constants a and c

We see that the constants c and a can be constructed from constants {0, 1}
in seven elementary instructions (we need two instructions for the initialization
(s1, s2)← (1, 0)). It should be clear that a similar BSS machine can be built even
if a different constant α0 is considered.

Now we focus on the part II.). In particular, we study how to find the value

a
b+1
2 where b is the maximal integer such that ab ≤ y. Let us note that this part

consists of many technical arguments.
We know that every natural number b can be written in base 2, i.e. there is

an integer k ≥ 0 such that

b =
k∑
i=0

bi2
i = bk2

k + bk−12k−1 + . . .+ b12 + b0,

where bi ∈ {0, 1}, for all i ∈ {0, . . . , k−1}, and bk = 1. Therefore, we can express
the value ab as follows

ab = a2k+bk−12k−1+...+b020 =
k∏
i=0

abi2
i

.

The natural number b is such that

ab ≤ y < ab+1.
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According to the discussion above, we can modify this inequalities as

a2k · abk−12k−1 · . . . · ab020 ≤ y <
(
a2k · abk−12k−1 · . . . · ab020

)
· a. (3.5)

Consequently, we have the following inequalities

abk−12k−1 · . . . · ab020 ≤ y

a2k
<
(
abk−12k−1 · . . . · ab020

)
· a.

If we set b′ = b

a2k
and u = y

a2k
then

ab
′ ≤ u < ab

′ · a.

As a result, the value b′ is the maximal integer such that ab
′ ≤ u. We can now

employ the same reasoning on the values b′ and u. Let k′ be maximal such that
k′ < k and bk′ 6= 0. Then in follows that

b′ =
k−1∑
i=0

bi2
i =

k′∑
i=0

bi2
i.

From here we see that after at most k repetitions of the procedure, we are in the
situation

ab020 ≤ y

a2k · . . . · ab121
< ab020 · a.

We know that ab020 = ab0 and ab0 ≤ a. Therefore, we have

ab0 ≤ y

a2k · . . . · ab121
< a2. (3.6)

Let us denote z′ =
k∏
i=1

abi2
i−1

. Then we can observe that

z′ =

{
a
b
2 , if b is even (i.e. b0 = 0),

a
b
2
− 1

2 , if b is odd (i.e. b0 = 1).

This implies that

a
b+1
2 =

{
z′ · a 1

2 , if b is even (i.e. b0 = 0),

z′ · a, if b is odd (i.e. b0 = 1).

Note that the inequalities (3.6) are equivalent to

1 ≤ y

(z′)2
< a, if b0 = 0,

a ≤ y

(z′)2
< a2, if b0 = 1.

We can conclude that the value z from Lemma 3.12 can be obtained as

z =

{
z′ ·
√
a, if 1 ≤ y

(z′)2
< a,

z′ · a, if a ≤ y
(z′)2

< a2.

Note that this explains why we wanted to construct not only the constant a but
also the constant c =

√
a in the part I.).

Let us summarize the problem which we are trying to solve in this part. We
are given values a,

√
a and y such that a ≤ y. We want to find the value a

b+1
2 ,

where b is the maximal integer such that ab ≤ y. According to the discussion
above, we need to do the following:
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1. set u← y and z ← 1;

2. find the maximal integer k ≥ 0 such that a2k ≤ u;

3. if k = 0 and u < a then output z ·
√
a and halt;

4. if k = 0 and u ≥ a then output z · a and halt;

5. reassign u← u

a2k
and z ← z · a2k−1

;

6. goto step 2.

The remaining problem which we need to solve is the step 2. We will study
this non-trivial task separately as an auxiliary algorithm.

For a, u such that 1 ≤ a ≤ u we want to find the maximal integer k ≥ 0 having
the property a2k ≤ u (the condition a ≤ u ensures that such k always exists).
Note that we do not need to know the value k but, in fact, only the values a2k

and a2k−1
. Let us therefore define two auxiliary values s−1, s0 as follows

s0 = a2k and s−1 =

{
0, if k = 0;

a2k−1
, if k ≥ 1.

(3.7)

The following algorithm shows how to find the values s−1, s0 given values a and u.

Input: a, u such that 1 < a ≤ u
Output: s−1, s0 satisfying equalities (3.7).
s−1 ← 0;
s0 ← a;
s1 ← a2;
while s1 ≤ u do

s−1 ← s0;
s0 ← s1;
s1 ← s2

1;

end
return s−1, s0

Algorithm 3.4: Find the maximal integer k such that a2k ≤ u

Theorem 3.13. Given the values u, a such that 1 < a ≤ u, Algorithm 3.4 solves
the task of finding values s−1, s0 which satisfy the equalities (3.7). The time
complexity of Algorithm 3.4 is O(log2(loga(u))) and the set of used constants is
{0, 1}.

Proof. For m ∈ N let us denote s
(m)
1 , s

(m)
0 , s

(m)
−1 the values s1, s0, s−1 before the

m-th while-loop.
We first prove the following auxiliary statement. For every m ∈ N

s
(m)
1 = a2m .
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We proceed by induction on m. After the initialisation we have

s
(1)
1 = a2 = a21 ,

thus, the auxiliary statement holds for m = 1. Assume now that s
(m−1)
1 = a2m−1

.
Then we have the following equalities

s
(m)
1 =

(
s

(m−1)
1

)2

=
(
a2m−1

)2

= a2m .

Hence, we proved the auxiliary statement.
It follows that if the algorithm stops then s

(m)
1 is of the form a2m , where m

equals the number of performed while-loops minus one. In other words, if we set
k = m − 1, then k is the maximal integer such that a2k ≤ u. We derived that
the value k from the definition (3.7) equals the number of performed while-loops.
Observe that

a2k ≤ u ⇔ 2k ≤ loga(u) ⇔ k ≤ log2 (loga(u)) . (3.8)

We can conclude that the algorithm always terminates.
By induction on k we now prove that the output is correct, i.e. that it satisfies

the equalities (3.7). For k = 0 we have s0 = a20 and s−1 = 0 as required. For
k ≥ 1 we see that

s
(k+1)
0 = s

(k)
1 = a2k ,

s
(k+1)
−1 = s

(k)
0 = s

(k−1)
1 = a2k−1

.

Thus, the algorithm always returns the correct output.
It remains to prove the stated time complexity. As we already discussed, the

number of while-loop is less or equal to dlog2 (loga(u))e. There are only three
elementary instructions in the initialization phase. The same number of elemen-
tary operations is performed in every while-loop. The branch condition needs one
elementary instruction. Thus, we can conclude that the time complexity of the
algorithm is O(log2 (loga(u))).

We see directly from the algorithm that the only used constants are 0 and 1
as stated.

Now we are finally prepared state Algorithm 3.5 which finds an approximate
zero of the polynomial f(z) = z2 − y, where y ≥ 1 + 4α0 is the input of the
algorithm.

Theorem 3.14. Algorithm 3.5 succeeds in finding a value z such that

y ≤ z2 ≤ y · (1 + 4α0),

where y > 1 + 4α0 is the input of the algorithm. The time complexity of Algo-
rithm 3.5 is O

(
(log2 loga(y))2) and the set of used constants is {0, 1}.

The algorithm was derived from the discussion after Lemma 3.12. The fact
that the algorithm works follows from this discussion. Therefore, we do not repeat
all arguments again and only sketch the proof of the theorem.
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Input: y ∈ R such that y > 1 + 4α0

Output: z ∈ R such that y ≤ z2 ≤ y · (1 + 4α0)
(c, a)← Algorithm3.3();
u← y;
z ← 1;
(s−1, s0)← Algorithm3.4(a, u);
while s−1 6= 0 do

u← u
s0

;

z ← z · s−1;
if u < a then

s−1 = 0;
end
else

(s−1, s0)← Algorithm3.4(a, u);
end

end
if u < a then

z ← z · c;
end
else

z ← z · a;
end
return z

Algorithm 3.5: Find an approximate zero of the polynomial z2− y ∈ R[z]
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Proof (Sketch). The correctness of the result follows from the discussion after
Lemma 3.12 and the correctness of Algorithm 3.4, which was proved in Theo-
rem 3.13.

Let k be the maximal integer such that a2k ≤ y. From the discussion we also
know that after at most k calls to Algorithm 3.4 we are in the situation

1 ≤ u < a2.

Thus, either u < a and s−1 is set to 0. Or a ≤ u < a2 and the next call to
Algorithm 3.4 returns s−1 = 0. In both cases s−1 = 0 which means that the while
condition is not satisfied. We derived that Algorithm 3.5 stops after at most k
while-loops.

In order to prove the stated time complexity, recall that Algorithm 3.5 per-
forms only constantly many elementary operations. From Theorem 3.13 we know
that the time complexity of Algorithm 3.4 is O (log2 (loga(y))). Thus, for the
initialization phase we need O (log2 (loga(y))) elementary instructions. For every
while-loop we need two branch nodes, we perform only constantly many ele-
mentary instructions and we call Algorithm 3.4 once. Algorithm 3.4 is called
with input value u < y. Therefore, the time complexity of every while-loop is
O (log2 (loga(y))). We know that there are at most k while-loops. Recall the
inequality (3.8), which tells us that

k ≤ log2 (loga(y)) .

Before we output the result we branch once and then perform one elementary
instruction. All together, the time complexity of Algorithm 3.5 is

O (log2 (loga(y))) + log2 (loga(y)) · O (log2 (loga(y))) .

The expression can be simplified to

O
(
(log2 (loga(y)))2) .

Finally, observe that Algorithm 3.5 uses only constants from the set {0, 1}
and constants that are used in Algorithm 3.3 and Algorithm 3.4. But we have
already discussed that the only constants appearing in these auxiliary algorithms
are 0 and 1.

Now we are prepared to define the final algorithm that approximates the
square root of a given non-negative real number y with the precision % > 0.

Theorem 3.15. Algorithm 3.6 given an input y ≥ 1+4α0 returns a value z such
that

|z2 − y| < %.

The time complexity of the algorithm is O
(
(log2(loga(y)− loga(%)))2) while the

set of used constants is {0, 1}.

Proof. The correctness of our algorithm follows from the correctness of Newton’s
method. From Theorem 3.14 we know that Algorithm 3.5 returns an approximate
zero of the polynomial f(z) = z2 − y. Thus, Newton’s algorithm converges by
Lemma 3.9. This proves that Algorithm 3.6 halts on every input.
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Input: y ∈ R such that y ≥ 1 + 4α0

Output: z ∈ R such that |z2 − y| < %

z0 ← Algorithm3.5(y);

z ← 1
2
· (z0 + y

z0
);

while |z2 − y| ≥ % do

z ← 1
2
· (z + y

z
);

end

return z

Algorithm 3.6: Approximation of
√
y based on Newton’s method

Let us now discuss its time complexity. From Theorem 3.14 we know that the
time complexity of finding an approximate zero z0 is

O
(
(log2 (loga(y)))2) .

Lemma 3.9 tell us that for 0 < % < 1 we need O
(

log2(log2

(
L
%

)
)
)

iterations of

the Newton endomorphism, where L is the upper bound on the distance between
the approximate zero and its associated zero. In other words, L is such that

|z0 −
√
y| ≤ L.

From Theorem 3.10 we know that

|z0 −
√
y| ≤ 2β(f, z0).

Recall that the quantity β(f, z0) for the polynomial f(z) = z2 − y is

β(f, z0) =

∣∣∣∣z2
0 − y
2z0

∣∣∣∣ .
The equalities (3.4) imply that the output of Algorithm 3.5 is such that

y ≤ z2
0 ≤ y(1 + 4α0),

which is equivalent to
0 ≤ z2

0 − y ≤ 4α0y.

Since y > 1 + 4α0, we have

y ≤ z2
0 ⇒ 1 < z2

0 ⇒ 1 < z0.

Also recall that 0 < α0 < 1
4
. Putting all these observations together we can

conclude that

2β(f, z0) =

∣∣∣∣z2
0 − y
z0

∣∣∣∣ ≤ |z2
0 − y| = z2

0 − y ≤ 4α0y ≤ y.
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Thus, we need O
(

log2

(
log2

(
y
%

)))
iterations of the Newton endomorphism in

order to compute the value z given the approximate zero z0. We see that the com-
putation of the Newton endomorphism for f(z) = z2−y is done by three elemen-

tary operations. Hence, we can find z knowing z0 in time O
(

log2

(
log2

(
y
%

)))
.

Note that for 0 < % < 1 we have

log2 (loga(y)) ≤ log2

(
loga

(
y

%

))
.

Since 1 < a < 2, we also know that

log2

(
log2

(
y

%

))
≤ log2

(
loga

(
y

%

))
.

The stated time complexity of Algorithm 3.6 follows.
It remains to prove that the set of used constants is {0, 1}. We know from

Theorem 3.14 that, in order to find the value z0, we need only 0 and 1. In the
second part of the Algorithm 3.6 we use only {0, 1} since the constant 1

2
can be

computed from the constant 1 by two elementary operations.

Let us summarize this subsection. We presented two algorithms both of which
approximate the square root of a non-negative integer with an arbitrary but fixed
precision %. The second introduced algorithm is more efficient than the first
one. It is based on Newton’s method and we proved that its time complexity is
O
(
(log2(loga(y)− loga(%)))2), where a ≈ 1.6. It is natural to ask whether there

is an algorithm approximating the square root function whose time complexity is
even better. We study this question in the following subsection.

3.3.3 Lower bound on the time complexity

In this subsection we discuss a lower bound on the time complexity of computing
the square root function by a BSS machine. Without lost of generality, we can re-
strict ourselves to elementary BSS machines. See Observation 2.20 in Section 2.2
for more details. The number of elementary instructions performed by an ele-
mentary BSS machine M on an input y ∈ ΩM is strictly smaller than the halting
time TM(y). Therefore, it is sufficient to find a lower bound on the number of
elementary instructions.

Consider a rational function ϕ computed by an elementary BSS machine M in
k ∈ N elementary instructions. As usual, C denotes the set of machine constants.
Recall what we know from Section 2.2. By Theorem 2.23 the rational function ϕ
is represented by a fraction of two fixed polynomials p, q ∈ R[y] such that

ϕ =
p

q
, (3.9)

deg(p), deg(q) ≤ 2k, (3.10)

coef(p), coef(q) ⊆ 22k+1 ·
(
C̃2k

)
, (3.11)

where C̃ = C ∪ −C. Thus, by Lemma 1.13 we have

deg(p2), deg(q2) ≤ 2k+1,

coef(p2), coef(q2) ⊆ 2k ·
(

22k+1 ·
(
C̃2k

))2

.
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The expression on the right hand side of the inclusion can be simplified using
relations stated in Lemma 1.3 as

22k
(

22k+1 ·
(
C̃2k

))2

= 22k+2+2k ·
(
C̃2k+1

)
⊆ 22k+3 ·

(
C̃2k+1

)
.

The inclusion follows from the fact that 2k+2 + 2k ≤ 2k+3 for any k ∈ N. Let us
recall the following notation. For A ⊆ R we defined

maxA = max{|c| : c ∈ A},
minA = min{|c| : c ∈ A \ {0}},
µ(t,A) = mintA.

For a polynomial p we will write maxp (respectively, minp) instead of maxcoef(p)

(respectively, mincoef(p)). We believe that this simplified notation will not cause
any confusion.

Furthermore, from Observation 1.6 we know that maxC = max−C. Conse-
quently, maxC = maxC̃. Using the simplified notation we can conclude that

maxp2 ,maxq2 ≤ 22k+3 · (maxC)2k+1

, (3.12)

minp2 ,minq2 ≥ µ
(

22k+3

, C̃2k+1
)
. (3.13)

Before we return back to our original task, let us make one general observation,
which follows from the triangular inequality.

Observation 3.16. Let p, q ∈ R[y] be two polynomials and let r ∈ R[y] be such
that r = p− q. Then maxr ≤ maxp + maxq.

Now we are prepared to state the main theorem of this passage. It will be
convenient to view M as a machine that inverts the square function rather than
a machine that computes the square root function. The relationship between
these to approaches was discussed in detail in Section 3.1.

Theorem 3.17. Let ε > 0. Let M be an elementary BSS machine inverting
the square function with the precision ε. Let C be the set of machine constants.
Consider γ ∈ ΓM to be a halting path with k ∈ N computation nodes (elementary
instructions). Let ϕ be the corresponding rational function and let p, q ∈ R[y]
be the fixed polynomials whose fraction represents the rational function ϕ. Let
ν ⊂ ΩM be the semi-algebraic set corresponding to the halting path γ. Then the
following inclusion holds{

y ∈ ν :
∣∣ϕ2(y)− y

∣∣ < ε
}
⊆
[
0, 1 +

maxp2 + maxq2 +ε ·maxq2

min{minp2 ,minq2}

]
.

Let us first make two remarks. We know that ΩM = R≥0 must be the case
since we assume M to be a machine that inverts the square function whose range
is R≥0. Next, recall from the beginning of this subsection that the polynomials
p, q from the statement satisfy the conditions (3.9) - (3.11).

Before we formally prove the theorem, let us explain the main idea of the
proof. Suppose that we have a polynomial ψ ∈ R[y] whose leading coefficient is
positive and for which there exists n ∈ R≥0 such that{

y ∈ ν :
∣∣ϕ2(y)− y

∣∣ < ε
}
⊆ [0, n] ∪ {y ∈ ν : ψ(y) < 0}.
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Then we can apply Lemma 1.16 on the polynomial ψ and obtain a bound nψ on
the absolute value of the zeros of the polynomial ψ. From Corollary 1.17 we know
that nψ is such that

{y ∈ R≥0 : ψ(y) < 0} ⊆ [0, nψ].

Thus, for N = max{n, nψ} we would have{
y ∈ ν :

∣∣ϕ2(y)− y
∣∣ < ε

}
⊆ [0, N ].

In the proof we show that the bound N can be chosen as stated in the theorem.
Let us make one final remark before we proceed to the proof. Since ϕ2 = p2

q2

and the rational function is defined for every y ∈ ν, the following two sets are the
same {

y ∈ ν :
∣∣ϕ2(y)− y

∣∣ < ε
}

= {y ∈ ν : |p2(y)− yq2(y)| < εq2(y)}.

Proof of Theorem 3.17. We will proceed by a case analysis splitting on the degree
of polynomials p and q.

(I) Assume first that deg(p) = deg(q) = 0.
In this case p(y) = α, q(y) = β 6= 0 for some α, β ∈ R. Then for every
y ≥ α2

β2 we have

|α2 − yβ2| < εβ2 ⇔ yβ2 − α2 < εβ2 ⇔ y <
α2

β2
+ ε.

Consequently, we achieve the following inclusion

{
y ∈ ν :

∣∣ϕ2(y)− y
∣∣ < ε

}
⊆
[
0,
α2

β2
+ ε

]
⊆
[
0,

maxp2

minq2
+ ε

]
.

(II) Suppose now that deg(p) 6= 0 or deg(q) 6= 0.

(1) We first discuss the situation when deg(p) > deg(q). In this case we
know the leading coefficient of the polynomial p2 − yq2, i.e.

lc
(
p2 − yq2

)
= lc(p2) > 0.

By Observation 3.16 and the fact that coef(q2) = coef(y · q2) we have

maxp2−yq2 ≤ maxp2 + maxq2 .

Now we apply Lemma 1.16 on the polynomial p2− yq2 and obtain the
following value

n = 1 +
maxp2 + maxq2

minp2
,

which bounds the absolute value of zeros of the polynomial p2 − yq2.
Since lc (p2 − yq2) > 0, by Corollary 1.17 we can conclude that for
every y > n the following inequality holds

p2 − yq2 > 0.
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Consequently, for y > n we have the equivalence

|p2(y)− yq2(y)| < εq2(y) ⇔ p2(y)− yq2(y)− εq2(y) < 0.

Let us now define a polynomial ψ as

ψ(y) = p2(y)− yq2(y)− εq2(y).

Recall that we study the case where deg(p) > deg(q); therefore, we
have lc(ψ) = lc(p2). Lemma 1.16 together with Observation 3.16 gives
us the bound

nψ = 1 +
maxp2 + maxq2 +ε ·maxq2

minp2
.

Because the leading coefficient of ψ is positive, the bound derived
above is such that for every y > nψ the value ψ(y) is positive (see
Corollary 1.17). Moreover, note that n < nψ. In conclusion,

{
y ∈ ν :

∣∣ϕ2(y)− y
∣∣ < ε

}
⊆
[
0, 1 +

maxp2 + maxq2 +ε ·maxq2

minp2

]
.

(2) Let us focus on the remaining case, i.e. when deg(p) ≤ deg(q). Then

lc
(
p2(y)− yq2(y)

)
= −lc(q2(y)) < 0.

From Lemma 1.16 and Observation 3.16 we obtain the following bound

n = 1 +
maxp2 + maxq2

minq2
.

From Corollary 1.17 we know that the bound is of the following prop-
erty. For all y > n it holds that

p2(y)− yq2(y) < 0.

Hence, for y > n we have

|p2(y)− yq2(y)| < εq2(y) ⇔ yq2(y)− p2(y)− εq2(y) < 0.

Now we can set ψ(y) = yq2(y) − p2(y) − εq2(y). In this case the
leading coefficient is lc(ψ) = lc(q2) which is positive. Thus, we can
use Lemma 1.16 on the polynomial ψ to obtain a bound nψ such that
ψ(y) > 0 for every y > nψ. By Observation 3.16 we have

nψ = 1 +
maxp2 + maxq2 +ε ·maxq2

minq2
.

Finally, we can conclude that{
y ∈ ν :

∣∣ϕ2 − y
∣∣ < ε

}
⊆
[
0, 1 +

maxp2 + maxq2 +ε ·maxq2

minq2

]
.
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From Theorem 3.17 we can derive a lower bound on the number of elementary
operations which are needed in order to invert x2 with an arbitrary but fixed
precision ε > 0. Let us discuss it in more detail.

Let ε > 0 be a fixed constant and consider the interval [−
√
N,
√
N ] for a nat-

ural number N ∈ N. Suppose that M is an elementary BSS machine such that
for every x ∈ [−

√
N,
√
N ] it holds that

|(ΦM(x2))2 − x2| < ε.

In other words, the machine M is such that

{y ∈ ΩM : |(ΦM(y))2 − y| < ε} ⊇ [0, N ].

Then in particular

{y ∈ ΩM : |(ΦM(y))2 − y| < ε} 6⊆ [0, N − 1].

Thus, by Theorem 3.17 there must be a halting path γ ∈ ΓM such that for
the corresponding rational function ϕ, which is represented by the fixed pair of
polynomials p, q ∈ R[y], we have the following inequality

N − 1 < 1 +
maxp2 + maxq2 +ε ·maxq2

min{minp2 ,minq2}
.

The inequality can be equivalently expressed as

N ≤ 1 +
maxp2 + maxq2 +ε ·maxq2

min{minp2 ,minq2}
. (3.14)

The values maxp2 ,maxq2 ,minp2 ,minq2 depend on the set of machine constants C
and the number of elementary instructions k of the machine M . We can express
the inequality (3.14) in terms of the bounds (3.12), (3.13) which were derived at
the beginning of this section. We achieve

N ≤ 1 +
22k+3

(2 + ε) · (max(C))2k+1

µ
(

22k+3 , C̃2k+1

) .

To derive a general lower bound on the number of elementary instructions of
a machine inverting x2, we would need to express the value k from the formula
above. Unfortunately, as we already discussed in the Section 2.2, finding the

value µ
(

22k+3
, C̃2k+1

)
for a general set C is probably very difficult. On the other

hand, for many sets it is easy. Thus, in concrete instances we are able to express
a concrete lower bound. Let us discuss one simple but very useful and realistic
example.

Lower bound in the special case C = {0, 1}
There is a good reason for studying this special case of the general analysis from
above. Consider an adversary which is trying to invert the input-output map of
some machine M0. It is reasonable to assume that the adversary can use (only)
the same constants as the machine M0. In this section we are focusing on inverting
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the square function with some fixed precision ε > 0. Thus, the machine M0 is
a very simple machine that computes the square function. Note that there are
no constants needed. For technical reasons we assume that CM0 = {0, 1}. Hence,
the adversary has to construct a machine M which inverts the square function
with the precision ε > 0 and uses only constant 0 and 1, i.e. CM = {0, 1}.

Let us first state an auxiliary lemma about the set C = {0, 1}. Note that

C̃ = {−1, 0, 1}.

Lemma 3.18. Let C = {0, 1}, t ∈ N, s ∈ N. Then the sets t ·Cs and t · C̃s have
the same minimal and maximal size of their elements, in particular

maxt·Cs = maxt·C̃s = t,

mint·Cs = mint·C̃s = 1.

Proof. From Observation 1.7 and the fact that maxC = maxC̃ = 1 we have

maxt·Cs = t · (maxC)s = t · (1)s = t ·
(
maxC̃

)s
= maxt·C̃s .

From Observation 1.7 and the fact that minC = minC̃ = 1 we have

minCs = minC = 1 = minC̃ = minC̃s .

Since there is no negative element in the set Cs, we can conclude that

mint·Cs = minCs = 1.

In addition,

{−1, 0, 1}+ · · ·+ {−1, 0, 1}︸ ︷︷ ︸
t

= {−t, . . . ,−1, 0, 1, . . . , t}.

From here we see that the element of the minimal size of the set tC̃s is again 1.

Our aim is to find a lower bound on the number of elementary operations
which are necessary for a successful inversion of the square function. Let p, q
be polynomials defined as in the general case. Now we can express the general
formulae (3.12), (3.13) explicitly. We achieve the following bounds

maxp2 ,maxq2 ≤ 22k+3 · (maxC)2k+1

= 22k+3

,

minp2 ,minq2 ≥ µ
(

22k+3

, C̃2k+1
)

= 1,

where k is the number of elementary operations of the machine M . We can use
this results in the inequality (3.14) and achieve

N ≤ 1 +
maxp2 + maxq2 +ε ·maxq2

min{minp2 ,minq2}
≤ 1 +

22k+3
+ 22k+3

+ ε · 22k+3

1
.

From here we can derive the following lower bound on the value k

N − 1

2 + ε
≤ 22k+3 ⇔ log2

(
log2

(
N − 1

2 + ε

))
− 3 ≤ k.

Let us conclude the discussion in the following corollary.

Corollary 3.19. Any elementary BSS machine inverting x2 with the precision
ε > 0 for x ∈ [−

√
N,
√
N ] has to either make Ω(log2(log2(N)− log2(ε))) elemen-

tary instructions or use more constants than just 0 and 1.
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3.3.4 Summary

Let us recapitulate what we proved about BSS machines that invert the square
function with the precision ε > 0.

We first showed that there is no constant time BSS machine that succeeds on
every real number.

Secondly, we presented two BSS machines which approximate the square root
function with the precision % > 0 and use only 0 and 1 as machine constants.
The first machine is based on the half-interval search algorithm and succeeds on
any positive real input. If the input y is from the interval [0, 1) then the time
complexity of the machine is constant. If the input y is greater or equal to 1
then the time complexity is O(log2(y) − log2(%)). The second machine succeeds
on inputs y which are greater or equal to a ≈ 1.5625. Nevertheless, its time
complexity is slightly better; namely, O

(
(log2(loga(y)− loga(%)))2). Recall from

Section 3.1 that in order to invert the square function with the precision ε, we have
to approximate the square root function with the precision 0 < % ≤

√
y + ε−√y.

Thus, we proved that the time complexity of inverting the square function with
the precision ε is

O
((

log2

(
loga(x

2)− loga(
√
x2 + ε− x)

))2
)
,

where a ≈ 1.5625.
And finally, we showed that no BSS machine can invert the square function

with the precision ε > 0 on the interval [−
√
N,
√
N ] in less steps than

Ω (log2 (log2(N)− log2(ε))) ,

while using only constants 0 and 1. In other words, we have a lower bound of
the form: either the number of steps is Ω(log2(log2(N) − log2(ε))) or the set of
machine constants is larger than {0, 1}.
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4. Inverting a constant time BSS
machine over R
Imagine the following situation. We have a real function ψ : R → R which is
computable by a BSS machine M0. The machine M0 is publicly known. We run
the machine M0 on a secret value x ∈ ΩM0 and publish the output y = ΦM0(x).
The aim of this chapter is to answer the following questions.

Can an adversary who knows the machine M0 and the value y find x′ ∈ ΩM0

such that

ΦM0(x
′) = ΦM0(x)?

If the answer is no, can he at least find a value x′ ∈ ΩM0 such that

|ΦM0(x
′)− ΦM0(x)| < ε,

where ε > 0 is a fixed constant? In other words, is he able to construct a BSS
machine M that inverts the machine M0?

In the previous chapter we discussed in detail the situation for the function
ψ(x) = x2. In this chapter we analyse the inversion problem for a general real
function ψ : R → R which is easy to compute by a BSS machine. But let us
proceed more systematically and first make the expressions “easy to compute”
and “invert a machine” more formal.

4.1 How to define inversion

First of all observe that a BSS machine that computes a real function ψ : R→ R
is a finite dimensional BSS machine with one dimensional input space and one
dimensional output space. This is also the reason why finite dimensional BSS
machines are of our main interest in this work.

Recall from Section 2.5 that for finite dimensional BSS machines we distin-
guish the following three situations:

� the function ψ is not computable;

� the function is computable but not in constant time;

� the function is computable in constant time.

It is natural to formalize the expression “easy to compute” as follows.

Definition 4.1. We say that a real function ψ : R → R is easy to compute if
there exists a constant time BSS machine computing it.

Recall from Section 2.2 that for every BSS machine there exists an elementary
BSS machine which computes the same function, has the same halting set and
its halting time is proportionally the same.

For the rest of this chapter we fix an arbitrary elementary constant time BSS
M0 with one dimensional input space IM0 = R and one dimensional output space
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OM0 = R. As we have already said, our aim is to study BSS machines that
invert the machine M0. In order to do so, we need to specify what we mean by
“inversion of a BSS machine”.

There are more possible ways how to define that a BSS machine M inverts
the value ΦM0(x) for x ∈ ΩM0 . Probably the most intuitive approach is to require
infinite precision as in the classical Turing model of computation, i.e. for x ∈ ΩM0

we say that the machine M inverts the value ΦM0(x) if

ΦM(ΦM0(x)) = x.

Another possibility, which corresponds better with the nature of real numbers,
is to allow the machine M to make a small mistake. In particular, let % > 0 be
a fixed constant. Then for x ∈ ΩM0 we say that the machine M computes the
inverse of the value ΦM0(x) with the precision % if

|ΦM(ΦM0(x))− x| < %.

The function ΦM0 might not be injective; hence, there exist x, x′ ∈ ΩM0 such
that x 6= x′ and ΦM0(x) = ΦM0(x

′). The machine M which achieves the input
ΦM0(x) = ΦM0(x

′) has now way how to decided between x and x′. This motivates
the following definition.

Definition 4.2. Let M0 be a BSS machine with one dimensional input space and
one dimensional output space.

1. We say that a BSS machine M inverts the BSS machine M0 with infinite
precision if

∀x ∈ ΩM0 : ΦM0(ΦM(ΦM0(x))) = ΦM0(x).

2. Let ε > 0 be a fixed constant. Then we say that a BSS machine M inverts
the BSS machine M0 with the precision ε if

∀x ∈ ΩM0 : |ΦM0(ΦM(ΦM0(x)))− ΦM0(x)| < ε.

Sometimes we refer to the first variant as inversion with the precision ε = 0.

Remark 4.3. If we say that a BSS machine inverts a function then we mean that
a BSS machine inverts a BSS machine which computes the function.

For reasons discussed already in Chapter 3, the first variant of Definition 4.2
is not appropriate while working with real numbers. Hereafter, when we say
“invert”, we implicitly mean invert with the precision ε > 0.

4.2 The main idea of our construction

In this chapter we prove that for every BSS machine M0 as defined above there
exists a BSS machine M inverting the machine M0. Our prove will be constructive
which means that we describe such a machine M explicitly. In addition, we also
discuss the time complexity of the constructed machine although it requires many
technical computations.
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We first discuss the consequences of M0 being a constant time BSS machine.
We also recall important properties of finite dimensional machines and establish
the notation for the rest of this chapter.

By definition there exists a natural number T ∈ N such that TM0(x) ≤ T
for every x ∈ ΩM0 . From Lemma 2.5 we know that the set of halting paths is
bounded, i.e.

ΓM0 ≤ 2T .

By the Path Decomposition Theorem we know that

ΩM0 =
⋃̇

γ∈ΓM0

νγ

is a finite disjoint union of basic semi-algebraic sets and that

ϕγ = ΦM0 �νγ

is a rational function for every γ ∈ ΓM0 . Consequently, we have the following
observation.

Observation 4.4. A real function ψ : R → R is easy to compute in sense of
Definition 4.1 if it is defined by finitely many rational functions.

By Remark 1.10 every semi-algebraic subset of R is a finite union of open
intervals and points. Thus, by Corollary 2.16 the halting set ΩM0 is a finite
disjoint union of open intervals and points

ΩM0 =
⋃̇

γ∈ΓM0

 ⋃̇
i∈{1,...,mγ}

Iγ,i

 ,

where mγ is the number of connected components of the semi-algebraic set νγ.
In addition, we know that for every γ ∈ ΓM0 the rational function ϕγ is

continuous on Iγ,i, where i ∈ {1, . . . ,mγ}.
Let m be the number of connected components of the halting set. Then from

Corollary 2.26 we have the following bound

m =
∑
γ∈ΓM0

mγ ≤ 2T+1 · 3T−1.

For every γ ∈ ΓM0 and every i ∈ {1, . . . ,mγ} we define Jγ,i as

Jγ,i = ϕγ(Iγ,i).

Since ϕγ is a rational function which is continuous on Iγ,i, we know that Jγ,i is
a point or an open interval as well.

Consequently, the following equality holds

ΦM0(ΩM0) =
⋃

γ∈ΓM0

 ⋃
i∈{1,...,mγ}

Jγ,i

 .

73



Remark 4.5. The components Jγ,i are generally not disjoint. That happens only
when the input-output map of the machine M0 is injective.

Let us return back to our problem. We have a fixed constant ε > 0 and we
consider a BSS machine M0 with the properties described at the beginning of
this chapter. Our aim is to show how an adversary constructs a BSS machine
M which inverts the machine M0 with the fixed precision ε. According to the
discussion above we can divide the construction in two steps:

1. Given y = ΦM0(x), find a component Jγ,i such that y ∈ Jγ,i.

The knowledge of Jγ,i determines the corresponding path γ, the interval or
point Iγ,i and the rational function ϕγ. Therefore, the second task is:

2. Find x′ ∈ Iγ,i such that |ϕγ(x′)− y| < ε.

We discuss each part separately. In Section 4.3 we prove that there is a BSS
machine solving the first problem and in Section 4.4 we show how to construct
a BSS machine that fulfills the second task.

Before be proceed to the next section, let us make one last remark. Every
BSS machine has, according to the definition, a finite set of machine constants.
This is, indeed, a very powerful property. Since we are inverting a fixed BSS
machine M0, the inverting machine M can have finitely many values describing
the machine M0 as machine constants (for example the endpoints of the connected
components Iγ,i and Jγ,i or the coefficients of the rational function ϕγ and so on).
It is clear that we can store only values that are independent of the value y.

Let us establish the following terminology. If we say that an adversary can
“precompute” some value, it means that it is a property of the publicly known
machine M0 which is independent of the value y so it can be considered as a ma-
chine constant of the inverting machine M .

4.3 Step 1: Finding an interval

Assume now that we have finitely many open intervals and points J1, . . . , Jm.
In this section we show that there is a constant time machine M which, given
a value

y ∈
m⋃
i=1

Ji,

returns an index i ∈ {1, . . . ,m} such that y ∈ Ji.
We are inverting a concrete machine M0. Therefore, we can assume that

an adversary knows the components J1, . . . , Jm. Let us be more precise. Every
interval is uniquely determined by its endpoints. Thus, there are at most 2m
values needed in order to store a complete information about the components
J1, . . . , Jm. So the inverting machine M has all these values as machine constants;
in particular,

c1, d1, . . . , cm, dm ∈ CM ,

where ci, di are endpoints of the interval Ji. In case Ji is a point then ci = di = Ji.
Consequently, the machine M can search through the components J1, . . . , Jm

exhaustively as described in Algorithm 4.1. Such a machine is certainly not
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Input: y such that y ∈
m⋃
i=1

Ji

Output: i such that y ∈ Ji
i← 1;
found← false;
while found = false do

if (ci < y < di) or ((y = ci) and (y = di)) then
found← true;

end
else

i← i+ 1;
end

end
return i

Algorithm 4.1: Exhaustive search through intervals

the most efficient machine solving the problem. However, it is sufficient for our
purposes.

It is straight forward to prove the following lemma.

Lemma 4.6. Algorithm 4.1 halts on every valid input y ∈
m⋃
i=1

Ji and it succeeds in

the task of finding an index i ∈ {1, . . . ,m} such that y ∈ Ji. The time complexity
of the algorithm is O(m).

The halting time of the constructed machine M depends only on the number
of components, which is fixed (it does not depend on the input value y). As
a consequence, the constructed machine is a constant time BSS machine.

However, its time complexity is exponential in the time complexity of the
machine M0. Recall that m ≤ 2T+1 · 3T−1, where T is the time bound of the
machine M0. Therefore, it is interesting to study a lower bound on the time
complexity of the problem of finding an interval Ji such that y ∈ Ji. We briefly
do so in the next subsection.

4.3.1 Lower bound on the time complexity

Let us first assume that the components J1, . . . , Jm are disjoint open intervals.

Theorem 4.7. Let J1, . . . , Jm be open intervals that are disjoint. Let M be a BSS
machine such that given a value y ∈

⋃̇
i∈{1,...,m}

Ji returns the index i ∈ {1, . . . ,m}

such that y ∈ Ji. Then the time complexity of the machine M is Ω(log2(m)).

We omit the proof since its main idea the same as the idea of the proof of
Lemma 2.17. In particular, it is easy to observe that the input-output map of the
machine M from the lemma must be piecewise constant. In addition, we know
that it is piecewise rational. And a rational function which is constant on an
open subinterval of R is a constant function by Lemma 1.18.
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Recall that the connected components Ji are not always disjoint. In addition,
some of them might be points and not open intervals. The following corollary
states a lower bound for a general set of components.

Corollary 4.8. Let J1, . . . , Jm be open intervals and points. Let ` ∈ N be the
minimal natural number such that there exist open intervals J ′1, . . . , J

′
` with the

following properties. The intervals J ′1, . . . , J
′
` are disjoint, the inclusion ⋃̇

j∈{1,...,`}

J ′j

 ⊆
 ⋃
i∈{1,...,m}

Ji


holds and the set  ⋃

i∈{1,...,m}

Ji

 \
 ⋃̇
j∈{1,...,`}

J ′j


is a finite set.

Let M be a BSS machine such that given a value y ∈
⋃

i∈{1,...,m}
Ji returns an

index i ∈ {1, . . . ,m} such that y ∈ Ji. Then the time complexity of the machine M
is Ω(log2(`)).

4.4 Step 2: Approximating a root of a rational

function

In the previous section we showed how to find an interval Jγ,i which contains
a given value y = ΦM0(x) for some x ∈ ΩM0 . Therefore, we can now assume
that an adversary knows the path γ, the corresponding rational function ϕγ, the
component Iγ,i, its endpoints aγ,i, bγ,i and the component Jγ,i such that y ∈ Jγ,i.
For shorter notation we will write ϕ, a, b, I, J instead of ϕγ, aγ,i, bγ,i, Iγ,i, Jγ,i in
this section.

First observe that if the component J is a point then we are done. We know
that ϕ(I) = J and therefore the component I is either a point or ϕ is a constant
function. Thus, the machine M only outputs the value a (one of the endpoints
of I), which is in the set of machine constants. Hereafter, we assume that J and
I are open intervals.

Now an adversary has to find x′ ∈ I such that |ϕ(x′)−y| < ε. In other words,
he has to construct a BSS machine which inverts the rational function ϕ on the
open interval I with the precision ε.

There is a wide range of algorithms which approximate a zero of a polynomial
(respectively, rational function). The common problem of these algorithms is how
to choose a good starting point or starting points. It is usually not obvious that
there exists an algorithm making this choice. We were facing this problem in the
previous chapter in which we were inverting the polynomial x2−y on the interval
[0,∞). The situation in the general case is even more complicated.

The authors of the book [1] presented a general method how to find a good
starting point for Newton’s algorithm. The method uses some non-trivial results
from homotopy theory. Since we do not need this theory later in our work, we
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present a different method of approximating a zero of a polynomial (respectively,
rational function). Our method is based on the half-interval search algorithm
which is not as efficient as Newton’s method; however, it suffices for our purposes.

Let us emphasis, that we want to present a general method that can be applied
on every rational function ϕ and every interval I such that ϕ is continuous on
I. Moreover, we want to study the time complexity of the presented method.
That is why this section consists of many auxiliary statements and technical
computations.

For better orientation, let us first explain the idea of our method. We divide
the problem of finding x′ in two parts.

1. Find starting points xmin, xmax ∈ I ∪ {a, b} such that

ϕ(xmin) ≤ y ≤ ϕ(xmax). (4.1)

This part is discussed in Subsection 4.4.1.

2. Find x′ from the closed interval with endpoints xmin, xmax such that

|ϕ(x′)− y| < ε,

for the fixed ε > 0. As we have already mentioned, we use the half-interval
search algorithm to solve this problem. Details are studied in Subsec-
tion 4.4.2.

In the following remark we discuss why points xmin, xmax satisfying inequali-
ties (4.1) are indeed good starting points for the half-interval search algorithm.

Remark 4.9. We know that the rational function ϕ is continuous on the interval I.
From the Intermediate Value Theorem we know that there exists a point xY ∈ I
such that ϕ(xY ) = y and the value xY is contained in the interval with endpoints
xmin, xmax. In particular, it holds that

xmin ≤ xY ≤ xmax, if xmin < xmax and

xmax ≤ xY ≤ xmin, if xmax < xmin.

The next remark discusses a special (but very important) case we have to be
aware of later in this section.

Remark 4.10. If xmin ∈ {a, b} then the value ϕ(xmin) might not be defined. In
such a case ϕ(xmin) in the inequality (4.1) stands for either lim

x→a+
ϕ(x) or lim

x→b−
ϕ(x).

The same applies for xmax.

We do cover this special case in our algorithm although it requires some
technical arguments which make the method less intuitive.

4.4.1 Finding good starting points

The rational function ϕ is continuous on the interval I. Thus, an adversary
can precompute the points of global maximum and minimum of the rational
function ϕ on the interval I (they are constants of the inverting machine M).
Observe that if xmin is a point of global minimum and xmax is a point of global
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maximum then the inequalities (4.1) are satisfied. So did we solve the problem
of finding good starting points?

The answer is: partially. The problem is that global extremes of a rational
function ϕ on an interval I might not exist. Recall that the interval I is an open
interval.

This is the reason why we will define three auxiliary values and prove sev-
eral technical statements before we present an algorithm that finds the points
xmin, xmax. For better orientation, we now discuss the main idea of the algo-
rithm.

We first define auxiliary points gmin, gmax ∈ I ∪ {a, b}. They will be either
points of a global extreme of the function ϕ on the interval I or endpoints of
the interval I. Secondly, we define a value L > 0 such that for every x ∈ I the
following implication holds

ϕ(x) = y ⇒ −L ≤ x ≤ L.

In other words, the value L bounds the absolute value of the zeros of the rational
function ϕ(x)− y.

Using these auxiliary values, we define xmin, xmax in such a way that inequal-
ities (4.1) hold. In addition, we prove a bound on the distance of the starting
points. Concretely, we show that

|xmin − xmax| ≤ 2L.

This bound will be important for the time complexity analysis of the half-interval
search algorithm.

Auxiliary results

Let us start by defining the auxiliary points gmin, gmax.

Definition 4.11. Let I be an interval with endpoints a, b. For a rational func-
tion ϕ that is continuous on I we define the value gmin as follows.

If the global minimum of ϕ on I exists then set gmin to the point of minimal
value. Otherwise, at least one of the following cases is true:

∀c ∈ I : lim
x→a+

ϕ(x) < ϕ(c),

then we define gmin = a, or

∀c ∈ I : lim
x→b−

ϕ(x) < ϕ(c)

and in this case we set gmin = b. If both statements are true then we set
gmin = min{|a|, |b|}.

Analogously, we define the value gmax. It is either a point of maximal value
or one of the endpoints of the interval I.

Let us now make few remarks about these values.

78



Remark 4.12.

1. The values gmin, gmax do not depend on the value y that is given to the
adversary. Thus, the computation of these values can be done in the pre-
computation phase (they are constants of the inverting machine M).

2. It is clear from the definition that gmin, gmax ∈ I ∪ {a, b}.

3. If g is a point of global extreme of the rational function ϕ on the interval I
then it is also a point of global extreme of the rational function

ϕ(x)− y =
p(x)− y · q(x)

q(x)

on interval the I, where p, q ∈ R[x] is the fixed pair of polynomials whose
quotient represents the rational function ϕ (recall Remark 2.2).

As a next step we establish the notation for polynomials p, q and r, where the
polynomial r is defined as r = p− yq. Note that y is treated as a parameter here,
not as a variable. We denote

p(x) =

dp∑
i=0

pix
i,

q(x) =

dq∑
i=0

qix
i,

r(x) = p(x)− yq(x) =
d∑
i=0

rix
i,

where pi, qi, ri ∈ R and pdp , qdq , rd 6= 0. Recall from Section 1.2 the following
notation

maxp = max{|pi| : i ∈ {0, . . . dp}},
maxq = max{|qi| : i ∈ {0, . . . dq}},
maxr = max{|ri| : i ∈ {0, . . . d}}.

Since maxyq = y ·maxq, we know by Observation 3.16 that

maxr ≤ maxp + y ·maxq.

Let us define the value L ∈ R+ as

L := 1 +
1

|rd|
· (maxp + y ·maxq). (4.2)

Lemma 4.13. For the value L defined above it holds{
x ∈ I :

p(x)− y · q(x)

q(x)
= 0

}
⊆ [−L,L].

79



Proof. From Lemma 1.16 we know that for every α ∈ I such that r(α) = 0

|α| ≤ 1 +
1

|rd|
·max{|ri| : i ∈ {0, . . . d− 1}}.

Note that

max{|ri| : i ∈ {0, . . . d− 1}} ≤ maxr ≤ maxp + y ·maxq.

This implies that for every α ∈ I such that r(α) = 0 we have

|α| ≤ 1 +
1

|rd|
· (maxp + y ·maxq).

Since the expression on the right hand side equals L, we can equivalently write

{x ∈ I : p(x)− y · q(x) = 0} ⊆ [−L,L].

The rational function ϕ is defined on the interval I; thus, the value q(x) is non-
zero for every x ∈ I. This implies that{

x ∈ I :
p(x)− y · q(x)

q(x)
= 0

}
= {x ∈ I : p(x)− y · q(x) = 0}.

Therefore, we can conclude that{
x ∈ I :

p(x)− y · q(x)

q(x)
= 0

}
⊆ [−L,L].

One of the consequences of the lemma is that{
x ∈ I :

p(x)− y · q(x)

q(x)
= 0

}
⊆ (I ∪ {a, b}) ∩ [−L,L].

In addition, we know that y ∈ J = ϕ(I). Thus, there exists at least one α ∈ I
such that ϕ(α)− y = 0. This implies that{

x ∈ I :
p(x)− y · q(x)

q(x)
= 0

}
is a non-empty set and therefore we can make the following remark.

Remark 4.14. The intersection (I ∪ {a, b}) ∩ [−L,L] is not empty.

The next lemma motivates the definition of the points xmin, xmax.

Lemma 4.15. Let L, gmin, gmax be values defined as above.

1. If gmin 6∈ [−L,L] then

ϕ(−L) ≤ y or ϕ(L) ≤ y.

Moreover, the following two implications are true

ϕ(−L) > y ⇒ a ≤ L < gmin ≤ b,

ϕ(L) > y ⇒ a ≤ gmin < −L ≤ b.
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2. Analogously, if gmax 6∈ [−L,L] then at least one of the following inequalities
holds

ϕ(−L) ≥ y or ϕ(L) ≥ y.

Moreover, the following two implications are true

ϕ(−L) < y ⇒ a ≤ L < gmax ≤ b,

ϕ(L) < y ⇒ a ≤ gmax < −L ≤ b.

Proof. We prove the lemma only for gmin since the proof for gmax is analogous.
Let gmin 6∈ [−L,L] and suppose, for the sake of contradiction, that both

ϕ(−L)− y > 0 and ϕ(L)− y > 0. (4.3)

Recall from Corollary 1.17 that the value L is such that either

∀x > L : ϕ(x)− y > 0 or ∀x > L : ϕ(x)− y < 0.

Similarly, either

∀x < −L : ϕ(x)− y > 0 or ∀x < −L : ϕ(x)− y < 0.

Observe that the following implication must hold

ϕ(L)− y > 0⇒ ∀x > L : ϕ(x)− y > 0 (4.4)

since otherwise we would yield a contradiction with the definition of L by the
Intermediate Value Theorem. We can argue similarly in the case other case; i.e.
when ϕ(−L)− y > 0. Thus, from assumptions (4.3) we can derive that we are in
the situation

∀x > L : ϕ(x)− y > 0 and ∀x < −L : ϕ(x)− y > 0.

Since gmin 6∈ [−L,L], we have

ϕ(gmin)− y > 0.

But that contradicts the definition of gmin since we know that there exists at least
one α ∈ [−L,L] such that ϕ(α)− y = 0.

Let us focus on the second part of the statement. From Remark 4.12 we
know that a ≤ gmin ≤ b and we observed in Remark 4.14 that the intersection
(I ∪ {a, b}) ∩ [−L,L] is non-empty. Therefore, if gmin 6∈ [−L,L] then either

gmin < −L⇒ a ≤ gmin < −L ≤ b

or we have
L < gmin ⇒ a ≤ L < gmin ≤ b.

If ϕ(−L) > y then by implication (4.4) we have

∀x < −L : ϕ(x) > y.

It follows that L < gmin must be the case because otherwise we would achieve
a contradiction with the definition of gmin as in the first part of the proof. Let
us conclude our reasoning:

ϕ(−L) > y
(4.4)
=⇒ L < gmin

Def. 4.11
=⇒ a ≤ L < gmin ≤ b.

For analogous reasons, if ϕ(L) > y then gmin < −L.
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Starting points

We are now finally prepared to define the starting points xmin, xmax.

Definition 4.16. Let the values gmin, gmax and L be as defined above. Then we
define the points xmin, xmax as

xmin =


gmin, if gmin ∈ [−L,L],

−L, if gmin 6∈ [−L,L], a ≤ gmin < −L ≤ b and ϕ(−L) ≤ y,

L, otherwise;

xmax =


gmax, if gmax ∈ [−L,L],

−L, if gmax 6∈ [−L,L], a ≤ gmax < −L ≤ b and ϕ(−L) ≥ y,

L, otherwise.

Recall from the beginning of this subsection that we wanted to find values
xmin, xmax such that

ϕ(xmin) ≤ y ≤ ϕ(xmax).

As discussed in Remark 4.10, ϕ(xmin) in the inequality above stands for either
lim
x→a+

ϕ(x) or lim
x→b−

ϕ(x) if the value ϕ(xmin) is not defined. The same holds for

the point xmax.
In the next lemma we prove that we defined the starting points xmin, xmax in

Definition 4.16 correctly.

Lemma 4.17. The values xmin, xmax from Definition 4.16 satisfy the inequalities
(4.1). Moreover, it holds that

xmin, xmax ∈ (I ∪ {a, b}) ∩ [−L,L].

As a consequence, we have the following bound

|xmin − xmax| ≤ 2L.

Proof. We will prove the lemma only for xmin since the arguments are analogous
in the case of xmax.

We prove the statements by case analysis splitting on the possible definition
of the starting point xmin.

1. If gmin ∈ [−L,L] then xmin = gmin. By definition of gmin we have

∀c ∈ I : ϕ(xmin) < ϕ(c).

Since y ∈ J = ϕ(I), the desired inequality follows. Recall from Remark 4.10
that ϕ(xmin) in the inequality above stands for either lim

x→a+
ϕ(x) or lim

x→b−
ϕ(x)

if the value ϕ(xmin) is not defined.

From Remark 4.12 we know that gmin ∈ I ∪ {a, b}. Therefore, it is clear
that xmin ∈ (I ∪ {a, b}) ∩ [−L,L] in this case.
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2. If gmin 6∈ [−L,L], ϕ(−L) ≤ y and a ≤ gmin < −L ≤ b then the value xmin
is defined as xmin = −L. Thus, we see directly that

ϕ(xmin) = ϕ(−L) ≤ y and xmin = −L ∈ (I ∪ {a, b}) ∩ [−L,L].

3. There are two situations in which the value xmin is defined as L. In both
of them gmin 6∈ [−L,L].

� If ϕ(−L) > y then we know from Lemma 4.15 that ϕ(L) ≤ y must be
the case. In addition, from the same lemma we know that

ϕ(−L) > y ⇒ a ≤ L < gmin ≤ b.

Thus, xmin = L ∈ (I ∪ {a, b}) ∩ [−L,L].

� In the second case we have ϕ(−L) ≤ y but a ≤ gmin < −L ≤ b is not
the case. Then from Lemma 4.15 we know that

ϕ(L) ≤ y.

In addition, the fact that a ≤ gmin < −L ≤ b does not hold implies that
L < gmin. The intersection (I ∪ {a, b}) ∩ [−L,L] is non-empty by Re-
mark 4.14. Moreover, by Remark 4.12 we know that gmin ∈ I ∪ {a, b}.
As a result,

a ≤ L < gmin ≤ b.

Hence, xmin = L ∈ (I ∪ {a, b}) ∩ [−L,L] in this case as well.

Definition 4.16 gives us an algorithm how to find the values xmin, xmax knowing
the values gmin, gmax and L. The next lemma states the overall time complexity
of finding the starting points xmin and xmax.

Lemma 4.18. The time complexity of finding xmin, xmax in the way described
above is O(T ), where T is the time bound of the machine M0 which computes the
function ϕ on the interval I.

Proof. We observed in Remark 4.12 that the computation of gmin, gmax can be
done in the preparation phase. In addition, we assume that an adversary knows
the polynomials p and q defining the rational function ϕ. That means that the
leading coefficients lc(p), lc(q), the degrees deg(p), deg(q) and the values maxp,
maxq are constants of the inverting machine M .

There are at most 2 arithmetic operations needed in order to compute the
coefficient rd since

rd =


lc(p), if dp > dq,

lc(q), if dp < dq,

lc(p)− y · lc(q), if dp = dq.

The value L is defined as

L = 1 +
1

|rd|
· (maxp + y ·maxq).
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We see that the adversary can compute the auxiliary value L in constant time.
Finally, only constantly many branch nodes and one computation of ϕ(−L)

are needed in order to decide how to define the starting points xmin and xmax
following the algorithm from Definition 4.16.

Putting all together, we can conclude that the time complexity is O(T ) as
stated in the lemma.

Before we continue to the final part of this section, i.e. approximating the value
x ∈ I given the value y = ϕ(x), let us recall the special case from Remark 4.10
and define two additional values fmin, fmax as follows

fmin =

{
ϕ(xmin), if ϕ(xmin) is defined,

−∞, otherwise;

fmax =

{
ϕ(xmax), if ϕ(xmax) is defined,

∞, otherwise.

The rational function ϕ is continuous and defined on the interval I. Therefore,
the following implication holds

xmin ∈ I ⇒ ϕ(xmin) > −∞.

Since xmin ∈ I∪{a, b}, the value ϕ(xmin) is undefined if only if one of the following
cases is true

xmin = a and lim
x→a+

ϕ(x) = −∞,

xmin = b and lim
x→b−

ϕ(x) = −∞.

We can make an analogous discussion about ϕ(xmax).

Lemma 4.19. The time complexity of computing the values fmin, fmax is O(T )
where T is the time bound of the machine M0 computing the rational function ϕ
on the interval I.

Proof. To compute the value fmin we create a new machine M ′
0 such that com-

putes the rational function ϕ on inputs from interval I as the machine M0, i.e. it
preserves the halting path γ. We know that every branch node on the path γ has
two successor nodes. One of them corresponds to the next node of the path γ. We
define the other one to be the output node which sets the output of the machine
to −∞. We know that the number of elementary instructions and branching
nodes on the path γ is less or equal to T . From our construction it is clear that
the path γ is the longest path of machine M ′

0. Thus, the time complexity of the
machine M ′

0 is T .
We can proceed analogously in the case of fmax.

In fact, the lemma above is not formally correct. The problem is that no BSS
machine can store (or output) the symbols “−∞”, “∞”. However, this problem
can be solve by the following programming technique. We represent fmin as a pair

(defined, value) =

{
(1, ϕ(xmin)), if ϕ(xmin) is defined,

(0, 0), otherwise .
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Thus, if we ask whether the equality “fmin = −∞” holds then we ask in fact
if “defined = 0” is true.

Let us conclude this subsection with a corollary that follows from Lemma 4.17
and Lemma 4.19.

Corollary 4.20. The auxiliary values xmin, xmax, fmin, fmax can be computed by
a constant time BSS machine.

4.4.2 The half-interval search algorithm

Let us first recapitulate the current situation. An adversary is given a value
y = ϕ(x), where ϕ is a rational function which is continuous on the open inter-
val I. His aim is to find a value x′ ∈ I such that

|ϕ(x′)− y| < ε,

where ε > 0 is the fixed precision. Equivalently, we want to construct a BSS
machine that inverts the rational function ϕ on the interval I.

Algorithm 4.2 defines such a BSS machine M . As we have already mentioned
earlier in this chapter, the algorithm is based on the half-interval search method.

Input: y ∈ J
Output: x′ ∈ I such that |ϕ(x′)− y| < ε

xL ← xmin;

fL ← fmin;

xU ← xmax;

fU ← fmax;

while fL = −∞ or fU =∞ or |fU − fL| ≥ ε do

xM = 1
2
(xU + xL);

fM = ϕ(xM);

if fM ≥ y then

xU ← xM ;

fU ← fM ;

end

else

xL ← xM ;

fL ← fM ;

end

end

return xU

Algorithm 4.2: Inversion of a rational function ϕ on an interval I with the

precision ε > 0
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Note, that Algorithm 4.2 is defined for a concrete function ϕ and concrete
values xmin, xmax, fmin, fmax. They are assumed to be part of the machine con-
stants. This is a reasonable approach since all of these values are known at this
stage of the process. In Section 4.3 we constructed a constant time BSS machine
which determines the rational function ϕ and the interval I. In Subsection 4.4.1
proved that there is a constant time BSS machine which finds the starting points
xmin and xmax and Lemma 4.19 tells us that there is a constant time machine
which defines the values fmin and fmax.

Thus, the Algorithm 4.2 can be understood as a subroutine of a bigger algo-
rithm. Namely, an algorithm which

1. executes Algorithm 4.1,

2. finds the values xmin, xmax as described in Definition 4.16,

3. defines the values fmin, fmax by running the algorithm from the proof of
Lemma 4.19 and finally

4. executes the corresponding variant of Algorithm 4.2.

Let us now focus on the correctness and the time complexity of Algorithm 4.2

Correctness of Algorithm 4.2

Let us first state two auxiliary lemmas. that will be useful in the proof of the
correctness of Algorithm 4.2.

Lemma 4.21. In every step of Algorithm 4.2 the following statements are true.

1. The following inequalities hold

fL ≤ y ≤ fU . (4.5)

2. The value fU <∞ if and only if ϕ(xU) is defined and fU = ϕ(xU).

3. The value fL > −∞ if and only if ϕ(xL) is defined and fL = ϕ(xL).

Proof. 1. From the definition of values xmin, xmax we know that inequalities
(4.5) holds after the initialization step. Suppose the inequalities (4.5) holds
before a while-loop and let us denote f ′L, f

′
U the values fL, fU after the

while-loop. Let us discuss both possible cases.

� If fM ≥ y then f ′L = fL, thus f ′L = fL ≤ y. The value f ′U is set to fM
which is greater or equal to y. Hence, f ′L ≤ y ≤ f ′U .

� If fM < y then f ′U = fU ≥ y and f ′L = fM . So in this case we achieve
the desired inequalities f ′L ≤ y ≤ f ′U as well.

2. In the while-loop in which the values xU , fU are reassigned it holds

fU = fM = ϕ(xM) = ϕ(xU) <∞.

Thus, we need to study only the case when fU = fmax. If fmax <∞ then by
definition of fmin the value ϕ(xmax) must be defined and fmax = ϕ(xmax).
The other implication follows from the fact that if ϕ(xmax) is defined then
ϕ(xmax) <∞.
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3. Analogous to the previous case.

Lemma 4.22. Let n ∈ N. Suppose that we perform n while-loops and fM < y is
always the case (i.e. we are reassigning only the value xL). Then

xU = xmax and xL =
xmin + xmax · (2n − 1)

2n
.

Proof. It is clear that xU = xmax. We prove the stated form of xL by induction
on n. The statement is true for n = 1 since

xL =
xmin + xmax

2
.

Let xL be the value after n− 1 while-loops and x′L the value after n while-loop.
Suppose that

xL =
xmin + xmax · (2n−1 − 1)

2n−1
.

Then using the induction hypothesis we can derive

x′L =
xmax + xL

2
IH
=
xmin + 2 · 2n−1 · xmax − xmax

2 · 2n−1
=
xmin + xmax · (2n − 1)

2n
.

Now we are prepared to prove that Algorithm 4.2 works correctly.

Theorem 4.23. Algorithm 4.2 halts on every input y ∈ J and its output x′

satisfies
|ϕ(x′)− y| < ε.

Proof. We start with the correctness of the output. The algorithm halts when

fL > −∞, fU <∞, and |fU − fL| < ε.

We know from Lemma 4.21 that the inequalities

fL ≤ y ≤ fU

hold in every step of the algorithm; specially, in the last step. Moreover, from
the Lemma 4.21 we also know that

fU = ϕ(xU)

must be the case since fU <∞. Thus, we can conclude

|ϕ(xU)− y| = |fU − y| ≤ |fU − fL| < ε.

Now we want to prove that the algorithm always halts. Let us first show that
after finitely many steps we are in the situation that

xL, xU ∈ I and fL = ϕ(xL) > −∞ and fU = ϕ(xU) <∞. (4.6)
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In every while-loop exactly one of the values xL, xU is reassigned. Hence, without
lost of generality, we can assume that xL is reassigned in the first while-loop.
Consequently, after the first while-loop

fL = fM = ϕ(xM) = ϕ(xL). (4.7)

Because xM ∈ I, we know that fM > −∞.
The value fU does not change in the first while-loop, i.e. fU = fmax. According

to Lemma 4.21 either

fU = fmax = ϕ(xmax) = ϕ(xU) <∞,

and we proved (4.6), or

fU = fmax =∞ and xmax ∈ {a, b}.

Suppose that we are in the situation in which xmax = b. This means that

lim
x→b−

ϕ(x) =∞.

Recall that xmax ∈ [−L,L]; hence, xmax ∈ R. Therefore, by definition of a limit
we can equivalently write

∀K > 0 ∃δ > 0 ∀x ∈ I : |b− x| < δ ⇒ ϕ(x) > K.

So for K = |y| there exists δ1 > 0 such that

∀x ∈ I : |b− x| < δ1 ⇒ ϕ(x) > |y|. (4.8)

Our aim is to show that there exists n ∈ N such that after n while-loops the
value xU must have been reassigned at least once. The idea is to show that if
the value xU never changes then we achieve a contradiction with the inequality
ϕ(xL) ≤ y from Lemma 4.21.

From Lemma 4.22 we know that after n while-loops, where only xL has being
reassigned, the values xU , xL are

xU = b and xL =
xmin + b · (2n − 1)

2n
.

Let us express the difference between xL and xU as

|xU − xL| =
∣∣∣∣b− xmin + b · (2n − 1)

2n

∣∣∣∣ =

∣∣∣∣b− xmin2n

∣∣∣∣ .
From Lemma 4.17 we know that a ≤ xmin ≤ b, therefore

|xU − xL| =
b− xmin

2n
.

We can derive the following equivalence

|xU − xL| < δ1 ⇔ log2(b− xmin)− log2(δ1) < n.
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Thus, after blog2(b−xmin)− log2(δ1)c+ 1 while-loops, in which only the value xL
has being reassigned, we have according to (4.8) the following implication

|b− xL| < δ1 ⇒ ϕ(xL) > |y| ≥ y. (4.9)

From equation (4.7) we know that fL = ϕ(xL). But then the implication (4.9)
contradicts the first statement of Lemma 4.21, i.e. that in every step of the
algorithm

fL ≤ y ≤ fU .

Thus, we proved that the values xU , fU must be eventually reassigned. Conse-
quently,

fU = fM = ϕ(xM) = ϕ(xU),

where xM ∈ I and fM < ∞. We omit the proof of (4.6) for xmax = a since the
idea is the same. We only conclude that in both cases we are in the situation
expressed by (4.6) after at most

blog2(L)− log2(δ1)c+ 2

while-loops. Recall from Lemma 4.17 that |xmin − xmax| ≤ 2L.
Now we are in the situation that (4.6) holds. We know that the rational

function ϕ is continuous on the interval I; thus, by the definition of continuity
there exists δ > 0 such that for xL, xU ∈ I

|xU − xL| < δ ⇒ |ϕ(xU)− ϕ(xL)| < ε.

This implies that there exists δ2 > 0 such that

|xU − xL| < δ2 ⇒ (|fU − fL| < ε ∧ fU <∞∧ fL > −∞)⇒ algorithm halts.

We know from Lemma 4.17 that the initial difference is

|xmax − xmin| ≤ 2L.

In every while-loop the difference decreases by factor 1
2
. Thus, after m ∈ N

while-loops the difference is

|xmax − xmin|
2m

≤ 2L

2m
.

The next equivalence expresses how many while-loops we need to achieve a dif-
ference smaller than δ2. In particular,

2L

2m
< δ2 ⇔ 1 + log2(L)− log2(δ2) < m.

We derived that after at most blog2(L)− log2(δ2)c+ 2 while-loops the algorithm
halts assuming that the conditions (4.6) are fulfilled.

Let us summarize our proof. Firstly, we proved that there exists δ1 > 0 such
that after at most

blog2(L)− log2(δ1)c+ 2

while-loops the state of the algorithm satisfies the conditions (4.6). Secondly, we
showed that there exists δ2 > 0 such that the algorithm halts after at most

blog2(L)− log2(δ2)c+ 2

additional while-loops.
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Table 4.1: Steps of Algorithm 4.2 for the rational function ϕ(x) = x2

1−x , precision
ε = 1 and input y = 20

xL xU fL fU |fU − fL|
0 0 1 0 ∞ 7

1 0.5 1 0.5 ∞ 7

2 0.75 1 2.25 ∞ 7

3 0.875 1 6.125 ∞ 7

4 0.9375 1 14.0625 ∞ 7

5 0.9375 0.96875 14.0625 30.0313 15.9688
6 0.953125 0.96875 19.3802 30.0313 10.651
7 0.953125 0.960938 19.3802 23.6391 4.25885
8 0.953125 0.957031 19.3802 21.3157 1.93549
9 0.953125 0.955078 19.3802 20.3058 0.925583

A concrete example

To illustrate the theory introduced in this section, let us apply it on one concrete
example.

Example 4.24. Let us consider the rational function ϕ(x) = p(x)
q(x)

= x2

1−x on the

interval I = (−∞, 1). Suppose that the input value is y = 20 and the fixed
precision is ε = 1.

We see that the point of global minimum of ϕ on I is 0 and the point of global
maximum does not exists. Thus, according to Definition 4.11 we have

gmin = 0, gmax = 1.

We can compute the value L defined in (4.2) as

L = 1 +
1

|lc(p+ yq)|
· (maxp + y ·maxq)

= 1 +
1

|1|
· (1 + 20 · 1)

= 22

We see that both gmin ∈ [−L,L] and gmax ∈ [−L,L]. Thus, by Definition 4.16
the values xmin, xmax are defined as

xmin = gmin = 0, xmax = gmax = 1.

It remains to assign the values fmin, fmax. They are in this case

fmin =
x2
min

1− xmin
= 0, fmax =∞.

Table 4.1 describes the computation of Algorithm 4.2.
Note that both

lim
x→−∞

ϕ(x) =∞ and lim
x→1−

ϕ(x) =∞.
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Table 4.2: Steps of Algorithm 4.2 for the rational function ϕ(x) = x2

1−x , fixed
precision ε = 1, input y = 20 and an alternative choice of gmax

xL xU fL fU |fU − fL|
0 0 −22 0 21.0435 21.0435
1 −11 −22 10.0833 21.0435 10.9601
2 −16.5 −22 15.5571 21.0435 5.48634
3 −19.25 −22 18.2994 21.0435 2.7441
4 −20.625 −22 19.6712 21.0435 1.37224
5 −20.625 −21.3125 19.6712 20.3573 0.686075

The convention settled in Definition 4.11 gives us the choice gmax = 1. Nev-
ertheless, the choice gmax = −∞ would be also possible. Let us present the
computation of the algorithm with this alternative choice of gmax.

The values xmin and fmin does not change whereas the values xmax and fmax
are defined differently in this case; concretely, as

xmax = −L = −22, fmax = ϕ(xmax) =
484

23
.

Table 4.2 describes the computation of Algorithm 4.2 with this alternative choice
of gmax.

We see from Table 4.2 that for this particular example it would be more
efficient to choose gmax = −∞ rather than gmax = 1.

Complexity analysis of Algorithm 4.2

We end this subsection with a discussion about the complexity of Algorithm 4.2.
In the proof of Theorem 4.23 not only did we prove that Algorithm 4.2 halts on
every input but we also estimated the halting time of the corresponding machine.
Concretely, we showed that for every rational function ϕ and interval I, such that
the function ϕ is continuous on I, there exist values L > 0 and δ1, δ2 > 0 such
that after at most

blog2(L)− log2(δ1)c+ blog2(L)− log2(δ2)c+ 4

while-loops the algorithm halts. Observe that there are finitely many branch
nodes, one computation of ϕ and finitely many elementary instruction in every
while-loop. Thus, the halting time is proportional to the number of while-loops
multiplied by O(T ). Recall that T is the bound on the number of elementary
instructions and branch nodes needed to in order to compute the function ϕ on
the interval I.

Let us now study the values L, δ1 and δ2. Our aim is to discuss how to find
these values and show that the values L and δ1 depends on the input value y
whereas the value δ2 does not.

As a result, we achieve the following observation.

Observation 4.25. The BSS machine defined by Algorithm 4.2 is a constant
time BSS machine if the rational function ϕ and the interval I are such that the
interval J = ϕ(I) is a bounded interval.
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Let us first focus on the value L. Recall, that it is defined as

L = 1 +
1

|rd|
· (maxp + y ·maxq),

where

rd =


lc(p), if dp > dq,

lc(q), if dp < dq,

lc(p)− y · lc(q), if dp = dq.

See equation (4.2) for more details. For a concrete rational function ϕ, we can
understand the value L as a function of y. Let us demonstrate this on an example.

Example 4.26. Assume the same function and interval as in Example 4.24, i.e.
ϕ(x) = p(x)

q(x)
= x2

1−x on the interval I = (−∞, 1). Then

rd = 1, maxp = 1, maxq = 1.

Hence, the function L is in this case defined as

L(y) = 1 + (1 + y) = 2 + y.

In contrast to the value L, we did not present a way how to find the values
δ1, δ2 for a rational function ϕ continuous on the interval I. In the proof of
Theorem 4.23 we showed that these values exist; however, the proof was not
constructive. Therefore, we will now study the constructive approach.

Let us recall the definition of the value δ1. We are in the situation in which
either xmin ∈ {a, b} and fmin = −∞ or xmax ∈ {a, b} and fmax =∞. We discuss
only the situation when

xmax = b > 0 and fmax = lim
x→b−

ϕ(x) =∞.

The other cases are analogous.
From Remark 4.14 we know that xmax ∈ [−L,L], where L ∈ R. Thus, the

starting point xmax is defined as xmax = b <∞. Recall that δ1 > 0 is such that

∀x ∈ I : |b− x| < δ1 ⇒ ϕ(x) > |y|.

In other words, we want to find δ1 > 0 such that for every 0 < δ < δ1 we have

ϕ(b− δ) > |y|.

Intuitively, we can express the value δ1 in terms of the input y and the endpoint b.
We omit the general analysis of this problem. However, we show how to

find δ1 in one concrete example. In fact, we use the same function and interval
as in Example 4.24.

Example 4.27. Let ϕ(x) = x2

1−x and b = 1. We want to find δ1 such that for every
0 < δ < δ1 < b = 1 it holds

ϕ(1− δ) > |y|.
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If we evaluate the rational function ϕ, we achieve

1− 2δ + δ2

1− (1− δ)
> |y|.

This can be equivalently expressed as

1− δ(2 + |y|) + δ2 > 0.

Since 0 < δ < 1, we know that the inequality holds if

0 < δ <
2 + |y| −

√
4|y|+ y2

2
.

Thus, we showed that in this concrete case

δ1(y) :=
2 + |y| −

√
4|y|+ y2

2
.

If the input is y = 20, as in Example 4.24, then

δ1 =
2 + 20−

√
4 · 20 + 400

2
= 11−

√
120

.
= 0.0455488.

Finally, let us express

blog2(b− xmin)− log2(δ1)c+ 1 = b− log2(δ1)c+ 1 = 4 + 1 = 5

Thus, according to the proof of Theorem 4.23 (concretely the equation (4.9)), the
value xU must be changed latest in the fifth while-loop. This is, indeed, the case
in our example, see Table 4.1.

We believe that this concrete example gave an idea how to find a function δ1(y)
for a rational function ϕ and endpoint b.

Let us now discuss the value δ2 > 0. Recall that at this point we assume
starting points xL, xU ∈ I such that

−∞ < ϕ(xL) ≤ y ≤ ϕ(xU) <∞.

We know that the function ϕ is continuous on the interval I. Moreover, it is
uniformly continuous on the closed interval with endpoints xL, xU . Let us denote
this interval I ′. By definition there exists δ2 > 0 such that

∀x1, x2 ∈ I ′ : |x1 − x2| < δ2 ⇒ |ϕ(x1)− ϕ(x2)| < ε.

Note that the value δ2 can be understood as a function of ε. The question is how
to find such a function δ2(ε). As in the case of δ1, we omit the general discussion;
however, we present one concrete example on which we demonstrate the strategy
of finding δ2(ε).

Example 4.28. Let ϕ(x) = x2

1−x be the studied rational function and consider now
the closed interval I ′ = [xL, xU ] ⊂ [0, 1). We want to find δ2 such that for every
x ∈ [xL, xU − δ2] and 0 < δ < δ2 it holds

|ϕ(x+ δ)− ϕ(x)| < ε.
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The rational function ϕ is strictly increasing on the interval [0, 1). Since x < x+δ,
the absolute value in the inequality above can be removed. By evaluating the
function ϕ we achieve

x2 + 2δx+ δ2

1− x− δ
− x2

1− x
< ε.

This inequality can be modified as

δ2(1− x) + δ
(
−x2 + x(2− ε) + ε

)
− ε(x− 1)2 < 0.

We have 0 < δ < 1 − x and 0 ≤ x < 1. The accuracy ε > 0 is fixed. Using the
quadratic formula, we can conclude that the inequality above holds for

0 < δ <
x2 − x(2− ε)− ε+

√
(−x2 + x(2− ε) + ε)2 − 4ε(x− 1)3

2(1− x)
.

Thus, the value δ2 can be chosen as the minimal value of the expression on the
right hand side for x ∈ [xL, xU ], i.e.

δ2(ε) := min
xL≤x≤xU

x2 − x(2− ε)− ε+
√

(−x2 + x(2− ε) + ε)2 − 4ε(x− 1)3

2(1− x)

 .

Let us apply this formula on the situation from Example 4.24. After five while-
loops we were in the situation xL = 15

16
, xU = 31

32
. Recall that ε = 1. Thus, we can

evaluate the function δ2 as

δ2(1) = min
15
16
≤x≤ 31

32

x2 − x− 1 +
√

(−x2 + x+ 1)2 − 4(x− 1)3

2(1− x)

 .

The expression is strictly increasing on the interval [15
16
, 31

32
], therefore

δ2(1) =


31
32

2 − 31
32
− 1 +

√(
−31

32

2
+ 31

32
+ 1
)2

− 4(31
32
− 1)3

2(1− 31
32

)

 .
= 0.00094784

Since L = 22, we can conclude that we need at most

blog2(22)− log2 (δ2(1))c+ 2 = 14 + 2 = 16

while-loops to halt.

We see that expressing δ2 as a function of ε is non-trivial even in this simple
example. Also note, that the function δ2(ε) is generally not continuous. However,
it is independent of the input value y. Thus, it can be understood as a machine
constant.
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4.5 Overview

Table 4.3 summarizes what we know about the problem of inverting a rational
function ϕ which is continuous on I, where I is either an open interval or a point.

Table 4.3: Inverting a rational function ϕ on an open interval or a point I

ϕ J = ϕ(I) ε = 0
ε > 0

Constant time Computable
1. linear UB 3 3 3

2.

non-linear

P 3 3 3

3. B 7 3 3

4. UB 7 (7) 3

The abbreviation “UB” stands for “unbounded” which means that J is an
unbounded open interval. The abbreviation “B” stands for “bounded” which
means that J is a bounded open interval. And finally “P” stands for “point” and
it expresses that J is a point.

The meaning of the symbols “3” and “7” will be explained in the discussion
below in which we describe each cell of Table 4.3 separately.

� The column “ε = 0” expresses the inversion with infinite precision.

– The first row consider a rational function which can be represented by
a fraction of two linear polynomials. We discussed at the beginning of
Chapter 3 that such a function can be inverted with infinite precision
in constant time on any interval.

– We discussed at the beginning of Section 4.4 that if the component J
is a point then we can invert the function ϕ on I with infinite precision
in constant time.

– In Corollary 3.2 we proved that the function ϕ(x) = x2 cannot be
inverted with infinite precision by any BSS machine. Similarly we
could prove that the same holds for any rational function which cannot
be expressed as a fraction of two linear polynomials. This explains the
crosses in the remaining rows.

� The column “ε > 0 + Constant time” refers to the inversion with fixed
precision ε > 0 by a constant time BSS machine.

– Rows 1 and 2 follow from the previous column.

– From Observation 4.25 we know that the machine M which we con-
structed in Section 4.4 is a constant time BSS machine if the rational
function ϕ and the open interval I are such that the interval J = ϕ(I)
is bounded.

– In Theorem 3.3 we proved that x2 cannot be inverted by a constant
time BSS machine on an unbounded interval. It is not difficult to
prove that the same holds for every function of the form ϕ(x) = xn,
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where |n| ≥ 2 (the idea of the proof is similar as in the case n = 2).
Therefore, we conjecture that no rational function which satisfies the
conditions of this row is invertible by a constant time BSS machine.

� In Section 4.4 we proved that any rational function which is continuous on
an open interval I can be inverted with an arbitrary but fixed precision
ε > 0. This explains all the positive results in the last column; i.e. the
column labelled “ε > 0 + Computable”.

In this chapter we defined easy to compute real functions as functions that
are computable by a constant time BSS machine. Consequently, if ψ is an easy to
compute real function then it can be defined by finitely many rational functions.
We proved that every easy to compute function ψ is invertible upto some fixed
precision ε > 0. Moreover, if the real function ψ consists (only) of rational
functions that are bounded on corresponding intervals then the function ψ is
invertible in constant time. Furthermore, we showed how to calculate an upper
bound on the time complexity of the inversion problem for a concrete easy to
compute real function ψ.
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5. Further remarks

In this chapter we bring up two interesting topics regarding hard to invert func-
tions in the BSS model of computation which would be worth further study.

5.1 Inverting an arbitrary BSS machine over R
In the previous chapter we defined that a real function ψ : R → R is easy to
compute in the BSS model of computation if it is an input-output map of a con-
stant time BSS machine M0. What happens is we omit the time restriction of
the machine M0 in the definition?

First of all note that the inverting machine M which we constructed in the
previous chapter would generally not invert the machine M0. By the Path Decom-
position Theorem the halting set of a time unbounded BSS machine is a countable
disjoint union of semi-algebraic sets. Consequently, to fully describe the decom-
position of the set ΩM0 we need infinitely many values. And recall that the set
of machine constants is a finite set.

We do not see why this alternative definition of an easy to compute function
should bring some new results in the question of hard to invert functions. In other
words, that there is a computable real function whose inverse is not computable
while considering inversion with precision ε > 0.

However, let us suggest two BSS machines MBER and MLOG that would be
interesting to analyse.

The first machine is based on the Bernoulli map which is well known due to
its chaotic behaviour. It iterates the function BER: [0, 1]→ [0, 1] defined as

BER(x) =

{
2 · x, if x ≤ 1

2
,

2 · x− 1, if x > 1
2
.

It is easy to observe that the BSS machine which k-times iterates the function
BER has a piecewise linear input-output map and that the halting set of such
a machine decomposes in 2k open intervals and 2k + 1 points. See the book [12]
for more details about the Bernoulli map.

Let us briefly discuss how the BSS machine MBER defined in Figure 5.1 works.
The machine has a small constant δ > 0. On an input x from the interval [0, 1]
it applies iteratively the Bernoulli function until it reaches the the interval [0, δ].
Then it outputs the number of performed iterations.

An adversary which is trying to invert this machine is given a natural number
k ∈ N. His task is to find x′ ∈ [0, 1] such that ΦMBER

(x′) = k. Note that in this
case it does not matter if we require inversion with infinite precision or inversion
with the fixed precision ε, where 0 ≤ ε < 1

2
.

Another interesting machine, which would be worth further analysis, uses
the previous machine in combination with another chaotic function. Namely the
logistic map which iterates the function LOG: [0, 1]→ [0, 1] defined as

LOG(x) = r · x · (1− x),
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1
Input x ∈ [0, 1]

k ← 0

2
x ≥ δ

3
x ← BER(x)
k ← k + 1

4
Output k

NO

YES

Figure 5.1: The graph of a BSS machine MBER which is based on the Bernoulli
map

where r ∈ (0, 4] is some fixed constant. A lot of research have been done in order
to analyse the behaviour of the logistic map for different choices of the constant r.
According to the author of the book [12] the logistic map is chaotic for most of
the values r from the interval (3.57, 4). It is not difficult to observe that the BSS
machine which k-times iterates the function LOG has only one halting path, i.e.
the halting set consists of one connected component [0, 1]. On the other hand,
the input-output map is a polynomial function of degree 2k.

Figure 5.2 describes a machine MLOG which uses both functions BER and
LOG. On an input x ∈ [0, 1] it first runs the machine MBER. The output of the
machine MBER determines the number of iterations of the function LOG applied
on the input x.

An adversary is now given a real number y ∈ [0, 1]. His task is to find x′ ∈ [0, 1]
such that |ΦMLOG

(x′) − y| < ε for some fixed precision ε > 0. Note that in this
case inversion with infinite precision does not make sense since the input-output
map is not piecewise linear (see Section 3.2 for more details).

5.2 Can Turing machines simulate general BSS

machines over R?

In this section we briefly explain why we think that Turing machines cannot
simulate BSS machines over real numbers even if restricted to integer inputs.

Assume that f is a length-preserving permutation

f : {0, 1}∗ → {0, 1}∗,
x ∈ {0, 1}n 7→ y ∈ {0, 1}n,

which is computable by a polynomial time Turning machine (or equivalently, by
a general BSS machine over Z2, recall Section 2.4). We can think of f as being
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1
Input x ∈ [0, 1]

y ← x

2
x ≥ δ

3
x ← BER(x)
y ← LOG(y)

4
Output y

NO

YES

Figure 5.2: The graph of a BSS machine MLOG which is based on two chaotic
maps; namely, the Bernoulli map and the logistic map

defined on natural numbers and represent it by the following real function

f̃ : R+ → N,
x 7→ f(bxc).

It can be observed that the time complexity of a general BSS machine over R
computing f̃ is polynomial in n, where n = dlog(x+1)e. Recall the end of Subsec-
tion 2.1.7, where we discussed the time complexity of a BSS machine computing
the floor function.

Let M be a general BSS machine over R which inverts the function f̃ . That
is, given a value y = f̃(x) it finds a real number x′ ∈ R+ such that

f̃(x′) = y.

In other words, the machine M can approximate the value x with the precision 1
2
.

Suppose that the time complexity of the BSS machineM is polynomial in n, where
n = dlog(x+ 1)e. Our question is the following.

Would the existence of the BSS machine M from above imply the existence of
a polynomial time Turing machine inverting the permutation f?

The BSS machine M is a machine over R; thus, it can have finitely many real
numbers as machine constants. Every real number can by its digits encode a sub-
set of R. Consequently, we can understand constants of machine M as an oracle
access.

This is why we conjecture that Turing machines cannot simulate BSS machines
over R, even just on integer inputs.
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Conclusion

In this thesis we primarily studied real functions computable by constant time
BSS machines with one dimensional input space and one dimensional output
space. Our main theme was to analyse how difficult it is to invert these functions.

In order to do so, we firstly had to specify what we mean by “inverting”
a function in the BSS model of computation. In this work we took into consid-
eration two possible approaches. In the first variant of the definition we required
inversion with infinite precision whereas in the second one we allowed inversion
with some fixed precision ε > 0.

We proved that even very simple real functions, such as for example x2, are not
invertible with respect to the first definition of inversion. Consequently, there are
infinitely many hard to invert real functions in the framework of this definition.

On the other hand, we showed that there is no real function which is easy
to compute but impossible to invert in the sense of the second variant of the
definition. Our proof was constructive which means that we provided a method
how to find an inverting machine for any given easy to compute real function. This
approach allowed us to do a detailed time complexity analysis of the inverting
machines. As a result, we were able to discuss which real functions are invertible
in constant time.

An example of a real function which is invertible with fixed precision ε > 0
but not in constant time is x2. For this concrete function we presented a more
efficient inverting machine than for a general function and we calculated its time
complexity. In addition, we derived a formula for a lower bound on the time
complexity of the problem of inverting x2. We expressed the lower bound explic-
itly under the assumption that 0 and 1 are the only constants of the inverting
machine.

There are several ways how to extend the work done in this thesis. It would be
interesting to study how difficult it is to invert an arbitrary real function which is
computable in the BSS model of computation. We presented two BSS machines
whose inverse would be worth further analysis. Both suggested machines are
based on chaotic maps. Another direction building up on this work is to consider
real functions with n dimensional input space and subsequently also real maps.

At the very end of this thesis we briefly discussed why we agree with the
commonly recognized conjecture that general BSS machines over R are more
powerful objects than Turing machines.
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