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Abstract

Hematopoietic stem cells (HSCs) are crucial for maintaining balanced 
homeostasis in the human body. HSCs are pluripotent cells, which are able to give rise to 
many very different cells. HSCs can be found in fetal liver initially during organismal 
development where they expand and move to their more definitive location, the bone 
marrow, shortly before birth in humans and mice. HSCs possess to not only recapitulate 
themselves (self-renew) or proliferate and expand, but are also the first branching point 
from which subsequent multipotent progenitors and eventually all blood cell lineages are 
formed thus establishing specific and restricted terminal differentiation pathways. The 
irreversible decision to initiate and follow a specific differentiation pathway is designated 
as lineage commitment. The drivers of lineage commitment, which are a base of this 
thesis, are intrinsic as well as extrinsic factors acting within the stem cell niche, such as 
transcription factors, chromatin remodeling factors, and cytokines, which are essential for 
proliferation, survival, self-renewal and lineage commitment decisions. These regulatory 
factors, working either independently or in mutual coordination, maintain balanced 
homeostasis of HSC renewal and their differentiation. The goal of this thesis will be to 
ascribe the mechanisms of lineage commitment of HSCs with regard to the role that key 
regulation molecules play in this cell fate decision.

Hematopoetické kmenové buňky (hematopoietic stem cells, HSCs) mají 
rozhodující význam pro udržení vyvážené homeostázy v lidském těle. Jedná se o 
pluripotentní buňky, které můžeme nalézt ve fetálních játrech vyvíjejícího se plodu, 
odkud se krátce před narozením jedince šíří a přesouvají do svého cílového orgánu, 
kostní dřeně. Hematopoetické kmenové buňky mají schopnost se nejen sami obnovovat a 
rozšiřovat, ale jsou také prvním bodem větvení z kterého jsou vytvářeny multipotentní 
progenitorové buňky a následně všechny typy krevních buněk v lidském těle, čímž se 
stanoví specifické a terminálně diferenciované linie krevních buněk. Tento proces je 
vysoce specifický, nezvratný a nazývá se liniová determinace. Řídící molekuly liniové 
determinace jsou vnitřní i vnější faktory, působící na kmenové buňky, jako jsou 
transkripční faktory, chromatin remodelační faktory, a cytokiny. Tyto faktory jsou 
nezbytné pro proliferaci, přežití, sebeobnovu a liniovou determinaci buněk, a pracují buď 
samostatně nebo v koordinaci. Udržují vyváženou homeostázu obnovy a diferenciace
buněk. Cílem této práce je identifikovat mechanismy zodpovědné za liniovou determinaci
hematopoetických kmenových buněk s ohledem na roli, kterou hrají klíčové regulační
molekuly při rozhodování o osudu buněk.
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1. Introduction

1.1 Hematopoietic Stem Cells 

Hematopoietic stem cells (HSCs) are the prime component in hematopoiesis as 

they reside at the top of the hematopoietic lineage hierarchy. HSCs are defined as a 

population of pluripotent cells with varying developmental potentials regulated by a 

complex intrinsic network of transcription factors located in the bone marrow of adult 

mammals (Notta et al, 2015; Orkin and Zon, 2008)  The stem cell niche is a highly 

specific microenvironment of numerous cell types attached together in an interlinked 

microtissue, that is necessary for both the self-renewal of HSCs as well as for their 

differentiation via reception of critical signal inputs (J. Zhang et al, 2003). HSCs are 

responsible for the replenishment and reconstitution of all hematopoietic cells by yielding

multipotent progenitors that are gradually more restricted to one or several lineages

(Serafini et al, 2007). These multipotent progenitors give way to blood precursors that 

become committed to a specific lineage differentiation and produce all mature cells,

including red blood cells, megakaryocytes, myeloid cells and lymphocytes.

1.2 The Hematopoietic Map 

Figure 1 (below) illustrates the simplified cartoon that depicts the development of

blood lineages originating from the primitive HSC. The dominant position is held by the 

uncommitted HSCs that are capable of self-renewal through symmetrical cell division

producing two daughter cells with the same cell fate. Down the line, HSCs then 

differentiate into the primitive progenitor cells of the myeloid and lymphoid lineages

(Miyamoto et al, 2002). These cells lose the potential to self-renew, and are able to 

differentiate to multiple mature cell types by asymmetrical cell division that gives rise to 

two daughter cells with differential cell fates (Takano et al, 2004). The myeloid 

progenitor cell is able to specialize to become a megakaryocyte, responsible for the 

production of thrombocytes (platelets), as well as an erythrocyte (red blood cell), mast 

cell or a myeloblast that differentiates either into a basophil, neutrophil, eosinophil or a 

monocyte. Monocytes are then able to further specify into mature macrophages or 
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dendritic cells (Akashi et al, 2000). The lymphoid progenitor can either become a natural 

killer cell or a lymphocyte that further specifies into a T cell, or a B cell that gives rise to

plasma cells (Kondo, Weissman, and Akashi, 1997). These mature cells are fully 

committed, fulfilling a specific role in the hematopoietic system and are unable to 

become, or produce any other cell type.

Figure 1 – Developmental Hierarchy of the Hematopoietic Stem Cell
(OpenStax College, 2013, available 

online: http://cnx.org/contents/FPtK1zmh@6.27:lmwyzD1v@4/Cellular-Differentiation)

1.3 Lineage Commitment 

The process by which HSCs become restricted to a specific differentiation 

pathway is called lineage commitment. Lineage commitment may be defined as the point 

at which a cell becomes irreversibly restricted to one particular fate, and thus loses any 
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subsequent potential to differentiate into any other kind of cell (Pina et al, 2012). The 

molecular mechanisms by which individual cells decide to what particular lineage they 

become committed to are highly complex and poorly characterized. Models depicting 

lineage commitment range from a stochastic differentiation event to a specifically 

regulated process controlled by intrinsic transcription factors or chromatin remodeling 

factors, and extrinsic signal molecules such as cytokines (Rieger et al, 2009; Teles et al,

2013; Jeong et al, 2013; Nimmo, May, and Enver, 2015). Although a number of player 

molecules have been identified, they may represent only a small subset of a larger 

network controlling lineage commitment. Furthermore, understanding the mechanisms of 

lineage commitment may be a crucial stride in our knowledge of blood malignancies, as 

the disturbance of the HSCs transcriptional network is at the core of oncogenesis

(Mueller et al, 2002; Orkin and Zon, 2008).

2. Redefining HSCs

Hematopoietic stem cells reside at the top of the lineage commitment tree that 

becomes over several cell divisions more restricted in its potential to form cells of 

multiple characteristics. However, classical models depicting this lineage hierarchy are 

overly simplified, ignoring that HSCs do not conform to a stoic classification, but that 

they are a rather dynamic class of cells (Notta et al, 2015). Experiments have shown that 

within a single population of HSCs, the levels of expressed genes are highly 

heterogeneous and promiscuous, being more or less inclined to more specified restriction 

pathways (Notta et al, 2015; Ema, Morita, and Suda, 2014). This heterogeneity suggests 

that HSCs form functional subtypes, and that the order depicted in the classic bifurcation 

model may be much more random. Transplantation experiments have utilized

reconstitution kinetics as a basis of creating new classifications within HSCs, and suggest 

that HSCs classification and differentiation is linked to their life span (Ema, Morita, and 

Suda, 2014; Müller-Sieburg et al, 2002). In this chapter we will look at the classification 

of HSCs, the phenotype surface markers used to identify them to show that HSCs lineage 

hierarchy doesn’t necessarily begin with a single homogenous cell, but rather a group of 

heterogeneous cells that incline toward a particular programmed pathway.
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2.1 HSCs Phenotype and Surface Markers

Population-based studies in the past provided important data to understand HSCs. 

However, commitment and self-renewal decisions are made by each individual HSC, 

therefore examination of single cells at the clonal level is also highly required (Muller-

Sieburg et al, 2002). The expression of cell surface markers such as proteins and cytokine 

receptors is a crucial aid in the identification and classification of HSCs and their 

multipotent progeny (Guo et al, 2013). Distinct combinations of surface markers 

expressed in individual cells reflect the inclination and adherence to specific lineages as 

functionally diverse populations of cells only express certain combinations, enabling the 

compartmentalization of HSCs and progenitor cells (Macaulay et al, 2016). The benefit 

of compartmentalizing cells into subpopulations based on their expressed surface markers 

is countered by the limitations of profiling, because choosing to use a small number of 

surface markers can conceal a higher level of heterogeneity and could compromise HSCs

hierarchy (Guo et al, 2013). The many surface marker molecules known as CDs (Cluster 

of Differentiation) can be identified using an antibody clone that binds to the receptor site 

of the marker (Notta et al, 2015). Breakthrough analytic techniques such as single cell 

mRNA sequencing is able to detect 75 % more genes than the previously used microarray 

techniques and thus enables to analyze whole transcriptomes (the entire ensemble of 

RNA molecules within a single cell) (Tang et al, 2009). Furthermore fluorescence-

activated cell sorting (FACS) flow cytometry is also an essential procedure for the sorting 

of HSCs populations and subsequent progenitors (Bendall et al, 2011). As cells become 

more lineage restricted, their surface marker expression changes, some CDs are lost while

others are gained, which allows the separation of cell populations and lineages based on 

the markers expressed. 

Among the most well-known to define HSCs and progenitor cells is the CD34 

surface marker (Debili et al, 2001). The presence of CD34+ marks an 

undifferentiated/progenitor state although it has been observed that CD34- cells also exist

within the most primitive populations of HSCs exemplifying the high degree of 

heterogeneity within the same class of cells (Goodell et al, 1997). The CD150+ marker

part of the SLAM (signaling lymphocyte activation molecule) family of markers is yet 
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another classic example of HSCs characterization with a particular function in myeloid 

reconstitution in the CD150+CD34-KSL (c-Kit+Sca-1+Lin-) fraction (Yamamoto et al,

2013; Morita, Ema, and Nakauchi, 2010). Another example of an important surface 

marker is CD135 also known as FLT3 or FLK-2. This surface marker is also an important 

factor for lineage differentiation as it is crucial for lymphocyte development and 

characterizes the lymphoid/myeloid progenitor cell (LMPP) although CD135+ HSCs have 

been observed to momentarily become repopulating cells with a short-term reconstitution 

capability (Boyer et al, 2011; Christensen and Weissman, 2001).  The examples above 

demonstrate the usefulness of surface markers to determine HSCs and progenitor 

phenotypes and their classification. On the contrary, they also demonstrate high 

heterogeneity among already defined sets of cells indicating the need for further single 

cell gene expression data (Guo et al, 2013). 

2.2 HSC Subtypes

Serial single-cell transplants in mice have revealed that it may be practical to 

classify HSCs into specific subtypes based on their differentiation potential, as it was 

found that even individual HSCs are capable of producing quite diverse subtypes. 

(Wilson et al, 2015; Babovic and Eaves, 2014). However, varying nomenclature used to 

describe these subclasses has promoted confusion (Ema, Morita, and Suda, 2014) so a 

revised classification system should be implemented. For the sake of clarity in this assay, 

the terms long-term HSCs (LT-HSCs) having a reconstitution time (the duration it takes 

for a cell to repopulate and proliferate) longer than 12 months correspond to the α

subtype. Intermediate HSCs (IT-HSCs) with more than a 6 month reconstitution time for 

β cells, and short-term HSCs (ST-HSCs) for the γ and δ subtypes having a reconstitution 

of less than 6 months (Benz et al, 2012). The LT, IT and ST-HSC subtypes can be further 

categorized by their contributive ratio of myeloid versus lymphoid cells present 4-6

months after single cell transplantation in recipient mice (Dykstra et al, 2007). On top of 

that, the LT-HSC and IT-HSC types were found to be linked to self-renewal activity and

succeeding daughter cells maintained the same differentiation programs arguing that 

these patterns have been intrinsically predetermined in cells even before the initial 
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transplant (Dykstra et al, 2007). Figure 2 below represents the hierarchy of the 4 

subtypes of HSCs based on long-term repopulation following single cell transplantation.

Furthermore, IT-HSCs were found to have a shorter self-renewal period than LT-HSCs 

and ST-HSCs completely lacking self-renewal ability (Dykstra et al, 2007).

Differentiation toward a myeloid pathway becomes increasingly restricted in IT-HSC (β) 

and ST-HSC (γ, δ) cells which correspond to traditional HSC differentiation hierarchy. 

(Dykstra et al, 2007). LT-HSC (α) cells have long-term repopulating activity with high 

self-renewal capacity that can be exclusively sustained over multiple cycles. These cells 

also have a tendency to generate myeloid specified progeny although they are also 

capable of presenting direct lymphoid repopulation (Dykstra et al,2007).

Figure 2 - Hierarchy of long-term repopulating HSCs subtypes after single cell

transplantation in mice (Dykstra et al, 2007)

The perception that progeny of transplanted cells maintain similar differentiation 

programming suggests that they are intrinsically regulated, and they challenge the idea 

that all HSCs have identical multi-lineage differentiation potential. On contrary, it may 

suggest that the cell environment provides such expected heterogeneity. The attempt to 

find order in the classification of HSCs has been largely unsuccessful as the findings 
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indicate that HSCs have a unique intrinsically regulated epigenetic marker that maintains

similar lineage differentiation from successive generations of daughter HSCs (Mercer et 

al, 2011; Babovic and Eaves, 2014). Furthermore, and more importantly, the proposition 

that HSCs have individual intrinsic/extrinsic programming that is maintained in 

subsequent generations lends to the idea that lineage commitment is a regulated process 

rather than a random mechanism. The suggestion that each HSC has its own individual 

programming could also explain the high heterogeneity found within single populations 

of HSCs and could test the hypothesis that differentiation is a stochastic event. 

Repopulation experiments using individual stem cells might prove to be a useful tool in 

further studying not only of HSCs classification but also lineage commitment in potential

(Müller-Sieburg et al, 2002).

3. Models of Lineage Commitment

Figure 3 – Models of Lineage Commitment; (A) Classical Bifurcation Model,
(B) Revised Model, (C) Myeloid Bypass Model (Nimmo, May, and Enver, 2015)

As I have pointed out in the previous chapter, lineage hierarchy is a dynamic 

system, such fact was revised over the last decade mirroring HSCs and its subsequent 
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progenitor capability to differentiate and more importantly reprogram multiple

commitment lineages. This chapter will discuss suitable models how to study lineage 

hierarchy from the outdated classical bifurcation model to modern revised models 

illustrating the heterogeneous nature of HSCs. In the bone marrow, LT-HSCs have the 

innate ability of self-renewal, extended life-span as well as the potential to reconstitute 

the complete immune system for the life of an organism (Notta et al, 2015; Spangrude, 

Heimfeld, and Weissman, 1988). They can, through asymmetrical cell division 

differentiate into ST-HSCs which also have multipotent properties, but their self-renewal 

capabilities are quite limited than that of their predecessor as they are active only for a 

limited time (Mercer, Lin, and Murre, 2011). The differentiation from LT-HSC to ST-

HSC is marked by downregulation of previously discussed CD150 marker which was 

shown to sub classify HSC and MPP (multipotent progenitor) populations. (Yamamoto et 

al, 2013; Oguro, Ding, and Morrison, 2013). Further down, ST-HSCs then differentiate 

into MPPs that are not capable of self-renewing but do carry potential to differentiate to 

both myeloid and lymphoid lineages (Akashi et al, 2000). 

3.1 Classical Model

In the established, but outdated classical bifurcation model seen in Figure 3A, 

primitive LT-HSCs bearing surface markers CD150+CD34-KLS give rise to MPPs

CD150-CD34+ which then commit to either common myeloid or lymphoid progenitors 

known as CMPs and CLPs, marking the first major segregation of cell fate (Notta et al,

2015). CLPs then give rise to B cells, T cells, as well as natural killer cells (NK), and

CMPs give rise to unipotent progenitors GMPs (granulocyte-monocyte progenitors) and 

MEPs (megakaryocyte-erythroid progenitors) that differentiate to only one cell lineage

(Kondo, Weissman, and Akashi, 1997; Akashi et al, 2000; Notta et al, 2015). In this 

model CLPs and CMPs can be viewed as reciprocally exclusive populations (Nimmo, 

May, and Enver, 2015). This model has been proposed over a decade ago (Akashi et al,

2000) and suggests that cellular differentiation is a gradual and symmetrical process. 

However, recent studies are overruling this view as CMP-like progenitors have been 

found to be more heterogeneous than expected, comprised of unipotent myeloid and 

erythroid progenitors with little or no megakaryocytic activity (Notta et al, 2015). 

Furthermore, these studies at the clonal level have not been able to identify oligopotent
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progenitors (more restricted progenitors that produce only a few cell lineages) suggesting 

that lineage restricted cells producing entire ranges of myeloid cells may rather be a 

subset of HSCs poised for myeloid lineage bias (Yamamoto et al, 2013; Benz et al, 2012).

MPPs have also not been experimentally found, and thus the association of MPPs to 

CLPs or CMPs is not yet clear (Ema, Morita, and Suda, 2014). Single cell gene 

expression experiments utilizing clonal functional assays discovered an early division of 

megakaryocyte-erythroid and lymphoid fates as early as in HSCs, and implicated that a 

subset of HSCs exist with an exclusive platelet reconstitution potential (A Sanjuan-Pla et 

al, 2013). 

3.2 Revised Model

Above introduced findings show the necessity to review and redraw the lineage 

commitment hierarchy, and many models reflecting the heterogeneity of HSCs and 

progenitor cells have been proposed. One of these is the revised model (Figure 3B) that 

suggests lineage commitment to occur at the MPP and possibly at the HSC level. Studies 

have shown that the MPP population contains cells that express the lymphoid lineage-

specific recombination activation gene (rag)-1, causing them to differentiate into 

lymphoid-biased cells, but also preserving minor myeloid potential allowing for the

differentiation to the MEP lineage independently of MEPs originating from HSC 

fractions (Arinobu et al, 2007). Further studies have shown that a fraction of MPPs 

expressing CD135+ (Flk-2/Flt3+) lack MEP potential to become specified toward 

lymphoid differentiation. The CD135+CD34+KLS MPPs were therefore designated as

LMPP (lymphoid-primed multipotent progenitor) (Adolfsson et al, 2005). In this revised

model, the early separation of MEP lineages in HSC/MPP fractions is key and proposes 

that most MEPs arise directly from HSCs as there were no single cells found to co-

express any megakaryocyte-erythroid and lymphoid markers (Notta et al, 2015). The 

summarization of this model takes into account the early separation of the MEP lineage 

near to the HSC fraction (Notta et al, 2015), but also takes into account heterogeneity

found in the MPP fraction as a portion retained slight MEP differentiation potential while 

the LMPP- biased fraction lacked any MEP potential (Adolfsson et al, 2005).
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3.3 Myeloid Bypass Model

The myeloid bypass model (Figures 3C and 4) is different from previous models 

because it proposes self-renewal of cells to exist apart from the primitive HSC 

compartment, specifically in the MyRP (myeloid repopulating progenitor) cells that are 

lineage restricted to either MkRPs (megakaryocyte repopulating progenitor), MERPs 

(megakaryocyte-erythrocyte repopulating progenitor), and CMRPs (common myeloid 

repopulating progenitor) (Yamamoto et al, 2013; Nimmo, May, and Enver, 2015). 

Figure 4 – Myeloid Bypass Model and Conventional (Revised) Model with respect to 
HSC subtypes (Yamamoto et al, 2013)

The self-renewing MyRP populations then give rise to a myeloid progenitor that 

differentiates to all myeloid cells as in other models, with a fraction of the LMPP 

compartment contributing to the G/M lineage (Yamamoto et al, 2013). Unlike the revised 

model, the myeloid bypass model categorizes LMPPs with lack of repopulating ability

implying that they may originate from ST-HSCs rather than MPPs (Morita, Ema, and 

Nakauchi, 2010). In the study by Yamamoto et al (2013) single MPPs and LMPPs did 
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not show any repopulation in mice receiving these single cells which indicates that 

MyRPs rather than MPPs and LMPPs are responsible for the production of myeloid cells. 

Figure 4 usefully illustrates the position of LT-, IT- and ST-HSCs on the lineage 

hierarchy being separate from the MyRP fraction, as well HSC subtypes in the 

conventional model based on expressed surface markers. 

3.4 Other Models

To illustrate the wide degree of variability, I have included the “New 

differentiation model” created by Ema, Morita, and Suda (2014) seen in Figure 5 which 

is centered around the similar concept as the myeloid bypass model that the 

megakaryocyte/myeloid lineage (rCMPs) is one of the first lineages constituted, directly 

from the HSC compartment through asymmetrical cell division (Yamamoto et al, 2013). 

This model therefore expects that the myeloid lineage is established prior to and is larger 

than the lymphoid lineage. In this model, LT-HSCs give rise to myeloid progenitors and

IT-HSCs form an intermediate state between LT-HSC and ST-HSC cells. From there, 

ST-HSCs give rise to MyB (myeloid progenitor with B cell potential) and MyT (myeloid 

progenitor with T cell potential) (Ema, Morita, and Suda, 2014). 

Figure 5 – “New Differentiation Model” (Ema, Morita, and Suda, 2014)

As was demonstrated by the differing models of lineage hierarchy, wide 

heterogeneity has been found to exist even within the most classically defined and pure 

HSC compartments. Lack of oligopotent intermediate progenitors found in studies by 
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Notta et al (2015) support a simpler two tier hierarchy seen in Figure 6, with an upper 

tier consisting of HSCs and MPPs and a lower tier made up of committed unipotent 

progenitors. It is easy to become lost and confused among the constantly changing 

models, however, there is one clear take away message and that is the importance of

single cell studies of HSCs. Our need to find order within HSC and progenitor 

populations often leads to more questions than answers, as population-based experiments 

are unable to distinguish between assortments of cells with fluctuating degrees of lineage 

bias. Therefore, simpler models such as in Figure 6 should be implemented as emerging 

evidence suggests that HSCs and their progeny can be efficiently studied and thought of 

as individual, unique cells rather than populations assumed to be marker and functionally 

synonymous (Notta et al, 2015).

Figure 6 – Simplified model of Mk (Megakaryocyte), Er (Erythroid), My (Myeloid),
and Ly (Lymphoid) Differentiation. Acquired and revised from (Notta et al, 2015)

4. Transcription Factors

Decisions of HSCs cell fate have been suggested to result from a network of 

active transcription factors based on a cross-antagonism relationship (Takano et al, 2004;

Notta et al, 2015; Nimmo, May, and Enver, 2015). Experiments attempting to show this 

connection have revealed that HSCs express multiple lineage-restricting genes at low 

levels suggesting that multiple differentiation programs, restricting a cell to one particular 

fate are expressed at the same. The co-expression of multiple antagonistic genes within 
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one cell in preparation for commitment has been described as multilineage priming (Hu 

et al, 1997). Multilineage priming can predict how the concentration of a particular 

transcription factor over another one influences lineage choice (see Figure 7). The 

schematic illustrates how two genes (B, A) or (B, C) are simultaneously expressed, at low 

levels in multipotent cells. In committed cells, gene expression is locked to one specific 

differentiation program, while the others are silenced (as represented by lineages A, B 

and C in Figure 7).

Figure 7 – Schematic Diagram of Multilineage Priming (Nimmo, May, and Enver,
2015)

The upregulation of one gene leads to the downregulation or inhibition of its 

antagonistic partner, and thus the alternative differentiation pathway becomes silenced

locking the cell into a more committed state (Nerlov et al, 2000; Orkin and Zon, 2008).

Although HSCs express the ability to switch from an undifferentiated state to a 

committed one, the underlying regulation of this mechanism, the relationship between

transcription factors is still unknown and needs to be assessed using more sensitive 

assays. Physical interactions between transcription factors may be only transient, and it

shouldn’t be assumed that lineage priming is a regulated process, but that the up and 

downregulation of transcription factors could be merely a stochastic fluctuation within an 

inactive transcriptional network (Notta et al, 2015; Roeder and Glauche, 2006). 



14

4.1 Transcription Factors GATA-1 and PU.1

The network of interacting transcription factors whose role may be critical for fate 

choice is vague as many TFs have yet to be identified, and the mechanisms by which TFs 

regulate lineage commitment is even more of a mystery. For the sake of clarity, I will 

draw upon the best-studied examples of transcription factors that are critical in the early 

separation of HSC lineages. These transcription factors are PU.1 and GATA-1, both of 

which have been extensively studied and found to have an essential role that leads to the 

separation and maturation of the myeloid/lymphoid cells that are regulated by PU.1 and 

erythrocyte/megakaryocyte cells controlled by GATA-1 (Nerlov et al, 2000; Arinobu et 

al, 2007) .

Furthermore, PU.1 and GATA-1 also have a physical cross-antagonistic 

relationship that can cause mutual inhibition and cause HSCs to lean towards an 

erythroid/megakaryocyte fate over a myeloid specification (Nerlov et al, 2000).  In the 

earliest steps of lineage commitment, both PU.1 and GATA-1 genes are co-expressed in 

multipotential progenitor cells at low levels, reflecting the theory of lineage priming 

allowing HSCs to differentiate down multiple pathways (P. Zhang et al, 2000; Roeder 

and Glauche, 2006). 

Figure 8 – HSC Development mapped by GATA-1 and PU.1 (Arinobu et al, 2007)
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As either PU.1 or GATA-1 gene is upregulated, it inhibits the other causing the 

cell to become specified to a particular fate as cross antagonism of transcription factors 

suggests (Notta et al, 2015; Orkin and Zon, 2008). Figure 8 (Arinobu et al, 2007) shows 

the primed states of PU.1 and GATA-1 genes and how lineage commitment is affected if 

either one becomes more dominant. Low expression levels of PU.1 are present in earliest 

HSC stages, however, the upregulation of both PU.1 and GATA-1 at the MPP stage 

initiate commitment to myeloid/lymphoid differentiation (Arinobu et al, 2007). The 

absence of GATA-1 expression marks the cells to specify toward a lymphoid fate 

eventually producing B and T cells, while the primed state co-expression of both leads 

HSCs to become myeloid inclined. As GATA-1 expression upregulates in later stages of 

the myeloid progenitor, PU.1 expression is downregulated causing the cell to become 

affiliated to an erythrocyte/megakaryocyte fate (Arinobu et al, 2007) Although it is not 

clearly known what drives one transcription factor to become dominant over the other, 

the physical interaction between GATA-1 and PU.1 proteins that causes their cross 

antagonism has been described (Rekhtman et al, 1999; Rekhtman et al, 2003)

Experimental studies on both factors in Figure 9 by Zhang et al (1999) have 

revealed that GATA-1 protein can actively bind to a specific region of the PU.1 protein

known as β3/β4 that interacts with its co activator C-JUN that is responsible for 

activating target myeloid gene promoters (P. Zhang et al, 1999). As GATA-1 occupies 

the binding site of C-JUN, it inhibits activity of the PU.1 protein and essentially 

suppresses the cell’s ability to differentiate toward a myeloid specification. The 

interaction of GATA-1 with PU.1 can therefore affect myeloid lineage development 

without actually suppressing the expression of the PU.1 gene (Nerlov et al, 2000; Burda, 

Laslo, and Stopka, 2010). As the relationship between the two factors is cross 

antagonistic, PU.1 also possesses the ability to inhibit GATA-1 and represses 

erythroid/megakaryocyte development although through a different mechanism

(Rekhtman et al, 2003) which includes repression of the target genes of GATA-1 at 

chromatin levels (Stopka et al, 2005). GATA-1 transcriptional activity is inhibited by 

binding PU.1 β3/β4 region to GATA-1 C-finger region disabling the ability of GATA-1

to bind to its promoter (P. Zhang et al, 2000).
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Figure 9 – GATA-1 and PU.1 Reciprocal Physical Interaction (P. Zhang et al, 2000)

It has also been reported that PU.1 known to bind to GATA-1 on DNA, can also 

repress erythroid/megakaryocyte differentiation through the cooperation of its co-

repressor pRB, a tumor suppressing protein without interfering with the ability of GATA-

1 to bind to DNA (Rekhtman et al, 2003; Burda et al, 2016). 

Although the relationship between TFs GATA-1 and PU.1 reflects the idea of 

multilineage priming, recent studies conducted by A Sanjuan-Pla et al (2013) and Notta 

et al (2015) show that molecular factors such as vWF (von Willebrand factor), a protein 

known to be associated with platelet aggregation, are near mutually exclusively expressed. 

These findings do not conform to the idea of lineage priming and rather suggest that 

lineage commitment occurs without the presence of an instructive differentiation program 

(Notta et al, 2015). The resolution of the debate will largely depend on the individual 

examinations of TF interactions known to instruct lineage commitment. Until then, 

theories that lineage commitment occurs primarily through mutual TF cross antagonism 

while being primed at low levels in multipotent progenitors will be disputed by views that 

lineage commitment is stochastically initiated (Notta et al, 2015).  
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5. Epigenetic Modification

In the previous chapter, I have discussed the key role that transcription factors 

play during lineage commitment. However, it is exceptionally noteworthy to discuss the 

possibly even more important role played by epigenetic modifiers such as chromatin 

remodelation factors, methylation, and acetylation to name a few. Chromatin is a 

complex structure comprised of DNA and associated proteins called histones, whose role 

is to compress DNA into structural units as well as taking part in gene regulation and 

expression (Lara-Astiaso et al, 2014). It is thanks to chromatin’s open structure and its 

modifications that transcription factors can be expressed, and TFs themselves can further 

regulate gene expression as well as modify chromatin structure by binding to DNA. The 

current view of chromatin’s structure during cell fate decisions is that uncommitted cells 

display a largely open structure that becomes progressively more restricted through each 

commitment pathway (Lara-Astiaso et al, 2014). However, this view is being challenged 

as histone modification analyses of stem cells and their differentiated counterparts do not 

always conform to this observation (Mikkelsen et al, 2007). Resolving the controversy 

requires investigation of the intermediate progenitors on the DNA level. 

Epigenetic factors such as chromatin modification and methylation cause long 

lasting, even permanent changes in HSC gene expression (Müller-Sieburg et al, 2002). 

Through the opening and closing of primed loci, cells become functionally restricted to 

express only certain genes, while the rest of the potential repertoire is silenced. This 

provides HSCs with a limited substrate, and essentially directs them to differentiate down 

a specific transcription program (Akashi et al, 2003). Chromatin structure and 

modification during hematopoiesis and lineage commitment is a very dynamic process,

yet very little is known about the molecular mechanisms that compel differentiation.  

5.1 Enhancers

Long, non-coding regions in the DNA called enhancers work together 

with regulatory proteins to control transcription of targeted genes. As the name suggests, 

enhancers usually faciliate transcription, while on the other hand, silencers inhibit

transcription (Lara-Astiaso et al, 2014). It was thought that all enhancers are already

established at the HSC level, assuming that stem cells have the potential to differentiate 
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down every lineage pathway, and that they “close” during irreversible fate decisions. This 

is seemingly not the case as over 17,000 enhancers have been found to be established de 

novo during lineage commitment in the study by Lara-Astiaso et al (2014). Existing 

studies of chromatin structure changes during development are hindered as single cell 

epigenetic analysis is not yet possible (Nimmo, May, and Enver, 2015). Currently, the 

method for profiling structure changes in chromatin is through the use of chromatin

immunoprecipitation (ChIP). The method consists of cross-linking DNA to proteins that 

are thought to be associated with a specific region of the genome and “shearing” using 

either sound energy called sonication, or through nuclease digestion (Nelson, Denisenko, 

and Bomsztyk, 2006). Using a specific antibody that binds to the associated protein, the 

DNA is then selectively immunoprecipitated and purified (Nelson, Denisenko, and 

Bomsztyk, 2006). Further improvement upon the ChIP method, the iChIP uses bar-

coding to mark individual samples and analyze histone modification on as few as 

hundreds of primary cells (Nimmo, May, and Enver 2015). This study used histone 

markers such as H3K4me1 (monomethylation of histone lysine 4) to find that progenitors 

of specific lineages are more closely related to differentiated cells within their particular 

lineage than to other progenitors of other lineages as can be seen in Figure 10 (Lara-

Astiaso et al, 2014).

Figure 10 – Clustering of Progenitor Cells by Histone Marker H3K4me1 (Lara-
Astiaso et al, 2014)
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These findings suggest that establishment of enhancers commences earlier during 

lineage commitment and that the differentiation potential of specified cells can be 

revealed prior to an expression program (Lara-Astiaso et al, 2014). Studied enhancers 

displayed typical behavior, being established in HSCs, only to become prominent within 

their own active lineage. Unexpectedly, the study also found that many enhancers became 

established at the fist point of commitment to a particular lineage progenitor and that 

silencing of an enhancer is a rather gradual process (Lara-Astiaso et al, 2014). Figure 11

demonstrates the stages and percentages of gained enhancers at each particular phase. In 

the erythroid lineage, about 65 % of enhancers are actually gained in the MEP stage of 

commitment, and about 50 % of enhancers are established in the from the MPP-CMP 

specification in myeloid lineage. Together, in the myeloid lineage, the CMP and GMP are 

responsible for about 60-80 % of gained enhancers in fully differentiated cells and the 

largest loss of enhancers is surprisingly in the final differentiation step to mature cells.  

Finally, the lymphoid linage actually exhibits that the largest gain of enhancers comes 

from terminally differentiated cells  (Figure 11) (Lara-Astiaso et al, 2014).

Figure 11 – Percentage of Gained Enhancers During Different Stages of Cell 

Commitment (Lara-Astiaso et al, 2014)

The establishment of enhancers is controlled and promoted by transcription 

factors, such as HNF3 and GATA-4 which have the ability to access and open chromatin 

by themselves (Cirillo et al, 2002), to previously studied TFs such as PU.1 and GATA-1 

that can be classified as regulators of myeloid/erythroid enhancers (Lara-Astiaso et al, 
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2014). However, the mechanisms by which transcription factors bind and alter chromatin 

structure through histone modifications is unclear and should be further studied as the 

relationship between TFs, and chromatin modification factors such as enhancers are 

deterministic in fate choice (Cirillo et al, 2002).

The recent studies show that although enhancers gained from LT-HSCs are lost

during commitment as was previously predicted, many enhancers are also gained in 

subsequent progenitors and even terminally differentiated cells prior to their activation 

and commitment. Furthermore, the vibrant nature of enhancers supports the view that 

chromatin reorganization during fate choice is a highly dynamic system and suggests that 

maximum enhancer potential is not found in HSCs as was previously believed, but in 

multipotent progenitors and subsequent differentiated progeny (Lara-Astiaso et al, 2014).

5.2 DNA Methylation

DNA methylation has been found to be an important epigenetic factor in the 

separation of the myeloid versus lymphoid lineages. DNA methylation typically acts to 

repress the expression of genes, and both pluripotent cells and multipotent progenitors 

exhibit methylation patterns represented by active/inactive chromosomal regions that 

ultimately lead to the suppression of pluripotent transcription factors and the expression 

of lineage specific genes (Bocker et al, 2011). The study of mouse DNA 

methyltransferase (Dnmt1), an enzyme responsible for the regulation and maintenance of 

DNA methylation explicitly shows the key role that methylation plays (Trowbridge et al,

2009). The disruption of Dnmt1 in HSCs not only hindered their ability to give rise to 

multipotent progenitors, the myeloid compartment in particular, but also showed 

disturbance in stem-cell renewal and niche retention (Trowbridge et al, 2009). Recent 

studies attempting to map methylation across hematopoiesis have shown that the quantity 

of DNA methylation causes cells to become more inclined toward a certain lineage.  

Lymphoid primed cells have shown to have a larger total methylation than their myeloid 

counterpart, which are in turn dependent on the loss of methylation (Ji et al, 2010).  

Distinct patterns and similarity of methylation has also been found within 

functionally similar cell types, suggesting that modifications of methylation within the 

HSC compartments point cells toward lymphoid/myeloid lineages prior to lineage 

commitment (Bocker et al, 2011). Furthermore, analysis using CHARM (Comprehensive 
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High-throughput Array-based Relative Methylation) and real time PCR techniques have 

demonstrated changes in gene expression relative to differentially methylated regions 

(DMRs) within distinct populations of MPPs (Ji et al, 2010). These analyses illustrate

how certain TFs function based on methylation modification. For example, the Gadd45α 

gene, suggested to play a role in myeloid development has been found to be upregulated 

as well as demethylated in mice, causing the activation of gene expression during the 

shift from CMP to GMP. Even more importantly, Gadd45α has been proposed to cause 

additional demethylation in other genes promoting hypomethylation in the myeloid 

lineage, although its role is still disputed (Ji et al, 2010). More genes studied in mice such 

as Meis1, and Hoxa9, which are necessary for hematopoiesis and megakaryocyte 

development were also identified to have been hypermethylated, and thus repressed, 

pointing HSCs toward a myeloid/lymphoid commitment (Ji et al, 2010). Chromatin 

modifiers such as Hdac7a and Dnmt3b also showed different levels of methylation during 

fate decisions, thus increasing the variability in epigenetic programs that drive 

commitment (Ji et al, 2010). Hdac7 is a gene that programs histone deacetylation and 

suppresses gene expression.  In the study by Ji et al (2010) Hdac7 was found to be 

demethylated and upregulated in cells that cannot revert to a myeloid lineage, signifying 

its role for active silencing of genes that are responsible for the maintaining myeloid 

potential. On the opposite spectrum, Dnmt3b is a methyltransferase that was found to be 

downregulated and methylated in CMPs and GMPs and although the gene has been 

linked to a role in self-renewal, it’s function in lineage commitment remains 

uncharacterized (Ji et al, 2010). Although the genes mentioned above are just few of the 

many more genes and their interactions affected by methylation, CHARM analysis might 

prove to be a useful tool to pinpoint still unknown transcription factors affecting lineage 

commitment.

Multilineage priming previously discussed mirrors epigenetic modification as the 

extinguishment of alternative differentiation pathways through suppression and activation 

of enhancers triggers commitment (Nimmo, May, and Enver, 2015). Together, the 

findings force us to reshape our view of chromatin’s role during differentiation and 

provide groundwork for future studies.  Although chromatin remodeling through 

enhancers and methylation proved to be an integral process driving commitment, it is 
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unquestionably only one of the many factors among a larger intrinsic/extrinsic network

influencing stem cell fate.

6. Extrinsic Cytokine Signaling

In the previous chapters, I have discussed the role of intrinsic factors that affect 

lineage commitment of HSCs, however we have yet to touch upon extrinsic factors, 

mainly signaling cytokines that may have a role in the instruction of lineage choice. 

Cytokines are small signaling proteins utilizing receptor tyrosine kinases to trigger 

signaling cascades that eventually lead to gene expression affiliated with a specific 

lineage (Endele, Etzrodt, and Schroeder, 2014).     

The role of cytokines during commitment is largely debated upon as it is unclear 

whether their function is permissive or instructive (Rieger et al, 2009; Sarrazin and 

Sieweke, 2011). Experiments using knockout mice indicated that rather than instructing 

commitment, the role of cytokines is to allow and promote growth, proliferation and 

survival of committed progenitors. The permissive model is in an accord with lineage 

priming as the eventual “win” of one transcription factor also leads to the upregulation of 

lineage specific cytokines making progenitor cells susceptible to further permissive 

cytokine signaling promoting expansion of cells (Chang et al, 2008). A study by Semerad 

et al (1999) used targeted mutation of a G-CSF (granulocyte colony stimulating factor) 

receptor to replace the domain used for cytokine signaling with a domain of an 

erythropoietin (Epo) receptor. The group found no change in progenitor numbers

suggesting that cytokine signaling affects survival and growth but isn’t necessary for 

lineage commitment (Semerad et al, 1999). Furthermore, it was found that many 

cytokines have similar if not interchangeable signaling domains suggesting that the lack 

of specific cytokine may not compromise a differentiation program as committed cells

could be produced by alternate differentiation pathways through redundant cytokines 

(Semerad et al, 1999; Endele, Etzrodt, and Schroeder, 2014). Although the study cited 

above demonstrates the permissive role that cytokines can play, conversely, cases in 

which cytokines appear to have an instructive role also exist. 
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Mossadegh-Keller et al (2013) have shown that M-CSF (macrophage colony 

stimulating factor) can directly act upon HSCs and activate the promoter region of PU.1. 

The group found that the cell population had an increased number of cells expressing 

PU.1 and preference toward myeloid differentiation (Mossadegh-Keller et al, 2013).

Recent studies of the Epo have shown that it may have an instructive role in the 

establishment of erythroid lineages (Grover et al, 2014). It initiates and reprograms

erythroid prone gene expression and even more importantly suppresses alternate 

differentiation programs especially the GM (granulocyte/macrophage) specification in 

HSCs and multipotent progenitors (Grover et al, 2014). This exemplifies how cytokines 

can instruct cell fate choices by activating lineage affiliated transcription factors. 

Although there are many other cases in which cytokines have been shown to play both a 

permissive and instructive role, the results are inconclusive and the question of cytokines

role during lineage commitment remains largely controversial. 

7. Conclusion

Lineage commitment of HSCs is influenced by many factors, although none have 

been identified as having a primary role in definitive differentiation. The molecular 

mechanisms that regulate stem cell fate decisions remain to be illuminated. The 

emergence of HSC revealed a broad spectrum of heterogeneity in distinct HSC 

populations. This heterogeneity is reflected in the various models of lineage commitment 

that are being continually revised and updated. The role of transcription factors leads to

two conversing models that drive lineage commitment. First, a stochastic model in which 

lineage affiliated transcription factors are co-expressed at low levels, and the fluctuations 

between gene expressions typically end with one TF prevailing, leading to its 

upregulation as the other is downregulated, extinguishing alternative differentiation 

pathways and locking HSCs toward a specific fate. In the stochastic model, the eventual 

win of one TF over the other is deemed to be random, although specific HSC 

compartments were shown to be already biased for certain lineages. The opposite 

assessment views lineage commitment as driven by specific regulation, either by intrinsic 

factors such as the already mentioned TFs, or through epigenetic modification of DNA,

as well as external cues in the form of cytokine signaling that instructs HSCs to express 
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specific genes, directing them to differentiate. Although there is evidence for both models, 

neither is definitive. Further research and more sensitive assays will be required to 

resolve the debate. In conclusion, our views and understanding of HSCs lineage 

commitment may be due for a change, to see HSCs not as groups of uniform cells, but 

perhaps more individually, reflecting their dynamic and unique nature. 
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