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Abstract

This thesis examines Bitcoin in 2012-2015 period along with the two Bitcoin

bubbles — April 2013 and November 2013 — using ARIMA, GARCH and LPPL

models. First, we perform standard GARCH analysis along with GARCH rolling

estimation and find that the volatility of Bitcoin differs substantially over time

and that this relation is best captured by GARCH(1,1) in all studied periods.

We also conclude that during the November bubble the number of irrational

traders entering the market was much higher than in the April bubble which

probably caused greater instability on the Bitcoin market. However, based on

Ljung-box test we find these results to be questionable. For that reason, we

present LPPL model and study its key parameters — power law growth rate

β, frequency of log oscillation ω and its scaling ratio λ — in more detail using

standard methodology and “loop analysis”. We find that the November bubble

experiences much faster oscillation and lower acceleration rate of power law in

comparison with the April bubble. By the end we propose hypothesis that ∆λ

serves as a better indicator of the upcoming bubble crash than simple scaling

ratio which we concluded to be true in our analysis of the two Bitcoin bubbles.

However, further examination of other financial bubbles is needed, in order to

support this hypothesis.
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Abstrakt

V bakalářské práci zkoumáme pomoćı ARIMA, GARCH a LPPL model̊u tři peri-

ody Bitcoinové řady mezi roky 2012-2015 — kompletńı řadu, dubnovou bublinu

v roce 2013 a listopadovou bublinu v roce 2013. Nejdř́ıve provád́ıme standardńı

GARCH analýzu, na niž navazuje GARCH roluj́ıćı estimace. Výsledky těchto

analýz ukázaly, že volatilita Bitcoinu se v pr̊uběhu zkoumané periody výrazně

lǐśı, a že pro všechny tři časové periody se jako nejlepš́ı specifikace zachy-

cuj́ıćı volatilitu ukázala GARCH(1,1). Dále jsme vypozorovali, že v pr̊uběhu

listopadové bubliny byl výrazně větš́ı počet nově vstupuj́ıćıch iracionálńıch ob-

chodńık̊u na trh než v pr̊uběhu dubnové bubliny, což pravděpodobně zp̊usobilo

větš́ı nestabilitu na trhu s Bitcoiny. Nicméně výsledky Ljung-box testu částečně

zpochybňuj́ı konzistentnost odhadnutých parametr̊u GARCH analýzou. Z to-

hoto d̊uvodu použ́ıváme LPPL model a zkoumáme jeho kĺıčové proměnné —

rychlost r̊ustu β, frekvence log oscialace ω spolu se “scaling ratio” λ — nejdř́ıve

standardńı metodologíı a poté “loop analýzou”. Z výsledk̊u jsme vyvodili, že

listopadová bublina měla výrazně rychleǰśı oscilaci a nižš́ı akceleraci r̊ustu ve

srovnáńı s dubnovou bublinou. Na závěr přicháźıme s hypotézou, že ∆λ slouž́ı

jako lepš́ı indikátor nadcházej́ıćıho krachu bubliny než prosté “scaling ratio”.

Výsledky naš́ı analýzy dvou bublin tuto hypotézu potvrzuj́ı, nicméně jsme si

vědomi toho, že k jej́ımu plnohodnotné potvrzeńı je potřeba zkoumáńı daľśıch

finančńıch bublin.
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9. Šurda P. Economics of Bitcoin: is Bitcoin an alternative to fiat currencies and gold?

[Diploma Thesis]. Vienna: WU Vienna University of Economics and Business; 2013.

Author Supervisor

bitcoinmagazine.com
http://bitcoinmagazine.com/8104/bitcoins-new-all-time-high-exploring-the-latest-bubble/
http://bitcoinmagazine.com/8104/bitcoins-new-all-time-high-exploring-the-latest-bubble/
http://bitcoinmagazine.com/4113/the-bitcoin-crash-an-examination/


1. Introduction 1

Chapter 1

Introduction

In quickly developing Internet era we can observe several new interesting phe-

nomena in the financial markets. One of them is the emergence of digital

currencies such as the most popular one — Bitcoin and others like Litecoin,

Ripple, Sharkcoin etc.1 In our thesis we focus on Bitcoin which was introduced

in 2009. It is not under control of any central authority and serves as an al-

ternative to standard fiat currencies. In the last two years, Bitcoin’s publicity

has substantially increased which attracted not only large number of investors

but also many businessmen who now accept Bitcoin as mean of payment. Dur-

ing its history, Bitcoin price experienced several periods of explosive bubbles

followed by crashes, where post-bubble price level never returned to its initial

value.

The objective of this thesis is to study two bubbles occurred in 2013 — the

April and November bubble — and compare their characteristics. For analysis

of price volatility during the bubbles we use standard econometric time series

tools — ARIMA and GARCH models. In addition, we use rolling estimation

to study the changes of ARCH and GARCH coefficients over time. However,

these standard methodologies are found to be insufficient when capturing the

volatile behavior of price returns in periods of excessive price growth and sub-

sequent crash. Therefore, we implement LPPL model, introduced by Johansen

et al. (2000), which is designed to capture the price development during stock

market bubbles and crashes. They study the crashes by examining the key

variables β and ω which represent power-law growth and frequency of the fluc-

tuation during the bubble, respectively. Moreover, they define the key criterion

1List of the most popular digital currencies and their values can be found on Coinmar-
ketcap.com

http://coinmarketcap.com/
http://coinmarketcap.com/
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— scaling ratio λ — which is used as a tool for empirical examination and pre-

diction of the time of the crash. However, when analyzing the November bubble

the λ seems to be unable to predict the crash. For that reason we propose a

hypothesis that the change in the scaling ratio ∆λ could be a better indicator

of the upcoming crash. Even thought this method predicts false alarm of crash

in some periods, it also predicts the peaks occurred during the bubble period

with very good precision.

The thesis is structured as follows: after the introduction, one chapter is ded-

icated to related literature to the thesis. In Chapter 3 we offer basic char-

acterization of Bitcoin along with empirical study about price formation and

description of price development during the bubbles. Two following chapters

offer the characterization of the dataset and details on ARIMA and various

GARCH models methodology used in econometrics study of Bitcoin bubbles

and the Whole period sample. Chapter 6 summarizes the results of GARCH

estimation. Next, Chapter 7 presents the estimation process of GARCH rolling

estimation along with the outcomes. In the following Chapter 8 we present the

LPPL model — its methodology and theoretical background, fitting procedure

with the results and finally, the “loop analysis” in which we study the over

time changes of key variables β, ω and the standard scaling ratio λ along with

introduced ∆λ criterion. Chapter 9 summarizes our overall findings.
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Chapter 2

Literature review

There is generally not a large amount of literature related to the Bitcoin phe-

nomena as Bitcoin currency was created only a few years ago and presented in

Nakamoto (N/A). Although, during its short history, and especially after 2013

when Bitcoin gained publicity, a lot of economists started to pursue this topic

and more and more economic papers have been published.

Surda (2012) discusses the Bitcoin future evolution and whether the currency

can become an alternative to the fiat currencies or gold. He argues that Bit-

coin has the advantage over fiat currencies in low transaction costs and inelastic

supply. Among other things, Surda (2012) also studies the connection between

liquidity and volatility of Bitcoin during the 2009-2012 period. He finds neg-

ative correlation between these two parameters which supports his arguments

about Bitcoin being a medium of exchange.

Kristoufek (2013) studies the dynamic relationship between the Bitcoin price

and interest in the currency measured by search queries on Google Trends and

Wikipedia. His empirical results show strong correlation between price level

and searched terms. More importantly, he argues that this relationship is bidi-

rectional, that is the search queries influence the prices and also the prices

influence the search queries.

Ciaian et al. (2014) and Kristoufek (2014) focus on formation of Bitcoin price

and its short-term and long-term relationship with supply-demand fundamen-

tals of Bitcoin and global macro-financial indicators. Moreover, Kristoufek

(2014) studies the connections between the Chinese and the USD market. Re-

sults of both papers confirm that the Bitcoin prices are driven by interest of

investors in the crypto-currency and that presence of standard fundamental

factors — velocity, money supply, price level, size of the Bitcoin economy —
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has strong impact on price dynamics. Furthermore, Ciaian et al. (2014) con-

cludes that in presence of standard supply-demand factors and attractiveness

of Bitcoin for investors the macro-financial indicators are irrelevant to Bitcoin

price formation.

Very useful are freely provided and very detailed statistical data about Bitcoin

markets. Coindesk (www.coindesk.com/price/) provides Bitcoin price index

(BPI) data about exchange rate between USD and the Bitcoin. Wide range

of time series about Bitcoin market (total bitcoins in circulation, number of

transactions, trade volume etc.) are reported on daily basis on Blockchain

(www.blockchain.info). Prices along with currency and Bitcoin traded volume

series are available on www.bitcoincharts.com with frequency up to one minute

for several currencies and almost every exchange.

Safka (2014) examines the connections between Bitcoin and the real economy

and also inspects the Bitcoin volatility, from August 2010 until February 2014,

using several variations of Autoregressive conditional heteroskedasticity (ARCH)

models with structural breaks. He finds that Bitcoin volatility differs signif-

icantly during the studied period and that this behavior is best captured by

TGARCH(1,1) model.

For analysis of Bitcoin price volatility we apply several models from ARCH

family — basic ARCH model introduced in Engle (1982), enlarged to GARCH

by Bollerslev (1986) and TGARCH along with EGARCH model capturing the

leverage effect, described in Zakoian (1994) and Nelson (1991), respectively.

Summary and application of ARCH models can be found in Engle & Pat-

ton (2000), Engle (2001) and in applied econometric textbooks Luthkepohl

& Kratzig (2007) and Franses & Dijk (2000).

Geraskin & Fantazzini (2013) and Bree & Joseph (2013) offer very nice and well

arranged information about the theory and application of LPPL model studying

the financial bubbles and crashes originally presented in Johansen & Sornette

(2001), Johansen et al. (2000) and Johansen et al. (1999). For comparison of

estimated LPPL to Bitcoin we use empirical results of fitted LPPL to various

stock markets and FOREX rates all around the world presented in Johansen &

Sornette (2001), Johansen et al. (1999) and Johansen (2003).

http://www.coindesk.com/price/
https://blockchain.info/
http://bitcoincharts.com/charts/
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Chapter 3

Theoretical background of Bitcoin

3.1 General description of Bitcoin

Bitcoin is peer-to-peer payment network introduced by Satoshi Nakamoto in

2009. Bitcoin, as a digital currency, is purely electronic with no physical form

and serves as an alternative currency to the standard fiat currencies, e.g. dol-

lar, euro, Chinese yuan. One of the key distinguishing features is that Bitcoin

is not issued or controlled by any authority such as central bank or govern-

ment, but it is managed by an open source software algorithm that uses global

internet network to create the currency and also to record and to verify the

transactions (Kristoufek 2013; Voorhees 2015; Ciaian et al. 2014).

Bitcoins are created in “mining” process, where miners use their computers to

provide computing power for verifying and recording transactions into a public

ledger called “blockchain”. As a reward for this service, miners receive transac-

tion fees from validated transactions and more importantly certain number of

Bitcoins, which provide inflow of new Bitcoins into circulation. In order to en-

sure that supply of Bitcoins evolves according to publicly known algorithm, the

difficulty of solving the computational problem, measured in hashes, increases

with every “block” of transaction verified (Kristoufek 2014; Ciaian et al. 2014).

Bitcoin enables any two parties anywhere on the earth to make transaction

freely with each other with low or no fees. This is one of the main reasons

why increasing number of companies accept Bitcoins as a mean of payment in

exchange for goods and services.1 Bitcoin can be also traded for other cur-

rencies in many exchanges, operating 24/7, with easy access for anyone with

1List of companies accepting bitcoins available at Coindesk.com

http://www.coindesk.com/information/what-can-you-buy-with-bitcoins/
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a computer and internet connection, therefore the entry costs are one of the

lowest on financial market (Ciaian et al. 2014; Pieters & Vivanco 2015).

As mentioned before, one of the main advantages of Bitcoin in contrast with

standard fiat currencies is that person is able to make a transaction anywhere

in the world at any time with very low fess. Furthermore, all finalized transac-

tions are completely public and can be verified, however personal information

is hidden thus the information transparency is secured while personal identities

are saved.

On the other hand Bitcoin is not flawless. One of the biggest issues is that

the relative anonymity of Bitcoin represents perfect environment for organized

crime, money laundering and other illegal activities. Also with increasing pop-

ularity and public attention some Bitcoin exchanges have been targeted by

hackers and their attacks have caused significant losses for Bitcoin owners and

represented serious problems to attacked exchanges which often led to shutting

them down. As in the case of one of the largest and most popular exchanges —

MtGox — in the beginning of 2014. Furthermore, the public awareness about

digital currencies and Bitcoin is very low as it is still a developing currency,

plus there is no central authority and the price of Bitcoin is highly volatile and

does not serve well as a store of value which represents a potential threat for

its future growth (CoinReport 2014; Kristoufek 2014; Bambani & Beer 2013).

3.2 Bitcoin price formation

According to Kristoufek (2013; 2014) the price formation of Bitcoin cannot be

explained by standard economic and financial theories because supply-demand

fundamentals, normally forming the basis of standard currency price formation,

are missing on Bitcoin market. Firstly, supply function evolves according to

publicly known algorithm and the currency is not issued by any central bank

or other entity. Secondly, the demand is mainly driven by speculative behavior

of investors, as there is no interest rate for holding the digital currencies and

thus profits can be obtained only from price changes. So investors’ behavior

and sentiment becomes a key variable in price forming.

Moreover considering that Bitcoins’ price dynamics has been changing signif-

icantly during its evolution in recent years it would be naive to think that

the driving forces of the price have remained unchanged during its existence.

Therefore when examining Bitcoin price dynamics both frequency (scale of the
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interconnections between variables) and time have to be focused on.

Based on the findings of Ciaian et al. (2014), the supply-demand fundamentals

have a strong impact on Bitcoin price, moreover the demand side (size of the

Bitcoin economy and velocity of Bitcoin circulation) appears to have stronger

influence on price then the supply side (stock of Bitcoin in the circulation).

However Bitcoin attractiveness for investors — measured by Wikipedia views,

number of new members and new posts2 — has the strongest and statistically

most significant impact on the currency price. This is consistent with Kris-

toufek (2013; 2014) results, that Google and Wikipedia searches for the word

“Bitcoin”, quantifying the interest in Bitcoin, are highly positively correlated

with Bitcoin price. Moreover, he found out that this relationship is most ev-

ident in the long run and that interest in Bitcoin have an asymmetric effect

in bubbles periods. During bubble formation (periods of explosive prices) in-

terest drives prices further up, and during the bubble bursting (rapid prices

declines) interest pushes prices further down. Ciaian et al. (2014) also argue

that if supply-demand variables and Bitcoin’s attractiveness for investors are

included in analysis, the macro-financial indicators captured by stock exchange

indices, exchange rates and oil prices do not significantly affect Bitcoin price

in the long run.

Furthermore, Kristoufek (2014) discovered several other interesting findings

about drivers of the Bitcoin price. First, he found out that with increasing

usage of Bitcoin in real trade transactions the currency appreciates in the long

run and that increasing prices boost demand for the currency at the exchanges.

Second, the increasing price attract more miners into the system so there is a

positive relationship between mining difficulty and price in the long run, how-

ever this relationship becomes weaker in time as the price of Bitcoin is slowly

decreasing and difficulty is too high. Third, there is no sign that Bitcoin is

a safe haven investment as gold is (or at least once was). Finally, Kristoufek

shows that there is no clear evidence of interconnection between the CNY vol-

ume and USD price and that there is no causal relationship between the Chinese

and USD Bitcoin markets, even though these two markets are closely connected.

2For detailed description of variables see Ciaian et al. (2014), chapter 4 — Data.
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3.3 Historical price development

To examine the Bitcoin price development we use data from formerly one of the

largest and most popular exchange on Bitcoin market — MtGox — which went

bankrupt on February 2014 as a result of a loophole in their security system

(BBC 2014). However MtGox data from period 2010-2013 are not affected by

the bankruptcy so they appear to be the best choice for the analysis in this

period. For period 2014-2015 we are using data from currently the largest

exchange trading with US dollars — Bitfinex.

If we look at Bitcoin price development from the beginning we can observe

several exponential increases in prices throughout the history. The first one

occurred in the beginning of 2011. The price increased from $ 0.1 to $1 (900%

increase) and later that year, the price grew from 1$ to a maximum of 30$ within

two months thus creating the first bubble with absurd profit of approximately

3000%. But only after few days the price dropped to half its value and continued

decreasing until it reached the level below $5. Evolution of Bitcoin price during

2011 is shown in Figure 3.1.

Figure 3.1: Bitcoin price, 2011
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Source: The Authors’ own computations via Wolfram Mathematica using BPI data.

3.3.1 April bubble

During 2012 the price experienced slow increasing trend but nothing worth

mentioning happen. But in the beginning of 2013 so called April bubble ap-

peared. On 1 January 2013 the price of Bitcoin was at the level of $13 and
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then started growing exponentially until it reached maximum of $265 on 10

April 2013. In the last ten days Bitcoin more than doubled its value and the

potential profit was almost 2000% in less than four months. Next day closing

price dropped about 50% compared to the peak and continued decreasing for a

few days until it hit the bottom at level of $50. The Bitcoin value has stabilized

around the range of $100-120 after the subsequent corrections and stayed there

in upcoming months. April bubble price development is depicted in Figure 3.2.

Figure 3.2: Bitcoin price, April bubble 2013
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Source: The Authors’ own computations via Wolfram Mathematica using BPI data.

3.3.2 November bubble

The second bubble which occurred later that year in November is depicted in

Figure 3.3. It can be observed that the Bitcoin price started to rise steadily in

October and exponentially in the beginning of November. Later that month

Bitcoin broke the level of $1000 and peaked at $1242 by the end of Novem-

ber. This represents absolutely unimaginable potential profit of approximately

9200% for buy-and-hold strategy from the beginning of the year, i.e. in 11

months (Kristoufek 2014). In the beginning of December Bitcoin lost more

than 50% of its value with price around $600 and after following corrections

its exchange rate with US dollar has stabilized around $900 per Bitcoin in the

beginning of 2014.

But, as already mentioned in this chapter, the largest exchange — MtGox

— went bankrupt and Bitcoin suffered enormous strike to its credibility on

February 2014. Since then the price started to have a decreasing trend with
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Figure 3.3: Bitcoin price, November bubble 2013
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Source: The Authors’ own computations via Wolfram Mathematica using BPI data.

few jumps and falls but not on such a large scale as in the cases of April or

November bubble. The current value (March 2015) of Bitcoin is slightly below

$300.
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Chapter 4

Dataset

4.1 Data Description

Since the analysis of a specific exchange is not feasible because of the Mt-

Gox bankruptcy we use the Bitcoin price index (BPI) which was introduced by

CoinDesk (2015) in September 2013. The BPI is an index of the exchange rate

between US dollar (USD) and Bitcoin (BTC) and it is constructed as a simple

average of the Bitcoin prices across the most liquid global exchanges. In order

to be included in the BPI exchanges have to meet specific criteria, which are

currently met by five exchanges — Bitfinex, Bitstamp, BTC-e, LakeBTC and

OKCoin. The BPI historical data commence on 1 July 2013. Prior to this date

MtGox closing price data are used as BPI and they are available from 18 July

2010. The series is freely available at Coindesk.com. In our analysis we use

daily closing price data.

For whole sample analysis we filtered the available data according to three cri-

teria. Two of them were taken from Kristoufek (2013) but the last one was

created by us.

Based on Kristoufek (2013), we first examine the Google trends data about

frequency of searching for term “Bitcoin”1 which represents the investors inter-

est and attention to the Bitcoin currency. From Figure 4.1 it can be seen that

before the bubble on May 2011 the interest about Bitcoin currency was nearly

at zero level, which questions market efficiency before May 2011.

1Data are available with weekly frequency from https://www.google.com/trends and they
are normalized, so the maximum value of the series is equal 100. For our analysis we chose
time period from 3 January 2010 to 4 April 2015

http://www.coindesk.com/price/
https://www.google.com/trends/explore#q=Bitcoin&cmpt=q&tz=
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Figure 4.1: Google Trends search query, weekly series
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Source: The Authors’ own computations via Wolfram Mathematica using data
from https://www.google.com/trends.

Second, we apply the same criterion as introduced in Kristoufek (2013) where

he examines the liquidity of the Bitcoin market at MtGox exchange and finds

out that the market has been liquid since the beginning of May 2011. This fact

confirms our conclusions resulting from Google trends data inspection.

Finally, we implement our own restriction where the starting date has to sat-

isfy the condition about the USD volume traded on seven major USD exchanges

operating between years 2010-2013.2 We choose the first day when the sum of

USD volume traded in one day exceeds 100000 USD and stays above this level

for at least 98 days from 100 upcoming days, without violation of this condition

for the rest of the time period, as a starting date for our sample. From Fig-

ure 4.2 we can see that before May 2011 the volume was clearly under 100000

USD level which supports our claim about market inefficiency in this period.

By further examination of the data we can notice that at the end of 2011 there

was a period where the volume declines again below the 100000 USD level.3

Therefore, we analyze the whole sample series starting on 19 December 2011

with an ending date of 31 March 2015 as this period satisfies all defined condi-

tions. As a result, our data consist of 1199 observation in total.

2Exchanges with highest volume in USD currency between 2010-2013 based on data avail-
able from bitcoincharts.com/charts — Mt.Gox, btc.e, btcex.com, BitStamp, Camp BX, In-
tersango and TradeHill.

3We also take into consideration the data about the number of transaction per day, avail-
able from blockchain.info. We use similar approach as in USD volume analysis and set the
bar for number of transaction per day to 5000. Obtained results for sample starting date are
consistent with the conclusion of USD volume examination.

https://www.google.com/trends/explore#q=Bitcoin&cmpt=q&tz=
http://bitcoincharts.com/charts/bitstampUSD#rg60zczsg2010-01-01zeg2013-01-01ztgSzm1g10zm2g25zxzi1gVol
https://blockchain.info/charts/n-transactions?timespan=all&showDataPoints=false&daysAverageString=1&show_header=true&scale=0&address=
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Figure 4.2: USD Volume, seven major USD exchanges, daily series
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Source: The Authors’ own computations via Wolfram Mathematica using data
from bitcoincharts.com.

For the analyses of the bubble periods, we take 150 days before and after

the peak day so we obtain time series with 300 observation in total. The

starting and ending dates of the analysis of April bubble are therefore set to

11 November 2012 and 6 September 2013. Similarly, for the November bubble

the dates are 8 July 2013 and 3 May 2014. Graphical representation of these

three periods is depicted in Figure 4.3.

Figure 4.3: Raw Bitcoin price series — ClosePrice
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Source: The Authors’ own computations via Wolfram Mathematica using BPI data.

http://bitcoincharts.com/charts/bitstampUSD#rg60zczsg2010-01-01zeg2013-01-01ztgSzm1g10zm2g25zxzi1gVol
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4.1.1 Stationarity

We test our data for stationarity in order to avoid possible spurious regres-

sion problem and potential long memory of shocks which can be present in

non-stationary time series data. This is done by studying the original series

(referred as ClosePrice) and its first logarithmic differences transformation (re-

ferred as ld ClosePrice) in our three sample periods of interest — Whole sample,

April bubble and November bubble. To test for stationarity, we first examine

Autocorrelation (ACF) and Partial Autocorrelation (PACF) functions described

in detail in Luthkepohl & Kratzig (2007).

From Figure A.1 (see Appendix) it can be observed that for original series the

ACF is declining extremely slowly towards zero with increasing lags in all pe-

riods of interest which is specific for non-stationary series. The PACFs first lag

is close to one and then drops close to zero for second and higher lag which

suggests that we should use differentiated data of order one. Looking at the

transformed series, the Whole sample and November bubble series seem to be

white noise since in ACF almost all autocorrelations are close to zero and the

ones above the significance level are not consistent with economic theory. They

seem to be coincidence and do not have any significant effect on the stationarity

of the data. Regarding the April bubble the series seems to be stationary as

ACFs first lag is significant but small and for second and higher lag autocor-

relations drop to zero level again with some exceptions without affecting the

stationarity.

To verify these preliminary conclusions formally we perform Augmented Dickey-

Fuller (ADF) and KPSS tests for stationarity, described in detail in Luthke-

pohl & Kratzig (2007). According to Kristoufek (2013), ADF test, with non-

stationarity of the series as null hypothesis, and KPSS test, with stationarity

of the series as null hypothesis, form ideal pair of tests for stationarity as they

have the opposite null and alternative hypotheses. Results of these tests are

summarized in Table 4.1.

We find the original series in all sample periods to be non-stationary and to

contain the unit-root. On the contrary for log-difference transformation we

reject the null hypothesis of ADF test that series contains unit-root at 5%

significance level for all sample periods. Performing the KPSS test we failed to

reject the null hypothesis of time series to be integrated of order zero at 10%

significance level for April bubble, at 5% significance level for Whole sample

but only at 1% significance level for November bubble. Kwiatkowski et al.
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Table 4.1: ADF and KPSS tests results

ADF p-value KPSS p-value

Whole sample
ClosePrice -0.8919 0.3299 8.7168 < .01
log-difference -5.7196 0.000 0.4578 0.052
April bubble
ClosePrice 0.2388 0.7556 3.6805 < .01
log-difference -2.2352 0.0245 0.2245 > .10
November bubble
ClosePrice -0.3079 0.575 2.9276 < .01
log-difference -2.4238 0.0148 0.5191 0.042

Source: The Authors’ own computations via Gretl using BPI data.

(1992) propose following KPSS test statistic

KPSS =
1

T 2

T∑
t=1

S2
t

σ̂2
∞

(4.1)

where St =
∑T

j=1 ω̂t with ω̂t = yt − ȳ and σ̂2
∞ is an estimator of the long-run

variance of the stationary process zt (yt = xt + zt, where xt is a random walk).

Based on the properties of this test statistic we can see that with the larger

data sample (with the same distribution of ωt) we get lower test statistic and

higher p-value which corresponds to the higher significance of the test result of

not rejecting the H0.
4

Figure 4.4: Bitsoins’ daily returns — ld ClosePrice
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Source: The Authors’ own computations via Wolfram Mathematica using BPI data.

4For empirically testing this property we simulate the data with 10000, 20000 and 30000
observations using Wolfram Mathematica software and perform the KPSS test using Gretl
and obtain the consistent results with the theory.
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Therefore, we can see that the KPSS test results largely depend on number of

observation. For that reason we decided to take into consideration the results

of ADF test in case of the November bubble (as we have only 300 observations).

Based on the tests results we conclude that the log-difference transforma-

tion of the series is stationary. Therefore, we use continuous daily returns

(ld ClosePrice) for our econometric analysis, defined as

rt = ln(pt)− ln(pt−1) = ln

(
pt
pt−1

)
(4.2)

and shown in Figure 4.4. For descriptive statistics see Table A.1 in Ap-

pendix A.
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Chapter 5

Methodology

The econometric models used for analyses of the Bitcoin price volatility are

described in the following section in order to give a theoretical background.

5.1 ARIMA Process

Luthkepohl & Kratzig (2007) define general auto-regressive moving average

model of orders p,q (ARMA(p,q)) process as combination of AR(p) and MA(q)

models as follows

yt = a1yt−1 + · · ·+ apyt−p + ut +m1ut−1 + · · ·+mqut−q (5.1)

where ut is white noise process with zero mean E(ut) = 0 and time invariant

variance E(u2t ) = σ2
u. For an efficient estimation, ARMA methodology needs to

be applied to stationary series. The ARMA(p,q) model is found to be stationary

when both the AR and MA parts of the process are stationary. As MA process

always satisfies this condition, that is achieved when absolute value of sum of

alpha coefficients is lower than one — |
∑p

i=1 ai|< 1.

Since we analyze daily returns series (yt = rt), which is already differentiated

series of order one and it is stationary, we do not need further differentiation.

Therefore, the ARMA(p,q) process of daily returns represents the ARIMAp,1,q)

process where the 1 stands for differentiated data of order one.
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5.2 Univariate GARCH models

Univariate autoregressive conditional heteroskedasticity (ARCH) models are

widely used in financial empirical studies for modeling volatility clustering.

The basic ARCH model was first introduced by Engle (1982) and later Bollerslev

(1986) came up with more complex model - the generalized ARCH (GARCH).

5.2.1 ARCH process
According to Luthkepohl & Kratzig (2007) and Engle (1982) the ARCH(q)

process can be defined as

ut = σtεt; εt ∼ i.i.d N(0,1)

ht = α0 + α1u
2
t−1 + · · ·+ αpu

2
t−q

ht = α0 +

q∑
i=1

αiu
2
t−i (5.2)

where ut is residual from ARMA model defined in Equation 5.1, following an

autoregressive conditionally heteroskedastic process of order q (ARCH(q)) given

past information represented by Ωt−1 = {ut−1, ut−2, . . .}, so that ut|Ωt−1 ∼
(0, ht) and conditional variance is E(u2) = ht. To have a stationary process the

following condition
∑q

i=1 αi < 1 needs to be satisfied. According to Luthkepohl

& Kratzig (2007) it was observed that the ARCH model usually needs a large

number of squared lagged residuals to have a correct specification of the model

which can be considered as the main weakness of this model.

5.2.2 GARCH process
To overcome this weakness, Bollerslev (1986) introduced GARCH model allow-

ing for a more flexible lag structure. Unlike the ARCH process, in which the

conditional variance is only a linear function of past sample variances ut, the

lagged conditional variances of GARCH are allowed to enter the model. In his

paper, he also argues that even simple GARCH model provides marginally bet-

ter fit and more plausible learning mechanism than the ARCH model with large

number of lags. The GARCH(p,q) process is then given by

ut = σtεt; εt ∼ i.i.d N(0,1)

ht = α0 + α1u
2
t−1 + · · ·+ αqu

2
t−q + β1ht−1 + · · ·+ βpht−p

ht = α0 +

q∑
i=1

αiu
2
t−i +

p∑
j=1

βjht−j. (5.3)
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The starionarity of the process is achieved when (
∑q

i=1 αi +
∑p

j=1 βj) < 1. It

is important to note that for p = 0 the process is the same as ARCH(q).

5.3 Modifications of GARCH models

Both basic models assume that positive as well as negative innovations have

the same impact on the conditional variance ht. However, empirical literature

examining the returns of assets shows that negative news affect the future

volatility more than positive news. The existence of such a leverage effect

supports the need to improve these models (Luthkepohl & Kratzig 2007).

5.3.1 TGARCH Process
For capturing the leverage effect Zakoian (1994) introduced threshold GARCH

(TGARCH) model. The basic and mostly used TGARCH(1,1) process is defined

as

ut = σtεt; εt ∼ i.i.d N(0,1)

ht = α0 + α1u
2
t−1 + β1ht−1 + +γ1It−1u

2
t−1 (5.4)

where It−1 is an indicator function equal to 1 if ut−1 < 0 and equal to 0

otherwise. If γ1 = 0 then there is no leverage effect in the estimated model and

TGARCH process becomes GARCH process.

5.3.2 EGARCH Process
Last modification of the basic model is exponential GARCH (EGARCH) first

described by Nelson (1991). SAS Online Documentation (2015) defines basic

EGARCH(1,1) model as

ut = σtεt; εt ∼ i.i.d N(0,1)

log(ht) = α0 + β1log(ht−1) + θ
ut−1√
ht−1

+ γ

[
|ut−1|√
ht−1

− E

(
|ut−1|√
ht−1

)]
εt =

ut√
ht

(5.5)

and if εt ∼ N(0, 1) then E(|εt−1|) =
√

2
π
. It is possible to account for the

leverage effect if coefficient θ < 0. Since we model log(ht) the main advantage
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of the model is that independent on the sign direction of the parameters the

conditional variance ht remains positive.

5.4 Information criteria

According to Franses & Dijk (2000) we choose the best model selection based

on information criteria which measure the balance between goodness of fit

— representing quality of the estimation by log-likelihood — and parsimony

— number of parameters used for estimation. We use two criteria, Akaike

information criterion (AIC) and Schwarz Bayesian information criterion (BIC)

formulated as
AIC = −2L + 2k

BIC = −2L + 2k log(n) (5.6)

and L representing the maximum log likelihood function defined as

L = −n

2
(1 + log(2π))− n

2
log

(
SSR

n

)
, (5.7)

where n is the number of observations in the sample, k denotes the number of

estimated parameters and SSR denotes sum of squared residuals.

In order to get the best selection of a model the chosen criterion needs to be

minimized. We are using BIC as it penalizes additional parameters of the model

as the sample size grows more heavily then AIC. This ensures selection of cor-

rectly specified parsimonious model over larger model with more parameters.
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Chapter 6

Results

6.1 ARIMA analysis

Choosing the models with the lowest values of the BIC, we end up with ARIMA(1,1,0)

for the April bubble with statistically significant AR coefficient α1 = 0.216

which suggests very small possibility to predict Bitcoin returns. For the Whole

sample and the November bubble samples we choose ARIMA(0,1,0) model.

Therefore, we can conclude that we are not able to predict future develop-

ment of Bitcoin returns using ARIMA process for these two periods. Further

results of the ARIMA analysis are summarized in Table A.2 in Appendix A.

In order to find out if the ARMA processes suffer from conditional heteroskedas-

ticity in error terms we implement an ARCH-LM test, described in detail in

Luthkepohl & Kratzig (2007). Executing the test for the Whole sample as

well for the bubbles the p-values are all zero. Thus, the null hypothesis can

be rejected which indicates the presence of conditional heteroskedasticity. To

overcome this issue an ARCH and GARCH framework is implemented.

6.2 GARCH analysis

Based on BIC, described in Equation 5.6, we estimate the GARCH(1,1) model

with robust standard errors, defined by Equation 5.3 with p=1 and q=1, for

all three periods of interest.

Looking at the results reported in Table 6.1 it can be seen that the conditional

volatility significantly depends on lagged squared error term u2t−1 (ARCH term)
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Table 6.1: GARCH (1,1) model — results

Coefficient z-statistic
Whole sample
α0 0.000156∗ 1.788
α1 0.274∗∗∗ 3.224
β1 0.703∗∗∗ 8.945
α1 + β1 0.977

Q-statistic p-value
L-B (5) 7.2214 0.205
L-B (10) 21.1074 0.020

April bubble
α0 0.000034 1.346
α1 0.216∗∗∗ 4.926
β1 0.784∗∗∗ 23.700
α1 + β1 1.000

Q-statistic p-value
L-B (5) 9.3991 0.094
L-B (10) 31.2635 0.001

November bubble
α0 0.000498 1.137
α1 0.267 1.401
β1 0.643∗∗∗ 3.190
α1 + β1 0.909

Q-statistic p-value
L-B (5) 12.6832 0.027
L-B (10) 18.8807 0.042
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Source: The Authors’ own computations via Gretl using BPI data.

and on lagged conditional variance of the error term ht−1 (GARCH term) in all

periods except November bubble where only GARCH term is statistically signif-

icant. This could be caused by the characterization of this bubble where large

number of new traders traders enter the Bitcoin market. Most of these people

do not have any experience with trading and they formed expectations about

the profit solely based on the last bubble (April bubble) price development

rather than on the actual market condition. This idea is described further in

the Section 6.5.

Furthermore, in Whole sample and November bubble periods the sum of co-

efficients of ARCH and GARCH term α1 + β1 is relatively high which indicates

persistent volatility shocks. In April bubble sample the sum of coefficients is

equal to 1 so it can be said that in this period the GARCH process is not station-
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ary and the conditional variance does not converge to a constant unconditional

variance in the long run i.e. the estimated (forecasted) variance grows linearly

over the forecast horizon (Durnel 2012).

We also report Ljung-Box Q-statistics and p-value of the 5th and 10th lag for

standardized squared residuals of fitted GARCH model. It can be seen that for

the Whole sample we reject the null hypothesis of no serial correlation in resid-

uals but only for 5 lags. For 10 lags we cannot reject the null hypothesis i.e. we

cannot say that the residuals are serially uncorrelated for 10 lags. With respect

to April bubble we can again reject the null hypothesis for 5 lags but only at 5%

significance level, for 10 lags the situation is similar to Whole sample period.

In the case of November bubble we cannot reject the null hypothesis neither for

5 lags nor 10 lags. These results of Ljung-Box test raise the question whether

the models we are using are adequately capturing all of the persistence in the

variance of returns (Engle & Patton 2000).

6.3 TGARCH and EGARCH analysis

We also estimate the TGARCH(1,1) and EGARCH(1,1) models described by

Equation 5.4 and Equation 5.5, respectively. Results are summarized in Ta-

ble 6.2.

Table 6.2: TGARCH(1,1) and EGARCH(1,1) models — results

Coefficient z-statistic Coefficient z-statistic
Whole sample TGARCH EGARCH
α0 0.000237∗∗ 2.145 α0 -1.123∗∗ -2.316
α1 0.286∗∗∗ 4.344 γ 0.495∗∗∗ 3.913
β1 0.714∗∗∗ 9.697 β1 0.874∗∗∗ 12.950
γ1 -0.002 -0.023 θ 0.010 0.231
April bubble
α0 0.000067∗ 1.947 α0 -0.588∗∗∗ -4.909
α1 0.256∗∗∗ 5.132 γ 0.466∗∗∗ 5.803
β1 0.791∗∗∗ 22.760 β1 0.962∗∗∗ 63.840
γ1 -0.036 -0.265 θ -0.005 -0.096
November bubble
α0 0.000641 1.245 α0 -1.977∗ -1.921
α1 0.317∗∗ 2.058 γ 0.621∗∗ 2.432
β1 0.633∗∗∗ 3.360 β1 0.725∗∗∗ 4.393
γ1 -0.044 -0.250 θ 0.078 0.605
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Source: The Authors’ own computations via Gretl using BPI data.
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We can observe that the asymmetric ARCH terms γ for TGARCH and θ for

EGARCH are both statistically insignificant for all periods. Therefore, we do not

find any significant leverage effect in conditional variance. These conclusions

are inconsistent with Safka (2014) which is probably caused by the fact that he

performed an analysis of a different time period (2010 - 2014) and especially

that he included the period before 2012 in which we claim that the Bitcoin

market is not efficient (see Section 4.1).

6.4 Comparison with stock market indexes and

FOREX rates

In this section we compare the results of estimated GARCH(1,1) model for

Bitcoin Whole sample period and five global stock market indexes — NASDAQ,

S&P 500, FTSE100, NIKKEI and HANG SENG — reported in Jiang (2012) along

with one single stock — APPL1 — and FOREX rates of USD with eight other

currencies — EUR, CHF, JPY, CNY, RUB, CAD, MXN, BRL.

From the results of stock market indexes, summarized in Table 6.3, it can be

observed that the ARCH coefficient α1 of Bitcoin has much higher value than

coefficients of market indexes and the value of Bitcoin GARCH coefficient β1 is

much lower than coefficients of market indexes. According to Alexander (2008)

higher α1 which is often associated with lower β1 produces GARCH volatility

with high volatility of volatility (vol-of-vol). In other words GARCH volatility is

more “spiky”. Based on that we can conclude that the stock markets are much

more stable than Bitcoin market as in Bitcoin market the GARCH volatility has

larger volatility.

Table 6.3: GARCH (1,1) model — Bitcoin comparison with stock mar-
ket indexes

Bitcoin NASDAQ S&P 500 FTSE100 NIKKEI HANG SENG AAPL
α1 0.274 0.0924 0.0994 0.1292 0.1339 0.1062 0.0865
β1 0.703 0.8964 0.8863 0.8603 0.8496 0.8867 0.8813

Source: Based on results presented in Jiang (2012) except for APPL.

1For APPL analysis the data has been taken from
http://finance.yahoo.com/q/hp?s=AAPL and estimated in the period 30. 4. 2008 -
25. 6. 2015

http://finance.yahoo.com/q/hp?s=AAPL
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Comparing Bitcoin with FOREX rates2 GARCH(1,1) results from Table 6.4, we

observe that even now the Bitcoin GARCH coefficient is lower and ARCH coeffi-

cient higher. Therefore the conclusion is the same as in comparison with stock

market indexes — FOREX rates are more stable than Bitcoin returns and have

lower vol-of-vol. We get similar GARCH coefficient only when comparing with

exchange rate of USD and Chinese Yuan but the ARCH coefficient still differs

significantly.

Table 6.4: GARCH (1,1) model — Bitcoin comparison with FOREX

rates

Bitcoin USD/EUR USD/CHF USD/JPY USD/CNY
α1 0.274 0.029 0.057 0.057 0.176
β1 0.703 0.970 0.929 0.928 0.740

USD/RUB USD/CAD USD/MXN USD/BRL
α1 0.088 0.047 0.118 0.114
β1 0.909 0.950 0.873 0.885

Source: The Authors’ own computations via Gretl using data from
http://www.oanda.com/currency/historical-rates/.

6.5 Comparison of April and November bubble

In the end, we compare the two bubbles which occurred in 2013.

Firstly, we compare the two bubbles by the same logic as in previous section

where we compare Bitcoin with market stock indices. Based on the magnitude

of ARCH and GARCH coefficients from Table 6.1, we observe that the Novem-

ber bubble period GARCH volatility has higher vol-of-vol than April bubble as

November bubble has higher α1 and lower β1 coefficients.

Johansen & Sornette (2001) summarize the development of financial bubbles

and crashes in five stages.

1. Smooth start of the bubble with some increasing demand for asset.

2. Price appreciation due to increased interest of international investors who

see good potential gains from the asset.

3. This attracts less sophisticated investors, the so called “noise traders”

which leads to demand for faster stock rising.

2Data about FOREX rates are taken from http://www.oanda.com/currency/historical-
rates/. We choose the period 30. 4. 2008 - 25. 6. 2015, which give us 2613 observations,
and apply the same methodology as in GARCH analysis.

http://www.oanda.com/currency/historical-rates/
http://www.oanda.com/currency/historical-rates/
http://www.oanda.com/currency/historical-rates/
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4. At this stage, market behavior is driven mostly by the irrational trading

of noise investors.

5. As the price skyrockets, the number of new investors entering the spec-

ulative market decrease and the market becomes very nervous until the

instability is revealed and the market collapses.

Based on this characterization, we claim that during the later bubble the num-

ber of irrational investors entering the market was much higher3 as the public

awareness about Bitcoin significantly increase (as seen in Google Trends Fig-

ure 4.1) and as investors expectation about the profit was mainly based on pre-

vious bubble development more than on actual market condition. This cause

larger appreciation of Bitcoin price during the bubble and consequently much

larger instability in the market which could be the main reason for relatively

small GARCH and insignificant ARCH coefficient in November bubble analysis.

Secondly, the GARCH process of April bubble appears not to be stationary which

corresponds with more persistent volatility shocks than in the November bub-

ble GARCH process, as mentioned before in GARCH analysis (see Section 6.2).

Thirdly, the most appropriate model based on BIC is AR(1)-GARCH(1,1) for

April bubble, while for the November bubble it is GARCH(1,1) model.

3Several charts about the trade volume, number of transactions per day, number of unique
Bitcoin Addresses used, My Wallet number of users etc. available on blockchain.info/charts
shows that during the November bubble all of these indicators experienced significant increase
suggesting more people trading in the Bitcoin market. The trade volume had increase to
extreme levels and represented overall maximum, number of transaction and number of
unique Bitcoin addresses used substantially rose and My Wallet had experience exponential
growth in number of users.

https://blockchain.info/charts
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Chapter 7

Rolling Estimation

In this chapter we would like to further examine the changes of ARCH and

GARCH coefficients over time using rolling estimation. With almost 1200 daily

observation in our dataset we estimate GARCH(1,1) process on 250 days rolling

samples with step of ten days.1

The 250 days window is reasonably large as such a sample is still able to pro-

vide solid statistical results ans it is sufficiently small to capture the structural

breaks in the data, but also large enough to provide required statistical prop-

erties (eq. stationarity). Moreover, the step of ten days is chosen as it is able

to capture the frequently changing scale of returns during the bubbles.2

7.1 Stationarity

Before interpreting the actual results we examine the stationarity of individual

rolling estimation samples. We again use the combination of ADF and KPSS

tests, as described above (Subsection 4.1.1), to test the stationarity. We want

to obtain p-value of KPSS test higher then 0.05 (for not rejecting H0 at 5%

significance level) and p-value of ADF test lower than 0.05 (for rejecting H0

at 5% significance level) to confirm the stationarity assumption of the series.

Figure 7.1 shows the p-values of both tests. While the ADF test results are

very unstable, the KPSS p-values seem to have much smoother development

1All figures in this chapter are constructed in a way that the last observation of the sample
period represents the whole period.

2Various combinations of rolling sample lengths and steps had been used in the analysis.
The results of these analyses are available upon request.
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over time. Therefore, we decided to follow KPSS tests’ results when identifying

the stationarity of the series.

Figure 7.1: KPSS and ADF tests results, p-values
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The red line represents the 5% significance level. When performing KPSS test via
Gretl, we obtain specific number of p-value only when the value is lower than 0.1.
Otherwise we only get the information that the p-value is higher than 0.1. For that
reason, the p-value higher than 0.1 is depicted as equal to 0.1.
Source: The Authors’ own computations via Gretl using BPI rolling estimation
data.

When the period of formation of April bubble gets into the tested sample

period it is observed that the series become non-stationary for a few periods

(this conclusion is also supported by ADF tests’ results). Whereas for the

rest of the bubble period the assumption of stationarity of the series is valid.

Unfortunately, this can’t be claimed about the November bubble — the figure

shows that when the peak of the bubble enters the sample periods the series

become non-stationary. This state occurs once more in the end when the post-

bubble period starts to influence the tests’ result. The series are stationary for

most of the time in samples where none of the two bubble peaks are present in

the tested period.
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7.2 GARCH rolling analysis

Moving to interpretation of the actual rolling results, Figure 7.2 shows the

rolling coefficient estimates along with their significances.3 First, we can no-

tice that in the end of November bubble period both ARCH (α1) and GARCH

(β1) estimated coefficients are statistically very insignificant. This is probably

caused by the violation of the stationarity assumption. For that reason these

estimates have been excluded from further interpretation of results.

Figure 7.2: GARCH rolling estimation — α1 and β1
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Continuos line represent magnitude of the coefficients and dashed line their
p-values. α1 is in red and β1 in blue.
Source: The Authors’ own computations via Gretl using BPI rolling estimation
data.

The ARCH coefficients are almost all statistically significant for the first half of

the dataset, including the April bubble. But the coefficients become statisti-

cally insignificant for the rest of the estimated samples including the November

bubble with the exception of the last few sample periods. On the other hand,

the GARCH coefficients are all statistically significant except the last period and

the period already excluded because of the non-stationarity.

It is obvious that the larger β1 is often associated with the lower α1 from look-

ing at the magnitude of these two coefficients. Therefore, we observe that in

April bubble the GARCH coefficients are larger and that the ARCH coefficients

are lower in contrast with the November bubble when comparing their values

3The blank space in figures represents four sample periods which were not estimated
as Gretl was unable to estimate these periods because of the problem with meeting the
convergence criterion.
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during the bubbles. This means that the predicted variance for current period

has much larger influence over the new information entering the market in this

period during the first bubble. While in the second bubble the influence of

predicted variance is lower and the new information gain more importance,

but become statistically insignificant so its importance is questionable. The

simple average of estimated coefficients for the April bubble is α1=0.277 and

β1=0.720 while for the November bubble (the coefficients from the second part

of the period excluded) α1 = 0.402 and β1 = 0.584.

We are not able to study the gap between the two bubbles in more detail be-

cause the period is not very large, but we are able to take further look at the

pre-bubbles and post-bubbles periods. In pre-bubbles period the ARCH and

GARCH coefficients get closer to each other and start to diverge again when the

process of formation of the April bubble begins. As oppose to the post-bubbles

period the GARCH coefficients become even higher and stay on relatively high

level of values for the rest of the analyzed period, except the last sample period.

This increase in β1 suggests larger stability in volatility of Bitcoin returns as

the predicted variance gain more influence and the values of this coefficient

get closer to the estimated coefficients for stock market indexes (see Table 6.3)

which can be considered as series with a low vol-of-vol of returns. These conclu-

sions are consistent with the results of GARCH analysis presented in Section 6.5.

Figure 7.3: GARCH rolling estimation — BIC
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Source: The Authors’ own computations via Gretl using BPI rolling estimation
data.

Lastly, we check the BIC information criteria for the rolling estimation samples.

The results in Figure 7.3 show that during the bubbles, the GARCH process
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quality of estimation decreases due to higher volatility in data during these pe-

riods. Which again supports our conclusion from GARCH analysis (Section 6.2)

that during the bubbles the GARCH model is not that efficient in capturing the

development of volatility of Bitcoin returns.
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Chapter 8

Log-Periodic Power Law model

Johansen & Sornette (2001) argues that GARCH(1,1) model does a reasonable

job of reproducing fluctuations in “normal trading”, but it is unable to capture

the fluctuations connected with large crashes. Therefore, another type of model

is necessary to estimate these fluctuations. Since the results of GARCH analysis,

especially during the bubbles, supported Johansen & Sornette (2001) argument

we implement the original Log-Periodic Power Law (LPPL) model for financial

bubble modeling proposed by Johansen & Sornette (2001) and Johansen et al.

(2000).

8.1 Methodology

Key assumption of the LPPL model is presence of two types of agents in the

market. First, group of traders with rational expectations and second, irra-

tional traders with herding behavior — the so called “noise” traders (Johansen

& Sornette 2001).

According to Johansen & Sornette (2001) a crash is not certain, but it is char-

acterized by its hazard rate h(t) — the probability per unit of time that the

crash will take place, given that it has not yet occurred. In practice it means

that large group of agents places sell orders simultaneously and doing that cre-

ates the imbalance in the order book which market is unable to absorb without

substantial decrease in prices. The key question here is to determine by what

mechanism the traders decided for sudden coordinated sell off.

Johansen & Sornette (2001) and Johansen et al. (1999) also proposed the an-

swer. They assume that agents are organized into a network (of friends, col-
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leagues etc.) and that through this network they influence each other with the

information exchange. According to their theory, market traders form their

opinion based on two factors — opinion of other participants in the network

(external factor) and idiosyncratic signals generated alone by the trader (in-

ternal factor). In “normal” times, buyers and sellers disagree with one another

and submit approximately as many buy orders as sell orders — they balance

each other out (internal factor overweights the external one) but when crash

happens everybody agrees on the same opinion — selling (external factor over-

weights the internal one).

8.1.1 Price and hazard rate

Following Johansen & Sornette (2001) and Johansen et al. (1999), the simplest

way to describe imitation model between traders is to assume that hazard rate

evolves according to the following equation

dh(t)

dt
= Chδ, with δ > 1, (8.1)

where C is a positive constant and δ is the number of interactions between

traders. Meaning that hδ determines whether the hazard rate increases or

decreases based on presence of interactions between traders. The condition

δ > 1 ensures that the critical point (crash) occurs in finite time.

Integrating Equation 8.1 we get power law dependence of the hazard rate

h(t) = B(tc − t)−α, with α =
1

δ − 1
, (8.2)

where B is a positive constant and tc is the critical point or the most probable

time of the crash. The exponent α must lie between 0 and 1 otherwise the

hazard rate would go to zero and price to infinity when approaching to tc.

The evolution of the price before the critical date, using hazard rate, is given

by
p(t) ≈ pc −

κB

β
(tc − t)β (8.3)

where z = 1 − α ∈ (0, 1), pc is the price at the critical time (conditioned the

crash has not occurred yet) and κ ∈ (0, 1) presents fixed percentage price drop

during a crash.
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8.1.2 Log-periodicity

Adding the log-periodicity, Johansen & Sornette (2001) and Johansen et al.

(2000) generalize the hazard rate Equation 8.2 as follows

h(t) = B(tc − t)−α + C(tc − t)−αcos [ωlog(tc − t) + ψ] (8.4)

where ω
2π

determines “log-frequency” of the oscillation term and ψ is a phase

constant shifting the oscillation. The crash hazard rate still explodes near the

critical date and in addition, it now displays the log-periodic oscillations. The

evolution of the price before the critical date is then given by

p(t) ≈ pc −
κ

β

{
B(tc − t)β + C(tc − t)β cos [ω log(tc − t) + φ]

}
(8.5)

where φ is another phase constant.

The key feature is that oscillations appear in the price just before the criti-

cal time. The ratio of successive time between local maxima of the function

intervals tends to zero and is constant

λ = e
2π
ω . (8.6)

This scaling ratio is very useful for empirical examination and can be used for

prediction of critical time tc as it contains information about the frequency

acceleration. Therefore, we use it as a key criterion in the analysis of critical

time in the two bubble periods.

8.1.3 LPPL model

Based on Johansen & Sornette (2001) and Geraskin & Fantazzini (2013), the

final LPPL model is obtained by rewriting the Equation 8.5 to a more suitable

form for fitting financial time series. So the price evolution before the critical

time is then defined as follows

p(t) ≈ A+B(tc − t)β + C(tc − t)β cos [ω log(tc − t) + φ] . (8.7)

To summarize the estimated parameters, A > 0 is the price at the critical

time p(tc), B < 0 embodies the scale of power law — the increase in pt as the

price approach closer to critical time, C 6= 0 is the magnitude of the oscillation

around the price growth, β determines the power law acceleration of price and

should satisfy the condition β ∈ (0, 1) to ensure a finite price at the critical

time, ω express the frequency of the oscillation term and φ is a fixed phase

constant satisfying φ ∈ (0, 2π). Geraskin & Fantazzini (2013) also remarks
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that A, B, C and φ do not carry any structural information and are just units

of distribution of β and ω parameters.

8.1.4 Fitting the LPPL parameters

The numerical procedure of fitting Equation 8.7 is minimization of the variance

V ar =
1

n

tn∑
t=t1

(yt − f(t))2

=
1

n

tn∑
t=t1

{
yt − A−B(tc − t)β − C(tc − t)βcos [ωlog(tc − t) + φ]

}
(8.8)

between n data points yt and the fit function f(t) i.e. sum of the squared

differences between the actual and fitted prices. Further details of the procedure

are given in Johansen et al. (2000) and Bree & Joseph (2013).

Seven parameters of the LPPL model need to be estimated and the chosen values

of these parameters should be the ones that give the lowest root mean squared

error (RMSE) between the actual and fitted price. RMSE is defined as

RMSE =
√
V ar =

√√√√ 1

n

tn∑
t=t1

(yt − f(t))2. (8.9)

Starting date

Other issue is to choose the right time interval prior to the crush to fit. Accord-

ing to Johansen & Sornette (2001) and Johansen et al. (1999), the last point

should be the one with highest value of the price before the crash and the first

point with the lowest value of the price when the bubble started. Given this

indefinite description of starting date, we decided to fit the model for several

local minima of Bitcoin price and choose the one with the lowest RMSE.

Raw price versus log price

Lastly, it needs to be decided whether to use raw price or logarithmic trans-

formation of price. Johansen & Sornette (2001) introduce the assumption that

one should use the raw price rather than the log price data if the following

condition is satisfied. The increase in price from the beginning of the bubble

is much lower than difference between the price at the beginning of the bubble

and the fundamental value i.e.
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p(t)− p(t0)� p(t0)− p1, (8.10)

where t0 is the time of the beginning of the bubble and p1 is the fundamental

value. Bree & Joseph (2013) argues that even thought we usually do not

know the fundamental price of the asset, the condition of Equation 8.10 is

fulfilled only when p(t) < 2p(t0) i.e. the price rise during the bubble is lower

than the price at the beginning of the bubble unless the fundamental value is

negative. Therefore, we should use log price data rather than the raw data

only if p(t) > 2p(t0).

8.2 Application to Bitcoin

In this section we apply the LPPL model to the two 2013 bubbles. In order

to get enough observations and since the actual price growth during bubbles

was rather quick (in terms of days) we are forced to use more frequent data

then in original LPPL papers. However, the different time unit does not affect

the coefficient estimation. Therefore, we use six hour closing price data from

MtGox exchange for the analysis.

8.2.1 Choosing the starting and critical time

The time variable t in a model is constructed in a way that one unit of t

corresponds to one year. For our purposes it is sufficient to match the initial

position t = 0 to date 1.1.2013 (t=1 represents 1.1.2014 and we assume 365

days in a year).

April bubble

In case of April bubble the critical time tc is nicely visible as there is only one

peak in 6 AM 10.4.2013 which correspond to tc = 0.27192 (see Figure 3.2).

As a starting date we choose two different dates. First, 12 PM 23.3.2013

which matches to t0 = 0.22329 leaving us 72 observations. This date was

picked because it has the lowest RMSE among all other fitted dates. But since

this day is practically in the middle of the bubble and it represents relatively

small sample we decided to pick a second date which would better describe the

definition of the starting date from Johansen & Sornette (2001). The second
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starting date is 12 PM 23.2.2013 corresponding to t0 = 0.14658 and this sample

contains 184 observations. Even though, it does not have the lowest RMSE from

all fitted periods, it has the lowest RMSE among other local minima from period

before the bubble.1

November bubble

The situation is rather different when analyzing the critical time for the Novem-

ber bubble as this period have two peaks with very close price values (see

Figure 3.3). We decided to use the one occurred in 12 AM 30.11.2013 (tc =

0.91233) as only this critical time give us consistent results with Johansen &

Sornette (2001) assumptions about β coefficient. The most convenient starting

date, among all others, appears to be 6 PM 2.10.2013 (t0 = 0.75274), so the

estimated period consists of 234 observations.2

8.2.2 Fitting to the log prices

For fitting the raw prices, the condition from Equation 8.10 needs to be satisfied.

In Section 8.1.4 we show that this condition is fulfilled only when p(t) < 2p(t0).

But from Table 8.1 it can be observed that the p(tc)/p(t0) ratio is much larger

than two therefore the condition from Equation 8.10 is violated for all bubble

periods and we should use log prices. However, as Bree & Joseph (2013) argues,

the Johansen & Sornette (2001) and Johansen et al. (1999) fit the LPPL with the

raw indexes rather then their logs, even though they should not. We decided

to estimate both raw and log Bitcoin prices in order to be able to compare the

results.

Table 8.1: Ratio of Bitcoin prices on the critical time tc to the prices
on the starting date t0

t0 tc p(t0) p(tc) Ratio p(tc)/p(t0)
0.14658 0.27192 28.89 255.01 8.83
0.22329 0.27192 63.50 255.01 4.02
0.75274 0.91233 123.00 1228.66 9.99

Source: The Authors’ own computations using MtGox six hour data.

1Various combinations of samples with different starting date had been used in the anal-
ysis. The results of these analyses are available upon request.

2Various combinations of samples with two different critical times — one presented in the
paper and other occurring on 4.12.2013 — and several starting dates had been used in the
analysis. The results of these analyses are available upon request.
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8.3 Best model fits

We fit the LPPL model, defined in Equation 8.7, for the two sample periods in

April bubble and one in the later one, each time for both raw and log prices.

Table 8.2: Fit LPPL parameters of Bitcoin bubbles

Bubbble L/R t0 tc β ω λ A B C φ RMSE

A(23.2.-10.4.) L 0.147 0.272 0.52 7.04 2.44 5.64 -6.80 -0.26 6.94 0.04004

A(23.2.-10.4.) R 0.147 0.272 0.07 6.67 2.57 786.1 -885.7 -6.67 5.65 4.915

A(23.3.-10.4.) L 0.223 0.272 0.63 7.34 2.35 5.54 -9.12 -0.65 8.30 0.05542

A(23.3.-10.4.) R 0.223 0.272 0.25 6.65 2.57 336.2 -592.3 18.36 2.59 5.234

N(2.10.-30.11) L 0.753 0.912 0.66 3.08 7.69 7.25 -9.19 0.96 -0.86 0.07208

N(2.10.-30.11) R 0.753 0.912 0.23 3.05 7.87 1899.0 -2909.3 157.3 -0.73 38.396

L/R in the name of the bubble refer to whether we use raw or log prices in the
estimation. For description of parameters see Equation 8.7. It is worth mentioning
that all parameters presented in the table are statistically significant.
Source: The Authors’ own computations via Gretl using MtGox six hour data.

From results of the fitted LPPL parameters, summarized in Table 8.2, we are

mainly interested in parameters capturing the power law growth rate β, fre-

quency of oscillation term ω and the scaling ratio λ, defined in Equation 8.6, as

they carry the structural information. We also report graphical representation

of all three periods where the actual and LPPL fitted prices are depicted. For

the April bubble starting from 23. 2. and 23. 3. see Figure 8.1 and Figure 8.2

respectively. For November bubble see Figure 8.3.

First, it can be noticed that the results of the frequency of the fluctuations ω

have approximately the same values regardless of using the raw or log prices.

This does not apply for the growth parameter β where the coefficients differ

significantly.

Johansen (2003) summarizes results of over 30 crashes on the major financial

markets and he found that the distributions of fitted log frequencies and fitted

growth exponents are ω ≈ 6.36 ± 1.56 and β ≈ 0.33 ± 0.18. It is necessary to

mention that these conclusions are based on fitting LPPL to raw indexes there-

fore when comparing the β coefficients (as log prices seem to have no significant

effect on ω parameter) we need to look only at the fitted values of raw prices.

On the other hand, Johansen & Sornette (2001) found that when examining

emerging markets, which can be considered as less stable, the values of β and ω

experience larger fluctuations (β coefficients seems to be slightly lower and on

the contrary, ω higher). Moreover, Johansen & Sornette (2001) analyze stock



8. Log-Periodic Power Law model 39

Figure 8.1: LPPL fit — April bubble (23. 2. - 10. 4.), raw and log
Bitcoin prices
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Figure on the left side represents raw price fit and figure on the right side log price
fit. LPPL fitted values are captured by red line while the actual values by blue line.
For parameter values of the fits see Table 8.2.
Source: The Authors’ own computations via Mathematica using MtGox six hour
data.

Figure 8.2: LPPL fit — April bubble (23. 3. - 10. 4.), raw and log
Bitcoin prices
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Figure on the left side represents raw price fit and figure on the right side log price
fit. LPPL fitted values are captured by red line while the actual values by blue line.
For parameter values of the fits see Table 8.2.
Source: The Authors’ own computations via Mathematica using MtGox six hour
data.
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Figure 8.3: LPPL fit — November bubble (2. 10. - 30. 11.), raw and
log Bitcoin prices
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Figure on the left side represents raw price fit and figure on the right side log price
fit. LPPL fitted values are captured by red line while the actual values by blue line.
For parameter values of the fits see Table 8.2.
Source: The Authors’ own computations via Mathematica using MtGox six hour
data.

markets from Europe, Asia and Pacific and observe that the λ is very consistent

λ ≈ 2.0 ± 0.3. Johansen et al. (1999) study the behavior of market indexes

Wall Street and Hong-Kong (four crashes) before crashes as well as collapses of

the USD against the DEM, CHF, CAD and JPY currencies. They notice the small

fluctuations of λ ≈ 2.5± 0.3 for all data except the CHF. By further examina-

tion of ω and corresponding λ we notice that its value is also relatively stable

and independent of the starting date. Based on these findings, it appears that

frequency of log-oscillation ω can quite precisely indicate whether the bubble

is about to crash while the growth coefficient β seems to be rather informative

parameter about the speed of the price growth before the bubble crash.

Looking at the magnitude of β coefficients we observe that the November bub-

ble acceleration rate of power law is lower as β is higher for both log and raw

prices.3 Moreover, the β of April bubble is outside the distribution of fitted

growth exponent, found in Johansen (2003), as it is very low suggesting very

fast acceleration of price before the crash. Contrarily, the November bubble

growth coefficient is inside the range and indicating the upcoming crash.

The situation is opposite to β coefficient results when examining the ω and λ.

In November bubble the λ suggests faster log-periodic oscillations but much

faster (larger λ) than the one found in Johansen & Sornette (2001) and Jo-

hansen et al. (1999) while in April Bubble period the scaling ratio coincides

3We exclude the April bubble (23. 3. - 10. 4.) from comparison of two bubbles as it does
not match properly the definition of starting date, as mentioned in Section 8.2.1.
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with these findings and successfully indicate the crash. But we will study the

scaling ratio of these two bubbles in more detail in the following section.

8.4 Loop analysis

In this section we try to capture the development of the LPPL parameters β, ω

and λ before and after the crash to see the coefficients’ changes as we proceed

through the bubble. For that we use “loop analysis” where we fix the starting

date of the bubbles and fit the LPPL model from Equation 8.7 while moving

with the critical time with step of six hours i.e. one observation. We choose

the starting date based on our LPPL analysis in previous section, therefore for

April bubble we choose the date 22. 3. 2013 (t0 = 0.147) and for November

bubble 2. 10. 2013 (t0 = 0.753). Critical time period for the earlier bubble is

from 6 PM 26. 3. 2013 (tc1=0.232) to 6 PM 15. 4. 2013 (tc81=0.287), in the

later bubble we study the period from 6 AM 6. 11. 2013 (tc1=0.847) to 12 AM

10. 12. 2013 (tc136=0.940).

In Figure 8.4 and Figure 8.6 we report development of log prices and β and ω

coefficients of April and November bubble, respectively. Results of the “loop

analysis” for scaling ratio of April and November bubble are depicted in Fig-

ure 8.5 and Figure 8.7, respectively.

Figure 8.4: Loop — l close, β, ω — April (26. 3. - 15. 4.)
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Figure on the left side represents log price data. Figure on the right side shows β
coefficient development (red line) and ω coefficient development (blue line) over
time period. The black vertical lines represent peaks occurred during the bubble
(second peak is the actual crash of the bubble).
Source: The Authors’ own computations via Gretl using MtGox six hour data.
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Figure 8.5: Loop — λ, ∆λ — April (26. 3. - 15. 4.)
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Figure on the left side represents loop for log scaling ratio λ. Figure on the right side
shows development of first differences of λ i.e. ∆λ = λt − λt−1. The black vertical
lines represent peaks occurred during the bubble (second peak is the actual crash of
the bubble).
Source: The Authors’ own computations via Gretl using MtGox six hour data.

Figure 8.6: Loop — l close, β, ω — November (6. 11. - 10. 12.)

0.86 0.88 0.90 0.92 0.94
t

6.0

6.5

7.0

l_close

0.86 0.88 0.90 0.92 0.94
t

2

4

6

Figure on the left side represents log price data. Figure on the right side shows β
coefficient development (red line) and ω coefficient development (blue line) over time
period. The black vertical lines represent several potential peaks occurred during the
bubble (last peak is the actual crash of the bubble).
Source: The Authors’ own computations via Gretl using MtGox six hour data.

Figure 8.7: Loop — λ, ∆λ — November (6. 11. - 10. 12.)
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Figure on the left side represents loop for log scaling ratio λ. Figure on the right side
shows development of first differences of λ i.e. ∆λ = λt − λt−1. The black vertical
lines represent several potential peaks occurred during the bubble (last peak is the
actual crash of the bubble).
Source: The Authors’ own computations via Gretl using MtGox six hour data.



8. Log-Periodic Power Law model 43

8.4.1 Power law acceleration results

From the results of the “loop analysis” for April bubble (see Figure 8.4) we

notice that before the actual crash the β experiences slow decreases, meaning

the growth is getting faster. In tc = 0.255 the parameter significantly decrease

suggesting the crash could occur. However this state where β ≈ 0.6 ± 0.1

lasts until the actual crash so the predicted power of β does not seem to be so

significant. The behavior before the first potential peak (first black line) does

not (correctly) indicate any crash.

Examining the November bubble (see Figure 8.6), the development of β before

the first potential peak (first black line) suggests extremely fast growth of the

power law as the coefficient relatively quickly and significantly declines. The

same situation occurs before the second and third peaks. But the crash becomes

more clear with the third peak (tc = 0.884) as β losses almost half of its value

in just sixty hours. The fourth peak is the one used in LPPL fit in Section 8.3.

Drop in β precedes to this peak as well but in this case the parameter value

was not that small indicating that the growth was not that fast. Even though

the β declines before the actual crash as well, the value of beta does not show

any sign of crash.

In conclusion, we can say that based solely on β the April bubble should end

much earlier than it actually ends. On the other hand, in the November bubble

period it suggests correctly the small drop in prices before the peak but the

actual crash was not foreseen at all. However, this is not so surprising as the

β expresses only the growth of power law and the log price development right

before the crash does not suggest any extreme growth acceleration.

8.4.2 Scaling ratio results

In this section, we further examine relationship between crashes and the scaling

ratio λ but also its first difference ∆λ. The value of λ suggest that before the

bubble, the coefficient is close to range 2.0 ≤ λ ≤ 3.0, as noted in Section 8.3.

In the April bubble loop results (see Figure 8.5) we can see that λ approaches

to this range in tc = 0.234 and stays there until tc = 0.247. But no crash occurs

during or after this period suggesting false alarm of a bubble. The scaling ratio

again enters this range in tc = 0.264 indicating the end of the bubble which

indeed happens 66 hours later. By looking at the ∆λ we notice that before the

crash, the λ is experiencing decreasing trend in its value. Also after this trend
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changes i.e. the ∆λ is increasing, and the ∆λ is getting closer towards zero

the bubble usually ends. Following this logic, in April bubble we can notice

three of these situations. First, in period before tc = 0.237 where indeed small

drop in log price appears. Second, tc ∈ 〈0.249, 0.256〉 period during which the

market potential peak appears, however no crash of a bubble occurs. Therefore

this can be considered again as a false alarm. By the end of the last period

tc ∈ 〈0.264, 0.273〉 and after the change of the trend of ∆λ the actual peak of

the bubble appears thus correctly predicting the crash.

We try to verify the hypothesis about connection between ∆λ and the crashes

of the bubble by studying the November bubble (see Figure 8.7). The λ is

entering the range 2.0 ≤ λ ≤ 3.0 only in two subperiods during the bubble.

The first ends in tc = 0.849 and is not followed by the crash. In the second

subperiod, tc ∈ 〈0.872, 0.875〉 λ indicates the second and third peak, but in

advance of 78 hours. In further development λ always decreases before the

potential peak but never enters this range again. For that reason we decided

to take a closer look at ∆λ.

Figure 8.8: Loop — ∆λ — November (6. 11. - 10. 12.), full scale
range
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The black vertical lines represent several potential peaks occurred during the
bubble (Last peak is the actual crash of the bubble)
Source: The Authors’ own computations via Gretl using MtGox six hour data.

It can be seen that in November bubble the trend of scaling ratio growth is quite

unstable. However, following the Figure 8.7 and Figure 8.8 we detect several

prolonged periods in which ∆λ substantially decreases and then returns close

to zero level. Initially, in the period tc ∈ 〈0.861, 0.864〉 ∆λ quickly changes its
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trend, but no crash occurs. In the following subperiod tc ∈ 〈0.865, 0.875〉 the

crash does not occur either. In the next noticeable period tc ∈ 〈0.877, 0.883〉
the second and third potential peak appear and ∆λ correctly predicts a drop

in log prices. In the next subperiod tc ∈ 〈0.887, 0.892〉 ∆λ experiences an

extreme drop after which log price slightly decreases. Now we are getting to

the tc ∈ 〈0.899, 0.915〉 in which our fitted peak by LPPL is situated. It can be

seen that the ∆λ is increasing and is approaching towards zero when the peak

occurs. The situation is very similar in the last subperiod tc ∈ 〈0.918, 0.926〉
where the bubble ends.

Therefore, we can claim that the actual crash and the potential peaks occurred

during the bubble were predicted with a good precision. However, we should

add that in same cases the ∆λ indicator predicts a false alarm of the crash.
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Chapter 9

Conclusion

Aim of this thesis is to examine the Bitcoin Price Index and volatility of its

returns. In the first part we define the Bitcoin term and summarize Kristoufek

(2014) and Ciaian et al. (2014) conclusions that Bitcoin price formation is

mainly driven by investors’ interest in the currency and by standard supply-

demand factors. In the following chapters we study the volatility using standard

time series econometric tools — ARIMA and GARCH approach — with focus on

three periods — Whole sample, the April 2013 and the November 2013 bubble.

Concerning the ARIMA analysis, the BIC suggested ARIMA(0,1,0) model for the

Whole sample as well as for the November bubble period and ARIMA(1,1,0)

model for April bubble sample. Performing ARCH-LM test, we found that

ARIMA processes provide weak information about the real behavior of the Bit-

coin price returns.

Therefore, we estimated GARCH, TGARCH and EGARCH processes as they are

more suitable for modeling of Bitcoin returns in presence of heteroskedastic

squared residuals. Based on the final estimates of the GARCH-analysis and

rolling GARCH estimation, the best model for all sample periods is GARCH(1,1).

Comparing the GARCH(1,1) models of Bitcoin with global stock market in-

dices and FOREX rates, we observe that the Bitcoins’ GARCH volatility is more

volatile i.e. more “spiky” which suggests lower stability of the Bitcoin mar-

ket. Furthermore, we find several differences in behavior of the April and

the November bubble. The November bubble seems to have higher volatility

of GARCH volatility and therefore it is less stable. Moreover, based on Jo-

hansen & Sornette (2001) summarized theory of financial bubbles and crashes

we claim that during the November bubble the number of irrational investors

entering the market was much higher and that investors formed their expecta-
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tion about the profit based on April bubble experience rather than on current

market condition. This probably caused larger appreciation of Bitcoin price

and consequently much higher market instability during the November bubble.

However, the results of the Ljung-Box test suggest serially correlated squared

residuals of fitted GARCH model for all of the three periods which question the

estimated results.

Therefore, we implement another model designed to capture the price devel-

opment during the financial bubbles and crashes — the LPPL introduced by

Johansen et al. (2000). We study the key variables capturing the power law

growth rate β, frequency of oscillation term ω and corresponding scaling ratio

λ defined in Equation 8.6. We observe that the November bubble has lower

acceleration rate of power law as the β is higher for this period and its value is

in a range suggesting the crash. This can not be said about the April bubble

where the coefficient is outside of the range. Looking at the scaling ratio λ,

the April bubble values are within the range suggesting the crash but in the

case of the November bubble, λ suggests much faster oscillation and does not

indicate a crash.

Since the results of standard LPPL model were not as we expected, we decided

to perform “loop analysis” where we fixed the starting date and we were mov-

ing with the critical time as we went through the bubble. We examined the

development of β, ω and especially λ over time. The LPPL model appears to

be able to predict the April bubble crash better than the November bubble

crash, but the results are still not very convincing. Therefore, we come up

with an idea to study changes of λ as time gets closer to the crash and we

find out that when ∆λ is increasing and is getting closer to zero the crash is

about to happen. The indicator correctly detects the crashes over the bubble

period and in spite of an occasional prediction of a false alarm, it appears to be

quite precise. Therefore, our hypothesis that ∆λ serves as a better indicator

of upcoming crash seems be true. However, to verify our hypothesis, analysis

of more financial bubbles should be carried out.
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Appendix A

Supplementary figures and tables

Table A.1: Summary Statistics for the variable ld ClosePrice (1199
valid observations)

Mean Median Minimum Maximum

0.00361522 0.00250672 −0.372425 0.347767

Std. Dev. C.V. Skewness Ex. kurtosis

0.0535070 14.8005 −0.507002 10.0723

5% perc. 95% perc. IQ Range Missing obs.

−0.0684330 0.0858007 0.0353056 0

Source: The Authors’ own computations via gretl using BPI data.

Table A.2: ARMA model — results

Coefficient z-statistic
Whole sample
ARMA (0,0)
α0 0.004∗∗ 2.340
April bubble
ARMA (1,0)
α0 0.008∗ 1.872
α1 0.216∗∗∗ 3.828
November bubble
ARMA (0,0)
α0 0.006 1.558
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Source: The Authors’ own computations via Gretl using BPI data.
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Figure A.1: ACF and PACF, Whole sample, April bubble, November
bubble

Source: The Authors’ own computations via Gretl using BPI data.
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