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Study programme: Mathematics (N1101)
Branch of study: MA (1101T014)

Prague 2015



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb.., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In ......... date ............ signature



My sincere thanks and appreciation belong to the supervisor of this diploma
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Autor: Erika Maringová
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Introduction

Finding the surface of least area among those bounded by a given curve is
a fundamental problem in the calculus of variations. It is sometimes known as
Plateau’s problem, after the blind physicist who did beautiful experiments with
soap films and bubbles. Since the 18th century, many mathematicians had put
efforts into solving it as it revived several times until they found a satisfactory
solution only in recent decades. More details can be found in Giusti (1984).

The case of primary interest is when the surface is considered to be the graph
of a function u(x) defined on some open set Ω ⊂ Rn. Then the surface lies in the
cylinder Q = Ω×R ⊂ Rn+1 and has dimension n. If u is a smooth function, the
area of its graph is given by

A(u) =

∫
Ω

√
1 + |∇u|2 dx,

where ∇u denotes gradient of u. Therefore u minimizes the area if and only if it
is a solution to the minimal surface equation

−div
∇u√

1 + |∇u|2
= 0 in Ω.

A natural question is whether a solution to the Dirichlet problem exists - a
solution to the minimal surface equation taking prescribed values on the boundary
of Ω. In fact, this problem is not generally solvable. When n = 2, a solution exists
for arbitrary data if Ω is convex, but may fail to exist without the convexity of the
domain, even if the boundary data ϕ is smooth and has arbitrarily small absolute
value. However, if we do not characterize the class of functions competing to
minimize the area A(u) by the boundary condition u = ϕ but rather we introduce
it in the functional, we look for a minimum of

I(u) =

∫
Ω

√
1 + |∇u|2 dx+

∫
∂Ω

|u− ϕ| dHn−1,

where Hn−1 stands for the (n−1)-dimensional Hausdorff measure. That is defined
to be the infimum over all countable covers by sets Ui ⊂ Rn satisfying diamUi < δ,
where δ > 0 is a real number. In the Chapter 3 we show that the solution to the
Dirichlet problem also minimizes I, and, on the other hand, the new functional
always reaches its minimum in the class BV (Ω) - of functions of bounded variation
in Ω (we say more about BV spaces in the next chapter). As stated in Miranda
(1964), u minimizes the area A(u) in Ω if and only if its subgraph

U = {(x, t) ∈ Q; t < u(x)}
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is a set of least perimeter in Q.
Although the minimal surface problem is one of the most important problems

in the calculus of variations, it falls into a much broader class of minimization
problems having the linear growth in the unknown (or more generally in the
gradient of the unknown). For such a class a typical framework to deal with is
not the standard Sobolev space setting but rather the setting of BV functions. On
the other hand, a natural question arises immediately - whether such a change of
the topology is really necessary or, at least in some particular cases, one is allowed
to stay in the framework of Sobolev spaces. For general functionals the answer to
this question is not affirmative. However, in the thesis we shall show that under
some structural assumptions on the minimizing function, we are able to build a
theory that is qualitatively equal to that of the minimal surface problem. To be
more specific, we shall consider the following modification of the minimal surface
problem

− div
∇u

(1 + |∇u|a)
1
a

= 0 in Ω, (1)

where the exponent two was replaced by a general positive a. This problem is
interesting not only from the mathematical analysis’ point of view, but also plays
an important role in certain parts of the continuum mechanics – the limiting
strain problems. For more details concerning the physical aspects we refer to
Buĺıček et al. (2014); Buĺıček et al. (2015). As for the analytical results, the very
similar problem was already treated in Bildhauer and Fuchs (1999) and Bildhauer
and Fuchs (2002) and our work only completes the available existence theory and
shows that in many cases, the results obtained here are optimal.

To complete this introductory part, we will briefly describe the main results
of the thesis. First, we shall discuss various notions of solution to (1) and rela-
tionships between them. Second, for the weakest notion of solution (the one in
the BV spaces framework) we shall establish a robust existence theory for any
parameter a ∈ (0,∞). Third, for a ∈ (0, 2], we shall strengthen the result and
show that one can obtain a theory that is qualitatively same as the one of the
minimal surface equations, i.e., one does not need to work in the setting of BV
functions once allowing non-attainment of the prescribed boundary value. This
extends the results of Bildhauer and Fuchs (1999, 2002) as the authors consider
bounded and smooth boundary data and we require them to be only W 1,1(Ω).

Finally, in the last chapter we provide a counterexample in the case a ∈ (1, 2]
that shows the optimality of the obtained results, i.e., that the standard weak
solution may not exist in general and one is forced to relax the condition on
attainment of the boundary value condition.
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Chapter 1

Function spaces

In the theory of partial differential equations it is very important to choose the
right function space in which one works. Unfortunately, in the problem we shall
study, the non-existence of a classical solution is a typical phenomenon and thus
the notion of classical solution needs to be relaxed. We will work with the Sobolev
spaces which contain functions with not only classical, but also so called weak
derivatives. Moreover, the standard notion of a weak solution will be insufficient
and therefore we will be led to BV spaces.

In this chapter we recall several basic facts about Lebesgue, Sobolev and BV
spaces. All these results are in detail described in Evans (2010), Lukeš and Malý
(2005), Kufner et al. (1977), Giusti (1984).

The very crucial concepts we use are the Lebesgue integral and spaces of
Lebesgue measurable functions on Ω ⊂ Rd, where d ≥ 2, d ∈ N is the dimension.

Definition 1.1. Let Ω ⊂ Rd and p ∈ [1,∞]. We define the Lebesgue space

Lp(Ω) =
{
f : Ω→ R; f is Lebesgue measurable, ‖f‖Lp(Ω) <∞

}
,

where

‖f‖Lp(Ω) :=

(∫
Ω

|f |p dx

) 1
p

if p ∈ [1,∞),

‖f‖Lp(Ω) := ess sup
Ω
|f | if p =∞.

Remark 1. Lp(Ω) is a Banach space, provided we identify two functions which
agree almost everywhere.

1.1 Weak derivatives

For relaxing the notion of partial derivative we will use the function ϕ that
we call a test function. For a given open Ω ⊂ Rd this function belongs to the
space of infinitely differentiable functions ϕ : Ω → R with compact support in
Ω, denoted by D(Ω). These properties are exactly what we need - we will use
the integration by parts, so we need derivatives of ϕ for yet defining the notion
of weak derivative of our function, and thanks to the compact support of ϕ the
boundary terms will formally vanish. Moreover, we will work with the multiindex
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α = (α1, ..., αd) with its order defined as |α| = α1 + ...+αd, where αi ∈ N0 for all
i = 1, ..., d. With the help of this notation we will use the following abbreviation

Dαϕ =
∂α1

∂xα1
1

· · · ∂
αd

∂xαdd
ϕ.

This topic requires a small introduction. Assume we are given a function
u ∈ C1(Ω). Then, if ϕ ∈ D(Ω), from the integration by parts formula we can see∫

Ω

uϕxi dx = −
∫

Ω

uxiϕ dx, (1.1)

for i = 1, . . . , d and ϕxi denotes the partial derivative of ϕ according to variable
xi,

ϕxi(x) = lim
h→0

ϕ(x+ hei)− ϕ(x)

h
,

while ei = (0, . . . , 0, 1, 0, . . . , 0) has the only non-zero value on the i-th place.
More generally, if k is a positive integer, u ∈ Ck(Ω) and α is a multiindex of

order |α| = k, then ∫
Ω

uDαϕdx = (−1)|α|
∫

Ω

Dαuϕ dx, (1.2)

where we apply formula (1.1) k-times.
We ask whether some variant of (1.2) might still be true even if u is not k

times continuously differentiable and so the expression Dαu has not the classical
meaning. We resolve this by asking if there exists a locally integrable function v
for which formula (1.2) is valid, with v replacing Dαu.

Definition 1.2. Suppose u, v ∈ L1
loc(Ω), and α is a multiindex. We say that v is

the αth-weak partial derivative of u, written

Dαu = v,

provided ∫
Ω

uDαϕ dx = (−1)|α|
∫

Ω

vϕ dx (1.3)

for all test functions ϕ ∈ D(Ω).

In other words, if we are given u and if there happens to exist a function v
which verifies (1.3) for all ϕ, we say that Dαu = v in the weak sense. If such
a function v does not exist, then u does not possess a locally integrable weak
αth-partial derivative.

Lemma 1.1 (Uniqueness of weak derivatives). A weak αth-partial derivative of u,
if it exists, is uniquely defined up to a set of zero measure.

Proof. Assume that v, ṽ ∈ L1
loc(Ω) satisfy∫

Ω

uDαϕ dx = (−1)|α|
∫

Ω

vϕ dx = (−1)|α|
∫

Ω

ṽϕ dx

for all ϕ ∈ D(Ω). Then ∫
Ω

(v − ṽ)ϕ dx = 0

for all ϕ ∈ D(Ω); whence v − ṽ = 0 almost everywhere.
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1.2 Sobolev spaces

Definition of Sobolev spaces

Fix p ∈ [1,∞] and let k be a non-negative integer. We define certain function
spaces, whose members have weak derivatives of various orders lying in various
Lp spaces.

Definition 1.3. The Sobolev space W k,p(Ω) consists of all functions u : Ω→ R,
u ∈ Lp(Ω) such that for each multiindex α with |α| ≤ k, Dαu exists in the weak
sense and belongs to Lp(Ω).

Remark 2. Similarly as in Lebesgue spaces, we identify functions in W k,p(Ω)
which agree almost everywhere.

Definition 1.4. If u ∈ W k,p(Ω), we define its norm to be

‖u‖Wk,p(Ω) = ‖u‖k,p :=

∑
|α|≤k

∫
Ω

|Dαu|p dx

1/p

if p ∈ [1,∞),

‖u‖k,p :=
∑
|α|≤k

ess sup
Ω
|Dαu| if p =∞.

Definition 1.5. (i) Let {um}∞m=1, u ∈ W k,p(Ω). We say um converges to u in
W k,p(Ω), written um → u in W k,p(Ω), provided

lim
m→∞

‖um − u‖Wk,p(Ω) = 0.

(ii) We also write um → u in W k,p
loc (Ω), which means um → u in W k,p(V ) for

each V ⊂⊂ Ω.

Definition 1.6. We denote by W k,p
0 (Ω) the closure of D(Ω) in W k,p(Ω) for p ∈

[1,∞).

Thus u ∈ W k,p
0 (Ω) if and only if there exist functions um ∈ D(Ω) such that

um → u in W k,p(Ω). We interpret W k,p
0 (Ω) as comprising those functions u ∈

W k,p(Ω) such that

”Dαu = 0 on ∂Ω” for all |α| ≤ k − 1.

Properties of Sobolev spaces

At this point we shall recall some important properties of Sobolev spaces,
which are proven in the basic course on theory on partial differential equations.
We will introduce these spaces as function spaces and state theorems that allow
us to approximate them even up to the boundary by smooth functions. We will
define operators to get extension to all Rn and trace on ∂Ω. Finally, we shall come
with equivalent characterization of Sobolev functions with the help of differential
quotients.
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Sobolev spaces as function spaces and approximation the-
orems

Theorem 1.1. Let Ω ⊂ Rd be open and k be a non-negative integer. Then the
following statements hold

(i) W k,p(Ω) is the Banach space for p ∈ [1,∞],
(ii) W k,p(Ω) is separable space if and only if p ∈ [1,∞),

(iii) W k,p(Ω) is reflexive space if and only if p ∈ (1,∞).

The space W 1,1(Ω) we will work with is therefore a non-reflexive separable
Banach space.

Definition 1.7 (Domain of the class Ck,λ). Let k ∈ N0 and λ ∈ [0, 1). We say
that a set Ω ⊂ Rd is of the class Ck,λ if and only if the following holds: There
exists α, β > 0, N orthogonal systems and ai ∈ Ck,λ([−α, α]d−1) for i = 1, . . . , N
such that after a possible change of coordinates and defining x′ := (x1, . . . , xd−1)
we have
• for all i = 1, . . . , N

Ωi
+ := {x ∈ Rd; x′ ∈ (−α, α)d−1 and xd − β < ai(x

′) < xd} ⊂ Ω, (1.4)

Ωi
− := {x ∈ Rd; x′ ∈ (−α, α)d−1 and xd < ai(x

′) < xd + β} ⊂ R \ Ω,
(1.5)

∂Ωi := {x ∈ Rd; x′ ∈ (−α, α)d−1 and ai(x
′) = xd} ⊂ ∂Ω, (1.6)

• for Ωi given as
Ωi := Ωi

+ ∪ Ωi
− ∪ ∂Ωi

there holds

∂Ω ⊂
N⋃
i=1

Ωi.

According to the definition above, we call Ω Lipschitz if Ω ∈ C0,1.

Theorem 1.2 (Global approximation by smooth functions up to the boundary).
Let p ∈ [1,∞) and Ω be Lipschitz. Then for all u ∈ W 1,p(Ω) there exists um ∈
C∞(Ω̄) such that um → u in W 1,p(Ω).

Definition 1.8 (Continuous and compact embedding). Let X, Y be normed
vector spaces. We say that X is continuously embedded in Y , denote X ↪→ Y , if
X ⊂ Y and there exists a constant c ≥ 0 such that

‖x‖Y ≤ c‖x‖X

for all x ∈ X. We say that X is compactly embedded in Y , denote X ↪→↪→ Y ,
if X ↪→ Y and every sequence that is bounded in X has a subsequence that
converges strongly in Y .

Theorem 1.3 (Embedding Theorem). Let Ω be Lipschitz, p ∈ [1,∞), p# := dp
d−p

and α := 1− d
p
. Then

• for p ∈ [1, d): W 1,p(Ω) ↪→ Lp
#

(Ω),
• for p = d: W 1,p(Ω) ↪→ Lq(Ω) for all q ∈ [1,∞),
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• for p ∈ (d,∞): W 1,p(Ω) ↪→ C0,α(Ω).
Moreover,
• for p ∈ [1, d): W 1,p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1, p#),
• for p = d: W 1,p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1,∞),
• for p ∈ (d,∞): W 1,p(Ω) ↪→↪→ C0,β(Ω) for all β ∈ [0, α).

We are able to extend functions in the Sobolev space W 1,p(Ω) to become
functions in the Sobolev space W 1,p(Rn). We call Eu the extension of u to Rn.

Theorem 1.4 (Extension Theorem). Consider p ∈ [1,∞] and Ω Lipschitz. Select
a bounded open set V such that Ω ⊂⊂ V . Then there exists a bounded linear
operator E : W 1,p(Ω)→ W 1,p(Rn) such that for each u ∈ W 1,p(Ω)

(i) Eu = u almost everywhere in Ω,
(ii) Eu has support within V ,

(iii) ‖Eu‖W 1,p(Rn) ≤ c‖u‖W 1,p(Ω), the constant c depending only on p, Ω and V .

Next we discuss the possibility of assigning ”boundary values” along ∂Ω to a
function u ∈ W 1,p(Ω), assuming that ∂Ω is C0,1. Now if u ∈ C(Ω), then clearly u
has values on ∂Ω in the common sense. The problem is that a typical function
u ∈ W 1,p(Ω) is not in general continuous and, even worse, is only defined almost
everywhere in Ω. Since ∂Ω has d-dimensional Lebesgue measure zero, there is no
direct meaning we can give to the expression ”u restricted to ∂Ω”. The following
operator resolves this problem, we call tru the trace of u on ∂Ω.

Theorem 1.5 (Trace Theorem). Consider p ∈ [1,∞] and Ω Lipschitz. Then
there exists a bounded linear operator tr : W 1,p(Ω)→ Lp(∂Ω) such that

(i) tru = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω̄),
(ii) ‖tru‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω), for each u ∈ W 1,p(Ω), with the constant C

depending only on p and Ω.

For simplicity, in what follows we do not write tru but only u whenever u is
a Sobolev function and we consider its restriction to the boundary.

Difference quotient approximations to weak derivatives

We will need to establish the higher regularity of solution which is not known
a priori and therefore we will now describe the equivalent characterization of
Sobolev function via difference quotients.

Definition 1.9. Assume u : Ω→ R is a locally integrable function and V ⊂⊂ Ω.
(i) The ith difference quotient of size h is

Dh
i u(x) =

u(x+ hei)− u(x)

h

for i = 1, . . . , d, x ∈ V and h ∈ R, 0 < |h| < dist(V, ∂Ω).
(ii) Dhu := (Dh

1u, . . . , D
h
du).

Theorem 1.6 (Difference quotients and weak derivatives). (i) Let p ∈ [1,∞)
and u ∈ W 1,p(Ω). Then for each V ⊂⊂ Ω

‖Dhu‖Lp(V ) ≤ c‖Du‖Lp(Ω)

for some constant c and 0 < |h| < dist(V, ∂Ω).
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(ii) Assume p ∈ (1,∞), u ∈ Lp(V ), and there exists a constant c such that

‖Dhu‖Lp(V ) ≤ c

for all 0 < |h| < 1

2
dist(V, ∂Ω). Then u ∈ W 1,p(V ) with ‖Du‖Lp(V ) ≤ c.

1.3 Functions of bounded variation

Functions of bounded variation on Ω, denoted by BV (Ω), have similar proper-
ties to those from the Sobolev space W 1,1(Ω), as we will see in following chapters.
For more details concerning BV spaces we refer to Giusti (1984).

Definition 1.10. Let Ω ⊂ Rd be an open set and let f ∈ L1(Ω). Define∫
Ω

|∇f | := sup

{∫
Ω

fdivg dx; g ∈ C0,1(Ω,Rd) and |g(x)| ≤ 1 for x ∈ Ω

}
,

where divg =
∑d

i=1

∂gi
∂xi

is divergence of g.

If f ∈ C1(Ω), then integration by parts gives∫
Ω

fdivg dx = −
∫

Ω

d∑
i=1

∂f

∂xi
gi dx

for g ∈ C0,1(Ω,Rd) and therefore∫
Ω

|∇f | =
∫

Ω

|Df | dx,

where Df =
(
∂f
∂x1
, ∂f
∂x2
, · · · , ∂f

∂xd

)
; for f ∈ W 1,1(Ω) Sobolev space Df consists of

weak derivatives of f .

Definition 1.11. A function f ∈ L1(Ω) is said to have bounded variation in Ω
if
∫

Ω
|∇f | < ∞. We define BV (Ω) as the space of all functions in L1(Ω) with

bounded variation.

If f ∈ BV (Ω) and ∇f is the gradient of f in the sense of distributions, then
∇f is a vector valued Radon measure and

∫
Ω
|∇f | is the total variation of ∇f on

Ω. Moreover, according to the Lebesgue decomposition theorem, we can express
∇f as the sum of its regular and singular part, i.e., ∇f = (∇f)r + (∇f)s, where
(∇f)r is absolutely continuous with respect to Lebesgue measure µ, and (∇f)s

and µ are singular. This is, that (∇f)s is supported on the Lebesgue null set.

Theorem 1.7 (Semicontinuity, see (Giusti, 1984, Theorem 1.9)). Let Ω ⊆ Rd be
an open set and {fj} a sequence of functions in BV (Ω) which converge in L1

loc(Ω)
to a function f . Then ∫

Ω

|∇f | ≤ lim inf
j→∞

∫
Ω

|∇fj|.

Remark 3. Under the norm

‖f‖BV = ‖f‖L1 +

∫
Ω

|∇f |,

BV (Ω) is a Banach space. In the Chapter 3 we will use also notation |∇f |(Ω)
instead of

∫
Ω
|∇f |.
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Symmetric mollifiers

Thanks to Theorem 1.2, we are able to approximate any Sobolev function by
smooth ones, i.e., express it as a limit of smooth functions. A very useful tool
to do so is mollification, where the sequence of smooth functions is made of the
approximated function using positive symmetric mollifiers.

Definition 1.12. A function η(x) is called a positive symmetric mollifier if
(i) η(x) ∈ D(Rd),
(ii) η is zero outside a compact subset of B1,

(iii)
∫
Rdη(x) dx = 1,

(iv) η(x) ≥ 0 for all x, and
(v) η(x) = υ(|x|) for some function υ : R+ → R.

For a function f ∈ L1
loc(Rd), given mollifier η and for any ε > 0 we define

ηε(x) = ε−dη
(x
ε

)
and fε = ηε ∗ f.

Then, using standard properties of mollifiers, we may show that
(a) fε ∈ C∞(Rd), fε → f in L1

loc(Rd) and if f ∈ L1(Rd), then fε → f in L1(Rd),
(b) A ≤ f(x) ≤ B for all x, then A ≤ fε(x) ≤ B for all x,
(c) if f, g ∈ L1(Rd), then

∫
Rdfεg dx =

∫
Rdfgε dx,

(d) if f ∈ C1(Rd), then
∂fε
∂xi

=

(
∂f

∂xi

)
ε

,

(e) suppf ⊆ A, then suppfε ⊆ Aε = {x; dist(x,A) ≤ ε}.

Theorem 1.8 (see (Giusti, 1984, Proposition 1.15)). Suppose f ∈ BV (Ω) and
suppose A ⊂⊂ Ω is an open set such that |∇f |(∂A) = 0. Then, if fε are mollified
functions described above (where f is extended to be 0 outside Ω if necessary),∫

A

|∇f | = lim
ε→0

∫
A

|∇fε| dx.

1.4 Tools

In this section, commonly known results will be stated without proofs. We
will refer to them in later chapters.

Notation

Let X be a normed function space of functions defined on Ω ⊂ Rd and X∗ be
its dual. We simplify the notation

〈a, a∗〉 := 〈a, a∗〉(X,X∗)

for all a ∈ X, a∗ ∈ X∗ to express the duality. Moreover, if X is Hilbert and (·, ·)X
denotes the scalar product on X,

〈a, a∗〉 = (a, a∗)X = a ·X a∗ =: a · a∗
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for all a ∈ X, a∗ ∈ X∗.
In the text we usually use the last notation with the dot. However, we skip

writing the index denoting the space because the information, which Hilbert space
we work in, will always be obvious.

Also, many times in the thesis we work with a general constant denoted c (or
C), which should be understood as a real (sometimes positive or nonnegative)
number changing its value throughout the work, mostly even from line to line.
Most of the time we do not concern about its value, the only important property
of c is that it always remains finite. Sometimes we use notation c = c(α, β, γ),
which means that c depends on α, β, γ whatever those are (e.g., function, point,
domain, other constant). However, note that usually more useful information is
what c is independent of, which is explicitly written every time when it is needed.

The next thing to remind is that working with function spaces, the function
is usually the main point of interest. That means, we also do not write in which
point the function is considered, e.g., instead of

∫
RF (∇u(x)) dx we only would

write
∫
RF (∇u) dx. This is done to simplify the formulas significantly and also

helps the reader to pay attention to what is important.
Last but not least, working with partial derivatives, the following useful no-

tation will be used (not always, only when the readability and therefore also
comprehensibility of expressions would be affected): Diu := ∂u

∂xi
, Diju := ∂2u

∂xi∂xj
,

etc.

Inequalities

Cauchy inequality. For a, b ∈ R,

2ab ≤ a2 + b2. (1.7)

Young inequality. Let p, q ∈ (1,∞), 1
p

+ 1
q

= 1. Then, for a, b > 0,

ab ≤ ap

p
+
bq

q
. (1.8)

Young inequality with ε. For a, b > 0, p, q ∈ (1,∞), 1
p

+ 1
q

= 1 and ε > 0

ab ≤ εap + c(ε)bq, (1.9)

for c(ε) = (εp)−q/pq−1.
Hölder inequality. For p, q ∈ [1,∞], 1

p
+ 1

q
= 1. Then if u ∈ Lp(U), v ∈ Lq(U),

we have ∫
U

|uv| dx ≤ ‖u‖Lp(U)‖v‖Lq(U). (1.10)

Minkowski inequality. Assume p ∈ [1,∞] and u, v ∈ Lp(U). Then

‖u+ v‖Lp(U) ≤ ‖u‖Lp(U) + ‖v‖Lp(U). (1.11)

Cauchy-Schwarz inequality. For x, y ∈ Rn,

|x · y| ≤ |x||y|. (1.12)
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Poincaré inequality. Let p, q ∈ [1,∞) and U ⊂ Rd be Lipschitz, then there
exists a constant c, depending only on U and p, so that for every u ∈ W 1,p

0 (U)

‖u‖Lp(U) ≤ c‖∇u‖Lp(U). (1.13)

Interpolation inequality. Let 1 ≤ p < q < dr
d−r , r ≤ d and U ⊂ Rd be

Lipschitz. Then there exists α ∈ (0, 1) and C such that for all u ∈ W 1,r(U)

‖u‖q ≤ C‖u‖αp ‖u‖1−α
1,r . (1.14)

If r < d, the above inequation holds for such α that 1
q

= α 1
p

+ (1 − α)d−r
dr

is
satisfied. If d = r, it holds for every α < p

q
.

Jensen inequality.[see Perlman (1974)] Let (Ω;A;µ) be a measure space such
that µ(Ω) = 1. Let g : Ω → Rn be µ-measurable and ϕ : Rn → R be continuous
and convex, then

ϕ

(∫
Ω

gdµ

)
=

∫
Ω

(ϕ ◦ g)dµ. (1.15)

Theorems

Theorem 1.9 (Lebesgue Dominated Convergence Theorem). Assume the func-
tions {fn}∞n=1 are integrable and fn → f almost everywhere. Suppose also |fn| ≤ g
almost everywhere, for some summable function g. Then∫

Rd
fn dx→

∫
Rd
f dx.

Theorem 1.10 (Levi Monotone Convergence Theorem). Assume {an}∞n=1 is a
monotone sequence of real numbers. Then this sequence has limit if and only if
it is bounded.

Theorem 1.11 (Vitali Theorem). [see Dunford and Schwartz (1958)] Let {fn}∞n=1

be a sequence of functions with finite integrals over a measurable bounded set
Ω ⊂ Rd. Suppose that

lim
n→∞

fn(x) = f(x)

for almost all x ∈ Ω and let f be an almost everywhere finite function. Suppose
that the following condition is satisfied:
For every ε > 0 there exists δ > 0 with the property: if B ⊂ Ω, µ(B) < δ, then∫

B

|fn(x)|dx < ε for all n ∈ N.

Then the function f has a finite integral over Ω and

lim
n→∞

∫
Ω

fn(x)dx =

∫
Ω

f(x)dx.

Theorem 1.12 (Selection principle). [see Banach (1932)] In a Banach space
with a separable predual, any bounded sequence contains a weakly∗ convergent
subsequence.
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Theorem 1.13 (Dunford – Pettis Theorem). Let Ω ⊂ Rd and A ⊂ L1(Ω) be a
bounded subset. Then the following is equivalent:
• A is weakly pre-compact,
• A is uniformly equi-integrable, i.e., for any ε > 0 there exists δ > 0 such

that for all U ⊂ Ω, |U | ≤ δ and all u ∈ A there holds∫
U

|u| dx ≤ ε.

Remark 4. In the setting of the theorem above, the following is also equivalent:
• A is uniformly equi-integrable,
• there exists a sequence {λi}, 0 < λ1 < λ2 < . . ., such that for every i ∈ N

and for all u ∈ A, ∫
{|u|>λi}

|u| dx ≤ 4i.

13



Chapter 2

Algebraic properties of the
mappings F and A

Inspired by (1), we will first define following mappings, F : Rd → R, A : Rd →
Rd and B : Rd → Rd×d, as

F (η) :=
1

2

∫ |η|2
0

ds

(1 + |s|a2 )
1
a

,

Ai(η) :=
∂F

∂ηi
(η) =

ηi

(1 + |η|a) 1
a

,

Bi,j(η) :=
∂Ai
∂ηj

(η) =
δi,j

(1 + |η|a) 1
a

− ηiηj|η|a−2

(1 + |η|a) 1
a

+1
,

(2.1)

for a ∈ (0,∞], i, j = 1, . . . , d. We will provide several important properties
(monotonicity, convexity, etc.) of these mappings below.

Definition 2.1. A function f : Rd → Rd is called strictly monotone provided

(f(x)− f(y))(x− y) > 0

for all x, y ∈ Rd, u 6= v. Also, f is called Lipschitz continuous provided there
exists L ∈ [0,∞) such that ∣∣∣∣∂f(x)

∂xi

∣∣∣∣ ≤ L

for all x ∈ Rd and i = 1, . . . , d.
A function g : Rd → R is called strictly convex provided

g(λx+ (1− λ)y) < λg(x) + (1− λ)g(y)

for all x, y ∈ Rd and each λ ∈ (0, 1).

Lemma 2.1. Let F and A be mappings defined in (2.1). Then
(i) A is strictly monotone and bounded,
(ii) F is strictly convex,

(iii) there exists ε = ε(a), c = c(a) ∈ R, ε < 1 such that

|F (ξ)− |ξ|| ≤ c(1 + |ξ|)1−ε, (2.2)
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(iv) for any u, v
A(u)(v − u) ≤ F (v)− F (u),

(v) A is Lipschitz continuous, i.e., there exists L > 0 such that for any η ∈ Rd

|B| ≤ L.

Proof. (i): The boundedness is obvious,

|A| =

∣∣∣∣∣ η

(1 + |η|a) 1
a

∣∣∣∣∣ ≤ 1.

To prove that A is strictly monotone, we evaluate for u 6= v(
u

(1 + |u|a)
1
a

− v

(1 + |v|a)
1
a

)
· (u− v)

=
|u|2

(1 + |u|a)
1
a

+
|v|2

(1 + |v|a)
1
a

− u · v
(1 + |u|a)

1
a

− u · v
(1 + |v|a)

1
a

=
|u|

(1 + |u|a)
1
a

(
|u| − u · v

|u|

)
+

|v|
(1 + |v|a)

1
a

(
|v| − u · v

|v|

)
= (#).

We now distinguish 2 cases:|u| = |v|, or |u| 6= |v|. In the first case,

(#) =
2|u|

(1 + |u|a)
1
a

(
|u| − u · v

|u|

)
and this is positive thanks to 0 < |u− v|2 = 2|u|2 − 2u · v. In the second case we
use that u · v ≤ |u| · |v| and therefore

(#) ≥ |u|
(1 + |u|a)

1
a

(|u| − |v|) +
|v|

(1 + |v|a)
1
a

(|v| − |u|)

= (|u| − |v|)

(
|u|

(1 + |u|a)
1
a

− |v|
(1 + |v|a)

1
a

)
> 0

and we have strict monotonicity of A.
(ii): Defining the function g(λ) in the way that

g(λ) := λF (v) + (1− λ)F (u)− F (λv + (1− λ)u),

justification of strict convexity of F becomes equal to proving that g(λ) > 0 for
all λ ∈ (0, 1). Find the derivation of g,

g′(λ) = F (v)− F (u)− d

dλ

1

2

∫ |λv+(1−λ)u|2

0

ds

(1 + |s|a2 )
1
a

= F (v)− F (u)− (λv + (1− λ)u, v − u)

(1 + |λv + (1− λ)u|a) 1
a

,
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and denote h := λv + (1 − λ)u to simplify expressions. Finding the sign of the
second derivative will tell us about the behaviour of g. In the next we use that

F (v), F (u) are independent of λ and that ∂|h|2
∂λ

= 2(h, v − u),

g′′(λ) = − |v − u|2

(1 + |h|a) 1
a

+
1

a

(h, v − u)

(1 + |h|a) 1
a

+1

d

dλ
|h|a

= − |v − u|2

(1 + |h|a) 1
a

+
1

a

(h, v − u)

(1 + |h|a) 1
a

+1

d

dλ
(|h|2)

a
2

≤ − |v − u|2

(1 + |h|a) 1
a

+
(h, v − u)2

(1 + |h|a) 1
a

+1
|h|a−2

≤ − |v − u|2

(1 + |h|a) 1
a

+
|h|a

(1 + |h|a) 1
a

+1
|v − u|2

=
|v − u|2

(1 + |h|a) 1
a

+1
(−1− |h|a + |h|a) < 0,

Note that g(0) = g(1) = 0 and from g′′(λ) < 0 for all u 6= v we see that function
g is strictly concave which implies that g is positive on (0, 1) and therefore F is
strictly convex.

(iii): Note that for small ξ the inequality (2.2) holds. We also remark that
constant c is changing its value throughout the proof, however always remains
finite. First of all, we express |ξ| in the integral form and deduct it from F (ξ).
We denote by (∗) := |F (ξ)− |ξ|| and will refer to it in the following,

(∗) =

∣∣∣∣∣12
∫ |ξ|2

0

1

(1 + |s|a2 )
1
a

− 1√
s

ds

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

2

∫ |ξ|2
0

1−
(

1+|s|
a
2

|s|
a
2

) 1
a

(1 + |s|a2 )
1
a

ds

∣∣∣∣∣∣∣∣ .
Since

(
1+|s|

a
2

|s|
a
2

) 1
a

> 1, removing the absolute value will change the sign in the

numerator,

(∗) ≤ 1

2

∫ |ξ|2
0

(
1+|s|

a
2

|s|
a
2

) 1
a − 1

(1 + |s|a2 )
1
a

ds =
1

2

∫ |ξ|2
0

e
1
a

ln

(
1+ 1

|s|
a
2

)
− 1

(1 + |s|a2 )
1
a

ds.

Thanks to the estimate ln(1 + x) ≤ x we may simplify the power of e, used as
1
a

ln
(

1 + 1

|s|
a
2

)
≤ 1

a|s|
a
2

. As observed in the beginning, the problem may occur

when ξ → ∞. Therefore we split the integral in two pieces for |ξ|2 lower than
some number. Let us now deduce this number. In the next we will use that
(ex − 1) ≤ 2x for |x| ≤ 1, with 1

a|s|
a
2

representing x. Denote t :=
(

1
a

) 2
a , then

t ≤ |s| is equivalent to 1

a|s|
a
2
≤ 1. In this value we split the integral - the first one

integrating over [0,t] is bounded by constant c, and the second one over [t, |ξ|2],

(∗) ≤ c+
1

2

∫ |ξ|2
t

e
1

a|s|
a
2 − 1

(1 + |s|a2 )
1
a

ds ≤ c+

∫ |ξ|2
t

1

a|s|a2 (1 + |s|a2 )
1
a

ds

≤ c+ c

∫ |ξ|2
t

1

a|s|a2 + 1
2

ds.
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Now, we distinguish two situations, a = 1 and a 6= 1. Firstly, let a = 1. Then

(∗) ≤ c+

∫ |ξ|2
t

1

|s|
ds ≤ c+ ln|ξ|2 ≤ c+ 4ln|ξ|

1
2 ≤ c+ 4ln(1 + |ξ|)

1
2 ≤ c(1 + |ξ|)

1
2 .

Secondly, let a 6= 1. In this case

(∗) ≤ c+
2

a(1− a)

[
|s|

1−a
2

]|ξ|2
t
≤ c(1 + |ξ|)1−a.

Setting ε = min{a, 1
2
} the proof is complete.

(iv): Hereby we use the fact that functional F is convex, i.e., for any λ ∈ (0, 1),

1

λ
(F (λv + (1− λ)u)− F (u)) ≤ F (v)− F (u). (2.3)

Evaluating the term on the left hand side

1

λ
(F (λv + (1− λ)u)− F (u)) =

1

λ

∫ 1

0

d

dτ
F (u+ τλ(v − u)) dτ

=

∫ 1

0

A(u+ τλ(v − u)) · (v − u) dτ → A(u)(v − u),

as λ→ 0+. We are allowed to do so since A is bounded and therefore |
∫ 1

0
A(u+

τλ(v − u)) · (v − u) dτ | ≤ c|v − u|, the last expression is integrable and we are
allowed to use the Lebesgue Theorem (Theorem 1.9) to switch the limit λ→ 0+

and integral over (0, 1). Use of this convergence in (2.3) completes the proof.
(v): This is an easy result, since

|B| = max
i,j=1,...,d

|Bi,j(η)| = max
i,j=1,...,d

∣∣∣∣∣ 1

(1 + |η|a) 1
a

∣∣∣∣∣+

∣∣∣∣∣ ηi|η| ηj|η| |η|a

(1 + |η|a) 1
a

+1

∣∣∣∣∣ ≤ 2.

Setting L = 2, we have just proved the Lipschitz continuity of A.

Remark 5. In the work we will use also other, however weaker, estimate, follow-
ing directly from (2.2). There exists constant c = c(a) ∈ R, such that

F (ξ) ≤ c(1 + |ξ|)

for all ξ ∈ Rd.

Remark 6. Similarly, the proof of (v) can be modified as

|B| ≤ max
i,j=1,...,d

∣∣∣∣ 1

1 + |η|

∣∣∣∣+

∣∣∣∣ 1

1 + |η|

∣∣∣∣ ≤ 2

1 + |η|
.
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Chapter 3

Possible notions of solution and
relationships between them

3.1 The problem and notions of solution

Similarly as before, we consider Lipschitz domain Ω ⊂ Rd. We will deal with
four notions of solution to our task and will show the context of how they are
related. The problem is stated as

−div
∇u

(1 + |∇u|a)
1
a

= 0 in Ω

u = uD on ∂Ω.

(3.1)

Throughout the chapter, we consider F and A given by (2.1).

Definition 3.1. We say that u ∈ W 1,1(Ω), u = uD on ∂Ω is the weak solution
to problem (3.1), if ∫

Ω

∇u
(1 + |∇u|a)

1
a

∇ϕ dx = 0 (3.2)

for all ϕ ∈ W 1,1
0 (Ω).

Definition 3.2. We say that u ∈ W 1,1(Ω), u = uD on ∂Ω is the solution to (3.1),
if it minimizes the following∫

Ω

F (∇u) dx ≤
∫

Ω

F (∇v) dx (3.3)

for all v ∈ W 1,1(Ω), v = uD on ∂Ω.

Definition 3.3. We say that u ∈ W 1,1(Ω) is the solution to (3.1) with generalized
boundary condition, if it minimizes∫

Ω

F (∇u) dx+

∫
∂Ω

|u− uD| dS ≤
∫

Ω

F (∇v) dx+

∫
∂Ω

|v − uD| dS (3.4)

for all v ∈ W 1,1(Ω).

Finally, we define the notion of solution in BV (Ω). For f ∈ BV (Ω), ∇f can
be understood as Radon measure with decomposition ∇f = (∇f)r + (∇f)s as
described in Chapter 1.
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Definition 3.4. Let Ω0 ⊃⊃ Ω. We say that u ∈ BV (Ω0), u = uD on Ω0 \ Ω
is the minimizer of (3.1) in the space BV (Ω), if for all v ∈ BV (Ω0), v = uD on
Ω0 \ Ω it holds that∫

Ω

F ((∇u)r) dx+ |(∇u)s|(Ω) ≤
∫

Ω

F ((∇v)r) dx+ |(∇v)s|(Ω). (3.5)

We can describe the situation symbolically as

(3.2)⇔ (3.3)⇒ (3.4)⇒ (3.5).

The first equivalence should be read as: if u satisfies (3.2), i.e., solves 3.1 in the
sense of Definition 3.1, then it is equivalent to the situation that u satisfies (3.3),
i.e., solves 3.1 in the sense of Definition 3.2. The following two implications should
be treated in the same way. Throughout the chapter we will provide these proofs.
First of all, Theorem 3.1 will show equivalence between the problem of finding
the weak solution and finding the minimizer of the functional. Theorem 3.2 says
that if the minimizer with boundary condition is provided then we can easily get
the more generally defined minimizer. Finally, the minimizer in the space BV (Ω)
will be derived in Theorem 3.3.

3.2 The analogy between notions of solution

Theorem 3.1. Let uD ∈ W 1,1(Ω) be given. The function u ∈ W 1,1(Ω) is the
unique weak solution to problem (3.1) (i.e., (3.2) holds for u) if and only if it is
the minimizer of (3.3).

Proof. ”⇒”: Since v = u = uD on ∂Ω, the function ϕ := v − u satisfies ϕ ∈
W 1,1

0 (Ω). Note that Lemma 2.1, (iv) says

A(∇u)(∇v −∇u) ≤ F (∇v)− F (∇u).

Integration over Ω preserves the inequality and using assumptions

0 =

∫
Ω

A(∇u) · ∇ϕ dx ≤
∫

Ω

F (∇v)− F (∇u) dx,

so u really minimizes (3.3).
”⇐”: Let v = u + tϕ, t ∈ R+, ϕ ∈ W 1,1

0 (Ω). Inequality (3.3) is equivalent to
0 ≤

∫
Ω
F (∇u+ t∇ϕ)− F (∇u) dx. Then

0 ≤
∫

Ω

F (∇u+ t∇ϕ)− F (∇u)

t
dx =

1

t

∫
Ω

∫ 1

0

d

dτ
F (∇u+ tτ∇ϕ) dτ dx

=

∫
Ω

∫ 1

0

d∑
i=1

∂F

∂ηi
(∇u+ tτ∇ϕ) · (∇ϕ)i dτ dx,

where using Ai =
∂F

∂ηi
and reverting to original integral over Ω we obtain

0 ≤
∫

Ω

∫ 1

0

A(∇u+ tτ∇ϕ) · ∇ϕ dτ dx.
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We know that A is bounded, therefore |
∫ 1

0
A(∇u(x) + tτ∇ϕ) · ∇ϕ(x) dτ | ≤

c|∇ϕ(x)|, the last expression is integrable and we are allowed to use the Lebesgue
Theorem (Theorem 1.9) to switch the limit t→ 0+ and integral over (0, 1) to get
0 ≤

∫
Ω
A(∇u) · ∇ϕ dx. The function ϕ was chosen arbitrarily, so it holds for −ϕ,

too. Therefore ∫
Ω

A(∇u) · ∇ϕ dx = 0.

Since A(∇u) =
∇u

(1 + |∇u|a)
1
a

, this proves the first implication.

Note that since F is strictly convex (see Theorem 2.1, (ii)) the minimum is
obtained and is unique. Working with gradients, this uniqueness holds up to an
additive constant. However, the assumption u = uD on ∂Ω fixes u and does not
allow any other solutions.

Theorem 3.2. Let uD ∈ W 1,1(Ω) be given. If u ∈ W 1,1(Ω), u = uD on ∂Ω
minimizes (3.3), then this u is also the unique solution to (3.4).

Proof. Assuming (3.3), it is not difficult to observe that thanks to the boundary
condition the following inequality holds,∫

Ω

F (∇u) dx+

∫
∂Ω

|u− uD| ≤
∫

Ω

F (∇(uD + v)) dx for all v ∈ W 1,1
0 (Ω). (3.6)

In the next, we will prove that (3.6) implies (3.4). Let Ω0 ⊂⊂ Ω be smooth and
d0(x) := dist(x, ∂Ω0) be the distance function for x ∈ Ω0. We note that d0(x) is
at least C2 near ∂Ω0 and that −∇d0 = n on ∂Ω0. For ε > 0 we define

d0
ε(x) :=

min

(
1,
d0(x)

ε

)
for x ∈ Ω0

0 outside Ω0.

For Ω0,ε := {x ∈ Ω0; dist(x, ∂Ω0) < ε}, it holds that d0
ε ≡ 1 in Ω0 \ Ω0,ε. If

for arbitrary w ∈ W 1,1(Ω) we set vε := d0
ε(w − uD), one can easily check that

vε ∈ W 1,1
0 (Ω) for any ε > 0 and therefore can be used in the right hand side of

(3.6). For estimating the term on the right hand side we need to note that

|∇(uD + vε)| = |(1− d0
ε)∇uD + d0

ε∇w + (w − uD)∇d0
ε|, (3.7)

∇(uD + vε)→ χΩ\Ω0
∇uD + χΩ0∇w a.e. in Ω and (3.8)

||uD + vε||1,1 ≤ c+
c

ε

∫
Ω0,ε

|w − uD| dx ≤ c, (3.9)

where in the first inequality in (3.9) we use the fact that both uD, w ∈ W 1,1(Ω),
also d0

ε ∈ [0, 1] and that d0
ε(x) is at least C2 near ∂Ω0. The second one follows

from the fact that Ω0 is smooth and can be justified in what follows.
Add ± lim infε→0+

∫
Ω
|∇(uD + vε)| dx to the right hand side of (3.6) to see

that the first limit is finite thanks to the pointwise convergence in (3.8), the
sublinear growth proven in (ii) of Lemma 2.1, and finally the Vitali Theorem
(Theorem 1.11). This limit will be forgotten after inequality in the third line,

20



and the second one is expressed using (3.7) and (3.8),

lim inf
ε→0+

∫
Ω

F (∇(uD + vε)) dx

= lim inf
ε→0+

∫
Ω

F (∇(uD + vε))− |∇(uD + vε)| dx+ lim inf
ε→0+

∫
Ω

|∇(uD + vε)| dx

≤
∫

Ω0

F (∇w) dx+

∫
Ω\Ω0

F (∇uD) dx+ lim inf
ε→0+

∫
Ω0,ε

|(uD − w)∇d0
ε| dx.

(3.10)
In the next we use that ∇d0 is Lipschitz in Ω0, it has the same direction as ∇d0

ε

and |∇d0| = 1 on ∂Ω0, then we add ±|uD − w|∇d0
ε · ∇d0. The inequality that

follows will be explained below,

|(uD − w)∇d0
ε| = |uD − w|∇d0

ε ·
(
∇d0

|∇d0|
− ∇d0

)
+ |uD − w|∇d0

ε · ∇d0

≤ c|uD − w| − |uD − w|∇(1− d0
ε) · ∇d0,

(3.11)

because ∇d0
ε = −∇(1− d0

ε) and

∇d0
ε ·
(
∇d0

|∇d0|
− ∇d0

)
≤ |∇d0

ε| |∇d0|
∣∣∣∣ 1

|∇d0|
− 1

∣∣∣∣ = |∇d0
ε|
∣∣1− |∇d0|

∣∣
≤ cε|∇d0

ε| = c|∇d0| = c.

In the next we continue estimating the last element in (3.10), firstly by (3.11)
and secondly integrating by parts. In both steps we use the fact that the first
integrands on the second, third and fourth line are integrable (d0 is C2, (uD−w) ∈
W 1,1(Ω) implies that also |uD−w| ∈ W 1,1(Ω)) and Lebesgue integral is absolutely
continuous, i.e., the limit of integral over Ω0,ε is 0 as |Ω0,ε| → 0 (which is as
ε→ 0+), and finally the fact that −∇d0 = n on ∂Ω0 and n · n = |n|2 = 1,

lim inf
ε→0+

∫
Ω0,ε

|(uD − w)∇d0
ε| dx

≤ c lim inf
ε→0+

∫
Ω0,ε

|uD − w| dx+ lim inf
ε→0+

∫
Ω0,ε

−|uD − w|∇(1− d0
ε) · ∇d0 dx

= lim inf
ε→0+

∫
Ω0,ε

(1− d0
ε)∇|uD − w| · ∇d0 dx

+ lim inf
ε→0+

∫
Ω0,ε

|uD − w|(1− d0
ε) ·∆d0 dx−

∫
∂Ω0

|uD − w|∇d0 · n dS

=

∫
∂Ω0

|uD − w| dS.

Using this inequality in (3.10) and the result in (3.6), what we obtain is that for
all w ∈ W 1,1(Ω) and all smooth Ω0 ⊂⊂ Ω there holds∫

Ω

F (∇u) dx+

∫
∂Ω

|u− uD| dS

≤
∫

Ω0

F (∇w) dx+

∫
Ω\Ω0

F (∇uD) dx+

∫
∂Ω0

|w − uD| dS,
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letting Ω0 ↗ Ω and using continuity with respect to domain we finally get (3.4).
As for the uniqueness, assume that u and v are two minimizers of (3.4). From

the strict convexity of F and the convexity of the absolute value it follows that
∇(u− v) = 0 in Ω, what directly implies that u = v + c where c ∈ R. Thus, we
have got uniqueness up to an additive constant. Therefore, subsequently, (3.4)
reduces to the identity ∫

∂Ω

|u− uD| dS =

∫
∂Ω

|v − uD| dS.

However, u = uD on ∂Ω and therefore necessarily v = uD on ∂Ω and that finishes
the proof.

Theorem 3.3. For given uD ∈ W 1,1(Ω), let u ∈ W 1,1(Ω) be a function that solves
(3.4) for all v ∈ W 1,1(Ω). Then u is also solution to (3.5).

Proof. This proof is a little longer than others and for the purpose of easier
orientation we will split it into few steps. First of all, the function u ∈ W 1,1(Ω) is
extended to Ω0 ⊃⊃ Ω in the way that u ∈ BV (Ω0). In the second step we express
what the seminorm |∇u|(Ω0) is equal to. In the Step 3, equality between the left
hand sides of (3.4) and (3.5) will be proven. In the next part, taking arbitrary
v ∈ BV (Ω0) we construct such a function ṽε, that again ṽε ∈ W 1,1(Ω) and also
ṽε ∈ BV (Ω0). For this ṽε, (3.4) holds. Finally, in the Step 5, we justify the limit
as ε→ 0 and by obtaining the right hand side of (3.5) the proof will be finished.

Step 1: Since BV spaces allow the function to jump, a problem can occur on
the boundary. The domain needs to be extended to capture the behaviour there.
Let Ω0 ⊃⊃ Ω. The Extension Theorem (Theorem 1.4) guarantees that uD can
be extended to W 1,1(Ω0). We claim that ũ defined as

ũ := u in Ω

ũ := uD on Ω0 \ Ω

is in the space BV (Ω0). Indeed, it is easy to observe that ũ ∈ L1(Ω0), since
u ∈ L1(Ω), uD ∈ L1(Ω0 \Ω) and ∂Ω is Lebesgue null set. Let us now take a look

at what ∇ũ looks like on Ω0. Its i-th component, in notation Diũ =
∂ũ

∂xi
, is

〈
ũ

xi
, ϕ

〉
= −

∫
Ω0

ũ · ϕ
xi

dx = −
∫

Ω

u · ϕ
xi

dx−
∫

Ω0\Ω
uD ·

ϕ

xi
dx.

Using integration by parts and the fact that if n is the unit outward vector for
Ω, then −n is the unit outward vector for Ω0 \ Ω,〈

ũ

xi
, ϕ

〉
=

∫
Ω

u

xi
ϕ dx+

∫
Ω0\Ω

uD
xi
ϕ dx−

∫
∂Ω

(u− uD)ϕni dS (3.12)

holds for all test functions ϕ ∈ D(Ω0). Let the seminorm of ∇ũ in BV (Ω0) be
denoted by |∇ũ|(Ω0). Sum (3.12) through i = 1, ...d and take the supremum over
all ϕ ∈ C0,1

0 (Ω0), ||ϕ|| ≤ 1 to obtain the definition of the seminorm. Here we claim
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that the supremum is acquired and is equal to the following expression, which is
finite. This claim is proven in the Step 2.

|∇ũ|(Ω0) = sup
ϕ∈C0,10 (Ω0),
||ϕ||≤1

∫
Ω

∇u · ϕ dx+

∫
Ω0\Ω
∇uD · ϕ dx−

∫
∂Ω

(u− uD)ϕ · n dS

=

∫
Ω

|∇u| dx+

∫
Ω0\Ω
|∇uD| dx+

∫
∂Ω

|u− uD| dS <∞

(3.13)
and that is why ũ ∈ BV (Ω0) and its norm is ‖ũ‖BV (Ω0) = ‖ũ‖L1(Ω0) + |∇ũ|(Ω0)
(according to Remark 3). Also the decomposition of ∇ũ into regular and singular
part can be seen at this moment,

(∇ũ)r = ∇uχΩ +∇uDχΩ0\Ω

(∇ũ)s = −(u− uD)nHn−1(∂Ω).
(3.14)

This is because u ∈ W 1,1(Ω) and uD ∈ W 1,1(Ω0), so the first two integrals are
absolutely continuous with respect to Lebesgue measure. The jump may occur
on the boundary so is supported on the Lebesgue null set, therefore it is included
in the singular part. From now on, we will use notation u instead of ũ referring
to u ∈ W 1,1(Ω) and concurrently u ∈ BV (Ω0).

Step 2: In this step we prove that supremum in (3.13) is really obtained by∫
Ω
|∇u| dx +

∫
Ω0\Ω|∇uD| dx +

∫
∂Ω
|u − uD| dS. The inequality ”≤” is obvious if

taking ϕ := −n. The opposite inequality is not that trivial.
First of all, denote Dδ := {x; dist(x, ∂Ω) < 2δ}. Next, consider

S1 := {ϕ ∈ D(Ω); |ϕ| ≤ 1, ϕ(x) = 0 on Dδ} ,
S2 :=

{
ϕ ∈ D(Ω0 \ Ω); |ϕ| ≤ 1, ϕ(x) = 0 on Dδ

}
,

τδ ∈ D(Ω0), τδ(x) = 1 for x ∈ ∂Ω, τδ(x) = 0 if dist(x, ∂Ω) > δ,

ϕδ,α3 :=
∇d
|∇d|

(u− uD)

α + |u− uD|
τδ and ϕδ,α,γ3 := ϕδ,α3 ∗ ργ,

where α, γ, δ > 0, γ < δ, ργ is symmetric mollifier and d(x) := dist(x, ∂Ω) inside
Ω, d(x) := 0 on Ω0 \ Ω. Now, taking

ϕn1 ∈ S1, ϕ
n
1 ↗

∇u
|∇u|

in Ω \Dδ as n→∞, and

ϕn2 ∈ S2, ϕ
n
2 ↗

∇uD
|∇uD|

in
(
Ω0 \ Ω

)
\Dδ as n→∞

(3.15)

we define ϕn := ϕn1 + ϕn2 + ϕδ,α,γ3 .
It surely holds that ϕn ≤ 1, because each of |ϕn1 |, |ϕn2 |, |ϕ

δ,α,γ
3 | ≤ 1 and thanks

to the way they are defined, their supports either do not intersect or only one
function is non-zero in the point of intersection. Moreover, ϕn ∈ C0,1

0 (Ω0) and
therefore

|∇u|(Ω0) ≥
∫

Ω

∇u · ϕn dx+

∫
Ω0\Ω
∇uD · ϕn dx−

∫
∂Ω

(u− uD)ϕn · n dS

=

∫
Ω

∇u · ϕn1 +∇u · ϕδ,α,γ3 dx+

∫
Ω0\Ω
∇uD · ϕn2 +∇uD · ϕδ,α,γ3 dx

−
∫
∂Ω

(u− uD)ϕδ,α,γ3 · n dS =: (∗).
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Now, for mollified function we have ϕδ,α,γ3 → ϕδ,α3 in W 1,1(Ω0) and then also
ϕδ,α,γ3 → ϕδ,α3 in L1(∂Ω) and this is that ϕδ,α,γ3 → ϕδ,α3 almost everywhere on ∂Ω.
Note that we write ϕ instead of trϕ on ∂Ω as the use of this convention was
mentioned after the Trace Theorem (Theorem 1.5) stated in Chapter 1. Using
this and convergence of ϕn1 and ϕn2 in (3.15) we can go with n → ∞ and γ → 0
to get that

(∗)→
∫

Ω\Dδ
|∇u| dx+

∫
(Ω0\Ω)\Dδ

|∇uD| dx

+

∫
Ω

∇u · ϕδ,α3 dx+

∫
Ω0\Ω
∇uD · ϕδ,α3 dx−

∫
∂Ω

(u− uD)ϕδ,α3 · n dS.

Taking the limit δ → 0, the set Dδ is eliminated and also the domain of ϕδ,α3

shrinks to ∂Ω, because only here τδ 6= 0. Indeed, τδ = 1 on ∂Ω for any δ and
therefore

(∗)→
∫

Ω

|∇u| dx+

∫
Ω0\Ω
|∇uD| dx+

∫
∂Ω

|u− uD|2

α + |u− uD|
(−∇d)

|∇d|
· n dS.

Finally, note that −∇d = n and nothing can stop us from using the limit α→ 0
to get the desired expression,

(∗)→
∫

Ω

|∇u| dx+

∫
Ω0\Ω
|∇uD| dx+

∫
∂Ω

|u− uD| dS.

Step 3: We will point out that left hand sides of (3.4) and (3.5) are equal,
i.e., that∫

Ω

F ((∇u)r) dx+ |(∇u)s|(Ω) =

∫
Ω

F (∇u) dx+

∫
∂Ω

|u− uD| dS. (3.16)

This follows directly from (3.14). The equality
∫

Ω
F (∇u) dx =

∫
Ω
F ((∇u)r) dx

holds as ∇u has no singular part inside Ω. Using also the information from the
Step 2,

|(∇u)s|(Ω) = sup
ϕ∈C0,10 (Ω0),||ϕ||≤1

−
∫
∂Ω

(u− uD)ϕ · n dS =

∫
∂Ω

|u− uD| dS

and the equation (3.16) is clear.
Step 4: In this step we provide a proper regularization of v after which we are

able to prove that (3.4) truly implies (3.5). We mollify v ∈ BV (Ω0), v = uD on
Ω0 \ Ω to get vε ∈ W 1,1(Ω0), vε := v ∗ ρε. Similarly as in the first step, define

ṽε := vε in Ω

ṽε := uD on Ω0 \ Ω.

We remind that both functions, ṽε and u are in W 1,1(Ω) and also in BV (Ω0).
Therefore we are allowed to apply it to (3.4)∫

Ω

F ((∇u)r) dx+ |(∇u)s|(Ω) =

∫
Ω

F (∇u) dx+

∫
∂Ω

|u− uD| dS

≤
∫

Ω

F (∇vε) dx+

∫
∂Ω

|vε − uD| dS.
(3.17)
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Step 5: Our last aim is to justify the limit ε → 0. Firstly, using the same
procedure as in the Step 2 we find out that

|∇ṽε|(Ω0) = sup
ϕ∈C0,10 ,||ϕ||≤1

∫
Ω

∇vε · ϕ dx+

∫
Ω0\Ω
∇uD · ϕ dx−

∫
∂Ω

(vε − uD)ϕ · n dS

=

∫
Ω

|∇vε| dx+

∫
Ω0\Ω
|∇uD| dx+

∫
∂Ω

|vε − uD| dS.

Without loss of generality, we assume that ∇uD ≡ 0 on Ω0 \ E for some Ω ⊂⊂
E ⊂⊂ Ω0. Applying the Theorem 1.8 we compute∫

Ω

|∇vε| dx+

∫
E\Ω
|∇uD| dx+

∫
∂Ω

|vε − uD| dS = |∇ṽε|(E)→ |∇ṽ|(E), (3.18)

where ∇ṽ is the limit of mollifiers ∇ṽε as ε→ 0. It is useful to remind that

|∇ṽ|(E)− |∇uD|(E \ Ω) = |∇ṽ|(Ω), (3.19)

because |∇ṽ|(E) = |∇ṽ|(E \ Ω) + |∇ṽ|(Ω) and |∇ṽ|(E \ Ω) = |∇uD|(E \ Ω).
Note the limit property

∇vε → (∇v)r

pointwisely in Ω. This is because ∇vε = ((∇v)r)ε + ((∇v)s)ε and ((∇v)r)ε →
(∇v)r in L1(Ω), while ((∇v)s)ε ⇀∗ (∇v)s inM which is supported on a Lebesgue
null set.

Sublinear growth

F (∇vε)− |∇vε| ≤ c(1 + |∇vε|)1−β

for β ∈ (0, 1), proven in (iii) of Lemma 2.1, allows us to use the Hölder inequality
with conjugates 1

1−β and 1
β

and show that for U ⊂ Ω,∫
U

c(1 + |∇vε|)1−β dx ≤ c

(∫
U

1 + |∇vε| dx
)1−β

|U |β ≤ c|U |β.

Now, for any ε > 0 we can find δ such that |U | < δ gives c|U |β < ε. Really, this

is true for δ <

(
ε

c

) 1
β

and thus it follows that

F (∇vε)− |∇vε| → F ((∇v)r)− |(∇v)r| (3.20)

using the Vitali Theorem (Theorem 1.11).
At the end, adding ±

∫
Ω
|∇vε| dx and ±

∫
E\Ω|∇uD| dx to the last line in (3.17)

and using (3.18) and (3.20) we get the first inequality; (3.19) explains the following
step and decomposition (3.14) finishes the estimate,∫

Ω

F (∇vε)− |∇vε|+ |∇vε| dx+

∫
E\Ω
|∇uD| − |∇uD| dx+

∫
∂Ω

|vε − uD| dS

→
∫

Ω

F ((∇v)r)− |(∇v)r| dx+

∫
E

|∇ṽ| dx−
∫
E\Ω
|∇uD| dx

=

∫
Ω

F ((∇ṽ)r)− |(∇ṽ)r| dx+

∫
Ω

|∇ṽ| dx

=

∫
Ω

F ((∇ṽ)r) dx+

∫
Ω

|(∇ṽ)s| dx.

This information together with (3.17) completes the proof.
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Chapter 4

The existence of solution

In this part we shall obtain the main result of this thesis. We still consider
F and A defined in Chapter 2, where also their algebraic properties are shown.
The work below is inspired by the results achieved in Chapter 3 and the question
is, whether we are able to prove the existence of the solution in the sense of
Definitions 3.1 and 3.2 (which are equivalent). Unfortunately, this solution does
not exist in general, as shown in the counterexample in Chapter 5. Therefore,
we focus our attention on the existence of solutions related to Definitions 3.3 or
3.4. We were inspired by articles Buĺıček et al. (2014); Buĺıček et al. (2015), in
which authors pay attention to the existence of solution to (3.1) in the sense of
Definition 3.2, i.e., up to the boundary for special data and nonconvex domains,
and by Bildhauer and Fuchs (1999, 2002) where the situation related to Definition
3.3 and the interior regularity are studied.

As shown in Chapter 3, the solution in the sense of Definition 3.4 is weaker
notion than the one of Definition 3.1. The first result, based on the lower semi-
continuity of F , says that for all a ∈ (0,∞) and reasonable data there always
exists a solution according to Definition 3.4. However, the most important result
is that for a ∈ (0, 2] and reasonable data there actually exists a solution in the
sense of Definition 3.3.

Theorem 4.1. Let Ω ⊂ Rd be Lipschitz, uD ∈ W 1,1(Ω) and a ∈ (0,∞). Then
there exists a solution u to problem (3.1) in the sense of Definition 3.4. In
addition, u ∈ L∞loc(Ω). Moreover, if a ∈ (0, 2], u is also a solution to (3.1) in the
sense of Definition 3.3.

The rest of the chapter is devoted to the proof of this theorem, which means
that also all data will be considered as those used in the statement of the Theo-
rem 4.1. In the section 4.1, the approximative problem is set and it is also shown
that the approximative solutions uε converge to the one in BV spaces from Def-
inition 3.4. Uniform estimates for the second derivative of uε inside Ω are shown
in 4.2, and L∞-estimates for uε in 4.3. That implies the L∞-estimate for the limit
u as well and leaves only the last part of the Theorem 4.1 unproven. Finally, sec-
tion 4.4 supplies us with the proof of uniform equi-integrability of {∇uε} and the
final limit ε → 0+ is provided in 4.5 to get the solution u in W 1,1(Ω), according
to Definition 3.3.

26



4.1 Approximative problem

For ε > 0, consider the new functional

Fε(∇u) := ε|∇u|2 + F (∇u).

Lemma 4.1. Let uεD ∈ W 1,2(Ω) be given. There exists unique uε ∈ W 1,2(Ω),
uε = uεD on ∂Ω such that ∫

Ω

Fε(∇uε) dx ≤
∫

Ω

Fε(∇v) dx (4.1)

for all v ∈ W 1,2(Ω), v = uεD on ∂Ω.

Proof. Firstly, note the following estimates, which are direct consequences of
definition of Fε and Remark 5:

Fε(∇u) ≥ ε|∇u|2, (4.2)

Fε(∇u) ≤ c(1 + |∇u|+ ε|∇u|2). (4.3)

Denote

I := inf
v∈W 1,2(Ω),v=uεD on ∂Ω

∫
Ω

Fε(∇v) dx.

Especially, I ≤
∫

Ω
Fε(∇uεD) dx. From the definition of infimum we know that

there exists a sequence {un}n∈N ∈ W 1,2(Ω), un = uD on ∂Ω for all n ∈ N such
that

I = lim
n→∞

∫
Ω

Fε(∇un) dx.

Thanks to that and (4.2) it holds that there exists n0 ∈ N such that for all n ≥ n0

we have

ε

∫
Ω

|∇un|2 dx ≤
∫

Ω

Fε(∇un) dx ≤ 1 +

∫
Ω

Fε(∇uεD) dx,

and this is bounded. Indeed, consider (4.3) and the fact that uεD ∈ W 1,2(Ω).
Integrating over a bounded set does not harm the boundedness and therefore
‖un‖1,2 ≤ c(ε). Due to the reflexivity of W 1,2(Ω) there exists uε ∈ W 1,2(Ω),
uε = uεD on ∂Ω such that for a subsequence that we do not relabel

un ⇀ uε in W 1,2(Ω).

Both functions | · |2 and F (·) are convex, then also Fε(·) is convex. In other words,
the tangent line is below the graph of Fε and therefore

Fε(∇un)−Fε(∇uε) ≥
∂Fε(∇uε)

∂η
(∇un−∇uε) = (2ε∇uε +A(∇uε))(∇un−∇uε),

where last equation is trivial from the definitions of Fε and A. Integrating over
Ω and passing to limes inferior gives

lim inf
n→∞

∫
Ω

Fε(∇un)− Fε(∇uε) dx ≥ lim inf
n→∞

∫
Ω

(2ε∇uε + A(∇uε))(∇un −∇uε) dx.
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As for the right hand side, (2ε∇uε + A(∇uε)) is bounded in L2(Ω) and (∇un −
∇uε) ⇀ 0 in L2(Ω), so the integral goes to 0. Therefore∫

Ω

Fε(∇uε) dx ≤ lim inf
n→∞

∫
Ω

Fε(∇un) dx = I,

thus we proved (4.1) for all v ∈ W 1,2(Ω), v = uεD on ∂Ω.

In the following lemma other representation of (4.1) is introduced. Also, its
results are crucial in the proof of the first part of Theorem 4.1.

Lemma 4.2. Let uεD ∈ W 1,2(Ω) be given. For uε ∈ W 1,2(Ω), uε = uεD on ∂Ω, the
relation (4.1) holds for all v ∈ W 1,2(Ω), v = uεD on ∂Ω if and only if

2ε

∫
Ω

∇uε · ∇ϕ dx+

∫
Ω

A(∇uε) · ∇ϕ dx = 0 (4.4)

for all ϕ ∈ W 1,2
0 (Ω). Further, assume that uεD → uD in W 1,1(Ω) and that

ε‖∇uεD‖2
2 ≤ K (4.5)

for some K = K(ε) ∈ R, K(ε) → 0+ as ε → 0+. Then there exists a constant
c = c(K(ε), ‖uεD‖1,1,Ω, a) ∈ R such that

‖uε‖1,1 + ε‖∇uε‖2
2 ≤ c. (4.6)

Moreover, there exists a subsequence of uε (for which we do not change the
notation) such that

uε ⇀∗ u in BV (Ω), (4.7)

where u solves (3.5).

Proof. Step 1: The equivalence (4.1)⇔ (4.4) has a very similar proof to that of
Theorem 3.1.
”⇒”: Similarly as in the proof of Theorem 3.1, after substitution v := uε + tϕ
for ϕ ∈ W 1,2

0 (Ω) it holds that

0 ≤
∫

Ω

F (∇uε + t∇ϕ)− F (∇uε)
t

dx+ ε

∫
Ω

2t∇uε · ∇ϕ+ t2|∇ϕ|2

t
dx

=

∫
Ω

∫ 1

0

d∑
i=1

∂F

∂ηi
(∇uε + tτ∇ϕ) · (∇ϕ)i dτ dx+ ε

∫
Ω

∇ϕ · (2∇uε + t∇ϕ) dx.

Therefore

0 ≤
∫

Ω

∫ 1

0

A(∇uε + tτ∇ϕ) · ∇ϕ dτ + ε∇ϕ · (2∇uε + t∇ϕ) dx,

Using the Lebesgue Theorem (Theorem 1.9), limit t → 0+ and the fact that it
holds for −ϕ, too, we obtain the equation (4.4).

”⇐”: For an arbitrary v ∈ W 1,2(Ω), v = uεD on ∂Ω consider ϕ := v− uε. The
result of Lemma 2.1, (iv) says that

A(∇uε)(∇v −∇uε) ≤ F (∇v)− F (∇uε).
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Applying this inequality in (4.4), we get

0 ≤
∫

Ω

F (∇v)− F (∇uε) dx+ 2ε

∫
Ω

∇uε · (∇v −∇uε) dx. (4.8)

Next, we use the Cauchy inequality for vectors 2a · b ≤ |a|2 + |b|2, where ∇uε
stands for a and ∇v stands for b. Then

ε

∫
Ω

2∇uε · ∇v − 2|∇uε|2 dx ≤ ε

∫
Ω

|∇v|2 − |∇uε|2 dx (4.9)

and, finally, moving the terms containing ∇uε to the left hand side in (4.8), we
get ∫

Ω

ε|∇uε|2 + F (∇uε) dx ≤
∫

Ω

ε|∇v|2 + F (∇v) dx,

which is, according to the definition of Fε, exactly (4.1). Therefore this step is
complete.

Step 2: In the next, we will obtain (4.6), assuming (4.4) and (4.5). First of
all, note that uε− uεD ∈ W

1,2
0 (Ω) and therefore substitution ϕ := uε− uεD in (4.4)

is correct,

2ε

∫
Ω

∇uε · (∇uε −∇uεD) dx+

∫
Ω

A(∇uε) · (∇uε −∇uεD) dx = 0.

Next, we use estimate (4.9) and (iv) from Lemma 2.1, although a little modified
- opposite sign will change the direction of inequations,

ε

∫
Ω

|∇uε|2 − |∇uεD|2 dx ≤ 2ε

∫
Ω

|∇uε|2 −∇uε · ∇uεD dx,

F (∇uε)− F (∇uεD) ≤ A(∇uε)(∇uε −∇uεD).

When applied, we get

ε

∫
Ω

|∇uε|2 − |∇uεD|2 dx+

∫
Ω

F (∇uε)− F (∇uεD) dx ≤ 0.

Finally, estimate from Remark 5 says that F (ξ) ≤ c(a)(1 + |ξ|). Therefore, after
we move the terms that do not contain u to the right hand side, for a proper
constant c it holds that

ε

∫
Ω

|∇uε|2 dx+

∫
Ω

|∇uε| dx ≤ c

(
1 +

∫
Ω

|∇uεD| dx+ ε

∫
Ω

|∇uεD|2 dx

)
≤ c(a,K),

(4.10)
where for the boundedness we used the assumption uεD ∈ W 1,1(Ω) and (4.5). To
get the last estimate we only use the triangle and Poincaré inequalities, respec-
tively, and that uε, uεD ∈ W 1,1(Ω),

‖uε‖1,1 ≤ ‖uε − uεD‖1,1 + ‖uεD‖1,1 ≤ c+ ‖uε − uεD‖1,1

≤ c+ c‖∇(uε − uεD)‖1 ≤ c(1 + ‖∇uε‖1 + ‖∇uεD‖1) ≤ c.
(4.11)

Then (4.6) holds, considering (4.10) and (4.11).
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Step 3: The last thing to be proved is the existence of a weakly∗ convergent
subsequence in BV (Ω). Using (4.11), there exists u such that

uε → u in L1(Ω). (4.12)

Especially, ‖∇uε‖1 ≤ c. Also (C(Ω))∗ = M(Ω) ⊂ L1(Ω) and according to the
Selection principle (Theorem 1.12) there exists a weakly∗ convergent subsequence
of ∇uε such that

[∇uε]i ⇀
∗ Di in M(Ω), (4.13)

where M(Ω) is the space of Radon measures over Ω and D = ∇u is the vector
of distributional derivatives. Indeed, for an arbitrary ϕ ∈ D(Ω),

〈Di, ϕ〉 = lim
ε→0+

∫
Ω

∂uε

∂xi
ϕ dx = − lim

ε→0+

∫
Ω

uε
∂ϕ

∂xi
dx = −

∫
Ω

u
∂ϕ

∂xi
dx.

The last equality holds thanks to (4.12). Then, (4.12) and (4.13) gives (4.7).
The following estimate holds for any v ∈ D(Ω),∫

Ω

Fε(∇uε) dx ≤
∫

Ω

Fε(∇uεD +∇v) dx

=

∫
Ω

ε‖∇uεD +∇v‖2
2 + F (∇uεD +∇v) dx

→
∫

Ω

F (∇uD +∇v) dx as ε→ 0+,

(4.14)

where the inequality holds thanks to (4.1), the equality follows from the definition
of Fε, for the first convergence we use (4.5) and the fact that v does not depend
on ε. For F (∇uεD + ∇v) → F (∇uD + ∇v) we follow the same procedure as in
the proof of Theorem 3.3, where we used the Vitali Theorem (Theorem 1.11) to
obtain (3.20). Indeed, ∇uD+∇v ∈ L1(Ω) and therefore (∇uD+∇v)r = ∇uD+∇v
and ∫

Ω

F (∇uεD +∇v) dx

=

∫
Ω

F (∇uεD +∇v)− |∇uεD +∇v| dx+

∫
Ω

|∇uεD +∇v| dx

→
∫

Ω

F ((∇uD +∇v)r)− |(∇uD +∇v)r| dx+

∫
Ω

|(∇uD +∇v)r| dx

=

∫
Ω

F (∇uD +∇v) dx.

From (4.14), after passing to supremum, we get that

lim sup
ε→0+

∫
Ω

Fε(∇uε) dx ≤
∫

Ω

F (∇uD +∇v) dx. (4.15)

Moreover, define w := uD + v. Then w ∈ W 1,1(Ω), w = uD on ∂Ω and∫
Ω

F (∇uD +∇v) dx =

∫
Ω

F ((∇w)r) dx+ |(∇w)s|(Ω). (4.16)
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In the next, we will prove that∫
Ω

F ((∇u)r) dx+ |(∇u)s|(Ω) ≤ lim sup
ε→0+

∫
Ω

Fε(∇uε) dx (4.17)

and that, together with (4.15) and (4.16), means that u fulfills the condition to
be the minimizer in the BV (Ω).

To prove (4.17), we first notice that from the definition of Fε it trivially follows
that

lim sup
ε→0+

∫
Ω

Fε(∇uε) dx ≥ lim sup
ε→0+

∫
Ω

F (∇uε) dx.

Next, using the continuity of the Extension Theorem (Theorem 1.4), we can find
Ω0 ⊃⊃ Ω and a sequence EuεD ∈ W 1,1

0 (Ω0) such that EuεD → EuD strongly in
W 1,1

0 (Ω0). Moreover, extending uε by EuεD outside Ω, we also see that

uε ⇀∗ u in BV (Ω0),

where u = EuD outside Ω. However, from this extension directly follows that

lim sup
ε→0+

∫
Ω

F (∇uε) dx = lim sup
ε→0+

∫
Ω0

F (∇uε) dx− lim sup
ε→0+

∫
Ω0\Ω

F (∇EuεD) dx

= lim sup
ε→0+

∫
Ω0

F (∇uε) dx−
∫

Ω0\Ω
F (∇EuD) dx,

(4.18)

where for the second equality, we used the strong convergence of EuεD, the con-
tinuity and the linear growth of F and the Lebesgue Dominated Convergence
Theorem (Theorem 1.9).

Next, for any fixed δ, we recall the definition of the mollifier ηδ (Definition
1.12) and we also denote the mollified limit function u and its distributional
derivative ∇u by

uδ := ηδ ∗ u,
(∇u)δ := ηδ ∗ ∇u = ηδ ∗ (∇u)r + ηδ ∗ (∇u)s =: (∇u)rδ + (∇u)sδ.

Due to the mollification and the weak∗ convergence of uε we see that also

uεδ := ηδ ∗ uε → uδ in D(Rd). (4.19)

If we use the fact that ∇uε = 0 outside Ω0 and that F (0) = 0; the fact that∫
Rdηδ(x − y) dx = 1; the Fubini Theorem; the convexity of F and therefrom

excused Jensen inequality (1.15); and finally the definition of mollifiers, we obtain
the following estimate∫

Ω0

F (∇uε) dx =

∫
Rd
F (∇uε) dx =

∫
Rd

∫
Rd
F (∇uε(x))ηδ(x− y) dy dx

=

∫
Rd

(∫
Rd
F (∇uε(x))ηδ(x− y) dx

)
dy

≥
∫
Rd
F

(∫
Rd
∇uε(x)ηδ(x− y) dx

)
dy

=

∫
Rd
F ((∇uε)δ) dx.

(4.20)
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Hence, using (4.19), we see that for any δ > 0 there holds

lim sup
ε→0+

∫
Ω0

F (∇uε) dx ≥
∫
Rd
F ((∇u)δ) dx. (4.21)

Finally, we let δ → 0+ and almost step by step we follow the procedure of the
proof of Theorem 3.3 in the preceding chapter. It follows from the properties of
the mollification that

‖(∇u)δ‖L1(Rd) ≤ C,

(∇u)δ → (∇u)r almost everywhere in Rd,

uδ ⇀
∗ u in BV (Rd).

Consequently, using the Vitali Theorem (Theorem 1.11) and the property (2.2)
of F , we see that

lim
δ→0+

∫
Rd
F ((∇u)δ)− |(∇u)δ| dx =

∫
Ω0

F ((∇u)r)− |(∇u)r| dx

=

∫
Ω0\Ω

F (∇EuD)− |∇EuD| dx+

∫
Ω

F ((∇u)r)− |(∇u)r| dx.
(4.22)

On the other hand, since the singular part (∇u)s is supported in Ω and conse-
quently |∇u|(∂Ω0) = 0, we can use Theorem 1.8 to conclude

lim
δ→0+

∫
Rd
|(∇u)δ| dx = |∇u|(Ω0)

=

∫
Ω0\Ω
|∇EuD| dx+

∫
Ω

|(∇u)r| dx+ |(∇u)s|(Ω).
(4.23)

Hence, substituting (4.22) and (4.23) into (4.21) and using the resulting inequality
in (4.18), we deduce (4.17), which finishes the proof.

Basically, Lemma 4.2 finishes the proof of the first part of Theorem 4.1. It is
not difficult to show that for any uD ∈ W 1,1(Ω) one can always find a sequence of
smooth functions uεD such that the condition (4.5) holds with K(ε)→ 0+ and, in
addition, uεD → uD in W 1,1(Ω). This is an easy consequence of the approximation
theorem (Theorem 1.2), possibly after choosing a subsequence of approximating
functions and thereafter its relabelling.

Therefore, in what follows we focus on proving the second part of the The-
orem 4.1. In the lemmas below we use common assumptions, so we state them
here together and denote by (A):
Assumption (A):
• let uεD → uD in W 1,1(Ω) and assume that ε‖∇uεD‖2

2 ≤ K for some K =
K(ε) ∈ R, K(ε)→ 0+ as ε→ 0+,
• let uε ∈ W 1,2(Ω), uε = uεD on ∂Ω be such that (4.4) holds for all ϕ ∈
W 1,2

0 (Ω).
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4.2 Uniform interior W 2,2-regularity

In the section we provide estimates proving the uniform W 2,2-regularity inside
Ω and from now on, u will appear instead of uε, as well as uD instead of uεD. This
is used only to avoid the formulas to seem too complicated, however we keep this
dependence on ε in minds. In the following lemma we show that u, the solution
to (4.4), behaves better inside Ω as it belongs to W 2,2

loc (Ω).

Lemma 4.3. Assume (A). Then u ∈ W 2,2
loc (Ω).

Proof. Let Ω0 ⊂⊂ Ω and let dist(x, ∂Ω) > δ for any x ∈ Ω0. This condition
guarantees that (x + hei) ∈ Ω, whenever h ≤ δ. Therefore, in this setting, (4.4)
implies

2ε

∫
Ω0

(∇u(x+ hei)−∇u(x)) · ∇v(x) dx

+

∫
Ω0

(A(∇u(x+ hei))− A(∇u(x))) · ∇v(x) dx = 0

for any v ∈ W 1,2
0 (Ω0). Consider

v(x) := (u(x+ hei)− u(x)) · η2(x)

for η ∈ D(Ω0), η ≥ 0 and use it in previous. What we get is, after we keep the
”nice” terms on the left hand side and the rest we move to the right hand side,

(∗) := 2ε

∫
Ω0

|∇u(x+ hei)−∇u(x)|2η2(x) dx

+

∫
Ω0

[A(∇u(x+ hei))− A(∇u(x))] · (∇u(x+ hei)−∇u(x))η2(x) dx

=− 4ε

∫
Ω0

[(∇u(x+ hei)−∇u(x)) · η(x)] [(u(x+ hei)− u(x)) · ∇η] dx

− 2

∫
Ω0

[(A(∇u(x+ hei))− A(∇u(x))) · η(x)] [(u(x+ hei)− u(x)) · ∇η] dx.

Moreover, A is Lipschitz continuous (with L denoting the Lipschitz constant) and
therefore the right hand side can be simplified,

(∗) ≤ c(ε, L)

∫
Ω0

[(∇u(x+ hei)−∇u(x)) · η(x)] [(u(x+ hei)− u(x)) · ∇η] dx.

In the following step we use the Young inequality (the version with ε, note that the
ε in the statement of the inequality is general and different from ε we work with
now, the assignment of parameters is explained in the next sentence). In detail,
[(∇u(x+ hei)−∇u(x)) · η(x)] will stand for a, [(u(x+ hei)− u(x)) · ∇η] for b
and c(ε, L) for ε. Furthermore, in the next computation we identify c with any
(finite) modification of c(ε, L), and similarly C with C(ε, L, ‖∇η(x)‖∞). Then

(∗) ≤ ε

∫
Ω0

|∇u(x+ hei)−∇u(x)|2η2(x)dx+ C

∫
Ω0

|u(x+ hei)− u(x)|2dx.
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Subtracting (ε
∫

Ω0
|∇u(x+hei)−∇u(x)|2η2(x) dx) from both sides of the inequality

and then dividing it by h2 we obtain

ε

∫
Ω0

|∇u(x+ hei)−∇u(x)|2η2(x)

h2
dx ≤ C

∫
Ω0

|u(x+ hei)− u(x)|2

h2
dx

Note that the last fraction is ‖Dhu‖2
L2(Ω0) from the first chapter and therefore

using Theorem 1.6,

ε

∫
Ω0

|∇u(x+ hei)−∇u(x)|2η2(x)

h2
dx ≤ C‖u‖2

1,2.

This estimate holds for arbitrary η and thus ∇u ∈ W 1,2
loc (Ω0). However, note

that this estimate is not uniform with respect to ε. At the end, we use the limit
δ → 0+, which means that Ω0 → Ω and therefore u ∈ W 2,2

loc (Ω).

In the next lemma we recall the notation of partial derivatives introduced in
Chapter 1.

Lemma 4.4. Assume (A). Then there exists a constant c = c(K, η) such that

(∗) :=
d∑

i,k=1

∫
Ω

2ε |∇2u|2 η2 +DkAi(∇u) Diku η
2 dx ≤ c.

Proof. Integrate (4.4) by parts,

−2ε

∫
Ω

∆u · ϕ dx−
∫

Ω

divA(∇u) · ϕ dx = 0

and use the fact that |divA(∇u)| ≤
∣∣∣∂A(∇u)

∂∇u

∣∣∣ |∇2u|, where
∣∣∣∂A(∇u)

∂∇u

∣∣∣ is bounded

from Lemma 2.1, (v) and |∇2u| = |∇(∇u)| is in L2
loc(Ω),

2ε∆u+ divA(∇u) ≡ 0 almost everywhere in Ω. (4.24)

Multiplying (4.24) by (div(∇u η2)) for η ∈ D(Ω) and integrating the equation
over Ω, ∫

Ω

2ε ∆u div(∇u η2) + divA(∇u)div(∇u η2) dx = 0.

If we rewrite it by coordinates and integrate by parts, what we get is (using
Einstein’s summation convention)∫

Ω

2ε Dkiu Di(Dku η
2) +DkAi(∇u) Di(Dku η

2) dx = 0.

Applying the product rule for derivatives and moving the terms containing Diη
on the right hand side we get the (∗) defined in the statement of the lemma,

(∗) =

∫
Ω

2ε |∇2u|2 η2 +DkAi(∇u) Diku η
2 dx (4.25)

= −4

∫
Ω

ε Diku Dku η Diη +DkAi(∇u) Dku η Diη dx. (4.26)
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We remind that Ai(ξ) =
∂F (ξ)

∂ξi
and that Bij(ξ) =

∂2F (ξ)

∂ξi∂ξj
. Now, using the chain

rule, for fixed k, i the following holds

DkAi(∇u) =
d∑
j=1

Bij(∇u)Djku.

Moreover, since F is strictly convex, then B is positive definite matrix, i.e., elliptic
- there exists c > 0 such that Bij(ξ)ζiζj ≥ c(ξ)|ζ|2 for any ξ, ζ ∈ Rd. Applied to
(4.25), we get

(∗) =

∫
Ω

2ε|∇2u|2η2 dx+

∫
Ω

Bij(∇u) Djku Diku η
2 dx,

and to (4.26), using also Young inequality (1.8),

(∗) ≤
∫

Ω

ε|∇2u| η 4|∇u||∇η| dx− 4

∫
Ω

Bij(∇u) Djku Dku η Diη dx

≤
∫

Ω

ε

2
|∇2u|2η2 + 8ε|∇u|2|∇η|2 dx− 4

∫
Ω

Bij(∇u) Djku η Dku Diη dx.

What is more, B is also symmetric and therefore defines the scalar product and
the Cauchy-Schwarz inequality holds,

|Bij(ξ)aibj| ≤ (Bij(ξ)aiaj)
1
2 (Bij(ξ)bibj)

1
2 .

Applied to our situation, (Diku η) stands for ai and (Dku Diη) for bi. Moreover,∫
Ω
ε
2
|∇2u|2η2 dx can be subtracted from both (4.25) and (4.26). Then

(∗) ≤ c+

∫
Ω

d∑
k=1

(Bij(∇u) Diku Djku η
2)

1
2 (16Bij(∇u)(Dku)2Diη Djη)

1
2 dx

≤ c+
1

2

∫
Ω

d∑
k=1

Bij(∇u) Diku Djku η
2 + 4

d∑
k=1

Bij(∇u)(Dku)2Diη Djη dx,

thanks to the Young inequality. Now (1
2

∫
Ω

∑d
k=1Bij(∇u) Diku Djku η

2 dx) can
be again subtracted from (4.25) and (4.26). Therefore

(∗) ≤ c+ c

∫
Ω

|B(∇u)||∇u|2|∇η|2 dx,

and Remark 6 says that |B(∇u)| ≤ 2
1+|∇u| , then

(∗) ≤ c+ c

∫
Ω

|∇u||∇η|2 dx ≤ c(K, η).
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4.3 Uniform interior L∞-estimates

In what follows we shall show that u ∈ Lploc(Ω) for p ∈ [1,∞], adapting our
calculations on the Moser iteration technique.

Lemma 4.5. Assume (A), then there exists a constant c such that for any Ω′ ⊂⊂
Ω,

‖u‖L∞(Ω′) ≤ c(Ω′, ‖u‖1,1, ε‖u‖2
1,2).

The estimate (4.7) proven in Lemma 4.2 says that uε ⇀∗ u in BV (Ω) as
ε → 0+. Thanks to that, the result of Lemma 4.5 implies that uε ∈ L∞loc(Ω) and
also u ∈ L∞loc(Ω) and that proves the part of Theorem 4.1 stating the L∞-estimate.

Proof. In (4.4), set
ϕ := |TM(u)|p−1u · τ 2

for TM(u) := sgnu min{M, |u|}, M ∈ R fixed, p ∈ R, p > 1 fixed and τ ∈ D(Ω).
To verify that this choice of ϕ indeed is in W 1,2

0 (Ω), note that TM(u) is bounded
by M , M, p ∈ R are fixed, u ∈ W 1,2(Ω) and τ is compactly supported in Ω. Now
(4.4) is

2ε

∫
Ω

∇u · ∇(|TM(u)|p−1u · τ 2) dx+

∫
Ω

A(∇u) · ∇(|TM(u)|p−1u · τ 2) dx = 0

and applying the gradient on the product (|TM(u)|p−1u) · τ 2 we get

2ε

∫
Ω

∇u · ∇(|TM(u)|p−1u)τ 2 dx+

∫
Ω

A(∇u) · ∇(|TM(u)|p−1u)τ 2 dx

=− 2ε

∫
Ω

∇u · |TM(u)|p−1u∇τ 2 dx−
∫

Ω

A(∇u) · |TM(u)|p−1u∇τ 2 dx.

(4.27)

The element ∇u · ∇(|TM(u)|p−1u), written by coordinates and using that u · u =
u2 = |u|2, gives

d∑
i=1

DiuDi(|TM(u)|p−1u) =
d∑
i=1

DiuDiu |TM(u)|p−1 +DiuuDi|TM(u)|p−1

= |∇u|2|TM(u)|p−1 +
d∑
i=1

1

2
Di|u|2Di|TM(u)|p−1

= |∇u|2|TM(u)|p−1 + (p− 1)|TM(u)|p−2T ′M(u)|∇u|2|u| =: (∗).
(4.28)

Note that if |u| < M then TM(u) = |u| and T ′M(u) = 1. Moreover, the second ele-
ment of (∗) disappears otherwise, because TM(u) = M and T ′M(u) = 0. Anyway,
T ′M(u) = |T ′M(u)|2 and therefore

(∗) ≥ p|T ′M(u)|2|∇u|2|TM(u)|p−1 = p|∇TM(u)|2|TM(u)|p−1, (4.29)

but also

(∗) ≥ p

2
|∇TM(u)|2|TM(u)|p−1 +

1

2
|∇u|2|TM(u)|p−1. (4.30)
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In the following computation we will use both estimates. Thanks to the way
in which A(∇u) is defined one can see that the use of (4.29) is correct for the
second element on the left hand side of (4.27). However, for the first one the use
of (4.30) will be more suitable as we will see later. The right hand side of (4.27)
will be estimated by its absolute value, using also that |∇τ 2| ≤ 2|∇τ ||τ |. After
all, what we get is

ε

∫
Ω

|∇u|2|TM(u)|p−1τ 2 dx+ εp

∫
Ω

|∇TM(u)|2|TM(u)|p−1τ 2 dx

+p

∫
Ω

1

(1 + |∇u|a) 1
a

|∇TM(u)|2|TM(u)|p−1τ 2 dx

≤4ε

∫
Ω

|∇u||TM(u)|p−1|u||∇τ ||τ | dx+ 2

∫
Ω

|A(∇u)||TM(u)|p−1|u||∇τ ||τ | dx.

(4.31)
We rewrite the first element on the right hand side of (4.31) in the way that use
of the Young inequality will be convenient and what is more, part of it will be
annulled with the first term on the left hand side later,

4ε

∫
Ω

|∇u||TM(u)|p−1|u||∇τ ||τ | dx

=

∫
Ω

(
2ε|∇u|2|TM(u)|p−1τ 2

) 1
2 (2

3
2 ε

1
2 |TM(u)|

p−1
2 |u||∇τ |) dx

≤ε
∫

Ω

|∇u|2|TM(u)|p−1τ 2 dx+ 4ε

∫
Ω

|TM(u)|p−1|u|2|∇τ |2 dx.

(4.32)

When estimating the third element on the left hand side of (4.31) from below
(note that |∇TM(u)|2 = |T ′M(u)|2|∇u|2), we need to differ whether |∇u| is greater
than, equal to or lower than 1. Anyway,

1

2
1
a

|∇u| − 1 ≤ |∇u|2

(1 + |∇u|a) 1
a

,

and finally, using this, (4.32) and the fact that always |A(∇u)| ≤ 1, we estimate
(4.31) as

εp

∫
Ω

|∇TM(u)|2|TM(u)|p−1τ 2 dx+
p

2
1
a

∫
Ω

|∇u||T ′M(u)|2|TM(u)|p−1τ 2 dx

≤C
(
ε

∫
Ω

|TM(u)|p−1|u|2|∇τ |2 dx+

∫
Ω

|TM(u)|p−1|u||∇τ |2 dx

+p

∫
Ω

|T ′M(u)|2|TM(u)|p−1τ 2 dx
)
.

(4.33)

Note that∣∣∣∇|TM(u)|
p+1
2

∣∣∣2 =
(p+ 1)2

4
|TM(u)|p−1|∇TM(u)|2, and

|∇|TM(u)|p| = p|TM(u)|p−1|T ′M(u)||∇u| = p|TM(u)|p−1|T ′M(u)|2|∇u|.

This, applied to the left hand side of (4.33), gives

4εp

(p+ 1)2

∫
Ω

∣∣∣∇|TM(u)|
p+1
2

∣∣∣2 τ 2 dx+
1

2
1
a

∫
Ω

|∇|TM(u)|p| τ 2 dx

≤C
(∫

Ω

(ε|u|2 + |u|)|TM(u)|p−1|∇τ |2 dx+ p

∫
Ω

|TM(u)|p−1τ 2 dx

)
.

(4.34)
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In order to use the Sobolev embedding we need to move the smooth function τ
into the gradient. To do so, this estimate will be used∣∣∣∇(|TM(u)|

p+1
2 τ
)∣∣∣2 =

∣∣∣∇|TM(u)|
p+1
2 τ + |TM(u)|

p+1
2 ∇τ

∣∣∣2
≤ 2

∣∣∣∇|TM(u)|
p+1
2 τ
∣∣∣2 + 2

∣∣∣|TM(u)|
p+1
2 ∇τ

∣∣∣2 ,
in the following way∣∣∣∇(|TM(u)|

p+1
2 τ
)∣∣∣2 − 2|TM(u)|p+1|∇τ |2 ≤ 2

∣∣∣∇|TM(u)|
p+1
2

∣∣∣2 τ 2.

It will be used to estimate the left hand side of (4.34) from below, together with

|∇(|TM(u)|pτ 2)| − |TM(u)|p|∇τ |2 ≤ |∇|TM(u)|p|τ 2,

where the same procedure was used for the second element. However, we only
keep better elements on the left hand side and those worse, which contain |∇τ |2,
go to the right. Moreover, C denotes a constant that is independent of p, ε and
τ and also, from now on, only the power of p will be taken into consideration,

ε

p

∫
Ω

∣∣∣∇(|TM(u)|
p+1
2 τ
)∣∣∣2 dx+

∫
Ω

|∇(|TM(u)|pτ 2)| dx

≤C
(∫

Ω

(
(ε|u|2 + |u|)|TM(u)|p−1 + |TM(u)|p +

ε

p
|TM(u)|p+1

)
|∇τ |2 dx

+p

∫
Ω

|TM(u)|p−1τ 2 dx

)
.

(4.35)

Note that (|TM(u)| p+1
2 τ) and (|TM(u)|pτ 2) are supported on a bounded set, thanks

to the fact that τ ∈ D(Ω) and Ω is bounded. Sobolev embeddings give∥∥∥|TM(u)|
p+1
2 τ
∥∥∥2

2d
d−1

≤ c
∥∥∥|TM(u)|

p+1
2 τ
∥∥∥2

2d
d−2

≤ c
∥∥∥∇(|TM(u)|

p+1
2 τ)

∥∥∥2

2
and∥∥|TM(u)|pτ 2

∥∥
d
d−1

≤ c
∥∥∇(|TM(u)|pτ 2)

∥∥
1
,

and therefore (4.35) can be finally rewritten in the form

ε

p

∥∥∥|TM(u)|
p+1
2 τ
∥∥∥2

2d
d−1

+
∥∥|TM(u)|pτ 2

∥∥
d
d−1

≤C
(∫

Ω

(
(ε|u|2 + |u|)|TM(u)|p−1 + |TM(u)|p +

ε

p
|TM(u)|p+1

)
|∇τ |2 dx

+p

∫
Ω

|TM(u)|p−1τ 2 dx

) (4.36)

and this holds for all M ∈ R and p ∈ R, p > 1. The left hand side can be
formulated as∥∥∥|TM(u)|

p+1
2 τ
∥∥∥2

2d
d−1

=

(∫
Ω

|TM(u)|
p+1
2

2d
d−1 τ̃dx

) d−1
2d

2(p+1)
p+1

= ‖TM(u)τ̃‖p+1

(p+1) d
d−1

,

‖|TM(u)|pτ‖ d
d−1

= ‖TM(u)τ̃‖pdp
d−1

,
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where τ̃ = τ
2d
d−1 in the first case and τ̃ = τ

d
d−1 in the second, but the important

thing is that it remains smooth. Since τ was chosen arbitrarily, we keep writing τ
instead of τ̃ in what follows. Moreover, for u ∈ W 1,2(Ω) the Sobolev embedding
gives

‖u‖ d
d−1
≤ c‖u‖1,2 ≤ c.

We also have that ε‖∇u‖2
2 ≤ c and u = uD on ∂Ω, therefore using the assumptions

the following expression is bounded,

ε‖u‖2
2d−1
d−1

≤ cε‖u‖2
1,2 ≤ cε(‖u−uD‖2

1,2+‖uD‖2
1,2) ≤ cε(‖∇u‖2

2+‖∇uD‖2
2+‖uD‖2

1,2).

Set p = d
d−1

and we want to let M → ∞. Then |TM(u)| → |u| and we get that
for any τ ∈ D(Ω),

ε(d− 1)

d
‖|u|τ‖

2d−1
d−1
(2d−1)d

(d−1)2

+
∥∥|u|τ 2

∥∥ d
d−1
d
d−1

≤C
(∫

Ω

(ε(d− 1)

d
|u|

2d−1
d−1 + |u|

d
d−1

)
|∇τ |2 dx+

d

d− 1

∫
Ω

|u|
1
d−1 τ 2dx

)
≤ C

(4.37)

and the boundedness is clear using the estimates above. Therefore the limit step
with M was used correctly. It also holds that

‖|u|τ‖
2d−1
d−1

d2

(d−1)2

≤ ‖|u|τ‖
2d−1
d−1
(2d−1)d

(d−1)2

and
‖u‖ d2+(d−1)2

(d−1)2

= ‖u‖ 2d2−2d+1

(d−1)2
≤ c‖u‖ 2d2−d

(d−1)2
,

thus u ∈ L
d2

(d−1)2

loc . Therefore, coming back to (4.36), setting p = d2

(d−1)2
and letting

M →∞, the right hand side will become

C

(∫
Ω

(ε(d− 1)2

d2
|u|

d2+(d−1)2

(d−1)2 + |u|
d2

(d−1)2

)
|∇τ |2 dx+

d2

(d− 1)2

∫
Ω

|u|
d2−(d−1)2

(d−1)2 τ 2dx

)
and is bounded using the same argument of embeddings as above. Then the left

hand side is bounded as well and implies that u ∈ L
d3

(d−1)3

loc . Repeating the same

procedure for p = di

(d−1)i
, i ∈ N we always get the boundedness of the right hand

side thanks to the estimate gained in the previous step. Therefore u ∈ Lploc(Ω),
that means, for any Ω′ ⊂⊂ Ω,

‖u‖Lp(Ω′) ≤ C(p,Ω′, ‖u‖1,1, ε‖u‖2
1,2) (4.38)

for all p ∈ (1,∞). Also, it means that for any p ∈ (1,∞) we can go with the
limit M →∞ in (4.36) to get the relation

ε

p
‖|u|τ‖p+1

(p+1) d
d−1

+
∥∥|u|τ 2

∥∥p
dp
d−1

≤C
(∫

Ω

(ε
p
|u|p+1 + |u|p

)
|∇τ |2 dx+ p

∫
Ω

|u|p−1τ 2dx

)
.

(4.39)
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With the help of Moser iteration technique we will reach that u ∈ Lploc for all
p ∈ (1,∞]. That is, the constant in (4.38) will be independent of p.

Let x ∈ Ω, ρ > 0 and R > 0 be given, such that ρ < R < dist(x, ∂Ω). Denote
BR to be a ball of a radius R, centered at x. Let {Rk}k∈N be a decreasing sequence
of positive real numbers such that

R0 = R, Rk := ρ+
R− ρ

2k
and Rk ↘ ρ as k →∞,

fulfilling 0 < |Rk−1 − Rk| =
R− ρ

2k
<< 1. Note that for each k we can choose τ

in the way that

τ = 1 on BRk , τ = 0 outside BRk−1
and |∇τ | ≤ c

Rk−1 −Rk

.

Our aim is to bound the left hand side of (4.39), so in the case that for some k
|u|τ ≤ 1, we do not need the right hand side at all. If |u|τ > 1, note that the
last element on the right hand side of (4.39) is small in comparison with those
which contain |∇τ |2. Really, if |u|τ > 1, then necessarily |u| > 1, |u|p−1 < |u|p
and p << c

|Rk−1−Rk|2
, together with τ ≤ 1 we get that

p

∫
Ω

|u|p−1τ 2 dx <

∫
Ω

|u|p|∇τ |2 dx,

and therefore we consider it being absorbed by the second element since now.
Finally, by decreasing the left hand side and using the introduced notation we
get from (4.39) that

‖u‖p
L
dp
d−1 (BRk )

≤ C

|Rk−1 −Rk|2

(
ε

p
‖u‖p+1

Lp+1(BRk−1
) + ‖u‖pLp(BRk−1

)

)
. (4.40)

The ball BRk is used on the left hand side because it is the largest possible
estimate, since τ = 1 on BRk and τ < 1 everywhere else. On the other hand,
|∇τ |2 6= 0 on BRk−1

\BRk and that is why we need to stay at BRk−1
on the right

hand side. Moreover, thanks to the u ∈ Lploc(Ω) property for all p ∈ (1,∞) and
that |u| > 1, we can increase the element on the right hand side of (4.40) by

‖u‖pLp(BRk−1
) ≤ c‖u‖pLp+1(BRk−1

) ≤ c‖u‖p+1
Lp+1(BRk−1

)

and raise the (4.40) to 1
p
. Note that for finite p, the element p

1
p is a finite number.

For p→∞, p
1
p → 1. Therefore this term will be included in C. For ε being fixed

yet small, we can do the same. After all, the final inequation we are about to
iterate is

‖u‖
L
dp
d−1 (BRk )

≤ C
1
p 2

2k
p ‖u‖

p+1
p

Lp+1(BRk−1
). (4.41)

For 0 < α < 1
d−1

, consider

q :=

(
d

d− 1
− α

)
> 1 and p :=

d− 1

d
qk0 ,
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for k0 big enough to hold that 1 < αqk0−1 d−1
d

. Then

p+ 1 ≤ qk0−1 < qk0 = p
d

d− 1
, (4.42)

because q > 1 and

p+ 1 = qk0−1

(
d

d− 1
− α

)
d− 1

d
+ 1 = qk0−1 − αqk0−1d− 1

d
+ 1 < qk0−1

For k ≥ k0, set
pk := qk and ak := ‖u‖Lpk (BRk ).

It holds that pk → ∞ as k → ∞, also p+1
p

=
pk0+ d

d−1

pk0
= 1 + d

(d−1)pk0
and (4.41)

turns into

ak0 ≤ C
d

pk0
(d−1) 2

2k0d
pk0

(d−1)a
1+ d

pk0
(d−1)

k0−1 . (4.43)

We can observe that using the same procedure we are able to obtain (4.43) for
any k > k0, and then iterate

ak ≤C
d

pk(d−1) 2
2kd

pk(d−1)

(
C

d
pk−1(d−1) 2

2(k−1)d
pk−1(d−1)a

1+ d
pk−1(d−1)

k−2

)1+ d
pk(d−1)

≤C
d

pk(d−1)
+
∑k−1
j=k0+1

d
pj(d−1)

∏k
i=j+1

(
1+ d

pi(d−1)

)
2

2kd
pk(d−1)

+
∑k−1
j=k0+1

2jd
pj(d−1)

∏k
i=j+1

(
1+ d

pi(d−1)

)

a

∏k
i=k0+1

(
1+ d

pi(d−1)

)
k0

.

The product
∏k

i=k0+1

(
1 + d

pi(d−1)

)
is finite if and only if its logarithm is finite,

also using the upper bound for logarithm, ln y ≤ y − 1, the fact that 1
q
< 1 and

therefrom resulting power series convergence we get that

ln
k∏

i=k0+1

(
1 +

d

pi(d− 1)

)
=

k∑
i=k0+1

ln

(
1 +

d

qi(d− 1)

)
≤

k∑
i=k0+1

d

qi(d− 1)

=
d

qk0+1(d− 1)

∞∑
i=0

1

qi
=

d

qk0(d− 1)(q − 1)
<

1

(d+ 1)(q − 1)
< c.

Obviously, this proves that
∏k

i=k0+2

(
1 + d

pi(d−1)

)
is bounded, as well. Note that

we can use the result for what comes next, too, together with the root test as the
criterion for convergence of

∑∞
j=k0+1

2jd
qj(d−1)

, used as

lim
j→∞

j

√
2jd

qj(d− 1)
=

1

q
< 1,

which gives that (we use c for constant resulting from the convergence and C
remains being the multiplication constant)

ak ≤ C
c
∑k
j=k0+1

d
pj(d−1) 2

c
∑k
j=k0+1

2jd
pj(d−1)ack0

≤ C
c
∑∞
j=k0+1

d
pj(d−1) 2

c
∑∞
j=k0+1

2jd
pj(d−1)ack0 ≤ C,
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and C is independent of k, therefore letting k → ∞ it holds that pk → ∞, also
Rk → ρ and we get that u ∈ L∞loc(Ω), i.e.,

‖u‖L∞(Bρ) ≤ C(R, ρ, ‖u‖1,1, ε‖u‖2
1,2).

4.4 Uniform equi-integrability of |∇uε|
To finish the proof of Theorem 4.1, we would like to show that for a ∈ (0, 2],

the sequence of approximative solutions converges weakly in W 1,1
loc (Ω). The limit

would be the solution u to (3.1) in the sense of Definition 3.3. According to
Dunford-Pettis Theorem (Theorem 1.13), the weakly pre-compactness of {uε} is
equivalent to its uniform equi-integrability.

The two following lemmas have very similar proofs. The difference between
them is whether we consider a ∈ (0, 2) or a ∈ (0, 2]. Note that the first result is
stronger, however we pay the price of allowing a = 2.

Lemma 4.6. Assume (A) and a ∈ (0, 2), then there exists a constant δ, 0 < δ <<
1, and a constant c = c(δ, τ) independent of ε such that∫

Ω

|∇u|2

(1 + |∇u|a) 1
a

(1 + |∇u|2)δτ dx ≤ c

for any τ ∈ D(Ω).

Proof. In (4.4), set
ϕ := u · (1 + |∇u|2)δτ

for τ ∈ D(Ω) and 0 < δ << 1. Now, after we use the product rule, move the
∇
[
(1 + |∇u|2)δτ

]
part on the right hand side, use the product rule again and

estimate it by its absolute value, using also that |A(∇u)| =

∣∣∣∣∣ ∇u
(1 + |∇u|a) 1

a

∣∣∣∣∣ ≤ 1,

we get

2ε

∫
Ω

|∇u|2(1 + |∇u|2)δτ dx+

∫
Ω

|∇u|2

(1 + |∇u|a) 1
a

(1 + |∇u|2)δτ dx

≤4δε

∫
Ω

|∇u| |u|
∣∣1 + |∇u|2

∣∣δ−1|∇u| |∇2u||τ |dx+ 2ε

∫
Ω

|∇u| |u|
∣∣1 + |∇u|2

∣∣δ|∇τ |dx
+2δ

∫
Ω

|u|
∣∣1 + |∇u|2

∣∣δ−1|∇u| |∇2u||τ | dx+

∫
Ω

|u|
∣∣1 + |∇u|2

∣∣δ|∇τ | dx.
(4.44)

Firstly, remember the results from the text above, particularly that

‖u‖L∞(Ω′) + ε

∫
Ω

|∇u|2dx+ ε

∫
Ω′
|∇2u|2dx ≤ c,∫

Ω′

|∇2u|2

(1 + |∇u|)1+a
≤
∫

Ω′
|B(∇u)||∇2u|2 ≤ c,
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for Ω′ ⊂⊂ Ω. The sum on the right hand side of (4.44) is finite, which results
from the following analysis

I1 := 4δ

∫
Ω

|u| ε
1
2 |∇u| ε

1
2 |∇2u||τ | |∇u|

∣∣1 + |∇u|2
∣∣δ−1

dx ≤ c,

because |u| ∈ L∞loc(Ω), ε
1
2 |∇u| ∈ L2(Ω), ε

1
2 |∇2u||τ | ∈ L2(Ω) from the results

above and |∇u| |1 + |∇u|2|δ−1 ∈ L∞(Ω), because the powers of |∇u| are negative,
1 + 2δ − 2 ≤ 0. Similarly,

I2 := 2

∫
Ω

|u| ε
1
2 |∇u| ε

1
2 |∇u| |∇τ | |1 + |∇u|2|δ

|∇u|
dx ≤ c,

since |u| ∈ L∞loc(Ω), ε
1
2 |∇u| ∈ L2(Ω), |∇τ | ∈ L∞(Ω) and

|1+|∇u|2|δ
|∇u| ∈ L∞(Ω),

which is basically the same as before. As for the third one,

I3 := 2δ

∫
Ω

|u|
(
|∇2u|2τ 2

(1 + |∇u|)1+a

) 1
2

(1 + |∇u|)
1+a
2 |∇u|

∣∣1 + |∇u|2
∣∣δ−1

dx ≤ c,

because |u| ∈ L∞loc(Ω),
(
|∇2u|2τ2

(1+|∇u|)1+a

) 1
2 ∈ L2(Ω) and for the last element to fulfill

that (1 + |∇u|)
1+a
2 |∇u| |1 + |∇u|2|δ−1 ∈ L2(Ω), we have the condition for powers

of |∇u|. It is true, if it holds that

2

(
1 + a

2
+ 1 + 2δ − 2

)
≤ 1,

which is satisfied when a ≤ 2− 4δ. For δ being small it means that a < 2.
Finally,

I4 :=

∫
Ω

|u|
∣∣1 + |∇u|2

∣∣δ |∇τ | dx ≤ c,

because |u| ∈ L∞loc(Ω), |∇τ | ∈ L∞(Ω) and |1 + |∇u|2|δ ∈ L1(Ω), since 2δ ≤ 1. To
sum it up, we just got that∫

Ω

|∇u|2

(1 + |∇u|a) 1
a

(1 + |∇u|2)δτ dx ≤ I1 + I2 + I3 + I4 ≤ c

with c being independent of ε. Then the easy calculation of powers, 2− 1 + 2δ =
1 + 2δ, puts |∇u| in the space L1+2δ

loc (Ω) for a < 2 and δ small and positive.

Lemma 4.7. Assume (A) and a ∈ (0, 2], then there exists a constant c = c(τ)
independent of ε such that∫

Ω

|∇u| ln(1 + |∇u|2)τ dx ≤ c

for any τ ∈ D(Ω).
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Proof. In (4.4), set
ϕ := u · ln(1 + |∇u|2)τ

for τ ∈ D(Ω), similarly as before we get the left hand side as

2ε

∫
Ω

|∇u|2 ln(1 + |∇u|2)τ dx+

∫
Ω

|∇u|2

(1 + |∇u|a) 1
a

ln(1 + |∇u|2)τ dx,

and the partial integrals on the right hand side as (using that (ln(1 + |∇u|2))′ =

2 |∇u| |∇
2u|

1+|∇u|2 , and that ln y ≤ y − 1),

Ĩ1 = 4

∫
Ω

|u| ε
1
2 |∇2u||τ | ε

1
2 |∇u| |∇u|

1 + |∇u|2
dx,

Ĩ2 = 2

∫
Ω

|u| ε
1
2 |∇u| ε

1
2 ln(1 + |∇u|2)|∇τ |dx,

Ĩ3 = 2

∫
Ω

|u|
(
|∇2u|2τ 2

(1 + |∇u|)1+a

) 1
2

(1 + |∇u|)
1+a
2

|∇u|
1 + |∇u|2

dx,

Ĩ4 =

∫
Ω

|u| ln(1 + |∇u|2)|∇τ | dx.

The procedure is very similar to the one above. In fact, Ĩ1 is estimated in exactly
the same way. In Ĩ2 and Ĩ4 we use the estimate

ln(1 + |∇u|2) ≤ ln(1 + |∇u|)2 ≤ 2(1 + |∇u|)− 1 ≤ c|∇u|,

and then the calculation corresponds with I2, I4. The difference between Ĩ3 and
I3 is in the powers of |∇u|, and therefore in the condition on a,

2

(
1 + a

2
+ 1− 2

)
≤ 1 ⇒ a ≤ 2.

On the left hand side we take into consideration only the powers of |∇u| again
to get that ∫

Ω

|∇u| ln(1 + |∇u|2)τ dx ≤ Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 ≤ c,

and c depends on Ω′ ⊂⊂ Ω, however, the most important fact is that it is inde-
pendent of ε.

With the help of the estimate above the uniform equi-integrability of {∇uε}
can be proven. To do so, the equivalent statement from Remark 4 will be used.
Let 0 < λ1 < λ2 < ... and Ui ⊂⊂ Ω be sets on which |∇uε|2 > λi for i ∈ N. Then
for every i,∫

Ui

|∇uε| dx =

∫
Ui

|∇uε| ln(1 + |∇uε|2)

ln(1 + |∇uε|2)
dx

≤ 1

ln(1 + λi)

∫
Ui

|∇uε| ln(1 + |∇uε|2) dx ≤ c

ln(1 + λi)
.

This proves the uniform equi-integrability, because for every i ∈ N we can find λi
such that c(e4i − 1) < λi. Then c

ln(1+λi)
< 1

4i
and the condition from Remark 4 is

satisfied.
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Applying the Dunford-Pettis Theorem (Theorem 1.13), it is equivalent to the
existence of weakly convergent subsequence of {∇uε} in L1

loc(Ω). From Lemma
4.2 we know that uε ⇀∗ u in BV (Ω). Joining these facts we get that the limit
has to be u,

∇uε ⇀ ∇u in L1
loc(Ω) ⇒ u ∈ W 1,1

loc (Ω).

Actually, the following estimate says more, for Ω′ ⊂⊂ Ω, using the weakly lower
semicontinuity of the L1-norm and uniform equi-integrability of ∇uε,∫

Ω′
|∇u| dx ≤ lim

ε→0+

∫
Ω′
|∇uε| dx ≤ lim

ε→0+

∫
Ω

|∇uε| dx ≤ c,

with c independent of Ω′. Therefore the following holds,

lim
Ω′→Ω

∫
Ω′
|∇u| dx =

∫
Ω

|∇u| dx ≤ c,

where the limit exists from the Levi Theorem (Theorem 1.10). Then u ∈ W 1,1(Ω).

4.5 Limit ε→ 0+

As this is the last section of the chapter, the proof of Theorem 4.1 will be
finally completed here by limiting with ε → 0+. Obviously, at this moment we
need to return from the notation u back to uε.

To prove that ∇uε loc→ ∇u, we will use the Minty trick, i.e., for τ ∈ D(Ω) we
will show that

lim
ε→0+

∫
Ω

(A(∇uε)− A(∇u)) (∇uε −∇u) τ dx = 0. (4.45)

Firstly, note that the expression is non-negative, since A is monotone. We sepa-
rate it into simpler terms about which we already know something,

0 ≤ lim
ε→0+

∫
Ω

(A(∇uε)− A(∇u))(∇uε −∇u)τ dx

= lim
ε→0+

(∫
Ω

A(∇uε)∇uετ dx−
∫

Ω

A(∇uε)∇uτ dx−
∫

Ω

A(∇u)(∇uε −∇u)τ dx

)
The third element goes to 0, as A(∇u) ∈ L∞(Ω), τ ∈ L∞(Ω) and ∇uε ⇀ ∇u in
L1(Ω). In the second term, {A(∇uε)}ε is a bounded sequence and according to
the Selection Principle (Theorem 1.12), it has a weakly* convergent subsequence,
A(∇uε) ⇀∗ A in L∞(Ω). As for the first term, we adjust it a little bit,

lim
ε→0+

∫
Ω

A(∇uε)∇uετ dx = lim
ε→0+

(∫
Ω

A(∇uε)∇(uετ) dx−
∫

Ω

A(∇uε)uε∇τ dx

)
,

and again A(∇uε) ⇀∗ A in L∞(Ω), uε → u in L1(Ω) and ∇τ ∈ L∞(Ω). Note that
for uε the weak formulation (4.4) holds. Using it with ϕ := (uετ) and applying
the product rule again,

lim
ε→0+

∫
Ω

A(∇uε)∇(uετ) dx = − lim
ε→0+

∫
Ω

2ε∇uε∇(uετ) dx

= − lim
ε→0+

∫
Ω

2ε|∇uε|2τ dx− lim
ε→0+

∫
Ω

2ε∇uε uε∇τ dx.
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In the first element we may use that ε
1
2∇uε ∈ L2(Ω) and τ ∈ L∞(Ω), therefore

the integral is finite and the limit exists and is even non-negative. Denote this
limit as B. For the second one we can use the same, and will shortly show that
ε

1
2uε ⇀ 0 in L2(Ω) which, together with ∇τ ∈ L∞(Ω), guarantees that this term

goes to 0 as ε → 0+. So let us take a look at why ε
∫

Ω
(uε)2 → 0. According to

the Interpolation inequality (1.14), there exists 0 < α < 1, such that

lim
ε→0+

ε
1
2‖uε‖2 ≤ lim

ε→0+
cε

α
2 ‖uε‖α1 (ε

1
2‖uε‖1,2)1−α. (4.46)

We know that uε → u in L1(Ω), so the term ‖uε‖α1 is bounded. Moreover, the
estimates we have, ε‖∇uε‖2

2 ≤ c and ε‖uεD‖2
1,2 ≤ c from Lemma 4.2 implies that

ε
1
2‖uε‖1,2 ≤ c, because

‖uε‖1,2 ≤ c‖∇(uε − uεD)‖2 + ‖uεD‖1,2 ≤ c (‖∇uε‖2 + ‖uεD‖1,2) ,

where the Poincaré inequality (1.13) was used on ‖uε − uεD‖1,2. However, to use
this estimate in (4.27), we have an additional condition on α, implying from the
Sobolev embedding. That is,

α +
(1− α)(d− 2)

2d
≤ 1

2
⇒ 0 < α ≤ 2

d+ 2

Thus, everything but ε
α
2 in (4.46) is bounded and this goes to 0. Finally, putting

everything together,

0 ≤ lim
ε→0+

∫
Ω

(A(∇uε)− A(∇u))(∇uε −∇u)τ dx

= −B − 0−
∫

Ω

Au∇τ dx−
∫

Ω

A∇u τ dx− 0

≤ −
∫

Ω

A∇(uτ) dx.

(4.47)

At this moment, consider (4.4) again and apply limit ε→ 0+,

0 = lim
ε→0+

2ε

∫
Ω

∇uε · ∇ϕ dx+ lim
ε→0+

∫
Ω

A(∇uε) · ∇ϕ dx,

and note that in the first element ∇uε ⇀ ∇u in L1(Ω), therefore the integral is
finite and multiplied by 2ε goes in the limit to 0. The second element gives that

0 =

∫
Ω

A∇ϕ dx

for all ϕ ∈ W 1,2
0 (Ω). The term A is bounded and the space W 1,2

0 (Ω) is dense
in W 1,1

0 (Ω). Therefore the same relation holds for all ϕ ∈ W 1,1
0 (Ω), as well.

Especially, set ϕ := uτ , which is allowed since u ∈ W 1,1(Ω) and τ ∈ D(Ω). Then

0 =

∫
Ω

A∇(uτ) dx,

and this, used in (4.47) gives us the final equality

0 = lim
ε→0+

∫
Ω

(A(∇uε)− A(∇u)) · (∇uε −∇u)τ dx.
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Since the interand is nonnegative (which follows from the fact that A is a mono-
tone operator) we see that

(A(∇uε)− A(∇u)) · (∇uε −∇u)→ 0

strongly in L1(Ω′) for any Ω′ ⊂⊂ Ω. Consequently, since A is strictly monotone
operator then necessarily we get the local pointwise convergence

∇uε loc→ ∇u.

Consequently, we see that A = A(∇u) almost everywhere in Ω.
Now, we finish the proof of Theorem 4.1 by showing that (3.4) is valid for u.

From Lemma 4.1 we know that for every ε, uε satisfies (4.1). Taking the limit of
(4.1) we would get (3.4). The limit of right hand side,

lim
ε→0+

∫
Ω

Fε(∇v) dx =

∫
Ω

F (∇v) dx,

would be shown in the same way as it is already done in the proof of the
Lemma 4.2. Therefore we focus on the limit on the left hand side. To finish
the proof, it is enough to show that

lim inf
ε→0+

∫
Ω

Fε(∇uε) dx ≥
∫

Ω

F (∇u) dx+

∫
∂Ω

|u− uD| dS. (4.48)

It is easy to see that

Fε(∇uε) ≥ F (∇uε) = F (∇uε)− |∇uε|+ |∇uε|.

With the help of the pointwise convergence, the Vitali Theorem (Theorem 1.11)
and the estimate (iii) from Lemma 2.1 we obtain that

lim inf
ε→0

∫
Ω

Fε(∇uε) dx ≥ lim
ε→0

∫
Ω

F (∇uε)− |∇uε| dx+ lim inf
ε→0

∫
Ω

|∇uε| dx

=

∫
Ω

F (∇u)− |∇u| dx+ lim inf
ε→0

∫
Ω

|∇uε| dx

After all, what we need to check is

lim inf
ε→0

∫
Ω

|∇uε| dx ≥
∫

Ω

|∇u| dx+

∫
∂Ω

|u− uD| dS. (4.49)

Extending uεD outside Ω by the Extension Theorem (Theorem 1.4), we also have
that uεD → uD strongly in W 1,1(Ω0), where Ω ⊂⊂ Ω0. Finally, we also extend uε

by uεD outside Ω. Notice that such extension is possible and that uε is bunded in
W 1,1(Ω0) independently of ε. Consequently, for arbitrary smooth ϕ ∈ D(Ω0;Rd)
such that ‖ϕ‖∞ ≤ 1, we have∫

Ω

|∇uε| dx =

∫
Ω0

|∇uε| dx−
∫

Ω0\Ω
|∇uεD| dx ≥

∫
Ω0

uεdivϕ dx−
∫

Ω0\Ω
|∇uεD| dx.
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Hence, using the above proven convergence results, we can easily let ε→ 0 in the
above inequality to show that

lim inf
ε→0

∫
Ω

|∇uε| dx ≥
∫

Ω0

u divϕ dx−
∫

Ω0\Ω
|∇uD| dx

=

∫
Ω

u divϕ dx+

∫
Ω0\Ω

uDdivϕ− |∇uD| dx

Next, since u ∈ W 1,1(Ω) and uD ∈ W 1,1(Ω0), we may use the integration by parts
to get

lim inf
ε→0

∫
Ω

|∇uε| dx ≥ −
∫

Ω

∇u·ϕ dx−
∫

Ω0\Ω
∇uD ·ϕ+|∇uD| dx+

∫
∂Ω

(u−uD)ϕ·n dS.

Finally, taking the supremum over all possible ϕ (here we refer to the Step 2 of
the proof of Theorem 3.3), we get the desired relation (4.49).
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Chapter 5

Counterexample to the existence
of weak solution

In this chapter we will show that in some cases the weak solution (the one
in the sense of Definition 3.1) to (3.1) does not exist. We will provide a model
example (defined in (5.1)) and show that for a > 1, not even smooth data would
guarantee the existence of weak solutions.

We use standard notation Br for the ball in Rd with center in 0 and radius r.
Let Ω be the annulus B2 \ B1 and u be the function in Sobolev space W 1,1(Ω).
Consider the problem

−div
∇u

(1 + |∇u|a)
1
a

= 0 in Ω

uD(x) = K on ∂B1,

uD(x) = 0 on ∂B2.

(5.1)

Lemma 5.1. For a > 1, the problem (5.1) has a weak solution according to
Definition 3.1 if and only if

|K| <
∫ 2

1

1

(zad−a − 1)
1
a

dz.

If a ∈ (0, 1], then for any K ∈ R there exists a weak solution to problem (5.1) in
the sense of Definition 3.1.

Proof. First of all, we show that u ∈ W 1,1(Ω), a weak solution to (5.1), is inde-
pendent of rotation. For this fact, however mathematically incorrectly, we use
notation u(x) = u(|x|). To prove it, we work with the rotation matrix Q ∈ Rd×d,
which is orthogonal, i.e., QQ> = I.

Let u ∈ W 1,1(Ω) be the weak solution to (5.1). Let us define

v(x) := u(Qx).

We can easily see that v ∈ W 1,1(Ω), because rotation does not change qualitative
properties of the function. It also does not change values on the boundary since
both B1 and B2 are balls. Therefore

vD(x) = K on ∂B1,

vD(x) = 0 on ∂B2.
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In the following, we would like to verify that if u is a weak solution to (5.1), then
also v(x) is a weak solution to (5.1). Notice that the change of variables y = Q>x
does not change the shape of the domain Ω. Consider the test function ψ ∈ D(Ω)
such that ψ(x) := ϕ(Q>x) for some ϕ ∈ D(Ω). Then for the i-th component of
∇ψ it holds that

[∇ψ(x)]i =
d∑
j=1

[
∇ϕ(Q>x)

]
j
Q>ji =

[
Q∇ϕ(Q>x)

]
i

By the same procedure we get that ∇v(x) = Q>∇u(Qx). In the following cal-
culation we use both these facts, starting with the weak formulation (3.2) for
u, ∫

Ω

∇u(x)

(1 + |∇u(x)|a)
1
a

· ∇ψ(x) dx = 0∫
Ω

∇u(QQ>x)

(1 + |∇u(QQ>x)|a)
1
a

·
(
Q∇ϕ(Q>x)

)
dx = 0∫

Ω

∇u(Qy)

(1 + |∇u(Qy)|a)
1
a

· (Q∇ϕ(y)) dy = 0∫
Ω

Q∇v(y)

(1 + |∇v(y)|a)
1
a

· (Q∇ϕ(y)) dy = 0∫
Ω

∇v(y)

(1 + |∇v(y)|a)
1
a

· ∇ϕ(y) dy = 0.

The last equation identifies v(x) to be a weak solution to (5.1). It holds that

Q∇u ·Q∇v =
d∑

i,j,k=1

Qij
∂u

∂xj
·Qik

∂v

∂xk
=

d∑
j,k=1

δjk
∂u

∂xj

∂v

∂xk
= ∇u · ∇v,

and therefore Q vanished in denominator in the element |∇v(y)|a, as

|Q∇v(y)|a =
(
|Q∇v(y)|2

)a
2 =

(
|∇v(y)|2

)a
2 = |∇v(y)|a,

and so did both Qs in the last integral. Moreover, in Chapter 3 we stated unique-
ness of weak solution and therefore

u(x) = v(x) = u(Qx).

Since the rotation matrix Q was chosen arbitrarily, this proves that u(x) = u(|x|).
Therefore ∇u(|x|) = u′(|x|) x

|x| , which implies that |∇u|a = (u′)a and at this

moment we start solving the problem (5.1),∫
Ω

∇u
(1 + |∇u|a)

1
a

· ∇ϕ dx = 0∫
Ω

u′(|x|)
(1 + (u′)a)

1
a

x

|x|
· ∇ϕ dx = 0

(5.2)
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Now, we express the test function ϕ as a function g defined on R in the way
that ϕ(x) =: g(|x|), g(1) = g(2) = 0. Now ∇ϕ(x) = g′(|x|) x

|x| and therefore

∇ϕ(x) x
|x| = g′(|x|). Using this in (5.2) and consequently changing to polar coor-

dinates we get that ∫
Ω

u′(|x|)
(1 + (u′(|x|))a)

1
a

g′(|x|) dx = 0∫ 2

1

∫
∂Br

u′(r)

(1 + (u′(r))a)
1
a

g′(r) dS dr = 0

Hd

∫ 2

1

rd−1u′(r)

(1 + (u′(r))a)
1
a

g′(r) dr = 0,

where Hd is Hausdorff measure of the unit sphere in Rd and this expression is
true for any g ∈ D(1, 2). Therefore

u′(r)

(1 + (u′(r))a)
1
a

=
c

rd−1

for all r ∈ [1, 2]. Absolute value of the left hand side is always less or equal to
one, r ≥ 1 and therefore |c| ≤ 1. Next, we raise the equation to the power of a
and after few easy steps get that

|u′(r)| = c|
(rad−a − |c|a)

1
a

.

Using the Cauchy Mean Value Theorem,

|u(r)| =
∫ 2

r

|c|
(zad−a − |c|a)

1
a

dz.

Without loss of generality, let c and K be nonnegative, i.e., c ∈ [0; 1] and K =
u(1) ≥ 0. We get that

u(1) ≤
∫ 2

1

1

(zad−a − 1)
1
a

dz. (5.3)

Our question is, what parameter a we can choose to be able to obtain arbi-
trary value of K only by an appropriate selection of the constant c in this step.
Firstly, note that if c = 0, then u(1) = 0 and therefore (5.3) holds if and only if
K = 0. Solving the more interesting case c ∈ (0, 1] we start with the following
approximation,

K ≤
∫ 2

1

1

(e(ad−a) ln z − 1)
1
a

dz v
∫ 2

1

1

((ad− a) ln z)
1
a

dz v
∫ 2

1

1

(ln z)
1
a

dz

v
∫ 2

1

1

(z − 1)
1
a

dz v
∫ 1

0

1

t
1
a

dt.

From the row properties we know that the value of K is finite if a > 1 and K
may be infinite only when a ∈ (0, 1]. This completes the proof.
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Conclusion

In the work we studied a generalized minimal surface problem. In the first
chapter we built the theory, which we consequently used. We tried to include
all important definitions and theorems to provide everything a graduate student
of mathematics would need to comprehend the following text. In Chapter 2 we
stated the main problem using the functional F and studied the properties of F ,
which were used to prove the theorems in Chapters 3 and 4. These two chapters
contain the most work that was done. In the third chapter we defined four
different notions of solution and showed how they relate. In the next one, these
results were used to prove that although the solution in the weakest sense always
exists, to be able to get the stronger notion defined in the previous chapter we
need to accept some restrictions on how general the modification of the minimal
surface problem can be. Finally, the last chapter contains a counterexample on
the existence of the weak solution on non-convex domain, which is the strongest
notion of solution we considered.

However, there are still some open problems awaiting to be solved in the
future, which we state here and maybe inspire someone to think about them.

1. One of the results of the fourth chapter says that for a ∈ (0, 2], there exists
a solution to (3.1) according to Definition 3.3. However, it is not known yet,
whether one can find a satisfying solution also for a > 2 and non-smooth data or
non-convex domain.

2. Also, the counterexample shows that for a < 1, there exists a weak solution
even on non-convex domain, however the geometry we used was really specific.
Therefore, there remains a conjecture, whether one can prove the existence in the
case a < 1 even for some more general geometry and more relaxed conditions on
data.
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