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Abstract

Práce zkoumá vztah tzv. princip̊u reflexe a velkých kardinál̊u. Lévy
ukázal, že v ZFC plat́ı tzv. věta o reflexi a dokonce, že věta o reflexi
je ekvivalentńı schématu nahrazeńı a axiomu nekonečna nad teoríı
ZFC bez axiomu nekonečna a schématu nahrazeńı. Tedy lze na větu
o reflexi pohĺıžet jako na svého druhu axiom nekonečna. Práce zkoumá
do jaké mı́ry a jakým zp̊usobem lze větu o reflexi zobecnit a jaký to má
vliv na existenci tzv. velkých kardinál̊u. Práce definuje nedosažitelné,
Mahlovy a nepopsatelné kardinály a ukáže, jak je lze zavést pomoćı
reflexe. Přirozenou limitou kardinál̊u źıskaných reflex́ı jsou kardinály
nekonzistentńı s L. Práce nab́ıdne intuitivńı zd̊uvodněn, proč tomu
tak je.

Abstract

This thesis aims to examine the relation between the so called Re-
flection Principles and Large Cardinals. Lévy has shown that the
Reflection Theorem is a sound theorem of ZFC and it is equivalent to
the Replacement Schema and the Axiom of Infinity. From this point
of view, Reflection theorem can be seen a specific version of an Axiom
of Infinity. This paper aims to examine the Reflection Principle and
its generalisations with respect to the existence of Large Cardinals.
This thesis will establish the Inaccessible, Mahlo and Indescribable
cardinals and show how can those be defined via reflection. A natural
limit of Large Cardinals obtained via reflection are cardinals inconsis-
tent with L. This thesis will offer an intuitive explanation of why this
holds.
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1. Introduction

1 Introduction

The central point of this thesis is the so called reflection principle, which
could be informally expressed like this:

For every property that holds in the universe of all sets, there is
a set in which this property holds.

Clearly, this formulation is rather vague and we should be extremely cau-
tious when dealing with the word “property”. One problem that immediately
comes to mind is that “being the set of all sets” must not be considered a
property in this sense, otherwise we run into the well–known paradox of Rus-
sell. This is a well–known problem that exemplifies the fact that reflection
is a phenomenon that is closely connected to the very foundations of mathe-
matics. This is also emphasised by the fact that the very first explicit use of
reflection in a mathematical proof can be found in Gödel’s paper The Consis-
tency of the Axiom of Choice and of the Generalised Continuum Hypothesis
with the Axioms of Set Theory1 that deals with the consistency of the gen-
eralised continuum hypothesis, which is a question that played an important
part in the development of set theory in the 20th century. Furthermore,
Lévy’s article Axiom Schemata of Strong Infinity in Axiomatic Set Theory,
that is a cornerstone of this thesis is concerned primarily with the so called
strong axioms (or axiom schemata) of infinity, which are axioms or axiom
schemata that imply the existence of the set of all natural numbers. This
assertion is called the Axiom of Infinity2, but they also imply the existence
of larger sets whose existence can not be proved in the current theory3.

As we will show in chapter 2, reflection is closely related to the Axiom
Schema of Replacement, which was the subject of philosophical debates be-
cause it wasn’t included in the original axiomatic set theory proposed by
Zermelo and unlike other axioms in the Zermelo–Fraenkel set theory, its
presence is not justified from the iterative conception of a set, but rather
from its usefulness. Unlike Replacement Schema, reflection is not so eas-
ily questioned from a platonist4 point of view, but it may be formulated in
two different was. The two following informal interpretations of reflections

1See [Gödel and Brown, 1940].
2For a rigorous definition, see definition 1.10 later in this section.
3For the purposes of this thesis, unless stated otherwise, this will be the Zer-

melo–Fraenkel set theory, that is formally established in definition 1.21.
4According to Stanford Encyclopedia of Philosophy, “mathematical platonism is the

metaphysical view that there are abstract mathematical objects whose existence is inde-
pendent of us and our language, thought, and practices. Just as electrons and planets
exist independently of us, so do numbers and sets. And just as statements about electrons
and planets are made true or false by the objects with which they are concerned and
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1. Introduction

are based on [Hellman, 2010]. Their purpose is to illustrate the difference
between a platonist and a structuralist5 approach towards reflection.

“The true situation (in the universe of sets) is reflected in arbi-
trarily high level of the cumulative hierarchy.”

“We’re interested in structures so large that certain attempts to
describe them fail to distinguish them from various proper initial
segments–hence small fragments–of them.”

There is no point in dedicating more space to the philosophy of mathematics
as it is outside the scope of this thesis, it is only worth noting that the author
usually thinks of reflection in the latter sense which may be reflected in the
way this thesis is written.

After introducing the elementary theoretical tools required for this task in
the rest of this chapter, in chapter 2, we will review the Reflection Theorem
that originally formulated by Richard Montague in 19616 and extended by
Azriel Lévy in his aforementioned article and then restate it in a way that is
more in line with today’s set theory. This part of the thesis deals with the
fact that when the term “property” is restricted to first–order formulas in
the language of set theory, it does not behave like a axiom of strong infinity,
but it is equivalent to the Axiom of Infinity and Replacement Schema, which
is one of the key set–forming principles in the Zermelo–Fraenkel set theory.

It is in chapter 3 where will examine some large cardinal properties and
in a manner similar to Lévy’s article, we will introduce axiom schemata that
come from reflection and lead towards inaccessible and Mahlo cardinals. We
will briefly argue that Mahlo’s operation exhausts large cardinals reachable
via reflection from below and introduce indescribable cardinals, which are also
based on reflection, but lead us into higher–order logic. We will introduce

these objects’ perfectly objective properties, so are statements about numbers and sets.
Mathematical truths are therefore discovered, not invented.”

5According to wikipedia, “Structuralism is a theory in the philosophy of mathematics
that holds that mathematical theories describe structures of mathematical objects. Math-
ematical objects are exhaustively defined by their place in such structures. Consequently,
structuralism maintains that mathematical objects do not possess any intrinsic properties
but are defined by their external relations in a system.”

6Note that Lévy’s paper was published in 1960, a year before Montague’s, but Lévy
refers to Montague and not vice versa. While this may seem confusing, it is because
Montague gave a lecture on this topic at a conference at the Cornell University in 1957.
It is also interesting that Lévy’s article refers for Montague’s reflection to a publication
by Montague and Solomon Feferman called The method of arithmetization and some of
its applications which was never finished. This is explained by Solomon Feferman in
[Feferman, 2008].
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1.1 Notation and Terminology 1. Introduction

weakly inaccessible cardinals and show that they are also based on reflection
and examine their relation to the cardinals presented earlier. Finally, we will
examine Gödel’s constructible universe and see whether the large cardinals
we have introduced are compatible with the Axiom of Constructibility, an
assertion that every set is definable.

1.1 Notation and Terminology

1.1.1 The Language of Set Theory

This text assumes the knowledge of basic terminology and some results from
first–order predicate logic, see any entry–level like [Hamilton, 1988]. For
this reason, we won’t introduce the notions of language, function symbol,
predicate, term, model and interpretation that are used in definition 1.42.

All proofs are based on [Jech, 2006] unless explicitly stated otherwise.
Notable amount of inspiration is also drawn from [Kanamori, 2003] and
[Drake, 1974].

We will now shortly review the basic notions that allow us to define the
Zermelo–Fraenkel set theory.

When we talk about a class, we have the notion of a definable class in
mind. If ϕ(x, p1, . . . , pn) is a formula in the language of set theory, we call

A = {x : ϕ(x, p1, . . . , pn)} (1.1)

a class of all sets satisfying ϕ(x, p1, . . . , pn) in a sense that

x ∈ A↔ ϕ(x, p1, . . . , pn) (1.2)

for some p1, . . . , pn. Given classes A, B, one can easily define the elementary
set operations such as A ∩ B, A ∪ B, A \ B,

⋃
A, see the first chapter of

[Jech, 2006] for details. Axioms are the tools by which we can decide whether
a particular class is “small enough” to be considered a set7. A class that fails
to be considered a set is called a proper class.

We will often write something like “M is a limit ordinal”, it should always
be clear that this can be rewritten as a formula that was introduced earlier.
Tuples are notated as 〈a, b〉.

7“Small enough” means that it doesn’t lead to a paradox similar to the famous Russell’s
paradox.

6



1.1 Notation and Terminology 1. Introduction

1.1.2 The Axioms

Definition 1.1 (The Existence of a Set)

∃x(x = x) (1.3)

Definition 1.2 (Axiom of Extensionality)

∀x, y(x = y ↔ ∀z(z ∈ x↔ z ∈ y)) (1.4)

Definition 1.3 (Axiom Schema of Specification)
The following yields an axiom for every first–order formula ϕ(x, p1, . . . , pn)
with no free variables other than x, p1, . . . , pn.

∀x, p1, . . . , pn∃y∀z(z ∈ y ↔ z ∈ x & ϕ(z, p1, . . . , pn)) (1.5)

We will now provide two definitions that are not axioms, but will be
helpful in establishing the next axioms in a more comprehensible way.

Definition 1.4 (x ⊆ y, x ⊂ y)

x ⊆ y ↔ (∀z ∈ x)z ∈ y (1.6)

x ⊂ y ↔ x ⊆ y & x 6= y (1.7)

We read x ⊆ y as x is a subset of y and x ⊂ y as x is a proper subset of y.

Definition 1.5 (Empty Set) For an arbitrary set x, the empty set, repre-
sented by the symbol “∅”, is the set defined by the following formula:

(∀y ∈ x)(y ∈ ∅ ↔ ¬(y = y)) (1.8)

Clearly ∅ is a set due to Specification Schema, there is only one such set due
to the Axiom of Extensionality, no matter which x is chosen.

Definition 1.6 (Axiom of Pairing)

∀x, y∃z∀q(q ∈ z ↔ q = x ∨ q = y) (1.9)

Definition 1.7 (Axiom of Union)

∀x∃y∀z(z ∈ y ↔ ∃q(z ∈ q & q ∈ x)) (1.10)

Definition 1.8 (Axiom of Foundation)

∀x(x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)) (1.11)
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1.1 Notation and Terminology 1. Introduction

Definition 1.9 (Axiom of Power Set)

∀x∃y∀z(z ∈ y ↔ z ⊆ x) (1.12)

Definition 1.10 (Axiom of Infinity)

∃x(∅ ∈ x & (∀y ∈ x)(y ∪ {y} ∈ x)) (1.13)

The least set satisfying (1.13) is denoted ω.

Definition 1.11 (Function)
Given an arbitrary first–order formula ϕ(x, y, p1, . . . , pn), we say that ϕ is
a function iff

∀x, y, z, p1, . . . , pn(ϕ(x, y, p1, . . . , pn) & ϕ(x, z, p1, . . . , pn)→ y = z) (1.14)

When ϕ(x, y) is a function, we also write the following:

ϕ(x, y) iff f(x) = y (1.15)

Alternatively, f = {〈x, y〉 : ϕ(x, y)} is a class.
Let us introduce a few more definitions that will make the two remaining

axioms more comprehensible.

Definition 1.12 (Power Set Function)
Given a set x, the power set of x, denoted P(x) and satisfying the definition
1.9 is defined as follows:

P(x) = {y : y ⊆ x} (1.16)

Definition 1.13 (Domain of a Function)
Let f be a function. We call the domain of f the class of all sets for which
f is defined. We use “Dom(f)” to refer to this set.

∀x(x ∈ Dom(f)↔ ∃y(f(x) = y)) (1.17)

We say “f is a function on A”, A being a class, if A = dom(f).

Definition 1.14 (Range of a Function)
Let f be a function. We call the range of f the set of all sets that are images
of other sets via f . We use “Rng(f)” to refer to this set.

∀x(x ∈ Rng(f)↔ ∃y(f(y) = x)) (1.18)
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1.1 Notation and Terminology 1. Introduction

We say that f is a function into A, A being a class, iff rng(f) ⊆ A. We say
that f is a function onto A iff rng(f) = A. We say a function f is a one to
one function, iff

(∀x1, x2 ∈ dom(f))(f(x1) = f(x2)→ x1 = x2) (1.19)

We say that f is a bijection iff it is a one to one function that is onto.
Note that Dom(f) and Rng(f) are not definitions in a strict sense, they

are in fact definition schemas that yield definitions for every function f given.
Also note that they can be easily modified for ϕ instead of f , with the only
difference being the fact that it is then defined only for those ϕs that are
functions, which must be taken into account. This is worth noting as we will
use the notions of function and formula interchangably.

Definition 1.15 (Function Defined For All Ordinals)
We say a function f is defined for all ordinals, this is sometimes written
f : Ord→ A for any class A, if Dom(f) = Ord. Alternatively,

(∀α ∈ Ord)(∃y ∈ A)(f(α) = y)) (1.20)

Definition 1.16 (Axiom Schema of Replacement)
The following is an axiom for every first–order formula ϕ(x, p1, . . . , pn) with
no free variables other than x, p1, . . . , pn.

“ϕ is a function′′ → ∀x∃y∀z(z ∈ y ↔ (∃q ∈ x)(ϕ(x, y, p1, . . . , pn))) (1.21)

Definition 1.17 (Choice function)
We say that a function f is a choice function on x iff

dom(f) = x \ {∅}) & (∀y ∈ dom(f))(f(y) ∈ y). (1.22)

Definition 1.18 (Axiom of Choice)
For every set x there is a function f that is a choice function on x.

One might be unsettled by the fact that this definition quantifies over func-
tions, which are generally classes, but in this particular case, since dom(f) = x
and x is a set, f is also a set due to Replacement8.

8If the underlying theory includes of implies Replacement.
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1.1 Notation and Terminology 1. Introduction

Definition 1.19 (S)
We call S an axiomatic theory in the language L = {=,∈} with exactly the
following axioms:

(i) Existence of a Set (see definition 1.1)
(ii) Axiom of Extensionality (see definition 1.2)

(iii) Axiom of Specification (see definition 1.3)
(iv) Axiom of Foundation (see definition 1.8)
(v) Axiom of Pairing (see definition 1.6)

(vi) Axiom of Union (see definition 1.7)
(vii) Axiom of Power Set (see definition 1.9)

Definition 1.20 (ZF)
We call ZF an axiomatic theory in the language L = {=,∈} that contains
all the axioms of S in addition to the following:

(i) Axiom of Replacement schema (see definition 1.16)
(ii) Axiom of Infinity (see definition 1.10)

Existence of a Set is usually left out because it is a consequence of the Axiom
of Infinity.

Definition 1.21 (ZFC)
ZFC is an axiomatic theory in the language L = {=,∈} that contains all the
axioms of ZF plus Choice, see definition 1.18).

1.1.3 The Transitive Universe

Definition 1.22 (Transitive Class)
We say a class A is transitive iff

(∀x ∈ A)(x ⊆ A). (1.23)

Definition 1.23 (Well–Ordered Class) A class A is said to be well–ordered
by ∈ iff the following hold:

(i) (∀x ∈ A)(x 6∈ x) (Antireflexivity)
(ii) (∀x, y, z ∈ A)(x ∈ y & y ∈ z → x ∈ z) (Transitivity)

(iii) (∀x ⊆ A)(x 6= ∅ → (∃y ∈ x)(∀z ∈ x)(z = y ∨ z ∈ y))) (Existence of the
least element)

Definition 1.24 (Ordinal Number)
A set x is said to be an ordinal number if it is transitive and well–ordered
by ∈.
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1.1 Notation and Terminology 1. Introduction

For the sake of brevity, we usually just say “x is an ordinal”. Note that
“x is an ordinal” is a well–defined formula in the language of set theory,
since transitivity is defined in definition 1.22 via a first–order formula and
well–ordering9 is in fact a conjunction of four first–order formulas. Ordinals
will be usually denoted by lower case greek letters, starting from the begin-
ning of the alphabet: α, β, γ, . . .. Given two different ordinals α, β, we will
write α < β for α ∈ β, see Lemma 2.11 in [Jech, 2006] for technical details.

Definition 1.25 (Non–Zero Ordinal)
We say an ordinal α is non–zero iff α 6= ∅.

Definition 1.26 (Successor Ordinal)
Consider the following function defined for all ordinals. Let β be an arbitrary
ordinal. We call S the successor function.

S(β) = β ∪ {β} (1.24)

An ordinal α is called a successor ordinal iff there is an ordinal β, such that
α = S(β). We also write α = β + 1.

Definition 1.27 (Limit Ordinal)
A non–zero ordinal α is called a limit ordinal iff it is not a successor ordinal.

Definition 1.28 (Ord)
The class of all ordinal numbers, which we will denote “Ord”10 is the proper
class defined as follows:

x ∈ Ord↔ x is an ordinal. (1.25)

Definition 1.29 (Von Neumann’s Hierarchy)
The Von Neumann’s hierarchy is a collection of sets indexed by the elements
of Ord, defined recursively in the following way:

(i)
V0 = ∅, (1.26)

(ii)
Vα+1 = P(Vα) for any ordinal α, (1.27)

(iii)

Vλ =
⋃
β<λ

Vβ for a limit ordinal λ, (1.28)

9See definition 1.23.
10Some authors use “On” instead of “Ord”, we will stick to the notation used in

[Jech, 2006].
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1.1 Notation and Terminology 1. Introduction

(iv)

V =
⋃

α∈Ord

Vα. (1.29)

We will also refer to the Von Neumann’s hierarchy as Von Neumann’s uni-
verse or the cumulative hierarchy. This definition is only correct in a theory
that contains or implies Replacement Schema. Even though V is sometimes
also used for the universal class that contains all sets, in this thesis, it will
always mean the V defined above.

Definition 1.30 (Rank)
Given a set x, we say that the rank of x (written as rank(x)) is the least
ordinal α such that x ∈ Vα+1.

Due to Axiom of Regularity, every set has a rank.11 The Von Neumann’s
hierarchy defined above can also be defined by the fact that every Vα is a set
of all set with rank less than α.

Definition 1.31 (Order–type)
Given an arbitrary well–ordered set x, we say that an ordinal α is the or-
der–type of x iff x and α are isomorphic.

1.1.4 Cardinal Numbers

Definition 1.32 (Cardinality)
Given a set x, let the cardinality of x, written |x|, be defined as the smallest
ordinal number such that there is a one to one mapping from x onto α.

Definition 1.33 (Aleph function)
Let ω be the least set satisfying the Axiom of Infinity. We will recursively
define the function ℵ for all ordinals.

(i) ℵ0 = ω,
(ii) ℵα+1 is the least cardinal larger than ℵα12,

(iii) ℵλ =
⋃
β<λ ℵβ for a limit ordinal λ.

If κ = ℵα and α is a successor ordinal, we call κ a successor cardinal. If α
is a limit ordinal, we call κ a limit cardinal.

Definition 1.34 (Cardinal number)

(i) A set x is called a finite cardinal iff x ∈ ω.

11See chapter 6 of [Jech, 2006] for details.
12“The least cardinal larger than ℵα” is sometimes notated as ℵ+α .
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1.1 Notation and Terminology 1. Introduction

(ii) A set is called an infinite cardinal iff there is an ordinal α such that
ℵα = x.

(iii) A set is called a cardinal iff it is either a finite cardinal or an infinite
cardinal.

We say κ is an uncountable cardinal iff it is an infinite ordinal and ℵ0 < κ.
Infinite cardinals will be notated by lowercase greek letters from the middle
of the alphabet, e.g. κ, µ, ν, . . . with the possible exception of λ, which is
next to κ in the greek alphabet, but is also sometimes used to denote limit
ordinals.

For formal details as well as why every set can be well–ordered assuming
the Axiom of Choice, and therefore has a cardinality, see [Jech, 2006].

Definition 1.35 (Sequence)
We say that a function ϕ(x, y) is a sequence iff there is an ordinal α such
that dom(ϕ) = α. In other words, a function is called a sequence if it is
defined exactly for every ordinal from below some α. We then say it is an
α–sequence. We usually write 〈βi : i ∈ α〉 or 〈β0, β1, . . .〉 when referring to
a sequence, for every i ∈ dom(ϕ), βi then denotes the respective elements of
rng(ϕ).

Definition 1.36 (Cofinal Subset)
Given a class A of ordinals, we say that B ⊆ A is cofinal in A iff

(∀x ∈ A)(∃y ∈ B)(x ∈ y). (1.30)

Definition 1.37 (Cofinality of a Limit Ordinal)
Let λ be a limit ordinal. We say that the cofinality of λ is κ iff κ is the least
ordinal, such that there is a cofinal κ–sequence 〈βξ : ξ < κ〉 satisfying

sup({βξ : ξ < κ}) = λ. (1.31)

We write cf(λ) = κ.

Note that cf(α) is alway a cardinal13.

Definition 1.38 (Regular Cardinal)
We say an infinite cardinal κ is regular iff cf(κ) = κ.

13If cf(α) is not a cardinal, so |cf(α)| < cf(α), then there is a mapping from |cf(α)|
onto cf(α). But then the range of this mapping is a cofinal subset of cf(α) that is strictly
smaller than cf(α).
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1.1 Notation and Terminology 1. Introduction

Definition 1.39 (Strong Limit Cardinal)
We say that an ordinal κ is a strong limit cardinal if it is a limit cardinal
and

(∀α ∈ κ)(|P(α)| ∈ κ). (1.32)

Definition 1.40 (Generalised Continuum Hypothesis)
The following sentence is known as the generalised continuum hypothesis,
often abbreviated to GCH:

(∀α ∈ Ord)(ℵα+1 = |P(ℵα)|). (1.33)

If GCH holds (for example in Gödel’s L, see chapter 3), the notions of limit
cardinal and strong limit cardinal are equivalent.

1.1.5 Relativisation and Absoluteness

Definition 1.41 (Relativization)
Let M be a class, R ⊆M ×M and let ϕ(p1, . . . , pn) be a first–order formula
with no free variables besides p1, . . . , pn. The relativization of ϕ to M and R
is the formula, written as ϕM,R, defined in the following inductive manner:

(i) (x ∈ y)M,R ↔ R(x, y),
(ii) (x = y)M,R ↔ x = y,

(iii) (¬ϕ)M,R ↔ ¬ϕM,R,
(iv) (ϕ & ψ)M,R ↔ ϕM,R & ψM,R,
(v) (ϕ ∨ ψ)M,R ↔ ϕM,R ∨ ψM,R,

(vi) (ϕ→ ψ)M,R ↔ ϕM,R → ψM,R,
(vii) (∃xϕ(x))M,R ↔ (∃x ∈M)ϕM,R(x),
(viii) (∀xϕ(x))M,R ↔ (∀x ∈M)ϕM,R(x).

When R =∈ ∩(M ×M), we usually write ϕM instead of ϕM,R. When we
talk about ϕM(p1, . . . , pn), it is understood that p1, . . . , pn ∈M .

Definition 1.42 (Satisfaction in a Structure)
Let M be a set and R a binary relation on M . Let Terms be the set of all
terms, let e : Terms→M be any evaluation function. Let ϕ be a first–order
formula in the language of set theory.

We say that ϕ holds in 〈M,R〉 under the evaluation e, we write 〈M,R〉 |= ϕ[e],
iff any of the following hold:

(i) ϕ is the formula “s = t”, s, t are terms, both e(s) and e(t) are defined,
and e(s) = e(t).

(ii) ϕ is the formula “s ∈ t”, s, t are terms, both e(s) and e(t) are defined,
and the pair 〈e(s), e(t)〉 is in R.

14



1.1 Notation and Terminology 1. Introduction

(iii) ϕ is the formula “¬ψ” and not 〈M,R〉 |= ψ[e]
(iv) ϕ is the formula “ψ1 & ψ2” and both 〈M,R〉 |= ψ1[e] and 〈M,R〉 |= ψ2[e].
(v) ϕ is the formula “ψ1∨ψ2” and either 〈M,R〉 |= ψ1[e] or 〈M,R〉 |= ψ2[e].

(vi) ϕ is the formula “ψ1 → ψ2” and either not 〈M,R〉 |= ψ1[e] or
〈M,R〉 |= ψ2[e].

(vii) ϕ is the formula “ψ1 → ψ2” and either not 〈M,R〉 |= ψ1[e] or
〈M,R〉 |= ψ2[e].

(viii) ϕ is the formula “∀x1ψ” and 〈M,R〉 |= ψ[e′] for every e′ that differs
from e only in the value of x1.

(ix) ϕ is the formula “∀x1ψ” and 〈M,R〉 |= ψ[e′] for every e′ that differs
from e only in the value of x1.

(x) ϕ is the formula “∃x1ψ” and 〈M,R〉 |= ψ[e′] for some e′ that differs
from e only in the value of x1.

If ϕ is a sentence, we also write 〈M,R〉 |= ϕ. If ϕ is not a sentence, the
universal closure of ϕ is assumed to be used instead of ϕ if no evaluation is
explicitly metioned.

Note that we say that M is a set.
We will use 〈M,R〉 |= ϕ(p1, . . . , pn) and ϕM(p1, . . . , pn) interchangably.

Definition 1.43 (Absoluteness)
Given a transitive class M , we say a formula ϕ is absolute in M if for all
p1, . . . , pn ∈M

ϕM(p1, . . . , pn)↔ ϕ(p1, . . . , pn) (1.34)

Definition 1.44 (Hierarchy of First–Order Formulas)

(I) A first–order formula ϕ is ∆0 iff it is logically equivalent to a first–order
formula ϕ′ satisfying any of the following:

(i) ϕ′ contains no quantifiers
(ii) y is a set, ψ is a ∆0–formula, and ϕ′ is either (∃x ∈ y)ψ(y) or

(∀x ∈ y)ψ(y).
(iii) ψ1, ψ2 are ∆0–formulas and ϕ′ is any of the following: ψ1 ∨ ψ2,

ψ1 & ψ2, ψ1 → ψ2, ¬ψ2,
(II) If a formula is ∆0 it is also Σ0 and Π0

(III) A formula ϕ is Πn + 1 if it is logically equivalent to a formula ϕ′ such
that ϕ′ = ∀xψ where ψ is a Σn–formula for any n < ω.

(IV) A formula ϕ is Σn + 1 if it is logically equivalent to a formula ϕ′ such
that ϕ′ = ∀xψ where ψ is a Πn–formula for any n < ω.

Lemma 1.45 (∆0 absoluteness)
Let ϕ be a ∆0–formula, then ϕ is absolute in any transitive class M .
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1.1 Notation and Terminology 1. Introduction

Proof. This will be proved by induction over the complexity of a given
∆0–formula ϕ. Let M be an arbitrary transitive class.

As M is transitive, atomic formulas are always absolute by the definition
of relativisation, see definition 1.41. Suppose that ∆0–formulas ψ1 and ψ2

are absolute in M . Then from relativization, (ψ1 & ψ2)M ↔ ψM1 & ψM2 ,
which is equivalent to ψ1 & ψ2 from the induction hypothesis. The same
holds for ∨,→ and ¬.

Suppose that a ∆0–formula ψ is absolute in M . Let y be a set and let
ϕ = (∃x ∈ y)ψ(x). From relativization, (∃xψ(x))M ↔ (∃x ∈ M)ψM(x).
Since the induction hypothesis makes it clear that ψM ↔ ψ, we get

((∃x ∈ y)ψ(x))M ↔ (∃x ∈ y ∩M)ψ(x)M ↔ (∃x ∈ y ∩M)ψ(x), (1.35)

which is equivalent to ϕM ↔ ϕ. Note that from transitivity of M , is x ∈M
and x ∈ y, it is the case that x ∈ y ∩M . The same argument applies to
ϕ = (∀x ∈ y)ψ(x). �

Lemma 1.46 (Downward Absoluteness)
Let ϕ be a Π1–formula and M a transitive class. Then the following holds:

(∀p1, . . . , pn ∈M)(ϕ(p1, . . . , pn)→ ϕ(p1, . . . , pn)M) (1.36)

Proof. Since ϕ(p1, . . . , pn) is Π1, there is a ∆0–formula ψ(p1, . . . , pn, x) such
that ϕ = ∀xψ(p1, . . . , pn, x). From relativization and lemma 1.45,

ϕM(p1, . . . , pn)↔ (∀x ∈M)ψ(p1, . . . , pn, x). (1.37)

Assume that for p1, . . . , pn ∈ M fixed, that ∀xψ(p1, . . . , pn, x) holds, but
(∀x ∈ M)ψ(p1, . . . , pn, x) does not. Therefore ∃x¬ψ(p1, . . . , pn, x), which
contradicts ∀xψ(p1, . . . , pn, x). �

Lemma 1.47 (Upward Absoluteness)
Let ϕ be a Σ1–formula and M a transitive class. Then the following holds:

(∀p1, . . . , pn ∈M)(ϕM(p1, . . . , pn)→ ϕ(p1, . . . , pn)) (1.38)

Proof. Since ϕ(p1, . . . , pn) is Σ1, there is a ∆0–formula ψ(p1, . . . , pn, x) such
that ϕ = ∃xψ(p1, . . . , pn, x). From relativization and lemma 1.45,

ϕM(p1, . . . , pn)↔ (∃x ∈M)ψ(p1, . . . , pn, x). (1.39)

Assume that for p1, . . . , pn ∈ M fixed, that (∃x ∈ M)ψ(p1, . . . , pn, x)
holds, but ∃xψ(p1, . . . , pn, x) does not. This is an obvious contradiction. �
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1.1.6 More Functions

Definition 1.48 (Strictly Increasing Function)
A function f : Ord→ Ord is said to be strictly increasing iff

(∀α, β ∈ Ord)(α < β → f(α) < f(β)). (1.40)

Definition 1.49 (Continuous Function)
A function f : Ord→ Ord is said to be continuous iff

“λ is limit” → f(λ) =
⋃
α<λ

f(α). (1.41)

Definition 1.50 (Normal Function)
A function f : Ord → Ord is said to be normal iff it is strictly increasing
and continuous.

Definition 1.51 (Fixed Point)
We say x is a fixed point of a function f iff x = f(x).

Definition 1.52 (Unbounded Class)
We say a class A of ordinals is unbounded iff

∀x(∃y ∈ A)(x < y). (1.42)

Definition 1.53 (Limit Point)
Given a class x ⊆ Ord, we say that α 6= ∅ is a limit point of x iff

α =
⋃

(x ∩ α) (1.43)

Definition 1.54 (Closed Class)
We say a class A ⊆ Ord is closed iff it contains all its limit points.

Definition 1.55 (Club set)
For a regular uncountable cardinal κ, a set x ⊂ κ is a closed unbounded
subset, abbreviated as a club set, iff x is both closed and unbounded in κ.

Definition 1.56 (Stationary set)
For a regular uncountable cardinal κ, we say a set A ⊂ κ is stationary in κ
iff it intersects every club subset of κ.

17
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1.1.7 Structure, Substructure and Embedding

Structures will be denoted 〈M,∈, R〉 where M is a domain, ∈ stands for the
standard membership relation, it is assumed to be restricted to the domain14,
R ⊆M is an unary relation on the domain.

Definition 1.57 (Elementary Embedding)
Given the structures 〈M0,∈, R〉, 〈M1,∈, R〉 and a one–to–one function j :
M0 → M1, we say j is an elementary embedding of M0 into M1, we write
j : M0 ≺ M1, when the following holds for every formula ϕ(p1, . . . , pn) and
every p1, . . . , pn ∈M0:

〈M0,∈, R〉 |= ϕ(p1, . . . , pn)↔ 〈M1,∈, R〉 |= ϕ(j(p1), . . . , j(pn)) (1.44)

Definition 1.58 (Elementary Substructure)
Given the structures 〈M0,∈, R〉, 〈M1,∈, R〉 and a one–to–one function j :
M0 → M1 such that j : M0 ≺ M1, we say that M0 is an elementary sub-
structure of M1, denoted as M0 ≺ M1, iff j is an identity on M0. In other
words

〈M0,∈, R〉 |= ϕ(p1, . . . , pn)↔ 〈M1,∈, R〉 |= ϕ(p1, . . . , pn) (1.45)

for p1, . . . , pn ∈M0

14To be totally explicit, we should write 〈M,∈ ∩M ×M,R〉.

18



2. Lévy’s First–Order Reflection

2 Lévy’s First–Order Reflection

2.1 Lévy’s Original Paper

This section is based on Lévy’s paper Axiom Schemata of Strong Infinity
in Axiomatic Set Theory, [Lévy, 1960]. It presents Lévy’s principle of com-
plete reflection and its equivalence to the Replacement Schema and Axiom
of Infinity under S15.

First, we should point out that set theory has changed over the last 66 years
and show a few notable differences. One might be confused by the fact that Lévy
treats the Axiom of Subsets, which we call Axiom Schema of Specification, as a
single axiom rather than a schema. He even takes the conjunction of all axioms
of ZF and treats it like a formula. This is possible because the underlying logic
calculus is different. Lévy works with set theories formulated in the non–simple
applied first order functional calculus. The calculus works with two kinds of
variables, one for sets and the other for functions. It contains a substitution
rule for functional variables, but doesn’t quantify over them, so it is not full
second–order logic, see the beginning of Chapter IV in [Church, 1996] for details.
We will use the usual first–order axiomatization of ZFC as seen in [Jech, 2006].
It should also be noted that the logical connectives look different. The symbol
used nowaday for an universal quantifier does not appear, ∀xϕ(x) was be written
as (x)ϕ(x). The symbol for negation is “∼”, implication is written as “⊃” and
equivalence is “≡”. We will use standard notation with “¬”, “→” and “↔”
respectively when presenting Lévy’s results.

This subsection uses ZF instead of the usual ZFC as the underlying theory.

Definition 2.1 (Standard Complete Model of a Set Theory)
Let Q be an arbitrary axiomatic set theory. We say that u is a standard complete
model of Q iff

(i) (∀σ ∈ Q)(〈u,∈〉 |= σ),
(ii) “u is transitive”.

We write ScmQ(u).

Definition 2.2 (Cardinals Inaccessible With Respect to Q)
Let Q be an arbitrary axiomatic set theory. We say that a cardinal κ is inaccessible
with respect to theory Q iff

ScmQ(Vκ). (2.46)

15See definition 1.19.
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We write InQ(κ).16

Definition 2.3 (Inaccessible Cardinal With Respect to ZF)
When a cardinal κ is inaccessible with respect to ZF, we only say that it is
inaccessible. We write In(κ) instead of InZF(κ).

The above definition of inaccessibles is used because it doesn’t require the Axiom
of Choice.

For the definition of relativization, see definition 1.41. The notation used by
Lévy is “Rel(u, ϕ)”, we will stick to “ϕu”.

Definition 2.4 (N)
The following is the Axiom Schema of Complete Reflection Over ZF, denoted
N . For every first–order formula ϕ in the language of set theory with no free
variables except for p1, . . . , pn, the following is an instance of schema N :

∃u(ScmZF(u) & (∀p1, . . . , pn ∈ u)(ϕ↔ ϕu)). (2.47)

Definition 2.5 (N’)
For any arbitrary first–order formulas ϕ1, . . . , ϕm in the language of set theory
with no free variables except for p1, . . . , pn, the following is an instance of schema
N ′:

∃u(z ∈ u & ScmZF(u) & (∀p1, . . . , pn ∈ u)(ϕ1 ↔ ϕu1) & . . . & ϕm ↔ ϕum)).
(2.48)

Definition 2.6 (N”)
For an arbitrary first–order formulas ϕ1, . . . , ϕm in the language of set theory with
no free variables except for p1, . . . , pn, the following is an instance of schema N ′′:

∃u(ScmZF(u) & (∀p1, . . . , pn ∈ u)(ϕ1 ↔ ϕu1) & . . . & ϕm ↔ ϕum)). (2.49)

Let S be an axiomatic set theory defined in definition 1.19.
This is Theorem 2 in [Lévy, 1960]

Lemma 2.7 (N ↔ N ′′ ↔ N ′)
The schemas N , N ′ and N ′′ are equivalent under S.

16To be able to define Vκ, we need to work in a theory that contains the Replacement
Schema or any of its equivalents. It should be noted that we don’t work in an arbitrary
theory Q, but in ZF, which contains the Replacement Schema.
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We will execute this proof in the theory ZF, but the reader should note that
we have neither used the Replacement Schema nor the Axiom of Infinity, so for
schemas similar to N , N ′, N ′′ but with “ScmS(u)” instead of “ScmZF(u)”, the
proof works equally well.
Proof.

Clearly, N ′ → N ′′ → N .
Now, assuming N and given the formulas ϕ1, . . . , ϕn, we will prove N ′′.

Consider the following formula:

ψ =
t∨
i=1

t = i & ϕi. (2.50)

We will take advantage of the fact that natural numbers are defined by atomic
formulas and therefore absolute in transitive structures. From N , we get such u
that

ScmZF(u) & (∀p1, . . . , pn ∈ u)(
t∨
i=1

t = i & ϕi ↔
t∨
i=1

t = i & ϕui ). (2.51)

This already satisfies N ′′. In order to prove N ′ from N ′′, let’s add two more
formulas. Given p1, . . . , pn, we denote

ϕm+1 = ∃u(z ∈ u & ScmZF(u) & (∀p1, . . . , pn ∈ u)(
m∨
i=1

ϕi = ϕui )), (2.52)

ϕm+2 = ∀zϕm+1. (2.53)

So, by N ′′, we have a set u that satisfies ScmZF(u) as well as the following:

(∀p1, . . . , pn ∈ u)(ϕi ↔ ϕui ) for 1 ≤ i ≤ m, (2.54)

z ∈ u→ ϕm+1 ↔ ϕum+1, (2.55)

ϕm+2 ↔ ϕum+2. (2.56)

By ScmZF(u) and (2.54), we get (∀z ∈ u)ϕm+1, so together with (2.55), we get
(∀z ∈ u)ϕum+1, exactly ϕum+2, so by (2.56) we get ϕm+2. But ϕm+2 is exactly
the instance of N ′ we were looking for. �

Definition 2.8 (N0)
Axiom schema N0 is similar to axoim schema N defined above, but with S instead
of ZF. For every ϕ, a first–order fomula in the language of set theory with no
free variables except p1, . . . , pn, the following is an instance of N0:

∃u(ScmS(u) & (∀p1, . . . , pn ∈ u)(ϕ↔ ϕu)). (2.57)
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We will now show that in S, N0 implies both the Replacement Schema and
the Axiom of Infinity.

Let N0 be defined as in definition 2.8, for the Axiom of Infinity see definition
1.10.

Theorem 2.9 In S, the axiom schema N0 implies the Axiom of Infinity.

Proof. Let ϕ = ∀x∃y(y = x∪{x}). This clearly holds in S because given a set x,
there is a set y = x ∪ {x} obtained via Axiom of Pairing and Axiom of Union.
Since the sets obtained via these axioms are definable via ∆0–formulas, they are
absolute in transitive structures thanks to Lemma 1.45. From N0, there is a set
u such that ScmS(u) and ϕu holds. This u satisfies the conditions required by
the Axiom of Infinity. �

Lévy proves this theorem in a different way. He argues that for an arbitrary
formula ϕ, N0 gives us ∃uScmS(u) and this u already satisfies the Axiom of
Infinity. To do this, we would need to prove lemma 2.15 earlier on, we will do
that later in this chapter.

Let S be a set theory defined in definition 1.19, N0 a schema defined in
definition 2.8 and the Replacement Schema a schema defined in definition 1.16.

Theorem 2.10 In S, the axiom schema N0 implies the Replacement Schema.

Proof. Let ϕ(x, y, p1, . . . , pn) be a formula with no free variables except for
x, y, p1, . . . , pn. Let a set x be given and let χ be an instance of the the Re-
placement Schema schema for the ϕ given. We want to verify in S that given a
formula ϕ, the instance of N0 for ϕ implies χ.

χ = ∀x′, y′, z(ϕ(x′, y′, p1, . . . , pn) & ϕ(x′, z, p1, . . . , pn)→ y′ = z′)

→ ∃y∀z(z ∈ y ↔ (∃q ∈ x)(ϕ(x, y, p1, . . . , pn)))
(2.58)

Since it can be shown that N0 is equivalent to N ′0 similar to N ′ in lemma
2.7, there is a set u such that ScmS(u), x ∈ u and all of the following hold:

(i) ϕ↔ ϕu

(ii) ∃yϕ↔ (∃yϕ)u

From relativization, (∃yϕ)u is equivalent to (∃y ∈ u)ϕu, together with (i) and
(ii), we get

(∃y ∈ u)ϕ↔ ∃yϕ (2.59)

If ϕ is a function, it maps the elements of x, which are also elements of u
due to transitivity of u, to elements of u. From Specification Schema,

y = {z ∈ u : (∃q ∈ x)ϕ(q, z, p1, . . . , pn)} (2.60)
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is a set and a subset of u. Since ScmS(u) holds and y ⊂ u, then also P(y) ⊂ u,
so y ∈ u. That means we have satisfied the Replacement Schema – given a
function and a set, we have proved that the image of the set via the given
function is again a set. �

2.2 Contemporary Restatement

We will now introduce and prove a theorem that is called Lévy’s Reflection or
Lévy–Montague Reflection in contemporary set theory. The only difference is
that while Lévy originally reflects a formula ϕ from the universe of all sets to a
set u which is a standard complete model of S, we say that there is a Vλ for a
limit λ that reflects ϕ. Those two conditions are equivalent due to lemma 2.15.

Lemma 2.11 Let ϕ1, . . . , ϕn be first–order formulas in the language of set
theory, all with m free variables 17.

(i) For each set M0 there is such set M that M0 ⊂M and the following holds
for every i, 1 ≤ i ≤ n:

∃xϕi(p1, . . . , pm−1, x)→ (∃x ∈M)ϕi(p1, . . . , pm−1, x) (2.61)

for every p1, . . . , pm−1 ∈M .
(ii) Furthermore, there is a limit ordinal λ such that M0 ⊂ Vλ and the following

holds for each i, 1 ≤ i ≤ n:

∃xϕi(p1, . . . , pm−1, x)→ (∃x ∈ Vλ)ϕi(p1, . . . , pm−1, x) (2.62)

for every p1, . . . , pm−1 ∈M .
(iii) Assuming Choice, there is M , M0 ⊂ M such that (2.61) holds for every

M, i ≤ n and |M | ≤ |M0| · ℵ0.

Proof. We will simultaneously prove statements (i) and (ii), denoting MT the
transitive set required by part (ii). Steps in the construction of MT that are not
explicitly included are equivalent to steps for M .

Let us first define an operation Hi(p1, . . . , pm−1) that yields the set of x’s
with minimal rank18 satisfying ϕi(p1, . . . , pm−1, x) for p1, . . . , pm−1 and for every
i, 1 ≤ i ≤ n.

17For formulas with a different number of free variables, take for m the highest number
of parameters among those formulas. Add spare parameters to every formula that has less
than m parameters in a way that preserves the last parameter, which we will denote x.
E.g. let ϕ′i be the a formula with k parameters, k < m. Let us set ϕi(p1, . . . , pm−1, x) =
ϕ′i(p1, . . . , pk−1, x), notice that the parameters pk, . . . , pm−1 are not used.

18Rank is defined in definition 1.30.
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Hi(p1, . . . , pn) = {x ∈ Ci : (∀z ∈ C)(rank(x) ≤ rank(z))} (2.63)

for each 1 ≤ i ≤ n, where

Ci = {x : ϕi(p1, . . . , pm−1, x)} for 1 ≤ i ≤ n. (2.64)

Next, let us construct M from given M0 by induction.:

Mi+1 = Mi ∪
n⋃
j=0

⋃
{Hj(p1, . . . , pm−1) : p1, . . . , pm−1 ∈Mi} (2.65)

In other words, in each step we include into the construction the elements satis-
fying ϕ(p1, . . . , pm−1, x) for p1, . . . , pm−1 from the previous step. For statement
(ii), this is the only part that differs from (i). To end up with a transitive M ,
we need to extend every step to its transitive closure transitive closure of Mi+1

from (i). In other words, let γ be the smallest ordinal such that

(MT
i ∪

n⋃
j=0

{
⋃
{Hj(p1, . . . , pm−1) : p1, . . . , pm−1 ∈Mi}}) ⊂ Vγ (2.66)

Then the incremental step is
MT

i+1 = Vγ (2.67)

and the final M is obtained by joining the previous steps.

M =
∞⋃
i=0

Mi, M
T =

∞⋃
i=0

MT
i = Vλ for some limit λ. (2.68)

We have yet to finish part (iii). Let’s try to construct a set M ′ that sat-
isfies the same conditions like M but is kept as small as possible. Assuming
the Axiom of Choice, we can modify the construction so that the cardinality
of M ′ is at most |M0| · ℵ0. Note that the size of M in the previous con-
struction is determined by the size of M0 and, most importantly, by the size of
Hi(p1, . . . , pm−1) for every i, 1 ≤ i ≤ n in individual iterations of the construc-
tion. Since (i) only ensures the existence of an x that satisfies ϕi(p1, . . . , pm−1, x)
for any i, 1 ≤ i ≤ n, we only need to add one x for every set of parameters but
Hi(u1, . . . , um−1) can be arbitrarily large. Let F be a choice function on P(M ′).
Also let hi(p1, . . . , pm−1) = F (Hi(p1, . . . , pm−1)) for i, where 1 ≤ i ≤ n, which
means that h is a function that outputs an x that satisfies ϕi(p1, . . . , pm−1, x) for
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i such that 1 ≤ i ≤ n and has minimal rank among all such sets. The induction
step needs to be redefined to

M ′
i+1 = M ′

i ∪
n⋃
j=0

{hj(p1, . . . , pm−1) : p1, . . . , pm−1 ∈M ′
i} (2.69)

This way, the amount of elements added to M ′
i+1 in each step of the construction

is the same as the amount of m–tuples of parameters that yielded elements not
included in M ′

i . It is easy to see that if M0 is finite, M ′ is countable because
it was constructed as a countable union of sets that are themselves at most
countable. If M0 is countable or larger, the cardinality of M ′ is equal to the
cardinality of M0.19 Therefore |M ′| ≤ |M0| · ℵ0 �

Theorem 2.12 (Lévy’s first–order reflection theorem)
Let ϕ(p1, . . . , pn) be a first–order formula.

(i) For every set M0 there exists a set M such that M0 ⊂M and the following
holds:

ϕM(p1, . . . , pn)↔ ϕ(p1, . . . , pn) (2.70)

for every p1, . . . , pn ∈M .
(ii) For every set M0 there is a transitive set M , M0 ⊂ M such that the

following holds:
ϕM(p1, . . . , pn)↔ ϕ(p1, . . . , pn) (2.71)

for every p1, . . . , pn ∈M .
(iii) For every set M0 there is a limit ordinal λ such that M0 ⊂ Vλ and the

following holds:
ϕVλ(p1, . . . , pn)↔ ϕ(p1, . . . , pn) (2.72)

for every p1, . . . , pn ∈M .
(iv) Assuming Choice, for every set M0 there is M such that M0 ⊂ M and
|M | ≤ |M0| · ℵ0 and the following holds:

ϕM(p1, . . . , pn)↔ ϕ(p1, . . . , pn) (2.73)

for every p1, . . . , pn ∈M .

Proof. Let’s now prove (i) for a given ϕ via induction by complexity. We
can safely assume that ϕ contains no quantifiers besides “∃” and no logical
connectives other than “¬” and “&”. Let ϕ1, . . . , ϕn be all subformulas of ϕ.

19It can not be smaller because |M ′i+1| ≥ |M ′i | for every i. It may not be significantly
larger because the maximum of elements added is the number of n–tuples in M ′i , which is
of the same cardinality as M ′i .
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Then there is a set M , obtained by the means of lemma 2.11, for all of the
formulas ϕ1, . . . , ϕn.

Let’s first consider atomic formulas in the form of either x1 = x2 or x1 ∈ x2.
It is clear from relativisation20 that (2.70) holds for both cases, (x1 = x2)M ↔
(x1 = x2) and (x1 ∈ x2)M ↔ (x1 ∈ x2).

We now want to verify the inductive step. First, take ϕ = ¬ϕ′. From
relativization, we get (¬ϕ′)M ↔ ¬(ϕ′M). Because the induction hypothesis tells
us that ϕ′M ↔ ϕ′, the following holds:

(¬ϕ′)M ↔ ¬(ϕ′M)↔ ¬ϕ′ (2.74)

The same holds for ϕ = ϕ1 & ϕ2. From the induction hypothesis, we know
that ϕM1 ↔ ϕ1 and ϕM2 ↔ ϕ2, which together with relativization for formulas in
the form of ϕ1 & ϕ2 gives us

(ϕ1 & ϕ2)M ↔ ϕM1 & ϕM2 ↔ ϕ1 & ϕ2 (2.75)

Let’s now examine the case when ϕ = ∃xϕ′(p1, . . . , pn, x). The induction
hypothesis tells us that ϕ′M(p1, . . . , pn, x)↔ ϕ′(p1, . . . , pn, x), so, together with
above lemma 2.11, the following holds:

ϕ(p1, . . . , pn, x)

↔ ∃xϕ′(p1, . . . , pn, x)

↔ (∃x ∈M)ϕ′(p1, . . . , pn, x)

↔ (∃x ∈M)ϕ′M(p1, . . . , pn, x)

↔ (∃xϕ′(p1, . . . , pn, x))M

↔ ϕM(p1, . . . , pn, x)

(2.76)

Which is what we wanted to prove for part (i).

We now need to verify that the same holds for any finite number of formulas
ϕ1, . . . , ϕn. This has in fact been already done since lemma 2.11 gives us a set
M for any finite amount of formulas and given M0. We can therefore find a set
M for the union of all of their subformulas. When we obtain such M , it should
be clear that it also reflects every formula in ϕ1, . . . , ϕn.

Since Vλ is a transitive set, by proving (iii) we also satisfy (ii). To do so, we
only need to look at part (ii) of lemma 2.11. All of the above proof also holds
for M = Vlambda.

20See definition 1.41. This only holds for relativization to M,∈ ∩M ×M , as opposed
to M,R for an arbitrary R.
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To finish part (iv), we take M of size ≤ |M0| · ℵ0, which exists due to part
(iii) of lemma 2.11, the rest being identical. �

Let S be a set theory defined in definition 1.19, for ZFC see definition 1.21.
The two following lemmas are based on [Drake, 1974], Chapter 3, Theorem

1.2.

Lemma 2.13 If M is a transitive set, then 〈M,∈〉 |= Axiom of Extensionality.

Proof. Given a transitive set M , we want to show that the following holds.

〈M,∈〉 |= ∀x, y(x = y ↔ ∀z(z ∈ x↔ z ∈ y)) (2.77)

Given arbitrary x, y ∈M , we want to prove that,

〈M,∈〉 |= (x = y ↔ ∀z(z ∈ x↔ z ∈ y)). (2.78)

According to definition 1.42, this is equivalent to

〈M,∈〉 |= x = y iff 〈M,∈〉 |= ∀z(z ∈ x↔ z ∈ y), (2.79)

which is the same as

x = y iff 〈M,∈〉 |= ∀z(z ∈ x↔ z ∈ y). (2.80)

So all elements of x are also elements of y in M , and vice versa. Because M is
transitive, all elements of x and y are in M , so

〈M,∈〉 |= ∀z(z ∈ x↔ z ∈ y) (2.81)

holds iff x and y contain the same elements and are therefore equal. �

Lemma 2.14 If M is a transitive set, then 〈M,∈〉 |= Axiom of Foundation.

Proof. We want to prove the following:

〈M,∈〉 |= ∀x(x 6= ∅ → (∃y ∈ x)(x ∩ y = ∅)) (2.82)

Given an arbitrary non–empty x ∈M let’s show that

〈M,∈〉 |= (∃y ∈ x)(x ∩ y = ∅). (2.83)

Because M is transitive, every element of x is an element of M . Take for
y the element of x with the lowest rank21. It should be clear that there is no
z ∈ y such that z ∈ x, because then rank(z) < rank(y), which would be a
contradiction. �

Let S be a set theory as defined in definition 1.19.

21Rank is defined in definition 1.30.
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Lemma 2.15 The following holds for every λ:

“λ is a limit ordinal”→ 〈Vλ,∈〉 |= S. (2.84)

Proof. Given an arbitrary limit ordinal λ, we will verify the axioms of S one by
one.

(i) The existence of a set comes from the fact that Vλ is a non–empty set
because a limit ordinal is non–zero by definition.

(ii) Axiom of Extensionality holds from lemma 2.13.
(iii) Axiom of Foundation holds from lemma 2.14.
(iv) Axiom of Union:

Given any x ∈ Vλ, we want verify that y =
⋃
x is also in Vλ. Note that

y =
⋃
x is a ∆0–formula.

y =
⋃

x iff (∀z ∈ y)(∃q ∈ x)z ∈ q & (∀z ∈ x)(∀q ∈ z)q ∈ y (2.85)

So by lemma 1.45,

y =
⋃

x iff 〈Vλ,∈〉 |= y =
⋃

x. (2.86)

(v) Axiom of Pairing :
Given two sets x, y ∈ Vλ, we want to show that z = {x, y} is also an
element of Vλ.

z = {x, y} iff x ∈ z & y ∈ z & (∀q ∈ z)(q = x ∨ q = y). (2.87)

So z = {x, y} is a ∆0–formula, and thus by lemma 1.45 it holds that

z = {x, y} iff 〈Vλ,∈〉 |= z = {x, y}. (2.88)

(vi) Axiom of Power Set:
Given any x ∈ Vλ, we want to make sure that P(x) ∈ Vλ. Let ϕ(y) denote
the formula y ∈P(x)↔ y ⊂ x. According to definition 1.4, y ⊂ x is ∆0,
so for any given x, y ∈ Vλ,

y = P(x)↔ 〈Vλ,∈〉 |= y = P(x). (2.89)

Because λ is limit and rank(P(x)) = rank(x)+1, we know that P(x) ∈ Vλ
for every x ∈ Vλ.

(vii) Specification Schema:
Given a first–order formula ϕ, we want to show the following:

〈Vλ,∈〉 |= ∀x, p1, . . . , pn∃y∀z(z ∈ y ↔ z ∈ x & ϕ(z, p1, . . . , pn)).
(2.90)
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Given any x along with parameters p1, . . . , pn ∈ Vλ, we set

y = {z ∈ x : ϕVλ(z, p1, . . . , pn)}. (2.91)

From transitivity of Vλ and the fact that y ⊂ x and x ∈ Vλ, we know that
y ∈ Vλ, so

〈Vλ,∈〉 |= ∀z(z ∈ y ↔ z ∈ x & ϕ(z, p1, . . . , pn)). (2.92)

�

Definition 2.16 (First–Order Reflection Schema)
For every first–order formula ϕ, the following is an axiom:

∀M0∃M(M0 ⊆M & (ϕ(p1, . . . , pn)↔ ϕ(p1, . . . , pn)M)). (2.93)

We will refer to this axiom schema as First–Order Reflection Schema.

Let the Axiom of Infinity and the Replacement Schema be as defined in
definition 1.10 and definition 1.16 respectively.

Theorem 2.17 First–Order Reflection Schema is equivalent to the Axiom of
Infinity & the Replacement Schema under S.

Proof. Since theorem 2.12 already gives us one side of the implication, we are
only interested in showing the converse which we shall do in two parts:

(i) First–Order Reflection Schema→ theAxiom of Infinity
This is done exactly like theorem 2.9. We pick for ϕ the formula (∀y ∈
x)(y ∪ {y} ∈ x), M0 = {∅}. From definition 2.16, there is a set M that
satisfies ϕ, so there is an inductive set. We have picked M0 so that ∅ ∈M
obviously holds and M is the witness for

∃x(∅ ∈ x & (∀y ∈ x)(y ∪ {y} ∈ x)) (2.94)

which is exactly definition 1.10.

(ii) First–Order Reflection Schema→ Replacement Schema
Let’s first point out that while First–Order Reflection Schema gives us a
set for one formula, we can generalise it to hold for any finite number of
formulas. We will show how is it done for two formulas, which is what we
will use in this proof. Given two first–order formulas ϕ, ψ, we can suppose
that there are formulas ϕ′ and ψ′ that are equivalent to ϕ and ψ respectively,
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but their free variables are different 22. Let ξ = ϕ & ψ, given any M0, we
can find a M such that ξ ↔ ξM . It is easy to see that from relativisation,
the following holds:

ϕ & ψ ↔ ϕ′ & ψ′ ↔ ξ ↔ ξM ↔ (ϕ′ & ψ′)M ↔ ϕ′M & ψ′M ↔ ϕM & ψM

(2.95)
Now given a function ϕ(x, y), we know from First–Order Reflection Schema
that for every M0, there is a set M such that M0 ⊆M and both

(∀x, y ∈M)(ϕ(x, y)↔ ϕM(x, y)) (2.96)

and
(∀x, y ∈M)(∃yϕ(x, y)↔ (∃yϕ(x, y))M) (2.97)

hold, the latter being equivalent to

(∀x, y ∈M)(∃yϕ(x, y)↔ (∃y ∈M)ϕM(x, y)). (2.98)

Therefore
(∀x, y ∈M)(∃yϕ(x, y)↔ (∃y ∈M)ϕ(x, y)) (2.99)

holds too. That means that we have a set M such that for every x ∈ M ,
if ϕ is defined for x, then (∃y ∈M)ϕ(x, y).
To show that the Replacement Schema holds for this particular ϕ, we need
to verify that given a set M0, M ′

0 = {y : (∃x ∈ M0)ϕ(x, y)} is also a
set. But since M0 ⊆ M and because given any x ∈ M , there is y ∈ M
satisfying ϕ(x, y), the following is a set due to Specification Schema:

M ′
0 = {y : (∃x ∈M0)ϕ(x, y)} = {y ∈M : (∃x ∈M0)ϕ(x, y)} (2.100)

�
We have shown that reflection for first–order formulas, is a theorem of ZFC.

We have also shown that it can be used instead of the the Axiom of Infinity and
the Replacement Schema scheme, but ZFC + First–Order Reflection Schema
is no stronger than ZFC. Besides being a starting point for more general and
powerful statements, it can be used to show that ZFC is not finitely axiomatizable.
This follows from the fact that reflection yields an inner model to any consistent
finite set of formulas that hold in V . So if ϕ1, . . . , ϕn would be the axioms of
ZFC, reflection would prove that every model of ZFC contains a smaller model
of ZFC, which would in turn contradict the Second Gödel’s Theorem.

22This is plausible since we can for example substitute all free variables in ϕ′ for
x0, x2, x4, . . . and use x1, x3, x5, . . . for free variables in ψ′, the resulting formulas will
be logically equivalent.

30



2.2 Contemporary Restatement 2. Lévy’s First–Order Reflection

It is also worthwhile to note that, in a way, reflection is dual to compactness.
Compactness says that given a set of sentences, if every finite subset yields
a model, so does the whole set. Reflection, on the other hand, says that while the
whole set has no model in the underlying theory, every finite subset has a model.
Furthermore, reflection can be used in ways similar to upward Löwenheim–Skolem
theorem. Since Reflection extends any set M0 into a model of given formulas
ϕ1, . . . , ϕn, we can choose the lower bound of the size of M by appropriately
choosing M0.

In the next section, we will try to generalise reflection in a way that transcends
ZFC and yields some large cardinals.
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3 Reflection And Large Cardinals

3.1 Regular Fixed–Point Axioms

Lévy’s article mentions various schemata that are not instances of reflection per
se, but deal with fixed points of normal ordinal functions. After proving a helpful
lemma, we will introduce them and show that they are equivalent to First–Order
Reflection Schema23.

Lemma 3.1 (Fixed–Point Lemma for Normal Functions)
Let f be a normal function defined for all ordinals24. Then all of the following
hold:

(i) ∀λ(“λ is a limit ordinal”→ “f(λ) is a limit ordinal”)
(ii) ∀α(α ≤ f(α))

(iii) ∀α∃β(α < β & f(β) = β)
(iv) The fixed points of f form a closed unbounded class.25

Proof. Let f be a normal function defined for all ordinals.
(i) Suppose λ is a limit ordinal. For an arbitrary ordinal α < λ, the fact

that f is strictly increasing means that f(α) < f(λ) and for any ordinal
β, satisfying α < β < λ, f(α) < f(β) < f(λ). We know that there
is such β from limitness of λ. Because f is continuous and λ is limit,
f(λ) =

⋃
γ<λ f(γ).Therefore λ is limit, so is f(λ).

(ii) This step will be proved using the transfinite induction. Since f is defined
for all ordinals, there is an ordinal α such that f(∅) = α and because ∅ is
the least ordinal, (ii) holds for ∅.
Suppose (ii) holds for some β from the induction hypothesis. It then holds
for β + 1 because f is strictly increasing.
For a limit ordinal λ, suppose (ii) holds for every α < λ. (i) implies that
f(λ) is also limit, so there is a strictly increasing κ–sequence 〈α0, α1, . . .〉
for some κ such that λ =

⋃
i<κ αi. Because f is strictly increasing, the

κ–sequence 〈f(α0), f(α1), . . .〉 is also strictly increasing, in then holds from
the induction hypothesis that αi ≤ f(αi) for each i ≤ κ. Thus, λ ≤ f(λ).

(iii) For an arbitrary α, let there be an ω–sequence 〈α0, α1, . . .〉, such that
α0 = α and αi+1 = f(αi) for each i < ω. This sequence is stricly increasing
because so is f . Now, there’s a limit ordinal β =

⋃
i<ω αi, we want to show

23For the definition, see definition 2.16.
24For the definition of normal function, see definition 1.50.
25See definition 1.54 for the definition of a closed class, definition 1.52 for the definition

of unboundedness.
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that this is a fixed point of f . Because f is continuous,

f(β) = f(
⋃
i<ω

αi) =
⋃
i<ω

f(α). (3.101)

We have defined the above sequence so that

f(β) =
⋃
i<ω

f(α) =
⋃
i<ω

αi+1, (3.102)

which means we are done, since⋃
i<ω

αi+1 =
⋃
i<ω

αi = β. (3.103)

(iv) The class of fixed points of f is obviously unbounded because in (iii), we
start with an arbitrary ordinal. It remains to show that it is closed, this
is based on [Drake, 1974], chapter 4. Let Y be a non–empty set of fixed
points of f such that

⋃
Y 6∈ Y . Since f is defined on ordinals, Y is a set of

ordinals, so
⋃
Y is an ordinal.

⋃
Y is a limit ordinal. If it were a successor

ordinal, suppose that α+ 1 =
⋃
Y , then α ∈

⋃
Y , which would mean that

there is some x such that α ∈ x ∈ Y . But the least such x is α + 1, so⋃
Y ∈ Y .

Note that α <
⋃
Y iff ∃ξ ∈ Y (α < ξ). Since f is defined for all ordinals

and
⋃
Y is a limit ordinal, f(

⋃
Y ) =

⋃
α∈Y f(α), but because Y is a set

of fixed points of f ,

f(
⋃

Y ) =
⋃
α∈Y

f(α) =
⋃

Y , (3.104)

so
⋃
Y is a limit point of Y .

�

Lemma 3.2 Let α be a limit ordinal. Then the following hold: If C is a club
subset of α, then there is an ordinal β and a normal function f : β → α such
that rng(f) = C. We say that f enumrates C.

This proof in inspired by [Monk, 2011].
Proof. Let β be the order–type26 of C and let f be the isomorphism from β
onto C. Since C ⊆ α, f is an increasing function from β into α. To show that
f is continuous, let γ be a limit ordinal below β, let ε =

⋃
δ<γ f(δ). We want to

verify that f(γ) = ε. Since ε is a limit ordinal, we only need to show that C ∩ ε
is inbounded in ε.

26See definition 1.31.
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Take ζ < ε. Then there is a δ < γ such that ζ < f(δ). Since γ is limit,
δ + 1 < γ and also f(δ + 1) < f(γ), we know that f(δ) ∈ C ∩ ε. But that
means that C ∩ ε is unbounded in ε, so ε ∈ C. We have also shown that ε is
closed unbounded in the image of γ over f . Therefore, f(γ) = ε =

⋃
δ< γ f(δ),

so f is normal. �
It should be clear that while this lemma works with club subsets of an ordinal,

we can formulate analogous statement for club classes, which then yields a normal
function defined for all ordinals, with the only exception that there is no such β
is an the beginning of the above proof because f is then a function from Ord
to Ord and proper classes have no order–type.

Definition 3.3 ( Axiom Schema M1)
“Every normal function defined for all ordinals has at least one inaccessible num-
ber in its range.”

Lévy uses “M” to refer to this axiom but since we also use “M” for sets and
models, for example in definition 2.12, we will call the above axiom “Axiom
Schema M1” to avoid confusion.

In order to be able to meaningfully work with this schema, we must clarify
what it actually states. Because we are working in first–order logic, and a normal
function defined for all ordinals is a proper class, we can not quantify over func-
tions that are not sets. Instead, we will think of Axiom Schema M1 as schema
that, given a formula ϕ, states “If ϕ is a normal function defined for all ordinals,
then ϕ has at least one inaccessible number in its range”27. We will approach
the following two axiom schemata in a similar manner.

Definition 3.4 (Axiom Schema M2)
“Every normal function defined for all ordinals has at least one fixed point which
is inaccessible.”

Definition 3.5 (Axiom Schema M3)
“Every normal function defined for all ordinals has arbitrarily great fixed points
which are inaccessible.”

Similar axiom is proposed in [Drake, 1974].

27More formally, let ϕ(x, y, p1, . . . , pn) be a first–order formula with no free variables
besides x, y, p1, . . . , pn. The following is equivalent to Axiom M1.

“ϕ is a normal function” & ∀x(x ∈ Ord→ ∃y(ϕ(x, y, p1, . . . , pn)))→
→ ∃y(∃xϕ(x, y, p1, . . . , pn) & cf(y) = y & (∀x ∈ κ)(∃y ∈ κ)(x > y))

(3.105)
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Definition 3.6 (Axiom Schema F )
“Every normal function has a regular fixed point.”

Lemma 3.7 Let f be a normal function defined for all ordinals.
(i) There is a is normal function g1 defined for all ordinals that enumerates the

class {α : f(α) = α}.
(ii) There is a is normal function g2 defined for all ordinals that enumerates the

class {λ : “f(λ) is a strong limit cardinal.”}.

Proof. We know that (ii) holds from lemma 3.1 and lemma 3.2.
Clearly, there is no largest strong limit ordinal ν, because the limit of

〈ν,P(ν),P(P(ν)), . . .〉 is again a limit ordinal. The class of strong limit ordi-
nals is closed because a limit of strong limit ordinals of is always a strong limit
ordinal. Let h be a function enumerating limit ordinals that exists from lemma
3.2. Then g1(α) = f(h(α)) for every ordinal α is normal and defined for all
ordinals. �

The following is Theorem 1 in [Lévy, 1960], the parts dealing with Axiom
Schema F come from [Drake, 1974].

Theorem 3.8 The following are all equivalent:
(i) Axiom Schema M1,
(ii) Axiom Schema M2,

(iii) Axiom Schema M3,
(iv) Axiom Schema F .

Proof. It is clear that Axiom Schema M3 is a stronger version of Axiom Schema
M2, which is in turn a stronger version of both Axiom Schema M1 and Axiom
Schema F 1.

We will now prove that Axiom Schema F → Axiom Schema M2. Lemma
3.7 tells us that given a normal function f defined for all ordinals, there is a
normal function g1 defined for all ordinals that enumerates the fixed points of f .
There is also a function g2 that enumerates the strong limit ordinals in rng(f).
By Axiom Schema F , g2 has a regular fixed point κ, which is also a strong limit
ordinal, so

f(κ) = g2(κ) = κ and κ is inaccessible. (3.106)

So every normal function defined for all ordinals has a regular fixed point.
We have yet to show that Axiom Schema M1 → Axiom Schema M3. Again

by lemma 3.7, there is a normal function g defined for all ordinals that enumerates
the fixed points of f . Let hα(β) = g(α + β) for any given ordinal α, then hα is
a normal function defined for all ordinals. Then, given an arbitrary α, from
Axiom Schema M1, there is a β such that γ = hα(β) is inaccessible. Because
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γ = g(α+β), thus f(γ) = γ. Since α ≤ f ′(α) for any ordinal α and any normal
function f ′, we know that α ≤ α + γ ≤ γ, so γ is inaccessible and arbitrarily
large, depending on the choice of α. �

To see how those schemata relate to reflection, let’s introduce a stronger
version of First–Order Reflection Schema28 from the previous chapter. But in
order to do this, we must establish the inaccessible cardinal first.

3.2 Inaccessible Cardinal

Definition 3.9 An uncountable cardinal κ is inaccessible iff it is regular and
strongly limit. We write In(κ) to say that κ is an inaccessible cardinal.

An uncountable cardinal that is regular and limit is called a weakly inaccessible
cardinal, we will only use the (strongly) inaccessible cardinal, but most of the
results are similar for weakly inaccessibles, including higher types of ordinals that
will be presented later in this chapter.

Theorem 3.10 Let κ be an inaccessible cardinal.

〈Vκ,∈〉 |= ZFC (3.107)

We will prove this theorem in a way similar to [Kanamori, 2003].
Proof. Most of this is already done in lemma 2.15, we only need to verify that
Replacement and Infinity axioms hold in Vκ.

Infinity holds because κ is uncountable, so ω ∈ Vκ.
To verify Replacement, let x be an element of Vκ and f a function from x to

Vκ. Let y = {z ∈ Vκ : (∃q ∈ x)f(q) = z}, so y ⊂ Vκ, it remains to show that
y ∈ Vκ. Because f is a function, we know that |y| ≤ |x| ≤ κ. But since κ
is regular, {rank(z) : z ∈ y} ⊆ α for some α < κ, and so x ∈ Vα+1 ∈ Vκ.
Therefore y ∈ Vκ. �

Definition 3.11 (Inaccessible Reflection Schema)
For every first–order formula ϕ, the following is an axiom:

∀M0∃κ(M0 ⊆ Vκ & In(κ) & (ϕ(p1, . . . , pn)↔ ϕ(p1, . . . , pn)Vκ)) (3.108)

We will refer to this axiom schema as Inaccessible Reflection Schema. Note that
M is a set, even though we often use upper–case letters for classes. This is due
to fact that “M” is used in the same meaning in theorem 2.12.

28See definition 2.16.
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We have added the requirement that α is inaccessible, which trivially means
that there is an inaccessible cardinal. By taking appropriate M0, it can be shown
that in a theory that includes the Inaccessible Reflection Schema, there is a closed
unbounded class of inaccessible cardinals. Since we know that for an inaccessible
κ, Vκ is a model of ZFC, Inaccessible Reflection Schema is equivalent to

∀M0∃κ(M0 ⊆ Vκ & 〈Vκ,∈〉 |= ZFC & (ϕ(p1, . . . , pn)↔ ϕ(p1, . . . , pn)
Vκ))

(3.109)
because we have proved in the last section that for an inaccessible κ,

〈Vκ,∈〉 |= ZFC. (3.110)

Theorem 3.12 Inaccessible Reflection Schema is equivalent to Axiom schema F .

This is Theorem 4.1 in chapter 4 of [Drake, 1974], also equivalent to Theo-
rerem 3 in [Lévy, 1960].
Proof. Let’s start by showing that Inaccessible Reflection Schema implies Axiom
schema F . It should be clear from previous results that we can reflect two
formulas to a single set, for example by taking the conjunction of universal
closures of the formulas.

Given a normal function f defined for all ordinals, we want to show that it
has a regular fixed point. For any ordinal α, there is an ordinal κ such that

α < κ & In(κ) & (∀γ, δ ∈ Vκ)(f(γ) = δ ↔ (f(γ) = δ)Vκ) (3.111)

and

α < κ & In(κ) & ∀γ∃δ(f(γ) = δ)↔ (∀γ∃δf(γ) = δ)Vκ . (3.112)

Since Vκ is the set of all sets of rank less than κ and since every ordinal is the
rank of itself, there is an inaccessible ordinal κ such that

(∀γ < κ)(∃δ < κ)(fVκ(γ) = δ). (3.113)

We also know that f(γ) = δ iff (f(γ) = δ)Vκ . Now since κ is a limit ordinal and
f is continuous we get

f(κ) =
⋃
γ<κ

fVκ(γ) =
⋃
γ<κ

f(γ). (3.114)

From (3.113) and the fact that f is increasing, we know that κ ≤
⋃
γ<κ f(γ) ≤ κ.

Therefore κ is an inaccessible fixed point of f .

37



3.3 Mahlo Cardinals 3. Reflection And Large Cardinals

For the opposite direction, it suffices to show that since there is an inaccessible
cardinal due to Axiom schema F , given a first–order formula ϕ, there is an
arbitrarily large inaccessible cardinal κ for which

ϕ↔ ϕVκ . (3.115)

Note that the arbitrary size of κ means given an arbitrary ordinal α, there is a κ
satisfying α ∈ κ and (3.115). In the previous chapter, in theorem 2.12, we have
shown that we can easily obtain a limit ordinal satisfying (3.115). Note that
since for any set M0, there is such α that M0 ⊆ Vα, there is a closed unbounded
class of sets satisfying (3.115), which are levels in the cumulative hierarchy, so
there is a club class of κs satisfying (3.115).

Let f be a normal function defined for all ordinals that enumerates this club
class, there is such f by lemma 3.2. Let g be the function that enumerates
strong limit ordinals in rng(f), there is one by lemma 3.7. Then g has a regular
fixed point κ, which is also a regular fixed point of f , so (3.115) holds for κ. �

Definition 3.13 (ZMC)
We will call ZMC an axiomatic set theory that contains all axioms and schemas
of ZFC together with Axiom Schema M1.

We have decided to call it ZMC, because Lévy uses ZM, derived from ZF, which
is more intuitive, but we also need the axiom of choice, thus, ZMC.

As a sidenote, we should note that ZMC is extension of ZFC, which is in turn
an extension of S. This way, reflection can be seen as a natural continuation of
the Axiom of Infinity and Replacement Schema.

3.3 Mahlo Cardinals

We have shown that ZMC contains arbitrarily large inaccessible cardinals. To
return to reflection–style argument, is there a set that satisfies this property?
To be able to properly answer this question, we have to formulate the notion of
“containing arbitrarily large cardinals” more carefully. While we have previously
used club sets, this is not an option in this case because inaccessibles don’t form
a club class in ZMC29.

We have shown earlier in this chapter that there is a simple relation between
normal functions defined for all ordinals and closed unbounded classes. We will
now use a similar approach utilising normal functions. By saying that for a class
of ordinals C, a normal function f has at least one element of C in its range,
we say that C is stationary. Or, as Drake writes in [Drake, 1974] when dealing

29Note that cofinality of the limit of the first ω inaccessibles is ω, which makes is singular.
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with the class of inaccessible cardinals, and a cardinal κ, in which inaccessibles
are stationary:

“ The class of inaccessible cardinals is so rich that there are members
κ of the class such that no normal function on κ can avoid this class;
however we climb though κ, provided we are continuous at limits (so
that we are enumerating a closed subset of κ), we shall eventually
have to hit an inaccessible.”

Definition 3.14 (Mahlo Cardinal)
We say that κ is a Mahlo Cardinal iff it is an inaccessible cardinal and the set
{λ < κ : λ is inaccessible} is stationary in κ.

Alternatively, κ is Mahlo iff 〈Vκ,∈〉 |= ZMC as shown above, this is also
sometimes written as Ord is Mahlo. There are also weakly Mahlo cardinals, that
are defined via weakly inaccessible cardinals below them, Mahlo cardinals are
then also called strongly Mahlo to highlight the difference, but we will only use
the term Mahlo cardinal.

Mahlo cardinals are related to reflection principles in an interesting way. Note
that given a formula ϕ, First–Order Reflection Schema gives us a club set of
ordinals α such that Vα reflects ϕ, all below the first inaccessible cardinal. We
have then used a different reflection schema to obtain arbitrarily high inaccessible
cardinals κ such that Vκ refpects ϕ. Now we have a cardinal in which this
reflection schema holds, so we are in fact reflecting reflection. Beware that this
is done rather informally, because Axiom Schema M1 is a countable set of axioms,
which can not be reflected via the schemas introduced so far. One way to deal
with this would be to extend reflection for second– and possibly higher–order
formulas, but we would have to be very careful with the notion of satisfaction.
For now, let us explore where can stationary sets take us because as we have
shown, their connection to reflection is quite clear.

What would happen if we strengthened Axiom Schema M1 to say that every
normal function has a Mahlo cardinal in its range?

Definition 3.15 (hyper–Mahlo cardinal)
We say that κ is a hyper–Mahlo cardinal iff it is inaccessible and the set

{λ < κ : λ is Mahlo} (3.116)

is stationary in κ.

Definition 3.16 (hyper–hyper–Mahlo cardinal)
We say that κ is a hyper–hyper–Mahlo cardinal iff it is inaccessible and the set

{λ < κ : λ is hyper–Mahlo} (3.117)

is stationary in κ.
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It is clear that one can continue in this direction, but the nomenclature
gets increasingly confusing even if we rewrite them as hyperα–Mahlo cardinals
instead of repeating the prefix. To see there is a more elegant way to reach
those cardinals, we will now establish an operation that elegantly exhausts all
such cardinals.

Definition 3.17 (Mahlo Operation)
Let A be a class of ordinals. Let

H(A) = {α ∈ A : A ∩ α is stationary in α}. (3.118)

We call H the Mahlo’s operation.

If we pick for A the class of all inaccessible cardinals, H(A) is the class of
Mahlo cardinals. It is easy to see that is A is the class of all α–Mahlo cardinals,
H(A) is the class of α+1–Mahlo cardinals, H(H(A)) is the class of α+2–Mahlo
cardinals and so on.

Definition 3.18 (Iterated Mahlo Operation)
Let A be a class of ordinals. We shall extend the Mahlo operation in the following
way:

(i) H0(A) = A,
(ii) Hα+1(A) = H(Hα(A)),

(iii) Hλ(A) =
⋂
α< λH

α(X) for limit λ.

Clearly if A is the class of inaccessibles, Hα(A) is the class of α–Mahlo
cardinals. To get to hyper–Mahlo cardinals, we can diagonalise the operation.

Definition 3.19 (Diagonal Mahlo Operation)
Let A be a class of ordinals. Then the diagonal Mahlo operation is defined as
follows:

H∆(A) = {α ∈ Ord : ∀β < α(α ∈ Hβ(X))}. (3.119)

We can further diagonalise the diagonal version and continue this process
ad libitum in order to reach all large cardinals accessible from below. To see
what is meant by from below, note that the approach that led us to the Mahlo
operation was taking a property, for example regularity, that is already available
in our current theory, e.g. ZFC, and making an assertion of the height of the
universe such that there are “enough” other ordinals holding this property in a
sense that a normal function defined on ordinals inevitably has at least one such
ordinal in its range.
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3.4 Indescribable Cardinals

Indescribability is another approach towards large cardinals that is based on re-
flection. We will briefly introduce the basic definitions and show that it yield
large cardinals, but most of them are not reachable from below in a sense estab-
lished at the end of previous subsection. Most of the results presented in this
subchapter come from [Kanamori, 2003]. Since this chapter uses higher–order
logic, we need to introduce the hierarchy of formulas first.

Definition 3.20 (Higher–Order Variables)
Let M be a structure and D its domain. In first–order logic, variables range over
individuals, that is, over elements of D. We shall call those type 1 variables for
the purposes of higher–order logic. Type 2 variables then range over collections,
that is, the elements of P(D). Generally, type n variables are defined for any
n ∈ ω such that they range over Pn−1(D).

We will use lowercase latin letters for type 1 variables for backward compatibility
with first–order logic, type 2 variables will be represented by uppercase letters,
mostly P,X, Y, Z, higher–order variables won’t be needed in this thesis. If we
wanted to define satisfaction for second–order formulas in a model 〈Vα,∈〉 that
we have often used in this thesis, type 2 variables would be interpreted to range
over a set is isomorphic to Vα+1

30.

Definition 3.21 (Full Prenex Normal Form)
We say a formula is in the prenex normal form if it is written as a block of
quantifiers followed by a quantifier–free part.
We say a formula is in the full prenex normal form if it is written in prenex
normal form and if there are type n+ 1 quantifiers, they are written before type
n quantifiers.

It is an elementary that every formula is equivalent to a formula in the full prenex
normal form.

Definition 3.22 (Hierarchy of Formulas)
Let ϕ be a formula in the prenex formal form.

(i) We say ϕ is a ∆0
0–formula if it contains only bounded quantifiers.

(ii) We say ϕ is a Σ0
0–formula or a Π0

0–formula if it is a ∆0
0–formula.

(iii) We say ϕ is a Πm+1
0 –formula if it is a Πm

n – or Σm
n –formula for any n ∈ ω or

if it is a Πm
n – or Σm

n –formula with additional free variables of type m+ 1.

30It might be useful to keep a separate version instead of using Vα+1 so that we can
distinguish between sets and classes that turn out to have the same extension. See
[Koellner, 2009] for details.
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(iv) We say ϕ is a Σm
0 –formula if it is a Πm

0 –formula.
(v) We say ϕ is a Σm

n +1–formula if it is of a form ∃P1, . . . , Piψ for any non–zero
i, where ψ is a Πm

n –formula and P1, . . . , Pi are type m+ 1 variables.
(vi) We say ϕ is a Πm

n +1–formula if it is of a form ∀P1, . . . , Piψ for any non–zero
i, where ψ is a Σm

n –formula and P1, . . . , Pi are type m+ 1 variables.

Definition 3.23 (Describability)
We say an ordinal α is described by a sentence ϕ in the language L with relation
symbols P1, . . . , Pn given iff

〈Vα,∈, P1, . . . , Pn〉 |= ϕ (3.120)

but for every β < α

〈Vβ,∈, P1 ∩ Vβ, . . . , Pn ∩ Vβ〉 6|= ϕ. (3.121)

For the definition of a Πm
n –formula and a Σm

n –formula, see definition 3.22.

Definition 3.24 (Πm
n –Indescribable Cardinal)

We say that κ is Πm
n –indescribable iff it is not described by any Πm

n –formula.

Definition 3.25 (Σm
n –Indescribable Cardinal)

We say that κ is Σm
n –indescribable iff it is not described by any Σm

n –formula.

To see that this notion is based in reflection, let us recall the opening quote of
this thesis by Gödel which says “The Universe of sets cannot be uniquely charac-
terised (i. e. distinguished from all its initial elements) by any internal structural
property of the membership relation on it.”. A cardinal κ is Πm

n –indescribable31

iff every Πm
n –formula fails to describe Vκ and describes an initial segment instead.

In a sense, Vκ reflects the “property”32 of indescribability of the universal class
with respect to certain classes of formulas.

Lemma 3.26 Let κ be a cardinal, then the following holds for any n ∈ ω. κ is
Π1
n–indescribable iff κ is Σ1

n+1–indescribable.

Proof. The forward direction is obvious, we can always add a spare quantifier
over a type 2 variable to turn a Π1

n formula ϕ into a ∃Pϕ which is then a
Σ1
n+1–formula.33

31This holds for Σmn –formulas alike.
32In this case, we are not using the word to refer to a definable class, but on a meta level

to refer to a property expressible in the natural language, hence the quotation marks.
33Note that unlike in previous sections, it is worth noting that ϕ is now a sentence so

we don’t have to worry whether P is free in ϕ.
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To prove the opposite direction, suppose that 〈Vκ,∈〉 |= ∃Xϕ(X) where
X is a type 2 variable and ϕ is a Π1

n–formula with one free variable of type 2.
This means that there is a set S ⊆ Vκ that is a witness of ∃Xϕ(X), in other
words, ϕ[S] holds. We can replace every occurence of X in ϕ by a new predicate
symbol S, this allows us to say that κ is Π1

n–indescribable (with respect to
〈Vκ,∈, R, S〉).34 �

The above lemma makes it clear that, without the loss of generality, we can
suppose that all formulas with no higher than type 2 variables are Π1

n–formulas.

Lemma 3.27 If κ is an inaccessible cardinal and given R ⊆ Vκ, then the fol-
lowing is a club set in κ:

{α ∈ κ : 〈Vα,∈, R ∩ Vα〉 ≺ 〈Vκ,∈, R〉}. (3.122)

Proof. To see that (3.122) is closed, let us recall that a A ⊆ κ is closed iff for
every ordinal α such that ∅ < α < κ, it holds that if A ∩ α is unbounded in α
then α ∈ A. Since κ is an inaccessible cardinal, thus strong limit, it is closed
under limits of sequences of ordinals smaller than κ. In order to verify that it
is unbounded, we will use a recursively defined κ–sequence 〈α0, α1, . . .〉 to build
〈Vα,∈, R ∩ Vα〉, an elementary substructure of 〈Vκ,∈, R〉 such that α > α0

for an arbitrary ordinal α0 < κ. Let us fix one such α0. Given αn, αn+1 is
defined as the least β, αn ≤ β that satisfies the following for any formula ϕ for
p1, . . . , pm ∈ Vαn ,m ∈ ω:

If 〈Vκ,∈, R〉 |= ∃xϕ(p1, . . . , pn),

then ∃x ∈ Vβ such that 〈Vκ,∈, R〉 |= ϕ(x, p1, . . . , pn).
(3.123)

Let α =
⋃
n<ω αn. Then

〈Vα,∈, R ∩ Vα〉 ≺ 〈Vκ,∈, R〉, (3.124)

in other words, for any ϕ with given arbitrary parameters p1, . . . , pn ∈ Vα, it
holds that

〈Vα,∈, R ∩ Vα〉 |= ϕ(p1, . . . , pn)↔ 〈Vκ,∈, R〉 |= ϕ(p1, . . . , pn). (3.125)

Which should be clear from the construction of α. �

Theorem 3.28 Let κ be an ordinal. The following are equivalent.

34A different yet interesting approach is taken by Tate in [Tait, 2005]. He states that
for n ≥ 0, a formula of order ≤ n is called a Πn

0 and a Σn0 formula. Then a Πn
m+1 is a

formula of form ∀Y ψ(Y ) where ψ is a Σnm formula and Y is a variable of type n. Finally,
a Σnm+1 is the negation of a Πn

m formula. So the above holds ad definitio.
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(i) κ is inaccessible.
(ii) κ is Π1

0–indescribable.

Note that Π1
0 formulas are those that contain zero unbound quantifiers over

type–2 variables, they are in fact first–order formulas, but with additional type 2
free variables allowed.
Proof. Π1

0–sentences contain type 2 variables, but only type 1 quantifiers. We
want to prove that κ is an inaccessible cardinal iff whenever a formula tries
to describe κ in the sense of definition 3.23, the formula fails to do so and
describes a initial segment thereof instead. We have already shown in theorem
3.10 that there is no way to climb the cumulative hierarchy to the height of
an inaccesible cardinal via first–order formulas in ZFC. We will now prove that
adding unqantified type 2 variables does not make it possible, note that all of the
axiom schemata used in the previous chapter can be rewritten to use a type 2
variable instead of a given function.

For (i)→(ii), suppose that κ is inaccessible.
Then there is, by lemma 3.27 a club set of ordinals α such that Vα is an

elementary substructure of Vκ. For κ to be Π1
0–indescribable, we need to make

sure that given an arbitrary Π1
0–formula ϕ satisfied in the structure 〈Vκ,∈, R〉,

there is an ordinal α < κ, such that 〈Vα,∈, R ∩ Vα〉 |= ϕ. But this follows
from the definition of elementary substructure.

For (ii)→(i), suppose κ is not inaccessible, so it is either singular, or there is
a cardinal ν < κ such that κ ≤P(ν) or κ = ω.

Suppose κ is singular. Then there is a cardinal ν < κ and a function
f : ν → κ such that rng(f) is cofinal in κ. Since f ⊆ Vκ, we can add
f as a relation to the language. We can do the same with {ν}. That means
〈 Vκ, ∈, P1, P2〉 with P1 = f, P2 = {ν} is a structure. Let

ϕ = (P1 6= ∅ & rng(P1) = P2)35. (3.126)

Since for every α < ν, P1 ∩ Vα = ∅, ϕ is false and therefore describes κ.
That contradicts the fact that κ was supposed to be Π1

0–indescribable, but ϕ is
a first–order formula.

Suppose there is a cardinal ν satisfying κ ≤ P(ν). Let there be a function
f : P(ν)→ κ that is onto. Then, like in the previous paragraph, we can obtain
a structure 〈Vκ,∈, P1, P2〉, where P1 = f like before, but this time P2 = P(ν).
Again,

ϕ = (P1 6= ∅ & rng(P1) = P2) (3.127)

describes κ.

35rng(x) = y is a first–order formula, see definition 1.14.
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Finally, suppose κ = ω, then the first-order sentence ϕ = ∀x∃y(x ∈ y)
describes κ, which is a contradiction. �

Generally, it should be clear that it a cardinal κ is Πm
n –indescribable, it is also

Πm′

n′ –indescribable for every m′ < m,n′ < n. By the same line of thought, if
a cardinal κ satisfies the property implied by Πm

n –indescribability, it satisfies all
properties implied by Πm′

n′ –indescribability for m′ < m,n′ < n. For example, if
κ is Πm

n –indescribable for m ≥ 1 then it is also an inaccessible cardinal.

Theorem 3.29 If a cardinal κ is Π1
1–indescribable, then it is a Mahlo cardinal.

Proof. Assuming that κ is Π1
1–indescribable, we want to prove that every club

set of in κ contains an inaccessible cardinal.
Consider the following Π1

1–sentence ϕ:

ϕ = ∀P (“P is a function′′ → ∀x∃y∀z(z ∈ y ↔ (∃q ∈ x)(P (x, y, p1, . . . , pn))))

& ∀x∃y∀z(z ∈ y ↔ z ⊆ x)
(3.128)

where P is a type 2 variable and the rest are type 1 variables, “P is a function” is
a first–order formula defined in definition 1.11. As has been shown earlier in this
chapter, given a cardinal µ, the following holds if and only if µ is inaccessible:

〈Vµ,∈〉 |= ϕ. (3.129)

Now fix an arbitrary C ⊂ κ, a club set in κ. We want to show that it contains
an inaccessible cardinal. Since C is a subset of κ and therefore a subset of Vκ,
we can use the structure 〈Vκ,∈, C〉 instead of 〈Vκ,∈〉. Then the following holds:

〈Vκ,∈, C〉 |= ϕ & “C is unbounded”.36 (3.130)

Note that this holds because κ is Π1
1–indescribable, and therefore also Π1

0–indescribable.
So κ is itself inaccessible and therefore 〈Vκ,∈, C〉 |= ϕ.

Since κ is Π1
1–indescribable and ϕ & “C is unbounded” is equivalent to a

Π1
1–formula, there must be an ordinal α that satisfies

〈Vα,∈, C ∩ Vα〉 |= ϕ & “C is unbounded”, (3.131)

which implies that α is inaccessible; it is regular because it reflects Replacement
and it is limit because if α were a successor ordinal, it couldn’t contain an
unbounded class of ordinals.

We only need to verify that α ∈ C, which is clear from the fact that C is a
club set in κ and it is unbounded in α. �

There is an even stronger large cardinal property implied by Π1
1–indescribability

that is based on reflection.
36“C is unbounded” is a first–order formula, see definition 1.52.
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Definition 3.30 (Extension Property)
We say a cardinal κ has the extension property iff for all U ⊂ Vκ there exists a
transitive set X such that κ ∈ X, and a set S ⊂ X, such that (Vκ,∈, U) is an
elementary substructure of (X,∈, S).

Definition 3.31 (Weakly Compact Cardinal)
We say that a cardinal κ is weakly compact iff it has the extension property.

Theorem 3.32 A cardinal κ is Π1
1–indescribable iff it is weakly compact.

For the proof, see [Kanamori, 2003]. Note that the extension property is also
very similar to reflection

We will now introduce the measurable cardinal, which is not based on reflec-
tion from below in our sense, but illustrates the fact that indescribability leads to
cardinals that contradict Axiom of Constructibility, that will be introduced right
after the measurable cardinal.

Definition 3.33 (Ultrafilter)
Given a set x, we say U ⊂ P(x) is an ultrafilter over x iff all of the following
hold:

(i) ∅ 6∈ U ,
(ii) ∀y, z(y ⊂ x & z ⊂ x & y ⊂ z & y ∈ U → z ∈ U),

(iii) (∀y, z ∈ U)(y ∩ z) ∈ U ,
(iv) ∀y(y ⊂ x→ (y ∈ U ∨ (x \ y) ∈ U)).

Definition 3.34 (κ–Complete Ultrafilter)
We say that an ultrafilter U is κ–complete iff it is closed under intersection of
κ–many elements. More precisely,

(∀γ < κ)({aα : α < γ} ⊆ U →
⋃
α< γ

aα ∈ U). (3.132)

Definition 3.35 (Measurable Cardinal)
We say that a cardinal κ is a measurable cardinal iff there is a κ–complete
ultrafilter over κ.

Theorem 3.36 Let κ be a cardinal. If κ is a measurable cardinal then the
following hold:

(i) κ is Π2
1–indescribable.

(ii) Given U , a normal ultrafilter over κ, a relation R ⊆ Vκ and a Π2
1–formula

ϕ such that 〈Vκ,∈, R〉 |= ϕ, then

{α < κ : 〈Vα,∈, R ∩ Vα〉 |= ϕ} ∈ U . (3.133)

For a proof, see Proposition 6.5 in [Kanamori, 2003].
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3.5 The Constructible Universe

The constructible universe, denoted L, is a cumulative hierarchy of sets, presented
by Kurt Gödel in his paper [Gödel and Brown, 1940]. Assertion of its equality to
the Von Neumann’s hierarchy, V = L, is called the Axiom of Constructibility.
The axiom implies GCH and AC and contradicts the existence of some large
cardinals, our goal is to decide whether those introduced earlier are among them.

On order to formally establish this class, we need to formalise the notion of
definability first.

Definition 3.37 (Definability)
We say that a set X is definable over a model 〈M,∈〉 if there is a formula ϕ
together with parameters p1, . . . , pn ∈M such that

X = {x : x ∈M & 〈M,∈〉 |= ϕ(x, p1, . . . , pn)} (3.134)

Definition 3.38 (The Set of Definable Subsets)
The following is a set of all definable subsets of a given set M , denoted Def(M).

Def(M) = {{y : x ∈M & 〈M,∈〉 |= ϕ(y, u1, . . . , in)} :

ϕ is a first–order formula, p1, . . . , pn ∈M}
(3.135)

We will use Def(M) in the following construction in the way the power
set operation is used when constructing the usual Von Neumann’s hierarchy of
sets37.

Definition 3.39 (The Constructible Universe)
The constructible universe is a collection of sets similar to the Von Neumann’s
hierarchy but consisting only of definable sets.

(i)
L0 = ∅, (3.136)

(ii)
Lα+1 = Def(Lα) for any ordinal α, (3.137)

(iii)

Lλ =
⋃
α<λ

Lα For a limit ordinal λ, (3.138)

(iv)

L =
⋃

α∈Ord

Lα. (3.139)

37For that reason, some authors use P∗(M) instead of Def(M), see section 11 of
[Pinter, 2014] for one such example.
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Note that while L bears very close resemblance to V , the difference is, that
in every successor step of constructing V , we take every subset of Vα to be
Vα+1, whereas Lα+1 consists only of definable subsets of Lα. Also note that L
is transitive.

Theorem 3.40 Let L be as in definition 3.39.

〈L,∈〉 is a model of ZFC (3.140)

For details, refer to Theorem 13.3 in [Jech, 2006].

Definition 3.41 (Constructibility)
The axiom of constructibility states that every set is constructible. It is usually
denoted as L = V .

Without providing a proof, we will introduce two important results established
by Gödel in [Gödel and Brown, 1940].

Theorem 3.42 (Constructibility → Choice)

ZF ` Constructibility→ Axiom of Choice (3.141)

The GCH refers to the Generalised Continuum Hypothesis, see definition
1.40.

Theorem 3.43 (Constructibility → Generalised Continuum Hypothesis)

ZF ` Constructibility→ GCH (3.142)

It is worth mentioning that Gödel’s proof of Construcibility → GCH featured the
first formal use of a reflection principle. For the actual proofs, see for example
[Kunen, 1983],

Since GCH implies that κ is a limit cardinal iff κ is a strong limit cardinal for
every κ, the distinctions between inaccessible and weakly inaccessible cardinals
as well as between Mahlo and weakly Mahlo cardinals vanish.

Theorem 3.44 (Inaccessibility in L)
Let κ be an inaccessible cardinal. Then In(κ)L.

Proof. We want to show that the following are all true for an inaccessible cardinal
κ:

(i) “κ is a cardinal”L,
(ii) (ω < κ)L,
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(iii) “κ is regular”L,
(iv) “κ is limit”L.38

Suppose “κ is not a cardinal”L holds, then there is a cardinal µ, µ < κ and
a function f : µ → κ, f ∈ L, such that “f : µ→ κ is onto”L. But since “f is
onto” is a ∆0 formula and ∆0 formulas are are absolute in transitive structures39

and L is a transitive class, “f is onto”L ↔ “f is onto”, this contradicts the fact
that κ is a cardinal. (ω < κ)L holds because ω ∈ κ and because ordinals remain
ordinals in L, so (ω ∈ κ)L.

In order to see that “κ is regular”L, we can repeat the argument by contra-
diction used to show that κ is a cardinal in L. If κ was singular, there is a µ < κ
together with a function f : µ → κ that is onto, but since “f is onto” implies
“f is onto”L, we have reached a contradiction with the fact that κ is regular,
but singular in L.

It now suffices to show that “κ is a limit cardinal”L. That means, that for
any given λ < κ, we need to find an ordinal µ such that λ < µ < κ that is also
a cardinal in L. But since cardinals remain cardinals in L by an argument with
surjective functions just like above, it holds. �

Theorem 3.45 (Mahloness in L)
Let κ be a Mahlo cardinal. Then “κ is Mahlo”L.

Proof. Let κ be a Mahlo cardinal. From the definition of Mahloness in definition
3.14, it should be clear that we want prove that κ is inaccessible in L and

“The set {α : α ∈ κ & ’α is inaccessible’} is stationary in κ”L (3.143)

Since we have shown that an inaccessible cardinals remain inaccessible in L
in the previous theorem, In(κ)L holds.

Now consider the two following sets:

S = {α ∈ κ : In(α)} (3.144)

T = {α ∈ κ : In(α)L} (3.145)

Since inaccessible cardinals are inaccessible in L from theorem 3.44, S ⊆ T . So
if T is stationary in κ, we are done. Suppose for contradiction that it is not the
case. Therefore there is a C ⊂ κ satisfying “C is a club set in κ”L, but it is the
case that T ∩ C = ∅. But because “C is a club set in κ” is equivalent to a ∆0

formula,
“C is a club set in κ”M ↔ “C is a club set in κ”, (3.146)

38While inaccessible cardinals are strong limit cardinals, since GCH holds in L,
“κ is limit”L, implies “κ is strong limit”L.

39See lemma 1.45.
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ergo C is a club set in κ. But since it has o intersection with T , it can’t have an
intersection with a subset thereof, which contradicts the fact that S is stationary
in κ.

κ remains Mahlo in L. �
It should be clear that the above process can be iterated over again. Since

Mahlo cardinals are absolute in L, the same argument using stationary sets can
be carried out for hyper–Mahlo cardinals and so on. It is clear that since a regular
and an inaccessible cardinal in consistent with Constructibility, so should be the
higher properties acquired from assuring the existence of regular, inaccessible and
Mahlo fixed points of normal functions.

Theorem 3.46 If there is a measurable cardinal, then V 6= L.

This is proved in [Scott, 1961] or [Kanamori, 2003].

3.6 Conclusion

To have an intuitive idea of why apart from measurability, every large cardinal
property we have established is absolute in L, let us stress that measurability is
the only one that does not deal with the height of the cumulative hierarchy of
sets. The assertion of the existence of an inaccessible cardinal can be informally
rephrased as “The universe of all sets is so big in terms of height, there are ordinals
unreachable by the power set operation”40. Gödel’s Constructible universe deals
only with the width of the universe, which is kept as small as possible, so there
is no way it can be inconsistent with assertions that deal with height and have
no implications in terms of width. Similarly, the Mahlo operation only deals with
ordinals, therefore it’s not surprising that it has no implications on width of the
universe alone. This is not the case with measurability. Measurability is such a
strong statement that even though it seems to explicitly speak of height only,
the existence of a measurable cardinal implies the existence of non–constructible
subsets of ω41.

40This approach is embodied in the definition of Q–inaccessibility used by Lévy, see defi-
nition 2.2, that can be understood as “given a set theory with some means of traversing the
cumulative hierarchy upwards, a cardinal is inaccessible with respect to Q if it can’t be reached
by those means alone”.

41See [Drake, 1974], p. 196.
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