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Introduction 

Computer science, from its beginning, deals with variety of problems and tries 

to find their computational solutions. Computer scientists develop algorithms and data 

structures in order to deliver the fastest and the most efficient solving methods that 

could be put into practice. Since computers play a big role in our everyday lives and 

the number of their applications is growing every day, the number of problems 

computer science is facing continues to rise. 

Even though the computers’ performance increases continuously, there are still 

a lot of challenging problems and puzzles. There are whole classes of problems that 

we cannot solve with any efficient algorithm. We often even do not know whether the 

efficient solution could exist. Another challenge is the case of problems that are not as 

complicated, but we are dealing with gigantic amount of input data. In the both cases, 

the computation usually requires enormous time or memory resources. For instance, 

when a traveling salesman is planning his business trip, he needs to visit 30 customers 

but he wants to save as much fuel as possible. It is impossible to find out which order 

of the places is the optimal one, by going thru all the possibilities and selecting the 

best one. Even if evaluating of one possibility takes one millisecond, the whole 

enumeration will take about 8.5 × 1021 years. 

The very complex or the very large problems gave rise to various approaches 

that tries to find a practical compromise between the results’ quality and the algorithm 

feasibility. One of the compromise-seeking method is the Monte Carlo Tree Search, 

which was originally developed for the purpose of playing complex games. Another, 

and completely different, compromise-seeking method are the Evolutionary 

algorithms. They were designed according the natural processes and it came as a very 

general problem solving approach. Both of these different approaches we are going to 

introduce hereunder. 

Goal of this thesis 

The core of this paper is to invent a problem-solving method that is a 

combination of Evolutionary algorithms and Monte Carlo Tree Search. Our method is 

designed as an add-in1 for a genetic evolutionary algorithm. Therefore, it should be 

                                                 
1 Removable additional module. 
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applicable on every problem that can be solved by the genetic evolutionary algorithm. 

The method we are developing we also implement and test on one example problem: 

Traveling salesman problem. All the implementation source codes and experiments 

results are available on the attached CD (see chap. Attachments). 

Outline 

In the first two chapters, we review our working background: 

Evolutionary/Genetic algorithms and Monte Carlo Tree Search. We explain the 

principles behind these approaches and we focus on the parts which our work is based 

on. The third chapter introduces the benchmark problem we have chosen: the 

Traveling salesman problem. The third chapter also contains an overview of genetic 

algorithm applications and we choose one of them as a baseline of our example 

implementation. 

The fourth chapter is the flagship of this paper. It describes the whole 

mechanism of our newly proposed method. We divided our technique into three levels 

according to the complexity of the inner system. On every level, we have prepared two 

different approaches: Direct and Repaired. Therefore, each level contains two 

independent functional modules. Of course, all of the six modules can be variously 

parametrized or set. The fourth chapter introduces the techniques from the simplest 

level one to the most complex level three. Every module is explained as an application 

on the Traveling salesman problem and it fully corresponds with the attached 

implementation. 

In the fifth chapter, we perform variety of measurements in order to find out 

the best parametrization and setting of our method. We comment and explain the 

experiments results. Already the first tests show that our method, with the right setting 

and parameters, is able to converge and can return good results. At the end of the fifth 

chapter, we select the better performing modules and in the next chapter, we try to 

improve and extend them. The best improvement turns out to be the cooperation of our 

method and the classical evolutionary approaches for Traveling salesman problem. 

This union of two different methods yields better results than any of its parts 

separately. That we consider as a great success of this thesis. 

The last (seventh) chapter tests the best versions of our method with various 

inputs. This proves that the previous experiments were not only a coincidence. It shows 

that the results are similar with the special classes of inputs as well. In the performance 
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experiments, where we test the techniques in a limited time, we prove that the 

cooperation method is also the most practical version of them all. 

At the end of this paper, we write some notes for the potential user of our 

method. We also present some ideas for the future research. 



 4 

1. Evolutionary and genetic algorithms 

1.1. Inspiration from nature 

Evolutionary algorithms are huge class of computer science approaches to 

various types of problems. As the name suggests, evolutionary algorithms are based 

on inspiration by nature. Of course, mainly by Evolution theory itself and by Evolution 

by nature selection proposed by Charles Darwin [1] in the 19th century. 

1.1.1. Evolution theory 

In brief, Evolution theory describes the development of all living (flora and 

fauna) on the Earth. It observes that most of the living organisms came into life thanks 

to their parental organisms. What is more important, the child individual shares many 

of its biological and physiological properties with its parents. 

The division into parents and children induces generations as groups of 

individuals born in the same era. This is very simple and natural principle. 

Nevertheless, the system of generations is very important in evolutionary algorithms, 

as we will see few paragraphs bellow. 

Sharing the properties between parents and their children is called heredity. It 

provides some kind similarity between an individual and each of its parents (no matter 

what is the actual number of them). Heredity is very important in the nature selection. 

It claims that every generation is made up by individuals who are stronger, smarter 

and generally better than their parents are (or generally than their predecessors). This 

should be ensured right through the nature selection because only the individuals that 

have combination of properties good enough to survive, will have children. The 

principle of heredity provides preserving the high quality organism properties. 

There is one more important element in the evolution, which is also used in the 

computer science application. Only the combination of the parents’ properties 

sometimes is not enough for succeeding in life. The environment is changing all the 

time: climatic conditions are changing; surrounding flora and fauna is changing, etc. 

The second problem is how to build a stronger, smarter and better generation from the 

finite set of properties, which already turned out as the best constellation (presuming 

that there is no better combination of the given properties than the actual one). 

Evolution theory has an answer to these problems: mutation. Mutation is a change of 

the individual’s particular property generally caused by an external, outer or unknown 
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factor. It brings a chance for individuals to acquire the trait that have not appeared in 

any generation yet. This new property can help the individual to survive in the changed 

environment, beat the other or, on the contrary, die sooner. 

1.1.2. The genome and the DNA 

In the previous subchapter, we have brought the not detailed overview of 

evolution principle, which was very abstract and did not tell us anything about the 

actual biological function of the living organisms or about their reproduction. All we 

understand at this point is that an individual consists of set of its properties, which 

determine his whole life course and are mutated and somehow recombined during 

reproduction. 

To implement the evolution principle as an algorithm we use another 

inspiration from nature. The abstract set of properties, which determine the 

individual’s life, is represented by the individual’s genome information. The genome 

contains all the specification of the organism physiological form, look, growth or 

behavior (consequently). When the organism is developing, every step since the 

reproduction is influenced by the genome information. The reproduction is the very 

moment when the genome itself is built. 

As it is usual in nature, the genome is not an atomic entity driving the 

organism’s development. Since the 19th century, the biologists have discovered that 

the genome is made up of parts called chromosomes. The chromosomes we can divide 

into single genes, which are discrete units of heredity traits and consist of DNA 

information, which is simply coded by a sequence of nucleobases pairs [2]. The count 

of the nucleobase variations is a finite number, so it is very analogical to how we 

encode the information in our computers. 

In this very simplified view, which we have presented, is possible to simulate 

the dynamic evolution just by using the genomes instead of the actual individuals 

grown based on these genomes. That is exactly the way the computer science is going. 

1.2. Evolutionary algorithms 

In computer science, there are a lot of problems that we cannot solve by a 

specialized efficient algorithm. These are either the problems of very high complexity, 

such as NP, PSPACE, #P or the other even more complex complexity classes [3]. 

There are also problems for which we do not know any optimal solving algorithm at 
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all. In these situations, we use suboptimal approximate algorithms or to incomplete 

heuristic algorithms. 

Evolutionary algorithms are member of both of these groups of algorithms for 

hard-to-solve problems. The base idea is to let the problem solution come up from 

evolution process just like the nowadays organisms have developed from the 

prehistoric ones. 

In the implementation of evolution process, we work with the candidate 

solutions of the particular problem – these are our individuals. To make the evolution 

happen, we need to know, how to reproduce and mutate the individuals. The answer 

is to create an encoded data structure, which will represent the particular solutions – 

the individuals. The evolution operations (reproduction and mutation) will be 

processed just as changes of this code1. This approach is the straightforward 

implementation of the genome inspiration. The algorithms representing possible 

candidate solutions by the code, which is changing in order to get better and better 

solution of the problem, are called Genetic algorithms [4]. The term of Genetic 

algorithms is usually used for Genetic algorithms driven by evolution. In other words, 

Genetic algorithms are Evolutionary algorithms over genome-represented individuals. 

1.2.1. The algorithm 

The evolutionary algorithm is simulating population of possible candidate 

solutions, which should develop thru generations into a good and useful result solution. 

Evolutionary algorithm starts with the initial population2 and begins the loop 

of life: 

1. Parental selection – selects individuals who become parents of the next 

generation. 

2. Reproduction – creating new individuals based on their parents. 

3. Mutation – nondeterministic slight changing individuals in the new 

generation. 

4. Environmental selection – fight for survival where usually only the individuals 

of high quality will outlive. 

                                                 
1 The code of one concrete individual – its “genome”. 

2 The initial population is usually randomly generated. 



 7 

This loop needs a terminating criterion; otherwise, it would run endlessly. It is up to 

the concrete implementation whether to stop after given number of generations or to 

run until an individual better than the given limit appears in the population. 

Evolutionary algorithm is actually a stochastic searching algorithm. 

Reproduction and mutation provide variability and the selections are driving the 

searching towards the optimal solution [5]. 

1.2.2. Operator-oriented implementation 

There are a lot of various ways how to implement an Evolutionary/Genetic 

algorithm. The implementation can be very specific, targeted and optimized for 

solving the one particular problem. In our experiments, which are described few 

chapters bellow, we have chosen very generic implementation schema: Operator-

oriented. 

The operator-oriented schema simplifies the evolution life loop into two steps: 

1. Apply the operators 

2. Environmental selection 

Here, the new generation making logic is put into operators, which can implement 

various mutation, recombination, parental selection, etc. The operators can be more or 

less problem-specific; nevertheless, all of them have to be compatible with the 

individual encoding. This approach is very useful for experiments because we can 

change or mix the operators and build the evolution process like Lego. What is more, 

we can test the operators separately to find out whether the particular operator helps to 

find a good solution or not. 

The environmental selection, which should manage the “operators’ products” 

to meet the optimal solution, stays unchanged. 

1.2.3. Memetic algorithms, Lamarckian evolution, Baldwin effect 

Evolutionary algorithms are a general framework for problem solving. There 

is a lot of papers that are introducing many extensions or improvements. Let us take a 

look on idea called Memetic algorithms [6]. 

In principle, the Memetic algorithms are combination of Evolutionary 

computing and local search, which is an incomplete solving method itself. The 

background inspiration is cultural development built thru generations. It should help 

the individuals to live better life. Memetic algorithm lets the individuals to learn 
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something before comes the environmental selection. A learned individual should then 

pass the selection better. 

The actual learning is made by the local search. An individual that is a product 

of the evolution operators is then taken as a baseline for searching its vicinity in the 

problem solutions space. The searching should be fast and simple. It should not 

substitute the evolution operators, but only upgrade their results. If the quick search 

does find a better individual than the origin, we have more possible ways how to deal 

with that. 

The Lamarckian [5] approach replaces the original individual with the better 

new searched one. This new specimen is going to fight in the environmental selection 

and then, if it survives, it will be processed by the operators instead of the original 

individual. 

Another approach avoids interfering the evolution. It leaves the solution quest 

up to the operators. The only role of the searched better individual is to represent the 

origin’s potential. It is used instead of the origin in the selection; therefore, the original 

individual has the quality of the best of its “neighbors”. However, in the subsequent 

operators is still used the origin. This change of the individual’s potential is called the 

Baldwin effect [5]. 

The goal of this thesis is to create an approach that will combine Evolutionary 

algorithms and Monte Carlo Tree Search. Our method, which we are going to 

introduce hereunder, is very close to the Lamarckian Memetic evolution idea. 
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2. Monte Carlo Tree Search 

2.1. The Monte Carlo origins 

The concept called Monte Carlo is older than the artificial intelligence field of 

science. Monte Carlo method is based on a pseudorandom simulation of a complex 

process where the pseudorandom decisions respect known particular probability 

distributions. Samples from this simulation, which has been run many times, are used 

for determining the process behavior [7]. 

Monte Carlo method is used widely across mathematics, physics or computer 

science. From numerical integration in mathematics to, for instance, Monte Carlo 

Markov chain state probability distribution determination in artificial intelligence. It is 

used mostly for the problems that are too complex or too huge so the exact methods 

would be very inefficient. The derivation of Monte Carlo method, which this thesis is 

based on, is a searching algorithm Monte Carlo Tree Search (MCTS) 

2.1.1. Monte Carlo Go 

The first step towards the MCTS, which this paper is benefiting from, was the 

use of the Monte Carlo method for creating an artificial player for the game Go [8]. 

The game Go [9] is known for its too high branching factor for complete searching. 

Due to this large number of game moves combinations it is very difficult to find out, 

in a reasonable time, what game results can come up from the current state (position). 

As a consequence, it is hard to evaluate the particular game states for usage in some 

heuristics. Bernd Brügmann brought to light an approach based on the Monte Carlo 

idea. He defines the quality of the actual state by the possible game ends that can result 

from it. It is not possible to efficiently enumerate all the endings. Brügmann deals with 

this by sampling. He simulates several pseudorandom “playouts” (sequence of steps 

leading to game end) and from these samples he computes the expected (average) score 

for the given state. The artificial player then moves to the state with the best-sampled 

score. 

This approach is very successful in the game Go; however, the most interesting 

benefit of this method is that the sampling, which substitutes here the game positions 

space searching, does not need any problem specific heuristics at all. Despite the fact 

that the playout is driven by random generator, the result samples can produce useful 

information. 
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2.2. Tree searching 

The system described above aims to game positions valuating. If we look at the 

problem of artificial Go player more generally, the strategy of evaluating possible 

positions and taking the best-looking result is not very smart. As every greedy 

algorithm, it does not use any complex problem overview. 

Solution of this problem was brought by an upgraded algorithm that is trying 

to benefit more from the promising states and searches for the game steps sequence as 

a whole. This algorithm searches the tree representing the game states space in these 

steps: 

1. Go from the root node and by selecting always the best child find the most 

promising leaf node. 

2. If this leaf node was already a few times attended, expand it (create child 

nodes). 

3. Do some playouts (“simulations”) from the current node. 

4. Based on the playouts’ results, update the quality information of the nodes in 

the tree that precede the playouts (“backpropagation”). 

 

Figure 1  Monte Carlo Tree Search outline from [10] 

As this cycle repeats, the algorithm is building an asymmetric tree, in which the most 

promising game strategy is growing deeper [10]. 

2.3. Upper confidence bound for trees 

The MCTS algorithm as described above is a best-first searching algorithm. It 

tries to get maximum of the most promising branch it knows. This is exactly the core 

problem of many AI disciplines. The question is how to exploit the best-known option 
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if we do not have a complete model of the searched space. It is obvious that the 

exploitation should be preceded by an exploration mode, which would create as such 

corresponding model as possible. Since the searched space is too large to be stored in 

computer memory, it yields a question when to stop the exploration part and start the 

exploitation. 

2.3.1. K-armed bandit problem 

One of the problems dealing with the exploration/exploitation dilemma is the 

K-armed bandit problem, which is a plaything from the mathematical game theory 

[11]. K-armed bandit is a set of 𝐾 slot machines, where every slot machine takes one 

coin for a play. After inserting the coin into the machine, the slot machine returns 

random reward from its inner distribution. The task is to maximize the reward sum by 

deciding which slot machine to play and in what order.  

In 2002 was introduced a deterministic algorithm for dealing with the K-armed 

bandit called UCB (later UCB1) [12]. The UCB algorithm counts the total number of 

tries 𝑁, the number of tries at the particular arms 𝑛𝑘 and the average gain of the 

particular arms 𝜇𝑘. Once the UCB tries every arm (∀𝑘 ∈ {1,… ,𝐾} 𝑛𝑘 = 1), it chooses the 

arm that maximizes the expression 

argmax
𝑘

(𝜇𝑘 + 𝑐√
log 𝑁

𝑛𝑘
) 

where the 𝑐 is exploration/exploitation constant originally set to  √2 in the UCB 

algorithm. 

This strategy provides very good balance between the exploration and 

exploitation modes. The maximized expression gives even bad options a chance when 

the good ones were tried many times. It was also proved, that the regret1 of this method 

is a logarithmical function [12]. 

2.3.2. UCB for trees 

In 2006, the UCB was applied as the solution of exploration/exploitation 

dilemma in MCTS [13]. The application is very straightforward. In every tree node 

(that is already represented in memory) is located a bandit and each arm represents one 

                                                 
1 The average difference between the total gain of the optimal strategy and the total gain of our 

strategy. 
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possible move. During the MCTS cycle, the node’s successor is chosen using the UCB 

strategy and the back propagated score is registered as the just obtained chosen arm 

gain. 

What is more, the authors of this idea proved that if the nodes successors’ 

evaluating is completely independent1, this approach provides asymptotically the same 

results as the non-heuristic minimax algorithm [14]. 

                                                 
1 In the game Go the evaluating is, of course, not independent. 
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3. Model problem 

In this thesis, we are trying to invent a new concept for solving the problems 

that are too complex or too large. Our approach should be applicable on every problem 

that is solvable by genetic algorithm. As you will see in the next chapter, all we need 

is to represent the individual from the population as a vector (chromosome) of finite 

dimension where every component (allele) is defined by a finite domain. We are also 

able to handle a mutual exclusion of values among the components, which we will 

demonstrate by our front-end problem specific implementation. 

Although we want to bring a very general method for problem solution, we 

need an instance, where the principles can be shown. Therefore, we have decided to 

pick one particular sample problem. The explanation will be based on this example. 

The accompanying implementation or furthermore the research measuring and tests 

will be also proceeded on the instance problem. The sample problem is the Traveling 

salesman problem (TSP). 

3.1. Traveling salesman problem 

TSP is very well known problem, which is very simple to explain, but very 

hard to solve. Not only is TSP NP-complete [3], it also is strongly NP-complete [3]. 

What is more, TSP cannot be generally solved by any poly-time approximation 

algorithm with constant ratiometric error (unless P = NP of course) [3]. This makes 

TSP a very tough and challenging benchmark. 

3.2. Genetic solutions of TSP 

As we declared above, to use our method for solving TSP, we need a genetic 

representation for it. Since we are using the operator-oriented evolution, we need to 

decide the individual representation and prepare background for the environmental 

selection. 

3.2.1. Fitness and environmental selection 

The environmental selection in most of the EA1 implementations is based on 

fitness function. The fitness function is an indicator which tells us, how good the 

particular individual actually is (in the problem solution meaning). In the TSP, there 

                                                 
1 Evolutionary algorithm 
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is a very clear fitness indicator: weight of the Hamiltonian cycle represented by the 

actual individual. When implementing the environmental selection, we should not 

forget that the lower value is the better one. This kind of fitness function produces 

nominal numeric outputs. Nevertheless, we should go with the fact, that the outputs 

are mutually comparable, because we use the simple Tournament selection [5]. 

3.2.2. Representation of an individual 

The individual representation needs an arbitrary decision to be made. There are 

a lot of various papers dealing with genetic TSP solution, which are using various 

representation: 

 Steps representation is the most straightforward. The chromosome is simply 

a vector containing 𝑁 numbers, which represents the cities exactly as the 

follow in the traveling salesman journey. Hence, the domain of every allele 

is the set of the cities (numbers 1 …  𝑁). However, the numbers must be 

unique – a permutation. 

 Edge/adjacency representation [15] also uses permutations of length 𝑁, but 

the meaning is different. The number 𝑖 at the position 𝑗 means that there is 

the edge < 𝑗, 𝑖 > used in the result Hamiltonian cycle. It is important to work 

carefully with this representation because not every permutation represents a 

Hamiltonian cycle. After selecting edges specified by the chromosome, there 

could occur several separated cycles in the graph. 

 Buffer/ordinal representation [15] is the trickiest one. It keeps the cities 

ordered in imaginary buffer. The chromosome is also a long 𝑁 and it also 

represents the cities as they follow in the result journey. The first number in 

the chromosome points into the buffer and selects the first city of the journey. 

The city is then removed from the buffer. The remaining cities are shifted in 

order to fill the empty gap. The buffer actually works as a “random access 

stack”. The second number from the chromosome again points into the buffer 

and this repeats until there is at least one city in the buffer. As a consequence, 

the domain of the 𝑖th allele are the numbers 1 … (𝑁 − 𝑖 + 1). Furthermore, 

every set of number satisfying the domain conditions are a valid 

representation of Hamiltonian cycle. 

Even though all the representations have their pros and cons for using them in 

genetic algorithms, we have chosen the edge representation. The edge representation 
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is the best analogy to the nature genetics. That is because every allele has its own 

meaning (selects the edge that will be used for continuing from the corresponding 

vertex). On the contrary, steps or buffer representations does not provide any particular 

meaning to the allele until the whole chromosome is known. Hence, these 

representations would necessitate very large knowledge of the context for deciding the 

one allele. This could require creating very complex combinations, which could not be 

very friendly for genetic algorithm or MCTS. 
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4. MCTS operators for genetic algorithms 

The aim of this paper is to create an approach that is combining two algorithms 

from different AI1 fields of computer science. To do that we have decided to use the 

operator-oriented EA2 design as a framework. The entire logic inspired by MCTS will 

be always encapsulated in several operators, which are modules for usage in the 

framework. Therefore, our operators can be combined with each other and, what is 

more important, with the traditional operators. 

Our operators fall within the category of Memetic algorithms. We use the 

Lamarckian evolution idea and try to create very smart operators that do not use any 

problem-specific heuristic, but benefit from the MCTS research results. 

We are going to present three levels of our idea. Each level will contain two 

implemented approaches to dealing with the chromosome inner system3: 

1. Direct operator restricts its inner logic to keep the chromosome valid. 

2. Repaired operator has free hand to manipulate the chromosome, as it wants to. 

Afterwards the chromosome is repaired to be valid. 

4.1. UCB Selector 

4.1.1. UCB Selector black box implementation 

The UCB selector is a simple unit implementing exactly the Upper Confidence 

Bound selecting method. Each instance of this class is parametrized by the 

“exploration” constant and by the number of options that are available to select from. 

The UCB selector is used as a “black box” providing these functions: 

 Select(), which simply evaluates the formula (the single components are 

explained in the chapter 2.3.1) 

𝑎𝑟𝑔𝑚𝑎𝑥
𝑘

(𝜇𝑘 + 𝑐√
log 𝑁

𝑛𝑘
) 

and returns the maximal argument 𝑘, which represents one of the available 

options. The actual implementation also contains even more overloads of this 

method allowing us to specify a particular subset of available options to be 
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selected from. In that case the 𝑎𝑟𝑔𝑚𝑎𝑥 formula chooses the 𝑘 only from the 

given subset. In the situation that at least one of the available options was not 

selected yet (𝑛𝑘 = 0), this unselected option will be returned instead of 

evaluation of the formula. If there is more than one not-selected option, one 

of them is selected randomly. 

 RegisterGain(k, gain) updates the internal records. It increments the 

stored number of attempts of the 𝑘th option 𝑛𝑘 and updates its average 

gain 𝜇𝑘. It also increments the global number of all attempts 𝑁. The 

registered gain is always a number from the interval [0,1]. 

4.1.2. Alternative UCB selector initialization 

The UCB selector implementation described above brings a mechanism, which 

automatically balances between exploration and exploitation and tries to identify the 

best option from the available set. However, this mechanism has a special beginning. 

Due to the not-selected options protection, there is performed a “select-each” loop 

across all the options at the beginning. That is because all the option counters are zeros 

at the beginning, and the UCB selector refuses to perform the UCB-selection until all 

the counters are at least one. 

The UCB selector itself is the base and key building block. The UCB selector 

will be present in all the operators that we are going to present in this chapter. We are 

little bit afraid that the “select-each” loop, which is needed to be accomplished before 

the UCB-selecting begins, will confuse, break or slow down the mechanisms we are 

planning to implement. Therefore, we present an alternative way of the UCB selector 

implementation. The difference is only in the inner data structures initialization. In the 

original version, the option counters are initialized with zeros and the average option 

gains are initialized right at the moment when the first gain is registered for the 

particular option. While in the alternative version, the counters are initialized with ones 

and the average gains are all equally initialized with a constant 𝑔. 

This alternative constant initialization omits the need of the “select-each” loop 

and still does not break the selector principle (the average gains still converge to their 

true values). 

What of the two UCB selection initialization is better and what value for the 

constant 𝑔 should be used we are going to find out experimentally in the chapter 5. 
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4.2. The used individual representation 

Even though the TSP solution can be represented variously, all the below 

described UCB/MCTS inspired operators use the edge representation. This 

representation is a simple array of immediate successors of the vertices. Number 𝑖 at 

the 𝑗th position in the array means that edge < 𝑗, 𝑖 > is used in the TSP solution. 

4.3. Single allele operators 

The level one operators are based on the idea of searching zero-deep trees 

rooted in the alleles (where the allele is one particular position in the successors array 

and the chromosome is the whole array). We present two different implementations of 

this principle. Both of them use the same base structure. 

The operator is initialized with an array full of instances of the UCB selector 

units. The length of this array is exactly the same as the number of vertices in the TSP 

graph (number of towns). Hence, this array of UCB selectors has exactly the same 

length as the successors array coding the TSP solution. Each selector corresponds to 

the particular vertex in the graph and selects the vertex’s successor in the Hamiltonian 

cycle. That is why all the selectors in the array are initialized with the same number of 

given options – the number of vertices in the TSP graph. 

Not every combination of options returned by the selectors is a valid solution 

of TSP. Furthermore, the returned vector might not be a valid permutation at all, 

because values can repeat. Therefore, we present the two specific implementations 

based on this idea but providing valid solutions of TSP – Hamiltonian cycles. There 

will always be a direct and a repaired version of a chromosome filling mechanism. 

These two versions we are going to introduce in the following subchapters. 

4.3.1. Direct single allele selecting operator 

The first implementation of the level one operator is the direct single allele 

selecting operator. This operator works with the selector’s allowed options sets to 

directly provide a vector which will be a valid solution itself. 

During the solution creating process, the operator builds the Hamiltonian cycle 

step by step. It starts at a randomly chosen vertex. All vertices except this starting 

vertex are now in the allowed options set. We use the starting vertex’s selector to tell 

us which one of the allowed options will be the selected succeeding vertex. The result 

successor is removed from the allowed options set and we repeat this procedure, now 
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with the result successor instead of the starting vertex. This process repeats until the 

allowed options set is empty. At this point, the only possible successor will be exactly 

the starting vertex chosen at the beginning. 

UCB UCBUCB UCB

 

Figure 2  Single allele selecting operator schema. Every allele has its own corresponding UCB selector which 

determines the allele evaluation. 

4.3.2. Repaired single allele selecting operator 

The second implementation of the level one operator works a little bit 

differently. The TSP solution creating routine works in three steps: 

1. Use the UCB selectors to generate an arbitrary array of vertices. 

2. Repair this array to be a valid permutation (even with more cycles). 

3. Decompose the permutation into separated cycles and join them into one 

Hamiltonian cycle. 

While the first step is clear, there are more than one possible ways how to 

perform the second step. The task is to convert the list of numbers with repetition into 

list of unique numbers. 

In the array, we identify the numbers (vertex successors) that are appearing 

more than once. These repeating successors we remove from the array. It is not 

necessary to remove all the occurrences of the particular repeating number. The 

number has to appear exactly once in the final array; therefore, we leave unchanged 

always one of the appearances of each repeating number. Of course, we do not know 

the optimal position where the number occurrence shall stay, thus we choose it 

randomly. The rest positions from where the repeating successors were taken out 

represent the vertices that have no selected successor at this time. We will call them 

the empty predecessors. And finally, there could be numbers which didn’t appear in 

the former array at all. These are called the currently unused successors.  

The empty predecessors and the unused successors should be now somehow 

connected together to provide a valid permutation – the array of successors where 

every vertex has a unique successor. We present two possible approaches how to do 

that: 
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a) Connect them randomly. For every empty predecessor will be the successor 

chosen randomly. Of course without repeating. 

b) Use the UCB selectors again. Every empty predecessor still has its own 

corresponding selector. The unused successors become now the allowed 

options set. Going across the empty predecessors in random order, we let the 

selector to choose the successor from the available options and then exclude 

the chosen successor from the available options for the next iteration. 

After choosing one or the other strategy, we have a valid permutation and the 

reparation step two is complete. 

4.3.3. Updating the inner data structures 

The level one operator would have no chance of success without continual 

updating its inner data structures – without learning. No matter if it is the direct or the 

repaired implementation, there is the array of UCB selectors inside. These selectors 

need to be updated to provide better results next time. 

The gain that will be showed to the selectors (via RegisterGain function) is 

universal for all the UCB selectors stored in the array. That is because only a fully 

filled array of successors, representing Hamiltonian cycle, generates a particular 

solution of TSP. We cannot rate one used edge separately because it is not obvious 

whether using this edge leads to the optimal solution or not. 

The gain of one particular chromosome, which is solution of TSP, is actually 

its fitness value. Since the UCB selector allows only number from interval [0,1], the 

fitness value has to be transformed. The fitness value of the TSP solution is simply the 

weight of the result path. The lower fitness is better. The gain value is a different case: 

greater value is better. 

Fortunately, the fitness value can be converted into a gain value relatively 

straightly using a linear transformation: 

𝑔𝑎𝑖𝑛 = 1 −  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑢
 

where the 𝑢 is simple the upper bound estimate for the fitness function. This estimate 

expresses weight of the worst possible solution of the TSP. We simply use sum of 

weights of the 𝑁 heavier edges in the graph, where 𝑁 is the number of vertices in the 

graph. 

The redistribution of the gain value is quite intuitive. We go through the 

chromosome (successors array). For each allele, we register the gain for the option that 
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is used. After this process, every UCB selector has exactly one more registered 

attempt. 

The truth is that in case of the repaired operator some selectors might register 

a different option than they have returned as a recommended selection initially. In 

other words, the UCB selector selects option 𝑘, but the gain is registered for option 𝑙, 

which has replaced the option 𝑘 during the repairing process. Although this is not a 

standard usage of the UCB principle, it will not violate the selector’s principle. The 

option 𝑘 could not be used in the result solution. On the other hand, keeping in secret 

the gain of the finally chosen option 𝑙 would not improve the operator at all. The 

registered gain helps to rate this particular option 𝑙 and changes its probability of being 

selected next time. 

4.4. Conditional operators 

The level two operators – the conditional operators – introduce the first attempt 

to bring the idea of dependency between alleles in the chromosome. They are based 

on searching trees of constant depth. 

The level one operators were based on the principle that every vertex has its 

own selector, which is trying to choose the best succeeding vertex in the result 

Hamiltonian cycle. Whereas the conditional idea tells us that the decision of the 

particular selector may be better if the selector considers the result selection of another 

(generally) selector. This brings some context into the selector’s decision. 

Naturally, you can imagine various approaches how to implement this idea. We 

present our two different implementations. 

4.4.1. Direct conditional operator 

Like the direct level one operator, the direct conditional operator produces a 

valid TSP solution literally directly. The main goal of the implementation is providing 

the dependency between the selectors and their choices. This operator, like the level 

one operators, goes step by step and builds the Hamiltonian cycle. In contrast with the 

level one operators, while deciding the successor for a particular vertex, the 

conditional operator considers even the predecessor of the current particular vertex. 

The direct conditional operator contains an array full of UCB selector 

collections. The length of this array again equals the number of the vertices in the 

graph (𝑁). Each collection in the array can contain up to 𝑁 UCB selectors too. Every 
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record (every UCB selector) in the collection is marked by a vertex in order to provide 

the selector conditionally. Altogether, while deciding the next step of the Hamiltonian 

cycle, the vertex’s successor will be selected by a selector that will be chosen from the 

collection corresponding to the current vertex and the key for choosing from the 

collection will be the predecessor of the current vertex. 

Of course, the first decided vertex cannot be solved conditionally because its 

predecessor – the last selected vertex – is unknown at the moment. Therefore, the 

starting vertex is fixed and it has only one general corresponding selector instead of 

collection of selectors. 

This operator uses the available options set in the exactly same way as the level 

one operator did. Thus, the result chromosome is array of vertex successors coding a 

valid TSP solution. The gain value of the result, computed from the fitness value 

equally to the level one operator, is registered again 𝑁 times. For each vertex, only the 

used selector from the corresponding collection will register the gain value and it will 

be credited to the option that was actually selected – the chosen successor. 

4.4.2. Repaired conditional operator 

The repaired conditional operator contains similar inner data structures as the 

direct one. However, it works with the conditional selecting more abstractly and 

generally. This operator creates the dependencies between alleles in chromosome 

based on the position in chromosome. The allele is influenced by its neighbor one. To 

be concrete, every allele affects the allele on right side. Except the last one. 

This repaired operator works in the same three steps as the level one repaired 

operator. In the first step, it builds the array of numbers – potential array of successors. 

It goes sequentially thru the array from the left to the right and every position is filled 

by the value chosen by the selector. At this phase, there is no restriction like “available 

option set” used – all options are available. The selector for the particular position is 

chosen from the corresponding collection and the key, used for the choice, is the value 

filled in the left neighbor allele. 

The second – repairing – step can be proceed in the random way, which is 

exactly the same as in the level one implementation. However, we can take the 

advantage of the selectors again. After creating the list of empty predecessors and list 

of unused successors, we take the empty predecessors from the list in the increasing 

order (increasing order of chromosome array indices). It is obvious that the allele left 
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from the first empty predecessor is already filled. If it would not be, it would be the 

first empty predecessor itself. Hence, we can choose the right UCB selector from the 

corresponding collection for the allele that is the first empty predecessor. This selector 

is used to select a successor for the current empty predecessor, but only from the list 

of unused successors. The selected successor is removed from the unused successors 

list and we can continue repeating this procedure with the next empty predecessor. At 

the end of this loop we have got a valid permutation stored in the vertex successor 

array. The third step is again exactly the same as in the level one operator. 

Figure 3 shows the schematic arrangement of the repaired conditional 

operator. Every allele has more corresponding UCB selectors. The previous allele 

chooses which one is used (green arrows). In the case of the direct variant, the green 

causality arrows would not always go to the right neighbor. They would respect the 

order determined by the constructed Hamiltonian cycle. 

UCB
UCB UCB UCB

 

Figure 3  Repaired conditional operator schema. 

4.5. Local trees searching operators 

The idea of allele value selection that is based on the previously selected value 

can be even more generalized. While deciding the value for the current allele, we can 

consider more than one previously chosen value. The number of considered values 

should not be constant. Therefore, the mechanism can fluently grow while learning 

from the gain feedbacks. This brings us from the trees of constant depth to the trees of 

dynamic depth. 

4.5.1. The actual trees 

Since the depth of the trees has to be dynamic, we should start with a very small 

tree depth. The lowest depth of tree is, in general, one – only the root node and no 

edges at all. Using the trees with only a root node, we actually represent the same 

principle as the single allele selecting operators – the level one technique. Every allele 

has exactly one corresponding UCB selector, which is responsible for the values. The 
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only difference is that in the level three operators the UCB selector is encapsulated 

into a tree node, which is also a root node of the tree at this moment. 

After the process of chromosome evaluation (all alleles have proper values), 

there is performed as well the phase when the UCB selectors – the trees – receive the 

actual gain of the particular chromosome. At this moment, the selected option counters 

are incremented. After this increment, it is time for the tree expansion, which is applied 

sequentially to all the trees. According to the used tree expansion policy, we choose 

the concrete tree nodes and the concrete options that should be expanded right now. 

We create new edges from the current node (containing the expanded option) into 

newly built nodes representing new UCB selectors, which are going to correspond with 

the next alleles. Moreover, these new UCB selectors are used only conditionally. They 

depend on the values selected for the previous alleles – by nodes above in the tree 

(nodes lying on the path from the root node into the current node). 

The tree expansion described in the previous paragraph brings the analogy with 

the level two operators – the conditional ones. More than that, we can build the 

dependency chains as long as we want. Every dependency chain of UCB selectors is 

actually the path from the root node into a leaf node in one of our local trees. 

4.5.2. Chromosome evaluation 

In the previous text, we intentionally skipped the part when the actual 

chromosome is filled by concrete values. This procedure is not difficult at all if the 

inner data structures in the operator are clearly described. Inside the operator, there are 

the local trees, which everyone’s root corresponds exactly to one allele in the 

chromosome. Some of the trees are only single root nodes without any additional 

subtrees, and the other trees are partially expanded but potentially asymmetric. 

We start the chromosome evaluation process at the first allele. The 

corresponding local tree is asked not only for one value, but also for a sequence of 

values. The sequence of values is generated by going thru the tree from the root node 

to one of the leaf nodes. Every entered tree node contains an UCB selector inside. This 

selector is asked for the preferred (selected) option, which will be the actual next value 

in the result sequence. Then we look if the current node contains an expanded subtree 

for the selected option. If there is an edge expanding this option, then the process 

continues recursively by going along this edge. Otherwise, the selected option is the 

last value in the sequence and the query ends. 
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The generated sequence of values is the result of a decision process based on 

the UCT principle. Every value in the sequence was selected with regard to the 

preceding values. The first value from the sequence is filled into the allele that 

corresponds to the root node where the query started. The next value in the sequence 

we put into the next allele and analogically we fill the other succeeding alleles until 

we spend all the values in the sequence. 

If there still remains any farther unfilled allele, we just take the tree 

corresponding to this allele and query it for another sequence of values. By repeating 

this procedure, we certainly fill the entire chromosome even whether all the local trees 

are only single root nodes, or whether there is a fully expanded tree, which would fill 

all the alleles by one query. 

It is obvious that not all of the local trees are used for the chromosome 

evaluation. However, the alleles that were not filled by the corresponding root node 

were actually filled by a deeper and more specialized node, which takes more account 

of the context. 

4.5.3. Trees expansion 

Until this time, we brought to light how the trees are used and when the tree 

node should be expanded. Nevertheless, the expansion itself was not fully clarified yet. 

First, we need to decide when a particular selectable option in a particular tree 

node should get its own edge leading to a new node. To determine this we use a simple 

mechanism of maturity threshold, which is commonly used in the Monte Carlo Tree 

Search. The maturity threshold is a constant number. We define that the option whose 

counter inside the UCB selector exceeds the maturity threshold shall be expanded. 

When the decision of option expansion is made, a new tree node is created. The 

simplest way to create a new node is to instantiate a clear new UCB selector and put it 

inside the node. This fresh new node should learn all the information about the gains 

of various available options. However, we already have another node that already 

contains some learned knowledge about the options and their average gains for the 

current allele. This versed node is the root node of the local tree that corresponds to 

the current allele. This knowledge is also general – it is independent on the 

chromosome context. Therefore, we can reuse this knowledge in our new context-

dependent node. To do that, we simply copy the inner data from the original UCB 

selector in the root node (of the tree corresponding to the current allele) and use it as 
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a base set in the new UCB selector. As a consequence, the newly created node already 

knows the gain distribution of its options – this general knowledge is taken from the 

original root node. Since this moment, the newly created tree node will be reshaping 

this general knowledge into a context specific, which might be different. 

Copying the UCB selector inner data is not the only thing that is done while 

creating new node during the expansion process. The newly created node will as well 

keep a reference (pointer) to its origin node. This reference will allow us to perform a 

better expansion on this node in the future. When an option 𝑖 in this node with 

reference is going to be expanded, the future child node will not be created as a clone 

of some root node. The origin for the copying will be the child node, of the referenced 

node, which is denoted by the same option 𝑖. Of course, this child node does not need 

to exist. In that case, the corresponding root node will be used as an origin instead. 

The above described strategy, which tell us how to choose the origin node 

during the expansion, will let us to exploit the best information that is currently 

available for the current allele. Not only do we copy the already learned statistics for 

this allele, but this origin node also depends on the context which is actually a shorter 

version of our current context. By cloning this origin node, we actually prolong the 

context, which will produce a more specialized decision node. 

4.5.4. Tree size 

The previously described mechanism gives us a set of trees, which every one 

of them gradually grows. Theoretically, every tree can expand into a full size and 

symmetric form. The fully expanded tree describes and evaluates all the possible 

chromosome variations. This full expansion would of course spend exponential 

memory space for each tree. Since we are developing fast incomplete heuristic method, 

we have to avoid huge trees. To satisfy this requirement, we will use tree pruning and 

stricter expansion policy. 

To perform an expansion of a particular option inside some tree node, we have 

needed this option’s counter to exceed a given limit, which is called maturity 

threshold. This was the only condition for expansion. To keep reasonable tree sizes 

but still let the trees to expand the successful branches, we add one more condition that 

has to be satisfied. The candidate option’s average gain (inside the UCB Selector) has 

to be greater or equal than a third quartile value of all the average gains stored in the 
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selector. In other words, for expansion, the option has to be tried and it has to show 

good results. 

Despite the strict expansion policy, the trees can still grow larger than we want. 

For instance, an option that seemed to be good before is not actually good at the 

moment. Nevertheless, the option has been already expanded. The whole subtree under 

this option will be probably never used already. It should be cut off. 

To know when to do the pruning, we prescribe a tree size limit. This simply 

will be the maximal number of the nodes in one local tree. Every time this limit is 

exceeded, one whole subtree is going to be cut off. The dropped subtree should be 

rooted in the worst rated node in the tree. We could seek the tree for the node with the 

lowest gain of all. However, this would take very long time and the whole tree should 

be searched. Instead of the systematic searching, we rather use an incomplete heuristic 

to quickly find a bad node. 

Our implementation of the tree limit compliance is inspired by the SMA* 

algorithm [16], which deals with a very similar task – it searches a graph using a 

limited set of expanded vertices. Because the SMA* algorithm needs to add only one 

more node every iteration, it gets by with cutting only one tree leaf. It drops the leaf 

with the worst utility function value. Dropping the leaf means that the SMA* algorithm 

omits the paths that are begging with the prefix represented by the leaf. That is exactly 

what we want to do: drop off the node which represents an option sequence prefix of 

very poor quality. 

The poor sequence prefix we seek greedily. First, we calculate the number of 

nodes that have to be cut off to fall below the size limit (∆𝑁). We start at the root node 

of the tree. From the root node, we go deep into the tree choosing always the worst 

expanded option. Using these steps, we locate a node that is larger than the needed size 

∆𝑁 and its worst child subtree is not large enough. Finally, this located node is cut off. 

The reader has certainly made an observation during the previous paragraph: 

there can be no subtree lying under the worst option in the root node that satisfies the 

∆𝑁 size condition. In this case, the worst subtree of the root node is simply cut off and 

the searching process is repeated again. 

4.5.5. Local trees operators implementation 

We have described yet an abstract mechanism of local trees, which are filling 

a generic chromosome and are consuming its quality feedback information. What has 
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been not introduced until now is how to use this principle to produce solutions for our 

prototype case – the TSP. As well as in the level one and level two operators, we 

introduce two different approaches: the repaired operator and the direct one. 

The main part that was not explained in the local trees mechanism is the alleles 

ordering. Nevertheless, the actual ordering was already explicitly used by expressions 

like ‘the next allele’ or ‘the first allele’. In other words, the actual local trees operator 

needs some linear ordering of the chromosome alleles. When we select an option for 

a particular allele and continue in the tree to the next node annotated by this option, 

the linear ordering is telling us to which allele the succeeding node corresponds. 

4.5.6. Repaired local trees operator 

The repaired operator implements the local trees principle quite 

straightforwardly. It uses the allele ordering exactly as they are located in the 

chromosome. The first allele is the first item in the chromosome array and the next 

allele is always the left neighbor one. This approach is very analogous to the 

conditional repaired operator. 

The rest implementation of the repaired local trees operator is similar to the 

other repaired operators from previous chapters. It very freely fills the chromosome 

in the first step and then the result is repaired into a valid TSP solution. Like in the 

previous repaired operators, the local trees can be used for the repairs as well. The 

UCB selector can select from restricted allowed options set even when it is inside some 

node in a tree. 

Figure 4 visualizes the schematic arrangement of the repaired local trees 

operator. The green arrows are the inner tree edges, which determine the concrete 

context-specific UCB selector for the particular allele. The blue arrows show the origin 

node used for the new node creation during the expansion. 
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Figure 4  Repaired local trees operator schema. 

4.5.7. Direct local trees operator 

The direct operator extends the direct conditional operator from the level two 

implementation. The actual allele ordering depends on the values filled in the 

chromosome – on the selected options. The first allele is again the most left allele in 

the chromosome array. However, the next allele is determined by the option selected 

for the current allele. The next allele will be the allele that is representing the vertex 

succeeding the vertex that is represented by the current allele. As a consequence, the 

chromosome is filled by values in the exact order as the result Hamiltonian cycle goes 

thru the TSP graph. This is, again, very analogous to the other direct operators 

implementations. 

The main difference between the repaired local trees operator and this direct 

one is that in the repaired operator all the child nodes of some node do correspond to 

the same allele. On the contrary, in the direct operator each child node corresponds to 

another allele. 

4.6. Summary 

In this chapter, we have introduced six variants of the MCTS-inspired operators 

for solving the TSP in Evolutionary algorithm. The core element of all of the operators 

is a gadget called UCB selector. Every UCB selector corresponds with one and only 

one particular allele in the chromosome. On the other hand, one allele can have more 

than one corresponding UCB selectors. When it is asked to, the UCB selector chooses 

the right option for the particular allele. The six variants of the operators we divide 



 30 

into three levels by the complexity of usage of the UCB selectors. Each level then 

contains two approaches for solving the inner chromosome constraints1. To clarify the 

terminology, the following table brings the overview of our operators: 

Level 
Constrains 

solving variant 
Name 

Maximal 

number of 

UCB 

selectors 

Minimal 

number of 

UCB 

selectors 

Max. 

context 

length 

One 
Direct Single Allele 

Selecting 
𝑁 𝑁 0 

Repaired 

Two 
Direct 

Conditional 𝑁2 − 𝑁 + 1 𝑁2 − 𝑁 + 1 1 
Repaired 

Three 
Direct 

Local Trees 𝑁 × 𝑡 𝑁 𝑡 − 1 
Repaired 

Table 1  MCTS-inspired operators summary 

𝑁 ... input graph size 

𝑡 .... the chosen tree size limit 

 

All the repaired operators can be also parametrized by the chosen repairing strategy. 

The variants are: the UCB-repaired and the randomly repaired (both explained in 

chapter 4.3.2). 

                                                 
1 The chromosome has to represent only valid Hamiltonian cycle. 
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5. The tests and measurements 

Our MCTS operators, as we have introduced them, do have plenty of various 

parameters and settings. In this chapter, we are going to compare behavior and 

qualitative results according to the different parametrizations. Than we are going to 

measure the operators’ performance in producing the TSP solutions. 

5.1. Methodology 

5.1.1. The algorithm run and results recording 

Each experiment will be executed as an evolutionary algorithm. There will 

always be the population of individuals (chromosomes), which will be within every 

generation affected by the used operators. At the end of the generation there can be 

performed some type of an environmental selection. For the operator characteristic 

measuring we want to see only the development made by the operator, so if the 

selection is not mentioned in the measuring specification, there is no selection 

performed. The particular setting of the evolutionary algorithm will differ in various 

experiments. During the evolutionary algorithm run, all the fitness values of each 

individual will be recorded. 

The recorded fitness values will be reported in a various graphical charts. The 

used types of charts, which visualize one evolutionary algorithm run, are going to be 

these: 

 Box plot. The box plot chart shows the statistical information about every 

generation. Every box plot record shows the maximum and the minimum, the 

first and the third quartile and the mean and median values. 

 Lines of the best-found solution. The continuous line expresses the progress 

of the best solution found yet. 

 Lines of the best in generation. This chart shows the best fitness value in 

each generation record. 

All these three types visualize the fitness value (vertical axis) depending on the 

generation number (horizontal axis). 

For the purpose of comparing the performance of different solving methods are 

going to be executed multiple (at least five) runs of the evolutionary algorithm, whose 

records are going to be averaged and visualized as: 
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 Averaged best histogram. This chart shows all the fitness values of the best 

individuals in every generation sorted from the worst fitness to the best 

fitness. The vertical axis again shows the fitness value. The horizontal axis 

shows the number of averaged samples, which is equal to the generations 

count, but the order may not be the same. 

Each chart figure is going to have its title where the particular type of the chart is 

denoted. 

In the case that there is a large set of measured records and the chart space for 

one data point representing one generation would be too small, only subset of all the 

data points is shown. This is made by simple uniform sampling. For instance, every 

tenth generation is drawn. This data sampling will be maintained mainly for the box 

plot charts because they need more space for figuring one generation. 

From each measuring, only one or a few charts will appear in this text. The rest 

of the experiments’ outputs can be found on the attached CD. 

5.1.2. Input data 

For the purpose of testing we have developed several TSP instances generators. 

Each of the generator is able to create TSP input (a complete graph) of the desired size 

𝑁 and other parameters. The generators produce these graph categories: 

 Random graph consists of 𝑁 vertices and the distance between every two 

vertices is chosen randomly from the desired interval. 

 Triangle unequal graph also contain 𝑁 vertices. The vertices are put into 

the 2D space and the distance between them are computed by Euclidean 

metric. Therefore, theses graphs satisfy the triangle inequality condition. 

 Grid graph is generated from points in 2D space too. These points are 

situated on a regular square grid of desired width and height (𝑤 × ℎ = 𝑁). 

The distances are also calculated using Euclidean metric. 

All the generated graphs that will be used in the following experiments will be 

saved and attached to this thesis on the CD. Thanks to this, our measuring will be 

potentially repeatable. 

The random graph is the most general input of TSP. Hence, we are going to 

use this type of graph for the operators’ behavior and parametrization tests. The rest 

types of input we are going to use in the performance and verification measurements. 
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In the first tests (behavior and parametrization), we are going to intentionally 

use very large number of generations (10000) in every run. The reason is that we do 

not know the best operators’ settings and we want to observe their characteristics even 

if the convergence will appear very late or not at all. 

The graph size 𝑁 will be used very frequently in measuring specifications or 

the following text. It is necessary to remember that this parameter determines a lot of 

mechanisms in our operators. The 𝑁 is: the graph vertices count, the individual’s 

chromosome length, the potential size of one allele domain, the number of UCB 

selectors in the single allele operator, the number of local trees in the local trees 

operator or the number of potential options in any UCB selector. 

5.2. Basic UCB principle settings 

The very first thing, we have decided to measure, is the basic settings of the 

actual UCB principle. The UCB principle occurs in every type and every level of our 

operators. To get the best performance from our operators, we have to tune the basic 

shared parameters first. 

The impact of the basic shared parameters will be measured on the simplest 

level of our operators – the level one, the single allele selecting operators represented 

in chapter 4.3. 

5.2.1. Repairing strategy 

At all the levels of the implementation that we have introduced always contain 

two different approaches for solving the TSP. They are the direct and the repaired 

operators. Let us focus on the repaired approach at this moment. The repaired operator 

fills the chromosome in two phases. It absolutely freely uses the UCB principle and 

then it performs some repairs to provide a valid TSP solution. We already proposed 

two types of repairing strategies: the random one and the UCB one, which again uses 

the technique of the particular level. 

We will compare these two approaches on a real TSP instance. The better 

repairing strategy we will then use in the following tests. 
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Measuring 1 Repairing strategies 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constant: √2 

Operators: Repaired single allele selecting 

Repairing strategies: UCB, Random 

 

Figure 5  Measuring 1 Repairing strategies – Box plot 

The results of the repairing strategies test show that the random repairing provides 

much wider variance of the fitness values in one generation. On the other hand, the 

UCB repairing keeps out of the actually bad values and generally produces less 

variance. 

This result is not surprising at all. The fact that the random postprocessing 

would generate the bad solutions as well as the good solutions is evident. However, it 

seems like the UCB repairing is too conservative in this configuration. It finally is not 

able to create a better solution than the random repairing. In Figure 5 there is 

observable that the UCB repairing sticks at the same best solution which it has found, 

and does not explore the solution space enough to find a better chromosome. As a 

consequence, the random approach did meet better solutions than the UCB one. That 

is also obvious from the following figure showing the best-found solutions in the same 

experiment run as is shown in the Figure 5. 
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Figure 6  Measuring 1 Repairing strategies – The best found solution 

Using this base configuration, the randomly repaired approach seems to be 

generally better. This will be demonstrated by the histogram chart made from multiple 

experiments of the same configuration. 

 

Figure 7  Measuring 1 Repairing strategies – Avg. histogram of the best in generation 
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5.2.2. Exploration constant 

The core of all the operators we have introduced is the UCB principle. The 

𝑎𝑟𝑔𝑚𝑎𝑥 expression always selects the option with the best optimistic perspective. 

Inside the 𝑎𝑟𝑔𝑚𝑎𝑥formula, there is a parameter 𝑐, which determines the ratio between 

exploration and exploitation (higher values cause more exploration). Let us see how 

this parameter inside the selecting expression impacts the seeking for solution. 

We are going to do this experiment using the level one operators. However, 

there could occur a misinformation caused by the difference between the direct and 

the repaired operators. To prevent this side effect, we will test the various values of 

the exploration constant on the direct operators only. Then we will test the impact of 

cooperation of the selected exploration constants with the two types of the operators. 

Measuring 2 Exploration constant in direct operators 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 0.10, 0.50, 1.00, 1.41, 2.00, 4.00, 10.00, 100.00 

Operator: Direct single allele selecting 

 

Figure 8  Measuring 2 Exploration constant in direct operators – The best in generation 

The Figure 8 clearly shows how the UCB selectors react to the various 

exploration constant. The values that are lower than one generate very constant 

development of the best chromosome in the generation. It is observable that they stick 

to the good values that they saw at the beginning of the evaluation. The exploration 

mode is totally suppressed. 
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On the other hand, the greater values (10 and 100 in our experiment) obviously 

omit the exploitation part. Despite the fact that the exploration sometimes hits very 

promising chromosomes, the greater values show no signs of systematic convergence 

at all. 

To the winning position aspire the values chosen from the interval [1.00, 4.00]. 

In these particular measuring results shown in Figure 8, there is one line, whose 

progression shows all the excellent attributes. It is the exploration constant value √2. 

This setting of the exploration constant does not have a constant invariant development 

of the best chromosome. What is more, the √2 line does not have a wavering 

progression, but it shows the slowly gradual convergence to the better values. These 

attributes show that not only does the √2 exploration constant provide a mechanism 

that can explore for better solutions, but it is also able to exploit the chromosomes 

giving good gain values. 

One more thing that should be pointed out about the Measuring 2 Exploration 

constant in direct operators is that when we have repeated the same measuring several 

times, not always was the best value the √2. Nevertheless, the division into the three 

groups of the only exploiting, the only exploring and the balanced, was always the 

same. 

 

Figure 9  Measuring 2 Exploration constant in direct operators – Avg. histogram of the best in generation 
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The astute reader will notice that in the direct operators in the Measuring 2 

Exploration constant in direct operators hit a better fitness values than the repaired 

operators in the Measuring 1 Repairing strategies. To find out what impact does the 

exploration constant have on the repaired operators and if it differs from the direct 

operator, we have chosen the most interesting exploration constant values a tested 

them against the both types of operators. 

Measuring 3 Exploration constant 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 1.00, 1.41, 2.00, 4.00 

Operator: Direct single allele selecting, Randomly repaired single allele selecting 

 

Figure 10  Measuring 3 Exploration constant – The best in generation 

This comparison, as shows the figure above, does not change the hypothesis 

that the direct operators are more powerful. None of the tested exploration constants 

did bring the repaired operator into the competitive results. What is more interesting 

is that unlike the direct operators, there is no obvious impact of the different 

exploration constant on the fitness value progression. All the repaired lines waver in 

the similar variance and all the repaired histograms are completely the same. 
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Figure 11  Measuring 3 Exploration constant – Avg. histogram of the best in generation 

The unstable characteristic of the repaired operators is probably caused by the 

repairing concept itself. The UCB selectors maybe do not have enough opportunity to 

exploit the learned gains. The direct operators have a better perspective about the built 

context inside the evaluated chromosome. The context in the direct operators is 

represented by the available options set. Whereas in the repaired operators, this form 

of context is used only in the repairing phase and only at a few UCB selectors. Hence 

the context is not distributed as wisely as in the direct operators. 

5.2.3. UCB selector initialization 

The original idea how to implement the UCB selector dealing with the not tried 

options (options whose counters are zeros), was that this not tried options are selected 

preferentially in a random order. There we were a little bit afraid of what effect will 

bring this select-each loop across all the options (described in chapter 4.1.2). 

Therefore, we introduced an alternative solution for the not tried options. This 

alternative is the constant gain initialization for the UCB selector: the UCB selector 

starts with all the option counters at number one (instead of zero) and the average gains 

at the specified constant 𝑔. 

The actual effect of the different initializing methods and the various constants 

𝑔 we will find out in the two experiments below. Due to the fact that the average gain 

is part of the 𝑎𝑟𝑔𝑚𝑎𝑥 decision formula which is influenced by the exploration 
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constant, we decided to do this experiments with two of the good-performing 

exploration constants. 

As the chart containing 16 different configurations would be a little bit chaotic, 

we split this measuring into two separated experiments – we divide the direct and the 

repaired operators.  

Measuring 4 UCB selector initializing in direct operators 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 1.00, 4.00 

UCB initialization: all opts at first, 0.1, 0.5, 0.9 

Operator: Direct single allele selecting 

 

Figure 12  Measuring 4 UCB selector initializing in direct operators – Avg. histogram of the best in generation 

The direct operators have shown that the chosen UCB selector initialization 

strategy does not matter a lot. There is no obvious winning or losing strategy in the 

Figure 12. We also cannot declare that the strategy “All options at first” is significantly 

better or worse than the constant initialization. 

Altogether, the UCB selector initialization is not as important as it could seem. 

At least in the direct operators. Let us see, if there is any difference in the repaired 

operators. 
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Measuring 5 UCB selector initializing in randomly repaired operators 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 1.00, 4.00 

UCB initialization: all opts at first, 0.1, 0.5, 0.9 

Operator: Randomly repaired single allele selecting 

 

Figure 13  Measuring 5 UCB selector initializing in randomly repaired operators – Avg. histogram of the best in 

generation 

If we have declared that in the direct operators the UCB initialization 

constant 𝑔 makes no important effect, here in the repaired operators the constant 𝑔 

makes no effect at all. There is absolutely no difference between the curves showing 

the development of the various constants 𝑔. On the contrary, there is an obvious 

difference between the constant initialization and the all option at first, denoted 

AOAF, strategy. The constant approach clearly dominates the AOAF. 

The reason why the AOAF initialization strategy worsens only the repaired 

operators could be again in the repaired principle. In the random repair procedure, 

there is no mechanism for satisfying the “all options must be tried” requirement. The 

random ending of the solution building process can cause that even the UCB selectors 

already have plenty of information about most of the options, they still have to select 

from the rest of the options that was not tried yet. However, this enforced selection is 

broken in the repairing step. As a consequence, the cycle of wrong selections can 

repeat infinitely. 



 42 

To confirm the hypothesis from the previous paragraph, we run the same 

experiment on the UCB repaired operators. 

Measuring 6 UCB selector initializing in UCB-repaired operators 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 1.00, 4.00 

UCB initialization: all opts at first, 0.1, 0.5, 0.9 

Operator: UCB-repaired single allele selecting 

 

Figure 14  Measuring 6 UCB selector initializing in UCB-repaired operators – Avg. histogram of the best 

in generation 

Observation made in Figure 14 goes with our hypothesis. Even though the 

UCB-repaired operators are generally worse, the AOAF initialization does not have 

the same impact on them as it has on the randomly repaired operators. The reason 

why the UCB-repaired operators can deal with the AOAF initialization is because the 

all options at first principle is applied even at the repairing phase (the repairing is done 

by the UCB selectors). 

The conclusion of the experiments with the UCB selector initialization is to use 

an arbitrary constant 𝑔. In the very first experiments in which the initialization strategy 

was not even mentioned, there was used the constant initialization with 𝑔 = 0.50. 

Hence, the experiments do not need to be repeated with a better UCB selector 

initialization. 
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5.3. Basic settings in high level operators 

In the previous chapter 5.2, there were done several experiments about various 

parameters, configurations and settings of the methods that we are introducing in this 

paper. Some of the results were predictable and some were not. In this subchapter, we 

are going to see whether the results that were observed at the level one operators, will 

differ or be the same in the case of the level two and level three operators from chapters 

4.4 and 4.5. 

The higher level operators also bring new parameters which should impact their 

behavior. These parameters we are going to observe in this subchapter as well. 

5.3.1. Repairing and selector initialization strategies 

The tests made on the repaired single allele selecting operators brought to light 

some interesting observations: 

 The random repairing is more powerful than the systematic UCB repairing 

strategy. 

 The chosen selector initialization strategy is more or less irrelevant in the 

UCB repairing, but it has changed the behavior of the randomly repaired 

operators. 

These observations and the generally worse results of the repaired operators 

we have explained by the absence of the context information for the particular UCB 

selector. Nevertheless, the higher level operators do use more of the context 

information in evaluating the chromosome. Let us see how the described behavior will 

change in the higher level repaired operators. 
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Measuring 7 Repairing and UCB initializing strategies in higher level operators 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constant: 2.00 

UCB initialization: all opts at first, 0.5 

Operators: Randomly repaired conditional and local trees, UCB-repaired conditional and local trees 

Local trees maturity threshold: 5 

Local trees size limit: N5 

 

Figure 15  Measuring 7 Repairing and UCB initializing strategies in higher level operators – Avg. histogram 

of the best in generation 

The Measuring 7 Repairing and UCB initializing strategies in higher level 

operators brings a very contradictory result. If the reader looks only at the conditional 

operators, it is obvious that the context information, which is provided by the 

conditional mechanism, helps and the AOAF initialization does not corrupt the results 

of the random repairing. On the contrary, in the local trees operators, there is a 

downgrade of the randomly repaired version using the AOAF initialization. In other 

words, while the randomly repaired level three operators react the same way as the 

level ones, the level two operators do not. 

The local trees operators follow the results of the single allele operators in the 

other views as well: 

 The UCB-repaired versions show much worse convergence than the 

randomly repaired. 
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 The AOAF initialization strategy downgrades only the randomly repaired 

version. 

In contrast, the conditional operators have a very unusual behavior: 

 The AOAF initialization does not impact the randomly repaired version. 

 The UCB-repaired version with AOAF initialization is the best in this entire 

experiment. 

These extraordinary results can seem to be just a coincidence; however, they 

are not. We did repeat this measuring multiple times and the results as they were 

described were stable. There could be a plenty of explanations for the conditional 

operators’ behavior. Maybe the constellation of context of length one plus the other 

parameters is the ideal setting of the UCB-repaired operator. On the other hand, maybe 

the experimented parameters are not advantageous for the repaired local trees 

operator. We do not have any logical explanation at this moment; nevertheless, we 

will try to figure out some reason by other experiments. 

5.3.2. Exploration constant once more 

Our first experiment on level two and level three operators has brought 

confusing results. The most worrying fact is that the local trees operators show less 

performance than the conditional operators, which are using a shorter context 

information. 

We did some experiments aside and these have pointed out the problem. At the 

beginning of this experiments chapter, we have declared that the basic configuration 

of the base principles will be measured on the level one operators. Than we have 

decided, that the best-detected setting will be used in the higher level operators. The 

presumption that the common parameters for all the levels can be set equally is wrong. 

The most core parameter of all – the exploration constant – breaks it already. 
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Measuring 8 Exploration constant in Direct local trees operators 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00 

UCB initialization: 0.5 

Operators: Direct local trees 

Local trees maturity threshold: 5 

Local trees size limit: N5 

 

Figure 16  Measuring 8 Exploration constant in Direct local trees operators – Avg. histogram of the best in 

generation 

It is obvious that in the case of the local trees operators the effect of the 

exploration constant is slightly shifted. While in the single allele selecting operators 

the optimal interval was declared as [1,4], the local trees operators work good with a 

little lower values. The reasonable exploration constant should be around the 

interval [0.4, 1.0]. To see how the exploration constant affects the particular 

exploration/exploitation development, let us see one concrete experiment run. 
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Figure 17  Measuring 8 Exploration constant in Direct local trees operators – The best found solution 

As you can see, the exploration constant value one is the last that does provide 

a systematic convergence. The higher values seem to explore a lot, but do no 

exploitation at all. The user of our direct local trees operator should also take into 

account the threat of the premature convergence. Therefore, we would prefer to not 

use the exp. constant such low as 0.2. despite the best development in our experiment. 

To be complete with the exploration constant, which turned out to be the key 

parameter, we should do the experiment with the repaired operator and with the level 

two operators. 
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Measuring 9 Exploration constant in Repaired local trees operators  

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00 

UCB initialization: 0.5 

Operators: Randomly repaired local trees, UCB-repaired local trees 

Local trees maturity threshold: 5 

Local trees size limit: N5 

 

Figure 18  Measuring 9 Exploration constant in Repaired local trees operators – Avg. histogram of the best 

in generation 

While in the direct version the exploration constant does matter, in the repaired 

does not. The UCB-repaired version again does not produce good solutions at all and 

the randomly repaired operators do not depend on the actual value of the exploration 

constant. The development of the both repaired versions is more like a random 

searching than a systematical approach. That should be the reason why the exploration 

constant has no impact in here. 
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Measuring 10 Exploration constant in Conditional operators 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 0.00, 0.20, 0.40, 0.70, 1.00, 4.00, 10.00, 100.00 

UCB initialization: 0.5 

Operators: All conditional – Direct, Randomly repaired, UCB-repaired 

 

Figure 19  Measuring 10 Exploration constant in Conditional operators, direct version – Avg. histogram of the 

best in generation 

 

Figure 20  Measuring 10 Exploration constant in Conditional operators, repaired version – Avg. histogram of the 

best in generation 
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There is no doubt that the direct version of the level two operators does have 

shifted the reaction to the exploration constant as well. However, it is not shifted the 

same amount as in the level three operators. Even though the lower exploration 

constant values very quickly find a good solution, they do not seek for a better one due 

to the enormous exploitation phase. As a consequence, the exp. const. value 4 

development defeats the lower values using slower but more stable convergence. As a 

result, we recommend using the same exploration constant values as in the level one 

operators. 

The repaired operators again show that this experiment is not worth for them 

and we should focus on the direct versions. 

5.3.3. Tree maturity threshold 

In the following paragraphs, we are going to look closer at the level three 

operators and the parameters that are not present in the lower level implementations. 

We are intentionally going to prefer the direct version of the level three operators. The 

repaired version will occur in the experiments only marginally because we do not 

expect their positive reaction to the parameters tuning. 

The one of the local trees parameter that was not tested yet is the “Tree maturity 

threshold”. This parameter simply determines when the local tree can expand into a 

new node and when it cannot. What impact on the TSP solution quality does this 

parameter have, we are going to discover in the following experiments. 
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Measuring 11 Tree maturity threshold 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constant: 0.40 

UCB initialization: 0.5 

Operators: Direct local trees, Randomly repaired local trees 

Local trees maturity thresholds: 1, 2, 5, 12, 64, 512 

Local trees size limit: N5 

 

Figure 21  Measuring 11 Tree maturity threshold – Avg. histogram of the best in generation1 

The Figure 21 shows us that the impacts of the various maturity thresholds are 

very close. Interesting is that the highest value – the Direct/512 – provides the fastest 

convergence at the beginning. This can be explained by the fact that at the beginning 

the tree that is growing slower learns more quickly than the trees that are growing 

faster. There are less tree nodes, among which the acquired knowledge is distributed, 

in the slowly growing trees. These small trees can stick the first good solutions they 

have seen. Of course, when enough of attempts are made, the large trees provide more 

quality results thanks to their specialized branches. 

The repaired operators do not benefit from the advantage of the low maturity 

threshold. The reason probably is that the repairing mechanism completely trumps the 

UCB-selections and the counters of not always good options are increased. These 

increased worse options are not expanded by the strict expansion policy already. 

                                                 
1 The green line “Direct/1” is completely hidden by the blue line “Direct/2”. 
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5.3.4. Tree size limit 

The next parameter that is present only in the level three operators is the tree 

size limit. This parameter directly determines the considered context length. Moreover, 

it also determines the actual memory and time spending of the whole algorithm. The 

need of the fast and practical algorithms tells us to keep this parameter very low. 

Regardless of it, we still need this parameter to allow the trees to learn and exploit 

some information. Thus, these trees should not be as small as possible.  

Measuring 12 Tree size limit 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constant: 0.40 

UCB initialization: 0.5 

Operators: Randomly repaired local trees, UCB-repaired local trees 

Local trees maturity threshold: 3 

Local trees size limits: 
N

4
,

N

2
, N, N2, N3, N4, N5 

 

Figure 22  Measuring 12 Tree size limit – Avg. histogram of the best in generation1 

The repaired operators do not show any sign of reaction to this parameter 

setting. The explanation could be identical to the presented in the previous subchapter 

(why they do not react to the maturity threshold parameter). 

On the other hand, the direct operators brought into light interesting results. 

The operators with the generous limit repeatedly (in every experiment iteration) fall 

                                                 
1 The dark cyan line “Direct/N^4” is completely hidden by the yellow line “Direct/N^5”. 
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into a premature convergence problem and stuck in a local optimum. What is more, 

the slower (convergence meaning) operators with the less generous size limit do not 

stuck; they slowly converge and overtake the faster ones afterward. The most 

interesting result is the order of the rest (limits 
N

4
,

N

2
, N, N2). It is good to see that the 

lowest size limit did not end up as the worst one. However, we do not have any general 

explanation why the N2
 development showed less performance than for instance the 

N

4
 

development. Probably the reason would be somewhere in the particular random TSP 

instance which was used in this experiments. 

The conclusion for the tree size limit is that we do not have to be afraid of the 

resources-reasonable (computer memory/time) approaches. They can be as powerful 

as the less limiting settings. We also should avoid the uselessly generous limits due to 

the resources wasting and the premature convergence threat. 

5.4. Conclusion 

All the experiments done in the chapter 5 have explored the various parameter 

settings of all our MCTS-inspired operators. We have also seen the comparison of 

different strategies for the operators’ subroutines (UCB initialization, repairing 

strategies…). The settings that have turned to produce the best results, we are going to 

use in the rest of our experimental work. All the same, the reader should keep on mind 

that the optimal setting of the numeric parameters can differ in various applications. 

For instance, the exploration constant is directly dependent on the gain computation 

technique. Hence, it should be experimentally chosen for every implementation. 

The main discovery is that the repaired operators are generally worse than the 

direct version on each corresponding level. In other words, it is better to let the UCB 

selector choose only from the really available options. Otherwise, the selector can 

select an option that will turn out as forbidden and the remaining options will be poor 

quality. However, there could be a potential application of our method where the direct 

version would be hard to implement. This is the reason why we introduced and tested 

the repaired operators as well. For the potential user, it could be a good news that the 

repaired operators do converge, but very slowly. Nevertheless, for the following 

improvements and experiments we aim only at the direct versions. 
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6. Extensions and improvements 

In chapter 4 we have introduced the whole concept of our solution methods – 

operators for genetic algorithm. During the methods explanation and measuring, the 

astute reader has certainly gone thru parts where it occurred to him that he would 

construct the particular part much better than we did. We agree with the reader because 

we ourselves have written down a couple of ideas actually. However, we intentionally 

did not use them in the operators explanation and base implementation. The reason 

was that we did not want to make the core principle1 any more complex for the reader. 

Moreover, it absolutely was not certain that these ideas would work well. 

In the base implementation, we used several basic variants; in this chapter, we 

are going to introduce the ideas for the methods improvement. The impact of these 

changes we are also going to measure. 

6.1. Gain computation 

One of the quests of applying the UCB principle for all three levels operators 

was to register the individual gain 𝑔 ∈ [0,1]. Our base solution is simple linear 

transformation of the individual’s fitness (the Hamiltonian cycle weight). The gain 

then linearly depends on the ratio between the fitness and its estimated upper bound 𝑢.  

𝑔 = 1 − 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠

𝑢
 

6.1.1. Nonlinear gain 

The problem of the linear transform is that it divides the gain value between 

the cycle weights equally. With this distribution, a random permutation can get 

relatively good gain value. Simple greedy solutions, which are very far from the upper 

bound estimate can reach the gain very close to 1 but are not optimal at all. 

Our operators need to target more at the best solutions because the average are 

not interesting at all because they are beaten by very simple heuristic algorithms. There 

is very simple way how to focus more at the best individuals. Since the gain value 

comes from the interval between zero and one, we can simply apply the 𝑛th power on 

the value 𝑔 and produce the result gain value 𝑔′. 

𝑔′ = 𝑔𝑛 

                                                 
1 Principle of MCTS inspired operators 
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This change brings exactly what we need. The parabolic curve indeed releases 

the [0,1] interval for the excellent individuals and does not much distinguish between 

the average and the bad solutions. 

This improvement can be of course applied on any gain value computation, 

which we will experiment with in the case of the following gain computations. 

6.1.2. Prefer the seen interval 

The next problem of the base gain computation is that both ends of the interval 

are unreachable. They maybe are not even close to the real interval of the real 

Hamiltonian cycle weights. We would like to cut off these interval overlaps. Of course, 

if we figured out how to effectively find the real interval endings, we would not need 

to create any heuristic algorithm at all. 

To estimate the real fitness interval, we can use only the values that we have 

already seen. As a consequence, the gain computation dynamically changes while 

more individuals are evaluated. The current upper bound estimate 𝑢𝑡 for the fitness is 

the worst fitness seen yet and the current lower bound estimate 𝑙𝑡 is the best fitness in 

the moment. The gain 𝑔 is then placed into the current interval. 

𝑔 = 1 − 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 −  𝑙𝑡

 𝑢𝑡 −   𝑙𝑡
 

This dynamic computation causes that the gain of the same individual changes 

thru the time. This should not significantly hurt the self-balancing mechanism of UCB 

selection. When the gain of the particular individual gets lower, the operator will find 

out quickly because it will try to exploit it. On the other side, when the gain will 

increase, it implies that there is a better individual, which will be exploited (otherwise, 

the gain would be just one). However, the self-balancing mechanism will after some 

period try to generate this individual again and the gain will be slowly updated. 

6.1.3. Prefer above average 

Since we are seeking for the best solution of all, we want to make the curve 

steeper (the same motivation as for the nonlinear gain). In the previous chapter, we 

have reduced the actual gain interval to the real fitness occurrences. However, we do 

not stop there. We can afford to reduce the interval even more because we are not 
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interested into the bad solutions. Therefore, we store the current fitness average 𝑓
𝑡
 

instead of the upper bound estimate. This is the result formula: 

𝑔 = 1 − 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 −  𝑙𝑡

 𝑓
𝑡

−  𝑙𝑡

 

6.1.4. Impact measurement 

Let us see, how the different gain computations will impact the operators’ 

behavior. We are going to compare the various gain computations on all versions of 

direct operators. Before that, we bring a small overview of the gain computations. On 

the illustration picture below we can see the differences in gain computations’ 

dynamic. 

 

Figure 23  Gain computations' dynamic - illustration figure 
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Measuring 13 Gain computation 

TSP instance: Random 15 

Number of generations: 10000 

Population size: 40 

UCB exploration constants: 2.00 (levels one, two), 0.40 (level three) 

UCB initialization: 0.5 

Operator: Direct single allele selecting, Direct conditional, Direct local trees 

Gain computations: Linear (base), Seen interval preferred, Above average preferred  

+ quadratic (only on single allele) and quartic version of each 

Local trees maturity threshold: 3 

Local trees size limit: N3 

 

Figure 24  Measuring 13 Gain computation, Single allele selecting operators – Avg. histogram of the best 

in generation 
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Figure 25  Measuring 13 Gain computation, Conditional and Local trees operators – Avg. histogram of the best 

in generation 

 After analyzing the measuring results, we can hardly say, that any of the gain 

computation technique is clearly better than the other ones. The improved techniques 

(prefer seen internal, prefer above average) in average give slightly better results; 

nevertheless, the base implementation (called “Linear”) also shows itself as a 

competitive. The quartic extension (fourth power) works well mainly for the base 

technique and in the case of the single allele selecting operators. On the other hand, 

the improved techniques cause doing more exploitation for the higher level operators. 

This is also obvious on the other charts from this measuring, which are located on the 

CD attached to this paper. 

We presume that the actual impact of the gain computation techniques would 

differ if we were using various exploration constants. However, we are not going to 

measure every possible combination of the system settings. Therefore, for potential 

future usage of our operators we recommend doing tests of the particular setting that 

is going to be used. 

For the rest of the tests in this thesis we should pick one of the gain computation 

techniques. The most generally successful seems to be the “Prefer seen interval” 

(SeenInt) technique. 
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6.2. Less strict expansion policy 

In chapter 4.5 we adopt the idea of MCTS and put it into the local trees 

operators. This first implementation draft did not meet the EA operator basic 

assumptions (to be simple and quick): it was very complex and slow. This was caused 

by the very large trees quickly expanded in the memory. That was the reason for us to 

use the maturity threshold parameter, which is a common technique used for limiting 

the expansion in MCTS. The second and very effective technique for reducing the tree 

expansion was the “Third quartile policy”. Nevertheless, this policy is not part of the 

original MCTS algorithm. 

Our “Third quartile policy” keeps the trees targeting on the best-known 

branches. However, the optimal solution could be hidden in a branch that does not 

begin with a highly rated option. In other words, the “Third quartile policy” can discard 

complex combinations that are not so obvious to choose. 

Let us spend one measuring to find out whether the speculation from the 

previous paragraph is correct. We will try to disable this policy and look for the 

different behavior. 
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Measuring 14 Without quartile policy 

TSP instances: Random 15, Triangle unequal 15, Grid 5x3 

Number of generations: 200 

Population size: 40 

UCB exploration constant: 0.40 

UCB initialization: 0.5 

Operator: Direct local trees operator 

Gain computation: Prefer seen interval 

Local trees maturity threshold: 3 

Local trees size limit: N3 

 

Figure 26  Measuring 14 Without quartile policy – Avg. histogram of the best in generation, Random 15 

The measuring results have brought good news. It seems that the “Third 

quartile policy” causes no good solutions elimination. We were also afraid that this 

measuring highly depends on the TSP input (the graph). Hence, we did this measuring 

on the more special TSP instances too. Not always the version with the policy returns 

slightly better results, but in every test run the results were very close. 

6.3. Other approaches cooperation – evolutionary 

computation 

This part is the highlight of this text. We are going to fulfill the subject of this 

thesis. So far, we have presented our operators for an evolutionary algorithm. 

However, the reader could certainly have a comment at the moment: The operators 

could be called algorithms and run in a loop (in a programming meaning). Only the 

case of data representation of the TSP solution, the whole evolutionary framework and 
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the genetic background could be omitted without loss of generality. That might be true, 

but we are heading to the extension that needs the evolutionary algorithm design. 

We are going to make our operators a part of the evolutionary computation. 

6.3.1. Evolutionary operators for TSP 

In order to demonstrate our ideas about integration of our operators into the 

evolutionary computation, we need to use some of the known techniques for 

evolutionary TSP solving. There is a lot of EC1 papers focused especially on TSP. 

Many sophisticated operators are developed and tuned to get the best results from the 

EA2. Despite this, we get by with very basic and simple operators. It will be enough to 

show the principle and we believe that with the more sophisticated operators would be 

the result only better. 

In our experiments, we use one type of genetic crossover and one type of 

mutation. The used crossover is going to be the OX (Ordered crossover) [17]. The 

mutation is a simple change of the Hamiltonian cycle. It removes one city from the 

sequence and inserts it between two cities that were originally immediately behind. 

The moved city and the target position are chosen randomly. 

 

Figure 27  Simple random mutation example. The chosen city is blue and its new predecessor is green. 

6.3.2. Cooperation 

Technically, we have available several operators for evolutionary TSP solving. 

Some of them are classical and some are the MCTS inspired3. The operators could be 

now put into the general evolutionary algorithm and the whole process could be 

started. However, we have one more improvement. 

                                                 
1 Evolutionary computation 

2 Evolutionary algorithm 

3 The MCTS inspired are all the operators introduced in this thesis (in chapter 4) – all three 

levels. 



 62 

The cooperation among the operators is not complete yet. A classical operator 

can get as an input an individual that was produced by a MCTS operator. The classical 

operator changes it and can improve it. On the other hand, the only input registered by 

the MCTS operators is the gain information, which is based on the individual that was 

just produced by the actual operator. Hence, the operators developed by us cannot 

gather any information from other operators’ products. 

There is one simple solution for the cooperation problem. All the MCTS 

inspired operators have something in common. When they produce an individual, they 

compute the gain of the particular individual and register it (the gain) in their inner 

data structures (single UCB selectors, conditional selectors, local trees). This gain 

registration we now apply on all the individuals that will be produced by any of the 

operators in the EA set. This will bring more information into our MCTS operators 

without any additional expenses (except the gain computation and registration). At this 

point, the cooperation among the operators is complete. 

6.3.3. Measuring 

We find the complete cooperation EA very promising because this is the place 

where two different approaches meet. To verify our beliefs we are going to do some 

experiments. We are going to compare all levels of our direct operators with the 

classical evolutionary TSP solution1 and moreover, we are going to measure the 

improvement of the full cooperation. 

                                                 
1 The implemented basics 
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Measuring 15 Evolutionary TSP compare and cooperation 

TSP instances: Random 15 (all levels), Random 100 (only levels two, three) 

Number of generations: 800 (level one), 200 (levels two, three) 

Population size: 40 

Selection: Tournament, winner proceeds prob. 0.9 

UCB exploration constants: 2.00 (levels one, two), 0.40 (level three) 

UCB initialization: 0.5 

Operator: Direct single allele selecting / Direct conditional / Direct local trees 

+ OX (prob. 0.8), Random mutation (prob. 0.6) 

Gain computation: Prefer seen interval 

Local trees maturity threshold: 3 

Local trees size limit: 
𝑁

4
 

 

Figure 28  Measuring 15 Evolutionary TSP compare and cooperation – Avg. histogram of the best in generation, 

Direct single allele selecting 

The first part of the measuring using only the level one operator brings very 

good news. Already the level one operator shows better results development than the 

basic evolutionary approach. What is more, the cooperation indeed improves both 

techniques, which is a great outcome. Let us see how what will be the effect in the case 

of the level two and three operators. 
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Figure 29  Measuring 15 Evolutionary TSP compare and cooperation – Avg. histogram of the best in generation, 

Direct conditional, Direct local trees; Random 15 

The results are perfect in the case of the higher levels operators too. We can 

observe how the performance of any of the methods increases when we are using the 

cooperation. 

On the box plot charts, which are attached on the CD with other measuring 

outputs, we can see the possible explanation of this success. Although we have tuned 

the exploration constant for the best results, the dispersion of the population generated 

by our operators is smaller than in the case of classical evolutionary TSP approach1 or 

the cooperation mode. Hence, the classical operators help us mostly with the 

exploration part. They search the possibilities that the given system of UCB selectors 

did not yield yet. Our operators then get a broader view earlier than they would create 

it by themselves. As a consequence, this symbiosis works very well. 

                                                 
1 With little higher mutation and crossover probabilities than commonly used. 
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7. Performance tests 

In the previous text, we have showed that our operators can converge toward 

the fitness function (look for the lowest values). We have also tuned their parameters 

and applied several improvements. In chapter 6.3 we have compared our operators 

with the basic classic genetic operators for TSP. There we have also found out that the 

cooperation of our operators and the classical ones brings better results earlier1 than 

the any of the separated runs. 

In this chapter, we are going to test whether our approach can handle larger 

TSP instances than the base ones that were used previously. We are also going to 

compare the results with other non-evolutionary heuristic approach. Then we are going 

to check the time requirements of each type of our smart (unusually complex) 

operators. At the end, we are going to test other TSP types than the general random 

graphs. 

The result quality will be compared with non-evolutionary heuristic method: 

greedy algorithm. We have prepared two versions of the greedy algorithms (Grd1, 

Grd2). The Grd1 algorithm works as follows: 

1. Start with one vertex. 

2. Choose pair (𝑣, 𝑖) that minimizes the result cycle weight increase. Where 𝑣  is 

one of the unused vertices and 𝑖 is the 𝑣’s target position in the result 

permutation (𝑁2 minimization step). 

3. Repeat step 2 until the full permutation is built. 

On the other hand, the Grd2 algorithm is simpler: 

1. Start with one vertex. 

2. Choose the nearest unused neighbor as the successor. 

3. Repeat until the Hamiltonian cycle is built. 

7.1. Various problem sizes 

In the following experiments, we check whether our approach can even 

compete with the greedy algorithms. We test it on various problem sizes. 

                                                 
1 In the generation number meaning. 
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Measuring 16 Various sizes 

TSP instances: Random 15, 30, 50, 80 

Number of generations: various 

Population size: 40 

Selection: Tournament, winner proceeds prob. 0.9 

UCB exploration constants: 2.00 (levels one, two), 0.40 (level three) 

UCB initialization: 0.5 

Operator: Direct single allele selecting / Direct conditional / Direct local trees 

+ OX (prob. 0.8), Random mutation (prob. 0.6) 

Gain computation: Prefer seen interval ^ 4 

Local trees maturity threshold: 3 

Local trees size limit: 
𝑁

4
 

 

Figure 30  Measuring 16 Various sizes – Avg. histogram of the best in generation, Random 15 

We can see that only 45 generations are enough for the best cooperation to beat 

the better of the greedy algorithms. What is more, the chart above shows the average 

results. The Figure 31 recorded during the fifth run shows that the local trees operator 

in cooperation with classic evolution overtook Grd1 algorithm in the 22. generation. 

When we continue the evolution, other lines cross the yellow base. After 450 

generations, only the lines DCond only and DSAS only did not overtake the greedy 

result. The chart is of course available on the attached CD. 
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Figure 31  Measuring 16 Various sizes – The best found solution, Random 15 

The larger inputs do not significantly change the general behavior. However, a 

few new observations can be made. As we can see on Figure 32, the distance between 

the Tree & EA and the other methods is even more significant than it was at the 

smaller input. In addition, the rest cooperative methods are more competitive than they 

seemed to be at the smaller inputs. On the other hand, the level one and level two 

operators separately do not bring good results. They would need a lot more generations 

or maybe different setting. 
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Figure 32  Measuring 16 Various sizes – Avg. histogram of the best in generation, Random 50 

In the experiments with the higher input sizes, we have found out, that one of 

the parameters shows different characteristics than we have expected. It was the gain 

computation. When we introduced the gain computation in chapter 6.1, the tests 

showed that the all of the improved1 techniques have a very similar characteristics. 

The larger inputs showed that the difference among the techniques does not appear 

until the increase of the fitness dispersion. The quartic extension of the “Prefer seen 

interval” has turned to be a very good approach and so we have used it for the final 

measuring and the charts above. 

The tests, made on the larger inputs, also showed, that the needed number of 

generations grows very fast. We used quadratic determination (#𝑔𝑒𝑛 = 𝑁2), which 

did not turn out as sufficient. The input Random 50 is the last one where we reached 

the greedy algorithms’ results. Nevertheless, we would not recommend setting higher 

number of generations. We would rather suggest using any problem specific heuristics 

or some advanced classical TSP operators in cooperation with the MCTS-inspired 

operators. The reason is the high time spending, which we are going to look onto in 

the following chapter. 

                                                 
1 All the computations suggested as an improvement in chapter 6.1. 



 69 

7.2. Time complexity 

We saw that our approach can bring nice results, but as the input size increases, 

the needed generations count is growing very fast. Nevertheless, the number of 

generations is not very practical information. We have not yet outlined how increases 

the actual time spending, which is very important for the potential user. 

7.2.1. Time spending per generation 

In order to get an overview about the operators’ time complexity, we have 

prepared a special experiment. We run our operators separately for the same amount 

of generations. We repeat this on various input sizes. Each run is measured by 

stopwatch and the result time is divided by the number of generations. As a result, we 

get the average generation duration per operator and input size. The time results we 

compare also with the classical operators for TSP. 

Measuring 17 Time spending 

TSP instances: Random 15, 30, 50, 80, 100, 500 

Number of generations: 200, 400 

Population size: 40 

Selection:  None (MCTS operators), Tournament, winner proceeds prob. 0.9 (classical operators) 

UCB exploration constants: 2.00 (levels one, two), 0.40 (level three) 

UCB initialization: 0.5 

Operator: Direct single allele selecting / Direct conditional / Direct local trees 

/ OX (prob. 0.8), Random mutation (prob. 0.6) - EA 

Gain computation: Prefer seen interval 

Local trees maturity threshold: 3 

Local trees size limit: 
𝑁

4
 

  Time per generation [ms] 

Generations Operators\Size 15 30 50 80 100 500 

200 

DSAS 0.63 1.08 2.46 5.85 8.81 197.43 

DCond 0.46 1.26 2.73 6.76 10.18 218.33 

DTrees 5.96 5.82 10.31 19.66 29.05 691.00 

EA 0.88 0.90 1.14 1.55 1.76 9.97 

400 

DSAS 0.39 1.05 2.43 5.68 8.56 197.90 

DCond 0.47 1.19 2.93 7.02 10.41 196.21 

DTrees 4.28 5.56 9.43 17.92 28.23 643.04 

EA 0.73 0.89 1.16 1.53 1.83 9.98 
Table 2  Measuring 17 Time spending – Time per one generation 

At the first sight, it is obvious that our “smart” operators spend much more time 

than the classical evolutionary approach. Naturally, the fastest-growing time spending 

is caused by the local trees operator. This shows that our operators are not very time 

efficient. We think that this could be changed by some implementation optimizations. 

Our implementation is not primarily aimed at efficiency; our implementation is more 
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illustrative and tries to help understand the principles of our algorithms. However, 

since our operators are “smart”, memetic and Lamarckian, their time efficiency will 

be generally always worse than the classical simple evolutionary operators will. 

7.2.2. Actual performance 

As we have found out in the previous experiment, our “smart” operators spend 

much more time for one generation than the classical evolutionary TSP approach. The 

potential end-user does not care about the number of generations or how long one 

generation takes. The end-user compares the methods by the ratio between the result 

quality and total time spent. This ratio means the actual performance of the approach. 

To provide this type of comparison, we perform the next measuring. 

We fix an absolute time limit for the run and we compare the results achieved 

by the various methods right in the time limit. The limit is of course the same for all 

the methods. 
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Measuring 18 Performance in limited time 

TSP instances: Random 15, 30 

Time limit: 5𝑁2 milliseconds 

Population size: 40 

Selection:  Tournament, winner proceeds prob. 0.9 

UCB exploration constants: 2.00 (levels one, two), 0.40 (level three) 

UCB initialization: 0.5 

Operator: Direct single allele selecting / Direct conditional / Direct local trees 

/ OX (prob. 0.8), Random mutation (prob. 0.6) – EA / combinations 

Gain computation: Prefer seen interval ^ 4 

Local trees maturity threshold: 3 

Local trees size limit: 
𝑁

4
 

 

Figure 33  Measuring 18 Performance in limited time – Avg. histogram of the best in generation, Random 301 

This experiment is the most interesting in this paper. It brings the full and clear 

overview of all the mentioned operators and their combinations. 

The number of samples (horizontal axis) shows the number of generations that 

each of the methods did reach. It totally corresponds with the results of Measuring 17 

Time spending. Only the usages of our operators singly could reach more generations 

than they did. The reason of their slowdown is the used Tournament selection, which 

was pointless because the single operator produces the same number of children as it 

                                                 
1 This experiment cannot be measured repeatedly and then averaged. The reason is that other 

runs could reach different number of samples (generations). The shown graph type is “Avg. 

histogram of the best in generation”, but the actual average is always from one record in this 

case. The whole measuring was, of course, done more than one times. The results are on the 

attached CD. 
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was in the previous generation. On the other hand, the Tournament selection was used 

in all the measured methods; hence, the results are fair. 

The only run that beats the greedy algorithms in the chosen time limit is the 

direct local trees operator in cooperation with the classical evolutionary TSP. This 

method also reached the lowest number of generations. This shows us that the “smart”1 

and slow operators could be very efficient. It also again proves how advantageous is 

the cooperation approach. 

7.3. Special TSP types 

All the experiments, which we have made, use generic random TSP inputs. If 

we look at real problems in practice, we could find out, that the graphs are not 

completely random. They satisfy several conditions and various practical applications 

of TSP contain only graphs from special classes. For instance, the triangle inequality 

is the one of the usual graph’s attributes. 

If there is some special class of graphs expected, the solving algorithm can use 

more specialized heuristics. There are also classes where a specialized efficient 

algorithm can find the optimal solution or at least the solution with constant ratiometric 

error. 

Our operators do not use any class-specific heuristics. So, we are going to find 

out whether they work on the special TSP inputs too and whether their characteristics 

will change. The inputs in these experiments were already described in the chapter 

5.1.2. 

                                                 
1 The smartness is redeemed the grater memory allocation. The learned information makes the 

operator smart. 
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Measuring 19 Special TSP types 

TSP instances: Triangle unequal 15, 30, 50, Grids 5x3, 6x5, 10x5 

Number of generations: various 

Population size: 40 

Selection: Tournament, winner proceeds prob. 0.9 

UCB exploration constants: 2.00 (levels one, two), 0.40 (level three) 

UCB initialization: 0.5 

Operator: Direct single allele selecting / Direct conditional / Direct local trees 

+ OX (prob. 0.8), Random mutation (prob. 0.6) 

Gain computation: Prefer seen interval ^ 4 

Local trees maturity threshold: 3 

Local trees size limit: 
𝑁

4
 

 

Figure 34  Measuring 19 Special TSP types – Avg. histogram of the best in generation, Triangle unequal 50 

If we compare the result charts of the Triangle unequal or Grid inputs with the 

Random input of the same size, we see very similar developments. The only slight 

difference can be observed on the lines’ slope. It seems to be little bit less steep at the 

special TSP types. This could mean, that our approach has a little bit greater tendency 

to get stuck in a local optimum at this TSP types. That can be caused by the special 

graph conditions that can produce more different solutions with a very similar weight. 

For example, the Grid inputs have many symmetrical solutions. 

The slow convergence and local optimum problem could be prevented by 

setting higher exploration constant. However, we think that the higher exp. constant 

would not help a lot. Much better would be some symmetry breaking modification of 

the whole method, or some heuristic helper in our operators. The heuristics could be 

applied inside the gain computation for instance. 
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Especially in the case of the Grid instances, the results are very similar to 

Random inputs as well. When the specified number of generations is enough, our 

method is able to find even the optimal solution. 

 

Figure 35  Measuring 19 Special TSP types – The best found solution, Grid 5x3 

On Figure 35 we can see that the direct single allele selecting operator and 

direct local trees operator, both in cooperation with the classical evolutionary 

approach, found the optimal solution (15 + √2) very quickly. The greedy algorithm 

Grd1 found the optimal solution as well. 
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Conclusion 

This thesis brought a problem solving method, which is based on the 

combination of the two different techniques: Monte Carlo Tree Search and 

Evolutionary algorithms. This method is divided into six versions (three levels, each 

level with two approaches). For every version, the best-found parameters 

configuration and setting was mentioned. As the better approach turned out to be the 

direct variant. Unsurprisingly, the best results are yielded by the most complex variant 

– direct local trees operator. 

The greatest success of this thesis is the cooperation mode, where the direct 

versions of our operators are collaborating with the classical evolutionary operators 

for TSP. This cooperation produces better results than any of its parts separately. Even 

in the same absolute computation time. 

Advices for potential use 

Our method is designed to be able to be used wherever the classical genetic 

evolutionary algorithm can be used. The only thing that is required is the data 

representation in a finite vector (chromosome) where each component (allele) is filled 

by an element from a finite domain. The possible constraints among the alleles can be 

solved by one of the proposed approaches: repaired or direct. The experiments showed 

that the direct variant is more powerful. However, there can be possible applications 

where the direct variant would be very hard to implement. 

Many performed experiments showed that the best-found parametrizations and 

settings are very influenced by the input and by the fitness function computation and 

dispersion. For the potential application, we suggest to take some sample group of the 

possible inputs and do the parameters tuning again. The finally chosen setting can 

differ from the one that was proposed by this thesis. We also admit that it could be 

possible to find better settings than we did on the same inputs. The number of 

combinations is very large and we could not try all of them. 

Future work 

To obtain better results than we did, there are a lot of possible improvements 

of our methods. As we already did mention in the text of this thesis, there can be used 
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some problem-specific heuristics in our method. One of the possible places for a 

heuristics placement is the gain computation.  

Another possibility for enhancing the performance is the usage of other 

classical operators for evolutionary TSP solving. In general, the more or the better 

operators will be used in the cooperation, the smarter the MCTS operators will get. 

Very interesting would be to use evolutionary operators that use different data 

representation of the individual. These operators could help with the exploration in the 

directions, which the original representation is not easy to transform towards. Of 

course, the both-way individual conversion is needed. Actually, this is exactly what 

we implemented for the purpose of using the OX crossover. Therefore, we suggest 

trying to combine and to cooperate with other unusual representations. 

Another space for possible development is in the MCTS operators’ core. There 

are a lot of papers enhancing Monte Carlo Tree Search. Using some of the 

enhancements could bring again better results. Very interesting would be for example 

an integration of RAVE technique for MCTS [18] into our operators. 
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Attachments 

There is a CD attached to this thesis. It contains: 

 The electronic version of this text (PDF file). 

 All experiments’ output charts (EMF files) and tables (CSV files).  

 Source codes of our example implementation and of all experiments. 

Implementation 

The example implementation, which is created according to this text, is 

programmed in C# language for .Net Framework 4.5.1. On the CD is situated the 

whole Visual Studio solution package that contains libraries for EA, MCTS and our 

method. The solution also contains one executable application “Sandbox”. Sandbox 

can be used for running all the experiments that were performed for this thesis or it 

can be simply reprogrammed to do more experiments. The Sandbox application also 

contains the App.config file where the output settings can be changed without 

programming. 

Most of the libraries also contains a variety of unit tests. 

VS solution structure description 

 EvolutionLibrary 

o Library for the Evolutionary algorithm framework contains generic 

interfaces for population, individuals, operators, selection, etc. 

o Also contains base implementation of evolutionary TSP approach. 

 MonteCarloTreeSearchLibrary 

o Library for the MCTS integration. Contains UCB selector, UCB trees 

classes and the expansion or initialization logic. 

 SharedFramework 

o Common library used across the solution. 

 StoredTSPInstances 

o Repository of the saved TSP instances used in our experiments. 

 TSPGeneticSolution 

o The implementation of our method – the MCTS-inspired operators. It 

also contains the gain computation classes, etc. 
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 TSPLibrary 

o Library for generating, saving, loading or working with the TSP 

instances. 

 Sandbox 

o Application for experiments and testing. Contains output saving, 

multiple test scenarios combinating. 

o StoredMeasuringBudgets 

 Stored configurations of all the experiments done in this thesis. 
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Implementation main classes inheritance diagram 



 


