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Abstract

In this work, ZIP, GDX, and AA automated bidding strategies are compared in
symmetric agent-agent experiments with a variable composition of agent pop-
ulation. ZIPOJA, a novel strategy based on ZIP with Oja’s rule extension for
updating its optimal price, is introduced. Then it is showed that ZIPOJA un-
derperforms in competition against other strategies and that it underperforms
even against the original ZIP. Dominance of AA over GDX and ZIP is ques-
tioned and it is showed that it is not robust to composition changes of agent
population and that the experimental setup strongly affects the results. GDX
is a dominant strategy over AA in many experiments in this work in contrast
to the previous literature. Some mixed strategy Nash equilibria are found and
their basins of attraction are shown by dynamic analysis.
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Abstrakt

V této práci jsou porovnávány automatické obchodńı strategie ZIP, GDX a
AA v symetrických agent-proti-agentovi experimentech, kde se měńı zastoupeńı
jednotlivých strategíı v populaci agent̊u. Také je představena nově vytvořená
strategie ZIPOJA, která je založena na ZIP a obohacena Ojovým uč́ıćım pravi-
dlem pro aktualizaci optimálńı ceny. ZIPOJA strategie je porovnávána proti
ostatńım strategíım, z čehož vycháźı, že se j́ı nedař́ı v porovnáńı s ostatńımi
strategiemi. Dokonce p̊uvodńı ZIP ji také poráž́ı. Dále je zjǐstěno, že domi-
nance AA nad GDX a ZIP neńı robustńı ve změnách složeńı populace agent̊u.
Výsledek lze také silně ovlivnit vlastnostmi experimentu. GDX dominuje AA
v mnoha experimentech, které jsou v této práci provedeny, což je v kontrastu
s výsledky v předchoźı literatuře. Nalezeny jsou také Nashovy rovnováhy ve
smı́̌sených strategíıch. Dynamická analýza je použita pro nalezeńı spádových
oblast́ı jednotlivých rovnováh.

Kĺıčová slova Algoritmické obchodováńı, Strategie nab́ızeńı,
ZIP, Zero-Intelligence Plus, GDX, Adaptivńı
Agresivita, AA, Obchodováńı agent̊u, Au-
tonomńı obchodováńı, Ojovo pravidlo
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Proposed topic Comparison of double auction bidding strategies for au-

tomated trading agents

Motivation
Algorithmic trading is of great importance in markets today. It is a phe-
nomenon which deserves a lot of attention. Trading algorithms for continuous
double-auction are studied and developed vastly in literature.

There have been three main strategies examined thoroughly in literature: namely
ZIP (zero intelligence plus), the GD (Gjerstad-Dickhaut) class and AA (adap-
tive aggressiveness). ZIP and AA make use of Widrow-Hoff adaptation and GD
is based on belief functions. De Luca and Cliff (2011) compares these three
strategies against each other and against humans in artificial market. They
come to a conclusion that algorithmic strategies outperform human traders
and that AA performs better than the rest of algorithmic strategies.

I am going to challenge the algo-to-algo results of De Luca and Cliff (2011)
by repeating their experiment, but with different parameters of the artificial
world. Moreover, I will try to test these three families of algos on historical
data obtained from the real market.

Last but not least, I will try to develop my own algorithmic strategy. I will test
it on ex post real market data, in the artificial world and I will show how these
algorithmic strategies perform on generated stochastic process simulating the
ex ante real market data.

Hypotheses
1. AA trade strategy does not outperform the other trading strategies in dif-
ferent artificial world setting as significantly as in De Luca and Cliff (2011).
2. There is a difference how trade strategies perform based on number of rival
strategies included in experiment.
3. There is a difference how trade strategies perform based on number of agents
following each rule.
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4. It is possible to rank these algorithmic strategies with sufficient significance
and this order is robust to changes in artificial world setting.

Methodology
I am going to test ZIP60, GDX, AA and newly developed trading strategy
against each other in competitive environment similar to one used by De Luca
and Cliff (2011). I will use OpEx (Open Exchange Experimental Laborator).
Compared to them, I will change reasonably the artificial world setting in
number of participating strategies and in number of agents of each strategy in
one experiment. Based on this I will produce sensitive analysis of outcomes
on different number of strategies and agents included. Then I will use real
order book data from one day as an input for decision making of strategies and
I will compare their successfulness in this experiment. Then I will compare
these results with artificial world results. I will also try to model artificial
orderbooks with the same generic properties as my real order book simulated
by Hawkes process similarly to Hewlett (2006). I will apply all four strategies
on these orderbooks and see whether there are changes to the pattern of success.
This step should make the results more robust to the randomness.

Expected Contribution
This thesis should discover whether the results of De Luca and Cliff (2011) are
robust to some changes in artificial world setting. I will also show whether
these results are valid for example of historical data as well. I will challenge
the rank order of trading algos introduced in De Luca and Cliff (2011). I will
possibly show that it is not a consistent result or at least I will provide some
more evidence to this topic. I will introduce completely new algorithmic trading
strategy and show whether it performs worse, comparable or better than some
known algos.

Outline
1. Introduction
2. Literature Review
3. Definition of Trade Agents
4. Definition of Artificial World
5. Results in artificial world
6. Results with historical prices
7. Results with market simulating stochastic function
8. Comparison and Discussion
9. Conclusion
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Chapter 1

Introduction

Algorithmic trading is a great buzz word on the financial market nowadays.

The rise of computer-based algorithmic trading is one of the most significant

developments in modern financial markets. Some estimates have algorithmic

trading accounting for 30% of UK equity volume and up to 60% of US equity

volume. It is a phenomenon which deserves a lot of attention by all participants

of the market.

Algorithmic trading is quite a wide concept. It includes all the types of traders

which are very different from each other in the basic idea of how they work.

There exist High-Frequency Trading (HFT) participants which use extraordinar-

ily high speed and sophisticated programs for generating, routing and executing

orders. HFT works in a very short time-frame for establishing and liquidating

positions. HFT is opposed by Optimal Execution Algorithms (OEA) employed

for example by large asset management firms. OEA work in a way which di-

vides one big chunk trade into a lot of small executed orders during one day

in order not to change the price into unfavourable direction. Buying it in one

big chunk order would lead into a large price change, because this order would

only match with higher limit orders on the opposite site of the order book. The

price would shift back close to its original value very shortly after the big chunk

order, implying large losses for the executor of this order. These losses can be

called transactional costs. In order to minimize these transactional costs, OEA

were developed.

OEA work on the basis of different price estimation ideas which recognize when

to buy and how much to buy during one day in order to buy a specific amount
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of stocks in total and to distort the price as little as possible. For this, robots

employing automated bidding strategies are used.

The topic of automated bidding strategies is covered by vast literature (Gode

and Sunder (1993), Cliff (1997), Preist and van Tol (1998), Cliff et al. (1997),

Gjerstad and Dickhaut (1998), Das et al. (2001), Tesauro and Das (2001),

Walsh et al. (2002), Tesauro and Bredin (2002), Vytelingum et al. (2008),

De Luca and Cliff (2011b) and many more). In this work, I will study 3 of

these bidding strategies, namely ZIP, GDX and AA. Moreover, I will try to de-

velop one new bidding strategy myself. These bidding strategies will be tested

against each other in the artificial environment of Open Exchange Experimental

Laborator (OpEx) v1.2 , convenient simulator of double auctions and one of a

few publicly available sources of AA code. I will show which strategy dominates

which and how they perform in various experimental setups with a changing

share of each strategy in the total population. This should provide more robust

results on comparison of bidding strategies and provide a new point of view on

comparison of ZIP, GDX and AA since these strategies are now considered to

be the most important. ZIP and GDX are benchmarks for testing performance

in the world of bidding strategies and AA (as claimed by previous literature) is

currently a dominant strategy which outperforms the other two strategies.

Therefore, I will try to test these hypotheses:

1. AA bidding strategy does not outperform the other bidding strategies

in different experimental setups as significantly as in De Luca and Cliff

(2011b).

2. There is a difference in how bidding strategies perform based on the

number of rival strategies included in the experiment.

3. There is a difference in how trade strategies perform based on the number

of agents following each rule.

4. It is possible to rank these algorithmic strategies with sufficient signifi-

cance and this order is robust to changes in the experimental setup.

In the next section, I will recapitulate the research made on the topic of

automated bidding strategies in the past, I will provide a general overview
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on continuous double auctions and I will have a few general remarks on OpEx.

Chapter 3 will include definitions of ZIP, GDX and AA bidding strategies. Chap-

ter 4 will be dedicated to the specifics of a newly developed bidding strategy

ZIPOJA. In chapter 5, I will elaborate on the methodology of comparison and

explain what will be done. Chapter 6 will present the experimental setup and

results obtained from experiments. Chapter 7 concludes.



Chapter 2

Background

In this chapter, I will provide some information on the past research on the

bidding strategies and agents. There exist some other bidding strategies apart

from these mentioned here. I will focus on ZIP, GDX, and AA history. Then I

will introduce the continuous double auction topic and describe OpEx trading

simulator. The rest of related literature will be mentioned throughout the work

when relevant.

2.1 Bidding strategies literature

Multi-agent systems and economics are combined in the research to the benefit

of both disciplines. This has led to improvements in several directions. One of

the most significant improvements is the creation of agents to trade on behalf

of humans in electronic trading environment as highlighted by Preist and van

Tol (1998).

Gode and Sunder (1993) have developed Zero-Intelligence agents and showed

that the market discipline can be to the large extent responsible for efficiency

and convergence to equilibrium in double auction markets rather than intelli-

gence and logic of traders.

Cliff et al. (1997) showed that market discipline is important for efficiency,

but Zero-Intelligence is not enough in all cases of supply and demand curves

for convergence towards equilibrium.
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Cliff (1997) has improved Zero-Intelligence agents into ZIP (more on ZIP in

its own section 3.1) and shown that adaptive agents with simple logic are able

to participate in a trade of double auction marketplace. Moreover, they are

able to trade in such a way that trade prices converge towards the competitive

equilibrium price in the market.

Gjerstad and Dickhaut (1998) developed the new algorithm which is called

GD nowadays (more on GD and its updates can be found in section 3.2 dedi-

cated to GDX). The GD is centered around belief functions formed by every GD

agent using observed market data which assigns probabilities of trade realiza-

tion and profit to prices and chooses the best combination.

There were several updates to GD. Das et al. (2001) modified the original

GD algorithm to fit it in MAGENTA (the real-time asynchronous framework).

The difference between GD and this modified version was in the treatment with

persistent orders not dealt with in the original GD.

Tesauro and Das (2001) modified the GD in a different way. They called their

modification MGD. It solves the problem of prices above the highest price and

the lowest price in the recorded history.

There was one more modification of GD algorithm called GDX which will take

part in my experiments. Tesauro and Bredin (2002) developed GDX modifi-

cation to use dynamic programming to price orders. It means that the GDX

trader takes into account the effect of trading the current unit immediately, and

the effect of trading in the future. The belief function is modified to account

for this by discounting the future profit.

The third strategy to be used in this work is Adaptive Aggressiveness de-

veloped by Vytelingum (2006) and presented by Vytelingum et al. (2008) as

well. The AA strategy is predictive and history-based bidding strategy that

software agents can use to bid in Continuous Double Auction (CDA) (More on

AA in section 3.4). It is based on short-term and long-term learning behaviour

as well as estimation of the equilibrium. In the short-term, it optimizes the

aggressiveness in order to react appropriately to each transaction. In the long

term, it tries to react to the change in the general equilibrium.
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With developing algorithmic strategies, one can wonder how good bidding

strategies are against each other and against human traders as well. There

is numerous literature on comparison of bidding strategies and basically every

time a new one is developed, it is benchmarked against some other so previ-

ously mentioned literature is a good source for finding more information on

comparison of bidding strategies. Nowadays, mostly ZIP and GDX are used as

a benchmark for comparison.

Yet, there are other interesting papers on this topic as well. De Luca and

Cliff (2011b) tested bidding strategies, namely ZIP, GDX and AA and proved

that they significantly outperform human traders in the CDA market. Their

work was inspired by the seminal work reported by IBM at International Joint

Conference on Artificial Intelligence (IJCAI) 2001 in which it was demonstrated

that two of their tested software-agent traders consistently and robustly outper-

form human traders in their artificial environment, namely ZIP and GD strategy.

Results by IBM were really game-changing because they signaled the start of

the era of superiority of the computerized machine traders over the human

traders.

Toft (2007) replicates some of trading-agent experiments from previous studies

and reports significant difficulty in replicating published results. Therefore, one

has to be careful and challenge the results of previous literature. This is done

in this work as a result of my experiments.

Another interesting paper written by Walsh et al. (2002) shows the method-

ology for comparison of bidding strategies based on dynamic analysis. They

are able to find mixed strategy Nash equilibria in the three-strategy space

with symmetric properties (the same number of buyers as sellers). Vytelingum

et al. (2008) present results based on the same approach for two-strategy space

where he allows strategies to be asymmetrical. To a large extent, I will follow

the approach of Walsh et al. (2002) for symmetric three-strategy games.

2.2 Continuous double auction

The vast majority of financial products are traded electronically. These trades

follow exact rules and together create what is known as a common virtual mar-

ketplace. These exchanges maintain the system through which traders can exe-
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cute their trades. The set of rules of trade defining interaction between traders

(buyer and seller) on a market forms its market mechanism. Continuous double

auction (CDA) is the most prevailing market mechanism used in the real world

due to its high efficiency. Smith (1962) demonstrates in his Nobel-prize-winning

work that markets governed by the CDA with human traders converge in trans-

action prices with close to optimal efficiency to the point where the supply

curve and the demand curve intersect, to its equilibrium price. He also showed

that this result is robust to sudden changes in supply and demand curves which

subsequently lead transaction prices to converge to a new equilibrium price.

CDA mechanism is a prevalent way how the electronic trading is done in the

financial markets nowadays. CDA can be described as a set of rules in which

traders may asynchronously post bids and offers electronically and this elec-

tronic system provides information on current outstanding bids and offers to

all traders. The information to all traders can be limited only to showing the

best (the highest) bid and the best (the lowest) offer or it can show more depth

of bids and offers outstanding - called order book.

As De Luca and Cliff (2011b) explain, continuous double auction is speci-

fied by the ability of both buyers and sellers to make bids and accept offers

asynchronously at any time during the trading period (usually referred to as a

trading day). In CDA, all the offers are publicly visible by all market partici-

pants in limit order books. The trade is executed whenever there is an existing

outstanding bid with price greater or equal to the outstanding ask.

CDA is deeply linked to limit order book. Each of three strategies used here

use it to some extent. According to Lorenz and Osterrieder (2009), this makes

sense. They say that it is better to work with the order book rather than only

with the stock price. Trading strategies based on information from the order

book have much larger chance to be superior to those that only use transaction

information, in other words stock prices. This makes common sense since you

can deduce the whole stock price development from the limit order book and

there is some additional information in every order submitted. In other words,

stock price is an aggregation of orders and therefore there has to be additional

information when you can have more detail on what movements determine the

change in the price. For example, there might be huge cancelling of limit buy

orders signaling that the price can more easily go down than up.
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As you can see, CDA is created by relatively simple set of rules. Despite trading

rules being this simple, CDA and its nonlinearities grow really complex when it

comes to its analysis. Due to this obstacle, traditional mathematical methods

such as game theory are hard to use and as a result, researchers tend to use

empirical approaches.

CDA is the main focus of the financial world today. However, a different dis-

crete double auction method will be used in this work. I explain why it is a

reasonable simplification, possibly without loss of generality, in subsection 6.1.1

Discrete Event Simulator.

2.3 Open Exchange Experimental Laborator v1.2

My work will be devoted to comparison of trading strategies in the artificial

environment where algorithmic agents will interact. This artificial environment

will be provided by Open Exchange Experimental Laborator (OpEx) which is

experimental artificial trading platform developed by Marco De Luca at the

University of Bristol. OpEx is used to compare bidding strategies (and human

traders) by De Luca and Cliff (2011b) and has been experimental economics

platform in several more studies such as De Luca and Cliff (2011a), De Luca

et al. (2011), Cartlidge and Cliff (2012) and Cartlidge et al. (2012).

OpEx was created to be closely similar in structure and the behaviour to com-

mercial financial market electronic trading systems and at the same time to

be generic enough to support experimental economics simulations of arbitrary

complexity. OpEx can mediate access of both human traders and agent traders

into Order Processor (e.g. simple Exchange place) where the trade is executed.

The process in OpEx is as follows, once orders are generated, they are sent

to Order Manager, which routes them to the appropriate Order Processor (Ex-

change). Orders are processed in Exchange according to the specific order

matching logic implemented called price-time priority. This matching logic

constitutes the foundation of the CDA. Order completion data are then passed

back to Order Manager, which in turn inform the appropriate trader. These

order data are private and only trade concluding trader is informed about order

completion relative to the specific order. Separately, market data are published
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through Market Data Bus which can be seen by all market participants.

Agents will be included into experiments as individual plug-ins of OpEx running

on an instance of the agent host module. OpEx allows running multiple instances

of Agent Host and therefore researchers are able to plug different trading agent

types into different Agent Host modules and to test them against each other.



Chapter 3

Bidding strategies previously used

(ZIP, GDX, AA definition)

I should extensively introduce three automated bidding strategies in order to

see the exact differences between these three strategies and the newly developed

one described in the later chapter.

3.1 ZIP - Zero-Intelligence Plus

First algorithmic strategy to be explained is Zero-Intelligence Plus (ZIP) algo-

rithm invented by Cliff (1997) by improving Zero-Intelligence agents developed

by Gode and Sunder (1993). Zero-Intelligence trading strategy and ZIP both do

stochastic bids but there is a difference that ZIP traders employ a very simple

form of machine learning which will be described later. Cliff (1997) used ZIP to

investigate what are the minimum requirements on intelligence of an algorithm

to set the convergence path to achieve market equilibrium price. ZIP became

widely used as a benchmark for comparison of performance of other trading

algorithms as for example by Tesauro and Das (2001) and Das et al. (2001).

As De Luca and Cliff (2011b) explain, ZIP trading algorithm is based on real-

valued profit margin maintained by each agent following this strategy. The

ZIP agent employs simple heuristic mechanisms to adjust its margin based on

market data. Profit margin is defined for ZIP trader agent as the difference be-

tween the agent’s limit price and the shout price. Limit price is the maximum

amount of money, buyer can spend to buy the unit or the minimum price, for

which seller can sell the unit. Shout price is quoted price at which agent is
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willing to trade the underlying asset.

Cliff (1997) describes ZIP trader as an algorithm altering its profit margin on

the basis of four factors. The first of four factors ZIP trader uses is whether

the trader is active in the market or not. This is determined by the ability of

selling/buying of additional units. If the ZIP trader has already bought/sold

the expected amount of units, he turns inactive for the rest of the trading

period (trading day). The ZIP trader is designed to eliminate the need for so-

phisticated memory mechanisms and thanks to simple machine learning it is

possible. The rest of four factors are devoted to cope with the machine learning

so they watch the most recent shout-price q. One factor contains whether it

was a bid or an offer. Second factor contains whether the last offer or bid with

shout price q was accepted and resulted in transaction or not. Third factor

controls for the price of the last shout q. Based on these factors, ZIP trader

decides about its shout price in the next period by a specific set of equations

described below.

3.1.1 Bargaining mechanism

Each ZIP trader determines its next shout price p based on its limit price λ

times 1 plus profit margin. The whole ZIP algorithm is based on setting the

right profit margin based on current conditions (shout price in the market).

These equations can be summed up by the following ZIP trader’s bargaining

mechanism:

• For ZIP sellers the mechanism is as following: If the last shout was ac-

cepted at price q, then any seller si for which p <= q should raise its

profit margin. Inaddition, if the last shout was a bid then any active

seller si for which p >= q should lower its margin. If the last shout was

not accepted at price q, then any active seller s for which p >= q should

lower its margin.

• For ZIP buyers the mechanism can be described in the following way: If

the last shout was accepted at price q, then any buyer b for which p <= q

should raise its profit margin. In addition, if the last shout was an offer

then any active buyer b for which p >= q should lower its margin. If the
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last shout was not accepted at price q, then any active buyer b for which

p >= q should lower its margin.

This qualitative bargaining mechanism has to be specified also quantita-

tively in order to test it in the real markets or at least in the simulations of the

real markets. It is necessary to specify how the profit margin reacts for buyers

and sellers.

3.1.2 Quantitative rules for ZIP

Cliff (1997) explains the whole set of quantitative rules in the detail. I will

recapitulate the rules for ZIP traders here. At a given time t, each ZIP trader,

calculates the shout-price p(t) based on its particular limit price λ and trader’s

real valued profit-margin µ(t) according to the following equation:

p(t) = λ(1 + µ(t)) (3.1)

This equation means that a trader’s margin is completely dependent on

variable µ. When µ increases, margin and profit for the seller increases and

when the µ decreases, margin and consequently profit for the seller decreases.

The situation is completely opposite for buyers. They raise their margin by

decreasing µ and lower their margin by increasing µ. µ is constrained into

interval µ(t) ∈ [0,∞) for sellers for all t and µ(t) ∈ [−1, 0] for buyers for all t.

Shout-price is defined this way to allow each trader to change its shout-price

through µ to alter dynamically in response to the actions of other traders in the

market (accepted and rejected bids and offers) to remain a competitive match

between trader’s shout and the rest of the market.

In order for price to be adaptive there has to be some kind of update rule

in operation. Cliff (1997) implemented simple machine learning rule called

Widrow-Hoff ”delta rule” (Widrow and Hoff, 1960) which is present for exam-

ple in back propagation adaptation algorithm in neural networks (Rumelhart

et al., 1986). The Widrow Hoff ”delta rule” is specified by this equation:

A(t+ 1) = A(t) + ∆(t) (3.2)

Where A(t) is the actual output at time t and A(t + 1) is the actual output

on the next time step. ∆(t) denotes the change in the output. This change is



3. Bidding strategies previously used (ZIP, GDX, AA definition) 13

determined by the learning rate coefficient β times the difference between A(t)

and the desired output at time t, denoted by D(t):

∆(t) = β(D(t)− A(t)) (3.3)

This in practice mean that Widrow-Hoff rule leads the series to asymptotic

convergence of A(t) to D(t) at speed of β. Cliff (1997) states that, ZIP traders

use this adaptation method to set the shout-price for the next time step (p(t+

1)) closer to target price τ(t). In order to incorporate this Widrow-Hoff rule

into ZIP trader decision making equation the price setting equation must be

rearranged:

µ(t+ 1) = (p(t) + ∆(t))/λ− 1 (3.4)

Where ∆(t) is the Widrow-Hoff delta value calculated by the following equation

with specific β speed for each ZIP trader times the difference between the target

price and the shout-price for time t:

∆(t) = β(τ(t)− p(t)) (3.5)

The last not specified variable is target price τ(t). This one is tricky because

simply setting it equal to shout-price would mean that for traders with the

trader’s current shout-price close to last shout price, there would be a really

small or zero change in their shout-prices. This could lead to far from the

true competitive equilibrium because any trader does not challenge the current

prices. Naturally, buyers want to buy for less and sellers want to buy for

more. To overcome this obstacle in setting target price, random variable and

absolute variable which will affect the target price have to be introduced. They

will affect the target price in a way that will make impossible the scenario of

equilibrium far from the true competitive one.

τ(t) = R(t)q(t) + L(t) (3.6)

Where R is a ”relative” random coefficient that sets the price as a real multiple

of the last shout-price q(t). L is small ”absolute” random coefficient that al-

ternates the last shout-price. Setting the target price in this way will improve

the ZIP trader’s behaviour to better reflect human trader in trying to obtain

additional profit. When there is a motivation to increase the dealer’s shout
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price, R ∈ (1,∞) and L ∈ (0,∞), and when there is an intention to decrease

the dealer’s shout price, R ∈ (0, 1) and L ∈ (−∞, 0). Every time period, the

new target price is calculated using newly generated values of relative random

coefficient and absolute random coefficient. Both random variables are inde-

pendent and identically distributed for all traders. Relative variable ensures to

change the large shout-prices by greater amounts than small last shout-prices.

The use of small absolute variable which alternates the target price ensures that

target prices differs by few pips even for shout-prices close to zero. As stated

by Cliff (1997), this can be considered as a random noise in the calculation of

the target price or the error in determining the right value of target price which

can reflect human trader behaviour.

There is one last phenomenon to tackle with to obtain comprehensive set of

rules for algorithmic strategy. As Cliff (1997) explains, in case of dynamically

variable desired output D(t), Widrow-Hoff rule tends to oscillate around the

desired output with high frequency. To prevent this oscillation to happen, the

learning system can be damped by the interconnection to the past values of

change. We can consider the example of trader whose observations of shouts

and transactions lead him to increase his profit margin in this period of time.

The next recorded transaction can indicate that the profit margin should be

lowered now. However this decrease might be a little bit premature and con-

tradicting the prevalent trend of the increasing shout-price. In this case, there

might be good to incorporate some interconnection term which will affect the

rate of increase of the margin, rather than the margin itself. It means that

when the trajectory of profit margin is increasing, set of observations with

lower shout price than the shout price of the trading agent will decrease the

rate of increase of the profit margin first and when the new trend of decreasing

shout price prevails, it can consequently lead to decrease the change of profit

margin below zero or in other words it can lead to decrease in profit margins.

Basically, this interconnection defends the trader against the events which op-

pose the trend but do not prevail, while it allows changes in trader’s profit

margin based on observed shout-prices and transactions to stay competitive in

the ever changing environment.

To incorporate this Cliff (1997) introduces a momentum coefficient for each

trader which allows ZIP traders to have a momentum indicating in which way

the profit should be altered. The momentum coefficient is denoted by γ ∈ [0, 1]
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and for γ = 0 the trader takes no account of past changes in determining the

next change to the value of the profit margin µ. With non-zero values of γ,

there exists the relevance of past changes in determining the change in the

next period. In incorporating of such momentum mechanism, Cliff(1997) was

inspired by work of Rumelhart et al. (1986) on back-propagation neural net-

work learning. The following equation shows how the momentum is updated

with Γ(0) = 0:

Γ(t+ 1) = γΓ(t) + (1− γ)∆(t) (3.7)

When Γ is imputed instead of ∆ into equation determining the profit margin

of the next period, update rule used by ZIP traders is obtained:

µ(t+ 1) = (p(t) + Γ(t))/λ− 1 (3.8)

However, there seems to be incompatibility of these equations and explanation

behind them. If Γ(t) is supposed to replace ∆(t) in the future profit margin

equation =¿ substitute equation 3.7 into equation 3.8, then it would result into

the following equation which is dependent on ∆ from previous period and not

a current one:

µ(t+ 1) = [p(t) + (γΓ(t− 1) + (1− γ)∆(t− 1))]/λ− 1 (3.9)

(3.10)

This would mean that future margin is updated by last period of ∆ not tak-

ing into account the newest information available (∆ from current period),

effectively reacting with one unnecessary period lag. Therefore I believe, the

following equation describes the relation between Γ and ∆ more accurately.

Γ(t+ 1) = γΓ(t) + (1− γ)∆(t+ 1) (3.11)

or for purpose of new strategy described in chapter four the same equation

rewritten.

Γ(t) = γΓ(t− 1) + (1− γ)∆(t) (3.12)

(3.13)
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After this clarification, the whole quantitative definition of ZIP by Cliff (1997)

can be therefore summarized by set of equation in the next subsection.

3.1.3 Recapitulation of quantitative rules

The whole quantitative definition of ZIP by Cliff (1997) with small change in

notation as explained above:

µ(t+ 1) = (p(t) + Γ(t))/λ− 1 (3.14)

Γ(t) = γΓ(t− 1) + (1− γ)∆(t) (3.15)

∆(t) = β(τ(t)− p(t)) (3.16)

τ(t) = R(t)q(t) + L(t) (3.17)

where µ is profit margin, p is price, Γ is momentum of price, λ is limit price,

∆ is the distance between target price and current price, τ is target price, q

is last shout-price, γ and β are parameters, and and  L are random variables.

For the exact meaning see the previous subsection 3.1.2.

3.1.4 Setting of parameters for ZIP

Setting parameters L, R, β and γ and taking in the account whether the ZIP

trader is active/inactive, price q of the last shout in the market, whether the

last shout was bid or offer and whether it was accepted, Cliff (1997) is able

to construct the ZIP algorithmic trader which is able to participate on trade.

Cliff (1997) assigns value of L uniformly from [0.00, 0.05] for increases in price

and [-0.05, 0.00] for decreases in price. He assigns R uniformly distributed

random value from [1.00, 1.05] for price increases and from [0.95, 1.00] for price

decreases. β is set in the beginning of the trade period for all ZIP traders

and remains constant for the rest of an experiment. It comes from uniform

distribution of range [0.1, 0.5]. γ is generated in the similar way with values

from [0.2, 0.8]. Profit margin is set between 5% and 35% for all ZIP traders.

I will follow these instructions similarly to De Luca and Cliff (2011b) to keep

my study comparable.
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3.2 GD/GDX - Gjerstad and Dickhaut

Gjerstad and Dickhaut (1998) developed the new algorithm which is called GD

nowadays. The GD trading algorithm is based on the different logic than ZIP

algorithm. GD is centered around belief functions formed by every GD agent

using observed market data.

3.2.1 Definition of GD

GD agents collect the accepted shouts and rejected shouts which have occurred

during the last M trades (recommended value is 4-5). GD trader stores them

in a history H, from which a GD agent forms a belief function assigning the

probability that an order will be executed at price p. De Luca and Cliff (2011b)

show how the belief function of GD looks like:

f(p) =
TBL(p) + AL(p)

TBL(p) + AL(p) +RBG(p)
(3.18)

Where TBL(p) represents the number of accepted bids found in recorded his-

tory H at price lower than p. AL(p) is the number of asks in recorded history

H with price lower than p. RBG(p) is the number of rejected bids in recorded

history H at price higher or equal to p. For the seller it is the exact opposite.

The belief function decreases with p for buyer whereas buyer belief increases

with p. As you can see f(p) heavily depends on chosen H and it change every

time a market participant sends an order to the market. The function f(p)

would be really computer intensive if evaluated for every p. Therefore f(p) is

defined only for some values of p and is interpolated for the rest. These values

are knot points and are defined by the prices of orders in recorded history H.

Based on this belief function, GD also chooses the right shout-price it should

bid or offer. The right value for shout-price is that price where the product of

f(p) and profit of the agent is maximized. Profit of the agent is (l − p) limit

price minus shout-price for buyer and (p− l) shout-price minus limit price for

sellers.

The exact quantitative notation would be for seller:

pask = arg max
P

fs(p)(p− l) (3.19)
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And for buyer:

pbid = arg max
P

fb(p)(l − p) (3.20)

3.2.2 Updates to GD

There were several updates to GD in order to satisfy the needs of different types

of experiments. Das et al. (2001) modified the original GD algorithm to fit it in

MAGENTA (the real-time asynchronous framework). The difference between

GD and this modified version was in the treatment with persistent orders not

dealt with in original GD. They addressed this problem by postponing record of

unmatched orders to the history H. Unmatched orders were entered only after

a grace period has expired. The length of history recorded was increased to a

much larger value as well. The belief function was also exponentially weighted

to emphasize the most recent terms more than the older ones. Tesauro and

Das (2001) modified the GD in a different way. They called their modification

MGD. It adds the probability of 1 to all values above the highest price in the

history and 0 to all values below the lowest price in the recorded history for

buyers and the exact opposite values for sellers after the interpolation of the

belief function. There was one more modification of GD algorithm called GDX.

Tesauro and Bredin (2002) developed GDX modification to use dynamic pro-

gramming to price orders. It means that the GDX trader takes into account the

effect of trading the current unit immediately, and the effect of trading in the

future. The belief function is modified to account for this by discounting the

future trading by a parameter γ. GDX agents therefore do not maximize merely

the immediate profit but they maximize the overall profit over the entire trad-

ing period. They optimize the pricing process to do so. By the time Tesauro

and Bredin (2002) published their work, they suggested that GDX algorithm

with γ close to 1 may offer the best performance of any published CDA bidding

strategy so far. We will look at it in more detail.

The dynamic programming process developed by Tesauro and Bredin (2002)

is solved every time the agent has a possibility to quote a bid or offer. They

apply dynamic programming which learns value functions representing long-

term reward. They build dynamic programming on approximate formulation

of agent-centric state description to overcome problems with unfeasible state-

transition model, which would require tracking the history of every observable
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market event. Their agent-centric model consists of agent’s current holdings

M, time remaining until the close of trading T and agent’s outstanding bids b

if such bids constrain the legal bid actions, or if there are any costs of canceling

open bids.

3.2.3 Definition of GDX

Tesauro and Bredin (2002) improves GD belief functions f(p) by combining the

method mentioned above with standard time-series forecasting methods to es-

timate future trade probabilities. They define the belief function as a function

on the history H of market activity that estimates a scalar probability of an

order being traded during some current or future time interval.

Tesauro and Bredin (2002) described their dynamic programming in discrete

environment as following: H is the event history and T is the time remaining

until the end of a trading day. The agent uses (H,T ) to compute f(p,+− q, t),
function representing estimates of the probability that an order is traded with

p denoting price, q quantity (negative for seller) and t representing time re-

maining. The agent first estimates the number N of future opportunities for

submitting new bids or replacing the current ones. The agent then uses these

information to calculate a table of expected values V (x, n), where x is the

agent’s internal state consisting of agent’s holdings M as well as any outstand-

ing bids/asks, and n is the number of remaining bidding opportunities. In the

absence of bid-switching costs x = M . Calculation of V (x, n) starts by evalu-

ating the terminal states V (x, 0) using agent’s private valuation and sunk costs

of the holdings or in some markets f(p,+− q, 0) which can be used to estimate

fair market value of the holdings. Then the algorithm moves backwards from n

to n−1 down to 0. Tesauro and Bredin (2002) defines function s(x, p,+−q) as

the immediate surplus obtained in state x by trading q at price p, r(x) as the

expected return from possession of the holdings and γ as the discount factor.

They defined algorithm calculating expected values as:
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Source: Tesauro and Bredin (2002)

Then the agent can choose the optimal bid action at time remaining T , (p∗, q∗)(T ) to satisfy:

(3.21)

Where p∗ is the optimal price which will be offered by the agent to buy or sell the amount

q∗.

To adjust for CDA compatibility, Tesauro and Bredin (2002) make several adjustments.

Agents have a fixed role either buyer or seller and bids and asks are for single unit. There

is a fixed sequence of limit prices (seller costs or buyer values) for each unit that can be

bought or sold represented as a vector L of length M in the binding increasing order for

sellers and binding decreasing order for buyers. With these changes,the previous model has

to be changed as well. Optimal amount q is set to +1 for buyers and −1 for sellers in all

cases and the state description x simplifies to a single integer m representing the amount of

units that the agent can buy or sell such as 0 <= m <= M . It means that the agent trading

the i-th unit at price p obtains surplus si(p) = Li − p for a buyer, or si(p) = p − Li for a

seller. The expected value V (m,n) similarly to discrete environment is computed starting

at V (m, 0) = 0 for all m. Moreover V (0, n) = 0 for all n. Then Algorithm 2 is executed to

find V (m,n) for all the combinations.

Source: Tesauro and Bredin (2002)

The optimal price at time T, p*(T) is then given by
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(3.22)

Algorithm 2 and calculation of optimal price p∗(T ) is computed each time the agent becomes

active and eligible to bid. This time consideration in the algorithm results into interesting

behaviour. With more trading opportunities left till the end of a trading period, GDX offers

more aggressive price in order to absorb extra-profit by waiting for other traders to make

concession. In contrast, for low time remaining, the agent is motivated to trade quickly and

therefore it submit more ”honest” bids with lower profit closer to original GD strategy bids.

3.3 AA - Adaptive Aggressiveness

Third and the newest from the presented and used in my experiments algorithms, bidding

strategy to be explained here is Adaptive Aggressiveness. Adaptive Aggressiveness referred

to as AA developed by Vytelingum (2006) in his PhD thesis and presented by Vytelingum

et al. (2008) is the dominant bidding strategy nowadays as considered by researchers. The

AA strategy is predictive and history-based bidding strategy that software agents can use to

bid in CDA. It is based on short-term and long-term learning behaviour as well as estimation

of the equilibrium by moving average method. In the shor-term behaviour, it optimizes

the aggressiveness in order to react appropriately to each transaction and prevailing market

conditions. The level of aggressiveness determines the currently preferred trade-off between

the probability that the transaction takes place and the profitability of transaction. In the

long-term ,it tries to react to the change in the general equilibrium of the market.

3.3.1 Bidding Aggressiveness

Vytelingum (2006) emphasizes bidding aggressiveness as you can notice from the name of the

algorithm as the most important part of this algorithm. It is principal because it decides how

the agent is going to decide about the bid price. Whether it will be more aggressive in trying

to increase its chance to transact but with not necessarily high profits or it will be more

passive and bid at more profitable prices, but with lower chance to actually transact. When

the agent is not able to transact it can choose to be more aggressive in order to increase its

chance to be part of a transaction. In the opposite case, if the agent is able to transact, he

might decide to decrease its aggressiveness to become more profitable. Vytelingum (2006)

denotes aggressiveness r which range is [-1, 1]. Agent is aggressive with r < 0, neutral with

r = 0 and passive with r > 0.

3.3.2 The Equilibrium Estimator

AA algorithm works with market equilibrium p∗. This information is not known a priori so the

AA algorithm implements a moving average method to estimate market equilibrium price p∗.

Vytelingum (2006) advocates moving average as an objective analytical tool which is more
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sensitive to price changes over a short time frame with lower weight on older transactions

and which filters out the high-frequency components of the signal within the frame. Moving

average estimation therefore provides the information about the direction of a trend with

smoothed large price fluctuations. Given a set of N the most recent transaction prices,

estimator of p∗ is calculated

p̂∗ =

∑T
i=T−N+1 wipi∑T
i=T−N+1 wi

(3.23)

Where wT = 1 and wi−1 = λwi and where the vector (wT−N+1, . . . , wT ) is the weight given

to N most recent transaction prices (pT−N+1, . . . , pT ) with T the latest one. Vytelingum

(2006) set based on simulations λ = 0.9 and N to roughly the number of daily transactions

in order to spot any converging daily pattern in history.

3.3.3 The Aggressiveness Model

The role of Aggressiveness model in AA algorithm is to set the current target price, τ , given

the current aggressiveness r. AA differs between two types of agents: intra-marginal and

extra-marginal. Intra-marginal trader has the limit price above (below) the competitive equi-

librium price for buyer (seller) and therefore it is probable it will transact. Extra-marginal

trader has the limit price below (above) the competitive equilibrium price for buyer (seller)

and therefore it is improbable that it will be part of a transaction. In the centralized mech-

anism with efficient allocation only intra-marginal traders transact while extra-marginal do

not. In the decentralized system it might happen that because of inefficiencies even extra-

marginal trader will transact while intra-marginal trader is only expected to transact but

not sure.

AA differs between these two types of traders and assigns them different functions for target

price.

Intra-Marginal Trader

In case of intra-marginal trader, if target price equal to market equilibrium p̂∗ then the trader

is neutral. If intra-marginal trader becomes passive, it means that it considers target price

below the market equilibrium p∗ for buyer and above the market equilibrium for seller in

order to obtain higher profits than expected at p̂∗. In contrast, aggressive intra-marginal

buyer (seller) targets bids (asks) above (below) the competitive equilibrium price in order to

increase the probability of realizing the transaction although with lower profit margin. The

following figure Y shows how a theoretical intra-marginal buyer and seller set their target

price based on their aggressiveness. p∗ is in this case 3, cj denotes limit price of buyer and

li denotes the limit price or cost of seller. Based on aggressiveness, there are 3 certain spots

for each intra-marginal trader. If r = 0, then the intra-marginal trader bids or asks at p∗.

If r = −1 (passive trader), then buyer bids price 0 and seller asks the maximum ask, pmax,

allowed in the market, although with small chance to transact. If r = 1 (aggressive trader),

then buyer bids its limit price realizing no profit and seller asks its limit price li. Although
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these 3 points are clear, there is infinite solution space for the rest of values of r. This is

solved by incorporating the parameterized function with parameter θ which determines the

gradient of the function determining target price.

Figure 3.1: Graph for Intra-marginalAA trader

Source: Vytelingum (2006)

θ parameter allows the agent to specify the properties of the function or in other words

to be more or less reactive in setting target price to the changes in aggressiveness. When

θ is high, the magnitude of the gradient tends to 0 at r = 0 and conversely when θ gets

lower. When θ is low, faster update of target price is possible as r changes. This is espe-

cially important when there is any market shock affecting the market equilibrium allowing

the agent to react appropriately and not to bid or ask inadequately. When θ is high, tar-

get price reacts much slowly to change of aggressiveness at r = 0. As Vytelingum et al.

(2004) describes, the effectiveness of the AA strategy depends on the appropriate θ and the

appropriate θ depends on the prevailing market environment. When the AA faces a mar-

ket with high price volatility, an agent is better off with lower θ to be able to explore the

market. In the opposite case, when the market is relatively stable, too large shifts in tar-

get price would mean lower efficiency and profitability as well. Therefore, large θ is preferred.

The equation of target price for an intra-marginal buyer i is:
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(3.24)

Where θ is defined this way:

θ =
p̂∗e−θ

li − p̂∗
− 1 (3.25)

and the equation of target price for an intra-marginal seller j is:

(3.26)

Where θ is defined this way:

θ = log

[
pmax − p̂∗

p̂∗ − cj

]
− θ (3.27)

Marginal traders have their limit price exactly at p̂∗ = li = cj and they form the limiting

case of the equations above.

Extra-Marginal Trader

For the extra-marginal traders, equations mentioned above are not valid because the seller

cannot ask below p̂∗ and the buyer cannot bid above p̂∗. In such situations the aggressive

part of the equation is suppressed into line equal to limit price and the passive part is not

related to equilibrium price but limit price instead. The following equation explains the

relationship for the extra-marginal buyer:

(3.28)

And the following equation explains the relationship for the extra-marginal seller:

(3.29)

Aforementioned equations are shown in figure 3.2



Figure 3.2: Graph for extra-marginal AA trader

Source: Vytelingum (2006)
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3.3.4 Short Term Learning

The agent pursuing AA strategy uses a set of learning rules to update its aggressiveness as a

reaction to the transactions occurred in the market in order to incorporate it into its target

price as well as equilibrium price estimation. More specifically, AA uses the Widrow-Hoff

learning algorithm (same as used by ZIP) to increase or decrease its aggressiveness r(t) at

time t.

r(t+ 1) = r(t) + β1(δ(t)− r(t)) (3.30)

δ(t) = (1 + λ)rshout;λ = −0.05, 0.05 (3.31)

Vytelingum (2006) calls δ(t) desired aggressiveness. Desired aggressiveness has such a value

which enables the AA buyer to bid from a range limited by its limit price and the value

slightly higher than the outstanding bid. For seller it is between its limit price and value

slightly lower than outstanding ask. rshout is the degree of aggressiveness that would force

AA trader to bid or ask with the same price as observed last bid, ask, or transaction. As

you can see desired aggressiveness δ(t)is a function of rshout with λ changing it by 5% in a

profitable direction. The algorithm then adapts the aggressiveness in a direction to desired

aggressiveness by the proportion of the difference equal to learning parameter β1 (set to 0.5

in OpEx application by Marco De Luca).

Simply put, if the traders aggressiveness is below the aggressiveness of the market, trader

uses this adaptive mechanism to increase its aggressiveness which will lead to a bid or ask

more probable to participate in trade and too large aggressiveness it is decreased.

3.3.5 Long-Term Learning

As described in section 3.3.3, θ is a parameter affecting the long term behaviour and is

reviewed after each transaction to improve efficiency of AA. The intuition is that different

θ are the best within different market conditions. When the market volatility is high, it

is good for AA trader to react with higher magnitude to the changes in aggressiveness and

therefore optimal θ is lower. In contrary, if the market volatility is low, it is better to react

with lower magnitude which means to have higher θ. This relationship is shown in Figure

3.1. The θ parameter is updated through a learning process based on the price volatility as

an approximation of Smith’s α-parameter (Smith, 1962). The following equation describes

the learning mechanism:

(3.32)
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Where β2 ∈ (0, 1) is the learning rate that determines how θ adapts in a similar way as aggres-

siveness r. θ∗(α is a function determining the desired θ parameter based on the current price

volatility α. Current price volatility is calculated from the last N prices where pi is the price

of transaction I and T is the most recent transaction. θ∗(α) is calculated in the following way

(3.33)

Where [θmin, θmax] is the range over which θ is updated and αmax and αmin are maximum

and minimum α that occurs in the market. This function is arbitrary chosen by Vytelingum

(2006) as a combination of ideal functions for different market environments since this func-

tion approximates the optimal θ well.

3.3.6 The Bidding Component

We have covered all the parts of AA strategy except of the bidding component. The bidding

component decides based on bidding rules whether or not to bid or ask and if it decides

that yes then it has to decide at what price. If the limit price is below the current bid

obid for buyer or above the current ask oask for seller, the trader does not perform any ac-

tion because it is unprofitable and it waits. Otherwise, agent can submit a bid or ask in the

market and it considers bidding rules to form a price. The equation to set a bid is as following:

(3.34)

And the equation to set an ask

(3.35)

Where η ∈ [1,∞) is a constant that determines the rate of increase (decrease) of the bids

(asks) in Vytelingum (2006) work set to value 3. These equations are used only if the con-

ditions of bidding rules are satisfied:
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Figure 3.3: Bidding rules for AA

Source: Vytelingum (2006)

These bidding rules are extremely important in the beginning of the trading, where the

agent do not have any estimate of the competitive equilibrium price. Therefore sellers start

in much above and buyers much below their limit price. η gives a degree of convergence in the

beginning of trading period. With a lower η traders might be too hasty and less profitable

and the same with η too high. Vytelingum (2006) chooses η = 3 based on results in different

environments as a good compromise. Latter, the agent decides based on prevailing market

conditions and target price. It can either form a bid or ask or accept a bid or an ask from

the other trader. Agent will do so if it is more profitable than a bid or an ask on target price.



Chapter 4

Newly developed strategy - ZIPOJA

This part of the work is dedicated to developing a new bidding strategy, which will then be

compared to the other three strategies described in chapter 3, namely ZIP, GDX, AA. There

is a vast literature developing and comparing bidding strategies. For example, Stotter et al.

(2014) compare ZIP, ZIP related novel strategy ASAD, and AA. I mentioned other research

in chapter 2.

As the name might suggest to the reader, the newly developed strategy is derived from the

previously described bidding strategy ZIP. To be more precise, ZIPOJA is Zero-Intelligence-

Plus enhanced with Oja’s learning rule in its updating mechanism. The motivation is to

allow to the algorithm variability in learning rates γ and β of ZIP strategy during the trading

period. ZIPOJA starts with weights (described below) equal to the vector of ones which makes

ZIPOJA equal to ZIP trader in the beginning of the experiment. Weights are updated during

the experiment which distinguishes ZIPOJA from ZIP. To sum it, ZIP could be understood as

a special case of ZIPOJA in which weights are constant and equal to ones.

4.1 Oja’s learning rule

Oja’s learning rule is a mechanism introduced by Oja (1982) falling into category of unsu-

pervised learning. Oja’s learning rule comes from Hebbian family of learning mechanisms

originally coming from neuroscience. Hebbian family of learning mechanisms are all learning

rules which are derived from Hebb’s rule described by Hebb (1949).

Hebb’s rule can be written in these two formulas:

y =

k∑
i=1

wixi (4.1)

∆wi = αxiy (4.2)
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Where y is output dependent on inputs xi with weights wi. Weight of particular input is

updated after each stimuli by product of that input and output multiplied by learning rate

α. The Hebbian learning mechanism, which attempts to explain associative learning, can be

understood as correlation learning because it utilizes directly the product of its input and

output to derive the weight updates. In other words, it strengthens the reaction on stimuli

which happened, and when the same stimuli happens again in the future, the reaction is then

stronger. Inspired by biological neuroscience, Hebbian rule is often used in artificial neural

networks to alter the weights between model neurons. It increases the weight (or strength)

of interaction between two neurons in case they are activated in the same time and decreases

the weight in case neurons are activated separately.

The disadvantage of Hebbian learning rule is that it is highly unstable in its original form as

it promotes the dominant type of signal exponentially and suppresses less occurring signals

exponentially as well. To overcome this problem, several methods are proposed and used

in practice such as BCM model, Sanger’s rule or Oja’s rule (see Bienenstock et al. (1982),

Sanger (1989), and Oja (1982). These models normalize and stabilize the learning rule in

slightly different ways. I will only explain Oja’s rule more thoroughly since it is the learning

rule I have used in the newly developed strategy.

Oja’s rule is the Hebb’s rule enhanced by the so called ’forgetting’ term which ensures that

overly intensified connections/weights between inputs and output are discounted more than

other weights. This is achieved by multiplicative normalization and solves all stability prob-

lems of this learning rule since the weight has a tendency to come back to value w = 1

and does so in balanced environment. Oja’s rule is a computational expression of an effect

which is believed to be an associative learning method in biological neurons. The following

equations describe Oja’s rule:

∆w = wn+1 − wn = αyn(xn − yn ∗ wn) (4.3)

yn = xn ∗ wn (4.4)

The difference from Hebb’s rule is in the aforementioned ’forgetting’ term (the second term

in parenthesis in equation 4.3). I use Oja’s rule to expand ZIP bidding strategy and therefore

I find the name ZIPOJA the most suitable for describing the content of the bidding strategy.

4.2 Definition of ZIPOJA

As mentioned above, ZIPOJA is based on ZIP bidding strategy. I will briefly review main

concepts of ZIP here, but see section 3.1 of this thesis for a more detailed description, or refer

directly to the creator of ZIP: Cliff (1997).
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4.2.1 From ZIP to ZIPOJA

ZIP is a predictive bidding strategy based on updating its future profit margin µ which

the algorithm thinks is optimal for current prevalent market environment. Profit margin is

understood as the percentage difference from its limit price which is given to the algorithm

in advance. The price is therefore set as following:

p(t) = λ(1 + µ(t)) (4.5)

where p is price at time t, λ is its limit price and µ is its profit margin positive for sellers

and negative for buyers.

Profit margin for the next period according to the following equation)

µ(t+ 1) = (p(t) + Γ(t))/λ− 1 (4.6)

is based on price at time t and Γ representing the change of price from current period to the

next period. These two terms are divided by limit price λ, and one is subtracted to obtain

profit margin.

Change of price between current and future period, Γ(t), is the discounted (by learning

coefficient γ set between 0.2 and 0.8) change in price in the last period (Γ(t − 1)), plus the

distance of current price from the target price denoted as ∆(t), which is discounted by coef-

ficient (1− γ). The relation is written in this way :

Γ(t) = γΓ(t− 1) + (1− γ)∆(t) (4.7)

∆, a distance of current price from the target price, is put into equation in the following

way:

∆(t) = β(τ(t)− p(t)) (4.8)

Where β is a learning rate coefficient set by Cliff (1997) to 0.5 and τ is the target price which

is derived from a current shout q, to which the bidding strategy is reacting to. Target price τ

is in the neighbourhood of the shout price q and it is randomized (as you can see in equation

below) in order to keep traders active and challenge the current prices in case q is close to p,

τ(t) = R(t)q(t) + L(t) (4.9)

where L is random uniformly distributed variable from [0.00, 0.05] for increases in price and

[-0.05, 0.00] for decreases in price. R is random uniformly distributed value from [1.00, 1.05]
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for price increases and from [0.95, 1.00] for price decreases.

Each ZIP trader also follows the mechanism: if the last shout was accepted at the better

price than his calculated optimal price, trader should increase his profit margin. If it was

from the opposite side and it was worse, then the trader should decrease his profit margin.

If the last shout from the same side was not accepted at worse price than current estimated

optimal price of an agent, then this agent should lower his margin.

ZIPOJA differs from ZIP only in the way how future profit margin is calculated. The rest

is kept the same including its interaction with the market and activation based on shout

prices occurring in the market.

ZIPOJA bidding strategy calculates price in the same way as ZIP (by equation 4.5) and

updates its profit margin as seen in equation 4.6. The difference lays in equation 4.7 where

Oja’s rule is applied. The calculation of price change Γ is explained by the following equation:

Γi(t) = WT (t)X(t) =

k=2∑
i=1

wixi = w1(t)x1(t) + w2(t)x2(t) (4.10)

Where wi for all i is set initially to 1 and represents weight of factor xi, and xi is factor

affecting change of optimal price Γ. The x2 can be understood as ∆ from equations of ZIP

and x1 is last period Γ. Therefore the equations can be written in the following way:

x1(t) = ξΓ(t− 1) and x2(t) = ψ(τ(t)–p(t)) (4.11)

Learning rate parameters ψ and ξ are here to affect the size of the effect of statement

on current Γ since the weights start at 1 and are normalized by Oja’s rule to come back to

this value in balanced environment. ψ and ξ are theoretically independent but to make it

completely comparable with ZIP bidding strategy I use conversion from ZIP’s γ and β. In

order to have the same effect of current distance of price and target price and the last change

of price:

ψ = (1− γ)β and ξ = γ (4.12)

This conversion of parameters is not necessary but it is important to put ZIPOJA into the

same notation as ZIP to see the similarity and to set these parameters in a comparable way

in experiments. With this change I can basically write equation 4.10 and 4.11 in this way to

see that only weights are added into ZIP’s equation 4.7:
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4.2.2 Recapitulation of ZIPOJA equations

In order to see all equations in one place, this subsection provides the overview. For descrip-

tion, please refer to subsection 4.2.1 above.

p(t) = λ(1 + µ(t)) (4.13)

µ(t+ 1) = (p(t) + Γ(t))/λ− 1 (4.14)

Γi(t) = WT (t)X(t) =

k=2∑
i=1

wixi = w1(t)x1(t) + w2(t)x2(t) (4.15)

x1(t) = ξΓ(t− 1) and x2(t) = ψ(τ(t)–p(t)) (4.16)

W (t+ 1) = W (t) + ∆W (t) (4.17)

∆W (t) = αΓ(t)(X − Γ(t)W (t)) + ε (4.18)

And in order to be comparable with ZIP, I also include equation 4.8. Which means that

with W (1) equal to all-ones-vector, this bidding strategy is equal to ZIP in the beginning

trading period.

4.3 Imposed restrictions on Oja’s rule

In order to avoid very infrequent but possible deviation of weights from calm region around

and between 0 and 1, the restriction on weights has been made. After each calculation of

appropriate weight for next period code, the weight is set to 2 if it should exceed 2 and it is

set to 0 if it should become negative. This is done only very rarely.

Another restriction is imposed on Γ. If the current price together with current Γ are sup-

posed to exceed limit price, Γ is reduced (increased) in case of positive (negative) change for

buyers (sellers). The technical restriction of Γ to work well inside OpEx restricts Γ in case

it should lead future price to exceed maximum or minimum price allowed for a particular

instrument traded. Then Γ is set for such a value that price reaches just the constraint.

4.4 Setting of parameters for ZIPOJA

ZIPOJA decides based on several parameters which have to be set. I will set the common

ones with ZIP to values from uniform distribution in the same way that Cliff (1997) did in

his work and that De Luca and Cliff (2011b) followed as well. Thanks to this, ZIPOJA will
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be fully comparable with ZIP and it will be obvious whether adding Oja’s learning rule is

enhancing this bidding strategy or not.

The parameters and values to be set are µ(1), Γ(0), W (1),R and L, ε, α and ψ and ξ

which depends in my setup on β and γ to be fully comparable with ZIP strategy.

The following parameters are set in the same way as Cliff (1997) and De Luca and Cliff

(2011b) set them. Profit margin µ(1) will be drawn uniformly from range [0.05; 0.35],

Γ(0) = 0, R is for increases uniformly drawn from [1.00; 1.05] and for decreases from [0.95;

1.00]. L is drawn uniformly from [0; 0.05] for increases and from [-0.05; 0] for decreases. β

is set randomly with uniform distribution between 0.1 and 0.5 and γ between 0.2 and 0.8.

These two affect new parameters ψ and ξ according to equation 4.12 in subsection 4.2.1.

New parameters for ZIPOJA to be set are vector of weights at first period W(1) equal to

all-ones vector, α learning rate of Oja’s rule which is recommended to be very low. I have

decided to draw it uniformly from range of 0.0005 and 0.005. The lower than 0.0005 values

changed weights insufficiently and in relatively short experiments did not change ZIPOJA

from ZIP substantially although clear trend was visible. The values above 0.005 meant too

quick learning rate and in setting of X factors to the difference from target price and the last

change, too large value for α often led to instability and not very competitive estimator of

adequate price. The last to be set is ε variable introduced in 4.2.1 subsection, taking values

uniformly from [-0.01; 0.01] and ensuring that weights will not keep absolutely stable.



Chapter 5

Methodology for comparison of

strategies

My research goal is to compare strategies against each other in the agent vs. agent trading

experiment. There are a lot of studies comparing trading strategies against each other. Each

one of them employs different set of comparison tools. I will present some of them in the

next section 5.1 and detail each method used in this work afterwards.

I will vary the number of trading strategies in the experiments. My symmetric experiments

will have from one strategy (homogenous environment) to four strategies. I will change the

proportions of the strategies in the agent population for two and three-strategy experiments

similarly to Walsh et al. (2002) and perform similar dynamic analysis of mixed trading. I will

graphically show superior trading strategy for each combination of trading strategies based

on percentage of won strategies.

Then I will run an experiment with all four strategies in symmetric and balanced game

(2 buyers and 2 sellers for all four strategies) to show how they interact in a common market.

5.1 Comparison methodology used in research

I will take inspiration from these studies about the comparison methods of trading strategies.

De Luca and Cliff (2011b) compare pair of trading strategies (AA, ZIP, GDX, GD) in balanced

(6 agents of one strategy vs. 6 agents of the second strategy) and symmetric (same number

of buyers of one strategy as sellers of this strategy) experiment, and measure the percentage

of won rounds by one or the other strategy based on the average profit/surplus.

Tesauro and Bredin (2002) compared GDX, GD and ZIP against each other in balanced sym-

metric (22 agents vs. 22 agents) and in unbalanced symmetric (1 agent vs. many agents)

experiments. They measured the performance of the strategies by number of won rounds

and surplus difference between the compared strategies.
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Walsh et al. (2002) explain their new method of analyzing complex games on comparison

of ZIP, Kaplan and GD trading strategy in three-strategy symmetric experiments with 20

agents and with various composition of agent population. They try to find whether there

is an optimal strategy mix of agent population (mixed strategy Nash equilibrium). They

use computationally intensive method to assign payoffs to each combination of these three

strategies and then they compute the dynamic analysis by replicator dynamics (Weibull

1995). This approach helps them to map dynamic development of strategy implementation

in agent population. They find basins of attraction of all equilibria and graphically map the

dynamic movement to them.

Vytelingum (2006) and Vytelingum et al. (2008) compare AA against GDX and ZIP in a

dynamic analysis in the similar way as Walsh et al. (2002) with 20 agents (10 buyers and

10 sellers). The main difference is in having non-symmetric game (allowing for different

number of buyers and sellers from one strategy) and in comparison of only two strategies at

each moment in a dynamic analysis using replicator dynamics. Thanks to this, they were

able to show disproportions of buyer and seller optimal combinations. Moreover, they show

efficiency indicator which they believe is the main driver of success in the real application.

5.2 Trading surplus

In order to identify better performing strategy, the basic indicator of trading surplus is used

most often. It serves as a base to develop more advanced comparison methods. Surplus is

obtained from trading of assigned units to each trader below their limit price for buyer and

above for seller. Surplus then can be compared to obtain surplus difference between two

strategies as Tesauro and Bredin (2002) did. Surplus of one trading strategy is the average

surplus of all trading agents using this strategy. I will use trading surplus to compute other

indicators such as won game rounds or efficiency ratio.

5.3 Won game rounds

The Won game trials metrics speaks for itself. Each specification of proportion of strategies

is run multiple times. De Luca and Cliff (2011b) use 1000 trials; Tesauro and Bredin (2002)

use 1000 trials; Vytelingum et al. (2008) use 2500 trials. Researchers then report either the

number of won rounds or in percentage metrics out of all rounds. Winning strategy is decided

based on average surplus of agents performing the same strategy in comparison to average

surplus of another strategy. I will use won game rounds metrics in addition to other metrics

to report on two, three and four-strategy experiments. The disadvantage of this indicator is

that it cannot differentiate between a slightly but consistently better strategy and radically

and consistently better strategy. For this reason, efficiency ratio might show more depth in

the relationship.
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5.4 Efficiency ratio

As Vytelingum et al. (2008) define, the market efficiency is the ratio of all agents’ surpluses in

the market to the maximum possible surplus that would be obtained in an allocation where

the profits of all buyers and sellers are maximized.

The efficiency of a bidding strategy is the ratio of the profits of the agents adopting that

strategy to the maximum possible surplus resulting from an efficient, centralized allocation

scenario. In the homogenous scenario, efficiency of a bidding strategy is equal to market

efficiency. In heterogenous scenario with more strategies implemented, the weighted (by

strategy share on total population) mean of all efficiencies of a bidding strategies is the

market efficiency.

5.5 Dynamic analysis

The most advanced approach to be used here is a dynamic analysis based on Walsh et al.

(2002) approach. Similar approach is implemented by Vytelingum (2006) and Vytelingum

et al. (2008) but only in 2 strategy space with possible asymmetric combination (different

number of buyers and sellers of one strategy). The main purpose of this analysis is to find

the mixed strategy Nash equilibria in the 3 dimensional strategy space or in other words

to find whether one strategy purely outperforms all the others or whether there is a com-

bination of strategies, from which no agent wants to differ. Not only equilibria, but paths

to them are computed by these researchers. They use replicator dynamics (Weibull 1995)

to do that. I will follow their approach with one exception. Our dynamic analysis will be

based on ideal change in a particular point, not empirically calculated by replicator dynamics.

These dynamics, equilibria, and saddle points are then shown in a ternary graph representing

all combinations of two and three-strategy experiments. It is impossible to graphically show

these dynamics for four-strategy experiments since three-dimensional tetrahedron would be

needed to show all the combinations. The methods of representation of tetrahedron to

two-dimensional space would be insufficient and confusing in this application, so although

having four strategies to compare, I will stay with dynamic analysis only to symmetric three-

strategy space which is possible to show in two dimensional space in the same way as Walsh

et al. (2002) did. However, I will show this ternary graph for all four sets of three-strategy

experiments (ZIP, GDX, AA; ZIP, GDX, ZIPOJA; ZIP, ZIPOJA, AA; ZIPOJA, GDX, AA).

5.5.1 Heuristic payoff table

In order to dynamically analyze the multiple-strategy space, there are several steps which

have to be done first. First step is to obtain heuristic payoff table that specifies the expected

payoff to each strategy in all three-strategy experiments. That means that for each composi-

tion of total agent population I will know how any of included strategies performs. Expected

payoff of a strategy in an experiment is simply the average of payoffs for all agents following

that strategy in a particular experiment. Experiments often have many rounds (in my case
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1000) to guarantee some sort of certainty of results.

The heuristic payoff table is a reduced model of the game of multiple strategies followed

by multiple trading agents choosing and changing which strategy they follow. Moreover,

each agent performs many actions to determine whether it is successful or not. Thanks

to the heuristic payoff table, genesis of strategies does not have to be directly analyzed in

extremely complicated system as limit order market is.. With this table, complex game as

explained is reduced into one-shot game, in which I can just focus on the change of heuristic

strategies rather than their development or basic actions. With this model this complex

problem in a normal-form game by the standard game-theoretic models. You can find more

on the issues of this approach in Walsh et al. (2002).

Thanks to simplifying assumptions on symmetry of experiments and that the strategies are

drawn independently from the same distribution, the number of entries reduces dramatically

for the heuristic payoff table. The change is from Sa entries where S is number of strategies

and a number of agents to merely
A+S−1

A entries. That means in my case of 12 agents but in a

symmetric experiment(so I can theoretically think only about 6 traders trading in both ways

and with restriction to 3 strategies per experiment) only
8
6= 28 entries. Moreover, I have 4

combinations how to choose 3 strategies out of 4 and therefore there are 4 heuristic payoff

tables. Some entries are in more tables so the overall number of entries to be computed is

28+21+15+10=74.

The computation of such a heuristic payoff table is already manageable but it is still very

computationally intensive work since every entry is an experiment with 1000 rounds to ensure

accuracy and every round consist of 300 steps where actions of all agents are evaluated.

5.5.2 Equilibrium Computation

At the start of the game, strategies are assigned to all agents to match a particular exper-

imental setup and shares of strategies on agent population. The agent i has therefore the

probabilities p̂i = ( ˆpi,1, ..., ˆpi,S) to be assigned to one of the strategies j ∈ 1, ..., S, with con-

straint ˆpi,j ∈ [0, 1] and
∑S
j=1 ˆpi,j = 1.

We can also say that agent i plays mixed strategy p̂i. p̂i is decided before the experiment

and reflects the particular combination of strategies on agent population appropriate to a

specific entry of heuristic payoff table.

The expected payoff of agent i is a real-valued function u which depends on assigned strategy

to the agent i and agent population composition. In other words, it assigns value for each

agent based on his average profit in all rounds of a particular experiment. The expected

payoff for strategy is then computed as average of expected payoffs for all agents following

this strategy. These three strategy expected payoffs are one entry into heuristic payoff table

on a position representing shares of strategies on agent population for a given experiment

(e.g. 33% of ZIP, 33% of GDX, 33% of AA is one possible combination of strategies on agent
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population, so average payoffs for all agents will be computed, then averaged into strategy

average payoffs and then filled into heuristic payoff table on a position representing the com-

bination 33% of ZIP, 33% of GDX, and 33% of AA).

To put it mathematically, when agent i plays pure strategy j, I denote p̂i = ej .Then

u(ej , p̂l−1) (5.1)

denotes the expected payoff to an agent i for playing pure strategy j, given that all other

agents play their mixed strategies ˆp−i (or in other words, they play the rest of strategies

assigned to this setup in the right proportion). The payoff to agent i of the mixed strategy

p̂i is then

u(p̂l, p̂l−1) =

S∑
j=1

u(ej , p̂i−1)p̂i,j (5.2)

In words, weighted average payoff of pure strategies with weights equal to shares of strate-

gies on total population. The average payoff of a particular strategy is denoted as u(ej , p)

and the average payoff to all agents in this strategy-composition specification p is u(p, p).

The difference of u(ej , p) and u(p, p) is surplus of the strategy j over the average trader in

strategy-shares on agent population specification p.

The values can obviously be calculated only for certain strategy-composition specifications

given by researcher. The rest of values are interpolated.

Finding Nash equilibria can be computationally challenging problem. Nash equilibrium can

be expressed in various equivalent formulations, each suggesting different solution methods

as mentioned by McKelvey and McLennan (1996). I will stick to the method used by Walsh

et al. (2002). They formulate Nash equilibrium as a minimum of a function:

v(p) =

S∑
j=1

(max
[
u(ej , p)− u(p, p), 0

]
)2 (5.3)

In this formulation, the mixed strategy p∗ is a Nash equilibrium if and only if it is a global

minimum of v. We can guarantee that a minimum is global if its value is zero (McKelvey

and McLennan 1996).

In this work I will use non-linear optimizer Amoeba in the same way as used in Walsh

et al. (2002) and explained in Press et al. (1992) to find the zero-points of v in performed

experiments. Amoeba optimizer, named downhill simplex method or Nelder-Mead optimiza-

tion method originally proposed by Nelder and Mead (1965), is an optimization technique

which does not require any gradient computation and therefore it can be applied to nonlinear

optimization problems for which gradients may not be known. Thanks to these properties,
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Nelder-Mead method is widely used even though it is computationally more intensive than

other optimization algorithms. Nelder-Mead method uses heuristic search method with spec-

ified starting point from where it calculates polytype of n+1 vertices in n dimensions. This

polytype moves every step based on values to more optimized values. It is possible that this

method will not find global but only local optimum. Thanks to the specification of objec-

tive function, it is known as mentioned earlier that global minimum occurs only if value is

equal to zero. I will use built-in optimization method in Matlab optimization toolbox to find

minimums of function v(p).

5.5.3 Dynamic analysis

Nash equilibria found by optimization of v function provide a sufficient view on multi-agent

system in static environment. Dynamics behind getting to these equilibria is as important

as static properties. In decentralized systems it is usually foolish to assume that all agents

have enough information/ common knowledge and the resources to compute equilibria so it

is still interesting question which equilibrium is chosen from which place and what path does

the system undergoes in reaching it.

The models of adaptation and learning in dynamic environment are studied, developed and

applied in voluminous literature. As Walsh et al. (2002) paraphrase Fudenberg and Kresp

(1993), Fudenberg and Levine (1993) and Jordan (1993), the positive theoretical properties

of equilibrium convergence for general games of A agents and S strategies have not yet been

established. Walsh et al. (2002) choose well-developed model from evolutionary game theory

showed by Weibull (1995) for their purposes. They posit a large population of N agents

from which A << N agents are randomly selected at each time step to play the game. At

any given time, selected agents play pure strategy out of a set of strategies S. The share of

population playing strategy j is pj. The pj values define strategy shares vector p. If N is

large enough, pj can be treated as continuous variable. I will stick to simplified dynamic

analysis compared to replicator analysis mentioned above although using its formalism to

model the evolution of p in dynamic environment. The change in share of stategy j at each

point p in three-strategy space is specified by this equation:

ṗj = [u(ej , p)− u(p, p)]pj (5.4)

Where u(p, p) is the population average payoff and u(ej , p) is the expected payoff to

agents currently using pure strategy j. This equation models the tendency of strategies with

above average payoff to attract more followers and strategies with below average payoff to

suffer defections, since ṗj represents the change in the proportion of strategy j. If ṗj = 0

for all strategies, that means that this point is a stable point, which corresponds to a Nash

equilibrium and can be called affixed point. Moreover, if strategies converge to this point,

this point can be called an attractor. Nash equilibria with larger basin of attraction are more

likely to occur in the population if it isassumed that every initial population state is equally

likely (Walsh et al. 2002).
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The only disadvantage of this model of dynamic analysis is that agents do not have mini-

mal information requirements beyond their own actions and payoffs since they have to know

u(p, p). Based on this, this dynamic analysis does not copy dynamic analysis in reality. The

same population dynamics asa change into the ideal direction or replicator dynamics can be

achieved by more realistic replication by imitation model (Weibull 1995). As Walsh at al.

(2002) explain, an agent switches to the strategy of a randomly chosen better performing

opponent in this model.



Chapter 6

Experiments

Results from artificial experiments will be presented in this chapter. I have used OpEx trading

simulator in order to compare bidding strategies in different setups. The intention of these

simulations is

• to provide more robust results on comparison of ZIP, GDX and AA bidding strategies

problematic since AA is reported to be the most efficient and ZIP, GDX are often used

as benchmark for comparison in literature.

• the fact that there is frequent literature which compares bidding strategies and the

results can be compared to those in the past.

• to provide evidence of newly developed ZIPOJA bidding strategy efficiency and its

performance compared to other bidding strategies.

To name only some of relevant literature, ZIP, GDX and AA are compared in Vytelingum

et al. (2008) in two strategy game with variation in number of buyers and sellers for each

strategy. They calculate dynamic analysis and mixed strategy equilibrium of these simula-

tions as well. De Luca and Cliff (2011b) compare ZIP, GD, GDX and AA against humans

and against each other in two strategy game with the same number of buyers and sellers

as well as the same number of agents playing each of two strategies. Walsh et al. (2002)

compare ZIP, GD, and Kaplan in a symmetric (same number of buyers and sellers play-

ing one strategy) three strategy game with variation in proportions of strategies played by

agents. They calculate dynamic analysis and obtain results on how agents change strategies

to be more successful. They calculate mixed strategy equilibria in three strategy space and

provide graphical interpretation of these relationships in a very informative and intuitive

ternary diagram which served as an inspiration for graphical output of this work. Tesauro

and Bredin (2002) compare ZIP, GD and GDX in two strategy game with equal share of agents

playing both strategies and another scenario with one of one strategy versus many of another

strategy.
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6.1 Experimental Setup

I will show results of homogenous trading groups and two and three-strategy games with

variable shares of agents in population for each strategy and four-strategy games. All ex-

periments will be symmetric, that means they have the same number of buyers and sellers

pursuing one strategy. This is the most important in case of three strategies with dynamic

analysis since only three strategies with their dynamics can be presented on a two-dimensional

paper.

6.1.1 DES - Discrete Event Simulator

I will run experiments in OpEx 1.2 trading simulator offering preprogrammed trading envi-

ronment to which agents join and just send shouts which are put into order book or executed

immediately by trading simulator. More concretely, I will use Discrete Event Simulator

(DES) which is turn-based and pick one of each agents at random every turn. This is cer-

tainly not Continuous Double Auction (CDA) but with trading agents trading much faster

than human traders, one could simply assume that random pick is a representation of the

fastest reaction on stimuli in CDA. One might nearly agree that DES could be taken as

sufficient for CDA representation. In DES, one trading round consists of 300 turns in which

agents have the opportunity to trade their assigned units.

DES simplification is necessary when one takes into account the vast amount of experi-

ments to be run and that CDA should be run in real-time. More specifically I will run 74

experiments having 1000 rounds each in 5 groups of 200 rounds. Calculation of results con-

sisting approximately from 5 million rows of transaction data took fair amount of time in

DES as well. It took around 3 days of computation to run all the experiments on my laptop

with 1.5GHz processor.

6.1.2 Agents and strategies

Regarding number of agents, it will stay strictly constant except for the experiment with

all four strategies present. The number of buyers is the same as sellers and is equal to 6.

That accounts for 12 traders in total. The number of agents following one particular strategy

varies across the experiments but not in one experiment. The number of agents following one

bidding strategy varies from 0 to 12 by step of two (the same number of buyers and sellers

all the time). This represents all the possibilities of homogenously populated experiments,

two-strategy games and three-strategy games as well, having 12 traders in total in each ex-

periment. The only exception to this rule is a four-strategy experiment which has two buyers

and two sellers following each strategy. That means 16 agents in total for this experiment.

Regarding strategies, I will use prebuilt ZIP, GDX and AA in OpEx 1.2. ZIPOJA is built

based on ZIP strategy. Depending on OpEx pre-coded strategies might be risky, since there

might be minor differences against the versions of strategies developed by their creators. For

example, neither Vytelingum (2006) nor Vytelingum et al. (2008) provided source code for

its novel AA strategy, so researchers and traders had to construct AA again by themselves.
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OpEx, used for example by De Luca and Cliff (2011b), provides one of a few publicly available

versions of AA. Nevertheless, OpEx offers sufficient foundation for running intended experi-

ments which will follow and which extend agent versus agent experiments done not only by

De Luca and Cliff (2011b) in OpEx, too.

6.1.3 Units to trade

All traders get the same amount of units to trade with the same limit prices with no regard

to which strategy they follow. The only difference is between buyers and sellers which is a

necessary condition to get market moving. All the buyers get eleven units for trading with

limit price 250, 240, 230, 220, 210, 200, 190, 180, 170, 160 and 150. Sellers get the same limit

prices for their units but the sequence starts from the lowest one. When the trader trades

his most profitable unit, he starts offering the second most profitable one and so on. Usually

traders sell 6 units and the equilibrium on the market is found around 200 with no one willing

to buy (or sell) a unit above (below) their limit price. Sometimes some traders sell more

units than 6 which means they are effectively grasping profit from other agents on the same

side who will not be able to participate on trade because there will not be any counter-party.

Another option is that trader will be quick in trading his first 6 units and will enter market

with his less profitable units at time when there will still be possible counter-party at that

price.

Maximum average surplus is artificially calculated value maximizing surplus for all traders

together. Inmy setup the optimal equilibrium price is 200 for all experiments and therefore

maximum surplus is 150 for all buyers and sellers as well since sellers have mirrored prices

of buyers. Efficiency of traders is calculated from successfulness of reaching this amount.

6.1.4 Instrument traded

OpEx allows to choose properties of an instrument traded. The instrument was kept constant

with price tick 1 (trades could be traded only at integer prices). There is a set minimum

price of 125 and maximum price of 275 and therefore no trade can be made behind these

values.

6.2 Homogenous environment and two-strategy games

First results to be presented here are from homogenous environment and from two-strategy

game. As explained in subsection 6.1.2, Iwill vary number of buyers and sellers of one strategy

from 0 to 6 and assign another bidding strategy to the rest of agents. Therefore, the possible

setupss are:

• 6 buyers and 6 sellers from one strategy - Homogenous environment - I will indicate

it 6:0 or 0:6.

• 5 traders for each side using one strategy and 1 trader on each side using another

strategy - One vs. many setup - Indication 5:1 or 1:5
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• 4 buyers and sellers with one strategy and 2 buyers and seller using another strategy

- Unbalanced setup - Indication 4:2 or 2:4

• 3 traders buying and 3 traders selling on both sides - Balanced setup- Indication 3:3

There are 6 pairs of strategies to be presented to cover all combinations. For each pair, there

will be a short subsection presenting results and relevant comments.

6.2.1 ZIP vs. GDX

The first pair to be introduced here is the pair of the oldest strategies tested in this work.

ZIP was invented by Cliff (1997) and GDX was invented by Tesauro and Bredin (2002). The

reader can see an overview of seven relevant experiments in the following table. From the

left side, there ZIP pure strategy but share of ZIP in population decreases and share of GDX

increases till GDX pure strategy.

We can see that GDX clearly dominates ZIP in all scenarios where GDX is present. This

is in line with previous literature (Tesauro and Bredin (2002) and Vytelingum et al. (2008)).

The number of won rounds based on average profit extracted by agent pursuing the partic-

ular strategy is quite stable for GDX and ZIP for all experiments with obvious exception of

homogenous environment. Efficiency of market remains quite stable and reaches very high

values above 99% with one exception. Homogenous environment filled with GDX has the

lowest efficiency ratio out of all conducted experiments. Based on check of the data, the

reason is that some GDX buyers set their price incredibly low in the beginning. The rest

of buyers build the belief function based on first shouts and then all the bids get down. It

usually takes almost all turns of that round for the price to recover, which results in less total

number of trades and consequently and logically lowers efficiency since efficiency is measured

against the maximum theoretical surplus. An important thing is that as long as there are

different bidding strategies, GDX is capable of competitive trading so this behaviour does not

affect comparison with other strategies at all.

6.2.2 ZIP vs. AA

The next pair to evaluate is Zero-Intelligence Plus against Adaptive Aggressiveness. As you

can see, AA dominates ZIP almost clearly, but with not prevalent dominance. Nonetheless,

the domination is not that strong as in case of ZIP vs. GDX and it has one exception with

one ZIP vs. many AA experiment. ZIP trader is able to gather more profit than the rest of

AA traders in 589 rounds out of 1000.

This is not happening by a coincidence. We will see in GDX vs. AA and ZIPOJA vs. AA

that AA is generally weak in the case when large share of buyers follow this bidding strategy

or in other words, one trader of the competing strategy is able to use the homogenous com-

petition of AA and gather more profit. This might be just the result of poor performance in

this setup (one vs. many setup or different aspect of the setup - for example total number

of traders or order of limit prices of units) or the result of the way how AA is designed in
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Table 6.1: Two-strategy experiments - ZIP vs. GDX

ZIP vs. GDX 6:0 5:1 4:2 3:3 2:4 1:5 0:6
ZIP won rounds 1000 344 353 273 342 382 0
GDX won rounds 0 656 647 727 658 618 1000
ZIP efficiency 99.32% 98.35% 97.85% 95.43% 95.18% 94.81% -

(s.s.d.) (0.68%) (2.74%) (4.39%) (6.98%) (10.44%) (18.56%) -

GDX efficiency - 105.32% 103.29% 104% 102.07% 100.63% 55.31%
(s.s.d.) - (13.15%) (8.61%) (6.94%) (5.28%) (3.94%) (32.6%)

Total efficiency 99.32% 99.51% 99.66% 99.72% 99.77% 99.66% 55.31%
(s.s.d.) (0.68%) (0.59%) (0.51%) (0.47%) (0.49%) (0.66%) (32.6%)

Surplus difference - 10.46 8.17 12.86 10.34 8.73 -
Winner ZIP GDX GDX GDX GDX GDX GDX

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy.

OpEx 1.2. AA as defined in OpEx 1.2 cannot initialize first trade and therefore it has to wait

for another strategy to build starting order-book. This certainly makes AA slower at the

start of round. According to data, AA is not recovering for the rest of 300 turns of trading

day/round. Even though AA is able to gain much more from each trade on average than ZIP

trader in this setup, ZIP trader completes more trades. Nevertheless, this might not be the

only reason why ZIP performs better in this setup. As you will see later (see 6.2.3 AA vs.

GDX subsection), just different market setup can have its impact as well.

The efficiency of the market is high for homogenous ZIP populated market and decreases

with increasing AA share in the population. We can only conclude that adding AA into ZIP

population decreases efficiency of ZIP linearly except the one ZIP vs. many AA. The devel-

opment of overall efficiency might be attributed to the inability of AA to open first trade.

Because of this I was unable to get results for homogenous AA environment. To keep this

AA comparable with AA from De Luca and Cliff (2011b), no change to AA was made. Value

of 1000 won rounds for homogenous AA is just logical although not backed by data. That is

the reason why the rest of values in this column is missing.

6.2.3 GDX vs. AA

The third pair of strategies to be compared is GDX vs. AA. This pair is the most interesting

one since it shows the most balanced results. This pair is also important since according to

results in the following table, GDX challenges the overall supremacy attributed to AA from

previous research.

We can see that AA dominates clearly one AA vs. many GDX and unbalanced 2 AA vs.



Table 6.2: Two-strategy experiments - ZIP vs. AA

ZIP vs. AA 6:0 5:1 4:2 3:3 2:4 1:5 0:6*
ZIP won rounds 1000 406 421 369 395 589 0
AA won rounds 0 594 579 631 605 411 1000
ZIP efficiency 99.32% 98.12% 97.28% 95.02% 95.02% 99.5% -

(s.s.d.) (0.68%) (3.34%) (4.97%) (6.9%) (10.1%) (17.84%) -

AA efficiency - 103.18% 100.17% 99.45% 96.75% 88.47% -
(s.s.d.) - (19.08%) (12.89%) (10.57%) (9.78%) (13.34%) -

Total efficiency 99.32% 98.97% 98.24% 97.24% 96.17% 90.31% -
(s.s.d.) (0.68%) (1.27%) (1.99%) (3.04%) (4.3%) (9.04%) -

Surplus difference - 7.59 4.34 6.64 2.6 16.54 -
Winner ZIP AA AA AA AA ZIP AA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy. *This experiment was not run - see subsection 6.2.1 for
explanation

Table 6.3: Two-strategy experiments - GDX vs. AA

GDX vs. AA 6:0 5:1 4:2 3:3 2:4 1:5 0:6*
GDX won rounds 1000 176 366 696 913 976 0
AA won rounds 0 824 634 304 87 24 1000
GDX efficiency 55.31% 94.7% 97.92% 100.48% 104.18% 114.29% -

(s.s.d.) (32.6%) (9.6%) (3.85%) (3.72%) (5.19%) (8.83%) -

AA efficiency - 112.95% 101.15% 94.26% 87.93% 77.38% -
(s.s.d.) - (17.26%) (8.87%) (7.78%) (8.56%) (10.76%) -

Total efficiency 55.31% 97.74% 99% 97.37% 93.35% 83.53% -
(s.s.d.) (32.6%) (7.2%) (1.57%) (2.56%) (4.54%) (7.93%) -

Surplus difference - 27.39 4.84 9.33 24.36 55.37 -
Winner GDX AA AA GDX GDX GDX AA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy. *This experiment was not run - see subsection 6.2.1 for
explanation
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4 GDX experiments. For the rest of mixed experiments, GDX is a more favourable one and

for unbalanced 2 GDX vs. 4 AA and one GDX vs. many AA experiments, GDX wins in an

overwhelming number of rounds. The surplus difference shows the clear effect of changing

population shares from one strategy to another one. The minority dominates in average

profit. The reason for lower total efficiency with increasing share of AA in population is the

inability of AA to initiate the first trade of the round decreasing its competitiveness especially

in experiments with large AA share in population. More on this matter is in 6.2.2 subsection.

Nevertheless, I have used the same GDX and AA specification as De Luca and Cliff (2011b)

and yet GDX wins in the balanced experiment which is in contrast with their results. Since

the difference in specification of strategies can be excluded as a reason of this difference, the

only logical answer is that the winning strategy depends on the experiment specification such

as number of traders, limit prices of each unit and the amount of traded units. This is a very

strong conclusion answering some of my hypotheses which I want to test in this work.

6.2.4 ZIPOJA against the other three strategies in two-strategy

games

Novel strategy ZIPOJA competed against other strategies bravely but as you will see in follow-

ing tables, it didn’t performed well. In the following table, you can see the most important

results for ZIPOJA; ZIPOJA compared to its father strategy ZIP.

Table 6.4: Two-strategy experiments - ZIP vs. ZIPOJA

ZIP vs. ZIPOJA 6:0 5:1 4:2 3:3 2:4 1:5 0:6
ZIP won rounds 1000 727 799 774 805 720 0
ZIPOJA won rounds 0 273 201 226 195 280 1000
ZIP efficiency 99.32% 101.28% 103.92% 105.78% 109.97% 110.47% -

(s.s.d.) (0.68%) (4.01%) (5.73%) (8.87%) (12.9%) (20.3%) -

ZIPOJA efficiency - 88.17% 89.09% 91.84% 92.89% 96.18% 98.42%
(s.s.d.) - (19.91%) (11.95%) (9.14%) (6.63%) (4.36%) (1.26%)

Total efficiency 99.32% 99.1% 98.98% 98.81% 98.58% 98.56% 98.42%
(s.s.d.) (0.68%) (0.89%) (0.98%) (1.05%) (1.18%) (1.19%) (1.26%)

Surplus difference - 19.68 22.24 20.91 25.62 21.44 -
Winner ZIP ZIP ZIP ZIP ZIP ZIP ZIPOJA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy.

ZIPOJA with the same setup of parameters as ZIP underperform ZIP in all metrics. It

wins fewer rounds no matter the share in population, obtains less profit on average by ap-

proximately 20 and as a consequence ZIPOJA is less efficient, too. The overall efficiency in

homogenous environment is lower to the one of homogenous ZIP population as well. We can
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therefore unfortunately conclude that ZIPOJA is worse in all measured metrics than ZIP.

The question is: Why is that so, if ZIP is a special case of ZIPOJA with all weights equal to

one and constant. The reason is in the development of weights for Oja’s rule. Although no

clear pattern was found in development of weights based on time, generally all the weights

felt from 1 to a value between 0and 1. This led ZIPOJA to discount the last changes more

(effectively forget faster) and take the current difference from target price less into account.

For some traders w2 was closer to 1 and w1 close to 0 and vice versa. It was not a rule to

have one larger than the other. This development of weights led ZIPOJA to stay more stable

than ZIP and in case some agent challenged the price or there was some kind of disturbance,

ZIPOJA was not able to reap profits as efficiently as ZIP.

The following table shows how ZIPOJA stands against GDX and the table below this one

completes the picture of performance of ZIPOJA against other bidding strategies.

Table 6.5: Two-strategy experiments - GDX vs. ZIPOJA

GDX vs. ZIPOJA 6:0 5:1 4:2 3:3 2:4 1:5 0:6
GDX won rounds 1000 705 834 864 847 818 0
ZIPOJA won rounds 0 295 166 136 153 182 1000
GDX efficiency 55.31% 101.67% 105.29% 109.16% 111.75% 114.78% -

(s.s.d.) (32.6%) (3.89%) (5.96%) (9.14%) (12.26%) (18.59%) -

ZIPOJA efficiency - 90.11% 88.66% 90.04% 93.29% 95.98% 98.42%
(s.s.d.) - (19.18%) (11.95%) (9.29%) (6.18%) (3.89%) (1.26%)

Total efficiency 55.31% 99.74% 99.74% 99.6% 99.44% 99.12% 98.42%
(s.s.d.) (32.6%) (0.49%) (0.47%) (0.62%) (0.67%) (0.87%) (1.26%)

Surplus difference - 17.35 24.94 28.68 27.7 28.19 -
Winner GDX GDX GDX GDX GDX GDX ZIPOJA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy.

We can see similar results as GDX vs. ZIP although GDX performs even better against

ZIPOJA than ZIP. The same story is valid for ZIPOJA vs. AA. There is even the same effect

for one ZIPOJA vs. many AA as in one ZIP vs. many AA. The only difference is that ZIPOJA

does not make it into winning region of 500 won rounds and more. In other setup, ZIPOJA

loses remarkably.

An interesting fact is also how performance of strategies against ZIPOJA in two-strategy

games is ordered. For all types of experiments except one (ZIPOJA against many other

agents), AA is the best competitor followed by GDX and then ZIP. In case of one vs. many,

AA performs the worst, GDX follows and the best competitor is ZIP - completely reversed.

The reason is, as mentioned earlier, the changed interaction of strategies because one might
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Table 6.6: Two-strategy experiments - AA vs. ZIPOJA

AA vs. ZIPOJA 6:0* 5:1 4:2 3:3 2:4 1:5 0:6
AA won rounds 1000 582 871 921 930 895 0
ZIPOJA won rounds 0 418 129 79 70 105 1000
AA efficiency - 93.24% 103.45% 109.28% 116.02% 123.03% -

(s.s.d.) - (11%) (7.21%) (8.85%) (12.94%) (21.1%) -

ZIPOJA efficiency - 92.26% 85.12% 86.9% 89.55% 93.81% 98.42%
(s.s.d.) - (17.91%) (10.68%) (7.97%) (6.45%) (4.22%) (1.26%)

Total efficiency - 93.07% 97.34% 98.09% 98.37% 98.68% 98.42%
(s.s.d.) - (7.26%) (3.12%) (2.1%) (1.66%) (1.21%) (1.26%)

Surplus difference - 1.46 27.49 33.57 39.71 43.83 -
Winner AA AA AA AA AA AA ZIPOJA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy. *This experiment was not run - see subsection 6.2.1 for
explanation

be better prepared for one vs. many experiments than the other strategy. This is for example

a case for AA bidding strategy which is unable to initiate first trade in OpEx 1.2 (see 6.2.2

for explanation).

6.3 Three trading strategies competing

The most interesting part of this work (at least in graphical terms) is detailed in this sec-

tion. As explained in chapter 5, I show which strategy dominates which one and efficiency

results. Moreover I show mixed strategy Nash equilibria obtained by the same approach

as Vytelingum et at. (2008) and Walsh et al. (2002) did. I use dynamic analysis in order

to find the way how strategies converge into Nash equilibria. Then I put these data into

understandable ternary graphs with each corner representing one pure strategy.

The motivation is to provide another point of view on comparison of ZIP, GDX and AA strate-

gies since to the best knowledge of author, no one performed experiments with these three

strategies in three-strategy game and variable share of these strategies in population. This

approach will provide valuable information on how strategies perform in more heterogenous

environment which can possibly be dramatically different from two-strategy environment and

can possibly challenge the results from the previous research.

Another goal is to use this methodology to introduce ZIPOJA into competition of two other

strategies at once, which can speak a completely different story than two-strategy games.

We have four strategies to be compared in three-strategy game and therefore four different

triplets of strategies:
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• ZIP, GDX, AA

• ZIP, GDX, ZIPOJA

• ZIP, ZIPOJA, AA

• ZIPOJA, GDX, AA

I will dedicate one subsection to each of the triplets.

6.3.1 How to read these ternary graphs

All of the information depicted graphically in figures 6.1, 6.3, 6.5, 6.7 and some more in-

formation can be found in the same order in tables A.1, A.2, A.3, A.4 in Appendix A. In

each corner of all ternary diagrams in this section there is a pure strategy (that means 6

buyers and 6 sellers) and with each further step from the corner (steps are visible in the first

picture) there is one buyer and one seller less or in other words the share of this strategy

in population mix decreases. For example, in the middle of the ternary graph there is a

balanced three strategy game with two buyers and sellers from each of these three strategies.

One can check that this point is exactly four steps from each corner resulting in two buyers

and sellers for each strategy. This rule is valid for all the points on the graph.

Edges have meaning as well. All the edges represent two-strategy games presented in the

previous 6.2 section. From one corner to another setup moves from a pure strategy experi-

ment with six buyers and six sellers in six steps to another pure strategy experiment.

Colours in the first graph in each subsection sign experiments (only in black dots) which

were won by a particular strategy. The coloured area and its asymmetry has some minor in-

formation too. It is the result of plotting surface of strategy share of won rounds to the whole

triangle with values in positions of experiments. Then the highest value for each experiment

is the only one visible since it covers all the competitor’s surfaces and you are looking on

this ternary graph ’from the above’. The coloured area therefore signals the relation with

the winning strategy in the neighbouring experiment - large area = much larger percentage

of rounds won compared to neighbouring experiment and vice versa.

Colours in the other three ternary graphs in the first figure of each subsection represent

share of won games for each strategy with colour bar on the right (0 - no rounds won, 1 - all

rounds won). The values are only in experiment nodes so to get smooth surface with colour,

values were interpolated into finer grid by Matlab function griddata.

The last type of figure shows found equilibria and dynamic analysis of convergence into

these equilibria. Arrows represent s teckou, change in shares of strategies on the total pop-

ulation (see subsection 5.5.3). The three-dimensional change is then transformed into 2D

representation to be shown on a paper. Strategies which earn less than average are aban-

doned in favor of more profitable strategies. Full black dots show pure strategy equilibria

in corners and empty circles show mixed strategy Nash equilibria. The colour inside the
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ternary graph shows the degree of change in any particular point in the space of three strate-

gies. Again, to obtain finer results, function of change for each strategy was interpolated (by

Matlab function griddata) and then summed to gain total vector.

6.3.2 Triplet ZIP, GDX, AA

The first triplet to be presented here is ZIP, GDX, AA triplet. As the current state of knowl-

edge says, GDX outperforms ZIP and AA outperforms GDX in two-strategy game. I have

shown in subsection 6.2 that the relationship is not that clear especially between AA and

GDX even for two-strategy games. This triplet analysis will bring some more information on

this topic.

In first picture of figure 6.1 (see data behind and more in table A.1), you can see the overview

of dominant strategy for each point representing share of strategies in population mix. Ob-

viously corner experiments belong to pure strategy residing in that corner since there is no

competition. The edges, and especially the inner part, are more interesting. We can see

that winning position belongs to GDX or AA all the time expect one two-strategy experiment

between ZIP and AA explained in 6.2.2 in more detail. The pattern is obvious. AA wins all

the experiments where other strategies build the market and there is only one AA buyer and

seller to reap above average profits for himself from others. Then it wins experiments only

against ZIP on the right edge and one experiment against GDX on the edge (2 AA vs. 4 GDX).

The rest of the games (where GDX is present) are ruled by GDX. The winner of balanced

game of 2-2-2 buyers and sellers is GDX as well, very narrowly though.

This is a quite interesting result since it shows that the share of strategy on the overall

population has a major impact on the result. Moreover, specifications of the experiment

have a large impact as well since these results do not fully correspond to the results obtained

by the previous research. The finding is not less relevant even with the inability of AA in OpEx

1.2 to open first trade (as explained in 6.2.2 subsection in more detail) since De Luca and

Cliff (2011b) use the same specification of agents and get AA dominance as a result of their

agent-to-agent experiments. Therefore the difference affecting the result is in experimental

setup such as the number of agents, limit orders of units to trade and their number as well.

All the rest of ternary graphs in figure 6.1 represent share of wins in each node by the

intensity of colour (ZIP = green, GDX = blue, AA = red). These three graphs show layers

of the first graph one by one since in the first graph you see only the highest value for each

node (therefore the winning strategy). We can see that ZIP has constant but poor perfor-

mance across all the mixed three-strategy games, GDX is doing particularly well everywhere

especially in experiments with larger share of AA in population and except of experiments

with one AA buyer and seller. AA performs badly in three-strategy experiments where it

has a large share in population, but well in one AA versus many others type of game. The

share of won rounds is steadily increasing with decreasing share in population. However, this

effect is mainly done by competition of GDX since it copies the development of two-strategy

experiments between GDX and AA. ZIP is the weakest one in this trio and does not affect
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competition between GDX and AA with its stable results much. GDX and AA fight for victory.

Figure 6.1: 3-Strategy Games Overview - ZIP, GDX, AA

All experiments are run 1000 times. Check tables in in Appendix A to see values.

The next figure shows dynamic analysis based on calculation described in chapter 5.

There are 2 mixed strategy Nash equilibria found in this scenario. First one is attracting

the whole inner part of triangle and is on GDX-AA edge without ZIP. The share of ZIP, GDX

and AA is [0, 61.4%, 38.6%]. That means that ZIP is inferior strategy and optimal shares

of strategies are found in this mixed strategy Nash equilibrium. The reason behind this

conclusion is that pure strategy equilibria and another equilibrium point have its basin of

attraction only on edges or even only in its point (that means that any point close to it

directs into different equilibrium point). This is case for ZIP and AA pure strategy. These

points do not attract any points except themselves. Pure GDX strategy attracts ZIP-GDX

edge mix of strategies. The reason is that since on the edge AA is not introduced, dynamics

can move only in two directions - pure ZIP or GDX. Last equilibrium point is mixed strategy

Nash equilibrium at ZIP-AA edge and attracting all the points on this edge. The share of ZIP,
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GDX, AA for this point is [70%, 0, 30%]. We can also see that the fastest change based on

colour is on the GDX-AA edge closer to AA pure strategy. This is because GDX outperformed

AA very strongly in these experiments.

Figure 6.2: Dynamic analysis for ZIP, GDX, AA

Dynamic analysis for three-strategy experiments with ZIP, GDX, AA.

6.3.3 Ternary ZIP, GDX, ZIPOJA

Next triplet to be put into more detail is ZIP, GDX, ZIPOJA, the first of triplets for intro-

ducing ZIPOJA among bidding strategies. In figure 6.3, you can see graphical interpretation

of share of won rounds in this set of experiments. After exploring results from two-strategy

experiments in section 6.2, one would guess that ZIPOJA will perform badly even in three-

strategy experiments. He would be right. ZIPOJA does not win any mixed strategy game. It

performs constantly badly but with large share in population it gets even worse. You can

see exact numbers for this set of experiments in table A.2. The other two strategies compete

more evenly but not evenly enough. GDX outperforms ZIP in all possible scenarios where it

is present but the difference is not that sharp.

Dynamic analysis constantly moving outward from ZIPOJA clearly shows that under this def-

inition of ZIPOJA, it is not a preferred strategy against ZIP or GDX. There is no mixed stragy

Nash equilibrium in this setup and logically there are 3 pure strategy equilibria. ZIPOJA pure

strategy equilibrium does not attract any followers except its initial state of pure strategy.

ZIP attracts ZIP-ZIPOJA edge since GDX is not introduced there and therefore cannot affect

the dynamics by definition. All the remaining points are attracted to pure strategy GDX

equilibrium. The more ZIPOJA in the population mix, the faster is the change.



Figure 6.3: 3-Strategy Games Overview - ZIP, GDX, ZIPOJA

All experiments are run 1000 times. Check tables in in Appendix A to see values.
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Figure 6.4: Dynamic analysis for ZIP, GDX, ZIPOJA

Dynamic analysis for three-strategy experiments with ZIP, GDX ,ZIPOJA.

6.3.4 Triplet ZIPOJA, GDX, AA

Next triplet to describe is ZIPOJA, GDX, AA. Results are visible in 6.5 and more detailed

numbers are in A.4. GDX and AA are the most successful strategies in results presented so

far. Therefore, ZIPOJA as a weak strategy shows strong underperformance in this scenario.

It did not manage to succeed notably in any three-strategy experiment. ZIPOJA performs

better in two-strategy games (see results in 6.2 section). Since ZIPOJA does not affect the

results much, the resulting pattern of dominant strategy is very similar to triplet ZIP, GDX,

AA. As presented in 6.3.2, AA wins in all settings where it is one AA buyer and seller against

many others, everywhere on ZIP-AA edge, and in one 2 AA vs. 4 GDX case as well. The rest

of setups is dominated by GDX. This (balanced 3-3 experiment), as mentioned in 6.3.2, is

in contrast to previous research results) and since De Luca and Cliff (2011b) use the same

agent specification, the reason for the difference in results has to be the experimental setup

such as the number of agents, limit prices of units traded and their amount. The difference is

dependent on strategy share on population as well, which was proven by results in previous

sections of this chapter. The dominance of AA over GDX is therefore not so clear as it is

presented in the literature. The contra-argument of different specification of AA in OpEx 1.2

(as elaborated more in subsection 6.2.2) might be of high importance but comparison with

De Luca and Cliff (2011b) results show that the question of whether setting of experiment

and the share of strategy in population of traders really matters as well.

Dynamic analysis of this set of experiments shows already known mixed strategy Nash equi-

librium at [61.4%, 38.6%] GDX and AA shares in trader population. It attracts all of the inner

part of triangle and all the points on GDX-AA edge. Pure strategy AA attracts ZIPOJA-AA

edge and pure strategy GDX attracts ZIPOJA-GDX edge. The only point not attracted to any

of these points is pure strategy ZIPOJA which stays in its own equilibrium. The movement is



Figure 6.5: 3-Strategy Games Overview - ZIPOJA, GDX, AA

All experiments are run 1000 times. Check tables in in Appendix A to see values.
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faster with a larger share of ZIPOJA population since traders have larger motivation to leave

the ZIPOJA and obtain above average profit with other strategies.

Figure 6.6: Dynamic analysis for ZIPOJA, GDX, AA

Dynamic analysis for three-strategy experiments with ZIPOJA, GDX, AA.

6.3.5 Triplet ZIP, ZIPOJA, AA

The last of triplets is ZIP, ZIPOJA, AA triplet. The effect of introducing ZIPOJA among ZIP

and AA is the same as among GDX and AA. ZIPOJA underperforms and ZIP and AA has quite

stable results with ZIP losing in all experiments but one which is elaborated on in subsection

6.2.2 since it falls into two-strategy game. We can see that AA clearly dominates ZIP and

ZIPOJA as well. ZIP dominates ZIPOJA as well.

Dynamic analysis tells the already known story. There is the same equilibrium point on

ZIP-AA edge at [70%, 30%] of ZIP, AA mix as was found in ZIP, GDX, AA triplet analysis.

The dynamics move out from ZIPOJA. All the inner points end up in the mentioned mixed

strategy Nash equilibrium point. Pure strategy AA attracts ZIPOJA-AA edge and pure strat-

egy ZIP attracts ZIPOJA-ZIP edge. ZIPOJA pure strategy is equilibrium point with no basin

of attraction.



Figure 6.7: 3-Strategy Games Overview - ZIP, ZIPOJA, AA

All experiments are run 1000 times. Check tables in in Appendix A to see values.
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Figure 6.8: Dynamic analysis for ZIP, ZIPOJA, AA

Dynamic analysis for three-strategy experiments with ZIP, ZIPOJA, AA.

6.4 Four trading strategies competing

To complete the overview of four strategies ZIP, GDX, AA, and ZIPOJA competing, four-

strategy balanced experiment will be run. As explained before, it is not possible to show

results of four-strategy experiments with changing share of strategies on population mix

graphically and therefore I will just stick to the balanced experiment with 1000 rounds as

well. We included 2 buyers and 2 sellers from all 4 strategies so 16 traders competed overall.

Table 6.7: Four-strategy experiment

ZIP GDX AA ZIPOJA Market
Won rounds 228 367 360 45 1000

Efficiency 99.55% 106.19% 105.20% 85.01% 98.99%
(s.s.d.) (11.40%) (11.31%) (11.21%) (11.99%) (1.12%)

Surplus 0.84 10.80 9.33 -20.97 0
Winner GDX

Results of 1000 rounds of balanced four-strategy experiment. Surplus is the average of all
round surpluses.

The results as seen in previous table confirm the underperformance of ZIPOJA followed by

not that low underperformance of ZIP. However, GDX and AA got almost tie with GDX only

slightly winning this experiment. This is in line with results obtained in previous sections.

GDX and AA are in many cases comparable in dominance and the winner depends on the
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experimental setup such as the number of agents, number of agents following one strategy,

limit price of units to be traded and their amount. As a result it can be said that there is no

clear order for GDX and AA, but generally GDX and AA outperforms ZIP almost all the time

and all three outperforms ZIPOJA all the time.



Chapter 7

Conclusion

In this thesis, I have covered previous research on automated bidding strategies ZIP, GDX

and AA. I have developed novel automated bidding strategy called ZIPOJA, based on ZIP

with an extension for Oja’s rule (Oja, 1982), which is believed to be a computational form

of the learning process in biological neurons and it is used in artificial neural networks. I

have run altogether 74 computationally intensive experiments in the trading simulator OpEx

1.2. Experiments varied share of strategies in population of traders but kept the symmetry

of game in the sense that one strategy had as many buyers as sellers no matter what the

share on population was. This approach provided me with a tool to compare already known

strategies ZIP, GDX, and AA from a different perspective, effectively adding a value to the

research community since the same approach was applied only to a different set of strategies

in Walsh et al. (2002), whose approach simplifies overly complex game with multiple agents

into analyzable game-theoretic matrix of payoffs. Thanks to this approach, I could introduce

ZIPOJA into the competition of ZIP, GDX, and AA automated bidding strategies.

The performed experiments could be divided into four categories by the number of strategies

included in the population of traders. There was a homogenous environment with all traders

having the same strategy, two-strategy games, three-strategy games and four-strategy games.

Two and three-strategy games were of the most added value since the share of strategies in

total population was varied, which gave us an interesting view on how results change based on

the share of strategies in the total population. Three-strategy games were of the most impor-

tance, since their properties allowed to show results on paper which would not be possible for

four-strategy games due to the limitation of two dimensions. This reason together with even

more extensive computational intensity led to focusing on three-strategy game rather than

four-strategy game which was performed only in the balanced setup to complete the overview.

The main findings of this work are that AA does not outperform other strategies (espe-

cially GDX) in all experimental setup, which is in contrast with results of previous literature.

GDX is the dominant strategy in many experimental setups. The newly introduced ZIPOJA

underperforms other strategies, including original ZIP. As a result of my experiments, I am

able to elaborate on my hypotheses:
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Hypothesis 1: AA bidding strategy does not outperform the other bidding strategies in

different experimental setups as significantly as in De Luca and Cliff (2011b).

As shown in comparison of AA against GDX in two-strategy games, the dominance of AA

changes significantly based on the experimental setup, such as limit prices for units to be

traded and the number of them, as well as on the number of agents included in the exper-

iment. In my balanced (3 buyers and 3 sellers from each strategy) experiments of GDX vs.

AA, GDX outperformed AA. This testifies about the importance of experimental setup since

De Luca and Cliff (2011b) use the same strategy specifications as I do, but AA outperforms

GDX in their experimental setup. Therefore, conclusion can be drawn that experimental

setup parameters such as the number of agents, limit prices of units to be traded and their

amount affects the outcome significantly.

Hypothesis 2: There is a difference in how bidding strategies perform based on the num-

ber of rival strategies included in experiment.

The experiments showed that the results vary between scenarios and that strategies in-

teract with each other. The answer based on these results would be that it matters more

which strategies are competing than how many of them are present. Nonetheless, this factor

has an effect as well.

Hypothesis 3: There is a difference in how trade strategies perform based on the number

of agents following each rule.

This is probably the most important hypothesis to be answered. The results are truly

different based on the share of strategy in the total population. Strategies AA and GDX were

competing for dominance most evenly. It was shown that AA dominates other strategies in

experiments in which AA has only one buyer and seller and the rest of the market (5 buyers

and 5 sellers) is ruled by different strategies, and in one case of two-strategy experiment of

GDX vs. AA where AA has two buyers and sellers. GDX dominates all the rest of experiments

in which it is present. Moreover, ZIP wins one two-strategy game between ZIP and AA but

loses all the others. Based on this evidence, conclusion can be drawn that it really signifi-

cantly matters what the share of strategy on the total population is.

Hypothesis 4: It is possible to rank these algorithmic strategies with sufficient signifi-

cance and this order is robust to changes in the experimental setup.
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The answer to this hypothesis remains still ambiguous to some extent. As mentioned

earlier, results depend significantly on the experimental setup. Therefore I can answer this

question only regarding experiments performed in this work. Moreover, there were some

mixed Nash equilibria found which suggest that the optimum might be to have a mixed

strategy. These equilibria can be a result of dynamic adaptation even from a different initial

stage as shown by the dynamic analysis.

In all my experiments, ZIPOJA was not a preferred strategy so it is ranked fourth amongst

bidding strategies. ZIP lost all the games against GDX and AA except one against AA. We

might therefore say that ZIP is ranked third. However, there is not a clear winner since

GDX and AA dominate others in different setups. The answer to this hypothesis is that it is

possible to rank these automated bidding strategies and the rank might be without changes

for some alterations in experimental setup but it is not robust to all setup alterations. Not

only the share in population affects the results, but the experimental setup affects the results

too, as explained in the answer to the second hypothesis.

It has to be mentioned that divergence of AA in OpEx 1.2 compared to theoretical AA was

found and it might affect the absolute results. Nonetheless, it does not affect the findings

about the importance of the experimental setup and a changed share of strategies on the

total population.

One direction of future work might lead to testing these strategies on a real-world data

which was originally intended to be done in this work but turned out to be over the scope

of this work. Another possible extension is to rethink the specification of ZIPOJA learning

rule or to optimize the parameters which might significantly improve the performance of this

strategy, but it was not included here to keep ZIPOJA comparable with the original ZIP as

defined in Cliff (1997). The last but definitely not the least relevant way to create a more

robust information set on this topic is to test the specification of agents in OpEx 1.2 as this

program provides one of a few publicly available versions of AA bidding strategy.
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Appendix A

Supplementary tables

You can see tables for three-strategy experiments in this appendix. Tables are too large but

beautiful. See next page.



Table A.1: Three-strategy experiments - ZIP vs. GDX vs.
AA

ZIP vs. GDX vs. AA 6:0:0 5:1:0 4:2:0 3:3:0 2:4:0 1:5:0 0:6:0
ZIP won rounds 1000 344 353 273 342 382 0
GDX won rounds 0 656 647 727 658 618 1000
AA won rounds 0 0 0 0 0 0 0
ZIP efficiency 99.32% 98.35% 97.85% 95.43% 95.18% 94.81% -

(s.s.d.) (0.68%) (2.74%) (4.39%) (6.98%) (10.44%) (18.56%) -

GDX efficiency - 105.32% 103.29% 104% 102.07% 100.63% 55.31%
(s.s.d.) - (13.15%) (8.61%) (6.94%) (5.28%) (3.94%) (32.6%)

AA efficiency - - - - - - -
(s.s.d.) - - - - - - -

Total efficiency 99.32% 99.51% 99.66% 99.72% 99.77% 99.66% 55.31%
(s.s.d.) (0.68%) (0.59%) (0.51%) (0.47%) (0.49%) (0.66%) (32.6%)

Winner ZIP GDX GDX GDX GDX GDX GDX

ZIP vs. GDX vs. AA 5:0:1 4:1:1 3:2:1 2:3:1 1:4:1 0:5:1 5:0:2
ZIP won rounds 406 130 123 148 205 0 421
GDX won rounds 0 375 398 322 314 176 0
AA won rounds 594 495 479 530 481 824 579
ZIP efficiency 98.12% 96.36% 94.89% 93.69% 93% - 97.28%

(s.s.d.) (3.34%) (4.96%) (6.57%) (9.06%) (14.79%) - (4.97%)

GDX efficiency - 103.81% 103.55% 101.65% 100.31% 94.7% -
(s.s.d.) - (12.28%) (8.94%) (6.37%) (4.9%) (9.6%) -

AA efficiency 103.18% 105.85% 104.93% 104.6% 103.01% 112.95% 100.17%
(s.s.d.) (19.08%) (18.77%) (16.7%) (16.14%) (16.26%) (17.26%) (12.89%)

Total efficiency 98.97% 99.18% 99.45% 99.49% 99.54% 97.74% 98.24%
(s.s.d.) (1.27%) (1.23%) (0.88%) (0.94%) (0.95%) (7.2%) (1.99%)

Winner AA AA AA AA AA AA AA

ZIP vs. GDX vs. AA 3:1:2 2:2:2 1:3:2 0:4:2 3:0:3 2:1:3 1:2:3
ZIP won rounds 156 144 176 0 369 191 172
GDX won rounds 457 437 450 366 0 534 541
AA won rounds 387 419 374 634 631 275 287
ZIP efficiency 95.57% 92.89% 90.28% - 95.02% 94.46% 90.47%

(s.s.d.) (6.39%) (9.18%) (13.77%) - (6.9%) (9.38%) (13.68%)

GDX efficiency 104.75% 103.21% 101.77% 97.92% - 104.87% 103.46%
(s.s.d.) (13.52%) (8.44%) (6.08%) (3.85%) - (12.06%) (7.86%)

AA efficiency 99.76% 100.25% 98.81% 101.15% 99.45% 96.47% 95.87%
(s.s.d.) (12.44%) (11.95%) (11.25%) (8.87%) (10.57%) (10.51%) (9.79%)

Total efficiency 98.5% 98.78% 98.87% 99% 97.24% 97.2% 97.5%
(s.s.d.) (1.98%) (1.78%) (1.69%) (1.57%) (3.04%) (3.06%) (2.76%)

Winner GDX GDX GDX AA AA GDX GDX

ZIP vs. GDX vs. AA 0:3:3 2:0:4 1:1:4 0:2:4 1:0:5 0:1:5 0:0:6*
ZIP won rounds 0 395 216 0 589 0 0
GDX won rounds 696 0 620 913 0 976 0
AA won rounds 304 605 164 87 411 24 1000
ZIP efficiency - 95.02% 95.34% - 99.5% 0% -

(s.s.d.) - (10.1%) (14.71%) - (17.84%) - -

GDX efficiency 100.48% - 107.06% 104.18% - 114.29% -
(s.s.d.) (3.72%) - (11.42%) (5.19%) - (8.83%) -

AA efficiency 94.26% 96.75% 91.19% 87.93% 88.47% 77.38% -
(s.s.d.) (7.78%) (9.78%) (11.17%) (8.56%) (13.34%) (10.76%) -

Total efficiency 97.37% 96.17% 94.53% 93.35% 90.31% 83.53% -
(s.s.d.) (2.56%) (4.3%) (5.26%) (4.54%) (9.04%) (7.93%) -

Winner GDX AA GDX GDX ZIP GDX AA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy. *This experiment was not run - see subsection 6.2.1 for
explanation



Table A.2: Three-strategy experiments - ZIP vs. GDX vs.
ZIPOJA

ZIP vs. GDX vs. ZIPOJA 6:0:0 5:1:0 4:2:0 3:3:0 2:4:0 1:5:0 0:6:0
ZIP won rounds 1000 344 353 273 342 382 0
GDX won rounds 0 656 647 727 658 618 1000
ZIPOJA won rounds 0 0 0 0 0 0 0
ZIP efficiency 99.32% 98.35% 97.85% 95.43% 95.18% 94.81% -

(s.s.d.) (0.68%) (2.74%) (4.39%) (6.98%) (10.44%) (18.56%) -

GDX efficiency - 105.32% 103.29% 104% 102.07% 100.63% 55.31%
(s.s.d.) - (13.15%) (8.61%) (6.94%) (5.28%) (3.94%) (32.6%)

ZIPOJA efficiency - - - - - - -
(s.s.d.) - - - - - - -

Total efficiency 99.32% 99.51% 99.66% 99.72% 99.77% 99.66% 55.31%
(s.s.d.) (0.68%) (0.59%) (0.51%) (0.47%) (0.49%) (0.66%) (32.6%)

Winner ZIP GDX GDX GDX GDX GDX GDX

ZIP vs. GDX vs. ZIPOJA 5:0:1 4:1:1 3:2:1 2:3:1 1:4:1 0:5:1 5:0:2
ZIP won rounds 727 265 268 248 350 0 799
GDX won rounds 0 556 560 577 498 705 0
ZIPOJA won rounds 273 179 172 175 152 295 201
ZIP efficiency 101.28% 99.93% 98.93% 96.56% 96.91% - 103.92%

(s.s.d.) (4.01%) (5.04%) (7.89%) (10.99%) (17.32%) - (5.73%)

GDX efficiency - 107.64% 107.01% 105.97% 104.21% 101.67% -
(s.s.d.) - (13.87%) (10.63%) (7.39%) (5.21%) (3.89%) -

ZIPOJA efficiency 88.17% 89.05% 86.81% 87.28% 84.77% 90.11% 89.09%
(s.s.d.) (19.91%) (18.31%) (18.86%) (18.28%) (18.5%) (19.18%) (11.95%)

Total efficiency 99.1% 99.4% 99.6% 99.72% 99.75% 99.74% 98.98%
(s.s.d.) (0.89%) (0.69%) (0.61%) (0.46%) (0.45%) (0.49%) (0.98%)

Winner ZIP GDX GDX GDX GDX GDX ZIP

ZIP vs. GDX vs. ZIPOJA 3:1:2 2:2:2 1:3:2 0:4:2 3:0:3 2:1:3 1:2:3
ZIP won rounds 318 320 320 0 774 387 365
GDX won rounds 553 586 541 834 0 522 546
ZIPOJA won rounds 129 94 139 166 226 91 89
ZIP efficiency 101.74% 101.69% 98.95% - 105.78% 105.88% 103.62%

(s.s.d.) (7.58%) (10.52%) (17.47%) - (8.87%) (12.05%) (18.84%)

GDX efficiency 108.65% 108.16% 107.1% 105.29% - 111.25% 110.36%
(s.s.d.) (15.23%) (10.04%) (7.82%) (5.96%) - (16.73%) (11.32%)

ZIPOJA efficiency 90.86% 88.72% 88.86% 88.66% 91.84% 90.85% 90.79%
(s.s.d.) (11.89%) (11.95%) (12.57%) (11.95%) (9.14%) (9.37%) (9.12%)

Total efficiency 99.27% 99.52% 99.66% 99.74% 98.81% 99.26% 99.45%
(s.s.d.) (0.79%) (0.63%) (0.54%) (0.47%) (1.05%) (0.78%) (0.64%)

Winner GDX GDX GDX GDX ZIP GDX GDX

ZIP vs. GDX vs. ZIPOJA 0:3:3 2:0:4 1:1:4 0:2:4 1:0:5 0:1:5 0:0:6
ZIP won rounds 0 805 371 0 720 0 0
GDX won rounds 864 0 540 847 0 818 0
ZIPOJA won rounds 136 195 89 153 280 182 1000
ZIP efficiency - 109.97% 106.57% - 110.47% - -

(s.s.d.) - (12.9%) (19.75%) - (20.3%) - -

GDX efficiency 109.16% - 114.14% 111.75% - 114.78% -
(s.s.d.) (9.14%) - (18.72%) (12.26%) - (18.59%) -

ZIPOJA efficiency 90.04% 92.89% 93.52% 93.29% 96.18% 95.98% 98.42%
(s.s.d.) (9.29%) (6.63%) (6.55%) (6.18%) (4.36%) (3.89%) (1.26%)

Total efficiency 99.6% 98.58% 99.13% 99.44% 98.56% 99.12% 98.42%
(s.s.d.) (0.62%) (1.18%) (0.86%) (0.67%) (1.19%) (0.87%) (1.26%)

Winner GDX ZIP GDX GDX ZIP GDX ZIPOJA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy.



Table A.3: Three-strategy experiments - ZIP vs. ZIPOJA vs.
AA

ZIP vs. ZIPOJA vs. AA 6:0:0 5:1:0 4:2:0 3:3:0 2:4:0 1:5:0 0:6:0
ZIP won rounds 1000 727 799 774 805 720 0
ZIPOJA won rounds 0 273 201 226 195 280 1000
AA won rounds 0 0 0 0 0 0 0
ZIP efficiency 99.32% 101.28% 103.92% 105.78% 109.97% 110.47% -

(s.s.d.) (0.68%) (4.01%) (5.73%) (8.87%) (12.9%) (20.3%) -

ZIPOJA efficiency - 88.17% 89.09% 91.84% 92.89% 96.18% 98.42%
(s.s.d.) - (19.91%) (11.95%) (9.14%) (6.63%) (4.36%) (1.26%)

AA efficiency - - - - - - -
(s.s.d.) - - - - - - -

Total efficiency 99.32% 99.1% 98.98% 98.81% 98.58% 98.56% 98.42%
(s.s.d.) (0.68%) (0.89%) (0.98%) (1.05%) (1.18%) (1.19%) (1.26%)

Winner ZIP ZIP ZIP ZIP ZIP ZIP ZIPOJA

ZIP vs. ZIPOJA vs. AA 5:0:1 4:1:1 3:2:1 2:3:1 1:4:1 0:5:1 5:0:2
ZIP won rounds 406 294 303 317 307 0 421
ZIPOJA won rounds 0 134 98 64 58 105 0
AA won rounds 594 572 599 619 635 895 579
ZIP efficiency 98.12% 99.57% 102.02% 104.58% 105.12% - 97.28%

(s.s.d.) (3.34%) (5.71%) (8.27%) (12.34%) (19.39%) - (4.97%)

ZIPOJA efficiency - 86.63% 87.43% 89.42% 91.94% 93.81% -
(s.s.d.) - (18.86%) (12.78%) (9.49%) (6.59%) (4.22%) -

AA efficiency 103.18% 108.12% 111.43% 114.82% 118.86% 123.03% 100.17%
(s.s.d.) (19.08%) (18.84%) (18.95%) (20.44%) (19.83%) (21.1%) (12.89%)

Total efficiency 98.97% 98.84% 98.73% 98.71% 98.62% 98.68% 98.24%
(s.s.d.) (1.27%) (1.27%) (1.23%) (1.32%) (1.29%) (1.21%) (1.99%)

Winner AA AA AA AA AA AA AA

ZIP vs. ZIPOJA vs. AA 3:1:2 2:2:2 1:3:2 0:4:2 3:0:3 2:1:3 1:2:3
ZIP won rounds 296 282 385 0 369 330 326
ZIPOJA won rounds 155 86 65 70 0 173 98
AA won rounds 549 632 550 930 631 497 576
ZIP efficiency 98.28% 99.61% 104.24% - 95.02% 97.61% 98.08%

(s.s.d.) (8.17%) (10.29%) (19.21%) - (6.9%) (11%) (17.49%)

ZIPOJA efficiency 84.93% 87.7% 89.13% 89.55% - 86.88% 86.34%
(s.s.d.) (18.88%) (11.64%) (8.62%) (6.45%) - (16.72%) (11.37%)

AA efficiency 105.25% 107.97% 109.07% 116.02% 99.45% 101.39% 105.84%
(s.s.d.) (12.48%) (11.44%) (12.02%) (12.94%) (10.57%) (9.68%) (8.43%)

Total efficiency 98.38% 98.43% 98.3% 98.37% 97.24% 97.71% 98.05%
(s.s.d.) (1.83%) (1.79%) (1.7%) (1.66%) (3.04%) (2.45%) (2.08%)

Winner AA AA AA AA AA AA AA

ZIP vs. ZIPOJA vs. AA 0:3:3 2:0:4 1:1:4 0:2:4 1:0:5 0:1:5 0:0:6*
ZIP won rounds 0 395 383 0 589 0 0
ZIPOJA won rounds 79 0 214 129 0 418 0
AA won rounds 921 605 403 871 411 582 1000
ZIP efficiency - 95.02% 98.16% - 99.5% - -

(s.s.d.) - (10.1%) (18.11%) - (17.84%) - -

ZIPOJA efficiency 86.9% - 89.05% 85.12% - 92.26% -
(s.s.d.) (7.97%) - (17.25%) (10.68%) - (17.91%) -

AA efficiency 109.28% 96.75% 97.86% 103.45% 88.47% 93.24% -
(s.s.d.) (8.85%) (9.78%) (8.8%) (7.21%) (13.34%) (11%) -

Total efficiency 98.09% 96.17% 96.44% 97.34% 90.31% 93.07% -
(s.s.d.) (2.1%) (4.3%) (3.88%) (3.12%) (9.04%) (7.26%) -

Winner AA AA AA AA ZIP AA AA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy. *This experiment was not run - see subsection 6.2.1 for
explanation



Table A.4: Three-strategy experiments - ZIPOJA vs. GDX
vs. AA

ZIPOJA vs. GDX vs. AA 6:0:0 5:1:0 4:2:0 3:3:0 2:4:0 1:5:0 0:6:0
ZIPOJA won rounds 1000 182 153 136 166 295 0
GDX won rounds 0 818 847 864 834 705 1000
AA won rounds 0 0 0 0 0 0 0
ZIPOJA efficiency 98.42% 95.98% 93.29% 90.04% 88.66% 90.11% -

(s.s.d.) (1.26%) (3.89%) (6.18%) (9.29%) (11.95%) (19.18%) -

GDX efficiency - 114.78% 111.75% 109.16% 105.29% 101.67% 55.31%
(s.s.d.) - (18.59%) (12.26%) (9.14%) (5.96%) (3.89%) (32.6%)

AA efficiency - - - - - - -
(s.s.d.) - - - - - - -

Total efficiency 98.42% 99.12% 99.44% 99.6% 99.74% 99.74% 55.31%
(s.s.d.) (1.26%) (0.87%) (0.67%) (0.62%) (0.47%) (0.49%) (32.6%)

Winner ZIPOJA GDX GDX GDX GDX GDX GDX

ZIPOJA vs. GDX vs. AA 5:0:1 4:1:1 3:2:1 2:3:1 1:4:1 0:5:1 5:0:2
ZIPOJA won rounds 105 40 24 51 106 0 70
GDX won rounds 0 414 473 450 398 176 0
AA won rounds 895 546 503 499 496 824 930
ZIPOJA efficiency 93.81% 90.79% 86.25% 85.7% 84.81% - 89.55%

(s.s.d.) (4.22%) (6.34%) (8.64%) (11.38%) (16.31%) - (6.45%)

GDX efficiency 0% 113.58% 111.76% 106.16% 102.2% 94.7% -
(s.s.d.) - (18.61%) (12.9%) (8.03%) (5.09%) (9.6%) -

AA efficiency 123.03% 117.41% 113.43% 106.96% 104.01% 112.95% 116.02%
(s.s.d.) (21.1%) (20.3%) (19.87%) (17.6%) (16.33%) (17.26%) (12.94%)

Total efficiency 98.68% 99.02% 99.28% 99.47% 99.6% 97.74% 98.37%
(s.s.d.) (1.21%) (1.19%) (0.97%) (0.89%) (0.79%) (7.2%) (1.66%)

Winner AA AA AA AA AA AA AA

ZIPOJA vs. GDX vs. AA 3:1:2 2:2:2 1:3:2 0:4:2 3:0:3 2:1:3 1:2:3
ZIPOJA won rounds 45 52 62 0 79 28 78
GDX won rounds 539 496 513 366 0 617 611
AA won rounds 416 452 425 634 921 355 311
ZIPOJA efficiency 88.24% 85.55% 82.03% - 86.9% 85.53% 82.45%

(s.s.d.) (8.69%) (10.07%) (14.72%) - (7.97%) (10.55%) (15.17%)

GDX efficiency 112.17% 107.1% 103.52% 97.92% - 110.09% 105.96%
(s.s.d.) (16.74%) (10.84%) (6.75%) (3.85%) - (15.77%) (9.81%)

AA efficiency 107.64% 104.67% 101% 101.15% 109.28% 102.58% 98.38%
(s.s.d.) (12.91%) (10.81%) (10.81%) (8.87%) (8.85%) (8.9%) (8.09%)

Total efficiency 98.7% 99.11% 99.09% 99% 98.09% 98.14% 98.25%
(s.s.d.) (1.59%) (1.35%) (1.54%) (1.57%) (2.1%) (2.18%) (2.05%)

Winner GDX GDX GDX AA AA GDX GDX

ZIPOJA vs. GDX vs. AA 0:3:3 2:0:4 1:1:4 0:2:4 1:0:5 0:1:5 0:0:6
ZIPOJA won rounds 0 129 114 0 418 0 0
GDX won rounds 696 0 687 913 0 976 0
AA won rounds 304 871 199 87 582 24 1000
ZIPOJA efficiency - 85.12% 88.31% - 92.26% - -

(s.s.d.) - (10.68%) (15.11%) - (17.91%) - -

GDX efficiency 100.48% - 109.33% 104.18% - 114.29% -
(s.s.d.) (3.72%) - (14.08%) (5.19%) - (8.83%) -

AA efficiency 94.26% 103.45% 94.54% 87.93% 93.24% 77.38% -
(s.s.d.) (7.78%) (7.21%) (9.28%) (8.56%) (11%) (10.76%) -

Total efficiency 97.37% 97.34% 95.97% 93.35% 93.07% 83.53% -
(s.s.d.) (2.56%) (3.12%) (4.21%) (4.54%) (7.26%) (7.93%) -

Winner GDX AA GDX GDX AA GDX AA

Results of 1000 rounds for each experiment. First row shows how many buyers and sellers
following one strategy compete against traders following the other strategy (e.g. 2:4 means
2 buyers and 2 sellers following the first strategy compete against 4 buyers and 4 sellers
following the second strategy. *This experiment was not run - see subsection 6.2.1 for
explanation
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