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Introduction

We investigate one-dimensional integral operators of the form

Saf (t) =

∫ ∞
0

a (st) f (s) ds,

defined for every suitable function f , locally integrable on (0,∞) and for an a-
priori fixed function a satisfying certain appropriate conditions. The function a
is throughout considered to be non-negative, non-increasing, bounded and not
identically equal to zero on (0,∞). Occasionally, further assumptions on a will
be imposed.

The investigation is motivated by the study of operators such as the Laplace
transform which is a pivotal example of Sa, being at the same time one of the
most important integral operators with a wide range of applications throughout
analysis and other parts of mathematics.

The principal characteristics of integral operators is how they act on function
spaces. Although the Lebesgue spaces Lp, where p ∈ [1,∞], play a primary
role in many areas of mathematical analysis, there exist other classes of Banach
spaces of measurable functions that are also of interest. Some of the well-known
larger classes than Lebesgue spaces, such as for instance Orlicz spaces or Lorentz
spaces, are of essential importance. The class of the so-called rearrangement-
invariant Banach function spaces, which had been built in the first half of the
20th century, mostly through the efforts of Young, Orlicz, Hardy, Littlewood,
Luxemburg, Lorentz, Zaanen and many others, provides a very reasonable and
at the same time a fairly general environment of function spaces. In particular,
it constitutes a common roof for all the classes of function spaces mentioned so
far, and many more.

Our aim in this thesis is to investigate the action of the operator Sa on
rearrangement-invariant Banach function spaces with a particular focus on the
optimality of such results. In particular, our principal goal is to characterize
the optimal rearrangement-invariant partner target space when a domain space,
also rearrangement-invariant, is given, and also to characterize the optimal do-
main space for a given target. The approach is based on a combination of the
techniques that have been developed in connection with investigation of optimal
function spaces in Sobolev embeddings (cf. e.g. [4, 5, 8]) with real interpolation
theory and weighted inequalities.

The thesis is structured as follows. In Chapter 1 we collect all the necessary
preliminary material such as rearrangement-invariant Banach function spaces,
certain function spaces which we will work with throughout the text and the K-
functional. We also quote the most important principles of this theory including
the Hardy lemma, the Hardy–Littlewood inequality, and the Holmstedt theorem.
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We study the spaces containing functions defined on a general totally σ-finite
measure spaces. We do not insert proofs of the known results, referring the
reader for example to the book Bennett and Sharpley ([2]). In Chapter 2 we
characterize the boundedness of the operator Sa on Banach function spaces. We
also present the optimality results and also show the usage of the interpolation
theory on establishing the pointwise estimate of a non-increasing rearrangement
of Sa applied on a given function. Finally, in Chapter 3 we will apply the obtained
result on a special case of the Laplace transform and we will study the action of
this operator on the Lorentz and the classical Lorentz spaces.
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Chapter 1

Preliminaries

1.1 Basic properties of rearrangement-invariant

spaces

In this section we collect basic definitions and ingredients from the theory of
rearrangement-invariant spaces and from the theory of the K-method of real in-
terpolation. We also fix notation and quote known basic results which will be
needed throughout the text. The proofs and further details can be found in [2].

We will denote by (R, µ) a totally σ-finite measure space, by M0(R, µ) the
set of all µ-measurable and a.e. finite functions on R, by M+(R, µ) the set of
all µ-measurable functions on R whose values lie in [0,∞] and by M+

0 (R, µ) the
subset of M0(R, µ) involving only non-negative functions.

Definition 1.1.1. A mapping ρ : M+ (R, µ)→ [0,∞] is called a Banach function
norm or just a function norm if, for all f, g, fn, (n = 1, 2, ...), in M+(R, µ), for all
constants a ≥ 0, and for all µ-measurable subsets E of R, the following properties
hold:

• (P1): ρ(f) = 0⇔ f = 0 µ-a.e.; ρ(af) = aρ(f); ρ(f + g) ≤ ρ(f) + ρ(g);

• (P2): 0 ≤ g ≤ f µ-a.e. ⇒ ρ(g) ≤ ρ(f);

• (P3): 0 ≤ fn ↗ f µ-a.e. ⇒ ρ(fn)↗ ρ(f);

• (P4): µ(E) <∞ ⇒ ρ(χE) <∞;

• (P5): µ(E) <∞ ⇒
∫
E
fdµ ≤ CEρ(f) for some constant CE, 0 < CE <∞,

depending on E and ρ but independent of f .

Definition 1.1.2. Let ρ be a function norm. The collection X = X(ρ) of all
functions f in M(R, µ) for which ρ (|f |) < ∞ is called a Banach function space.
For each f ∈ X, define

‖f‖X = ρ (|f |) .

An example of Banach function spaces are Lebesgue spaces Lp = Lp(R, µ).

Remark 1.1.3. We note that ‖f‖X is defined for every f ∈M(R, µ) but f ∈ X
if and only if ‖f‖X <∞.
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Now we present the non-increasing rearrangement of a given function and its
certain properties.

Definition 1.1.4. The distribution function µf of a function f in M0(R, µ) is
given by

µf (λ) = µ {x ∈ (0,∞) : |f (x)| > λ} , λ ∈ (0,∞) .

Definition 1.1.5. Two functions f ∈M0 (R, µ) and g ∈M0 (S, ν) are said to be
equimeasurable if they have the same distribution function, that is, if µf (λ) =
νg (λ) for all λ ≥ 0.

Definition 1.1.6. Suppose that f belongs to M0 (R, µ). The non-increasing
rearrangement of f is the function f ∗ defined on [0,∞) by

f ∗ (t) = inf {λ : µf (λ) ≤ t} , t ∈ (0,∞) .

Definition 1.1.7. Let ρ be a function norm over a totally σ-finite measure space
(R, µ). Then ρ is said to be rearrangement-invariant if ρ (f) = ρ (g) for every
pair of equimeasurable functions f and g in M+

0 (R, µ). In that case, the Banach
function space X = X (ρ) generated by ρ is said to be a rearrangement-invariant
space.

The next proposition gives us certain important properties of the non-increasing
rearrangement.

Proposition 1.1.8. Suppose f, g and fn, (n = 1, 2, . . .), belong to M0 (R, µ) and
let a be any scalar. The non-increasing rearrangement f ∗ is a non-negative, non-
increasing, right-continuous function on [0,∞). Furthermore,

|g| ≤ |f | a.e. ⇒ g∗ ≤ f ∗, (1.1.1)

(af)∗ = |a| f ∗, (1.1.2)

(f + g)∗ (t1 + t2) ≤ f ∗ (t1) + g∗ (t2) , (1.1.3)

|fn| ↗ |f | a.e. ⇒ f ∗n ↗ f ∗. (1.1.4)

Next we shall present a function that often serves as an alternative for the
non-increasing rearrangement in appropriate situations and is sometimes easier
to work with.

Definition 1.1.9. Let f belong to M0(R, µ). Then f ∗∗ will denote the maximal
function of f ∗ defined by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds, t > 0.

Theorem 1.1.10. Let f, g belong to M0(R, µ), let t > 0. Then

(f + g)∗∗(t) ≤ f ∗∗(t) + g∗∗(t).

5



We shall now present the definition and certain properties of the associate
spaces.

Definition 1.1.11. If ρ is a function norm, its associate norm ρ′ is defined on
M+(R, µ) by

ρ′ (g) = sup

{∫
R

fgdµ : f ∈M+(R, µ), ρ (f) ≤ 1

}
.

Remark 1.1.12. In Definition 1.1.11, the expression
∫
R
fgdµ can be replaced

with
∫
R
|fg| dµ or

∫
R
f ∗g∗dµ.

Theorem 1.1.13. Let ρ be a function norm. Then the associate norm ρ′ is itself
a function norm.

Definition 1.1.14. Let ρ be a function norm and let X = X (ρ) be the Banach
function space determined by ρ. Let ρ′ be the associate norm of ρ. The Banach
function space X (ρ′) determined by ρ′ is called the associate space of X and is
denoted by X ′.

We recall that the sum X + Y of rearrangement-invariant function spaces X
and Y over the same measure space (R, µ) is defined by

X + Y = {f ∈M(R, µ) : f = g + h, g ∈ X, h ∈ Y }

and normed by
‖f‖X+Y = inf

f=g+h
(‖g‖X + ‖h‖Y ),

where the infimum is extended over all such decompositions of the function f .
The intersection X ∩ Y of such spaces is normed by

‖f‖X∩Y = max{‖f‖X , ‖f‖Y }.

Remark 1.1.15. The basic examples of associate spaces are:

• if 1 ≤ p ≤ ∞ then (Lp)′ = Lp
′
, where p′ =


p
p−1

if 1 < p <∞
1 if p =∞
∞ if p = 1

• (L1 ∩ L∞)′ = L1 + L∞.

We shall now quote several theorems which play an important role in the
theory of Banach function spaces.

Theorem 1.1.16 (Hölder’s inequality). Let X be a Banach function space
with the associate space X ′. If f ∈ X and g ∈ X ′, then fg is integrable and∫

R

|fg| dµ ≤ ‖f‖X ‖g‖X′ .
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Theorem 1.1.17 (Hardy’s lemma). Let ξ1 and ξ2 be non-negative measurable
functions on (0,∞) and suppose∫ t

0

ξ1 (s) ds ≤
∫ t

0

ξ2 (s) ds

for all t > 0. Let η be any non-negative non-increasing function on (0,∞). Then∫ ∞
0

ξ1 (s) η (s) ds ≤
∫ ∞

0

ξ2 (s) η (s) ds.

Theorem 1.1.18 (Hardy’s inequality). Let ψ ≥ 0 on (0,∞), −∞ < λ < 1
and 1 ≤ q ≤ ∞, then{∫ ∞

0

(
tλ

1

t

∫ t

0

ψ (s) ds

)q
dt

t

} 1
q

≤ 1

1− λ

{∫ ∞
0

(
tλψ (t)

)q dt
t

} 1
q

.

We shall now state a result from [4] on a weighted inequality for a kernel
operator.

Theorem 1.1.19. Let v, w be weights, that is, positive mesurable locally integrable
functions on (0,∞). Let φ : (0,∞)× (0,∞)→ (0,∞) and let

Sφf (x) =

∫ ∞
0

φ (x, y) f (y) dy; Φ (x, r) =

∫ r

0

φ (x, y) dy.

If 1 ≤ q ≤ p <∞ and there exists a positive C such that for every r > 0 we have(∫ r

0

w

) 1
p

≤ C

(∫ ∞
0

Φ (x, r)q v(x)dx

) 1
q

,

then for every f non-negative and non-increasing on (0,∞) we get(∫ ∞
0

fpw

) 1
p

≤ C

(∫ ∞
0

(Sφf)q v

) 1
q

.

We shall now introduce the concept of Lorentz spaces, which will be needed
throughout the text.

Definition 1.1.20. Let 0 < p, q ≤ ∞. Then a Lorentz space Lp,q = Lp,q(0,∞) is
the collection of all measurable functions f on (0,∞) such that

‖f‖p,q = ‖t
1
p
− 1
q f ∗(t)‖Lq(0,∞) <∞.

Proposition 1.1.21. The Lorentz space Lp,p, (0 < p ≤ ∞), coincides with the
Lebesgue space Lp, and for f ∈ Lp

‖f‖p,p = ‖f‖p .

Theorem 1.1.22. Suppose 1 ≤ q ≤ p <∞ or p = q =∞. Then (Lp,q, ‖·‖p,q) is
a rearrangement-invariant Banach function space.
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Theorem 1.1.23. Let (R, µ) be a measure space and suppose 1 < p < ∞, 1 ≤
q ≤ ∞ (or p = q = 1 or p = q = ∞). Then the associate space of Lp,q(R, µ) is
the Lorentz space Lp

′,q′(R, µ).

We will also introduce the concept of the so-called endpoint spaces, which will
be also needed later in the text.

Definition 1.1.24. Let a ∈ (0,∞]. A non-decreasing function ϕ : [0, a) 7−→
[0,∞) is called quasi-concave on [0,∞) if

ϕ (t) = 0⇔ t = 0

and
t

ϕ (t)
is non-decreasing on (0, a) .

Now we will define two types of Marcinkiewicz endpoint spaces.

Definition 1.1.25. Let ϕ be a quasi-concave function on [0, µ (R)). We then
denote by ‖·‖Mϕ

the functional defined by

‖g‖Mϕ
:= sup

t∈(0,µ(R))

ϕ (t) g∗∗ (t) , g ∈M0 (R, µ) ,

and by Mϕ the collection

Mϕ :=
{
g ∈M0 (R, µ) ; ‖g‖Mϕ

<∞
}
.

Definition 1.1.26. Let ϕ be a quasi-concave function on [0, µ (R)). We then
denote by ‖·‖mϕ the functional defined by

‖g‖mϕ := sup
t∈(0,µ(R))

ϕ (t) g∗ (t) , g ∈M0 (R, µ) ,

and by mϕ the collection

mϕ :=
{
g ∈ m0 (R, µ) ; ‖g‖mϕ <∞

}
.

Remark 1.1.27. We immediately see that Mϕ (R, µ) ↪→ mϕ (R, µ).

An important proposition follows.

Proposition 1.1.28. The functional ‖·‖Mϕ
is a Banach function norm and the

corresponding Marcinkiewicz endpoint space Mϕ is a rearrangement-invariant Ba-
nach function space. On the other hand the functional ‖·‖mϕ is not necessarily a

norm on M0 (R, µ).

Example 1.1.29. We present some examples of the spaces Mϕ and mϕ:

• Let ϕ (t) = t. Then Mϕ = L1 and mϕ = L1,∞, which is known not to be
equivalent to a norm.

• Let ϕ (t) = t
1
p for p > 1. Then Mϕ = mϕ = Lp,∞.

• Let ϕ (t) = χ(0,∞). Then Mϕ = mϕ = L∞.
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1.2 Facts from the theory of K-method

We shall now present some basic ingredients of the theory of the K-method of
real interpolation.

Definition 1.2.1. A pair (X0, X1) of Banach spaces X0 and X1 is called a com-
patible couple if there exists some Hausdorff topological vector space into which
each of X0 and X1 is continuously embedded.

Now we define the key notion of the K-functional.

Definition 1.2.2. Let (X0, X1) be a compatible couple of Banach spaces. The
K-functional is defined for each f from X0 +X1 and t > 0 by

K (f, t;X0, X1) = inf
{
‖f0‖X0

+ t ‖f1‖X1
: f = f0 + f1

}
,

where the infimum extends over all representations f = f0 + f1 of f with f0 ∈ X0

and f1 ∈ X1.

In the case when no misunderstanding can appear we will denote K (f, t) =
K (f, t;X0, X1). The next proposition is a useful tool for working with K-functionals.

Proposition 1.2.3. For each f in X0 +X1, the K-functional K (f, t;X0, X1) is
a non-negative concave function of t > 0, and

t−1K (f, t;X0, X1) = K
(
f, t−1;X1, X0

)
.

The next theorem shows that the value of the K-functional for the spaces L1

and L∞ can be expressed exactly. We shall show later that for certain different
pairs of spaces at least upper and lower estimates can be obtained.

Theorem 1.2.4. Let (R, µ) be a totally σ-finite measure space. Then, for each
f in (L1 + L∞) (R, µ) and t > 0 it holds

K
(
f, t;L1, L∞

)
=

∫ t

0

f ∗ (s) ds.

Definition 1.2.5. Let (X0, X1) be a compatible couple and suppose 0 < θ < 1,
1 ≤ q < ∞ or 0 ≤ θ ≤ 1, q = ∞. The space (X0, X1)θ,q consists of all f in
X0 +X1 for which the functional

‖f‖θ,q =
∥∥∥t−θ− 1

qK (f, t)
∥∥∥
q

is finite.

The following theorem can be obtained directly from definitions but is very
useful in practice.

Theorem 1.2.6. Let T : X0 → Y0 and T : X1 → Y1 where (X0, X1) and (Y0, Y1)
are compatible couples. Then

K (Tf, t;Y0, Y1) ≤M0K

(
f, t

M1

M0

;X0, X1

)
for all f in X0 +X1, all t > 0 and some constants M0 and M1.
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Let us fix some notation now. Let (X0, X1) be a compatible couple and
consider two interpolation spaces

Xθ0 = (X0, X1)θ0,q0 and Xθ1 = (X0, X1)θ1,q1

where 0 < θ0 < θ1 < 1 and 1 ≤ q0, q1 ≤ ∞. Then
(
Xθ0 , Xθ1

)
is itself a compatible

couple. We shall write K (f, t) = K
(
f, t;Xθ0 , Xθ1

)
.

The next theorem is one of the most important in the theory of the K-
functional. The symbol A ≈ B denotes that there exists a positive constant
C independent of appropriate quantities such that C−1A ≤ B ≤ CA.

Theorem 1.2.7 (T. Holmstedt). Let (X0, X1) be a compatible couple and sup-
pose 0 < θ0 < θ1 < 1 and 1 ≤ q0, q1 ≤ ∞, Let δ = θ1 − θ0. Then

K
(
f, tδ

)
≈
{∫ t

0

(
s−θ0K (f, s)

)q0 ds
s

} 1
q0

+ tδ
{∫ ∞

t

(
s−θ1K (f, s)

)q1 ds
s

} 1
q1

,

for all f in Xθ0 + Xθ1 and all t > 0. If q0 or q1 is infinite, the corresponding
integral is replaced by the supremum in the usual way.

The following result corresponds to the extreme case θ0 = 0 and θ1 = 1 of the
previous theorem considering X0 = L1, X1 = L∞.

Corollary 1.2.8. Suppose 0 < θ < 1, 1 ≤ q ≤ ∞, and let Xθ,q = (L1, L∞)θ,q.
Then

K
(
f, tθ;L1, Xθ,q

)
≈ tθ

{∫ ∞
t

(
s−θK

(
f, s;L1, L∞

))q ds
s

} 1
q

and

K
(
f, t1−θ;Xθ,q, L

∞) ≈ {∫ t

0

(
s−θK

(
f, s;L1, L∞

))q ds
s

} 1
q

with obvious modification if q =∞.
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Chapter 2

The operator Sa

In our preceding work [6] we described various properties of the Laplace transform
operator, such as boundedness between certain spaces or a pointwise estimate of
the non-increasing rearrangement of the Laplace transform of a given function.
Here we shall extend this theory to a fairly more general class of integral operators.

Given an appropriate function a on (0,∞), we define operator Sa as

Saf (t) :=

∫ ∞
0

a (st) f (s) ds,

for suitable functions f . An important example of such an operator is the above-
mentioned Laplace transform which corresponds to a (x) = e−x.

2.1 The action of one-dimensional integral op-

erators on function spaces

In this section we will examine properties of the operator Sa. We will start with
a precise definition of such operator and then we shall study its boundedness
between function spaces.

Definition 2.1.1. Let X be a rearrangement-invariant space over (0,∞). Let
a be a non-negative measurable bounded and non-increasing function on (0,∞)
such that a 6≡ 0 and a belongs to X ′. Then we can define the operator Sa for
every function f from L1 +X by

Saf (t) =

∫ ∞
0

a (st) f (s) ds for t ∈ (0,∞) .

We note that the integral in the definition of Sa is well defined for any f ∈
M+(0,∞). Moreover, it is convergent for functions from L1 + X (this follows
from the Hölder inequality).

We start with the basic boundedness result which holds in the case when a is
essentially bounded.

Theorem 2.1.2. Let a ∈ L∞ (0,∞). Then the operator Sa is well defined on
L1(0,∞), and, moreover,

Sa : L1 (0,∞)→ L∞ (0,∞) .

11



Proof. We have

‖Saf‖∞ = inf {α ≥ 0 : |Saf | ≤ α a.e. on (0,∞)}

≤ inf

{
α ≥ 0 : K

∫ ∞
0

|f (s)| ds ≤ α a.e. on (0,∞)

}
= K ‖f‖L1 ,

where K = ‖a‖∞, proving both the assertions.

Our next goal is to describe the boundedness of Sa between spaces in the
most general way possible. To this end, we shall take advantage of the dilation
operator.

Given t ∈ (0,∞), let us define the operator Et at g ∈M(0,∞) by

(Etg) (s) := g
(s
t

)
for s ∈ (0,∞) .

Definition 2.1.3. Given a rearrangement invariant space X, we define the set
HX by

HX =
{
g ∈M (0,∞) ; ‖g‖HX <∞

}
,

where

‖g‖HX = sup
t∈(0,∞)

t

‖Et‖X→X
g∗ (t) .

Remark 2.1.4. The function ‖·‖HX from the previous definition is a quasinorm
for any choice of X, but it is not always a function norm. We will add more
details in the Proposition 2.1.7.

The next theorem gives us a useful property of the function ‖Et‖X→X .

Theorem 2.1.5. Let X be a rearrangement invariant space. Then for all t ≥ 0
the function ‖Et‖X→X is quasi-concave.

Proof. We will first show that ‖Et‖X→X is non-decreasing. We will use the fact
that for all y ≥ 0 it is

(Etg)∗ (y) = g∗
(y
t

)
,

which we get from the chain

(Etg)∗t (y) = inf {λ : µEtg (λ) ≤ y} = inf {λ : µ {x ∈ (0,∞) : |(Etg) (x)| > λ} ≤ y}

= inf
{
λ : µ

{
x ∈ (0,∞) :

∣∣∣g (x
t

)∣∣∣ > λ
}
≤ y
}

=z=x
t inf {λ : µ {zt ∈ (0,∞) : |g (z)| > λ} ≤ y}

= inf {λ : tµ {z ∈ (0,∞) : |g (z)| > λ} ≤ y}

= inf
{
λ : µ {x ∈ (0,∞) : |g (x)| > λ} ≤ y

t

}
= g∗

(y
t

)
.
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By using Remark 1.1.12 we get

‖Et‖X→X = sup
g 6≡0

‖Etg‖X
‖g‖X

= sup
g 6≡0

sup
‖h‖X′≤1

∫∞
0

(Etg)∗ (s)h∗ (s) ds

‖g‖X

= sup
g 6≡0

sup
‖h‖X′≤1

∫∞
0
g∗
(
s
t

)
h∗ (s) ds

‖g‖X
,

which is increasing in t thanks to the monotonicity of g∗.
Let us now write ‖Et‖ instead of ‖Et‖X→X . We would like to show that the

function ‖Et‖
t

is non-increasing. Again by using Remark 1.1.12 we have

‖Et‖
t

= sup
‖g‖X=1

1

t
‖Etg‖X = sup

‖g‖X=1

sup
‖h‖X′=1

1

t

∫ ∞
0

g∗
(s
t

)
h∗ (s) ds

=y= s
t sup
‖g‖X=1

sup
‖h‖X′=1

∫ ∞
0

g∗ (y)h∗ (ty) dy,

which is non-increasing in t due to the monotonicity of h∗.

The next theorem shows a boundedness result for the operator Sa in the case
when a belongs to a general rearrangement-invariant space. For convenience,
we shall assume that a belongs to the associate space of a given rearrangement-
invariant space.

Theorem 2.1.6. Let X be a rearrangement-invariant space and let a ∈ X ′, non-
increasing, non-negative. Then

Sa : X → HX .

Proof. Let us denote K = ‖a‖X′ . Then we get on using the change of variables
and Hölder’s inequality (Theorem 1.1.16) that

tSaf (t) = t

∫ ∞
0

a (ts) f (s) ds

=y=ts

∫ ∞
0

a (y) f
(y
t

)
dy

≤ ‖a‖X′
∥∥∥f ( ·

t

)∥∥∥
X

= ‖a‖X′ ‖Etf‖X
≤ K ‖Et‖X→X ‖f‖X ,

which implies

sup
t∈(0,∞)

t

‖Et‖
(Saf) (t) ≤ K ‖f‖X .

Let f ≥ 0. Then Saf = (Saf)∗ since a is non-increasing. We thus get

Sa : X → HX .

Now let f ∈ X (not necessarily non-negative). It is enough to show that

sup
t∈(0,∞)

t

‖Et‖
(Saf)∗ (t) ≤ sup

t∈(0,∞)

t

‖Et‖
(|Saf |) (t) .
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Let us denote ϕ (t) := t
‖Et‖ and h (t) := |Saf (t)|. Then

sup
t∈(0,∞)

ϕ (t)h (t) ≤ sup
t∈(0,∞)

ϕ (t) sup
s∈(t,∞)

h (s) = sup
s∈(0,∞)

h (s) sup
t∈(0,s)

ϕ (t)

= sup
s∈(0,∞)

h (s)ϕ (s) ,

because according to Theorem 2.1.5, ϕ is increasing. Therefore

sup
t∈(0,∞)

ϕ (t)h (t) = sup
t∈(0,∞)

ϕ (t) sup
s∈(t,∞)

h (s) .

Let us denote h̄ (t) := sups∈(t,∞) h (s). Then h̄ ≥ h, therefore also
(
h̄
)∗ ≥ h∗.

Moreover,
(
h̄
)∗

= h̄ because h̄ is non-increasing. Consequently,

sup
t∈(0,∞)

ϕ (t)h (t) = sup
t∈(0,∞)

ϕ (t) h̄ (t) ≥ sup
t∈(0,∞)

ϕ (t)h∗ (t) .

We will now show that under certain conditions the quantity ‖·‖HX has prop-
erties of a Banach function norm. As we have already observed, this is not true
for any rearrangement-invariant space X.

Proposition 2.1.7. Let us assume that ϕ is quasi-concave and that there exists
c ≥ 0 such that for all t ≥ 0 ∫ t

0

ds

ϕ (s)
≤ ct

ϕ (t)
.

Then Mϕ = mϕ and therefore also mϕ is a Banach function space.

Proof. We get Mϕ ⊆ mϕ immediately from the fact that g∗∗ ≥ g∗. Let us assume
now that g ∈ mϕ and denote K := supt∈(0,∞) ϕ (s) g∗ (s). Then, for all s ≥ 0, one

has g∗ (s) ≤ K
ϕ(s)

, whence

g∗∗ (t) =
1

t

∫ t

0

g∗ (s) ds ≤ 1

t

∫ t

0

K

ϕ (s)
ds ≤ Kc

ϕ (t)
,

which implies
sup

t∈(0,∞)

ϕ (t) g∗∗ (t) ≤ Kc.

Thus mϕ ⊆Mϕ. Altogether, mϕ = Mϕ.

Corollary 2.1.8. Let X be a rearrangement-invariant space and let us assume
that there exists a constant c such that for all t ≥ 0 the inequality∫ t

0

‖Es‖X→X
s

ds ≤ c ‖Et‖X→X

holds. Then HX is a Banach function space.

Proof. This is an immediate consequence of Proposition 2.1.7 applied on ϕ (t) :=
t
‖Et‖ .
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Examples of such spaces were already mentioned in Examples 1.1.29.
We shall now present a useful simple observation.

Proposition 2.1.9. For a rearrangement-invariant space X and t ≥ 0 we have

‖Et‖X′→X′ = t
∥∥∥E 1

t

∥∥∥
X→X

.

Proof.

‖Et‖X′→X′ = sup
‖g‖X′=1

‖Etg‖X′ = sup
‖g‖X′=1

sup
‖h‖X=1

∫ ∞
0

Etg (s)h (s) ds

= sup
‖h‖X=1

sup
‖g‖X′=1

∫ ∞
0

g
(s
t

)
h (s) ds

= sup
‖h‖X=1

sup
‖g‖X′=1

t

∫ ∞
0

g (s)h (ts) ds = t sup
‖h‖X=1

∥∥∥E 1
t
h
∥∥∥
X

= t
∥∥∥E 1

t

∥∥∥
X→X

.

The exact value of ‖Et‖X→X is in general very difficult or even impossible to
compute. However, we will show that for example for the two-parameter Lorentz
space X = Lp,q this can be done.

Example 2.1.10. For Lp,q (0,∞), where 1 ≤ p, q ≤ ∞, and for all t > 0 it holds

‖Et‖Lp,q→Lp,q = t
1
p ,

and therefore for a ∈ Lp′,q′ , non-increasing and non-negative, we have

Sa : Lp,q → HLp,q ,

and HLp,q = Lp
′,∞.

Proof. We observe that, by a change of variables

‖Et‖Lp,q→Lp,q = sup
‖g‖Lp,q=1

‖Etg‖Lp,q = sup
‖g‖Lp,q=1

∥∥∥y 1
p
− 1
q (Etg)∗ (y)

∥∥∥
Lq(0,∞)

= sup
‖g‖Lp,q=1

(∫ ∞
0

(
y

1
p
− 1
q

)q (
g∗
(y
t

))q
dy

) 1
q

=z= y
t sup
‖g‖Lp,q=1

(∫ ∞
0

(
(zt)

1
p
− 1
q

)q
(g∗ (z))q tdz

) 1
q

=
(
t
q
p
−1t
) 1
q

sup
‖g‖Lp,q=1

(∫ ∞
0

(
z

1
p
− 1
q

)q
(g∗ (z))q dz

) 1
q

= t
1
p sup
‖g‖Lp,q=1

‖g‖Lp,q = t
1
p .

Thus, by the definition of the norm in HX , we get

‖g‖HLp,q = sup
t∈(0,∞)

t

t
1
p

g∗ (t) = sup
t∈(0,∞)

t
1
p′ g∗ (t) = ‖g‖p′,∞ .
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Remark 2.1.11. The Example 2.1.10 works also for the extreme case p =∞ even
though Lp

′,∞ = L1,∞ which is not a Banach function space and it is determined
by a quasinorm.

Example 2.1.12. Let ϕ be a quasi-concave function on (0,∞). For the space
mϕ, we have

‖Et‖mϕ→mϕ = sup
s∈(0,∞)

ϕ (st)

ϕ (s)
.

Proof. Note that

‖Et‖mϕ→mϕ = sup
‖g‖mϕ≤1

‖Etg‖mϕ = sup
‖g‖mϕ≤1

∥∥∥g ( ·
t

)∥∥∥
mϕ

= sup
‖g‖mϕ≤1

sup
s∈(0,∞)

ϕ (s) g∗
(s
t

)
= sup
{g;sups∈(0,∞) ϕ(s)g∗(s)≤1}

sup
s∈(0,∞)

ϕ (st) g∗ (s)

≤ sup
s∈(0,∞)

ϕ (st)

ϕ (s)
.

We get the converse inequality immediately from the special case g∗ (s)ϕ (s) = 1,
more explicitly

‖Et‖mϕ→mϕ = sup
{g;sups∈(0,∞) ϕ(s)g∗(s)≤1}

sup
s∈(0,∞)

ϕ (st) g∗ (s)

≥ sup
s∈(0,∞)

ϕ (st)

ϕ (s)
.

We can now make a pointwise estimate for a non-increasing rearrangement of
Sa applied to a given function. To this end, we will first need a characterization
of the K-functional for the couple (L1,∞, L∞). Such result is an analogue of
Theorem 1.2.4, even though in this case we do not get the exact formula. Instead,
we only obtain lower and upper estimates and we will show that the constants in
both these estimates are sharp.

Theorem 2.1.13. For every f ∈M0 (0,∞) and all t ∈ (0,∞), one has

sup
s∈(0,t)

sf ∗ (s) ≤ inf
f=g+h

(
‖g‖1,∞ + t ‖h‖∞

)
≤ 2 sup

s∈(0,t)

sf ∗ (s) (2.1.1)

and the constants in both inequalities are optimal.

Proof. The first inequality has already been proved in [6] but we shall recall the
detailed proof here for the sake of completeness.

We fix f and t > 0 and let α := inff=g+h {‖g‖L1,∞ + t ‖h‖L∞}. Without loss
of generality we can assume that f ∈ L1,∞ + L∞, therefore f = g + h where
g ∈ L1,∞ and h ∈ L∞.
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In the next step we use Proposition 1.1.8, part (1.1.3) and we get

f ∗ (s) ≤ g∗ (s) + h∗ (0) ,

therefore

sup
s∈(0,t]

sf ∗ (s) ≤ sup
s∈(0,t]

sg∗ (s) + sup
s∈(0,t]

sh∗ (0) ≤ sup
s∈(0,∞)

sg∗ (s) + th∗ (0)

= ‖g‖L1,∞ + t ‖h‖L∞ .

This holds for all g and h such that f = g + h so it holds for the infimum
as well. This completes the proof of the first inequality in (2.1.1). Now we shall
turn our attention to the second one. It is enough to show that it holds for one
particular pair of functions h0 and g0. For a fixed t > 0 we put

h0 (s) := min {|f (s)| , f ∗ (t)}

and
g0 (s) := |f (s)| − h0 (s) = max {|f (s)| − f ∗ (t) , 0} .

We need to show that h0 ∈ L∞ and that g0 ∈ L1,∞. The former assertion is
obvious. Next, observe that

• h∗0 (s) = min {f ∗ (s) , f ∗ (t)} =

{
f ∗ (t) for s ∈ (0, t)

f ∗ (s) for s ∈ (t,∞) ,

which follows easily from the fact that

µh0 (λ) = µ {s ∈ (0,∞) : min {|f (s)| , f ∗ (t)} > λ}
= µ {s ∈ (0,∞) : min {f ∗ (s) , f ∗ (t)} > λ} ,

where µh0 is a distribution function of the function h0. Similarly,

• g∗0 = max {f ∗ (s)− f ∗ (t) , 0} = (f ∗ (s)− f ∗ (t))χ(0,1) (s),

where the argument is similar to the previous, specifically

µg0 (λ) = µ {s ∈ (0,∞) : max {|f (s)| − f ∗ (t) , 0} > λ}
= µ {s ∈ (0,∞) : max {f ∗ (s)− f ∗ (t) , 0} > λ} ,

including the fact that the non-increasing rearrangement satisfies g∗0 (s) = 0
for all s ≥ t.

Without loss of generality, we can assume that

sup
s≥0

sf ∗ (s) <∞.

Then we have

sg∗0 (s) = (sf ∗ (s)− sf ∗ (t))χ(0,t) (s) ≤ sf ∗ (s) <∞.
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Therefore, applying supremum we get

sup
s∈(0,∞)

sg∗0 (s) <∞,

thus
g0 ∈ L1,∞.

We continue with showing that the inequality stated in the theorem holds:

‖g0‖1,∞ = sup
s∈(0,∞)

sg∗0 (s) = sup
s∈(0,∞)

(sf ∗ (s)− sf ∗ (t))χ(0,t) (s)

= sup
s∈(0,t)

(sf ∗ (s)− sf ∗ (t))

≤ sup
s∈(0,t)

sf ∗ (s) ,

and
t ‖h0‖∞ = tf ∗ (t) ≤ sup

s∈(0,t)

sf ∗ (s) .

Putting all these estimates together we get

‖g0‖1,∞ + t ‖h0‖∞ ≤ 2 sup
s∈(0,t)

sf ∗ (s) .

It remains to show the optimality of the constants in both estimates. The
constant 1 in the first inequality is clearly optimal. To see this, it is enough to
take f = χ(0,1) and t = 1. Indeed, then the left-hand side of the first inequality
in (2.1.1) equals

sup
s∈(0,1)

sχ(0,1)(s) = 1,

while the quantity on the right hand side equals

inf
f=g+h

(‖g‖L1,∞ + ‖h‖L∞),

which is obviously less than or equal to the quantity corresponding to the trivial
decomposition f = 0+f , that is, ‖χ(0,1)‖L∞ = 1. This shows that one cannot have
a smaller constant than 1 on the right-hand side of the first inequality in (2.1.1).

Now let us prove that the constant 2 at the second inequality is sharp, too.
We would like to find a function f for which the inequality would turn into an
equality for certain t > 0.

We put

f (x) =

{
1
x

on (0, 1]

1 on (1,∞) .

We are going to show that for t = 1 it is

inf
f=g+h

(
‖g‖1,∞ + ‖h‖∞

)
= 2.

The function f is non-increasing, therefore f = f ∗.
It also holds that

sup
s∈(0,t)

f ∗ (s) = max {1, t}
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and we verify that as follows. In case t ≤ 1 we have

sup
s∈(0,1)

sf ∗ (s) = sup
s∈(0,1)

s
1

s
= 1 = max {1, t} ,

while in case t > 1 we have

sup
s∈(0,t)

sf ∗ (s) = max

{
sup
s∈(0,1)

sf ∗ (s) , sup
s∈(1,t)

sf ∗ (s)

}

= max

{
1, sup

s∈(1,t)

s

}
= max {1, t} .

Thus for t = 1 we get
sup
s∈(0,1)

f ∗ (s) = 1.

Now we are going to show that ‖h‖∞ ≥ 1 and ‖g‖1,∞ ≥ 1 for any decomposi-

tion f = g + h where g ∈ L1,∞ and h ∈ L∞.

• If there exists γ < 1 and h such that

‖h‖∞ = γ < 1

then there exists c > 0 such that for all s > 0 it is

g∗ (s) ≥ c,

and that follows from the fact that f ≥ 1 on (0,∞) and that f = g + h.

But then we get ‖g‖1,∞ = sups∈(0,∞) sg
∗ (s) ≥ sups∈(0,∞) sc =∞ which is a

contradiction.

• If there exists γ < 1 such that

‖g‖1,∞ = sup
s∈(0,∞)

sg∗ (s) = γ,

we get that for all s ≥ 0 it is

sg∗ (s) ≤ γ

therefore

g∗ (s) ≤ γ

s
<

1

s

which is a contradiction again.

Now we are in a position to state the first of our pointwise estimates for the
operator Sa. It corresponds to the case when X = L∞, hence X ′ = L1.
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Theorem 2.1.14. Let a ∈ L1∩L∞ be non-increasing and non-negative on (0,∞).
Then there exists a positive constant C such that for every function g ∈ L1 +L∞

one has

(Sag)∗ (t) ≤ C

∫ 1
t

0

g∗ (s) ds for all t ≥ 0.

Proof. We fix t > 0. Using Theorem 2.1.2 and Example 2.1.10, we get

inf
g=g1+g2

(
‖Sag1‖∞ + t ‖Sag2‖1,∞

)
≤ inf

g=g1+g2
(C1 ‖g1‖1 + tC2 ‖g2‖∞) .

Using Theorem 2.1.13 for the second inequality we get

inf
g=g1+g2

(
‖Sag1‖∞ + t ‖Sag2‖1,∞

)
≥ t inf

Sag=f1+f2

(
‖f2‖1,∞ +

1

t
‖f1‖∞

)
≥ t sup

s∈(0, 1
t )
s (Sag)∗ (s) .

Therefore

t sup
s∈(0, 1

t )
s (Sag)∗ (s) ≤ inf

g=g1+g2
(C1 ‖g1‖1 + tC2 ‖g2‖∞) ,

and from Theorem 1.2.4 we get

t sup
s∈(0, 1

t )
s (Sag)∗ (s) ≤ C

∫ t

0

g∗ (y) dy.

That implies for s = 1
t

(Sag)∗ (t) ≤ C

∫ 1
t

0

g∗ (y) dy.

In what follows we shall need to know when a functional of the form f 7→
‖Saf ∗‖X′ , where X is a given rearrangement-invariant space, has properties of a
Banach function norm. For this purpose, the following assertion will be useful.

Theorem 2.1.15. Let a be non-increasing, non-negative on (0,∞) and a 6≡ 0.
Then for a rearrangement-invariant space X such that 1

t

∫ t
0
a (y) dy belongs to X ′

we define the functional F as

F : f 7−→ ‖Saf ∗‖X′

for f from M+ (0,∞). Then F is a Banach function norm.

Proof. We first note that since a is assumed to be non-increasing, one has a(t) ≤
1
t

∫ t
0
a(s)ds, whence the assumption a ∈ X ′ is automatically satisfied. Also, since

f ∗ is non-negative for every f ∈M(0,∞), the functional F is well defined.
We shall now verify the axioms (P1)-(P5) of a Banach function norm from

Definition 1.1.1.
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• (P1)

It is very easy to show that F (g) = 0 ⇔ g = 0 a.e. and that for λ ≥ 0 it
is F (λg) = λF (g). Therefore we will only show that F (f + g) ≤ F (f) +
F (g).

We fix f and g. Considering the fact from Theorem 1.1.10 we apply Hardy’s
lemma (Theorem 1.1.17) on

ξ1 := (f + g)∗ ,

ξ2 := f ∗ + g∗,

µ (t) := a (xt) for x > 0 fixed

and we get∫ ∞
0

(f + g)∗ (s) a (sx) ds ≤
∫ ∞

0

(f ∗ (s) + g∗ (s)) a (sx) ds.

Therefore

Sa (f + g)∗ (x) ≤ Saf
∗ (x) + Sag

∗ (x) for every x > 0.

Thus it immediately follows that

‖Sa (f + g)∗‖X′ ≤ sup
‖h‖X≤1

∫ ∞
0

h∗ (t) (Saf
∗ (t) + Sag

∗ (t)) (t) dt

= ‖Saf ∗‖X′ + ‖Sag
∗‖X′ .

• (P2) is obvious and (P3) follows easily from the Levi theorem.

• (P4)

Let E be such that µ(E) <∞. We have

Sa (χ∗E) (x) = Sa
(
χ(0,µ(E))

)
(x)

=

∫ µ(E)

0

a (xt) dt

=y=xt 1

x

∫ xµ(E)

0

a (y) dy.

Therefore

‖Sa (χ∗E)‖X = sup
‖h‖X≤1

∫ ∞
0

|h (x)| 1
x

(∫ xµ(E)

0

a (y) dy

)
dx,

and the last expression is finite if and only if 1
x

∫ x
0
a (y) dy is finite.

• (P5)

It holds

1.
∫
E
gdµ ≤

∫ µ(E)

0
g∗ (t) dt
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2.
∫ µ(E)

0
a (xt) dx = 1

t

∫ tµ(E)

0
a (y) dy

3. Therefore
∫
E
gdµ ≤

∫ µ(E)

0
g∗ (t)

(∫ µ(E)

0
a (xt) dx

)
t∫ tµ(E)

0 a(y)dy
dt.

Now we need the expression t∫ tµ(E)
0 a(y)dy

to be bounded on (0, µ (E)). The

problem is in the case when t is close to 0. But since a is non-increasing
and not identically equal to 0, we have lim inft→0+

1
t

∫ t
0
a (y) dy > 0.

Let us denote KE := maxt∈(0,µ(E))
t∫ tµ(E)

0 a(y)dy
.

Then ∫
E

gdµ ≤ KE

∫ µ(E)

0

g∗ (t)

(∫ µ(E)

0

a (xt) dx

)
dt

= KE

∫ µ(E)

0

χ∗E (x)

(∫ µ(E)

0

g∗ (t) a (xt) dt

)
dx

≤ KE

∫ ∞
0

χ∗E (x)

(∫ µ(E)

0

g∗ (t) a (xt) dt

)
dx,

which is by Hölder’s inequality (Theorem 1.1.16) less than or equal to

KE ‖χ∗E‖X

∥∥∥∥∥
∫ µ(E)

0

g∗ (t) a (xt) dt

∥∥∥∥∥
X′

≤ KE ‖χ∗E‖X ‖Sag
∗‖X′ .

One of our main goals is to characterize optimal pairs of rearrangement-
invariant Banach function spaces for an operator Sa. We shall first give a precise
definition of what the term optimality means in this case.

Definition 2.1.16. Given a rearrangement invariant space X, an operator T and
some class of function spaces W , we say that Y is the optimal range space for X
with respect to T in W if the following conditions are satisfied:

1. Y ∈ W ;

2. T : X → Y ;

3. if there exists Z ∈ W such that T : X → Z then Y ↪→ Z (Y ⊂ Z and there
exists c > 0 such that, for all g ∈M+

0 (0,∞), ‖g‖Z ≤ c ‖g‖Y ).

The next theorem is one of our main results. It provides us with a character-
ization of the optimal rearrangement-invariant range space which corresponds to
a given rearrangement-invariant domain space.

Theorem 2.1.17. Let X be a rearrangement-invariant space such that

1

x

∫ x

0

a (y) dy ∈ X ′.
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Define the space Y ′ by fixing the norm ‖g‖Y ′ := ‖Sag∗‖X′ as

Y ′ =
{
g ∈M+

0 (0,∞) : ‖g‖Y ′ <∞
}
.

Then ‖·‖Y ′ is a rearrangement-invariant norm and the space Y (obtained via
Y = Y ′′) is the optimal range space for X with respect to Sa in the class of
rearrangement-invariant spaces.

Proof. We will verify the axioms from the Definition 2.1.16. For the operator Sa
it holds Sa : X → Y ⇔ Sa : Y ′ → X ′ for every pair (X, Y ) of rearrangement-
invariant spaces. This is a well-known standard observation based on the fact
that the operator Sa is self-adjoint with respect to the L1-pairing, namely, one
has, by the Fubini theorem, for each appropriate pair of functions f, g∫ ∞

0

(Saf)g =

∫ ∞
0

f(Sag).

Thus, we establish the following facts:

1. Y ′ is rearrangement-invariant because ‖g‖Y ′ = ‖Sag∗‖X′ and ‖g∗‖Y ′ =
‖Sa (g∗)∗‖X′ = ‖Sag∗‖X′ therefore also Y is rearrangement-invariant.

2. For a given g ∈M+
0 (0,∞) we have

Sa : X → Y ⇔ Sa : Y ′ → X ′ ⇔ ‖Sag‖X′ ≤ C ‖g‖Y ′

and we also have

‖Sag‖X′ = ‖(Sag)∗‖X′ ≤ Ka

∥∥∥∥∥
∫ 1

t

0

g∗ (s) ds

∥∥∥∥∥
X′

≤ Ka ‖g‖Y ′ ,

which follows from

Sag (t) =

∫ ∞
0

a (st) g (s) ≥
∫ 1

t

0

a (st) g (s)

≥
∫ 1

t

0

a (1) g (s) ds for a non-increasing.

This implies ∥∥∥∥∥
∫ 1

t

0

g∗ (s) ds

∥∥∥∥∥
X′

≤ ‖Sag∗‖X′ = ‖g‖Y ′ .

Therefore
Sa : Y ′ → X ′.

3. Let Z be a rearrangement invariant space such that Sa : X → Z, then also
Sa : Z ′ → X ′ therefore ‖Sag‖X′ ≤ K ‖g‖Z′ . We also know that ‖g‖Z′ =
‖g∗‖Z′ . Then also ‖Sag∗‖X′ ≤ K ‖g∗‖Z′ as a special case. Then

‖g‖Y ′ = ‖Sag∗‖X′ ≤ K ‖g∗‖Z′ = K ‖g‖Z′ .

Therefore Z ′ ↪→ Y ′ whence Y ↪→ Z.
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Our next result is in some sense dual to the preceding one. We shall charac-
terize the optimal domain space for our operator as well. The definition of the
optimal domain space is the following.

Definition 2.1.18. Given a rearrangement invariant space Y , an operator T and
some class of function spaces W , we say that X is the optimal domain space for
Y with respect to T in W if the following conditions are satisfied:

1. X ∈ W ;

2. T : X → Y ;

3. if there exists Z ∈ W such that T : Z → Y then Z ↪→ X (Z ⊂ X and there
exists c > 0 such that, for all g ∈M+

0 (0,∞), ‖g‖X ≤ c ‖g‖Z).

And as the next theorem shows we can also get an optimal domain space for
a given rearrangement-invariant space.

Theorem 2.1.19. Let Y be a rearrangement-invariant space such that

1

x

∫ x

0

a (y) dy ∈ Y.

We define the space X by fixing the norm ‖g‖X = ‖Sag∗‖Y as

X =
{
g ∈M+

0 (0,∞) : ‖g‖X <∞
}
.

Then ‖·‖X is a rearrangement-invariant norm and X is the optimal domain space
for Y with respect to Sa in the class of rearrangement-invariant spaces.

Proof. For a given g ∈M+
0 (0,∞) we have

‖Sag‖Y = ‖(Sag)∗‖Y ≤ Ka

∥∥∥∥∥
∫ 1

t

0

g∗ (s) ds

∥∥∥∥∥
Y

≤ Ka ‖g‖X ,

using the same argument as in the proof of the Theorem 2.1.17. So we obtain
that Sa : X → Y . Let Z be such that Sa : Z → Y . Then

‖g‖Z = ‖g∗‖Z ≥ c ‖Sag∗‖Y = c ‖f‖X ,

therefore Z ↪→ X.

2.2 Pointwise estimates of the operator Sa

In this section we take a closer look at a special case X = Lp,q (0,∞).
We will proceed by developing the interpolation theory for our operator Sa.

We will do a pointwise estimate of the non-increasing rearrangement of our op-
erator Sa applied on a given function.

24



Theorem 2.2.1. Let a ∈ L∞ ∩ Lp′,q′ be a non-increasing, non-negative function
on (0,∞) and 1 ≤ p, q ≤ ∞. Then there exists a positive constant C depending
on a, p, q such that for every function g ∈ L1 + Lp,q one has

(Sag)∗ (y) ≤ Cy
− 1
p′

(∫ ∞
1
y

s
q
p
−1 (g∗ (s))q ds

) 1
q

for all y ≥ 0.

Proof. Let us recall some facts from the basic theory and what we have shown so
far.

For a belonging to L∞ ∩ Lp′,q′ , non-increasing, non-negative we have that

Sa : L1 → L∞

and
Sa : Lp,q → Lp

′,∞.

Therefore from Theorem 1.2.6 we get that

K
(
Sag, t;L

∞, Lp
′,∞
)
≤ cK

(
g, t;L1, Lp,q

)
for some constant c.

So now our intention is to look closer at expressions K
(
Sag, t;L

∞, Lp
′,∞) and

K (g, t;L1, Lp,q). We will express them without using the K-functional.

1. Case K (g, t;L1, Lp,q)

We want to use the Holmstedt theorem (Theorem 1.2.7), that is, Corol-
lary 1.2.8 for X0 := L1, X1 := L∞ and Xθ,q := Lp,q. So we need to find out
what is θ.

For the assumption Xθ,q = Lp,q we need the equivalence of the norms of
Xθ,q and Lp,q, in other words we need

‖g‖θ,q = ‖g‖Lp,q ,

and we will also show that ‖g‖θ,q is equivalent to
∥∥∥t−θ+1− 1

q g∗ (t)
∥∥∥
q
, therefore

θ = 1− 1

p
.

This observation can be verified as follows:

‖g‖θ,q =
∥∥∥t−θ− 1

qK (g, t;X0, X1)
∥∥∥
q

=

∥∥∥∥t−θ− 1
q

∫ t

0

g∗ (s) ds

∥∥∥∥
q

=
∥∥∥t−θ+1− 1

q g∗∗ (t)
∥∥∥
q

≈
∥∥∥t−θ+1− 1

q g∗ (t)
∥∥∥
q

because:

• Using Hardy’s inequality (Theorem 1.1.18) for λ = 1− θ we get∥∥∥t−θ+1− 1
q g∗∗ (t)

∥∥∥
q

=

(∫ ∞
0

(
t−θ
∫ t

0

g∗ (s) ds

)q
dt

t

) 1
q

≤ 1

θ

(∫ ∞
0

(
t1−θg∗ (t)

)q dt
t

) 1
q

=
1

θ

∥∥∥t1−θ− 1
q g∗ (t)

∥∥∥
q
.
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• The converse inequality holds as well, because g∗∗ (t) ≥ g∗ (t) for all
t ≥ 0.

So now that we have the equivalence of the norms stated above, we use
Corollary 1.2.8 for X0 := L1, θ := 1− 1

p
and Xθ,q := Lp,q and we get

K
(
g, tθ;L1, Lp,q

)
≈ tθ

(∫ ∞
t

(
s−θ
∫ s

0

g∗ (y) dy

)q
ds

s

) 1
q

,

therefore

K
(
g, t;L1, Lp,q

)
≈ t

(∫ ∞
tp′

s
q
p
−1 (g∗∗ (s))q ds

) 1
q

and by Hardy’s inequality for λ := 1
p

we also get

t

(∫ ∞
tp′

s
q
p
−1 (g∗∗ (s))q ds

) 1
q

≈ t

(∫ ∞
tp′

s
q
p
−1 (g∗ (s))q ds

) 1
q

.

2. Case K
(
Sag, t;L

∞, Lp
′,∞)

We will first compute K
(
g, t1−θ;Lp

′,∞, L∞
)

and then by easy modifications
we will get the desired expression above.

We set (L1, L∞)θ,∞ := Lp
′,∞ so we need to find θ again. Of course, in this

case the value of θ will be different from its previous occurrence. By the
same concept we get

‖g‖θ,∞ =
∥∥t−θK (g, t;L1, L∞

)∥∥
∞

= sup
t∈(0,∞)

t−θ
∫ t

0

g∗ (s) ds = sup
t∈(0,∞)

t1−θg∗∗ (t)

= ‖g‖
L

1
1−θ ,∞

,

therefore
1

1− θ
= p′ which implies θ =

1

p
.

Therefore

K
(
g, t1−θ;Lp

′,∞, L∞
)
≈ sup

s∈(0,t)

s−θ
∫ s

0

g∗ (y) dy

= sup
s∈(0,t)

s1−θg∗∗ (s) = sup
s∈(0,t)

s
1
p′ g∗∗ (s)

≈ sup
s∈(0,t)

s
1
p′ g∗ (s) ,

which follows from Hardy’s inequality for q =∞ and λ = 1
p′

.

Then
K
(
g, t;Lp

′,∞, L∞
)
≈ sup

s∈(0,tp′)
s

1
p′ g∗ (s)
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and by Proposition 1.2.3 we get

K
(
g, t;L∞, Lp

′,∞
)

= tK

(
g,

1

t
;Lp

′,∞, L∞
)

= t sup
s∈(0,t−p′)

s
1
p′ g∗ (s) .

The desired expression is thus

K
(
Sag, t;L

∞, Lp
′,∞
)
≈ t sup

s∈(0,t−p′)
s

1
p′ (Sag)∗ (s) .

So now we are ready to make the pointwise estimate. Using Theorem 1.2.6
and the considerations above we get

t sup
s∈(0,t−p′)

s
1
p′ (Sag)∗ (s) ≤ Ct

(∫ ∞
tp′

s
q
p
−1 (g∗ (s))q ds

) 1
q

for some constant C, which for y = t−p
′

gives

(Sag)∗ (y) ≤ Cy
− 1
p′

(∫ ∞
1
y

s
q
p
−1 (g∗ (s))q ds

) 1
q

.

Remark 2.2.2. The function y 7−→ y
− 1
p′
(∫∞

1
y
s
q
p
−1 (g∗∗ (s))q ds

) 1
q

is non-increasing.

Proof. It is enough to prove that the function y 7−→ y
1
p′
(∫∞

y
s
q
p
−1 (g∗∗ (s))q ds

) 1
q

is non-decreasing.
Using the change of variables z = s

y
for y fixed we get

y
1
p′

(∫ ∞
1

(zy)
q
p
−1 (g∗∗ (zy))q dzy

) 1
q

= y
1
p′

(∫ ∞
1

(zy)
q
p
−1

(
1

zy

∫ zy

0

g∗ (t) dt

)q
dzy

) 1
q

=

(∫ ∞
1

z
q
p
−1

(
1

z

∫ zy

0

g∗ (t) dt

)q) 1
q

,

which is clearly increasing in y.

Now we would like to point out that the obtained pointwise estimate from
Theorem 2.2.1 works as a special case of the Laplace transform. This gives an
alternative proof of an inequality that we have already proved in [6] (however
with a different constant).

Let X = L1, a (t) := exp−t, t ≥ 0. Then Sa = L, where L is the Laplace
transform defined on every function f ∈ (L1 + L∞) (0,∞) by

(Lf)(x) =

∫ ∞
0

f(s)e−xs ds, x ∈ (0,∞).
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Proposition 2.2.3. For every t > 0 and every measurable function g on (0,∞),
we have

(Lg)∗ (t) ≤ C

∫ 1/t

0

g∗ (s) ds.

Proof. In the case of the Laplace transform we had

L : L1 → L∞

L : L∞ → L1,∞

therefore p′ := 1 and q′ := 1 which implies p = q = ∞. Plugging those in the
inequality from the Theorem 2.2.1 (we are using the obtained expression with g∗∗

instead of g∗ which we showed are equivalent)

(Sag)∗ (y) ≤ Cy
− 1
p′

(∫ ∞
1
y

s
q
p
−1 (g∗∗ (s))q ds

) 1
q

,

we get

(Sag)∗ (y) ≤ C
1

y
sup

s∈( 1
y
,∞)

g∗∗ (s)

= C
1

y
sup

s∈( 1
y
,∞)

1

s

∫ s

0

g∗ (t) dt

= C
1

y
y

∫ 1
y

0

g∗ (t) dt.

The last theorem of this chapter shows that the obtained pointwise estimate
for the non-increasing rearrangement of the operator Sa applied on a given func-
tion is in fact a Banach function norm.

Theorem 2.2.4. For a rearrangement-invariant space X such that

• χ(1,∞) (t) 1
t
∈ X

• t−
1
p′χ(1,∞) (t) ∈ X,

and for any p, q ≥ 1 we define the space ZX,p,q as

‖g‖ZX,p,q =

∥∥∥∥∥∥t− 1
p′

(∫ ∞
1
t

s
q
p
−1 (g∗∗ (s))q ds

) 1
q

∥∥∥∥∥∥
X

.

Then ‖·‖ZX,p,q is a Banach function norm and also

Sa : X ′ → Z ′X,p,q for a ∈ Lp′,q′ .

Proof. To prove the first part we will verify the (P1)-(P5) from the Definition 1.1.1
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• (P1) is trivial where the triangle inequality follows easily from the Minkowski
inequality.

• (P2) and (P3) are also obvious.

• (P4) Without loss of generality let us assume that E = (0, 1) and let ZX
denote ZX,p,q. Then

∥∥χ(0,1)

∥∥
ZX

=

∥∥∥∥∥∥t− 1
p′

(∫ ∞
1
t

s
q
p
−1

(
min

{
1,

1

s

})q
ds

) 1
q

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥χ(0,1) (t) t
− 1
p′

(∫ ∞
1
t

s
q
p
−1s−qds

) 1
q

∥∥∥∥∥∥
X

+

+

∥∥∥∥∥∥χ(1,∞) (t) t
− 1
p′

(∫ 1

1
t

s
q
p
−1ds+

∫ ∞
1

s
q
p
−1−qds

) 1
q

∥∥∥∥∥∥
X

.

Let us denote the sum of the two norms from above as (1) + (2). Then

(1) =

∥∥∥∥∥χ(0,1) (t) t
− 1
p′

([
s
q
p
−q
]∞

1
t

) 1
q

∥∥∥∥∥
X

=

∥∥∥∥∥χ(0,1)t
− 1
p′

(
1

t

) 1
p
−1
∥∥∥∥∥
X

=

∥∥∥∥∥χ(0,1) (t) t
− 1
p′

(
1

t

)− 1
p′
∥∥∥∥∥
X

=
∥∥χ(0,1) (t)

∥∥
X
,

which is finite. We continue

(2) =

∥∥∥∥∥χ(1,∞) (t) t
− 1
p′

([
s
q
p

]1

1
t

+
[
s
q
p
−q
]∞

1

) 1
q

∥∥∥∥∥
X

=

∥∥∥∥χ(1,∞) (t) t
− 1
p′
(
t−

q
p

) 1
q

∥∥∥∥
X

=
∥∥∥χ(1,∞)t

− 1
p′ t−

1
p

∥∥∥
X

=

∥∥∥∥χ(1,∞) (t)
1

t

∥∥∥∥
X

,

and that is finite according to the assumption.

• (P5) Without loss of generality we can assume |E| = 1. It also holds∫
E
gdµ ≤

∫ µ(E)

0
g∗ (t) dt so it is enough to show that

∫ 1

0
g∗ (s) ds ≤ AE ‖g‖ZX .

We have

‖g‖ZX ≥

∥∥∥∥∥∥χ(1,∞) (t) t
− 1
p′

(∫ ∞
1
t

s
q
p
−1

(
1

s

∫ s

0

g∗ (y) dy

)q
ds

) 1
q

∥∥∥∥∥∥
X

≥
∫ 1

0

g∗ (y) dy

∥∥∥∥∥χ(1,∞) (t) t
− 1
p′

(∫ ∞
1

s
q
p
−1s−qds

) 1
q

∥∥∥∥∥
X

.

Let us denote A :=
(∫∞

1
s
q
p
−1s−qds

) 1
q

=
(∫∞

1
s
− q
p′−1

ds
) 1
q

which is finite.

Then

‖g‖ZX ≥ A

∫ 1

0

g∗ (y) dy
∥∥∥t− 1

p′χ(1,∞) (t)
∥∥∥
X
,

where the last expression is finite from the assumption.

29



We get the second part by using Fubini theorem and the Hölder’s inequality
as follows

‖Sag‖Z′X = ‖(Sag)∗‖Z′X ≤ ‖Sag
∗‖Z′X = sup

‖h‖Z≤1

∫ ∞
0

(Sag
∗)∗ (s)h∗ (s)

= sup
‖h‖Z≤1

∫ ∞
0

(Sah
∗)∗ (s) g∗ (s) ds

≤ C sup
‖h‖Z≤1

∫ ∞
0

g∗ (s) s
− 1
p′

(∫ ∞
1
s

y
q
p
−1 (h∗∗ (y))q dy

) 1
q

ds

≤ C ‖g∗‖X′ sup
‖h‖Z≤1

∥∥∥∥∥∥s− 1
p′

(∫ ∞
1
s

y
q
p
−1 (h∗∗ (y))q dy

) 1
q

∥∥∥∥∥∥
X

= C ‖g∗‖X′ sup
‖h‖Z≤1

‖h‖Z = C ‖g∗‖X′
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Chapter 3

Results and examples for the
Laplace transform

In this chapter we shall take a closer look at the Laplace transform, which is a
special case of our operator Sa obtained by taking a (x) := e−x. We recall that
the Laplace transform L is defined on every function f ∈ (L1 + L∞) (0,∞) by

(Lf)(x) =

∫ ∞
0

f(t)e−xt dt, x ∈ (0,∞).

3.1 The action of the Laplace transform on two-

parameter Lorentz spaces

In Theorem 2.1.17 we obtained a result showing optimality between rearrangement-
invariant spaces with respect to the Laplace transform, and we already know the
optimality for the case of Lp spaces for 1 < p < ∞. Now we will focus on more
general examples, namely one the spaces Lp,q for 1 < p, q < ∞ and the spaces
Λp (w) for 1 < p < ∞, where w is a weight function which has certain specific
properties that will be stated later.

Theorem 3.1.1. Assume that 1 < p, q <∞. Then

L : Lp,q → Lp
′,q.

Moreover, the range space is optimal.

Proof. We know that for 1 < p, q < ∞ it is (Lp,q)′ = Lp
′,q′ , therefore

(
Lp
′,q
)′

=

Lp,q
′
. To get that Lp

′,q is the optimal range space for Lp,q we need to show that
‖g‖Lp,q′ ≈ ‖Lg∗‖Lp′,q′ .

1. We shall prove that ‖Lg∗‖Lp′,q′ ≤ K ‖g‖Lp,q′ for some constant K.

It holds

‖Lg∗‖Lp′,q′ =
∥∥∥t 1

p′−
1
q′ (Lg∗)∗ (t)

∥∥∥
Lq′

=
∥∥∥t 1

p′−
1
q′ (Lg∗) (t)

∥∥∥
Lq′

because g∗ ≥ 0.
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We continue∥∥∥t 1
p′−

1
q′ (Lg∗) (t)

∥∥∥
Lq′

=

(∫ ∞
0

t

(
1
p′−

1
q′

)
q′

(Lg∗ (t))q
′
dt

) 1
q′

=

(∫ ∞
0

t
q′
p′−1

(Lg∗ (t))q
′
dt

) 1
q′

≤

∫ ∞
0

t
q′
p′−1

(∫ 1
t

0

g∗ (s) ds

)q′

dt

 1
q′

,

which follows from Theorem 2.2.3.

Now we substitute 1
t

for y and get(∫ ∞
0

y
1− q

′
p′

(∫ y

0

g∗ (s) ds

)q′
1

y2
dy

) 1
q′

=

(∫ ∞
0

(
y

1
p

1

y

∫ y

0

g∗ (s) ds

)q′
1

y
dy

) 1
q′

≤ 1

1− 1
p

(∫ ∞
0

(
y

1
p g∗ (y)

)q′ 1

y
dy

) 1
q′

from Theorem 1.1.18 setting λ := 1
p
.

Finally we get

1

1− 1
p

(∫ ∞
0

(
y

1
p g∗ (y)

)q′ 1

y
dy

) 1
q′

= p′
(∫ ∞

0

y
q′
p
−1 (g∗ (y))q

′
dy

) 1
q′

= p′
∥∥∥y 1

p
− 1
q′ g∗ (y)

∥∥∥
Lq′

= p′ ‖g‖Lp,q′ .

2. Now we want to prove the converse inequality. We are going to use Theo-
rem 1.1.19 and we set

• φ (x, t) := e−xt

• f := g∗

• w := t
q′
p
−1

• v := t
q′
p′−1

• p̃ = q̃ := q′

Therefore:

• Sφf (x) =
∫∞

0
e−xyg∗ (y) dy

• Φ (x, r) =
∫ r

0
e−xydy

The assumption of Theorem 1.1.19 is that for all r > 0 it holds

(∫ r

0

t
q′
p
−1

) 1
q′

≤ C

(∫ ∞
0

(∫ r

0

e−tydy

)q′
t
q′
p′−1

dt

) 1
q′

.
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Now we have to verify this assumption.

The left-hand side equalst q′p
q′

p

r
0


1
q′

=

r q′p
q′

p

 1
q′

= r
1
p

(
p

q′

) 1
q′

.

We shall consider the right-hand side. We set

F (r) :=

(∫ ∞
0

(∫ r

0

e−tydy

)q′
t
q′
p′−1

dt

) 1
q′

=

(∫ ∞
0

(
1− e−tr

t

)q′
t
q′
p′−1

dt

) 1
q′

.

Then we have

F (r)

r
=

(∫ ∞
0

(
1− e−tr

tr

)q′
t
q′
p′−1

dt

) 1
q′

=

∫ ∞
0

(
1− e−y

y

)q′
y
q′
p′−1

r
q′
p′−1

dy

r

 1
q′

= F (1) r
− 1
p′ ,

therefore
F (r) = F (1) r

− 1
p′+1

= F (1) r
1
p .

By comparing both sides we get

r
1
p

(
p

q′

) 1
q′

≤ CF (1) r
1
p

for some C.

The assumption is therefore verified and the desired inequality follows from
the statement of the Theorem 1.1.19.

The last thing we need to verify is that 1−e−x
x
∈ Lp′,q′ (0,∞) in other words∥∥∥1−e−x

x

∥∥∥
Lp′,q′

<∞.

It holds∥∥∥∥1− e−x

x

∥∥∥∥
Lp′,q′

=

∥∥∥∥x 1
p′−

1
q′

(
1− e−x

x

)∗∥∥∥∥
Lq′

=

∥∥∥∥x 1
p′−

1
q′

1− e−x

x

∥∥∥∥
Lq′

=

(∫ ∞
0

x
q′
p′−1

(
1− e−x

x

)q′
dx

) 1
q′

.

We sill use the elementary fact that the function 1−e−x
x

is equivalent to min
{

1, 1
x

}
on (0,∞) (up to absolute positive constants).
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• For the interval (0, 1) we get∫ 1

0

x
q′
p′−1

dx =

[
x q
′

p′

q′

p′

]1

0

=
p′

q′
<∞.

• For the interval (1,∞) we get∫ ∞
1

x
q′
p′−1 1

xq′
dx =

∫ ∞
1

x
q′
p′−1−q′

dx =

∫ ∞
1

x
q′
(

1
p′−1

)
−1
dx

=

∫ ∞
1

x
−
(

1+ q′
p

)
dx.

The last expression is less than infinity if and only if q′

p
> 0 and that always

holds.

3.2 The action of the Laplace transform on clas-

sical Lorentz spaces

In this section we intend to point out one more example of an optimality result for
the Laplace transform. We will start with the definition of the so-called classical
Lorentz spaces of type Λ and Γ.

Definition 3.2.1. Let 0 < p ≤ ∞ and let w be a weight on (R, µ). The classical
Lorentz space Λp (w) is the collection of all functions f ∈ M0(R, µ) such that
‖f‖Λp (w) is finite, where

‖f‖Λp (w) :=


(∫ µ(R)

0
(f ∗ (t))pw (t) dt

) 1
p

if p <∞
sup0<t<µ(R) f

∗ (t)w (t) if p =∞.

The space Γp (w) is the collection of all functions f ∈M0(R, µ) such that ‖f‖Γp (w)
is finite, where

‖f‖Γp (w) :=


(∫ µ(R)

0
(f ∗∗ (t))pw (t) dt

) 1
p

if p <∞
sup0<t<µ(R) f

∗∗ (t)w (t) if p =∞.

Theorem 3.2.2. It holds

L : Λp (w)→ Λp (w̄)

for 0 < p ≤ ∞ and some weight function w, where w̄ (t) = w̃
(

1
t

)
tp
′−2 and

w̃ (t) = tp
′
w(t)

(
∫ t
0 w(s)ds)

p′ , with the following conditions on w

• w ∈ L1 (0,∞),

• w̃ ∈ L1 (0, 1),
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•
∫∞

1
(1 + ln t)p

′ w̃(t)

tp′
dt <∞,

• w̃ is non-negative.

Proof. It holds
(Λp (w))

′
= Γp

′
(w̃) .

• At first we want to find the conditions on w and w̃. We immediately see that
w ∈ L1 (0,∞). The assumption for Theorem 2.1.15 is that min

{
1, 1

t

}
∈

Γp
′
(w̃):

∥∥∥∥min

{
1,

1

t

}∥∥∥∥
Γp′ (w̃)

=

(∫ ∞
0

(∫ t

0

min

{
1,

1

s

}
ds

)p′
w̃ (t)

tp′
dt

) 1
p′

=

(∫ 1

0

(∫ t

0

1ds

)p′
w̃ (t)

tp′
dt+

∫ ∞
1

(∫ 1

0

1ds+

∫ t

1

1

s
ds

)p′
w̃ (t)

tp′
dt

) 1
p′

=

(∫ 1

0

w̃ (t) dt+

∫ ∞
1

(1 + ln t)p
′ w̃ (t)

tp′
dt

) 1
p′

.

Therefore w̃ is in L1 (0, 1) and is such that∫ ∞
1

(1 + ln t)p
′ w̃ (t)

tp′
dt <∞.

• Now we want to show that ‖Lg∗‖Γp′ (w̃) ≈ ‖g∗‖Γp′ (w̄) .

‖Lg∗‖Γp′ (w̃) =

(∫ ∞
0

(∫ t

0

Lg∗ (s) ds

)p′
w̃ (t)

tp′
dt

) 1
p′

≤

∫ ∞
0

(∫ t

0

∫ 1
s

0

g∗ (x) dxds

)p′

w̃ (t)

tp′
dt

 1
p′

,

and that follows from the fact that

Lg∗ (s) = (Lg∗ (s))∗ ≤
∫ 1

s

0

(g∗ (s))∗ ds =

∫ 1
s

0

g∗ (s) ds.

This however immediately follows from Theorem 2.2.3.

We continue ∫ ∞
0

(∫ t

0

∫ 1
s

0

g∗ (x) dxds

)p′

w̃ (t)

tp′
dt

 1
p′

=

∫ ∞
0

(
1

t
p′−1
p′
w̃ (t)

1
p′

∫ t

0

∫ 1
s

0

g∗ (x) dxds

)p′

dt

t

 1
p′

.
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We next use Hardy’s inequality (Theorem 1.1.18). We put

ψ := w̃ (t)
1
p′

∫ 1
s

0

g∗ (x) dx,

λ :=
1

p′
,

q := p′,

and get ∫ ∞
0

(
1

t
p′−1
p′
w̃ (t)

1
p′

∫ t

0

∫ 1
s

0

g∗ (x) dxds

)p′

dt

t

 1
p′

≤ p

∫ ∞
0

(
t

1
p′ w̃ (t)

1
p′

∫ 1
t

0

g∗ (x) dx

)p′

dt

t

 1
p′

= p

∫ ∞
0

(∫ 1
t

0

g∗ (x) dx

)p′

w̃ (t) dt

 1
p′

=y= 1
t p

(∫ ∞
0

(∫ y

0

g∗ (x) dx

)p′
w̃

(
1

y

)
dy

y2

) 1
p′

= p

(∫ ∞
0

(∫ y

0

g∗ (x) dx

)p′
w̄ (y)

yp′
dy

) 1
p′

= p ‖g∗‖Γp′ (w̄) .

Now we want the converse inequality.

It holds:

Lg∗ (t) =

∫ ∞
0

e−xtg∗ (x) dx ≥
∫ 1

t

0

e−xtg∗ (x) dx ≥ 1

e

∫ 1
t

0

g∗ (x) dx.

Therefore

‖Lg∗‖Γp′ (w̃) =

(∫ ∞
0

(∫ t

0

Lg∗ (s) ds

)p′
w̃ (t)

tp′
dt

) 1
p′

≥

1

e

∫ ∞
0

(∫ t

0

∫ 1
s

0

g∗ (x) dxds

)p′

w̃ (t)

tp′
dt

 1
p′

.
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We finish the proof by the following chain based on an elementary change
of variables:

‖Lg∗‖Γp′ (w̃) =

1

e

∫ ∞
0

(∫ ∞
1
t

∫ y

0

g∗ (x) dx
dy

y2

)p′

w̃ (t)

tp′
dt

 1
p′

≥

1

e

∫ ∞
0

(∫ 1
t

0

g∗ (x) dx

∫ ∞
1
t

1

y2
dy

)p′

w̃ (t)

tp′
dt

 1
p′

=

1

e

∫ ∞
0

(∫ 1
t

0

g∗ (x) dx

)p′

w̃ (t) dt

 1
p′

=y= 1
t

(
1

e

∫ ∞
0

(
1

y

∫ y

0

g∗ (x) dx

)p′
w̃

(
1

y

)
yp
′ dy

y2

) 1
p′

=

(
1

e

∫ ∞
0

(∫ y

0

g∗ (x) dx

)p′
w̄ (y)

yp′
dy

) 1
p′

=

(
1

e

) 1
p′

‖g∗‖Γp′ (w̄) .

The proof is complete.
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