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Název práce: Vliv materiálových parametr̊u na stabilitu termálńı konvekce
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Kĺıčová slova: Rayleigh-Bénardova konvekce, Boussinesqova aproximace, lineárńı
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Chapter 1

Introduction

Rayleigh-Bénard convection represents a flow of a fluid in a horizontal layer heated
from below. The standard system of equations governing thermal convection
reads

divv = 0,

1

Pr

[
∂v

∂t
+ (v · ∇)v

]
= −Ra(T − T0)eẑ −∇Π +∆v,

∂T

∂t
= ∆T − v · ∇T,

where the unknowns are the velocity v, temperature T and pressure Π. The
reference temperature is denoted by T0 and dimensionless numbers arising from
scaling by Pr and Ra. This system is derived from the basic laws of conservation
by using the classical Boussinesq approximation which assumes that the material
coefficients – thermal conductivity, thermal expansivity and dynamical viscosity
– are constant. Moreover, the classical derivation neglects dissipation, adiabatic
heating/cooling and heat sources.

However, in geophysics the material properties such as thermal conductivity,
thermal expansivity and dynamic viscosity are are pressure- and temperature-
dependent which makes the classical results inapplicable. Our aim is to investi-
gate the Rayleigh-Bénard problem using the extended Boussinesq approximation

which assumes non-constant material coefficients and also retains the effects of
dissipation, adiabatic heating/cooling and heat sources.

More specifically, the presented thesis aims at

• the identification of the critical values of dimensionless parameters that
determine the onset of convection,

• the characterization of dominating convection patterns in marginally super-
critical states.

These issues are addressed by the application of
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• linear stability analysis,

• weakly non-linear analysis.

In the rest of this introductory chapter we present the basic equations describ-
ing the Rayleigh-Bénard problem and introduce the methods of linear stability
analysis and weakly non-linear analysis.

The second chapter concerns the onset of instability in both cases of the classical
and extended Boussinesq approximation. We develop a numerical method for
finding the critical threshold of instability and compare the numerical results with
the analytical solutions which are known for the classical case. We then analyse
the results for the extended Boussinesq approximation and compare them with
the classical case.

In the third chapter we treat the convection in the slightly supercritical regime
again in both cases of the Boussinesq aprroximation and compare the two. We
quantify the evolution of convection numerically extending the model from the
previous chapter.

The study of Rayleigh-Bénard problem in the case of the extended Boussinesq
approximation is geophysically motivated – we are interested in thermal convec-
tion occurring in the Earth’s mantle. Let us then begin with the fundamental
laws of conservation describing transfer of heat in the Earth’s mantle.

1.1 Basic hydrodynamic equations

See Matyska and Yuen (2007) for details in this and the following section.

By x = (x, y, z) we denote the spatial coordinates, by t we denote time. The
operators {∇, div,∆} are defined as usual and are always taken with respect to
the spatial coordinates only.

The fundamental conservation laws of continuum mechanics are as follows

Equation of continuity
∂̺

∂t
+ div(̺v) = 0, (1.1)

where ̺ is the density and v is the velocity of motion.

Equation of motion

∂(̺v)

∂t
+ div(̺v ⊗ v) = ̺b+ divT,

where b is the body force density and T is the Cauchy stress tensor. In our case
we consider non-rotating Earth model – there will be only gravitational force per
unit mass g acting as the body force density. Further, we consider the Newtonian
fluid, i.e.

T = −pI+ λ(div v)I+ 2µD(v),
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where p is the pressure, λ and µ are viscosity coefficients (depending on p and T

in general) and D(v) = 1
2

[
∇v + (∇v)T

]
is the symmetric velocity gradient. We

can then rewrite the equation of motion (using the equation of continuity) in the
form

̺

[
∂v

∂t
+ (v · ∇)v

]
= ̺g −∇p +∇ (λ divv) + div (2µD) . (1.2)

Heat equation

̺T

[
∂s

∂t
+ (v · ∇) s

]
= div(k∇T ) + λ(div v)2 + 2µD : D+Q,

where T is the absolute temperature, s is the entropy per unit mass, k is the
thermal conductivity and Q are the volumetric heat sources. The term div(k∇T )
describes conduction of heat and the term [λ(divv)2 + 2µD : D] describes the
dissipation.

If we assume that there is a reference hydrostatic state characterized by v ≡
0, the hydrostatic pressure p0, hydrostatic density ̺0 and hydrostatic gravity
acceleration g0 are according to (1.2) related by the equation

∇p0 = ̺0g0. (1.3)

Moreover, if pressure deviations Π = p − p0 are negligible in the heat equation,
the transfer of heat in a homogeneous material (i.e. entropy may be considered
as a function of only p and T ) is then described by

̺cp
∂T

∂t
= div(k∇T )− ̺cpv · ∇T − ̺vr̂αTg + λ(div v)2 + 2µD : D+Q, (1.4)

where cp is the isobaric specific heat, α is the thermal expansion coefficient and vr
denotes the radial component of velocity. The left-hand side of (1.4) represents
local changes of heat balance, the second (third) term on the right-hand side
describes advection of heat (adiabatic heating/cooling).

We must add to the balance equations the equation of state which we write in
the form

̺ = ̺(p, T ). (1.5)

1.2 Boussinesq approximation

It is understood that buoyancy, and hence gravity, is responsible for the appear-
ance of convection cells. The essence of the Boussinesq approximation thus lies in
neglecting the variation of density everywhere except in the buoyancy that drives
the motion.

If we neglect density changes caused by the pressure deviations Π = p − p0,
we may linearize the state equation with respect to the temperature deviations
T − T0, where T0 is a reference temperature, and write

̺ = ̺0 [1− α(T − T0)] . (1.6)
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The influence of hydrostatic pressure on density is thus hidden in a spatial de-
pendence of the reference density ̺0.

Since the reference density ̺0 is assumed to be a time-independent function,
considering only the largest term in the equation of continuity, i.e. neglecting
thermal expansion, we arrive at the simplified equation

div(̺0v) = 0. (1.7)

Putting (1.3) and (1.6) into (1.2) yields

̺0

[
∂v

∂t
+ (v · ∇)v

]
= −̺0α(T − T0)g0 −∇Π+∇(λ divv) + div(2µD), (1.8)

where we neglected the thermal expansion on the left-hand side, i.e., the changes
of the inertial force due to the thermal expansion, and the quadratic term ̺0α(T−
T0)(g − g0) and the self-gravitation term ̺0(g − g0) on the right-hand side.

We simplify the heat equation by replacing ̺ by ̺0 , i.e.

̺0cp
∂T

∂t
= div(k∇T )− ̺0cpv · ∇T − ̺0v

r̂αTg + λ(div v)2 + 2µD : D+Q. (1.9)

The system of equations (1.7)-(1.9) is referred to as the anelastic liquid approx-

imation of the conservation laws. For our purposes, it is common to neglect
compressibility in the equation of continuity (1.1) and to replace it by incom-
pressible model (where ̺0 is now constant). The obtained system of equations is
then usually called the extended Boussinesq approximation

div v = 0, (1.10)

̺0

[
∂v

∂t
+ (v · ∇)v

]
= −̺0α(T − T0)g0 −∇Π+ div(2µD), (1.11)

̺0cp
∂T

∂t
= div(k∇T )− ̺0cpv · ∇T − ̺0v

r̂αTg + 2µD : D+Q. (1.12)

Further substantial simplification of the studied system of equations can be ob-
tained by setting the reference density ̺0, the reference gravitational acceleration
g0 and the material coefficients α, cp, k and µ to be constant. Moreover, dissipa-
tion term 2µD : D, adiabatic heating/cooling term ̺0v

r̂αTg and the heat sources
Q are not taken into account. We then arrive at the system of equations called
the classical Boussinesq approximation

div v = 0, (1.13)

̺0

[
∂v

∂t
+ (v · ∇)v

]
= −̺0α(T − T0)g0 −∇Π+ µ∆v, (1.14)

∂T

∂t
= κ∆T − v · ∇T, (1.15)

where κ = k/̺0cp is the thermal diffusivity.

6



1.3 Linear stability analysis

The second chapter concerns the initial onset of instability studied via the dy-
namics of small perturbations to the basic flow. We explain the method of linear
stability analysis used for finding the threshold of instability on a model example
following the approach presented in Chandrasekhar (1961).

Let us consider an abstract evolution equation for unknown function u

∂u

∂t
= L(λ)u+N (u,u),

where L is a linear operator, N is a quadratic operator and λ ∈ R is a control
parameter. Let us also assume that appropriate boundary conditions are imposed
on u.

We find the basic flow 1 u0, i.e. time-independent solution of the governing equa-
tions fulfilling the corresponding boundary conditions. For simplicity let us as-
sume that u0 ≡ 0.

We subject the basic flow to small perturbations and substitute the resulting
forms into the governing equations. Specifically, we set

u = u0 + u′,

where u′ is the perturbation. The substitution then yields

∂u′

∂t
= L(λ)u′ +N (u′,u′), (1.16)

where we used the fact that u0 ≡ 0.

Now, we linearize the resulting equation with respect to the perturbations, i.e.
we neglect the quadratic term N (u′,u′). Then we study the linearized system

∂u′

∂t
= L(λ)u′, (1.17)

via the normal mode analysis. We consider the perturbation u′ in the form

u′(t,x) = ũ′(x)eσt,

where σ ∈ C which upon substitution into (1.17) yields the eigenvalue problem

σũ′ = L(λ)ũ′. (1.18)

Solving this eigenvalue problem determines the (un)stability of the basic flow for
a specific value of a control parameter λ. Indeed, if there is for a fixed value of
λ an eigenvalue with Reσ > 0, then the corresponding eigenmode grows in time
and the basic flow is said to be linearly unstable. If all of the eigenvalues are

1We are also going to use the term the reference state as in our case the basic flow is indeed
the reference state mentioned above.
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such that Re σ < 0, then the perturbations decay and the basic flow is said to be
linearly stable. The largest value of λ for which the basic flow is stable represents
the sought critical threshold of instability.

Let us mention that the normal modes of the perturbations can be further de-
composed considering the boundary conditions on u. If u is periodic in horizontal
coordinates x, y, say, we can write the perturbation in the form2

u′(t,x) = ũ′(z)ei(axx+ayy)+σt,

where ax, ay are corresponding wave-numbers.

1.4 Weakly non-linear analysis

For larger perturbations, non-linear effects become important. By neglecting non-
linear terms (describing the interaction of the perturbations with themselves)
linear stability analysis is restricted to the regime in which the amplitude of
perturbations is very small.

Therefore for supercritical values of the control parameter (in our case the Rayleigh
number), linear analysis can’t say anything about the behaviour of the flow in
the limit t → ∞ due to the fact that the amplitude of perturbations A obeys

dA

dt
= σA,

where σ is the coefficient that accounts for the growth rate – it is negative below
the threshold (damping effect) and positive beyond (amplifying effect). In other
words A(t) = exp(σt), as was stated in the preceding, and the perturbation grows
quickly for Re σ > 0.

In the third chapter we thus show in detail, following the works of Cross (1980)
and Fujimura (1997), that the amplitude A of the unstable mode (Reσ > 0),
when all the other modes are damped, is in fact for supercritical values of Ra
governed by the amplitude equation (also known as Stuart-Landau equation)

dA

dt
= σA + ΛA3, (1.19)

where Λ is a negative coefficient coming from quadratic non-linearities that weren’t
neglected opposed to the linear stability analysis. We can see that for t → ∞ the
solution of (1.19) for an arbitrary initial condition converges to A∗ ≡ ±

√
σ/Λ,

i.e. we obtain a supercritical pitchfork bifurcation.

2Note that we use the notation i for the imaginary unit. This shouldn’t be confused with
the summation index i used especially in the third chapter concerning the weakly non-linear
analysis.
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Chapter 2

The onset of convection

In this chapter we follow the work of Chandrasekhar (1961) in deriving the crit-
ical threshold of instability. The numerical model (see 2.1.5) which was build
on Chandrasekhar’s approach is compared to the analytical results for classical
Boussinesq approximation. We use the numerical model for finding the critical
Rayleigh numbers in the case of extended Boussinesq approximation.

2.1 Classical Boussinesq approximation

Let us introduce dimensionless variables (denoted by the stars) by means of the
relations

x = dx∗, t =
d2

κ
t∗, v =

κ

d
v∗, Π =

µκ

d2
Π∗, T = Ts + (Tb − Ts)T

∗,

where d is characteristic length (thickness of the convecting layer).

The dimensionless form of the classical Boussinesq approximation (1.13) - (1.15)
then reads

div∗ v∗ = 0, (2.1)

1

Pr

[
∂v∗

∂t∗
+ (v∗ · ∇∗)v∗

]
= Ra(T ∗ − T ∗

0 )er̂ −∇∗Π∗ +∆∗v∗, (2.2)

∂T ∗

∂t∗
= ∆∗T ∗ − v∗ · ∇∗T ∗, (2.3)

where we introduced the dimensionless numbers

Prandtl number Pr =
µ

̺0κ

Rayleigh number Ra =
̺0α(Tb − Ts)g0d

3

µκ
.

We now rewrite equations (2.1) - (2.3) in Cartesian coordinates (x∗, y∗, z∗), where
x∗ and y∗ are dimensionless horizontal coordinates and z∗ denotes dimensionless
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depth, z∗ ∈ [0, 1], z = 0 at the surface and z = 1 at the bottom of the convecting
layer. The new system of equations reads (from now on we omit denoting the
dimensionless variables by the star, unless misunderstanding may arise)

div v = 0, (2.4)

1

Pr

[
∂v

∂t
+ (v · ∇)v

]
= −Ra(T − T0)eẑ −∇Π +∆v, (2.5)

∂T

∂t
= ∆T − v · ∇T. (2.6)

We assume that in the reference state the fluid is in quiescent state, i.e. v ≡ 0,
and the temperature is only function of depth, i.e. T0 = T0(z). Equation (2.6) in
the reference state then reads

0 =
d2T0

dz2
. (2.7)

We can see quite easily that the solution of this equation fulfilling the boundary
conditions T0(0) = 0 and T0(1) = 1 is

T0 = z.

Let us now assume that the reference state is perturbed slightly. We denote these
perturbations of velocity, temperature and pressure by v, θ and π, respectively.
The perturbed state is then described by the quantities denoted by the prime

v′ = 0+ v = v,

T ′ = T0 + θ,

Π′ = 0 + π = π.

Putting these expressions into equations (2.4) - (2.6) yields (with the aid of (2.7))

div v = 0, (2.8)

1

Pr

[
∂v

∂t
+ (v · ∇)v

]
= −Raθeẑ −∇π +∆v, (2.9)

∂θ

∂t
= ∆θ − vẑ

dT0

dz
− v · ∇θ. (2.10)

After neglecting the non-linear terms we obtain

div v = 0, (2.11)

1

Pr

∂v

∂t
= −Raθeẑ −∇π +∆v, (2.12)

∂θ

∂t
= ∆θ − vẑ

dT0

dz
. (2.13)

Let us now apply the operator div to equation (2.12). We get

0 = −Ra
∂θ

∂z
−∆π. (2.14)
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Applying of the operator ∆ to equation (2.12) yields

1

Pr

∂

∂t
(∆v) = −Ra∆θeẑ −∇(∆π) + ∆(∆v). (2.15)

Putting the expression ∆π from (2.14) into (2.15) further yields

1

Pr

∂

∂t
(∆v) = Ra




∂2θ
∂x∂z
∂2θ
∂y∂z

− ∂2θ
∂x2

− ∂2θ
∂y2


+∆(∆v). (2.16)

Let us go back to equation (2.12) again and apply the operator curl to it. With
the aid of the identity curl∇ϕ = 0, we obtain

1

Pr

∂

∂t
(curlv) = Ra



−∂θ
∂y
∂θ
∂x

0


+∆(rotv). (2.17)

We now express z-components from equations (2.16) and (2.17). We also add the
equation (2.13), where we substitute the known reference temperature T0. Our
final system of equations reads

1

Pr

∂

∂t
(∆vẑ) = −Ra

(
∂2θ

∂x2
+

∂2θ

∂y2

)
+∆(∆vẑ), (2.18)

1

Pr

∂ηẑ

∂t
= ∆ηẑ, (2.19)

∂θ

∂t
= ∆θ − vẑ, (2.20)

where we used the notation η ≡ curlv (η is called the vorticity).

We will now consider the perturbations in the form of normal modes

v(t,x) = ṽ(z) exp [i(axx+ ayy) + σt],

η(t,x) = η̃(z) exp [i(axx+ ayy) + σt],

θ(t,x) = θ̃(z) exp [i(axx+ ayy) + σt].

The system (2.18) - (2.20) can then be transformed into

σ

Pr

(
d2

dz2
− a2

)
ṽẑ = a2Raθ̃ +

(
d2

dz2
− a2

)2

ṽẑ, (2.21)

σ

Pr
η̃ẑ =

(
d2

dz2
− a2

)
η̃ẑ, (2.22)

σθ̃ =

(
d2

dz2
− a2

)
θ̃ − ṽẑ, (2.23)

where we used the notation a2 = a2x + a2y.
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2.1.1 Boundary conditions

Boundary conditions for the perturbed quantities ṽẑ, η̃ẑ a θ̃ will be needed.

From prescribed boundary conditions for temperature T we see, that boundary
conditions for perturbation θ must fulfil

θ|z=0,1 = 0,

This yields

θ̃
∣∣∣
z=0,1

= 0. (2.24)

We will consider impermeable boundaries for velocity v (also called no-penetration

boundary condition), i.e.
vẑ
∣∣
z=0,1

= 0.

This again yields
ṽẑ
∣∣
z=0,1

= 0. (2.25)

Since our equations are at least of the fourth order for velocity, we need more
boundary conditions for this quantity. In what follows we will be considering two
cases of boundary conditions: free-slip and no-slip boundary conditions. Both
cases yield different critical values of Rayleigh number Ra and wave-number a.

For free-slip boundary condition we are able to derive Racrit (and correspond-
ing critical wave-number) analytically, which will be shown below. In this case
Racrit =

27
4
π4 and acrit =

π√
2
.

For no-slip boundary condition the analytical technique is slightly more com-
plicated and in the end yields a transcendental equation whose solution is the
critical value of Ra. In this case we can only proceed by solving this equation
numerically. Specifically for no-slip condition Racrit ≈ 1707.762 and acrit ≈ 3.117
(see Chandrasekhar, 1961).

We will only show the analytical method for free-slip boundary condition. How-
ever, we will treat both cases later on when investigating the numerical way of
finding the critical values of Ra and a.

Free-slip

This boundary condition can be expressed as Tn − (Tn · n)n = 0, where n is
the unit outer normal vector, in our case n = ±eẑ . For the stress tensor we have
T = −pI+ 2µD(v). Put all together, the boundary condition can be written as




µ
(
∂vx̂

∂z
+ ∂vẑ

∂x

)

µ
(
∂vŷ

∂z
+ ∂vẑ

∂y

)

0


 =




0
0
0



 .
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Equality of the first two components yields

∂vx̂

∂z
+

∂vẑ

∂x
= 0,

∂vŷ

∂z
+

∂vẑ

∂y
= 0.

From no-penetration condition we know that

∂vẑ

∂x

∣∣∣∣
z=0,1

=
∂vẑ

∂y

∣∣∣∣
z=0,1

= 0.

Hence,
∂vx̂

∂z

∣∣∣∣
z=0,1

=
∂vŷ

∂z

∣∣∣∣
z=0,1

= 0. (2.26)

We also know that the velocity field is divergence-free, i.e. div v = 0. Differenti-
ating this equation with respect to z yields

∂2vx̂

∂x∂z
+

∂2vŷ

∂y∂z
+

∂2vẑ

∂z2
= 0

Combining this with (2.26), we arrive at

∂2vẑ

∂z2

∣∣∣∣
z=0,1

= 0.

And thus,
d2ṽẑ

dz2

∣∣∣∣
z=0,1

= 0. (2.27)

Since we are interested in the analytical solution in the case of free-slip boundary
conditions, we are going to need more boundary conditions on ṽẑ as we shall see
below (see section 2.1.3). Let us use equation (2.21) to obtain these conditions by
setting the boundary values for z and also by using boundary conditions (2.24),
(2.25) and (2.27). We obtain

d4ṽẑ

dz4

∣∣∣∣
z=0,1

= 0. (2.28)

Following this pattern we could easily show that all the even derivatives of ṽẑ

vanish on the boundaries. Let us mention that this is true for the classical case
only and not for the extended Boussinesq approximation.

It remains to take care of the boundary conditions for z-component of vorticity.
By definition

ηẑ =
∂vŷ

∂x
− ∂vx̂

∂y
.

Hence by using (2.26) it follows that

∂ηẑ

∂z

∣∣∣∣
z=0,1

= 0,

13



And thus,
dη̃ẑ

dz

∣∣∣∣
z=0,1

= 0. (2.29)

Let us note that we obtained boundary conditions (2.24), (2.25), (2.27) and (2.29)
by only using the fact that the velocity field is divergence-free. That means we
can use these boundary conditions for extended Boussinesq approximation too
(since in that case divv = 0 still holds). However, condition (2.28) holds for
classical Boussinesq approximation only.

No-slip

In this case we can write the condition as v · t = 0 on the boundary, where t is
an arbitrary vector tangent to the boundary. This means that

vx̂
∣∣
z=0,1

= vŷ
∣∣
z=0,1

= 0,

which also yields
∂vx̂

∂x

∣∣∣∣
z=0,1

=
∂vŷ

∂y

∣∣∣∣
z=0,1

= 0. (2.30)

After using the continuity equation we obtain

∂vẑ

∂z

∣∣∣∣
z=0,1

= 0,

A hence,
dṽẑ

dz

∣∣∣∣
z=0,1

= 0. (2.31)

For no-slip boundary condition we are not going to solve (2.33) analytically.
Four boundary conditions for ṽẑ are sufficient for solving the onset of convection
numerically and hence we don’t need more boundary conditions.

It remains to find the boundary conditions for z-component of vorticity. From
definition of vorticity and (2.30) we easily arrive at

ηẑ
∣∣
z=0,1

= 0,

and thus,
η̃ẑ
∣∣
z=0,1

= 0. (2.32)

Again, conditions (2.24), (2.25), (2.31) and (2.32) can be applied in the case of
extended Boussinesq approximation too because the condition div v = 0 is still
valid.
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2.1.2 The principle of the exchange of stabilities

The number σ in (2.33) is in general complex, i.e. σ = σRe + iσIm. Let us show
that in our case the so called principle of the exchange of stabilities is valid, i.e.
σ ∈ R (see Chandrasekhar (1961) for details on the terminology).

First of all, applying the operator

P ≡ d2

dz2
− a2 − σ

to the equation (2.21) yields

σ

Pr

(
d2

dz2
− a2

)
P ṽẑ = a2RaP θ̃ +

(
d2

dz2
− a2

)2

P ṽẑ.

We see from (2.23) that the expression P θ̃ can be substituted by ṽẑ and this leads
to

σ

Pr

(
d2

dz2
− a2

)
P ṽẑ = a2Raṽẑ +

(
d2

dz2
− a2

)2

P ṽẑ,

which can be further written as
(

d2

dz2
− a2

)(
d2

dz2
− a2 − σ

Pr

)(
d2

dz2
− a2 − σ

)
ṽẑ = −a2Raṽẑ. (2.33)

Let us now denote

f ≡
(

d2

dz2
− a2

)(
d2

dz2
− a2 − σ

Pr

)
ṽẑ.

Multiplying equation (2.33) by complex conjugate f and integrating the resulting
equation with respect to z over the whole layer yields

∫ 1

0

[(
d2

dz2
− a2 − σ

)
f

]
f dz = −a2Ra

∫ 1

0

ṽẑf dz. (2.34)

Integrating by parts and using the boundary conditions on ṽẑ we derive

−
∫ 1

0

(∣∣∣∣
df

dz

∣∣∣∣
2

+ (a2 + σ)|f |2
)
dz =

− a2Ra

∫ 1

0

(∣∣∣∣
d2ṽẑ

dz2

∣∣∣∣
2

+

(
2a2 +

σ

Pr

) ∣∣∣∣
dṽẑ

dz

∣∣∣∣
2

+ a2
(
a2 +

σ

Pr

)
|ṽẑ|2

)
dz.

The imaginary part of the last equation reads

σIm

∫ 1

0

(
|f |2 + a2Ra

Pr

(∣∣∣∣
dṽẑ

dz

∣∣∣∣
2

+ a2|ṽẑ|2
))

dz = 0,

which indicates that σIm = 0 and thus σ ∈ R indeed.
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2.1.3 The onset of convection analytically

This section concerns the free-slip boundary conditions only.

Since σ is real, the marginal state is characterized by σ = 0. Let us investigate
equation (2.22) first. Substitution by σ = 0 yields

0 =

(
d2

dz2
− a2

)
η̃ẑ, (2.35)

with boundary conditions
dη̃ẑ

dz

∣∣∣∣
z=0,1

= 0.

We can check easily that there is no non-trivial solution of the stated problem
and thus in the marginal state the z-component of vorticity always disappears.

Let us return to equation (2.33). Substitution by σ = 0 yields an eigenvalue
problem (

d2

dz2
− a2

)3

ṽẑ = −a2Ra ṽẑ, (2.36)

with boundary conditions

ṽẑ
∣∣
z=0,1

=
d2ṽẑ

dz2

∣∣∣∣
z=0,1

=
d4ṽẑ

dz4

∣∣∣∣
z=0,1

= 0.

It follows from the boundary conditions (let us remember that all the even deriva-
tives of ṽẑ vanish on the boundaries) that we should seek the solution in the form

ṽẑ(z) =

+∞∑

n=1

cn sin(nπz) (2.37)

where cn ∈ R for n ∈ N. From equation (2.36) we then obtain condition for
Rayleigh number

Ra =
(a2 + n2π2)3

a2
. (2.38)

For a fixed a, Ra attains its minimum for n = 1. We then have

Ra =
(a2 + π2)3

a2
. (2.39)

Minimization of the last equation with respect to a yields the critical value of
Rayleigh number Racrit =

27
4
π4. This minimum is attained for acrit =

π√
2
.

2.1.4 Cells

From z-components of velocity and vorticity we can derive horizontal components
of velocity quite easily. Equation of continuity yields

(
∂2

∂x2
+

∂2

∂y2

)
vx̂ = − ∂2vẑ

∂x∂z
− ∂ηẑ

∂y
,

(
∂2

∂x2
+

∂2

∂y2

)
vŷ = − ∂2vẑ

∂y∂z
+

∂ηẑ

∂x
.
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Normal modes analysis then yields

vx̂ =
i

a2

(
ax

dṽẑ

dz
+ ayη̃

ẑ

)
exp [i(axx+ ayy) + σt] ,

vŷ =
i

a2

(
ay

dṽẑ

dz
− axη̃

ẑ

)
exp [i(axx+ ayy) + σt] .

And this remains valid for the extended Boussinesq approximation too.

We show later that for Ra greater than the critical value η̃ẑ vanishes. This is
valid for both classical and extended Boussinesq approximations. Hence, in this
case we can simplify the relations above by setting η̃ẑ = 0. That will be useful
for investigating the slightly supercritical behaviour of convection in the third
chapter.

In the simplest case of infinite longitudinal convective cells (so called single rolls)
we can further simplify the expression above to obtain (we assume that the y-
component of velocity is zero: ax = a, ay = 0)

vx̂ =
i

a

dṽẑ

dz
exp [iax+ σt] , (2.40)

vŷ = 0, (2.41)

vẑ = ṽẑexp [iax+ σt] , (2.42)

Note: Of course, we always consider real part of each component of velocity only.

2.1.5 Numerical solution

We found the critical values of Ra and a characterizing the onset of convection
for classical Boussinesq approximation and free-slip boundary conditions. In the
following sections we are going to investigate this problem for extended Boussinesq
approximation. In this case we cannot use the analytical approach as before and
we have to come up with a numerical model solving this problem. Let us now
show how to solve the classical case numerically (for both cases of boundary
conditions this time). This will also serve us as a benchmark for gauging our
numerical model.

Let us return to equations (2.21)–(2.23). We shall write this system in the form
of an eigenvalue problem

σA



ṽẑ

η̃ẑ

θ̃


 = B



ṽẑ

η̃ẑ

θ̃


 , (2.43)

where

A =




1
Pr

(
d2

dz2
− a2

)
0 0

0 1
Pr

0
0 0 1


 , B =




(
d2

dz2
− a2

)2
0 a2Ra

0
(

d2

dz2
− a2

)
0

−1 0
(

d2

dz2
− a2

)


 .
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For free-slip boundary condition it holds

ṽẑ
∣∣
z=0,1

=
d2ṽẑ

dz2

∣∣∣∣
z=0,1

= 0,
dη̃ẑ

dz

∣∣∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0,

while for no-slip we have

ṽẑ
∣∣
z=0,1

=
dṽẑ

dz

∣∣∣∣
z=0,1

= 0, η̃ẑ
∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0.

Our goal is to find eigenvalues σ. If for specific Ra and a there exists a positive
eigenvalue, then the perturbation grows in time and the state is unstable. On
the other hand if all the eigenvalues are negative, the state is stable and the
perturbations decay.

Let us first note that equation (2.22) has non-trivial solution only when σ < 0.
Indeed, multiplying (2.22) by η̃ẑ and integrating the resulting equation by parts
(with the aid of either free-slip, or no-slip boundary conditions) yields

σ

Pr

∫ 1

0

|η̃ẑ|2 dz =

∫ 1

0

d2η̃ẑ

dz2
η̃ẑ dz − a2

∫ 1

0

|η̃ẑ|2 dz

= −
∫ 1

0

∣∣∣∣
dη̃ẑ

dz

∣∣∣∣
2

dz − a2
∫ 1

0

|η̃ẑ|2 dz.

Thus, for η̃ẑ 6= 0 it must hold that σ < 0. This means that equation (2.22) won’t
affect the positive part of spectrum of (2.43). Hence, we can consider a simpler
problem

σA
[
ṽẑ

θ̃

]
= B

[
ṽẑ

θ̃

]
, (2.44)

where

A =

[
1
Pr

(
d2

dz2
− a2

)
0

0 1

]
, B =



(

d2

dz2
− a2

)2
a2Ra

−1
(

d2

dz2
− a2

)


 . (2.45)

With free-slip boundary conditions

ṽẑ
∣∣
z=0,1

=
d2ṽẑ

dz2

∣∣∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0,

or no-slip boundary conditions

ṽẑ
∣∣
z=0,1

=
dṽẑ

dz

∣∣∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0.

To solve the eigenvalue problem (2.44) numerically we need to discretize the
differential operators A and B. We used the Chebyshev collocation method which
is a spectral method suitable for solving ODEs or PDEs to high accuracy on a
simple domain when the data defining the problem are smooth enough. This
is indeed our case (even for the extended Boussinesq approximation since we
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consider smooth material parameters only, as we shall see below). Chebyshev
spectral method is based on polynomial interpolation in unevenly spaced points.
These are called Chebyshev points and on the interval [−1, 1] are given by

xj = cos(jπ/N), j = 0, 1, . . . , N. (2.46)

We use these points to construct the Chebyshev differentiation matrices. Given
a function f defined on [−1, 1], we set f = [f0, f1, . . . fN ]

T , where fj = f(xj)
for j = 0, 1, . . . , N and some N ∈ N. We obtain a discrete derivative g by
interpolating f in Chebyshev points and then setting g as the derivative of the
interpolated polynomial in these points. This operation is linear and it can be
represented by an (N + 1)× (N + 1) differentiation matrix DN :

g = DN f .

Differential equations can be then transformed into algebraic problems where the
differential operators are approximated by the Chebyshev differentiation matrices
DN . This can be easily implemented in Matlab. The general formula for DN as
well as more thorough introduction to Chebyshev spectral method can be found
in Trefethen (2001) or Boyd (2001). As an illustrative example consider the case
when N = 2. We then have three Chebyshev points x0 = 1, x1 = 0 and x2 = −1,
and the interpolant is the quadratic

p(x) =
1

2
x(1 + x)f0 + (1 + x)(1 − x)f1 +

1

2
x(x− 1)f2,

where fj = f(xj) for j = 0, 1, 2. The derivative is a linear polynomial

p′(x) = (x+
1

2
)f0 − 2xf1 + (x− 1

2
)f2,

and the Chebyshev differentiation matrix is then given by

D2 =




3/2 −2 1/2
1/2 0 −1/2
−1/2 2 −3/2


 .

What remains is incorporating the boundary conditions in the differentiation
matrices. This is a slightly more complicated matter since we are not dealing with
just simple homogeneous Dirichlet boundary conditions. For our computations we
used the differentiation matrices chebdif and cheb4c from the work of Reddy
and Weideman (2000). Problem (2.44) is a fourth-order problem with either
hinged (free-slip case) or clamped (no-slip case) boundary conditions on ṽẑ.1

1We say that a fourth-order boundary value problem

u′′′′(x) = f(x, u, u′, u′′, u′′′), x ∈ [a, b],

has hinged boundary conditions if

u|x=a,b = u′′|x=a,b = 0,

or clamped boundary conditions if

u|x=a,b = u′|x=a,b = 0.
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The eigenvalue problem for clamped boundary conditions can be solved using
the differentiation matrices chebdif for the second derivatives and cheb4c for
the fourth derivatives (see Reddy and Weideman (2000) for details). Solving
the eigenvalue problem for hinged boundary conditions is more complicated and
we used a different method than the one proposed in the referenced paper. By
introducing a new variable

w =

(
d2

dz2
− a2

)
ṽẑ,

we transformed our boundary value problem into a second-order system of differ-
ential equations with homogeneous Dirichlet boundary conditions

ṽẑ
∣∣
z=0,1

= w|z=0,1 = θ̃
∣∣∣
z=0,1

= 0.

This can be solved easily using just the differentiation matrix chebdif for the
second derivatives. In both cases we obtain a generalized algebraic eigenvalue
problem

σAu = Bu, (2.47)

where matrices A and B are appropriately discretized versions of operators A
and B and vector u is formed from values of ṽẑ and θ (and w in case of free-slip
boundary conditions) in the Chebyshev points. It should be mentioned that the
differentiation matrices chebdif and cheb4c along with the vector of Chebyshev
points were transformed from the reference interval [−1, 1] to our case of [0, 1].

Problem (2.47) was solved using the Matlab’s implemented function eig. Ex-
perimenting with the number N of Chebyshev points we settled on using the
value N = 40. This value was used for all the computations in this paper. 2

Free-slip

In Figure 2.1 we depicted the largest eigenvalues σ for a ∈ [0, 10] with a step size
of 0.2 and Ra ∈ [100, 1300] with a step size of 40. Prandtl number was set to
Pr = 109.

We can see that for the values of a ≈ 2 and Ra ≈ 650 the first positive eigenvalues
emerge. Analysing this marginal area in more detail yields the critical values of
wave-number and Rayleigh number very close to the analytical results. We can
see that in Figure 2.2 where we depicted the values of σ for a ∈ [2.210, 2.234] with
a step size of 0.0005 and Ra ∈ [657.50, 657.53] with a step size of 0.001. Again,
Prandtl number was set to Pr = 109.

Figures 2.1 and 2.2 show the maximum eigenvalue for specific a and Ra. Even
though that the shape of the marginal curve is apparent from the figures (it
separates the negative part of the spectrum from the positive part), it is quanti-
tatively more accessible to depict the curves of specific values of σ. This is shown
in Figure 2.3 where we chose the values σ = −5 (green line), σ = 0 (gray line,
the marginal curve) and σ = 5 (red line).

2 The Matlab code that was developed for all the computations in this thesis can be found
in the Student Information System as an attachment of the thesis.
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Figure 2.1: Spectrum for classical Boussinesq approximation and free-slip bound-
ary condition
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Figure 2.2: Magnification of spectrum near the critical point for classical Boussi-
nesq approximation and free-slip boundary condition
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Figure 2.3: Curves for specific values of maximum eigenvalue σ, free-slip boundary
condition

We know from the analytical solution of Rayleigh-Bénard problem that the critical
values of wave-number and Rayleigh number are independent of Prandtl number.
Let us first investigate if (and how) Prandtl number influences the numerically
obtained critical values of a and Ra.3 Table 2.1 shows critical values of a and Ra
for several values of Pr. We can see that the difference is not very significant.
However, for magnification of this size the spectrum is not as ”smooth” as it
appears in Figure 2.2 and we notice small defects from the shape of the marginal
curve separating the negative and positive eigenvalues. Hence, we can’t get more
precise results than the values listed in Table 2.1.

Pr Racrit acrit

0.1 657.5113643 2.22144

1 657.511364 2.22145
10 657.511364 2.22143

100 657.5113643 2.22145
1000 657.5113644 2.22144

109 657.5113644 2.22144
∞ 657.5113644 2.22144

Table 2.1: The influence of Prandtl number on critical values of wave-number
and Rayleigh number, free-slip boundary condition

Based on the results in Table 2.1 we set the numerically obtained critical values of
wave-number and Rayleigh number to be acrit = 2.2214 and Racrit = 657.511364.
This gives a relative difference of approximately 1.867× 10−5 and 7.293 × 10−10

3We could also use the infinite Prandtl number approximation and thus simplify our eigen-
value problem (a common practice in geophysics where Prandtl number is very high, Pr ≈ 1020).
However, for reasons that will be explained in the next chapter we keep Prandtl number finite.
Nevertheless, for a comparison we include the case when Pr → ∞.
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compared to the critical values of wave-number and Rayleigh number obtained
analytically.
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Figure 2.4: First two eigenfunctions for classical Boussinesq approximation and
free-slip boundary condition in case of single rolls, Pr = 109, Ra = 1000, a =
acrit = 2.2214

Along with eigenvalues σ of problem (2.47) for specific values of a and Ra, we
obtained eigenvectors u which can be transformed into eigenfunctions of (2.44)
formed from ṽẑ and θ̃.

In the case of infinite longitudinal cells the y-component of velocity is zero. From
(2.40) we can get the x-component of velocity for specific values of a and Ra
from the computed ṽẑ. According to (2.40) the z-dependent part of vx̂ (which we
denote by ṽx̂) reads

ṽx̂ =
i

a

dṽẑ

dz
.

This along with quantities ṽẑ and θ̃ form an eigenfunction of eigenvalue problem
(3.3) formulated in the following chapter. We can see the functions depicted in
Figure 2.4 where we plotted the imaginary part of ṽx̂ and used the normalization

∫ 1

0

(
Ra|θ̃(z)|2 + Pr−1|ṽx̂(z)|2 + Pr−1|ṽẑ(z)|2

)
dz = 1,

which will be useful later on for weakly non-linear analysis.
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Numerically, we obtained the quantity ṽx̂ using the open-source package Cheb-

fun for computing with functions in Matlab. The discrete values of ṽẑ and θ̃
in Chebyshev points were first transformed into functions via the polyfit com-
mand. Differentiation and integration was than carried out by the diff and sum

commands, respectively.

From the components of velocity and from the temperature of the most unstable
mode we can depict velocity field and temperature field in the convecting layer.
However, we do not yet know the real evolution in time for these quantities –
the exponential evolution would cause enormous growth of magnitude and the
assumption of non-linear perturbation terms being small would be violated. Tak-
ing into account the non-linear terms of the original problem will yield steady
solution for slightly supercritical Rayleigh numbers. This will be done in the
next chapter. As a result we will be able to depict the behaviour of convective
cells for specific supercritical values of Ra.

No-slip

In Figure 2.5 we depicted eigenvalues σ for a ∈ [0, 10] with a step size of 0.2 and
Ra ∈ [100, 3400] with a step size of 100. Prandtl number was set to Pr = 109.
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Figure 2.5: Spectrum for classical Boussinesq approximation and no-slip bound-
ary condition

We can see that for the values of a ≈ 3 and Ra ≈ 1700 the first positive eigenval-
ues emerge. In Figure 2.6 we depicted the values of σ for a ∈ [3.106, 3.128] with
a step size of 0.0005 and Ra ∈ [1707.75, 1707.78] with a step size of 0.001. Again,
Prandtl number was set to Pr = 109.
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Figure 2.6: Magnification of spectrum near the critical point for classical Boussi-
nesq approximation and free-slip boundary condition

We also include quantitatively more accessible depiction of the curves for specific
values of maximum eigenvalues σ. This is shown in Figure 2.7 where we chose
the values σ = −5 (green line), σ = 0 (gray line) and σ = 5 (red line).

1000

1500

2000

2500

3000

1 2 3 4 5 6

R
a

a

σ = −5
σ = 0

σ = +5

Figure 2.7: Curves for specific values of maximum eigenvalue σ, no-slip boundary
condition
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Similarly as for the free-slip boundary conditions, in Table 2.8 we investigated
the numerical dependence of the critical pair acrit and Racrit on Prandtl number.

Pr Racrit acrit

0.1 1707.76177 3.1163

1 1707.76175 3.1164

10 1707.76170 3.116

100 1707.76169 3.1163

1000 1707.76173 3.1163

109 1707.76171 3.1163

∞ 1707.76171 3.1163

Figure 2.8: The influence of Prandtl number on critical values of wave-number
and Rayleigh number, no-slip boundary condition

0

0.03

0 0.5 1

θ̃ 1
(z
)

z

-0.03

0

0.03

0 0.5 1

θ̃ 2
(z
)

z

-0.9

0

0.9

0 0.5 1

ṽ
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Figure 2.9: First two eigenfunctions for classical Boussinesq approximation and
no-slip boundary condition in case of single rolls,, Pr = 109, Ra = 2400, a =
acrit = 3.116
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This time we can see that the influence of Prandtl number is more significant.
Moreover, the spectrum becomes distorted earlier than in the case of free-slip
boundary condition and thus the precision of the critical values is not as high.
Based on the obtained results, we set the critical values of wave-number and
Rayleigh number to be acrit = 3.116 and Racrit = 1707.762. This gives a relative
difference of approximately 3.208 × 10−4 and 0 compared to the critical values
of wave-number and Rayleigh number from Chandrasekhar (1961). However, we
should bear in mind that these values were also obtained numerically.

Again, in the case of infinite longitudinal cells we can compute the x-component
of velocity for specific values of a and Ra using the eigenfunctions ṽẑ obtained
numerically. We depicted the functions θ̃, ṽx̂ and ṽẑ in Figure 2.9 where we have
taken the imaginary part of ṽx̂ and used the same scaling as in the free-slip case.

Depicting the velocity field and temperature field in the convecting layer will
be again postponed to the next chapter where we are going to derive the time
evolution of the unstable mode for slightly supercritical values of Ra.

2.2 Extended Boussinesq approximation

Let us now consider extended Boussinesq approximation. We follow exactly the
same steps as for classical Boussinesq approximation up to the point of formulat-
ing generalized eigenvalue problem analogous to (2.43). We assume that the co-
efficients of thermal expansivity, dynamic viscosity and thermal conductivity are
functions of depth and temperature, i.e. α = α(z, T ), µ = µ(z, T ) a k = k(z, T ).
Explicit formulae for material parameters considered in this thesis are given in
section 2.2.1.

We consider system of equations

divv = 0,

̺0

[
∂v

∂t
+ (v · ∇)v

]
= −̺0α(T − T0)g0 −∇Π + div(2µD),

̺0cp
∂T

∂t
= div(k∇T )− ̺0cpv · ∇T − ̺0v

r̂αTg + 2µD : D +Q,

where, for the sake of simplicity, the reference gravitational acceleration g0 and
the heat sources Q are assumed constant. Let us introduce dimensionless variables
denoted again by stars

x = dx∗, t =
d2

κs
t∗, v =

κs
d
v∗, Π =

µsκs
d2

Π∗,

T = Ts + (Tb − Ts)T
∗, α = αsα

∗, µ = µsµ
∗, k = ksk

∗,

where d is characteristic dimension of the system (e.g. the thickness of the Earth’s
mantle), κ = k/̺0cp and the subscript s denotes surface values of corresponding
quantities, whereas subscript b denotes their bottom values.
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Dimensionless form of the equations above then reads

div∗ v∗ = 0, (2.48)

1

Prs

[
∂v∗

∂t∗
+ (v∗ · ∇∗)v∗

]
= Rasα

∗(T ∗ − T ∗
0 )er̂

−∇∗Π∗ + div∗
(
µ∗ [∇∗v∗ + (∇∗v∗)T

])
, (2.49)

∂T ∗

∂t∗
= div∗ (k∗∇∗T ∗)− v∗ · ∇∗T ∗ −Disα

∗
(
T ∗ +

RaTss
Ras

)
(vr̂)∗

+
Dis
Ras

µ∗ [∇∗v∗ + (∇∗v∗)T
]
: ∇∗v∗ +

Raqs
Ras

, (2.50)

where we introduced dimensionless numbers

Prandtl number Prs =
µs
̺0κs

Rayleigh number Ras =
̺0αs(Tb − Ts)g0d

3

µsκs

Rayleigh number for heat sources Raqs =
̺0αsg0Qd5

µsκsks

dissipation number Dis =
αsg0d

cp

auxiliary number RaTss =
̺0αsTsg0d

3

µsκs
.

Let us now rewrite equations (2.1) - (2.3) in Cartesian coordinates (x∗, y∗, z∗),
where x∗ and y∗ are dimensionless horizontal coordinates and z∗ denotes dimen-
sionless depth, z∗ ∈ [0, 1], z = 0 at the surface and z = 1 at the bottom of
the convecting layer. The new system of equations reads (from now on we omit
denoting the dimensionless variables by star, unless misunderstanding may arise)

div v = 0, (2.51)

1

Prs

[
∂v

∂t
+ (v · ∇)v

]
= −Rasα(T − T0)eẑ

−∇Π + div
(
µ
[
∇v + (∇v)T

])
, (2.52)

∂T

∂t
= div (k∇T )− v · ∇T +Disα

(
T +

RaTss
Ras

)
vẑ

+
Dis
Ras

µ
[
∇v + (∇v)T

]
: ∇v +

Raqs
Ras

. (2.53)
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Reference state

Again, we assume that in the reference state the fluid is in quiescent state, i.e.
v ≡ 0, and the temperature is only function of depth, i.e. T0 = T0(z). Equation
(2.53) in the reference state then reads

0 = div (k(z, T0)∇T0) +
Raqs
Ras

. (2.54)

Perturbation equations

Let us now assume that the reference state is perturbed slightly. We denote these
perturbations of velocity, temperature and pressure by v, θ and π, respectively.
The perturbed state is then described by the quantities denoted by the prime

v′ = 0+ v = v,

T ′ = T0 + θ,

Π′ = 0 + π = π.

Putting these into equations (2.4) - (2.6) yields (with the aid of (2.54))

div v = 0, (2.55)

1

Prs

[
∂v

∂t
+ (v · ∇)v

]
= −Rasα(z, T0 + θ)θeẑ −∇π

+ div
(
µ(z, T0 + θ)

[
∇v + (∇v)T

])
, (2.56)

∂θ

∂t
= div [k(z, T0 + θ)∇(T0 + θ)− k(z, T0)∇T0]− vẑ

dT0

dz
− v · ∇θ

+Disα(z, T0 + θ)

(
T0 + θ +

RaTss
Ras

)
vẑ +

Dis
Ras

µ(z, T0 + θ)
[
∇v + (∇v)T

]
: ∇v.

(2.57)

If we Taylor expand the coefficients k, α and µ and neglect the non-linear terms,
we arrive at

div v = 0, (2.58)

1

Prs

∂v

∂t
= −Rasα(z, T0)θeẑ −∇π + div

(
µ(z, T0)

[
∇v + (∇v)T

])
, (2.59)

∂θ

∂t
= div

(
∂k

∂T
(z, T0)

dT0

dz
θeẑ + k(z, T0)∇θ

)

− vẑ
dT0

dz
+Disα(z, T0)

(
T0 +

RaTss
Ras

)
vẑ. (2.60)
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Let us now apply the operator div to equation (2.59). We get

0 = −Ras div (α(z, T0)θeẑ)−∆π + div
(
div
(
µ(z, T0)

[
∇v + (∇v)T

]))
. (2.61)

Applying of the operator ∆ to equation (2.59) yields

1

Prs

∂

∂t
(∆v) = −Ras∆(α(z, T0)θ) eẑ −∇(∆π)

+ ∆
(
div
(
µ(z, T0)

[
∇v + (∇v)T

]))
. (2.62)

Putting the expression ∆π from (2.61) into (2.62) further yields

1

Prs

∂

∂t
(∆v) = −Ras∆(α(z, T0)θ) eẑ +Ras∇ (div (α(z, T0)θeẑ))

−∇
(
div
(
div
(
µ(z, T0)

[
∇v + (∇v)T

])))
+∆

(
div
(
µ(z, T0)

[
∇v + (∇v)T

]))
.

This can be written in more compact form with the aid of identity curl(curlu) =
∇(divu)−∆u 4

1

Prs

∂

∂t
(∆v) = Ras



α(z, T0)

∂2θ
∂x∂z

+ dα
dz
(z, T0)

∂θ
∂x

α(z, T0)
∂2θ
∂y∂z

+ dα
dz
(z, T0)

∂θ
∂y

−α(z, T0)
(
∂2θ
∂x2

+ ∂2θ
∂y2

)




− curl
(
curl

(
div
(
µ(z, T0)

[
∇v + (∇v)T

])))
. (2.63)

Let us go back to equation (2.59) again and apply the operator curl to it. With
the aid of the identity curl∇ϕ = 0, we obtain

1

Prs

∂

∂t
(curlv) = Ras



−α(z, T0)

∂θ
∂y

α(z, T0)
∂θ
∂x

0


+ curl

(
div
(
µ(z, T0)

[
∇v + (∇v)T

]))
.

(2.64)

Computing the vector operators in equations (2.63) and (2.64) and expressing
the eẑ-components from them yields (we are using the notation η ≡ curlv)

1

Prs

∂

∂t
(∆vẑ) = −Rasα(z, T0)

(
∂2θ

∂x2
+

∂2θ

∂y2

)
+ µ(z, T0)∆(∆vẑ)

+ 2
dµ

dz
(z, T0)

∂

∂z

(
∆vẑ

)
− d2µ

dz2
(z, T0)

(
∆vẑ − 2

∂2vẑ

∂z2

)
, (2.65)

1

Prs

∂ηẑ

∂t
= µ(z, T0)∆ηẑ +

dµ

dz
(z, T0)

∂ηẑ

∂z
. (2.66)

4Symbol dα
dz (z, T0) denotes the total derivative of α with respect to z. Specifically,

dα

dz
(z, T0) =

∂α

∂z
(z, T0) +

∂α

∂T
(z, T0)

dT0

dz
(z).

We define the symbols dµ
dz (z, T0),

dk
dz (z, T0) analogously (along with higher derivatives which

will appear later on).
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Let us apply the div operator in equation (2.60) too

∂θ

∂t
= k(z, T0)∆θ +

(
dk

dz
(z, T0) +

∂k

∂T
(z, T0)

dT0

dz

)
∂θ

∂z

+
d

dz

(
∂k

∂T
(z, T0)

dT0

dz

)
θ − dT0

dz
vẑ +Disα(z, T0)

(
T0 +

RaTss
Ras

)
vẑ. (2.67)

We now consider the perturbations in the form of normal modes

v(t,x) = ṽ(z) exp [i(axx+ ayy) + σt],

η(t,x) = η̃(z) exp [i(axx+ ayy) + σt],

θ(t,x) = θ̃(z) exp [i(axx+ ayy) + σt].

Equations (2.65)–(2.67) can then be written in the form (we are using the notation
a2 = a2x + a2y)

σ

Prs

(
d2

dz2
− a2

)
ṽẑ = a2Rasα(z, T0)θ̃ + µ(z, T0)

(
d2

dz2
− a2

)2

ṽẑ

+ 2
dµ

dz
(z, T0)

(
d2

dz2
− a2

)
dṽẑ

dz
+

d2µ

dz2
(z, T0)

(
d2

dz2
+ a2

)
ṽẑ, (2.68)

σ

Prs
η̃ẑ = µ(z, T0)

(
d2

dz2
− a2

)
η̃ẑ +

dµ

dz
(z, T0)

dη̃ẑ

dz
, (2.69)

σθ̃ = k(z, T0)

(
d2

dz2
− a2

)
θ̃ +

(
dk

dz
(z, T0) +

∂k

∂T
(z, T0)

dT0

dz

)
dθ̃

dz

+
d

dz

(
∂k

∂T
(z, T0)

dT0

dz

)
θ̃ − dT0

dz
ṽẑ +Disα(z, T0)

(
T0 +

RaTss
Ras

)
ṽẑ. (2.70)

This is again an eigenvalue problem - finding the eigenvalues determines the onset
of convection for extended Boussinesq approximation. To be able to solve this
problem we need to consider specific functions k, α, µ and set specific values of
the dimensionless numbers Prs, Raqs, Dis and RaTss .

2.2.1 Material properties of Earth’s mantle

In this section, we distinguish between the variables with units and the dimen-
sionless variables by using the no-star/star notation. The references used for
writing this section include the monograph G. Schubert (2001) and the papers of
Tosi et al. (2013), Hirth and Kohlstedt (2003), Kameyama et al. (1999), Č́ıžková
et al. (2012) and Matyska and Yuen (2007).

We assume that we know the functions k, α, µ along with all the material prop-
erties of the Earth’s mantle (namely ̺0, g0, cp and d). To determine the critical
Rayleigh number characterizing the onset of convection we will assume that we
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know the surface temperature Ts = 300K and the bottom temperature Tb will
represent free variable (in reality Tb = 4000K). This approach simulates the ex-
perimental setting when one varies the bottom temperature in order to determine
the onset of convection.

We also assume that we have fixed values of the dimensionless numbers Prs,
Raqs, Dis and RaTss . Specifically, for Earth’s mantle: Pr ≈ 1022 (and thus we
may use the infinite Prandtl number approximation), Dis = 0.5, Raqs = 106 and
RaTss = 8.1× 105 (see Matyska and Yuen (2007)). The authors of the referenced
paper are using higher Rayleigh number for heat sources, namely Raqs = 3×107.
However, this value is too high for our computations as will be discussed in section
2.2.3. We will also consider the cases when Raqs is equal to zero or both Dis and
Raqs are equal to zero.

Let us note that in Earth’s mantle Ras = 107. This means that if our critical
value of Ras is above this value, there is no convection in Earth’s mantle. Surely,
that is not what we expect. On contrary, Racrit should be way below the real
value of Ras because we expect a chaotic (on geological timescale) behaviour far
away from the steady convection cells.

Let us also note that from the knowledge of Ras = 107 and the bottom tempera-
ture Tb = 4000K we can express the constant ratio r ≡ Tb−Ts

Ras
= 3700

107
. Lastly, let

us set the thickness of the Earth’s mantle to be d = 2900 km.

Concerning the material coefficients, for the sake of simplicity we consider these
simple functions

k(z, T ) = (ks + bkz) exp [−ck(T − Ts)] ,

α(z, T ) = αs exp(−bαz),

µ(z, T ) = µs exp[bµz − cµ(T − Ts)],

where the coefficients b, c ∈ R
+
0 with corresponding subscripts will be chosen

appropriately so that

• k is an increasing function of depth undergoing at most a change of order
1, or a decreasing function of temperature undergoing at most a change of
order 1,

• α is a decreasing function of depth undergoing at most a change of order 1,

• µ is an increasing function of depth undergoing at most a change of order
2, or a decreasing function of temperature undergoing at most a change of
order 2.

This behaviour of material parameters should roughly approximate the Earth’s
mantle’s material properties. We refrain from investigating the temperature-
dependence of thermal expansivity since this dependence is not very significant in
geophysics. To investigate the influence of the material coefficients on the onset of
convection, we always consider all the material coefficients being constant except
for one being a z or T -dependent function.
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In terms of dimensionless variables, the functions above can be written as

k∗(z∗, T ∗) =

(
1 +

bkdz
∗

ks

)
exp(−ckrRasT

∗) = (1 + b̃kz
∗) exp(−c̃kRasT

∗),

α∗(z∗, T ∗) = exp(−bαdz
∗) = exp(−b̃αz

∗),

µ∗(z∗, T ∗) = exp(bµdz
∗ − cµrRasT

∗) = exp(b̃µz
∗ − c̃µRasT

∗),

where we denoted

b̃k = bkd/ks, b̃α = bαd, b̃µ = bµd,

c̃k = ckr, c̃µ = cµr.

We can see that the dimensionless form of functions k, α, µ are Ras-dependent.

Concerning the boundary conditions, we will be using free-slip case only, since this
is a common boundary condition in geophysics. Let us mention that in laboratory
experiments it is more common to consider the no-slip boundary condition.

2.2.2 Reference temperature

From now on we omit denoting the dimensionless variables by star again.

Since k = k(z, T ), equation (2.54) yields non-linear ordinary differential equation

k(z, T0)
d2T0

dz2
+

dk

dz
(z, T0)

dT0

dz
+

Raqs
Ras

= 0 (2.71)

with the boundary conditions

T0(0) = 0, T0(1) = 1. (2.72)

Again, the solution T0 will be for Raqs non-zero Ras-dependent and hence we will
have to solve (2.71) for every single value of Ras considered when determining
the onset of convection. We solved equation (2.71) numerically using Matlab

and open-source package Chebfun.

As an illustrative example, in Figure 2.10 we depicted the reference temperature
T0 in two cases of the extended Boussinesq approximation along with the case of
classical Boussinesq approximation. Using the notation in the figure

• EB1: depth-dependent thermal conductivity with nonzero heat sources
(b̃k = 10, c̃k = 0, Ras = 107 and Raqs = 3× 107),

• EB2: constant thermal conductivity with nonzero heat sources (b̃k = 0,
c̃k = 0, Ras = 107 and Raqs = 3× 107),

• CB: classical Boussinesq approximation (k ≡ 1, Raqs = 0) .

Note that in the presence of heat sources the reference temperature can rise above
the boundary value 1 as in the case EB2. Non-constant thermal conductivity can
reduce this effect as in the case EB1.
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Figure 2.10: Reference temperature for extended (EB1, EB2) and classical (CB)
Boussinesq approximation

2.2.3 Numerical solution

Let us reformulate equations (2.68)–(2.70) into an eigenvalue problem

σA



ṽẑ

η̃ẑ

θ̃


 = B



ṽẑ

η̃ẑ

θ̃


 , (2.73)

where

A =




1
Prs

(
d2

dz2
− a2

)
0 0

0 1
Prs

0

0 0 1


 , B =




B11 0 B13

0 B22 0
B31 0 B33



 ,

and

B11 = µ(z, T0)

(
d2

dz2
− a2

)2

+2
dµ

dz
(z, T0)

(
d2

dz2
− a2

)
d

dz
+
d2µ

dz2
(z, T0)

(
d2

dz2
+ a2

)
,

B13 = a2Rasα(z, T0),

B22 = µ(z, T0)

(
d2

dz2
− a2

)
+

dµ

dz
(z, T0)

d

dz

B31 = −dT0

dz
+Disα(z, T0)

(
T0 +

RaTss
Ras

)
,
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B33 = k(z, T0)

(
d2

dz2
− a2

)
+

(
dk

dz
(z, T0) +

∂k

∂T
(z, T0)

dT0

dz

)
d

dz

+
d

dz

(
∂k

∂T
(z, T0)

dT0

dz

)
.

Where for free-slip boundary conditions we have

ṽẑ
∣∣
z=0,1

=
d2ṽẑ

dz2

∣∣∣∣
z=0,1

= 0,
dη̃ẑ

dz

∣∣∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0

while for no-slip

ṽẑ
∣∣
z=0,1

=
dṽẑ

dz

∣∣∣∣
z=0,1

= 0, η̃ẑ
∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0.

Our goal is to find eigenvalues σ. If for specific Ra and a there exists an eigenvalue
with positive real part, then the perturbation will grow in time and the state is
unstable. On the other hand, if all the eigenvalues are negative, then the state is
stable and the perturbations will decay.

Let us first show that we can again eliminate equation (2.69) as in the case of
classical Boussinesq approximation. We can write (2.69) in the form

σ

Prs
η̃ẑ =

d

dz

(
µ(z, T0)

dη̃ẑ

dz

)
− a2µ(z, T0)η̃

ẑ.

Multiplying the equation above by η̃ẑ, taking the real part of the resulting equality
and integrating yields

σRe

Prs

∫ 1

0

|η̃ẑ|2 dz =

∫ 1

0

Re

[
d

dz

(
µ(z, T0)

dη̃ẑ

dz

)
η̃ẑ
]
dz − a2

∫ 1

0

µ(z, T0)|η̃ẑ|2 dz.

Integrating by parts and using either free-slip, or no-slip boundary conditions
then yields

σRe

Prs

∫ 1

0

|η̃ẑ|2 dz = −
∫ 1

0

µ(z, T0)

∣∣∣∣
dη̃ẑ

dz

∣∣∣∣
2

dz − a2
∫ 1

0

µ(z, T0)|η̃ẑ|2 dz.

Since µ is a positive function it follows that σRe < 0 for η̃ẑ 6= 0. Hence, we can
eliminate equation (2.69) and consider the reduced eigenvalue problem without
this equation.

σA
[
ṽẑ

θ̃

]
= B

[
ṽẑ

θ̃

]
, (2.74)

with operators A and B appropriately modified.

Until now we were considering both free-slip or no-slip boundary conditions. As
we stated in section 2.2.1 we will be using geophysically more relevant free-slip
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case only. It is worth mentioning though that we can obtain results for both
boundary conditions (if we wanted to test the numerical results via laboratory
experiments, we would probably be using no-slip boundary conditions).

The numerical model used for solving (2.74) is principally the same as the one
used in the classical case. Let us note that the open-source package Chebfun is
also incorporated in the Matlab code – we use this to solve differential equation
(2.71). The spectra of problem (2.74) look qualitatively the same as for classical
Boussinesq approximation. Thus, to save space we only give one illustrative
example of the spectrum along with the eigenfunctions in the following section for
depth-dependent thermal conductivity and dissipation and heat sources included.

Let us discuss the value of Raqs as was mentioned in section 2.2.1. Depth-
and temperature-dependent behaviour of the material coefficients mostly yields
higher critical Rayleigh number, i.e. it has stabilizing effect, at least in the case of
dissipation excluded. Heat sources on the other hand destabilize – the higher the
value Raqs is, the lower Racrit we get. Since we consider only one of the material
coefficients non-constant at a time, the destabilizing effect for Raqs = 3×107 (the
value from Matyska and Yuen (2007)) is so significant that there wouldn’t be any
reference state at all (more precisely, for heat sources this high the reference state
is unstable for an arbitrarily small value ofRas). Thus, to get finite positive values
of Racrit we set for our purposes Raqs = 106.

Let us also mention that dissipation has a large stabilizing effect. The results of
the following sections show that the value Dis = 0.5 makes the critical Rayleigh
number rise significantly (Racrit ∼ 105). Since we used a rather large value of the
dissipation number we also tried varying the dissipation number for the case of
all the material parameters being constant and for several values of Raqs. We
investigated the cases when Dis is equal to 0, 0.05, 0.1, 0.2 and 0.5. However, for
larger values of Raqs there are no stable conductive states for small dissipation
numbers; for example if Raqs is greater than approximately 2 × 104 there is
no stable conductive state for constant material parameters and Dis = 0. We
considered the cases when Raqs is equal to 0, 2 × 105, 3.5 × 105 and 6.5 × 105.
The resulting critical values of wave-number and Rayleigh number can be found
in Table 2.2.

We depicted the obtained dependence of critical Rayleigh number on dissipation
number in Figure 2.11. Note the approximately linear profile in all the cases
considered. As expected the heat sources only shift the critical values downwards
and don’t have substantial influence on the profiles.

Concerning the precision of the obtained critical values of wave-number and
Rayleigh number, we should mention that again we experience some influence
of Prandtl number on the critical values. This along with distortion of the spec-
trum for large magnifications restricts the precision of the obtained critical values.
We round the values of acrit to 4 significant digits and the values of Racrit to 6
significant digits – this precision is achievable in all the cases considered.

An important property of the eigenvalues in the classical case was that they
were real. This was proven in section 2.1.2. However, in the case of extended
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Raqs = 0

Dis acrit Racrit

0 2.221 657.511
0.05 2.236 42 204.1

0.1 2.474 85 798.2
0.2 3.712 177 473

0.5 5.362 475 670

Raqs = 2× 105

Dis acrit Racrit

0 – –
0.05 5.189 2 935.01

0.1 5.224 45 385.0
0.2 5.352 133 457

0.5 6.054 422 491

Raqs = 3.5× 105

Dis acrit Racrit

0 – –

0.05 – –
0.1 5.822 5235.43

0.2 5.907 93 003.4
0.5 6.423 379 560

Raqs = 6.5× 105

Dis acrit Racrit

0 – –

0.05 – –
0.1 – –

0.2 6.628 4 877.67
0.5 6.978 289 023

Table 2.2: Dependence of the critical Rayleigh number on dissipation number,
constant material parameters and free-slip boundary condition
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Figure 2.11: Dependence of the critical Rayleigh number on dissipation number,
constant material parameters and free-slip boundary condition
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Boussinesq approximation we rely on the numerical results only. For Prandtl
numbers high enough (more than 103) the numerically obtained (and thus finite)
spectrum for specific a and Ra is real for all the cases considered below. For
Pr < 103 there are complex eigenvalues in some of the cases (when the depth- or
temperature-dependence is significant, i.e. far from the classical case). The fact
that the spectrum of problem (2.74) is real is a crucial property which will be
useful in the next chapter and thus we will be using the value Pr = 109 there.

2.2.4 Non-constant thermal conductivity k

We assume that thermal expansivity α and dynamic viscosity µ are constant and
thermal conductivity k is either depth-, or temperature-dependent.

Depth-dependent k

We assume that
k(z, T ) = 1 + b̃kz,

where b̃k ∈ {1, 5, 10}. Numerical solution of (2.74) yields critical values of wave-
number and Rayleigh number that are summarized in Table 2.3. We considered
three different cases - no dissipation or heat sources included, dissipation included
and both dissipation and heat sources included (we use this pattern in all of the
remaining cases of non-constant material coefficients).

b̃k Dis Raqs acrit Racrit

1 0 0 2.221 976.933

5 0 0 2.220 2 210.40
10 0 0 2.218 3 767.83

1 0.5 0 6.334 404 688
5 0.5 0 7.086 344 453

10 0.5 0 7.155 342 840

1 0.5 106 7.565 225 133

5 0.5 106 7.612 274 150

10 0.5 106 7.465 303 949

Table 2.3: Depth-dependent thermal conductivity, free-slip boundary condition

For the case of Dis = 0.5 and Raqs = 0, raising the coefficient b̃k has a desta-
bilizing effect. Apparently, the dissipation number has a large influence on the
behaviour of the material coefficients. We further investigated this for smaller val-
ues of Dis. We can see in Table 2.4 that for Dis = 0.05 the property of thermal
conductivity being a stabilizing parameter is preserved (at least for the values of
b̃k considered here). However, raising the dissipation number to Dis = 0.1 yields
a drop in Racrit for b̃k = 5 compared to the value of Racrit for b̃k = 1.

Most likely, for Dis > 0 the value of Racrit first decreases as the coefficient b̃k rises
and then for b̃k sufficiently high Racrit starts increasing. Based on the results we
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Dis = 0.05, Raqs = 0

b̃k acrit Racrit

1 3.402 41 532.4
5 3.789 42 668.9

10 3.636 46 557.7

Dis = 0.1, Raqs = 0

b̃k acrit Racrit

1 4.108 80 800.0
5 4.565 78 171.2

10 4.503 83 024.5

Table 2.4: (De)stabilizing effect of thermal conductivity for smaller values of
dissipation number, heat sources excluded, free-slip boundary condition

have we suspect that the higher the dissipation number is the higher the critical
value of b̃k for which stabilizing effect of thermal conductivity sets in is. Of course,
heat sources also influence the behaviour of thermal conductivity. We can see in
Table 2.3 that for Raqs = 106 thermal conductivity has the expected stabilizing
property again.

The promised illustrative example of spectrum of eigenvalue problem (2.74) is
depicted in Figure 2.12. We used following values b̃k = 1, Raqs = 106, Dis = 0.5
with a ∈ [0, 20] and the step size of 0.5 and Ras ∈ [50 000, 500 000] and the step
size of 15 000. We can see that the critical values of wave-number and Rayleigh
number are approximately acrit ≈ 8 and Racrit ≈ 225 000 (more precise results
can be found in Table 2.3).
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150000

300000

450000
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σ > 0
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Ra

σ

Figure 2.12: Spectrum for extended Boussinesq approximation, free-slip boundary
condition and depth-dependent k (b̃k = 1, Raqs = 106, Dis = 0.5)

We also include quantitatively more accessible depiction of the curves for specific
values of maximum eigenvalues σ. This is shown in Figure 2.13 where we chose
the values σ = −100 (green line), σ = 0 (gray line) and σ = 100 (red line).

39



150000

200000

250000

300000

350000

0 2 4 6 8 10 12 14 16 18 20

R
a

a

σ = −100
σ = 0

σ = +100

Figure 2.13: Curves for specific values of maximum eigenvalue σ, free-slip bound-
ary condition and depth-dependent k (b̃k = 1, Raqs = 106, Dis = 0.5)

In Figure 2.14 we depicted the eigenfunctions of (2.74). Note that they are very
different from the classical case (see Figure 2.4) – this will yield different behaviour
of convection cells as we will see in the following chapter.
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Figure 2.14: First two eigenfunctions for extended Boussinesq approximation and
free-slip boundary condition in case of single rolls, Prs = 109, Ras = 230 000,
Raqs = 106, Dis = 0.5, a = acrit = 7.565
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Temperature-dependent k

We assume that
k(z, T ) = exp(−c̃kRasT ),

where c̃k ∈ {0.5× 10−7, 1.0 × 10−7, 2.0× 10−7}. Table 2.5 shows critical pairs of
wave-number and Rayleigh number.

As in the case of depth-dependent k, we can see that for Dis = 0.5 and heat
sources excluded thermal conductivity lacks the expected stabilizing effect. How-
ever, for heat sources sufficiently large, the stabilizing property is restored again
as can be seen in Table 2.5 when Raqs = 106.

c̃k Dis Raqs acrit Racrit

0.5×10−7 0 0 2.221 657.500
1.0×10−7 0 0 2.221 657.489

2.0×10−7 0 0 2.221 657.468
0.5×10−7 0.5 0 5.416 472 859

1.0×10−7 0.5 0 5.467 470 158
2.0×10−7 0.5 0 5.564 465 054

0.5×10−7 0.5 106 7.473 179 733
1.0×10−7 0.5 106 7.486 181 198

2.0×10−7 0.5 106 7.513 184 055

Table 2.5: Temperature-dependent thermal conductivity, free-slip boundary con-
dition

2.2.5 Non-constant thermal expansivity α

We assume that thermal conductivity k and dynamic viscosity µ are constant
and thermal expansivity α is depth-dependent.

Depth-dependent α

We assume that
α(z, T ) = exp(−b̃αz),

where b̃α ∈ {0.5, 1.0, 2.0}. Table 2.6 shows critical pairs of wave-number and
Rayleigh number.

We can see that the assumption of thermal expansivity being a stabilizing factor
is violated even when the heat sources are present. We investigated in more detail
the influence of dissipation on the critical value of Ras and we found that thermal
expansivity has a destabilizing behaviour even for smaller values of Dis. We can
see in Table 2.7 that for a tiny value Dis = 0.001 the stabilizing effect is still
preserved but even for Dis = 0.01 the destabilization occurs. Hence, for a rather
large value Dis = 0.5 we don’t observe the expected stabilizing behaviour even
when the heat sources are present.
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b̃α Dis Raqs acrit Racrit

0.5 0 0 2.222 840.560

1.0 0 0 2.223 1 065.19
2.0 0 0 2.227 1 666.83

0.5 0.5 0 3.639 387 573
1.0 0.5 0 4.294 258 856

2.0 0.5 0 3.854 138 156

0.5 0.5 106 7.068 139 911

1.0 0.5 106 6.694 103 769

2.0 0.5 106 6.067 39 607.8

Table 2.6: Depth-dependent thermal expansivity, free-slip boundary condition

Dis = 0.001, Raqs = 0

b̃α acrit Racrit

0.5 2.220 1 476.74

1.0 2.219 1 572.19

2.0 2.221 2 003.81

Dis = 0.01, Raqs = 0

b̃α acrit Racrit

0.5 2.227 7 210.85

1.0 2.218 6 122.01

2.0 2.192 5 013.65

Table 2.7: (De)stabilizing effect of thermal expansivity for smaller values of dis-
sipation number, heat sources excluded, free-slip boundary condition

2.2.6 Non-constant dynamic viscosity µ

We assume that thermal conductivity k and thermal expansivity α are constant
and dynamic viscosity α is either depth-, or temperature-dependent.

Depth-dependent µ

We assume that
µ(z, T ) = exp(b̃µz),

where b̃µ ∈ {1.0, 2.5, 4.5}. Table 2.8 shows critical pairs of wave-number and
Rayleigh number.

We can see that in this case the stabilizing effect of viscosity is present in all the
settings considered. Thus, we obtain the expected behaviour of viscosity.
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b̃µ Dis Raqs acrit Racrit

1.0 0 0 2.199 1 113.68

2.5 0 0 2.093 2 679.48
4.5 0 0 1.921 9 520.92

1.0 0.5 0 5.225 478 900
2.5 0.5 0 4.961 485 309

4.5 0.5 0 4.479 498 954

1.0 0.5 106 7.325 186 361

2.5 0.5 106 7.080 201 026

4.5 0.5 106 6.645 227 321

Table 2.8: Depth-dependent dynamic viscosity, free-slip boundary condition

Temperature-dependent µ

We assume that
µ(z, T ) = exp(−c̃µRasT ),

where c̃µ ∈ {1.0× 10−7, 2.5× 10−7, 4.5× 10−7}. Table 2.5 shows critical pairs of
wave-number and Rayleigh number.

We can see that viscosity as a decreasing function of temperature has destabilizing
effect in all the cases considered.

c̃µ Dis Raqs acrit Racrit

1.0× 10−7 0 0 2.221 657.490
2.5× 10−7 0 0 2.221 657.457

4.5× 10−7 0 0 2.222 657.414
1.0× 10−7 0.5 0 5.368 475 530

2.5× 10−7 0.5 0 5.376 475 325
4.5× 10−7 0.5 0 5.386 475 055

1.0× 10−7 0.5 106 7.466 177 821
2.5× 10−7 0.5 106 7.476 177 193

4.5× 10−7 0.5 106 7.490 176 369

Table 2.9: Temperature-dependent dynamic viscosity, free-slip boundary condi-
tion

2.3 Summary of Chapter 2

The main result of this chapter is the development of a numerical model which
serves to compute the critical values of wave-number and Rayleigh number in the
general case of the extended Boussinesq approximation.

We quantified these for various depth, or temperature dependences of the material
coefficients, dissipation and heat sources both excluded and included. This was
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done under the assumption of the free-slip boundary condition. However, the
numerical model is not restricted to this case and we are able to reproduce similar
results for the no-slip boundary condition as well.

We verified that for the classical Boussinesq approximation the method yields the
well known analytical results and compared them to the ones obtained for the
extended case. The noticeable difference causes the dissipation number which for
the value Dis = 0.5 makes the critical Rayleigh number rise up to the order of 5
(see Tables 2.3,2.5, 2.6, 2.8 and 2.9).

Also, the dissipation number has apparently large influence on the stabilizing/de-
stabilizing effect of thermal conductivity and thermal expansivity as was investi-
gated in Tables 2.4 and 2.7. In the case of depth-dependent thermal expansivity
and temperature-dependent viscosity, the stabilizing effect is violated even when
the heat sources are included. In all other cases the stabilizing behaviour of mate-
rial coefficients is preserved (upon including the heat sources possibly), meaning
that raising the coefficients of material parameters yields higher critical Rayleigh
numbers (see Tables 2.3,2.5, 2.8 and 2.9).

Raising the dissipation number represents raising the influence of dissipation
and adiabatic cooling/heating (see equation (2.53)). Since the dissipation term
is divided by Ras, we assume that for higher values of Rayleigh number the
main factor causing the critical threshold of convection rise is the adiabatic cool-
ing/heating term.

The influence of Rayleigh number for heat sources lies in lowering the critical
Rayleigh number (for all the other parameters fixed) and balancing the impact
of higher dissipation number on (de)stabilizing effect of the material parameters
(see again Tables 2.3,2.5, 2.6, 2.8 and 2.9).
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Chapter 3

Weakly non-linear analysis

For the sake of simplicity, we consider only two-dimensional convection in this
chapter, i.e. the case of single rolls. Since we are going to portray the convection
cells let us remind the reader that the vertical axis z of the coordinate system is
pointing downwards, i.e. z = 0 at the surface and z = 1 at the bottom of the
convecting layer (z represents the dimensionless variable).

The sources for writing this chapter include the papers of Cross (1980) and Fu-
jimura (1997) as well as the papers by Cross and Hohenberg (1993), Newell and
Whitehead (1969) and Stuart (1958) and the monograph Haken (1983).

3.1 Classical Boussinesq approximation

Let us consider the classical Boussinesq approximation of the basic laws again.
We have the system of equations (see (2.8)–(2.10))

divv = 0,

1

Pr

[
∂v

∂t
+ (v · ∇)v

]
= −Raθeẑ −∇π +∆v,

∂θ

∂t
= ∆θ − vẑ − v · ∇θ.

We can rewrite this system in the form

∂ψ

∂t
= L(Ra)(ψ)− Prδπ +N (ψ,ψ), (3.1)

where

ψ =




θ
vx̂

vẑ



 ,
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L(Ra) is a linear operator defined as

L(Ra) =




∆ 0 −1
0 Pr∆ 0

−PrRa 0 Pr∆


 ,

and N is a quadratic non-linear operator defined as

N (φ,ψ) = N





θφ
vx̂φ
vẑφ


 ,



θψ
vx̂ψ
vẑψ




 =



−
(
vx̂φ

∂
∂x

+ vẑφ
∂
∂z

)
θψ

−
(
vx̂φ

∂
∂x

+ vẑφ
∂
∂z

)
vx̂ψ

−
(
vx̂φ

∂
∂x

+ vẑφ
∂
∂z

)
vẑψ


 .

We also introduced operator δ = [0,∇]T.

We assume that ψ contains only divergence-free velocity field, i.e. δ ·ψ = 0. We
also assume that either free-slip or no-slip boundary conditions are imposed on
ψ and that it is periodic in the x-direction with period denoted by D. Thus we
investigate our problem in the cell [0, D]× [0, 1] only. We prescribe the period to
match the critical wave-numbers found in Chapter 2 via D = 2π/acrit where acrit
corresponds to the specific case of boundary conditions considered (free-slip or
no-slip).1 Instead of acrit we henceforth denote the critical wave-number simply
by a.

3.1.1 Expansion into Fourier series and eigenfunctions of

the linearized operator

First of all, we consider the linear eigenvalue problem

L(Ra)ψ(i) = σ(i)ψ(i),

where σ(i) is the i-th eigenvalue and ψ(i) corresponding eigenfunction. We can
show easily that L(Ra) is a self-adjoint operator and hence all the eigenval-
ues are real and simple and the eigenfunctions form an orthogonal and com-
plete set in a Hilbert space denoted by H which consists of functions from
[W 1,2([0, D]× [0, 1])]

3
where appropriate boundary conditions are imposed. Let

us introduce the inner product 〈·,·〉 in H by

〈φ,ψ〉 :=
∫ 1

0

∫ 2π
a

0

φ(x, z) ·Mψ(x, z) dxdz for φ,ψ ∈ H,

where

M =



Ras 0 0
0 Pr−1

s 0
0 0 Pr−1

s


 .

We denote the induced norm by ‖ · ‖.
1Similarly, in the derivation of the amplitude equation for the extended Boussinesq approx-

imation below, we always take the critical wave-number acrit which determines the period D

according to the specific choice of material parameters and dimensionless numbers.
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Also, we let the eigenvalues be ordered in a descending manner (we know that in
the classical case the eigenvalues are real)

σ(1) > σ(2) > σ(3) > . . .

Let us note that for the critical value of Ra, we have σ(1) = 0 and σ(i) < 0 for
i ≥ 2.

Since we assumed x-periodicity, we can expand the eigenfunction to its Fourier
series

ψ(i)(x, z) =
+∞∑

n=−∞

ψ(i)
n (z)ein

2π
D
x =

+∞∑

n=−∞

ψ(i)
n (z)einax. (3.2)

Functions ψ
(i)
n satisfy

Ln(Ra)ψ(i)
n = σ(i)

n ψ
(i)
n , (3.3)

where Ln is the Fourier transformed version of L, i.e. Ln = L| ∂
∂x

→ina, ∂
∂z

→ d
dz
. The

modified operator Ln is still normal and thus the eigenvalues σ
(i)
n for specific n,

a and Ra are simple and eigenfunctions ψ
(i)
n are orthogonal and complete in a

Hilbert space denoted by H̃ which consists of functions from [W 1,2([0, 1])]
3
where

appropriate boundary conditions are imposed. The inner product 〈〈·,·〉〉 in H̃ is
defined as

〈〈φ,ψ〉〉 :=
∫ 1

0

φ(z) ·Mψ(z) dz for φ,ψ ∈ H̃, (3.4)

and the induced norm denoted by ||| · |||.

We can now expand any function ψ(t,x) into Fourier series and linear eigenfunc-
tions as

ψ(t, x, z) =
+∞∑

i=1

+∞∑

n=−∞

A(i)
n (t)ψ(i)

n (z)einax. (3.5)

We require that ψ(t,x) is a real function, hence A
(i)
−n = A

(i)
n and ψ

(i)
−n = ψ

(i)
n .

Furthermore, we can assume that A
(i)
n ∈ R. This follows from the specific

form of ψ
(i)
n – we know that θ

(i)
n , (ṽ

(i)
n )ẑ are real-valued and (ṽ

(i)
n )x̂ is imaginary-

valued. Writing out the corresponding terms for n and −n in the expansion
above component-wise yields that real part of A

(i)
n gives even modes of θ

(i)
n , (ṽ

(i)
n )ẑ

and odd modes of (ṽ
(i)
n )x̂. The imaginary part then gives the opposite modes for

corresponding functions. We can transform odd modes into even ones simply by
the change of horizontal coordinates, hence without loss of generality we simplify
the analysis below by setting the imaginary part of A

(i)
n zero.
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3.1.2 Projection onto the eigenfunctions

Substituting the expansion (3.5) into (3.1) yields

+∞∑

i=1

+∞∑

n=−∞

dA
(i)
n

dt
(t)ψ(i)

n (z)einax =

+∞∑

i=1

+∞∑

n=−∞

A(i)
n (t)L

(
ψ(i)
n (z)einax

)
− Prδπ

+N
(

+∞∑

i=1

+∞∑

n=−∞

A(i)
n (t)ψ(i)

n (z)einax,
+∞∑

j=1

+∞∑

m=−∞

A(j)
m (t)ψ(j)

m (z)eimax

)
, (3.6)

We will now take the inner product of (3.6) with function ψ
(k)
l (z)eilax, where

k ∈ N and l ∈ Z. Let us treat the individual terms of the resulting equation
separately. For the sake of clarity, we will omit writing the arguments of functions.

Using the definition of inner product in H we obtain quite easily

〈
∂ψ

∂t
,ψ

(k)
l eilax

〉
=

〈
+∞∑

i=1

+∞∑

n=−∞

dA
(i)
n

dt
ψ(i)
n einax,ψ

(k)
l eilax

〉

=
+∞∑

i=1

+∞∑

n=−∞

dA
(i)
n

dt

∫ 1

0

∫ 2π
a

0

ψ(i)
n ·Mψ(k)

l ei(n−l)ax dxdz

=
+∞∑

i=1

+∞∑

n=−∞

dA
(i)
n

dt

∫ 2π
a

0

ei(n−l)ax dx

∫ 1

0

ψ(i)
n ·Mψ(k)

l dz.

From the orthogonality of functions {einax}+∞
n=−∞ in L2([0, 2π

a
]) we get

〈
∂ψ

∂t
,ψ

(k)
l eilax

〉
=

+∞∑

i=1

+∞∑

n=−∞

dA
(i)
n

dt

2π

a
δnl

∫ 1

0

ψ(i)
n ·Mψ(k)

l dz

=
2π

a

+∞∑

i=1

dA
(i)
l

dt

∫ 1

0

ψ
(i)
l ·Mψ(k)

l dz.

Using also the orthogonality of functions {ψ(i)
n }+∞

i=1 in H̃ we finally arrive at

〈
∂ψ

∂t
,ψ

(k)
l eilax

〉
=

2π

a

+∞∑

i=1

dA
(i)
l

dt
〈〈ψ(i)

l ,ψ
(k)
l 〉〉 = 2π

a
|||ψ(k)

l |||2dA
(k)
l

dt
.

We can simplify the next term in a similar manner. Let us first note that
L(ψ(i)

n einax) = σ
(i)
n ψ

(i)
n einax. We can then write

〈
L (ψ) ,ψ

(k)
l eilax

〉
=

〈
+∞∑

i=1

+∞∑

n=−∞

A(i)
n L

(
ψ(i)
n einax

)
,ψ

(k)
l eilax

〉

=

〈
+∞∑

i=1

+∞∑

n=−∞
A(i)
n σ(i)

n ψ
(i)
n einax,ψ

(k)
l eilax

〉
.
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Now using the same orthogonality arguments, we easily obtain

〈
L (ψ) ,ψ

(k)
l eilax

〉
=

+∞∑

i=1

+∞∑

n=−∞
σ(i)
n A(i)

n

2π

a
δnl

∫ 1

0

ψ(i)
n ·Mψ(k)

l dz

=
2π

a

+∞∑

i=1

σ
(i)
l A

(i)
l 〈〈ψ(i)

l ,ψ
(k)
l 〉〉 = 2π

a
|||ψ(k)

l |||2σ(k)
l A

(k)
l .

The term with pressure π vanishes upon integrating by parts thanks to ψ
(k)
l eilax

being divergence-free and its boundary conditions. Indeed,

〈
−Prδπ,ψ

(k)
l eilax

〉
=

∫ 1

0

∫ 2π
a

0

−Prδπ ·Mψ(k)
l e−ilax dxdz

=

∫ 1

0

∫ 2π
a

0

Prπδ · (ψ(k)
−l e

−ilax) dxdz = 0.

Finally, the non-linear term reads

〈
N (ψ,ψ) ,ψ

(k)
l eilax

〉

=

〈
N
(

+∞∑

i=1

+∞∑

n=−∞
A(i)
n ψ

(i)
n einax,

+∞∑

j=1

+∞∑

m=−∞
A(j)
m ψ

(j)
m eimax

)
,ψ

(k)
l eilax

〉

=

〈
+∞∑

i=1

+∞∑

n=−∞

+∞∑

j=1

+∞∑

m=−∞
A(i)
n A(j)

m Ñ
(
ψ(i)
n ,ψ(j)

m

)
ei(n+m)ax,ψ

(k)
l eilax

〉
,

where we introduced operator Ñ (·,·) defined as

Ñ (ψ(i)
n ,ψ(j)

m ) =




(
−(v

(i)
n )x̂iam− (v

(i)
n )ẑ d

dz

)
θ
(j)
m(

−(v
(i)
n )x̂iam− (v

(i)
n )ẑ d

dz

)
(v

(j)
m )x̂(

−(v
(i)
n )x̂iam− (v

(i)
n )ẑ d

dz

)
(v

(j)
m )ẑ


 .

Let us further simplify the expression using the orthogonality arguments

〈
N (ψ,ψ) ,ψ

(k)
l eilax

〉

=
+∞∑

i=1

+∞∑

n=−∞

+∞∑

j=1

+∞∑

m=−∞

A(i)
n A(j)

m

∫ 1

0

∫ 2π
a

0

Ñ
(
ψ(i)
n ,ψ(j)

m

)
·Mψ(k)

l ei(n+m−l)ax dxdz

=

+∞∑

i=1

+∞∑

n=−∞

+∞∑

j=1

+∞∑

m=−∞
A(i)
n A(j)

m

2π

a
δn+m,l〈〈Ñ (ψ(i)

n ,ψ(j)
m ),ψ

(k)
l 〉〉

=
2π

a

+∞∑

i=1

+∞∑

n=−∞

+∞∑

j=1

A(i)
n A

(j)
l−n〈〈Ñ (ψ(i)

n ,ψ
(j)
l−n),ψ

(k)
l 〉〉.
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Let us summarize what we have derived so far. Taking the inner product of (3.6)

with ψ
(k)
l (z)eilax yields

2π

a
|||ψ(k)

l |||2dA
(k)
l

dt
(t) =

2π

a
|||ψ(k)

l |||2σ(k)
l A

(k)
l (t)

+
2π

a

+∞∑

i=1

+∞∑

j=1

+∞∑

n=−∞

A(i)
n (t)A

(j)
l−n(t)〈〈Ñ (ψ(i)

n ,ψ
(j)
l−n),ψ

(k)
l 〉〉.

If we introduce notation

λi,j,kn,l−n := |||ψ(k)
l |||−2〈〈Ñ (ψ(i)

n ,ψ
(j)
l−n),ψ

(k)
l 〉〉,

we can write the resulting equation in the form

dA
(k)
l

dt
= σ

(k)
l A

(k)
l +

+∞∑

i=1

+∞∑

j=1

+∞∑

n=−∞
λi,j,kn,l−nA

(i)
n A

(j)
l−n. (3.7)

This is an infinite-dimensional system of ordinary differential equations for quo-
tients A

(k)
l . We would now like to simplify the non-linear term, or more precisely,

provide a good approximation of it. In particular we are interested in evolution
equation for the amplitude of the first unstable mode, i.e. the evolution equation
for the term A

(1)
1 . From now on let us use the notation

A ≡ A
(1)
1 .

We are then concerned with simplifying the equation

dA

dt
= σ

(1)
1 A+

+∞∑

i=1

+∞∑

j=1

+∞∑

n=−∞

λi,j,1n,1−nA
(i)
n A

(j)
1−n. (3.8)

3.1.3 The amplitude equation

Let us rewrite equation (3.8) in terms of the unstable mode A only (we are using

the fact that A
(i)
n = A

(i)
−n)

dA

dt
= σ

(1)
1 A+

+∞∑

i=1

λi,1,10,1 A
(i)
0 A+

+∞∑

j=1

λ1,j,1
1,0 AA

(j)
0

+
+∞∑

i=1

λi,1,12,−1A
(i)
2 A+

+∞∑

j=1

λ1,j,1
−1,2AA

(j)
2 + . . . (3.9)

We will ignore all the remaining terms. We see that the unstable mode is allowed
to interact with modes 0 and 2 only. We would like to approximate the terms A

(k)
0

and A
(k)
2 , k ∈ N, by using equation (3.7) where we set l = 0 or l = 2, respectively.
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Let us approximate the term A
(k)
0 first. Since the modes not equal to ±1 are

damped, we consider only stationary states for these modes. Ignoring all the
terms not containing the unstable mode, (3.7) with l = 0 yields

0 = σ
(k)
0 A

(k)
0 +

+∞∑

i=1

+∞∑

j=1

λi,j,k1,−1A
(i)
1 A

(j)
−1 +

+∞∑

i=1

+∞∑

j=1

λi,j,k−1,1A
(i)
−1A

(j)
1 + . . .

We can now express the term A
(k)
0 and further approximate it by setting i, j = 1

A
(k)
0 = − 1

σ
(k)
0

+∞∑

i=1

+∞∑

j=1

(
λi,j,k1,−1A

(i)
1 A

(j)
−1 + λi,j,k−1,1A

(i)
−1A

(j)
1

)
≈ − 1

σ
(k)
0

(
λ1,1,k
1,−1 + λ1,1,k

−1,1

)
A2

(3.10)

Similarly, to approximate the term A
(k)
2 , we take (3.7) and set l = 2. Considering

the stationary state only and ignoring the higher modes, we obtain

0 = σ
(k)
2 A

(k)
2 +

+∞∑

i=1

+∞∑

j=1

λi,j,k1,1 A
(i)
1 A

(j)
1 + . . .

Finally, we arrive at

A
(k)
2 = − 1

σ
(k)
2

+∞∑

i=1

+∞∑

j=1

λi,j,k1,1 A
(i)
1 A

(j)
1 ≈ − 1

σ
(k)
2

λ1,1,k
1,1 A2. (3.11)

Putting the obtained approximations (3.10) and (3.11) back into (3.9) yeilds

dA

dt
= σ

(1)
1 A+

+∞∑

i=1

− 1

σ
(i)
0

(
λ1,1,i
1,−1 + λ1,1,i

−1,1

) (
λi,1,10,1 + λ1,i,1

1,0

)
A3

+

+∞∑

i=1

− 1

σ
(i)
2

λ1,1,i
1,1

(
λi,1,12,−1 + λ1,i,1

−1,2

)
A3. (3.12)

The equation above is the desired amplitude equation. By computing the non-
linear coefficients and corresponding eigenvalues for a fixed slightly supercritical
Ra we obtain the amplitude A of the unstable mode. We are going to derive this
equation for extended Boussinesq approximation similarly. However, in the clas-
sical case we can simplify the coefficient of the cubic term using some properties
of λi,j,kn,l−n. Let us first derive these properties.

3.1.4 Properties of the non-linear coefficient λi,j,k
n,l−n

Property I

λi,j,kn,l−n ∈ R. (3.13)

This follows easily from the definition of λi,j,kn,l−n and of the non-linear operator Ñ
and the fact that θ

(i)
n , (ṽ

(i)
n )ẑ are always real-valued and (ṽ

(i)
n )x̂ is always imaginary-

valued. Since all the eigenvalues are real the coefficient of the cubic term A3 is
hence also real. Moreover, we expect it to be less than zero, i.e. we expect
supercritical pitchfork bifurcation.
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Property II

λi,j,kn,l−n = λi,j,k−n,−(l−n). (3.14)

Definition of λi,j,kn,l−n yields

λi,j,kn,l−n = |||ψ(k)
l |||−2〈〈Ñ (ψ

(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉

= |||ψ(k)
l |||−2

∫ 1

0

(
−(v

(i)
n )x̂i(l − n)aψ

(j)
l−n − (v

(i)
n )ẑ

dψ
(j)
l−n

dz

)
·ψ(k)

l dz

= |||ψ(k)
l |||−2

∫ 1

0

(
−(v

(i)
−n)

x̂i[−(l − n)]aψ
(j)
−(l−n) − (v

(i)
−n)

ẑ
dψ

(j)
−(l−n)

dz

)
·ψ(k)

−l dz

= |||ψ(k)
−l |||−2〈〈Ñ (ψ

(i)
−n,ψ

(j)
−(l−n)),ψ

(k)
−l 〉〉 = λi,j,k−n,−(l−n).

Property III

λi,j,k0,n = 0. (3.15)

By definition of λi,j,kn,l−n we have

λi,j,k0,n = |||ψ(j)
n |||−2〈〈Ñ (ψ

(i)
0 ,ψ(j)

n ),ψ(j)
n 〉〉.

Now, it suffices to realize that ψ
(i)
0 makes the term vanish. Indeed, since the

wavenumber is zero, horizontal velocity (v
(i)
0 )x̂ must be zero and using the fact

that the velocity field is divergence free, (v
(i)
0 )ẑ must also be zero. Hence, from

the definition of the operator Ñ we conclude (3.15).

Property IV

λi,j,k2n,−n = 0. (3.16)

Again, it suffices to show that

〈〈Ñ (ψ
(i)
2n ,ψ

(j)
−n),ψ

(k)
n 〉〉 = 0.

We can write

〈〈Ñ (ψ
(i)
2n ,ψ

(i)
−n),ψ

(i)
n 〉〉

=

∫ 1

0

(
(v

(i)
2n)

x̂niaψ
(j)
−n − (v

(i)
2n)

ẑ dψ
(j)
−n

dz

)
·ψ(k)

n dz

=

∫ 1

0

(
(v

(i)
2n)

x̂niaψ
(j)
−n − (v

(i)
2n)

ẑ dψ
(j)
−n

dz

)
·ψ(k)

−n dz

=

∫ 1

0

(
(v

(i)
2n)

x̂niaψ
(j)
−n ·ψ(k)

−n − (v
(i)
2n)

ẑ d

dz

(
1

2
ψ

(j)
−n ·ψ(k)

−n

))
dz.
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Integrating by parts and using the divergence-free condition again yields

〈〈Ñ (ψ
(i)
2n ,ψ

(i)
−n),ψ

(i)
n 〉〉 =

∫ 1

0

(
(v

(i)
2n)

x̂niaψ
(j)
−n ·ψ(k)

−n +
1

2

d(v
(i)
2n)

ẑ

dz
ψ

(j)
−n ·ψ(k)

−n

)
dz

=

∫ 1

0

(
(v

(i)
2n)

x̂niaψ
(j)
−n ·ψ(k)

−n − nia(v
(i)
2n)

ẑψ
(j)
−n ·ψ(k)

−n

)
dz

= 0.

Property V

λi,j,kn,l−n = −|||ψ(j)
l−n|||2

|||ψ(k)
l |||2

λi,k,j−n,l. (3.17)

Remembering the definition of λi,j,kn,l−n, it suffices to show that

〈〈Ñ (ψ(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉 = −〈〈Ñ (ψ

(i)
−n,ψ

(k)
l ),ψ

(j)
l−n〉〉.

By definition of the inner product in H̃ and the non-linear operator Ñ we have

〈〈Ñ (ψ(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉 =

∫ 1

0

(
−(v(i)n )x̂i(l − n)aψ

(j)
l−n − (v(i)n )ẑ

dψ
(j)
l−n

dz

)
·ψ(k)

l dz.

This can be written in the form

〈〈Ñ (ψ(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉

=

∫ 1

0

(
−(v(i)n )x̂i(l − n)aψ

(j)
l−n ·ψ

(k)
l − (v(i)n )ẑ

d

dz

(
ψ

(j)
l−n ·ψ

(k)
l

)
+ (v(i)n )ẑψ

(j)
l−n ·

dψ
(k)
l

dz

)
dz.

Upon integrating by parts

〈〈Ñ (ψ(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉

=

∫ 1

0

(
−(v(i)n )x̂i(l − n)aψ

(j)
l−n ·ψ

(k)
l +

d(v
(i)
n )ẑ

dz
ψ

(j)
l−n ·ψ

(k)
l + (v(i)n )ẑψ

(j)
l−n ·

dψ
(k)
l

dz

)
dz.

The divergence-free condition δ · ψ(i)
n = 0 implies that d(v

(i)
n )ẑ

dz
= −ina(v

(i)
n )x̂.

Hence

〈〈Ñ (ψ(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉

=

∫ 1

0

(
−(v(i)n )x̂i(l − n)aψ

(j)
l−n ·ψ

(k)
l − ina(v(i)n )x̂ψ

(j)
l−n ·ψ

(k)
l + (v(i)n )ẑψ

(j)
l−n ·

dψ
(k)
l

dz

)
dz.

Tidying up yields the desired equivalence

〈〈Ñ (ψ(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉 =

∫ 1

0

(
−(v(i)n )x̂ilaψ

(j)
l−n ·ψ

(k)
l + (v(i)n )ẑψ

(j)
l−n ·

dψ
(k)
l

dz

)
dz

=

∫ 1

0

(
(v

(i)
−n)

x̂ilaψ
(j)
l−n ·ψ

(k)
l + (v

(i)
−n)

ẑψ
(j)
l−n ·

dψ
(k)
l

dz

)
dz

= −〈〈Ñ (ψ
(i)
−n,ψ

(k)
l ),ψ

(j)
l−n〉〉.
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3.1.5 The amplitude equation for classical Boussinesq ap-

proximation

Firstly, upon using properties (3.15) and (3.16), the terms λi,1,10,1 and λi,1,12,−1 vanish
from (3.12). Thus, we obtain

dA

dt
= σ

(1)
1 A+

+∞∑

i=1

− 1

σ
(i)
0

(
λ1,1,i
1,−1 + λ1,1,i

−1,1

)
λ1,i,1
1,0 A3 +

+∞∑

i=1

− 1

σ
(i)
2

λ1,1,i
1,1 λ1,i,1

−1,2A
3.

Property (3.17) applied on λ1,i,1
1,0 and λ1,i,1

−1,2 further yields

dA

dt
= σ

(1)
1 A+

+∞∑

i=1

1

σ
(i)
0

|||ψ(i)
0 |||2

|||ψ(1)
1 |||2

λ1,1,i
−1,1

(
λ1,1,i
1,−1 + λ1,1,i

−1,1

)
A3

+
+∞∑

i=1

1

σ
(i)
2

|||ψ(i)
2 |||2

|||ψ(1)
1 |||2

(λ1,1,i
1,1 )2A3.

Finally, from property (3.14) applied on λ1,1,i
−1,1 we obtain

dA

dt
= σ

(1)
1 A+

+∞∑

i=1

2

σ
(i)
0

|||ψ(i)
0 |||2

|||ψ(1)
1 |||2

(λ1,1,i
1,−1)

2A3 +
+∞∑

i=1

1

σ
(i)
2

|||ψ(i)
2 |||2

|||ψ(1)
1 |||2

(λ1,1,i
1,1 )2A3.

This can be written as

dA

dt
= σ

(1)
1 A+ Λ1A

3, (3.18)

where

Λ1 =
+∞∑

i=1

2

σ
(i)
0

|||ψ(i)
0 |||2

|||ψ(1)
1 |||2

(λ1,1,i
1,−1)

2 +
1

σ
(i)
2

|||ψ(i)
2 |||2

|||ψ(1)
1 |||2

(λ1,1,i
1,1 )2.

We can see that Λ1 is indeed negative (for small enough Rayleigh numbers so that

eigenvalues σ
(i)
0 and σ

(i)
2 are negative) which means that there is a supercritical

pitchfork bifurcation at Racrit.

Note that the use of equation (3.18) is limited – we can only evaluate Λ1 for

such Rayleigh numbers so that all the eigenvalues are negative except for σ
(1)
1 (we

used this assumption in the derivation above). Thus, we need to find a second

critical value of Rayleigh number for which σ
(1)
0 or σ

(1)
2 becomes positive (we will

show that σ
(i)
0 is always negative for all i ∈ N). We can then evaluate Λ1 for

Rayleigh numbers in between those two critical values. However, the influence of
the eigenvalue σ

(1)
2 can be quite significant as it’s getting near zero – this will be

apparent in the case of extended Boussinesq approximation.
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We are interested in evolution equation of the first unstable mode in the form of
longitudinal rolls. The rolls are given by function ψ

ψ(t, x, z) = A(t)ψ
(1)
1 (z)eiax + A(t)ψ

(1)
1 (z)e−iax. (3.19)

More specifically

ψ(t, x, z) = 2A(t)




θ
(1)
1 cos(ax)

i(v
(1)
1 )x̂ sin(ax)

(v
(1)
1 )ẑ cos(ax)


 .

3.1.6 Normalization of the eigenfunctions

From the expansion (3.2) it is clear that for i ∈ N condition

lim
n→+∞

|||ψ(i)
n ||| = 0,

must hold. Thus we cannot set |||ψ(i)
n ||| = 1 for i ∈ N and ∀n ∈ Z. However, we

can set |||ψ(i)
n ||| = 1 for every i ∈ N and for a finite number of indices n. Hence,

let us use for ∀i ∈ N normalization

|||ψ(i)
0 ||| = |||ψ(i)

1 ||| = |||ψ(i)
2 ||| = 1. (3.20)

We can then write the amplitude equation as

dA

dt
= σ

(1)
1 A+ Λ1A

3, (3.21)

where

Λ1 :=

+∞∑

i=1

2

σ
(i)
0

(λ1,1,i
1,−1)

2 +
1

σ
(i)
2

(λ1,1,i
1,1 )2,

and

λ1,1,i
1,−1 = 〈〈Ñ (ψ

(1)
1 ,ψ

(1)
−1),ψ

(i)
0 〉〉,

λ1,1,i
1,1 = 〈〈Ñ (ψ

(1)
1 ,ψ

(1)
1 ),ψ

(i)
2 〉〉.

3.1.7 Numerical results

The numerical model from the second chapter give us eigenvalues σ
(i)
1 and eigen-

vectors ψ
(i)
1 (after computing the x-component of velocity from the z-component).

For n 6= 0 we can obtain all the remaining eigenfunctions simply by substituting
a by na in eigenvalue problem (2.44).

As for the case of n = 0, let us set a = 0 in (2.44). Then the problem is reduced
to the following system of equations

σ

Pr

d2ṽẑ

dz2
=

d4ṽẑ

dz4
, σθ̃ = −ṽẑ +

d2θ̃

dz2
,
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with either free-slip

ṽẑ
∣∣
z=0,1

=
d2ṽẑ

dz2

∣∣∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0,

or no-slip boundary conditions

ṽẑ
∣∣
z=0,1

=
dṽẑ

dz

∣∣∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0.

Since the the horizontal velocity must be zero (due to a = 0) and the velocity field
is divergence-free, the vertical component of velocity must be also zero. Hence,
from the second equation above, after substituting by ṽẑ = 0, we easily obtain
for both types of boundary conditions the eigenvalues σ

(k)
0 and corresponding

eigenfunctions ψ
(k)
0 (properly normed)

σ
(k)
0 = −k2π2, ψ

(k)
0 =




√
2Ra−1

s sin(kπz)
0
0


 .

Free-slip

Firstly, we know from the analytical approach that the eigenfunctions of the
modes ±1 can be written as

ψ
(1)
±1 =




c
(1)
1,θ sin(πz)

±iπ
a
c
(1)

1,vẑ
cos(πz)

c
(1)

1,vẑ
sin(πz)


 , (3.22)

where c
(1)
1,θ, c

(1)

1,vẑ
∈ R are chosen appropriately so that (3.20) holds. Note that in

the previous chapter we depicted the properly scaled eigenfunction ψ
(1)
1 (along

with ψ
(2)
1 ) in Figure 2.4 for Pr = 109, Ra = 1000 and a = acrit = 2.2214.

Using (3.22) we can write the non-linear terms Ñ (ψ
(1)
1 ,ψ

(1)
−1) and Ñ (ψ

(1)
1 ,ψ

(1)
1 )

as

Ñ (ψ
(1)
1 ,ψ

(1)
−1) =



−πc

(1)
1,θc

(1)

n,vẑ
sin(2πz)

iπ
2

a
(c

(1)

1,vẑ
)2 cos(2πz)

−π(c
(1)

1,vẑ
)2 sin(2πz)


 , Ñ (ψ

(1)
1 ,ψ

(1)
1 ) =




0

iπ
2

a
(c

(1)

1,vẑ
)2

0


 .

Since

λ1,1,i
1,−1 = 〈〈Ñ (ψ

(1)
1 ,ψ

(1)
−1),ψ

(i)
0 〉〉 =

∫ 1

0

−
√

2Ra−1
s πc

(1)
1,θc

(1)

1,vẑ
sin(2πz) sin(iπz) dz,

we can see that the term λ1,1,i
1,−1 is non-zero only for i = 2, in which case

λ1,1,2
1,−1 = −1

2

√
2Ra−1

s πc
(1)
1,θc

(1)

1,vẑ
.
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The term λ1,1,i
1,1 vanishes completely. Indeed, since we know that (v

(i)
n )ẑ ∼ sin(kπz)

for some k ∈ N and the velocity field is divergence free, it follows that (v
(i)
n )ẑ ∼

cos(kπz) for some k ∈ N. Hence for every i ∈ N

λ1,1,i
1,1 = 〈〈Ñ (ψ

(1)
1 ,ψ

(1)
1 ),ψ

(i)
2 〉〉 ∼

∫ 1

0

cos(kπz) dz = 0. (3.23)

The amplitude equation for free-slip boundary condition thus simplifies substan-
tially

dA

dt
= σ

(1)
1 A +

2

σ
(2)
0

(λ1,1,2
1,−1)

2A3

= σ
(1)
1 A− 1

4
Ra−1

s (c
(1)
1,θc

(1)

1,vẑ
)2A3.

It can be shown analytically that for Ra > 2Racrit the eigenvalue σ
(1)
2 is positive

and hence the use of amplitude equation is (at least formally) limited to the

interval Ra ∈ [27π
4

4
, 27π4

2
]. We computed the coefficients σ

(1)
1 , c

(1)
1,θ, c

(1)

1,vẑ
for Ra in

this interval using the numerical model from the previous chapter. In Figure 3.1
we depicted the stable solutions |A| of the amplitude equation for different values
of Pr.
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Figure 3.1: Stable solutions of amplitude equation for classical Boussinesq ap-
proximation, free-slip boundary conditions

After computing the amplitude A for specific supercritical value of Ra, we can
portray the corresponding velocity and temperature field in the convection cell.
This is shown in Figure 3.2 for Pr = 109 and Ra = 1000. The amplitude for such
values is approximately A = 3.900.

Note: The velocity field is depicted mainly for qualitative evaluation and com-
parison with the extended Boussinesq approximation. We refrain from stating
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the exact magnitude of the velocity vectors. However, we used the same scaling
for all of the velocity field figures in this thesis to assure the comparison of their
magnitudes.
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Figure 3.2: Convection cell for classical Boussinesq approximation and free-slip
boundary condition in case of single rolls, Pr = 109, Ra = 1000

No-slip

For no-slip boundary conditions we don’t have the analytical form of eigenfunc-
tions as in the free-slip case and there will be no reduction of the infinite series
in the term Λ1. The evaluation of Λ1 is thus slightly more complicated and we
will have to truncate the series at I0 ∈ N, say.

We computed the required eigenvalues and eigenfunctions using the numerical
model of the previous chapter (as an illustrative example we can see the properly

scaled eigenfunctions ψ
(1)
1 and ψ

(2)
1 for Pr = 109, Ra = 2400 and a = acrit = 3.116

in Figure 2.9).

For Ra ≈ 3715.777 the eigenvalue σ
(1)
2 becomes positive and thus we can evaluate

Λ1 in the interval [1707.762, 3715.777] only.

Table 3.1 shows the computed value of Λ1 for different values of truncation level
I0. We can see that Λ1 indeed converges to a finite value. To save computational
time, for evaluating Λ1 for many values of Ra we used the truncation level I0 = 12
as the difference from I0 = 40 is not very significant.
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I0 Λ1

2 −0.44491135
4 −0.45161935
8 −0.45175444
12 −0.45175666
20 −0.45175685
40 −0.45175686

Table 3.1: Convergence of Λ1 in terms of the truncation level I0, no-slip boundary
condition, Pr = 109, Ra = 2400, a = acrit = 3.116

In Figure 3.3 we depicted the stable solutions |A| of the amplitude equation for
different values of Pr.
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Figure 3.3: Stable solutions of amplitude equation for classical Boussinesq ap-
proximation, no-slip boundary conditions

We can portray the corresponding velocity and temperature field in the convection
cell for specific supercritical Ra. This is shown in Figure 3.4 for Pr = 109 and
Ra = 2400. The amplitude for such values is approximately A = 4.201.
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Figure 3.4: Convection cell for classical Boussinesq approximation and no-slip
boundary condition, Pr = 109, Ra = 2400

3.2 Derivation of the amplitude equation for the

extended Boussinesq approximation

Let us consider the extended Boussinesq approximation of the basic laws. In this
case the perturbation equations read (see (2.55)–(2.57))

divv = 0,

1

Prs

[
∂v

∂t
+ (v · ∇)v

]
= −Rasα(z, T0 + θ)θeẑ −∇π

+ div
(
µ(z, T0 + θ)

[
∇v + (∇v)T

])
,

∂θ

∂t
= div [k(z, T0 + θ)∇(T0 + θ)− k(z, T0)∇T0]− vẑ

dT0

dz
− v · ∇θ

+Disα(z, T0 + θ)

(
T0 + θ +

RaTss
Ras

)
vẑ +

Dis
Ras

µ(z, T0 + θ)
[
∇v + (∇v)T

]
: ∇v.

We Taylor expand the material coefficients and keep the non-linearities of the
second order only; we neglect all the higher terms. The system above is then
transformed into
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divv = 0,

1

Prs

[
∂v

∂t
+ (v · ∇)v

]
= −Ras

(
α(z, T0) +

∂α

∂T
(z, T0)θ

)
θeẑ −∇π

+ div

((
µ(z, T0) +

∂µ

∂T
(z, T0)θ

)[
∇v + (∇v)T

])
,

∂θ

∂t
= div

[
k(z, T0)∇θ +

∂k

∂T
(z, T0)θ∇(T0 + θ) +

1

2

∂2k

∂T 2
(z, T0)θ

2∇T0

]

− vẑ
dT0

dz
− v · ∇θ +Disα(z, T0)

(
T0 + θ +

RaTss
Ras

)
vẑ

+Dis
∂α

∂T
(z, T0)

(
T0 +

RaTss
Ras

)
θvẑ +

Dis
Ras

µ(z, T0)
[
∇v + (∇v)T

]
: ∇v.

We can rewrite this in the form

∂ψ

∂t
= L(Ra)(ψ)− Prδπ +N (ψ,ψ), (3.24)

where

ψ =




θ
vx̂

vẑ



 ,

contains only divergence-free velocity field, i.e. δ ·ψ = 0, L(Ra) denotes a linear
operator

L =




L11 0 L13

0 L22 L23

L31 0 L33,



 ,

with

L11 = k(z, T0)∆ +

(
dk

dz
(z, T0) +

∂k

∂T
(z, T0)

dT0

dz

)
∂

∂z
+

d

dz

(
∂k

∂T
(z, T0)

dT0

dz

)
,

L13 = −dT0

dz
+Disα(z, T0)

(
T0 +

RaTss
Ras

)
,

L22 = Prsµ(z, T0)∆ + Prs
dµ

dz
(z, T0)

∂

∂z
,

L23 = Prs
dµ

dz
(z, T0)

∂

∂x
,

L31 = −PrsRasα(z, T0),

L33 = Prsµ(z, T0)∆ + 2Prs
dµ

dz
(z, T0)

∂

∂z
,

and N denotes a quadratic non-linear operator

N (φ,ψ) = N





θφ
vx̂φ
vẑφ


 ,



θψ
vx̂ψ
vẑψ




 =



N1

N2

N3


 ,
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with

N1 = −(vφ · ∇)θψ + div

[
∂k

∂T
(z, T0)θφ∇θψ +

1

2

∂2k

∂T 2
(z, T0)∇T0 θφθψ

]

+Disα(z, T0)v
ẑ
φθψ +Dis

∂α

∂T
(z, T0)

(
T0 +

RaTss
Ras

)
vẑφθψ

+
Dis
Ras

µ(z, T0)[∇vφ + (∇vφ)
T ] : ∇vψ

N2 = −(vφ · ∇)vx̂ψ + Prs

[
div

(
∂µ

∂T
(z, T0)[∇vφ + (∇vφ)

T ]θψ

)]x̂
,

N3 = −(vφ · ∇)vẑψ − PrsRas
∂α

∂T
(z, T0)θφθψ

+ Prs

[
div

(
∂µ

∂T
(z, T0)[∇vφ + (∇vφ)

T ]θψ

)]ẑ
.

3.2.1 Main issues

In the general case of all the coefficients being arbitrary functions of z and T ,
the formulae for operators L and N are quite long and untidy. However, we are
interested in the six simple cases of only one of the material coefficients k, α and
µ being a function of z, or T as stated in section 2.2.1. Thus, the corresponding
operators simplify a little.

Even under these simplifications in none of the cases considered there is an inner
product for which the linear operator L would be normal (let alone self-adjoint
as for the classical Boussinesq approximation). Hence, we lose an important
property of the eigenfunctions of the linear eigenvalue problem

L(Ra)ψ(i) = σ(i)ψ(i),

and that is that they form an orthogonal basis of the Hilbert space H (defined
as in the case of the classical Boussinesq approximation). This will complicate
the derivation and numerical evaluation of the amplitude equation. However, the
numerical results show that for Prandtl numbers sufficiently large (greater than
approximately 103) the eigenvalues of problem (2.74) are real and distinct. This
leads us to the assumption that the eigenfunctions still form a complete set in H ,
i.e. an arbitrary function ψ ∈ H can be expanded in terms of ψ(i).2

Then, as for the expansion into Fourier series and linear eigenfunctions, we can
repeat the same steps as in the previous section. We will also be using the same
notation and definition of the inner products and induced norms as in the classical
case of Boussinesq approximation (see 3.1.1).

2We could also orthogonalize the presumably complete set {ψ(i)}+∞

i=1 to obtain an orthogonal
complete set {φ(i)}+∞

i=1 and consider the expansion in terms of the orthogonal functions φ(i).
However, these functions are not the eigenfunctions of the operator L and that would cause more
problems in deriving the amplitude equation than using the original non-orthogonal functions
for the expansion.

62



3.2.2 Projection onto the eigenfunctions

As was mentioned above, we assume that we can expand any function ψ(t,x)
into Fourier series and linear eigenfunctions as

ψ(t, x, z) =

+∞∑

i=1

+∞∑

n=−∞
A(i)
n (t)ψ(i)

n (z)einax, (3.25)

where A
(i)
−n = A

(i)
n and ψ

(i)
−n = ψ

(i)
n . Substituting this into (3.24) yields

+∞∑

i=1

+∞∑

n=−∞

dA
(i)
n

dt
(t)ψ(i)

n (z)einax =

+∞∑

i=1

+∞∑

n=−∞

A(i)
n (t)L

(
ψ(i)
n (z)einax

)
− Prδπ

+N
(

+∞∑

i=1

+∞∑

n=−∞

A(i)
n (t)ψ(i)

n (z)einax,
+∞∑

j=1

+∞∑

m=−∞

A(j)
m (t)ψ(j)

m (z)eimax

)
, (3.26)

Let us now take the inner product of the last equation with ψ
(k)
l (z)eilax, where

k ∈ N and l ∈ Z. Repeating the same steps as in the classical case, except for
using the orthogonality of the eigenfunctions, we arrive at

+∞∑

i=1

dA
(i)
l

dt
〈〈ψ(i)

l ,ψ
(k)
l 〉〉 =

+∞∑

i=1

σ
(i)
l A

(i)
l 〈〈ψ(i)

l ,ψ
(k)
l 〉〉

+

+∞∑

i=1

+∞∑

j=1

+∞∑

n=−∞

A(i)
n A

(j)
l−n〈〈Ñ (ψ(i)

n ,ψ
(j)
l−n),ψ

(k)
l 〉〉, (3.27)

where Ñ is the Fourier transformed version of N , i.e.

Ñ (ψ(i)
n ,ψ(j)

m ) = N (ψ(i)
n ,ψ(j)

m )| ∂
∂x
ψ

(i)
n →inaψ

(i)
n , ∂

∂x
ψ

(i)
m →imaψ

(i)
m , ∂

∂z
→ d

dz

.

To be able to apply similar steps for deriving amplitude equation as in the previous
section, we need to transform equation (3.27) into something similar to (3.7). To
do so, let us restrict ourselves to a finite number of eigenfunctions (I0, say).
Equation (3.27) then reads

I0∑

i=1

dA
(i)
l

dt
〈〈ψ(i)

l ,ψ
(k)
l 〉〉 =

I0∑

i=1

σ
(i)
l A

(i)
l 〈〈ψ(i)

l ,ψ
(k)
l 〉〉

+
I0∑

i=1

I0∑

j=1

+∞∑

n=−∞

A(i)
n A

(j)
l−n〈〈Ñ (ψ(i)

n ,ψ
(j)
l−n),ψ

(k)
l 〉〉,

This can also be written as

Pl
dAl

dt
= PlDlAl +

I0∑

i=1

I0∑

j=1

+∞∑

n=−∞

A(i)
n A

(j)
l−nN

i,j
n,l−n , (3.28)

where we introduced matrix Pl defined by

[Pl]ki = 〈〈ψ(i)
l ,ψ

(k)
l 〉〉,
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diagonal matrix Dl with the diagonal entries [Dl]ii = σ
(i)
l and vectors Al and

N
i,j
n,l−n defined by

[Al]i = A
(i)
l , [Ni,j

n,l−n]k = 〈〈Ñ (ψ(i)
n ,ψ

(j)
l−n),ψ

(k)
l 〉〉.

The matrix Pl is in fact the Gramian matrix and since we assumed that the
eigenfunctions are linearly independent, it is invertible.3 Let us mention that
since in all of the subsequent numerical computations Pl was non-singular, this is a
confirmation that the linear independence of {ψ(i)}+∞

i=1 is a justifiable assumption.

Multiplying equation (3.28) by P
−1
l from the left yields

dAl

dt
= DlAl +

I0∑

i=1

I0∑

j=1

+∞∑

n=−∞

A(i)
n A

(j)
l−nP

−1
l N

i,j
n,l−n ,

which can be written component-wise as

dA
(k)
l

dt
= σ

(k)
l A

(k)
l +

I0∑

i=1

I0∑

j=1

+∞∑

n=−∞

A(i)
n A

(j)
l−n[P

−1
l N

i,j
n,l−n]k.

If we introduce notation
λi,j,kn,l−n ≡ [P−1

l N
i,j
n,l−n]k, (3.29)

we can write the resulting equation in the form

dA
(k)
l

dt
= σ

(k)
l A

(k)
l +

I0∑

i=1

I0∑

j=1

+∞∑

n=−∞
λi,j,kn,l−nA

(i)
n A

(j)
l−n. (3.30)

This is the equation which after repeating the same steps as in the clas-
sical case of Boussinesq approximation yields the amplitude equation in
the form

dA

dt
= σ

(1)
1 A+ Λ1A

3,

where

Λ1 =
+∞∑

i=1

− 2

σ
(i)
0

λ1,1,i
1,−1

(
λi,1,10,1 + λ1,i,1

1,0

)
+

+∞∑

i=1

− 1

σ
(i)
2

λ1,1,i
1,1

(
λi,1,12,−1 + λ1,i,1

−1,2

)
.

3

Let us denote V ≡ span{ψ(1)
l , . . . ,ψ

(n)
l }. V is a finite-dimensional Hilbert space with the

inner product 〈〈·,·〉〉 and we can define the map f : V → Rn via

f(v) =




〈〈ψ(1)
l , v〉〉
...

〈〈ψ(n)
l , v〉〉


 , v ∈ V.

It follows easily that Ker f = {0} and hence the set of vectors {f(ψ(1)
l ), . . . , f(ψ

(n)
l )} ⊂ Rn is

linearly independent. This implies that Pl =
[
f(ψ

(1)
l ), . . . , f(ψ

(n)
l )

]
is invertible.
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The only difference is that this time the coefficient λi,j,kn,l−n given by (3.29) is quite
complicated and in general it lacks the last three properties (3.15)–(3.17) which
would simplify the term Λ1. However, we can still show quite easily that λi,j,kn,l−n ∈
R, provided that the spectrum of the eigenvalue problem (2.74) is real and hence
the eigenfunctions θ and vẑ are real-valued. Also, property (3.14) still holds.

Again, let us mention that the use of the amplitude equation is limited to a
certain interval of supercritical values of Rayleigh number. The influence of the
eigenvalue σ

(1)
2 as it’s getting smaller is quite significant compared to the classical

case as we shall see on the examples below. Thus, Λ1 can be evaluated formally
for all Rayleigh numbers such that all the eigenvalues are negative except for σ

(1)
1 ,

but we should always make a judicious estimate of its usage based on the shape
of the obtained ”pitchfork” curve of stable solutions.

3.2.3 Numerical results

For all the computations the value Prs = 109 was used to ensure the desired
property of all the eigenvalues being real and distinct.

For n 6= 0 we can compute the eigenvalues σ
(k)
n and eigenfunctions ψ

(k)
n directly

using the numerical model of the previous chapter. Again, we simply put na in-
stead of a in eigenvalue problem (2.74) and we compute the horizontal component
of velocity from the divergence-free condition.

As for the case of n = 0, let us go back to eigenvalue problem (2.74) where we
set a = 0. Then the problem is reduced to the following system of equations

σ

Pr

d2ṽẑ

dz2
= µ(z, T0)

d4ṽẑ

dz4
+ 2

dµ

dz
(z, T0)

d3ṽẑ

dz3
+

d2µ

dz2
(z, T0)

d2ṽẑ

dz2
,

σθ̃ =

(
−dT0

dz
+Disα(z, T0)

(
T0 +

RaTss
Ras

))
ṽẑ + k(z, T0)

d2θ̃

dz2

+

(
dk

dz
(z, T0) +

∂k

∂T
(z, T0)

dT0

dz

)
dθ̃

dz
+

d

dz

(
∂k

∂T
(z, T0)

dT0

dz

)
,

with the free-slip boundary conditions being

ṽẑ
∣∣
z=0,1

=
d2ṽẑ

dz2

∣∣∣∣
z=0,1

= 0, θ̃
∣∣∣
z=0,1

= 0.

Since the horizontal velocity must be zero (due to a = 0) and the velocity field is
divergence-free, the vertical component of velocity must be also zero. Hence, from
the second equation above, after substituting by ṽẑ = 0, we obtain an eigenvalue
problem for θ̃

σθ̃ = k(z, T0)
d2θ̃

dz2
+

(
dk

dz
(z, T0) +

∂k

∂T
(z, T0)

dT0

dz

)
dθ̃

dz
+

d

dz

(
∂k

∂T
(z, T0)

dT0

dz

)
,

(3.31)
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with homogeneous boundary conditions. For non-constant k, we solve this using
the spectral method. For constant k, the problem reduces to the classical case of
previous section and we have

σ
(k)
0 = −k2π2, ψ

(k)
0 =




√
2Ra−1

s sin(kπz)
0
0


 .

We are going to evaluate the term Λ1 for various cases of material coefficients
being non-constant. We have the critical values of wave-number and Rayleigh
number from the previous chapter and we could investigate the supercritical be-
haviour of all of the cases covered in section 2.2.3. However, to save space, we only
picked a few interesting examples – firstly, for the depth-dependent quantities we
compare the supercritical behaviour of the classical Boussinesq approximation
and of the extended one for Dis = 0 and Raq = 106. In this case depicting the
convection cells wouldn’t be very informative as the velocity and temperature
fields are only slightly different from the classical case. Thus, secondly, we depict
one convection cell for each of the depth- and temperature-dependent material
coefficients with dissipation and heat sources included. In this case the veloc-
ity and temperature fields are significantly different from the classical case (see
Figure 3.2 for comparison).

To evaluate the coefficient Λ1 we again extended the numerical code used in the
second chapter. This time the implementation lied in tedious transcription of
the unwieldy formulae for computing the non-linear coefficients λi,j,kn,l−n into the
Matlab code.

As for the evaluation itself, Table 3.2 shows the convergence of Λ1 in terms
of truncation level I0 for depth-dependent k and dissipation and heat sources
included (see the caption for details). Similar tables of convergence could be
done for all the remaining cases. We can see that the convergence is not as fast
as in the classical case for no-slip boundary conditions (see Table 3.1). However,
to decrease the computational time, we again used the truncation level I0 = 12
for all the evaluations, even though the precision is not as high as in the classical
case.

I0 Λ1

2 −1.18219303
4 −2.32396270
8 −3.52020696
12 −3.44083661
20 −3.44074136
40 −3.44065954

Table 3.2: Convergence of Λ1 in terms of the truncation level I0, extended Boussi-
nesq approximation and free-slip boundary condition, k(z, T ) = 1+5z, Prs = 109,
Ras = 280 000, Dis = 0.5, Raqs = 106, a = acrit = 7.612

We compute the term Λ1 in appropriate intervals for which all the eigenvalues
are negative expect for the first unstable mode. We refrain from listing all the
critical values of Rayleigh number for which the eigenvalue σ

(1)
2 becomes positive

– the values will be apparent from the appropriate figures.
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Depth-dependent k

We assume that
k(z, T ) = 1 + b̃kz,

where b̃k ∈ {1, 5, 10}.
Figure 3.5 shows the stable solutions of the amplitude equation where we excluded
dissipation and heat sources so we could compare it to the classical Boussinesq
approximation (b̃k = 0). Note the influence of the eigenvalue σ

(1)
2 as it’s getting

smaller, i.e. Ra is getting closer to the second critical value when σ
(1)
2 becomes

positive. We should use the amplitude equation for slightly supercritical values of
Ra only and avoid the values for which the influence of the second mode becomes
apparent.
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Figure 3.5: Extended Boussinesq approximation, free-slip boundary condition,
k(z, T ) = 1 + b̃kz, Prs = 109, Dis = 0, Raqs = 0
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Figure 3.6: Convection cell for extended Boussinesq approximation and free-slip
boundary condition, k(z, T ) = 1 + 5z, Prs = 109, Ras = 280 000, Dis = 0.5,
Raqs = 106

In Figure 3.6 we depicted the velocity and temperature fields in convection cell
for b̃k = 5 and dissipation and heat sources included. In this case acrit = 7.612
and Racrit = 274 150. Note the different nature of the convection cell compared
to the classical case depicted in Figure 3.2. The cell is narrower and the motion
takes place mostly in the upper part of the layer.
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Temperature-dependent k

We assume that
k(z, T ) = exp(−c̃kRasT ),

where c̃k ∈ {0.5× 10−7, 1.0× 10−7, 2.0× 10−7}.

In Figure 3.7 we depicted the velocity and temperature fields in convection cell
for c̃k = 1.0 × 10−7 and dissipation and heat sources included. In this case
acrit = 7.486 and Racrit = 181 198.
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Figure 3.7: Convection cell for extended Boussinesq approximation and free-slip
boundary condition, k(z, T ) = exp(− × 10−7RasT ), Prs = 109, Ras = 200 000,
Dis = 0.5, Raqs = 106

Depth-dependent α

We assume that
α(z, T ) = exp(−b̃αz),

where b̃α ∈ {0.5, 1.0, 2.0}.

0

2

4

6

8

10

500 1000 1500 2000 2500 3000 3500

|A
|

Ra

b̃α = 0
b̃α = 0.5
b̃α = 1.0
b̃α = 2.0

Figure 3.8: Extended Boussinesq approximation, free-slip boundary condition,
α(z, T ) = exp(−b̃αz), Prs = 109, Dis = 0, Raqs = 0
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Figure 3.8 shows the stable solutions of the amplitude equation where we excluded
dissipation and heat sources so we could compare it to the classical Boussinesq
approximation (b̃α = 0).

In Figure 3.9 we depicted the velocity and temperature fields in convection cell
for b̃α = 1 and dissipation and heat sources included. In this case acrit = 6.694
and Racrit = 103 769.
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Figure 3.9: Convection cell for extended Boussinesq approximation and free-slip
boundary condition, α(z, T ) = exp(−z), Prs = 109, Ras = 120 000, Dis = 0.5,
Raqs = 106

Depth-dependent µ

We assume that
µ(z, T ) = exp(b̃µz),

where b̃µ ∈ {1.0, 2.5, 4.5}.
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Figure 3.10: Extended Boussinesq approximation, free-slip boundary condition,
µ(z, T ) = exp(b̃µz), Prs = 109, Dis = 0, Raqs = 0
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Figure 3.10 shows the stable solutions of the amplitude equation where we ex-
cluded dissipation and heat sources so we could compare it to the classical Boussi-
nesq approximation (b̃µ = 0).

In Figure 3.9 we depicted the velocity and temperature fields in convection cell
for b̃µ = 1.0 and dissipation and heat sources included. In this case acrit = 7.325
and Racrit = 186 361.
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Figure 3.11: Convection cell for extended Boussinesq approximation and free-slip
boundary condition, µ(z, T ) = exp(z), Prs = 109, Ras = 200 000, Dis = 0.5,
Raqs = 106

Temperature-dependent µ

We assume that
µ(z, T ) = exp(−c̃µRasT ),

where c̃µ ∈ {1.0× 10−7, 2.5× 10−7, 4.5× 10−7}.

In Figure 3.9 we depicted the velocity and temperature fields in convection cell
for c̃µ = 2.5 × 10−7 and dissipation and heat sources included. In this case
acrit = 7.476 and Racrit = 177 193.
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Figure 3.12: Convection cell for extended Boussinesq approximation and free-slip
boundary condition, µ(z, T ) = exp(−2.5×10−7RasT ), Prs = 109, Ras = 190 000,
Dis = 0.5, Raqs = 106
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3.3 Summary of Chapter 3

We derived the amplitude equation for the classical Boussinesq approximation
in a two-dimensional layer following the works of Cross (1980) and Fujimura
(1997) and we repeated the procedure for the extended Boussinesq approxima-
tion. However, we had to deal with a significant complication – the linearized
operator corresponding to the extended Boussinesq approximation is not self-
adjoint as in the classical case. Hence, the generalization is not trivial and relies
on the completeness and linear independence of the operator’s eigenfunctions.
We verified the linear independence using the numerical computations only and
did not proof the assertion analytically.

Numerical evaluation of the amplitude equation was done by extending the Mat-

lab program from the second chapter. The main part of the work lied in rewriting
the unwieldy formulae of the non-linear operator to Matlab code (especially in
the case of the extended Boussinesq approximation).

For the classical Boussinesq approximation, we depicted the supercritical pitch-
fork bifurcation for various values of Prandtl number in the case of free-slip (Fig-
ure 3.1) and no-slip (Figure 3.3) boundary conditions. Corresponding convection
cells (velocity and temperature fields) were portrayed in Figures 3.2 and 3.4.

For the extended Boussinesq approximation we depicted the supercritical pitch-
fork bifurcation for Pr = 109, free-slip boundary condition and various depth-
dependent material coefficients (see Figures 3.5, 3.8 and 3.10). We also portrayed
a few of the convection cells for a comparison with the classical case (see Fig-
ures 3.6, 3.7, 3.9, 3.11 and 3.12 ). The general trend is the same in all of the
cases considered – the cells are narrower (which is due to the smaller value of
wave-number), mass motion occurs mainly in the upper part of the cells and the
temperature undergoes a significant change mainly in the upper part of the cells.
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Chapter 4

Conclusion

We dealt with a generalized Rayleigh-Bénard problem. The standard approach
assumes constant material parameters and does not take into account dissipa-
tion, adiabatic heating/cooling nor heat sources. Using the so called extended
Boussinesq approximation we included these effects in the governing equations.
The standard procedures examining the onset of convection and the supercritical
regime of thermal convection were generalized for extended Boussinesq approx-
imation. The material parameters used in our study are those approximately
corresponding to the properties of the Earth’s mantle.

Following the theory of linear stability analysis we linearized the governing equa-
tions in the vicinity of the basic state and we computed the spectrum of the
corresponding linear operator. The computations were based on the discretiza-
tion of the operator via the Chebyshev spectral collocation method. The critical
Rayleigh number for the onset of convection was found in the extended as well
as in the classical setting. The numerical results for the classical case are in
accordance with the analytical ones which can be found in literature, e.g. see
Chandrasekhar (1961). The results for the extended case are covered in sections
2.2.4, 2.2.5 nad 2.2.6 of Chapter 2. The main difference from the classical case
is caused by the presence of adiabatic heating/cooling which significantly raises
the critical threshold of convection. For a summary of the obtained results see
section 2.3.

We further investigated the qualitative characteristics of the thermal convection
for slightly supercritical values of Rayleigh number in a two-dimensional setting
(we did not aim at a direct numerical simulation of convection). Via the weakly
non-linear analysis we derived the amplitude equation for classical Boussinesq
approximation following the works of Cross (1980) and Fujimura (1997) and we
evaluated the corresponding coefficient of the amplitude equation for various com-
binations of Rayleigh and Prandtl numbers. We also identified the dominant
velocity and temperature fields in the supercritical regimes (see section 3.1.7).
The necessary computations were done in Matlab, using again the Chebyshev
spectral collocation method.

Generalizing of the weakly non-linear analysis for the case of the extended Boussi-
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nesq approximation was not straightforward and we had to deal with the fact that
the linearized operator is not self-adjoint and hence the eigenfunctions do not form
an orthonormal basis. We overcame this difficulty with the assumption that the
eigenfunctions form a complete and linearly independent set. This assumption
was not verified analytically. However, strong numerical evidence supporting the
assumption of the linear independence of the eigenfunctions was obtained. We
then derived an amplitude equation for the extended Boussinesq approximation
and evaluated the corresponding coefficient of the amplitude equation. We were
hence able to identify the convection cells in the supercritical regimes for var-
ious combinations of the material dependences with the effects of dissipation,
adiabatic cooling/heating and heat sources (see section 3.1.7). The dominating
convection patterns substantially differ from the standard ones. For a summary
of the obtained results for the weakly non-linear analysis see 3.3.

4.1 Open problems

Let us discuss the main issues that were left unresolved

• For the sake of simplicity we assumed exponential (or linear) profile of the
material parameters. Even though we used values that roughly correspond
to the data known about the Earth’s mantle, the actual dependences are
far more complicated and due to the phase changes even discontinuous. It
would not be possible to implement such discontinuous behaviour in the
Chebyshev method since it assumes smooth enough data.

• The derivation of the amplitude equation for the extended Boussinesq ap-
proximation was not rigorous because we did not formally prove that the
eigenfunctions of the linearized operator form a complete and linearly in-
dependent set. Our assumption was based on the numerical results only
– the eigenvalues were distinct and real for high enough Prandtl numbers
(approximately 103).

Overall, the assumed simple depth- or temperature-dependent profile of material
parameters was shown to substantially influence the character of convection. Con-
sequently, it is desirable to further investigate the influence of material parameters
with the actual depth-temperature-dependence seen in the Earth’s mantle.
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