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opening the molybdenum capsules. One part of thanks belongs to Mgr. Lukáš
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byla změřena prášková difrakce a EXAFS. Na monokrystalických vzorćıch byly
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Introduction

Heusler alloys are named after their discoverer - german geochemist Friedrich
Heusler, who has discovered them at the turn of the nineteenth and twentieth
century. Heusler found [1] that manganese forms ferromagnetic compounds with
some metals, although none of elements in the compound is ferromagnetic itself.

Nowadays, we take Heusler alloys as ternar compounds of selected elements
and we distinguish two main groups according to a stoichiometry: full-Heusler
alloys with the stoichiometry 2:1:1 and half-Heusler alloys with the stoichiome-
try 1:1:1. These alloys are often investigated for their various properties. For
example, the work [2] describes all important fundamentals of these compounds.
Heusler alloys can exhibit a number of interesting properties, such as a magnetic
shape memory [3, 4, 5] or a superconductivity [6]. Full-Heusler alloys are used
for a fabrication of monochromators in neutron diffraction [7], where we apply
the diffraction 111 in a parent Heusler phase. Half-Heusler alloys are used mostly
as semiconductors. We can observe the properties, which are analogical to topo-
logical insulators, on them [8]. Heusler alloys are investigated for their spintronic
behaviour [9, 10].

The properties of Heusler alloys are strongly dependent on their structure.
Band structure calculations show that already small amounts of a disorder within
a distribution of the atoms on atomic sites cause distinct changes in an electronic
structure [11]. This is the reason, why the proper examination of a structure is
really valuable. In this thesis, I deal with the structure of some Heusler alloys
and I study their structure with x-rays.

The first object of interest is an examination of the possible occupation disor-
der in specified Heusler alloy. The powder samples of the series Mn2Co1−xRhxSn
have been chosen as representative specimens. These series have been studied
previously for their magnetic properties (see [12]), where the autors investigated
the increase of Curie temperature because of doping. Mn2CoSn has been anal-
ysed in [13] to obtain its electronic, magnetic and structural properties. I study
these samples with powder diffraction and EXAFS to obtain some information
of the possible occupation disorder. In the case of powder diffraction, information
is obtained by the fitting of diffraction patterns and by the fitting of correspond-
ing integrated intensities to their theoretical values. In a theoretical formula for
the integrated intensities, the structure factor plays an important role, because it
includes information about occupation of each site in the unit cell. Therefore, an
own script for generation randomly disordered unit cells and for the subsequent
fitting has been written.

EXAFS was chosen as another method to determine possible occupation dis-
order. EXAFS is a spectroscopic method, which is based on the absorbtion and
scattering of x-ray radiation by individual atoms and it is very sensitive to a local
structure in the closest neighborhood of specified atom. Because of an unique
electronic structure of each element, this method should be able to distinguish
between individual types of atoms, which sit in the unit cell. The EXAFS will be
measured on the specified samples from the series Mn2Co1−xRhxSn in a powder
form. Because of a presence of Co and Mn atoms in the samples, EXAFS spectra
will be measured on CoK and MnK absorption edges, which are well accessi-
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ble with synchrotron radiation. The proccessing of the measured data will be
done with the set of programs Demeter [14], which includes scripts for ab initio
multiple scattering calculations and the subsequent fitting.

Next task is a study of specified Heusler alloy in a single-crystalline form.
Ni2MnGa was chosen as a suitable specimen. Recently, this material is well stud-
ied, because it is one of the few members of shape memory Heusler alloys. This
material has several structure features such as the twinning and the modulation
in the structure, which should be well visible by single-crystal diffraction. Up
to now, the structure of the Ni2MnGa has been studied mostly with powder
diffraction. For example, [15] deals with the modulated structure measured by
high-resolutin x-ray powder diffraction, or [16] deals with the martensite transfor-
mation studied with powder diffraction as well. Beside this, there are few articles,
which deal with single-crystal diffraction on it (see [17] for instance). Because
the properties of Ni2MnGa are well tunable by its composition, it is worth to study
the structure of each sample. Only a small difference from the 2:1:1 stoichiometry
leads to a distortion of the basic structure - however the parent phase is cubic,
the distortion may lead to a tetragonal and even monoclinic structure.

An examination of Ni2MnGa is performed by high-resolution reciprocal space
mapping on CuKα wavelength. The structural features mentioned above should
lead to extra diffraction spots in the measured reciprocal maps. We are able
to determine their origin from their positions in reciprocal space. The twinning
should lead to more than one diffraction spot close to the expected diffraction
coordinates. Beside this, the modulated structure should lead to the diffraction
spots with non-integer indices. Because of the mentioned martensite transfor-
mation, high-temperature diffraction measurement was performed. The change
of the structure should lead to a disappearance of diffraction peaks belonging
to a low-temperature phase and an appearance of peaks belonging to a more
symetric cubic high-temperature phase. The temperature of the transition and
possible hysteresis should be well visible.

The original plan included a study of Mn2Co1−xRhxSn single-crystalline thin
layers by diffuse x-ray scattering, but we were not able to prepare required spec-
imens. Therefore, I have focused on a study of powder samples and additional
experimental method has been chosen to study their structure (EXAFS men-
tioned above).

This work is divided in several chapters. In the first chapter, I briefly in-
troduce Heusler alloys, their possible applications and especially the structure
of their parent phase. One section in the first chapter is devoted to the occupation
disorder. The second chapter is devoted to theoretical basics and several formu-
las of the experimental methods, which will be necessary to know for following
proccesing of the measured data. Other chapters are devoted to the individu-
al experimental methods and their results. The results from EDX and powder
diffraction on the series Mn2Co1−xRhxSn are shown in the third chapter. Next
chapter shows the results from EXAFS measurement. The final fifth chapter is de-
voted to single-crystal diffraction measurement on the sample Ni2MnGa. There,
I show the results from room-temperature and high-temperature measurement.
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1. Fundamentals of Heusler alloys

1.1 Structure of the Heusler parent phase

Generaly, Heusler alloys are divided into two main groups according to the sto-
ichiometry: full-Heusler alloys (the formula X2YZ) and half-Heusler alloys (the
formula XYZ). The letters X, Y and Z describe some of selected elements from
the periodic table. In Figure 1.1 the periodic table is depicted and the most
common elements X, Y and Z are shown with a color difference. As one can see,
the Z elements are always from the right hand side of the table (half-metals).
The element X is mostly one of the transition metals and the Y element can be
one of the wide range of metals.

The basic structure of Heusler alloys is cubic. Structure of half-Heusler alloys
can be described with a combination of the ZnS-type and the NaCl-type of struc-
ture - the X element sits then in octahedral sites. This structure can be described
with the space group F 4̄3m (n. 216) and the atoms sit in these Wyckoff positions:
X in 4c

(

1
4
, 1
4
, 1
4

)

, Y in 4b
(

1
2
, 1
2
, 1
2

)

and Z in 4a (0, 0, 0). Corresponding unit cell
is depicted in Figure 1.2a.

Structure of full-Heusler alloys can be described with four interpenetrating
fcc lattices. For an interpretation of the symetry we can choose the space group
Fm3̄m (n. 225) and the atoms lie in these Wyckoff positions: X in 8c

(

1
4
, 1
4
, 1
4

)

,
Y in 4b

(

1
2
, 1
2
, 1
2

)

and Z in 4a (0, 0, 0). But we can have another type of structure.
If the atom X is more electropositive than Y we obtain the inverse structure (in
case that X and Y are from the same period, X has smaller atomic number).
The inverse structure looks like that one half of the X atoms from 8c position
swap his position with the Y atoms in 4b - the inverse four-fold axis occurs. This
structure can be expressed again with the space group F 4̄3m (as in the case

Figure 1.1: This figure is taken from [2]. The picture shows the most common
elements used in the Heusler alloys. The X elements are labelled with red color,
the Y element with blue one and the Z elements in green one.
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(a) half-Heusler (b) full-Heusler (c) inverse full-Heusler

Figure 1.2: The structure of Heusler parent phase. The colors correspond
to the colors in Figure 1.1.

with half-Heusler alloys) and the atoms X(1), X(2), Y and Z occupy the Wyckoff
positions 4d

(

3
4
, 3
4
, 3
4

)

, 4c, 4b and 4a respectively. Both of these structures are
shown in Figure 1.2b and 1.2c.

The structures described above are basic and they could be distorted due
to a chemical composition, dopants and other effects. The most common effect
might be a disorder of the atoms. For example, if the atomic numbers of the ele-
ments X and Y are similar, they can occupy mutually their positions in the unit
cell. We observe four basic types of an occupation disorder, which are shown and
characterized for example in [2]. Also, we can observe a tetragonal distortion.
It can be frequently observed in compounds Mn2YZ. In several cases, hexagonal
analogues of Heusler alloys can be found, for instance in the compounds XYZ
with X = RE (rare earth).

1.2 Disorder phenomena

As mentioned, we can observe several types of the occupation disorder in Heusler
alloys. Previous research and band structure calculations show that already
small amounts of disorder within a distribution of the atoms on the atomic sites
lead to distinct changes in an electronic structure, and corresponding changes
in their magnetic and transport properties [11]. Here, I will describe briefly some
of the common types of the occupation disorder, which are typical for full-Heusler
compounds.

If the Y and the Z atoms are evenly distributed, their positions in the lattice
become equivalent. This leads to the CsCl-type of disorder. As a consequence
of this, the symmetry is reduced and the resulting space group is Pm3m. In
the other case, if we have a random distribution of X and Y or X and Z, the BiF3-
type of disorder occurs. This leads to the space group Fm3m. Other type
of the occupation disorder, the NaTl-type, is observed very rarely. Here, the X
atoms, which occupy one of the fcc sublattices, are mixed with the Y atoms,
whereas the X atoms on the second sublattice are mixed with the Z atoms. The
corresponding space group is then Fd3m. In a contrast to the previous partial
occupation disorder, all positions become equivalent in the W-type of disorder
and the symmetry is reduced to Im3m. These types of disorder are depicted
in Figure 1.3.
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X

Z

Y

(a) BiF3-type of disorder

X

Z

Y

(b) CsCl-type of disorder

X

Z

Y

(c) NaTl-type of disorder

X

Z

Y

(d) W-type of disorder

Figure 1.3: The types of the occupation disorder in the full-Heusler alloys

disorder sp.group siteX occX siteY occY siteZ occZ
CsCl-type Pm3m 8g 1 1a,1b,3c,3d 1

2
1a,1b,3c,3d 1

2

BiF3-type Fm3m 4b,8c 2
3

4b,8c 1
3

4a 1
NaTl-type Fd3m* 8a 1 8b 1

2
8b 1

2

W-type Im3m 2a,6b,8c 1
2

2a,6b,8c 1
4

2a,6b,8c 1
4

Table 1.1: Atomic sites occupied by individual types of the atoms in the types
of fully disordered structures. siteX means the atomic site which is occupied
by the atom X, occX is the corresponding occupation number. *the first choice

of the origin

If we have a completely distorted structure with respect to an occupancy, we
can compute the occupation numbers of the individual atoms as a probability
that we would find individual atoms at these sites. There is a list of the atomic
sites and the occupation numbers in Table 1.1. In an example, one can see
[19] for the complex information about the space groups, atomic sites and their
coordinations.
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Figure 1.4: Ordering of magnetic moments in the spin valve.

1.3 Application of the Heusler alloys

Heusler alloys have plenty of interesting properties and due to that they can have
a lot of possible application. Some of the material properties can be roughly
predicted due to the rules of a number of the valence electrons. For instance, if
half-Heusler compound has 18 valence electron per unit cell, it is semiconductor.
We can apply similar rule to full-Heusler compounds, but with the 24 valence
electrons. Obviously, there are several exceptions - for example if we have a com-
pound with manganese or if a tetragonal distortion in the structure is present.
Some works such as [2, 20, 21] can be read for other information. I will introduce
briefly some interesting groups of Heusler alloys in the following section.� compounds suitable for spintronics - The spintronics took its impor-

tant place in the information technology after the discovery of giant mag-
netoresistance (GMR). Today, we are in daily contact with spintronics,
in form of spin valves based on GMR effect, which are used in magnetic
hard disk drives. There is such a spin valve in Figure 1.4. In that device,
two magnetic layers sandwich a very thin non-magnetic layer (spacer). If
a magnetization of both ferromagnetic layers is aligned in parallel direction,
the resistance of the device is low (the electric current can flow trough, it
means logical 1), whereas a high resistance is present, if the ferromagnetic
layers are aligned antiparallely (logical 0). The resistance of the valve can
be tuned with a thickness of the spacer or with an external magnetic field.

Figure 1.5: The picture is taken from [2]. There is a comparison of the band
structure of HgTe and half-Heusler alloy ScPtBi in this figure.
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The materials, which is suitable for spintronics, must have high spin po-
larisation, high Curie temmperature and their possible atomic disorder has
to be well controllable.� shape memory alloys - Today, the most intensively studied system is
Ni2MnGa. This kind of alloys exhibits well tunable properties, which can
be reached due to the change in a composition. Curie temperature TC and
the temperature TM (temperature of the transition to a low-tamperature
structure martensitic phase) are two of them. The twinning may occur
in these systems as well. Their application takes place in the actuator
devices, because strain of these alloys can be well controlled by an external
magnetic field. Also, a magnetic field can easily shift their twin boundaries.� superconductors - The family of Heusler compounds includes not on-
ly metallic and semiconducting materials, but superconducting compounds
as well. Pd2RESn was the first discovered superconducting Heusler alloy.
However, several other superconducting Heusler compounds have been dis-
covered, their critical temperatures are too low from an application point
of view. Heusler superconductors have to fulfill the condition of the van Hove
singularity, which should be close to the Fermi energy [2, 22] and they have
to have 27 valence electrons per elementary unit (similar rule like that
one for Heusler semiconductors mentioned above). An interesting thing is
that for RE containing compounds, a coexistence of superconductivity and
a magnetically ordered state has been reported [23].� thermoelectric materials - A thermoelectric device creates voltage when
there is a difference in temperature between its individual sides. Converse-
ly, when we apply a voltage to it, the temperature difference occurs. As
said, half-Heusler compounds exhibit semiconductor properties. It is seem-
ingly possible to dope individual sublattices to optimize the thermoelectric
properties. For example, we could vary the number of charge carriers by
doping the sites with Z element, and simultaneously introduce disorder by
doping the X and Y position. This should lead to a mass fluctuation and
decrease of a thermal conductivity. Up to now, n-type TiNiSn-based com-
pounds have been most intensively investigated, but recently great progress
was made for p-type TiCoSb-based materials as well.� topological insulators analogues - To design a topological insulator we
need a direct band gap at the center of the Brillouin zone - Γ point is fa-
vorable [24]. It is worth to mention that the name topological insulators is
slightly misleading - the systems are, in fact, low band gap semiconductors
such as Bi2Te3 (300 meV) or even zero band gap semimetals such as HgTe.
There is a comparison of the band structure of the HgTe and ScPtBi in Fig-
ure 1.5. The properties of Heusler topolocial insulators can be tuned with
a strain or with a composition.
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2. Theory of experimental
methods, samples preparation

2.1 Theoretical principles of the used experi-

mental methods

An examination of samples with x-rays has a wide range of use. One can use for
example x-ray diffraction (XRD) to obtain basic geometry of the lattice, x-ray
photo-electron spectroscopy (XPS) to obtain some information of energy levels,
energy-dispersive x-ray spectroscopy (EDX) is used for the elemental analysis or
a chemical characterization of the samples or for instance we can choose extended
x-ray absorption fine structure (EXAFS) to obtain some information of the near-
est atom neighborhood. I will describe the methods, which I have used, in the fol-
lowing section.

2.1.1 Single crystal diffraction

XRD is analogical to the diffraction on the grid in the visible region of a light.
Because typical atomic distances in solids are in the order of 10−10 m = 1 Å,
we need to use a light with a comparable wavelength. In a laboratory, we use
a copper lamp mostly and x-rays, which it emits, have a typical wavelength
λCuKα = 1.54056 Å.

Let us consider the scattering of a monochromatic plane wave on a crystal.
The atoms scatter x-rays and there a path difference occurs between each two
beams, which are scattered by neighboring planes of the atoms. An interference
of the individual scattered beams leads to the diffraction. There are several ways
how to describe the conditions of the diffraction. The basic formula is so-called
Laue condition:

~Q = ~kf − ~ki = ~Ghkl (2.1)

where ~Q is the scattering vector, ~kf is the wave vector of the scattered beam,
~ki is the wave vector of the incidence beam and ~Ghkl is a reciprocal lattice vector.
If the Laue condition is fulfilled and the angle between the primary beam and
the outline of planes (hkl) is Θ, the same angle must be between the outline and
the diffracted beam. This situation can be described with the Bragg equation:

2dhkl sin Θ = λ (2.2)

where λ is the wavelenght of x-rays and dhkl is the interplanar distance
of the outline of planes (hkl) (it has a relation to ~Ghkl). The h, k, l are indices

of the diffraction here, so it indicates that ~Ghkl points to some reciprocal lattice
point and the indices h, k, l have not be relatively prime integers. As one can see,
the angle 2Θ is the angle between the diffracted and the primary beam. It can be
derived from the relation between the reciprocal lattice vector and the interplanar
distance and from the Equation 2.2 that norm of the scattering vector is:
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∣

∣

∣

~Q
∣

∣

∣
=

4π

λ
sinΘ (2.3)

Another description of the conditions of the diffraction is so-called Ewald
construction (see [25] or [26]).

x

z y

2Θ

Figure 2.1: A scheme of an experimental arrangement of the diffraction experi-
ment

A basic view of an measurement of the single-crystal diffraction is scanning
of reciprocal space with positioning the detector and the sample, which is a sin-
gle crystal. There is a scheme with the basic arrangement of the experiment
in Figure 2.1.

The integrated intensity obtained from a mosaic single-crystal can be derived
in the form:

IMint =8π3 |A|2 |F ~G|
2 e−2M S

2Qi,z

(

1− e−2Qi,zT
)

Qi,z =Kβ

(

1

sin (ω)
+

1

sin (2Θ− ω)

)

|A|2 =
∣

∣

∣

∣

Prel
eiKR

RVC

∣

∣

∣

∣

2

I0

(2.4)

where F ~G
is the structure factor, e−2M is the overall temperature Debye-Waller

factor, which includes the decrease of the intensity due to thermal fluctuations
of the atoms, S is the irradiated area of the sample, T is the width of the sample
(in most cases of x-ray experiments is the term e−2Qi,zT negligible and we use
T −→ ∞) VC is the volume of the elementary unit, rel the classical electron
radius, P is the polarisation factor, K is the norm of the wave vector, β is
the imaginary part of the refraction index. R is distance of the detector from the
sample and I0 is the intensity of the primary beam.

The values of 2Θ and ω are taken as the angular coordination of the diffraction
maximum (the effect of the absortion correction is practically constant within the
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integration of the intensity around one diffraction spot). The value of the polar-

isation factor can be computed as P = 1+cos(2ΘM ) cos2(2Θ)
1+cos(2ΘM )

, where ΘM is a charac-

teristic value of a monochromator (ΘM is the Bragg angle of the used diffraction
on a crystal in the monochromator). The value of S depends on a fact whether
the cross-section of the incident beam is smaller than sample or not. If the beam is
smaller, S = SB

sinω
, where SB is the cross-section of the incident beam. If the beam

cross-section is bigger than the sample, the whole sample is irradiated always.
The structure factor can be written in the form:

F ~G =
∑

j

(

fj (Θ) + f
′

j (λ) + if
′′

j (λ)
)

e−i~G·~Rj (2.5)

where the sum goes over all atoms in the elementary unit. fj , f
′

j and f
′′

is

the atomic scattering factor and its corrections respectively and ~Rj is the vector,
which points to the individual atoms in the elementary cell.

A shape of a diffraction spot in reciprocal space corresponds to the Fourier

transform of a crystal shape fuction Ω
(

~R
)

(Ω = 1 inside of crystal and Ω = 0

outside). If we have a small spherical crystal with the radius ρ, we can simply
derive that Fourier transform is:

ΩFT (q) = 4πρ3
sin (qρ)− qρ cos (qρ)

(qρ)3
(2.6)

where q =
∣

∣

∣

~Q− ~G
∣

∣

∣
and ~G means diffraction vector (it points to a center

of the diffraction spot). From previous, full width at highest maximum (FWHM)
∆q can be numericaly estimated [27] approximately as:

∆q ≈ 3.63

ρ
(2.7)

As one can see, FWHM is independent on the diffraction vector. This state-
ment will be valid in every case with a prefect crystal of any shape. Then, widths
of diffraction spots along individual directions in reciprocal space will be inversely
proportional to proportions of the crystal in direct space.

2.1.2 Laue method

This method is a basic way to obtain some information of a quality and of an ori-
entation of the crystal in our sample. X-rays are screened by a small circular slit
(diameter up to 1 mm) and they reach the sample in a goniometer. Diffracted
beams are registred on a plane film or a plane detector, which is in a distance
of 3-5 cm behind or before the sample (registration of the backscattered beams).

We use the whole spectrum of the wavelengths. Therefore, if the crystal
in the sample has a random orientation, the Equation 2.1 or 2.2 is fulfilled for
a lot of planes. If we want to interpret resulting Lauegrams, the diffractions
from the planes corresponding to the same zone play an important role. The
beams, which are diffracted by these planes, lay on a conical surface with the apex
in the center of Ewald sphere. The cone intersects the plane film around an el-
lipse (the film is behind the sample) or around a hyperbola (the film is before
the sample).
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We can use this fact to find important axes of the symmetry. Then, we can
rotate with the sample in the goniometer and set the important diffraction spot
to the center of Lauegram. As a result, we have set the orientation of the crystal
in the sample, because the corresponding crystallographic plane is perpendicular
to the primary beam then.

If our sample is a good polycrystal, we will see diffraction circles in the Laue-
gram instead of the discrete diffraction spots.

2.1.3 Powder diffraction (XPD)

Powder sample is a pollycrystall, which contains a lot of single-crystalline grains
with all possible orientations. Then, if we would scan reciprocal space properly,
we cannot see the discrete diffraction spots. Every diffraction, which has the same
corresponding 2Θ, will be merged to the one diffraction circle.

Now, we have two basic possible options to obtain the diffraction pattern.
One can do a symmetric 2Θ − ω scan (but we obtain only information from
the crystallites, which are oriented parallelly to the surface), or an asymmetric
2Θ scan with fixed ω angle, which is set to a small value. We can rotate the sample
around Φ axis (see Figure 2.1) as well to eliminate effects of a possible texture
(there can be some distribution of the orientation of the grains).

The resulting diffraction pattern contains an amount of information. From
positions of diffraction peaks we can obtain the geometry of the lattice, some
information of the macroscopic strain and qualitative information of the sample
too. Each material has an original diffraction pattern, so if the sample contains
more phases, the resulting pattern will be a superposition of the individual ones.

From the integrated intensities we can obtain some information about the struc-
ture of the lattice, some information of the texture and information for the quan-
titative phase analysis. The widths of the peaks contain information of the sizes
of the coherently irradiated crystallites and about the microstrain. From shape
parameters of the peaks we can obtain some information of the particle sizes and
of the types of the crystallographic defects.

The value of the integrated intensities depend on a plenty of factors. In my
work, it is suitable to work with the integrated intesities as the formula:

Ihkl = NV LP
∣

∣F 2
hkl

∣

∣mhklThkl (2.8)

where N is the scale factor, V is the volume of the elementary cell, L is
the Lorentz factor, P is the polarisation factor, Fhkl is the structure factor, mhkl

is the multiplicity of the diffraction and Thkl is the influence of the texture. Other
influences, such as the primary and secondary extinction, can be mostly neglected,
because the grains in the powder are really small - extinction effects may be
noticable in the nearly perfect or large mosaic crystals. In powder diffraction,
extinction effects are often smaller than experimental errors.

For the powder diffraction experiment, the Lorentz factor is L = 1
sin(Θ) sin(2Θ)

.
The multiplicity mhkl has to be counted in, because several diffractions with
the same 2Θ value can lay on the same diffraction circle. For example, if we have
cubic crystallographic system, the diffraction h00 has the multiplicity 6, because
h00, 0h0, 00h, h00, 0h0 and 00h have the same Bragg angle. The multiplicities
for all crystallographic systems can be found in [25]. Texture factor Thkl reflects
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the fact that some of the planes in the powder might be preferably oriented. Thkl

is then considered as a density function of the vectors hkl around the diffraction
circle. For example, if there is a preferable orientation 100, all set of diffractions
h00 is affected.

In the case of the powder diffraction experiment, the structure factor 2.5 can
be rewritten in the following form:

Fhkl (Θ) =
∑

j

oj

(

fj (Θ) + f
′

j (λ) + if
′′

j (λ)
)

e−2πi(hxj+kyj+lzj)e−Mj(Θ) (2.9)

where the sum goes over all atoms in the elementary unit. The oj are the occu-
pancies of the individual atomic sites, fj , f

′

j and f
′′

is the atomic scattering factor
as in the Equation 2.5, xj , yj and zj are the fractional coordinates of the j-th atom
in the elementary unit and e−Mj is the temperature Debye-Waller factor of the j-
th atom. The most common approximation is to use one overall Debye-Waller
factor for every atom, or we use one Debye-Waller factor for each individual type
of atom in the elementary unit. Another way is to consider Debye temperature
- Debye-Waller factors are then dependent on it and inversely proportional to
an atomic mass. The corresponding formula (see [26]) is:

Mj =Bj
T

(

sin Θ

λ

)2

Bj
T =

6h2

mj
AkBΘD

(

Φ (ΘD/T )

ΘD/T
+

1

4

) (2.10)

where h is Planck constant, kB is Stefan-Boltzmann constant, mj
A is the atomic

mass corresponding to j-th atom, T is a temperature, ΘD is Debye temperature

and Φ (x) is Debye integral, which is given by Φ (x) ≡ 1
x

x
∫

0

ξ

eξ−1
dξ.

For the processing of the measured diffraction patterns I use FullProf [28],
which is the program for the Rietveld analysis. Rietveld refirement fits a whole
pattern and it has several steps. The first of them is indexing the diffractions and
involves finding the unit cell size and symmetry. The second step is to extract
the measured intensities and convert them into structure factors. In the third
step, the measured structure factors are used to build a structural model.

2.1.4 EDX

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used for
an elemental analysis or a chemical characterization of the sample. We use a high-
energy beam of charged particles or a beam of x-rays to stimulate the sample.

The electrons in the sample are excited from inner electron shells. When
the electron is ejected, an electron hole occurs where the electron was. Because
everything goes to a state of the minimal energy, an electron from an outer,
higher-energy shell then fills the hole, and a difference in the energy between
the higher-energy shell and the lower-energy shell may be released in a form
of x-rays.
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Each element has a unique atomic and electron structure, which leads to
a unique set of peaks in x-ray emission spectrum. A study of the resulting x-ray
spectrum allows us to determine the chemical composition of the sample.

The accuracy of EDX spectrum can be affected by that fact that many el-
ements have overlapping peaks. The other thing is that outcoming x-rays are
emitted in any direction, so any of them may not escape from the sample. This
fact can reduce the accuracy in inhomogeneous and rough samples.

2.1.5 EXAFS

EXAFS is an abbreviation from Extended X-rays Absorption Fine Structure,
which indicates the measurement of a fine structure of the intensity of a transmit-
ed radiation behind the absorption edge with respect to the wavelength of the in-
cident radiation. We cannot manage this experiment with a common x-ray lamp
in a laboratory, because common x-ray lamp is a monochromatic source. There-
fore, we have to use synchrotron radiation, which is suitable for the wavelength
tunning.

As it was said in the previous EDX section, each element has an unique
electron structure. This fact leads to a characteristic position of the absorption
edges. The position corresponds to an amount of energy, which is necessary to add
to the electron to overcome his binding energy and hit it out from the atomic
shell into a vacuum. According to a type of electron, we can label the individual
edges with letters and numbers. The letter corresponds to the shell, from which
the electron is hit out (it means the principal quantum number n). For n =
1, 2, . . . the corresponding letters areK,L,M, . . . . Beside this, the number, which
follows the letter, corresponds to the orbital quantum number l. It can acquire
the values l = −n,−n+1, . . . , n−1, n. According to this, we assign the numbers
1 up to 2n− 1 in the label of the absorption edge.

So, there can be absorption edges like K,L1, L2, L3,M1,M2,M3,M4,M5, . . .
in the absorption spectrum. The positions of the absorption edges can be theo-
retically derived in the simplest cases, such as hydrogen-like atom. Moseley’s law
says:

√

νn
R

=
Z − σ

n
, (2.11)

where νn is frequency corresponding to the position of absorption edge, R
is Rydberg’s constant, Z is the atomic number of the corresponding element,
n is the principal quantum number and σ is screening constant, which reflects
the screening of the rest of the electrons.

The positions of the absorption edges are tabelated, see for example [29]. In
my work, I used the software Demeter [14], [30] to process the resulting EX-
AFS data. Demeter includes the program Hephasteus, which is a database with
the positions of the absorption edges.

We can obtain the EXAFS data from the intensity of transmitted or fluores-
cence radiation. The structure of a signal behind the absorption edge can for
example look like that one in Figure 2.2. As the proper EXAFS data we take
the quantity χ (k), which is defined as:
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μ
'

Figure 2.2: The normalized absorption coefficient obtained from the measure-
ment is depicted here. The sample contains cobalt and the data are measured
at the edge CoK,ECoK = 7709 eV. If we use the transmission data, we obtain
the µ′ as µ′ ∼ ln I0

Itrans
, where I0 is the intensity of the incident beam and Itrans is

the intensity of the transmitted one. If we use fluorescence data, then µ′ ∼ Ifluo
I0

,
where Ifluo is the intensity of the fluorescence radiation.

χ (k) =
µ′ (k)− µ0 (k)

∆µ0
, k =

√

2me (E − E0)

h̄
(2.12)

where µ′ is the measured signal, µ0 is a smooth function equivalent to the ab-
sorption on the isolated atom, ∆µ0 is the jump in the signal at the energy E0

of the absorption edge and me is the mass of the electron.
The physical principle of the fine structure in the signal is following. An (pho-

to)electron is emitted due to the hit with the photon from the incident x-ray beam.
We can consider the electron like a spherical wave, which spreads from an absorb-
ing atom - this wave is scattered on neighboring atoms as well. An interference
between this spherical wave and waves backscattered from the neighboring atoms
results in a modulations of the signal behind the absorption edge.

The wavelegnth corresponding to the emitted photoelectron depends on the en-
ergy of the incident radiation, the phase and the amplitude of the backscattered
waves depends on the type of the neighboring atoms and their distance from
the central absorbing atom (we call it the core). Therefore, we can obtain some
information about the chemical composition of the closest neighborhood of the ab-
sorbing atom and information about its arrangement too.

A contribution to the resulting singal differs according to the directions,
in which the photoelectron goes, and from which of the atoms is the photo-
electron scattered - we call this a scattering path Γ. The resulting signal is a sum
over individual scattering paths. A number of the paths is very big, but contri-
butions of most of them are negligible. In most cases, we can count in only a few
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Figure 2.3: Here is the function 2.12 obtained from the data in Figure 2.2. The da-
ta is often weighted with a norm of the wave vector k to highlight small modula-
tions in higher energies.

types of them:� single scattering paths� collinear or nearly collinear multiple scattering paths� very short triangle paths

This is because the scattering amplitude is quite small far from 0◦ or 180◦.
A derivation of a theoretical shape of the function χ (k) can be found for example
in [31]. The contribution of the single scattering path Γ can be obtain as:

χΓ (k) =
NΓS

2
0FΓ

kR2
Γ

e−2σ2
Γk

2

e−2
RΓ
λ(k) sin (2kRΓ + ΦΓ) (2.13)

where NΓ is the multiplicity of the path, S0 is the passive electron amplitude
reduction factor, FΓ is the effective scattering amplitude, RΓ is the half path
length, σΓ is the mean squared displacement, which can be caused for example
by the thermal fluctuations, λ (k) is the mean free path of the electron and ΦΓ is
the effective phase shift. The k is the wave vector from Equation 2.12.

FΓ, ΦΓ and λ (k) are the parameters, which are generated with the ab initio
multiple scattering calculation from the program (FEFF in our case) after we
have entered the structure of the elementary unit. RΓ, σΓ, NΓ, S0 and E0 are
the objects of our interest and we fit them.

2.2 Preparation of the samples

In my work, I am dealing with the samples of different kind of origin. I will
describe a system of a preparation of our samples in this section.
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2.2.1 Powder samples

If we want to prepare a powder sample, we have to prepare a polycrystal of a re-
quired material. At first we have to weight a correct amount of the materials,
which corresponds to the stoichiometry of our required samples. Secondly, we
have to melt the materials together in a furnace.

I have used monoarc furnace in our department. The main part of monoarc

consists of an evacuable chamber, a crucible made from a copper and a tungsten
electrode. We have to evacuate the whole chamber before melting to prevent
the burning of atmospheric oxygen - the pressure of value 10−9 − 10−10 bar has
been achieved. After the evacuation, we have pumped some high purity argon
inside the chamber as a protective atmosphere - the pressure of argon in the cham-
ber was set approximately to 0.3 bar.

If we bring sufficiently big voltage to the electrode, an electric discharge oc-
curs in the gas of the protective atmosphere in the chamber. The temperature
of the discharge is able to melt the materials in the crucible. We have to proceed
slowly and carefully during the melting, because for example quick temperature
jump might lead to a sputter of the materials outside the crucible. We repeated
the melting three or four times to obtain a homogeneous element distribution
throughout the sample and we have obtained a polycrystalline button as the re-
sult.

If we have compound, which consists of more elements, some troubles may
occur. We have to decide, if we can melt all elements together or melt them grad-
ually. Then, we must study some phase diagrams, find some information about
melting points of our elements and so on. There are some databases of phase
diagrams, which can be found for instance on [32] or in [33, 34].

In my case, I wanted to prepare the compound Mn2CoSn. Therefore, I have
melted manganese together with tin firstly because of high manganese sublima-
tion. Tin has the melting point only at 232◦C, so it has covered the manganese
pieces and it has reduced the manganese sublimation during the melting. So,
Mn2Sn has been prepared at the first step and then I have melted it together
with cobalt.

Polycrystalline buttons obtained by the preparation mentioned above has been
grinded to a powder to use them in powder diffraction.

2.2.2 Single-crystalline samples

For the attempts of the single crystals growth we need a polycrystalline sample
prepared by the previous method. I have tried two methods of a single crystal
preparation.

Czochralski method

This method has its name after Polish scientist Jan Czochralski, who invented
it in 1916. This method is mostly used to obtain single crystals of semiconduc-
tors, metals and synthetic gemstones. A principle is in pulling of the seed from
the melted material. On the interface between a melted material and a seed is
a place with the temperature gradient and there the material crystalizes.

17



high

frequency

source

pulling
direction

temperature
gradient

coil

Mo
capsule

pulling
direction

temperature
gradient

electrode

crucible melted
material

BN crucible

powder
of required

material

ingot

(a) Czochralski method (b) Bridgmann method
(c) the cut of
the molybdenum
capsule

Figure 2.4: The basic scheme of Czochralski and Bridgmann method is depicted
in this figure.

The experimental arrangement is depicted in Figure 2.4a. In our case we
used triarc, which has three electrodes for the melting and a crucible, which
can rotate to obtain better homogenity of the melted material. We have used
argon as the protective atmosphere as in previous case. It is important to do
a neck on the ingot. It is the place on the ingot, where the width is several times
smaller - the actual width during the crystal growth is regulated by a current on
the electrodes and the pulling speed, which was set to 8 mm

h
. The crystal defects

will be accumulated in the neck and a rest of the ingot should be without them.
Unfortunately, my attempt of a growth of the single crystal of Mn2CoSn was

unsuccessful. The optimal current on the electrodes was set only at approximately
8 A - this fact indicates a quite small melting point of our material. As we found
out from the Laue patterns, the resulting ingots were neither single crystals nor
good polycrystals (the diffraction circles were absent in the Laue patterns).

Bridgmann method

In this method, we let go the temperature gradient through the whole crucible
of our material. We have used the experimental arrangement as it is shown
in Figure 2.4b. We achieve a high temperature with an induction furnace. It
contains the coil, which is connected to the a frequency source. Our material is
sealed in a molybdenum capsule, which is a very good temperature conductor.
Due to Foucault eddy currents, which are induced by a changing magnetic field
of the coil, the temperature of the capsule is growing. Because only the part
of the molybdenum capsule inside the coil is heated and the part outside is not,
the temperature gradient occurs. So, if we pull the capsule outside the coil,
the material inside crystalizes.

A cut of the molybdenum capsule is depicted in Figure 2.4c. Our material
in a form of powder is closed in a boron nitride (BN) crucible. Boron nitride
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(a) Before annealing (b) After annealing

Figure 2.5: The Lauegrams before and after annealing.

is used because of its very low reactivity with other materials. The function
of the neck (like in Czochralski method) is fullfilled with a shape of the inside
of boron nitride crucible - a bullet shape mostly.

I have performed several attempts of growing single-crystals by Brigmann
method. The pulling speed in individual attemps was set from 1 to 5 mm

h
and

the voltage on the source was at 130-140 V (it corresponds to approximately
900-950◦C on the molybdenum capsule; the melting point of Mn2CoSn has been
estimated as 850◦C by differential thermal analysis). My attempts of growing
single crystal of Mn2CoSn by Brigmann method were more successful than by
Czochralski method. There is the Laue pattern of the best attempt in Figure 2.5a.
You can see that the diffraction maxima are not very sharp, so I have decided
to anneal the sample. The sample was annealed for 3 days at the temperature
600◦C (the melting point is at 850◦C). Unfortunately, the sample became to be
polycrystalline - you can see the circles in the Laue pattern in Figure 2.5b.

2.2.3 List of the used samples

chemical formula form created / supported by

Mn2CoSn powder Petr Cejpek1)

Mn2Co0.7Rh0.3Sn powder Olga Meshcheriakova2)

Mn2Co0.6Rh0.4Sn powder Olga Meshcheriakova
Mn2Co0.5Rh0.5Sn powder Olga Meshcheriakova
Mn2Co0.3Rh0.7Sn powder Olga Meshcheriakova
Mn2Co0.2Rh0.8Sn powder Olga Meshcheriakova
Mn2Co0.1Rh0.9Sn powder Olga Meshcheriakova

Mn2RhSn powder Olga Meshcheriakova
Ni2MnGa single crystal, bulk Oleg Heczko3)

Table 2.1: The list of the samples, which I have studied. 1)Charles University
in Prague, 2)Max Planck Institute for Chemical Physics of Solids in Dresden,
3)Academy of Science in Prague.

There is the list of the samples, which I have studied in my work, in Table 2.1.
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3. Powder diffraction and EDX
on series Mn2Co1−xRhxSn

3.1 EDX

The first part of samples to study was the series Mn2Co1−xRhxSn. The samples
were prepared as polycrystalline buttons. One part of them was grinded to powder
in order to powder diffraction. In this chapter I will show the results of EDX and
XPD measurement.

The EDX meassurement has been done to determine an exact relative con-
centration of the elements in our samples. The measurement has been performed

Element w [%] x xn Element w [%] x xn

sample Mn2CoSn sample Mn2Co0.7Rh0.3Sn
Co 21.92 0.277 1.101 Co 14.11 0.178 0.753
Mn 37.13 0.444 2.000 Mn 34.94 0.472 2.000
Rh 0.00 0.000 0.000 Rh 10.15 0.073 0.310
Sn 40.95 0.248 1.021 Sn 40.23 0.252 1.066
O not measured O 0.52 0.024 0.102
Si not measured Si 0.05 0.001 0.006

sample Mn2Co0.4Rh0.6Sn sample Mn2Co0.5Rh0.5Sn
Co 12.04 0.153 0.649 Co 9.20 0.117 0.525
Mn 34.59 0.472 2.000 Mn 32.70 0.446 2.000
Rh 13.01 0.095 0.402 Rh 16.90 0.123 0.552
Sn 39.69 0.250 1.062 Sn 39.70 0.251 1.124
O 0.61 0.029 0.121 O 1.30 0.061 0.273
Si 0.07 0.002 0.009 Si 0.10 0.003 0.012

sample Mn2Co0.3Rh0.7Sn sample Mn2Co0.2Rh0.8Sn
Co 5.56 0.071 0.324 Co 3.93 0.053 0.221
Mn 32.01 0.441 2.000 Mn 33.13 0.478 2.000
Rh 22.15 0.163 0.739 Rh 24.96 0.192 0.804
Sn 38.60 0.246 1.116 Sn 37.45 0.250 1.046
O 1.61 0.076 0.345 O 0.51 0.025 0.106
Si 0.08 0.002 0.010 Si 0.06 0.002 0.007

sample Mn2Co0.1Rh0.9Sn sample Mn2RhSn
Co 1.85 0.024 0.107 Co 0.01 0.000 0.001
Mn 32.26 0.456 2.000 Mn 32.74 0.481 2.000
Rh 27.66 0.209 0.915 Rh 28.93 0.227 0.943
Sn 36.76 0.241 1.055 Sn 37.56 0.255 1.062
O 1.40 0.068 0.298 O 0.71 0.036 0.149
Si 0.07 0.002 0.008 Si 0.05 0.001 0.006

Table 3.1: The results of the EDX measurement. The measured values are
the weight percents w, x are molar fractions and xn are molar fractions which are
normalized to the theoretical content of Mn (it should be 2).
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Figure 3.1: An inclusion seen by EDX. The measurement under the green cross
shows weight percents 44.90% (Mn), 12.88% (Co) and 42.27% (Sn), which corre-
spond to the normalized composition (see Table 3.1) 2:0.53:0.87.

on the microscope Tescan MIRA I LMH SEM, which is equiped with the energy
dispersive analyser Bruker AXS. We managed the measurement on non-grinded
polycrystalline samples. The results are shown in Table 3.1. We use a high-energy
electron beam for a sample stimulation. Because the beam has a small finite size,
we measure a chemical composition of the sample under a spot of the electron
beam. One can see, that EDX shows a presence of silicon and oxygen. Silicon
could appear here due to polishing on a sandpaper, oxygen may appear due to an
oxidation. Deviations of the measured weight factors are in a range of several
percents.

From Figure 3.1 it can be seen that the sample Mn2CoSn contains some
inclusions, which contain less amount of cobalt. It corresponds to the composition
2:0.53:0.87.

3.2 Powder diffraction

XPD meassurements have been performed on two x-ray wavelengths - CuKα
(λ = 1.54056 Å) and CoKα line (λ = 1.788965 Å). CoKα line lies under Co
absorption edge (see Figure 3.2) and it may help to determine the Co atoms po-
sition. I managed the measurement in the Bragg-Brentano geometry (symetric
2Θ-ω scan) on the diffractometer Bruker D8 Advance and Seifert-FPM, XRD-7.
The resulting data were processed by FullProf at first to obtain lattice parame-
ters.

Because Mn is more electropositive than Co, Mn2CoSn is an inverse Heusler
compound. Therefore, I have chosen the space group F43m for a description
of the symetry of the samples (see Section 1.1). The pseudo-Voight function has
been chosen as the resolution function.

I have found that the samples with xth
Rh ≤ 0.3 (a theoretical Rh content) are

cubic, the other samples with xth
Rh ∈ (0.3, 1] are tetragonal. Corresponding space
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Figure 3.2: The dispersion correction of the Mn and Co scattering factors. The
positions of CuKα and CoKα energies are depicted here as well. One can see
that the real parts of the scattering factors are almost equal at the CuKα, so we
cannot distinguish practically the Co and Mn atoms only from the results of XPD
on CuKα.
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Figure 3.3: A dependence of the lattice parameters on amount of Rh in the sam-
ples. a′ is a value of a multiplied by

√
2 - the original cubic cell is rotated around

c axis by 45◦ with respect to a corresponding tetragonal cell. Therefore, a′ cor-
responds to a lattice parameter of the cubic cell, whose base is circumscribed
to the base of the corresponding tetragonal cell. The error bars are so small that
they are not visible in this figure.
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xth
Rh a

[

Å
]

c
[

Å
]

0.0 6.075 ± 0.001 -
0.3 6.129 ± 0.002 -
0.4 4.299 ± 0.002 6.307 ± 0.003
0.5 4.276 ± 0.002 6.431 ± 0.003
0.7 4.279 ± 0.002 6.522 ± 0.003
0.8 4.283 ± 0.002 6.548 ± 0.003
0.9 4.292 ± 0.003 6.566 ± 0.005
1.0 4.295 ± 0.003 6.612 ± 0.005

Table 3.2: The lattice parameters obtained from the Rietveld analysis in depen-
dence of theoretical content of rhodium (xth

Rh)
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Figure 3.4: The XPD patterns measured with CuKα wavelength. Indices of some
of the strongest diffractions are labeled here as well. One can see shifts of some
diffraction corresponding to a change of the lattice parameters (highlighted
in the red rectangles).

group, which describes the tetragonal distorted structure, is I4m2 (see for exam-
ple [2, 12]). The resulting lattice parameters are shown in Table 3.2 and plotted
in Figure 3.3. All XPD patterns, which were measured with CuKα wavelength,
are ploted in Figure 3.4. One can see a split of the diffraction peak 220 (cubic
phase) to the diffraction peaks 200 and 112 (tetragonal phase). A comparison
of the measured patterns (xth

Rh = 0.9) using CuKα and CoKα lines are pltoted
in Figure 3.5.

type of disorder missing distinct peaks
BiF3 -
CsCl 111, 311, 331
NaTl 200, 222, 420
W 111, 200, 311, 222, 331, 420, 333, 511

Table 3.3: Distinct diffraction peaks missing in XPD patterns corresponding
to the individual types of occupation disorder.
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(b) Measured with CoKα

Figure 3.5: The XPD patterns measured with CuKα and CoKα wavelength on
the sample with xth

Rh = 0.9.
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Figure 3.6: The XPD patterns generated from different types of the occupation
disorder. There is a comparison with the XPD pattern measured with the CuKα
wavelength on the sample with xth

Rh = 0.3.
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Because a consideration of the structure belonging to the basic parent phase
(see Section 1.1) was not able to fit the resulting patterns properly (see Fig-
ure 3.5), a consideration of some occupation disorder was necessary. I have con-
sidered four disorder types, which are described in Section 1.2. We can exclude
a presence of some of them even only with a quick observation of the diffraction
patterns. Some diffraction peaks disappear due to the different structure and
symmetry of the disordered unit cell. The diffraction patterns generated from
the disordered types of structure are ploted in Figure 3.6 for the sample with
xth
Rh = 0.3. One can see that here we can exclude the CsCl, W, and NaTl-type

of disorder, because the corresponding profiles do not contain some peaks, which
are in the measured patterns. The missing diffraction peaks for the individual
types of disorder are shown in Figure 3.6 and summarized in Table 3.3.

The next procedure to obtain some information about the atomic sites oc-
cupation was following - FullProf allows the fitting of more diffraction pattern
together. Each pattern has its own set of parameters, but they can be bounded
mutually (because we have one structure, we need only one set of parameters for
it). From previous considerations about the missing peaks due to the disorder, it
follows that the structure might be BiF3-type disordered or it might be in some
state between the non-disordered and fully disordered structure.

Unfortunately, it was not possible to obtain exact values of occupation num-
bers of all atomic sites by a classical Ritveld analysis by least squares method.
There was a lot of parameters to fit and the occupation numbers could be strong-
ly corelated with Debye-Waller factors. Therefore, another method was taken
to process the data. I have obtained integrated intensities by FullProf from
the measured XPD profiles and I have fitted them to their theoretical formula 2.8
only with the scale and the Debye temperature as free parameters; the occupa-
tion numbers were changed manually. The change of the occupation numbers
was with the step of 0.1, smaller values would not have visibile effects. I have
chosen such a combination of the occupation numbers, which leads to the small-
est residuum, as the final result. For this fitting, I have written my own script
in MatLab, which can be found in the appendix and attachment.

The script generates a specified number of elementary units with the differ-
ent occupation numbers for each atom at each atomic site. The space group is
specified as P1 here, so one obtains the occupation numbers of each atom in all
16 position corresponding to one unit cell (4 types of atoms lead to the 64 oc-
cupation numbers). The integrated intensity is than computed by Equation 2.8.
The patterns measured on the CuKα and the CoKα lines are then fitted togeth-
er. A result of the script is a list of combinations of the occupation numbers
with their corresponding residua after the fit. An influence of a texture is not
considered - from the measured patterns it seems that noone set of the mutually
corresponding diffractions has distinctly bigger or smaller intensities.

But the minimum of the sum of the deviations from the fit is not so deep.
I have obtained similar values of a residuum with different combinations of the oc-
cupation numbers or only by a swap of atomic sites of individual atoms (espe-
cially Mn and Co, because they have simillar number of electrons). There are
combinations leading to the two smallest residui for the sample with xth

Rh = 0.3
in Table 3.4. A comparison of the integrated intensities, which were obtained
from the messurement, and the integrated intensities, which correspond to sim-
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(a) A fit of the integrated intensities with a consideration of the sample with xthRh = 0.3,
which has its unit cell without disorder.
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(b) A fit of the integrated intensities with a consideration of the sample with xthRh = 0.3,
which has its unit cell with the BiF3-type of occupation disorder - a many of the unit
cells with different combinations of the occupation numbers were generated by a com-
puter. The combination, which led to the smallest residuum after the fit, was taken as
a result.

Figure 3.7: The comparison of the measured and the computed integrated inten-
sities from XPD patterns on the sample with xth

Rh = 0.3 measured with CoKα
line.
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residuum 100.261 42.877 43.142

Table 3.4: The occupation numbers obtained from the simulation for the sample
with xth

Rh = 0.3. ∗the smallest residuum.

ulation with the smallest residuum after fit, is ploted in Figure 3.7. It can be
seen from Table 3.4 that change about 0.3 (without respect to the swapping of
the individual atomic sites) in the resulting values of the occupation numbers
makes no distinct change in the value of residuum. Therefore, the error in the
estimation of the resulting occupation numbers is roughly 0.3. It means, that
resulting occupation numbers of the individual types of atoms in the symetricaly
equivalent sites (4a, 4b, 4c and 4d) described by the space group F43m have
practically the same values.

Because we have a relatively small number of diffraction peaks in XPD pat-
terns due to the crystallographic symetry of our material, a realization of a mea-
surement on more than two wavelengths should be reasonable to obtain much
information and results with less error. Alternatively, we have to choose another
experimental method to determine the possible occupation disorder clearly.

3.3 Summary

EDX and XPD has been measured on the powder series of Mn2Co1-xRhx. It has
been found that this series undergo a tetragonal distortion caused by chemical
pressure on the lattice due to the changing content of Rh in our samples. This
distortion occurs approximately at xth

Rh = 0.3. The unit cell is then elongated in
the direction of c-axis with respect to the increasing amount of Rh (see Figure
3.3). Then, another proccess to obtain information about occupation disorder
has been done. The fitting of the occupation numbers directly in Fullprof has
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no reason, because the occupation numbers and scale factor may be strongly cor-
related. Therefore, the occupation numbers were generated by my own MatLab

script and only the scale factors and Debye temperature have been set as free
parameters in the fit. The results can be seen in Table 3.4 and Figure 3.7. A con-
sideration of the occupation disorder led to smaller value of residuum after fit,
but the minimum of the sum of the deviations is not so deep, because I have
obtained similar values of the residuum with different combinations of the oc-
cupation numbers. According to this, the error in estimation of the occupation
numbers is roughly 0.3, because less changes in the resulting occupancy does not
make distinct changes in the value of the residuum after fit. Consequently, re-
sulting occupation numbers of the individual types of atoms in the symetricaly
equivalent sites described by the space group F43m are practicaly the same.

site occMn occSn occCo occRh

4a 0 1 0 0
4b 0.600 0 0.200 0.200
4c 0.700 0 0.225 0.075
4d 0.725 0 0.275 0.025

Table 3.5: The mean occupation numbers of the symetricaly equivalent atomic
sites discribed by the space group F43m for the sample with xth

Rh = 0.3. Original
values are taken from Table 3.4.

Therefore, we can computed mean values of the occupation numbers in the
atomic sites 4a, 4b, 4c and 4d. These values are shown in Table 3.5.
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(a) An atomic occupation in the unit cell without a disorder
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(b) An atomic occupation in the unit cell with an occupation
disorder obtained from the simulation (1st SR)

Figure 3.8: The graphical representation of the atomic occupation numbers from
Table 3.4. The script for plotting is included in the attachment.
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4. EXAFS measurement on
powder samples Mn2Co1−xRhxSn

EXAFS measurement has been done on the XAS Beamline of the synchrotron
ANKA at the Karlsruhe Institute of Technology (KIT), Germany. The principles
of this experimental method are described in Section 2.1.5. We have performed
the measurement on two absorption edges - CoK edge (7709 eV) and MnK edge
(6539 eV). EXAFS was measured on three samples - xth

Rh = 0.3, 0.4 and 0.8. Dur-
ing the measurement, the powder was sealed between several layers of a kapton
tape sticked to each other. Transmission data and fluorescence data were being
collected at the same time, but I have used the fluorescence data for a further
analysis, because they have less noise and did not contain any glitches. For
the processing of the measured data I have used the software Demeter [14] -
this software package includes Athena (a program for XAS data processing and
the exporting of proper EXAFS spectra), Artemis (a program for fits of EX-
AFS spectra), Hephaestus (a database of the absorption edges positions), FEFF
(a script for ab initio calculations from multiple scattering theory) and Atoms

(generator of the structure input for FEFF calculations).

4.1 Obtaining of EXAFS spectra from the mea-

sured data

At first, it is needed to obtain proper EXAFS spectra from the measured data.
The program Athena is suitable for this process. We have measured the data three
times at each abovementioned sample and we have made a mean value of them
to reduce a noise in the data. Then, the background has been substracted (the
substraction of the smooth function µ0 from Equation 2.12) and renormalized.
The whole process for the sample with xth

Rh = 0.3 is depicted in Figure 4.1.
Fourier transform to direct space (see Figure 4.1c) has been made with the re-

sulting data from Figure 4.1b and Hanning function has been chosen as a resolu-
tion window. It is recommended to set the higher edge of the resolution window
at the point, where the measured data are sufficiently bigger than the noise.
This should avoid a creation of new oscilations because of Fourier transformation
of the random noise.

4.2 Processing of EXAFS spectra

The EXAFS spectra obtained with the process mentioned above were processed
further with the program Artemis. The main task was, how to count possible oc-
cupation disorder into the FEFF calculations and subsequent fits. Unfortunately,
FEFF cannot work with a partial site occupation directly. If we want to count
with a disorder or dopants, we have two possible options here (see Artemis doc-
umentation [35]):
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(a) A substraction of a smooth function correspond-
ing to the absorption on isolated atom (red curve)
from the measured data (blue curve).

Wavevector

(b) EXAFS data with respect to the wave vector.

(c) EXAFS data with respect to the radial dis-
tance from the core atom (Fourier transformation
of the data from figure (b)).

Figure 4.1: Data processing by Athena
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(a) The main window of the pro-
gram Atoms. We would obtain
a cluster of atoms correspond-
ing to the non-disordered structure
with cobalt as a result of the entry
in this figure.

(b) A cluster of atoms, which is
generated as an input for FEFF
calculations. A list of atoms
in the cluster can be changed ad-
ditionally to count with the possi-
ble occupation disorder or dopants.
Some atoms, which sould be
changed in our case, are highlight-
ed in the red rectangle.

Figure 4.2: A generation of the FEFF inputs.

1. We will generate a cluster of atoms (FEFF input) with the program Atoms

and then we will change the individual types of atoms in the cluster with re-
spect to required occupation numbers, disorder or doping (see Figure 4.2b)-
then, one cluster of atoms (one FEFF input) represents one structure mi-
crostate. It is necessary to verify, if the EXAFS spectra resulting from
FEFF calculations of individual microstates differ from each other. If yes,
then the averaging of the calculated spectra has to be included.

2. In the case of dopants, we will generate two FEFF inputs. The first one -
pure structure without dopants. The second one - pure structure only with
dopants. Then, we put the computed EXAFS spectra to a fit with different
weights, which are interrelated to a dopants quantity.

In the case of our samples, I have combined both ways discussed above. At
first, I have made FEFF calculation with the non-disordered structure only with
cobalt. The only possible type of occupation disorder in our samples is BiF3

(see Section 3.2) and it has been taken into account by the manual changing
of generated atomic cluster - numbers of atoms correspond to the occupation
numbers in Table 1.1. It means, that the resulting FEFF calculation corresponds
to the full-disordered state of the structure. The same procedure has been done
with the structure, which consists only rhodium atoms instead of cobalt. Matlab

script for a FEFF input modification is included in the attachment.
So finally, we have four types of calculations - calculations obtained from

the non-disordered structure with cobalt and from the structure with rhodium
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as well, and the calculations obtained from the fully-disordered structure with
cobalt and from the structure with rhodium. Rhodium amount will be taken into
account as it is mentioned above (the option n.2). If we put the calculation be-
longing to the non-disordered and fully-disordered structure with different weights
to the fit, we can implement some information about the degree of disorder.

If we would consider the degree of disorder as δ, the corresponding occupation
numbers can be evaluated as in the following equations.

o4bCo = (1− x)
δ

3
o4bRh =x

δ

3
o4bMn = 1− δ

3

o4cCo = (1− x)(1− 2

3
δ) o4cRh =x(1 − 2

3
δ) o4cMn =

2

3
δ

o4dCo = (1− x)
δ

3
o4dRh =x

δ

3
o4dMn = 1− δ

3

(4.1)

Here, x is the value of doping. Both x and δ can have the values in the in-
terval [0, 1]. The limit case, where δ = 0, corresponds to the non-disorder state
of structure and if δ = 1, we have the fully-disorder state.

The result of the FEFF calulations is the list of scattering paths, which would
have a significant contribution to EXAFS spectra. These paths are then included
into fit in Artemis. Because our data have been measured on CoK and MnK
absorption edges and we count with BiF3-type of disorder, cobalt and manganeese
atoms can sit in different crystallographic positions. Therefore, we have to make
FEFF calculations with all possible positions of core atoms.

edgeedge

(a) A plot of the single scattering path on
the cobalt atoms in position 4d (core =
cobalt in 4c) corresponding to three struc-
ture microstates.

(b) A plot of the single scattering path
on the tin atoms in position 4a (core =
cobalt in 4c) corresponding to three struc-
ture microstates.

Figure 4.3: Plots of the scattering paths contributions corresponding to three
structure microstates.

There is a plot of contributions of two scattering paths obtained from the FEFF
calculation on the fully-disordered cluster of atoms with three different structure
microstates (x = 0.3 and a core cobalt atom in the site 4c) in Figure 4.3. One can
see that there is no big difference between the spectra, which were obtained by
different microstates. Therefore, the spectra have not to be averaged and we are
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xth
Rh δ
0.3 0.68± 0.13
0.4 0.04± 0.07
0.8 0.35± 0.14

Table 4.1: Degrees of disorder following from EXAFS measurement.

able to put only a calculation corresponding to one of the structure microstates
to a subsequent fit.

Only the contributions from the first and second coordination shells were fit-
ted, because the contributions of other coordination shells are relatively small.
Advantage is, that only single-scattering paths are neccessary to count into the fit,
because multi-scattering ones have bigger length and small contribution to the re-
sulting spectra.

As it was mentioned in Section 2.1.5, we fit the parameters RΓ, σΓ, S0 and E0.
Mean square displacement σΓ represents an error in an estimation of the scat-
tering path length, so it should depend on types of atoms at the scattering path
ends. Moreover, σΓ should correspond to thermal fluctuations, so it should be
inversely proportional to the atomic mass (of the atoms in the scattering path)
as in the case with the Deby-Waller factors. We need as small number of the
free parameters as it is possible to avoid some correlation and non-physical val-
ues in results. Therefore, I have bound σΓ which correspond to light (Co, Mn)
and to heavy atoms (Rh, Sn) together and they differs only in a view of the or-
der of the coordination shell, where the second atoms sits. As a result, we have
only four σΓ which correspond to the paths like (Co/Mn-Co/Mn)1,2, (Co/Mn-
Rh/Sn)1,2. Another reason to have least number of σΓ parameters as we can is
that σΓ can correlate with S0 or δ. The energy shifts E0 and the amplitudes S0

were considered as own values for each data set (Co and Mn edge).
The amplitudes SCoK

0 and SMnK
0 were set rigidly to 1 as it is mostly recom-

mended [35]. Other resulting parameters after fit for the sample with xth
Rh=0.3 are

following:

σCo/Mn-Co/Mn(1) = 0.018± 0.002 Å
2

σCo/Mn-Co/Mn(2) = 0.016± 0.003 Å
2

σCo/Mn-Rh/Sn(1) = 0.004± 0.001 Å
2

σCo/Mn-Rh/Sn(2) = 0.022± 0.008 Å
2

ECoK
0 = −1.8± 0.6 eV

EMnK
0 = −2.6± 0.8 eV

A result of the fit for the sample with xth
Rh = 0.3 is depicted in Figure 4.4. The

values showed above were used as guess parameters for the fitting of the spectra
obtained on the other samples. The resulting values of degrees of disorder are
shown in Table 4.1.
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edge

edge

(a) The fit of the EXAFS spectra on CoK absorption edge measured on the sample
with xthRh = 0.3.

edge

edge

(b) The fit of the EXAFS spectra on MnK absorption edge measured on the sample
with xthRh = 0.3.

Figure 4.4: The fits of the EXAFS spectra for the sample with xth
Rh = 0.3.
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4.3 Summary

EXAFS been measured on the powder series of Mn2Co1-xRhx to obtain informa-
tion about possible occupation disorder in our samples. This structure feature
was taken into account by Equations 4.1 and by importing several different FEFF
calculations into the fit with different weights.

Big difficulty of the processing is to distiguish between contributions of the
individual shells in measured spectra. As one can see from Figure 4.4, contri-
butions of our first and second coordination shell overlap mutually each other.
This is may lead to a fact that the error of estimated δ are possibly undervalued.
Therefore, better results and easier data processing would be obtained on Heusler
alloys, which have a bigger unit cell and corresponding lattice parameters - the
contributions of individual coordination shells can be easier to separate. How-
ever, the disorder must be present in our samples, because I was not able to fit
EXAFS data without a consideration of disorder. The values obtained from that
fits were not physicaly reasonable (mean square displacements were less than 0,
displacements corresponding to heavier atoms were smaller than displacements
corresponding to light ones).

It is hard to say from three values, if there is some trend. But it seems that
degree of disorder does not increase or decrease with respect to a growing amount
of rhodium in our samples. For the more complex information it is neccessary
to perform a measurement on the whole series of our samples. If the disorder
originates in a preparation, it would be interesting to measure again with annealed
samples, if the result will be the same.

XPD EXAFS
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4a 0 1 0 0 0 1 0 0
4b 0.600 0 0.200 0.200 0.77± 0.15 0 0.16± 0.03 0.07± 0.01
4c 0.700 0 0.225 0.075 0.45± 0.09 0 0.38± 0.07 0.16± 0.03
4d 0.725 0 0.275 0.025 0.77± 0.15 0 0.16± 0.03 0.07± 0.01

Table 4.2: A comparison of the occupation numbers obtained from XPD and
EXAFS measurement for the sample with xth

Rh = 0.3. The occupancies obtained
from EXAFS were computed with Equations 4.1.

There is a comparison of the occupation numbers obtained from XPD mea-
surement in Chapter 3 and the occupation numbers obtained from Equations 4.1
with the resulting values of δ. It seems that the values obtained from XPD corre-
spond rather to the state of full occupation disorder, because the occupancies are
closely to the values occMn = 2

3
and occCo + occRh = 1

3
(according to Table 1.1).

Anyway, it is clearly seen that the occupation disorder with the big degree is
present in the sample with xth

Rh = 0.3.
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5. Single-crystal diffraction on
Ni2MnGa

Ni2MnGa is a member of a relatively small family of the shape memory alloys
[36]. Strains in these materials can be controlled by an application of an external
magnetic field or by an application of well defined pressure.

A previous structure research of Ni-Mn-Ga compounds has been performed
mostly on powder samples (see for example [16, 37, 38]). Beside this, we have
performed a systematic study by single-crystal diffraction. Ni-Mn-Ga alloys
with a composition close to the stoichiometric Ni2MnGa undergo a thermoe-
lastic martensitic transformation [37] to the less symetric martensitic structure
phase. The composition of our sample has been estimate as Ni50.1Mn28.4Ga21.5
(obtained by EDX), so we should expected some lattice distortion at the room
temperature. In this chapter, I will show results of our structural studies on this
material - some of these results have been used to publish the article [39], which
has been made with a collaboration of the magneto-optical group in our faculty.

5.1 Lattice parameters and domain structure

As it was said in the introduction of this chapter, the structure of Ni2MnGa can
be controlled by pressure. We must take care of this fact within a manipulation
of the sample and when we place it on a holder. Our sample has a shape of block

(a) Diffraction 040 after pres-
sure application in the direc-
tion along the longest edge
of the sample.

(b) Diffraction 040 after pres-
sure application perpendic-
ulary to the largest side
of the sample.

Figure 5.1: Reciprocal space map of diffraction 040 after pressure application
in the specified directions.
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Å
−
1
)

0  4  0, φ = 0°, ψ = 0.31°

0.04 0.06 0.08 0.1 0.12 0.14

4.18

4.2

4.22

4.24

4.26

4.28

1

Q||

(

Å
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Figure 5.2: The reciprocal maps of nine diffractions. Maps contain more than
one maxima (marked with black crosses in figure), which could correspond with
a domain structure or mosaic.

with edges approximately 5×1×0.5 mm. We can induce some domain structure
in the sample by an application of pressure in the specified directions. One do-
main corresponds to one diffraction peak in a measured reciprocal space map. As
one can see from the reciprocal space map of the diffraction 040 in Figure 5.1a, we
induced simple two domains structure with the pressure applied along the longest
edge of the sample. Opposite to that, when we apply the pressure perpendiculary
to the largest side of the sample, the sample contains more domains then, which
correspond to a lot of diffraction peaks in Figure 5.1b. For a further examina-
tion, I have worked with the case (a) (two domains), because the second one is
practicaly impossible to process and evaluate.

I have measured x-ray diffraction on a single-crystalline sample Ni2MnGa
using the method of reciprocal space mapping; I used CuKα line and the fol-
lowing configuration of optics: 1

4
divergence slit, Soller slit 0.02 and the Bartels

monochromator on the primary beam and the analyzer crystal (12“ acceptance)
on the secondary beam. This configuration is suitable for the exact location
of the scattering vector in the scattering plane.

Nine reciprocal space maps were measured; all are depicted in Figure 5.2.
I used MatLab for the processing of the data. In the first step, I indexed the indi-
vidual measured maps. I have used the lattice parameters from [40] and compared
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the norms, the distances and the angles between the measured and computed
scattering vectors. The spots with the highest intensity were taken as a refer-
ence. The structure published in [40] is the monoclinic lattice with the lattice
parameters:

a = 5.945 Å, b = 5.937 Å, c = 5.615 Å

α = 90◦, β = 90◦, γ = 90.325◦

The only problem was to obtain the indices of the second map (in Figure 5.2

that one with the resulting indices 33
5
42
5
0). In this map, the measured and com-

puted positions of the diffraction spots exhibit large deviations. We know from
[40] that Ni2MnGa can show five-layered modulated structure. This leads to ex-

tra diffraction spots with noninteger indices. In our case, indices 33
5
42
5
0 fit best

to the second map.

default position
of the holder

sample

holder

Φ
Ψ

default position
of the holder

holder

sample

(a) View along the primary beam (b) View perpendicular to the sample holder

Figure 5.3: A sketch of the angles of possible rotation with the sample holder.

The angles Φ and Ψ in the measured reciprocal maps are angles of a rotation
of the sample. The sketch of the sample holder of these angles is in Figure 5.3.

The next task was to obtain the exact values of the lattice parameters. We
used the fact that we can determine the lengths of the scattering vectors (i.e.,
the interplanar distances) exactly, since these results are not affected by much
less precise values of Φ and Ψ. Thus, I solved numerically the nonlinear system
of equations:

∣

∣

∣

~Qi
exp

∣

∣

∣
=

2π

dihkl
, (5.1)

where dihkl is the computed interplanar distance of the i-th diffraction maxi-

mum (for monoclinic structure), and
∣

∣

∣

~Qi
exp

∣

∣

∣
is the measured length of its scattering

vector. Because we have nine maps, i goes from 1 to 9.
Because of more than one diffraction maximum in our maps, we solved Equa-

tion 5.1 for all combination of spots in our maps and as a result we have chosen
the combination of the diffraction maxima, which led to the smallest residuum.
We have obtained the following lattice parameters:
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a = (5.971± 0.002) Å

b = (5.9467± 0.0007) Å

c = (5.586± 0.002) Å

γ = (90.31± 0.01)◦

α = β = 90◦

The result was obtained with a combination of the diffraction spots in maps,
which is shown in Table 5.1.

Then, I tried to find an orientation of the reference domain with respect
to the sample holder. With reference domain we mean the domain:� which corresponds to the reference indices of our measured reciprocal maps� which has the lattice parameters obtained from previous step� whose diffractions correspond to the spots from Table 5.1

The orientation of the reference domain can be described using a set of three
Euler angles A, B and Γ, which we can fit. Because of the large width of the mea-
sured peaks in Φ and Ψ scans, the angles Φ and Ψ are not quite precisely mea-
sured. We have fitted these values too, but we allowed the deviations up to ±3◦

from their original values.
In Figure 5.4, one can see the computed positions of diffractions of the refer-

ence domain (marked by green crosses).
The next question was to explain other peaks in our maps. We can apply

the same process on them. There are two possibilities for explaining these peaks:� mosaic blocks – Mosaic blocks have similar orientation as the reference
domain (Euler angles from the reference and from the mosaic block differ
only in the range of several degrees). In our reciprocal maps, these blocks
correspond to diffraction spots, which has the same diffraction indices as our
reference domain. That leads to the same lengths of the scattering vector,
2Θ value respectively. But because of the different orientation of the mosaic
blocks, ω value of the corresponding diffraction spots will be different. The
shapes of the trajectories of the ω-scans (while the 2Θ is constant) in our
reciprocal maps are indicated in Figure 5.5.� domain structure – The different domains can have very different orien-
tation with respect to the reference domain. That leads to a fact that their

Reference
hkl of the map

040 33
5
42
5
0 440 260 260 242 242 044 062

Spot number (see Fig-
ure 5.2)

1 1 1 1 1 1 4 2 2

Table 5.1: Combination of diffraction spots which led to the smallest residuum
after a refinement of the lattice parameters.
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Å
−
1
)

0  4  0, φ = −0.31°, ψ = 0.98°

0.04 0.06 0.08 0.1 0.12 0.14

4.18

4.2

4.22

4.24

4.26

4.28

1

Q||

(

Å
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Å
−1
)

0  4  4, φ = 90.79°, ψ = 0.39°

−4.56 −4.55 −4.54 −4.53

4.16

4.17

4.18

4.19

12 3 4

Q||

(

Å
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Figure 5.4: A comparison of the computed (green crosses) and measured positions
(black crosses) of the diffraction maxima.
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Figure 5.5: Reciprocal maps. The shapes of the trajectories of the ω-scans with
constant 2Θ values in reciprocal space are drawn by purple color. Diffraction
spots, which lie on these curves, correspond to mosaic blocks.
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Figure 5.6: The new domain, which appeared due to the twinning, has different
angles in its unit cell.

diffraction peaks should not have the same indices as reference. We know
from [40] that Ni2MnGa can undergo the twinning over the plane (110). It
means that:

1. This kind of domain will be rotated around c-axis about 90◦ with re-
spect to reference. In our maps, it corresponds to the change of diffrac-
tion indices from hkl to khl.

2. Because of different orientations and different diffraction indices, the length
of the scattering vector will be different with respect to the reference
(different 2Θ coordinations of the peaks in our maps). Moreover, this
twinning leads to the change of angles in the unit cell. This fact is
shown in Figure 5.6.

In order to find the orientation of the different domains, we can use the same
procedure as for the reference domain. We have tried the following options
in the fit:� The second domain has the same lattice parameters as the reference. This

domain and the reference domain are mutually rotated around c-axis about
90◦.� The second domain is the twin (see above).

In the case of the twinning, we obtain much smaller ressiduum from the fit.
The result of this refinement is in Figure 5.7. Since the peaks with different 2Θ
values did not appear in some maps, we have fitted only the peaks in maps with
the reference indices 040, 260, 242, and 044.
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crosses correspond to the diffraction spots belonging to the reference domain (pre-
vious results) and black crosses correspond to the measured positions of diffrac-
tions.
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5.2 Modulation of the structure

The following task was to study the modulated structure. Ni2MnGa can form
a modulated structure which leads to extra diffraction spots along directions
[±110] in reciprocal space (see [40]).

Figure 5.8: A result of the measurement of the extra diffraction spots cause by
structure modulation.

At first, I measured additional diffraction maxima caused by the modulation.
I used CuKα line and the following configuration of the optics: 1

4
divergence

slit, soller slit 0.02 and the Bartels monochromator on the primary beam as well
as the rocking curve detector on the secondary beam. This configuration is not
optimal as for the accuracy of the 2Θ angle, but we need a lot of intensity, because
we want to see rather weak diffraction spots. The result of the measurement is
in Figure 5.8.

It can be seen, that there are four extra diffraction spots between the ordinary
diffraction maxima (for example 040 and 260). This leads to a fact, that Ni2MnGa
creates a 5-layered modulation structure along the direction [110] and the atoms
in the planes (110) are periodicly shifted in the directions ± [1̄10].

This periodic shift can be described using the sum of harmonic functions:

∆k =
3

∑

n=1

An sin
2πnδk
L

(5.2)

where ∆k is the shift of the k-th atom, L is the period of modulation (5 in our
case), An are the amplitudes and δk is coordinate in the direction [110] of the k-th
atom.

We can describe the basic structure of Ni2MnGa parent phase with the space
group Fm3̄m (Figure 5.9a). In Figure 5.9b) the description of modulation is
sketched. Then, I have determined the values of the amplitudes An from our
measurement. At first, I have measured some of the diffractions with the following
configuration of optics: 1

2
divergence slit, and the hybrid monochromator on
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(a) Ni2MnGa unit cell

(b) A description of the modulation –
atoms in planes paralel to (110) (green col-
or on the figure) are shifted in directions
± [1̄10] (shift ∆k). The fractional coordi-
nates δk go from 0 to 5.

Figure 5.9: A sketch of the modulated structure.

Figure 5.10: The measurement of some diffraction spots with the analyzer crystal
before the detector.
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the primary beam and the analyzer crystal on the secondary beam. The result
of this measurement is in Figure 5.10.

I have obtained values of An by the fitting of integrated intensities of the mea-
sured peaks to their theoretical formula 2.4 - the structure factor has been
computed from the structure block, which contained 5 unit cells distorted by
the modulation. The X0h search tool in [41] has been used to obtain components
of the Ni2MnGa refraction index. We have fitted the logarithm of the integrated
intensities, because we wanted to take into account that some of the intensities
are small. In addition to the therms in Equation 2.4, a constant background
has been included into our fit - the fitting script written in MatLab is included
in the attachment. The results of the fit are plotted in Figure 5.11.

In Table 5.2, I compare our values of An with the values published previously
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Figure 5.11: The fit of the logarithm of the integrated intensities.
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Figure 5.12: A comparison of the modulation waves obtained from our experiment
and from articles of Martynov, et al. [17] and Righi, et al. [38]. The modulation
wave obtained in [17] is inverted over the x-axis to compare the results better
(the opposite notation should give the same results).
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Figure 5.13: A cut trough the satelite diffraction allong the direction [110] in re-
ciprocal space (taken from maps in Figure 5.10). The fit of the peaks with the
pseudo-Voigt functions is here depicted as well.
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Figure 5.14: A dependence of the width of the peaks (obtained from the cut
in Figure 5.13) on absolute value of scattering vector.
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The amplitude Our result The result from [17] The result from [38]

A1 0.100± 0.008 -0.06 0.0700± 0.0007
A2 0.003± 0.007 0.002 -
A3 −0.007± 0.011 0.008 -

Table 5.2: The values of the amplitudes An in the comparison to the results
in the articles [17] and [38].

in [17, 38]. The modulation waves 5.2 with the parameters from Table 5.2 are
depicted in Figure 5.12.

There is the cut trough the satelite maxima in Figure 5.13. The shapes
of the peaks have been fitted with the pseudo-Voigt functions - corresponding
values of the full widths at highest maxima are shown in the plot in Figure 5.14
(FWHM of the stronger peaks from the pairs of satelite diffractions in Figure 5.13
were taken). According to Equation 2.7, FWHM should be independent on
the diffraction vectore. If we consider a possible inaccuracy in the fitting due
to presence of the spots corresponding to different mosaic blocks, the indepen-
dence is fulfilled with an exception of the diffraction 040. This diffraction has
the largest intensity from the measured ones, so the diffraction spots correspond-
ing to the mosaic blocks have a big influence on an overall shape of 040 diffraction
spot and it could cause the deviation in FWHM estimation.

If some distorted structure blocks would be present, where the lattice pa-
rameters might be slightly changed for instance due to a different stoichiometry,

FWHM should be proportional to
∣

∣

∣

~Q
∣

∣

∣
(see for example [42]).

5.3 Diffraction at higher temperatures

According to previous research and results for example in [16], the cubic struc-
ture phase (so-called austenite) of Ni2MnGa should exists at higher temperatures.
Richard et al. [16] determine the transition temperature near 50◦C from temper-
ature dependent XPD measuremets. In our case, we should expect the transition
temperature slightly different, because of a different stoichiometry of our sample.

Beside the XPD measurement, we are able to manage a single-crystal diffrac-
tion measurement in dependence on temperature in our laboratory as well. The
measurement procedure was following: we performed reciprocal space mapping
of the diffraction 040 (see the previous section 5.1) at many values of temperature
with the step of 3◦C. The ajusted temperature oscilated in the range of 1-2◦C,
so any smaller step in the temperature measurement would be useless. When
the transition occurs, we should be able to see, how the original 040 peak dis-
appears and the new one 400 corresponding to the austenitic phase should be
visible. The cubic austenitic phase is more symetric and its lattice parameter a
is smaller than a and b in the martensitic room temperature phase, we should
expect the position of new 400 diffraction at higher 2Θ values.

Heating has been done with the heater inbuilt in a sample holder, which was
covered with a graphite dome for evacuation of an atmosphere near the sample
for a better temperature stability. Our sample was hold with thin iron wires - this
polycrystalline iron diffracts too, but its diffractions should be in different posi-
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(a) A temperature dependence of the 040 reciprocal space map during heating.

(b) A temperature dependence of the 040 reciprocal space map during cooling.

Figure 5.15: A temperature dependence of the 040 reciprocal space map. The
colored arrows indicate the evolution of a temperature between the measurement
of the individual reciprocal maps (dark blue indicates low temperatures, red color
indicates high temperatures).
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tions in reciprocal space than our measured maps. The configuration of optics was
following: 1

2
divergence slit and the hybrid monochromator on the primary beam

and the analyzer crystal on the secondary beam. The hybrid monochromator has
been chosen to obtain higher intensity, because we loose the half of the primary
beam intensity only due to the graphite dome on the sample stage. The resulting
reciprocal space maps are depicted in Figure 5.15a for heating and in Figure 5.15b
for cooling.
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(a) A temperature dependence of the lattice parameters during heating.
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(b) A temperature dependence of the lattice parameters during cooling.

Figure 5.16: A temperature dependence of a rough estimation of the lattice pa-
rameters (determination only from positions of diffractions peak 040 and 400).
The vertical error bars have been obtained from statistical deviation of peak po-
sitions after the fitting by pseudo-Voigt functions and from experimental error,
which has been chosen roughly as the smallest step in 2Θ from our measured
maps. The horizontal errorbars should indicate the oscilation of 1-2◦C of the set
temperature within the measurement. Moreover, according to [43], the values of
the temperature are systematicaly shifted. The true temperature of the sample
should be about 5 or 6◦C lower.
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One can see, that transition has a hysteresis in the temperature dependence -
the transition occurs at approximately 68◦C during heating and at 56◦C during
cooling. There is a merge of the 040 and 400 peak (corresponding to twinning)
at higher temperatures. It shows a fact that a and b axes became to be more
equal and the structure is more symetric within a temperature increase. From
the positions of indiviual peaks in 2Θ we can roughly estimate the a and b lattice
parameters. There is a resulting temperature dependence of the lattice parame-
ters in Figure 5.16a for heating and in Figure 5.16b for cooling.

But according to [43], there is different temperature on the sample with respect
to the set temperature. In vacuum and at temperatures held in our measurement,
the sample should be about 5 or 6◦C colder than the holder with the heater (set
temperature is should be on the holder). This fact leads to the systematic shift
of our temperatures. Therefore, the abovementioned hysteresis corresponds to
the transition temperature of about 63◦C during heating and about 51◦C during
cooling. This hysteresis is in a quite good agreement with the position of the
hysteresis loop in magneto-optical study [39], where the dependence of saturated
magnetisation with respect to a temperature has been studied.

When the temperature was set at 71◦C (above the transition temperature),
I have performed measurement of a set of different reciprocal space maps like
in previous section. As in previous case, I have obtained the lattice parameter by
a numerical solution of Equations 5.1. The resulting lattice parameter of austenite
cubic lattice is (5.8386± 0.0004) Å. I have proccesed the data in the same way as
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Å
−1
)

0  6  0, φ = −1.73°, ψ = 0.21°

−0.15−0.1 0.05 0 0.05 0.1
6.4

6.45

6.5

1

Q||

(

Å
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Å
−1
)

0  4 −4, φ = 90.33°, ψ = 3.98°

−4.1 −4.05 −4 −3.95
4.5

4.55

4.6

4.65

Figure 5.17: Reciprocal space maps corresponding to the austenitic phase mea-
sured at 71◦C. Black crosses are the measured positions of diffraction maxima,
green crosses correspond to the computed ones.
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well to obtain the orientation of the lattice with respect to diffractiometer system
and following comparison of the measured and computed position of diffractions.
The result is depicted in Figure 5.17.

Figure 5.18: Reciprocal space map of the diffraction 004 corresponding
to the structure, which was induced by application of external magnetic field.
The map has been measured at room temperature.

Beside the fact that we are able to induce some domain structure by pressure,
inner structure of Ni-Mn-Ga alloys can be changed by an application of external
magnetic field. Thereby, the twin boundaries can be well shifted [44]. If we set
the magnetic field in the specified direction, we can swap the crystallographic
axes as well. We have applied the magnetic field of value approximately 1 T
perpendicular to the largest side of our sample. Because one end of the sample
was shielded by holder within a magnetic field application, a small strip of original
domain (where the b-axis is perpendicular to the largest side) left in the sample
- the domain boundaries are usually visible only by naked eye (one can see [45]).
In the rest of the sample we obtain the structure, where c-axis points along
the direction of magnetic field applied before - a measurement prooved this fact
(result in Figure 5.18), because diffraction 004 corresponds to the higher value
of 2Θ than diffraction 040.

A temperature-based measurement of diffraction 004 reciprocal space maps
has been performed too. We have used the same optics configuration as in previ-
ous case. Results can be seen in Figure 5.19a and 5.19b. One can see a fast shift
of the 004 diffraction peak (compare with Figure 5.15a) with respect to the in-
creasing temperature. That indicates the anisotropy of the thermal expansion
coeficients with respect to the crystallographical axes.

The hysteresis found in previous case occurs in different temperatures here.
It is probably due to the existence of the strip of original domain on the end
of the sample. Moreover, this small strip (lets say 1

10
of the sample) was enough

to return the whole sample to the original structure with b-axis pointing from
the largest side of the sample - the diffraction peaks corresponding to the twinned
domains have occured after transition during cooling (see Figure 5.19b).
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(a) A temperature dependence of the 004 reciprocal space map during heating.

(b) The temperature dependence of the 004 reciprocal space map during cooling.

Figure 5.19: A temperature dependence of the 004 reciprocal space map. The col-
ored arrows indicate evolution of temperature as in previous case.
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Discussion and conclusions

The series of powder samples of Mn2Co1−xRhxSn and the single-crystal of shape
memory alloy Ni2MnGa were systematicaly studied for their structure aspects.
The goal was to obtain information about possible occupation disorder and other
features of their fine structure.

The set of XPD measurement has been performed on the powder samples.
From results it follows that Mn2Co1−xRhxSn undergoes a tetragonal distortion
aproximatelly at x = 0.3, corresponding lattice parameters can be seen in Fig-
ure 3.3 and in Table 3.2. Several types of possible occupation disorder (according
to [2]) were excluded by the comparison of measured diffraction patterns with
simulated patterns, which correspond to the individual models of occupation dis-
order observed in Heusler alloys. The result is that BiF3-type of disorder is
the only possible type, which can exist in our series of samples.

Following process to obtain an information about disorder has been managed
by fitting of the integrated intensities obtained from the measured XPD patterns.
Unfortunately, the minimum of the sum of the deviations from the fit is not so
deep. The similar values of a residuum have been obtained with other slightly
different combinations of the occupation numbers or only by a swap of atom-
ic sites of individual atoms (especially Mn and Co, because they have simillar
number of electrons). The results can be seen in Table 3.4. It can be seen that
change about 0.3 (without respect to the swapping of the individual atomic sites)
in the resulting values of the occupation numbers makes no distinct change in
the value of residuum. Therefore, the error in the estimation of the resulting
occupation numbers is roughly 0.3. It means, that resulting occupation numbers
of the individual types of atoms in the symetricaly equivalent sites (4a, 4b, 4c and
4d) described by the space group F43m have practically the same values. Al-
tought XPD is a good method to obtain qualitative information about the type
of occupation disorder (because of missing peaks in XPD patterns corresponding
to different symetry of disordered structure), it is necessary to choose another
method to obtain other quantitative information about disorder.

EXAFS has been choosen as another experimental method, because it is very
sensitive to the closest neighbourhood of specified atoms. The results show that
disorder is present in some of our samples, but the structure is not fully disor-
dered and it should be in some state between the full disorder and idealy ordered
structure. I was trying to take this into account by consideration of the degree
of disorder δ (see Equations 4.1). Values of δ has been obtained by the fitting
of measured EXAFS data and weightening the spectra corresponding to the non-
disordered and fully-disordered structures. Results can be seen in Table 4.1. It
seems that the resulting values of δ do not correspond to the increasing amount
of rhodium in the samples. If the disorder originate in a preparation, it would be
valuable to perform the measurement on annealed samples.

As one can see from Figure 4.4, contributions of our first and second coordi-
nation shell overlap mutually each other. This is may lead to a fact that the error
of estimated δ are possibly undervalued. Therefore, better results and the eas-
ier data processing would be obtained on Heusler alloys, which have a bigger
unit cell and corresponding lattice parameters - the contributions of individu-
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al coordination shells should be easier to separate. However, the disorder must
be present in the studied samples, because I was not able to fit EXAFS data
without a disorder consideration. The values obtained from that fits were not
physicaly reasonable (mean square displacements were less than 0, displacements
corresponding to heavier atoms were smaller than displacements corresponding
to light ones). The comparison of the occupation numbers obtained from XPD
and from the EXAFS measurement is shown in Table 4.2. It seems that the values
obtained from XPD correspond rather to the state of full occupation disorder,
because the occupancies are closely to the corresponding values in Table 1.1.
Anyway, it is clearly seen that the occupation disorder with the big degree is
present in the sample with xth

Rh = 0.3.
The single-crystalline specimen of shape memory alloy Ni2MnGa has been

studied by reciprocal space mapping. Single-crystal diffraction led to a fact that
structure of our sample is monoclinic (see Section 5.1). This corresponds with the
fact that exact composition of our sample was off-stoichiometric Ni50.1Mn28.4Ga21.5.
The measured reciprocal space maps contained more than one maxima, which can
be well explained by the mosaicity and the twinning. The second mentioned is
a well observed phenomenon in Ni-Mn-Ga alloys [40, 44].

Literature points on the existence of a modulation in the structure (5-layered
and 7-layered types), which leads to satelite diffractions with non-integer hkl in-
dices [17, 38]. The existence of th modulation in our sample has been proven by
another reciprocal space maps measurement, which is graphicaly shown in Fig-
ure 5.8. Because of four diffraction maxima between the pairs of proper diffraction
spots, we have the 5-layered type of structure in our case. The modulation can
be described by the harmonic wave 5.2, which coefficients have been obtained by
the fitting of the integrated intensities of measured satelite maxima (see Table
5.2). The coefficients following from my experimental data differs from those from
literature - this fact is probably caused by different compositon of our sample.

The high-temperature measurements of reciprocal space maps has been per-
formed as well. They show the existence of more symetric high-temperature struc-
ture phase (austenite) according to the literature [16]. The structure is cubic and
its lattice parameter has been estimated as (5.8386± 0.0004) Å. The measure-
ment shows that the structure transition has hysteresis with respect to tempera-
ture. The transition occurs at 68◦C during heating and at 56◦C during cooling.
Resulting reciprocal space maps can be seen in Figure 5.15a and 5.15b. One could
try to evaluate, if the change in the Q|| (resp. ω) position of the peak 040 corre-
sponds to the change in γ angle within the transition. But, I found out, that it is
impossible in our case - position in ω depends strongly on that fact, how we fix
a sample on a holder. In the case of measurement at higher temperatures, sample
is held only by iron wires. At one attempt of this measurement, the thermome-
chanical forces, which occurs within the transition, were able to push the sample
out from the holder (and we lost the diffraction spot). Therefore, it is obvious
that the shift in the Q|| position of diffraction 040 can be caused by the change
of γ angle, but by the shift on the sample stage as well.

Finally, the crystallographic axis in our sample were swaped by an application
of external magnetic field (approx. 1 T perpendicular to the largest side of our
sample). Then, c-axis pointed along the direction of used field. After that,
I was able to measure a temperature dependence of the diffraction 004, which
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could not be reached before. The resulting reciprocal space maps can be seen
in Figure 5.19a and 5.19b. The difference between the position of hysteresis
found by the position of diffraction 004 and 040 (resp. 400) measured before
should correspond to the existence of the original structure state in the sample
after magnetic field application. This part of sample could be distinguished with
the naked eye, because of visibility of domain boundaries (analogical example
in [45]). Size of this part was approximately 1

10
of whole sample. But it seems

that it was enough to set structure back to original state (b-axis is perpendicular
to the largest side) after cooling, because diffraction peak 004 has vanished (see
Figure 5.19b).

Some of the results mentioned above have been used to publish the article [39],
which has been made with a collaboration of the magneto-optical group in our
faculty.
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A Matlab scripts

Fit of the integrated intensities from XPD measurement, generation
of the disordered unit cells (IntegratedIntensityFit.m)

1 % Script for the fitting of integrated intensities measured by XPD
2 % on two different wavelengths.
3

4 clear all
5 close all
6

7 %%% INPUT %%%%%%%%%%%%%%%%%%
8 N gen=1e4; % number of generated unit cells
9 T=293; % temperature in Kelvins

10 dop=0.3; % doping
11 sys= 'cubic' ; % crystallographic system
12

13 cthm 1=0.7998; % cos(2th) of monochromator
14 cthm 2=0.7998; % cos(2th) of monochromator
15 lam 1=1.54056; % CuKalpha
16 lam 2=1.788965; % CoKalpha
17

18 % Reading of the data files
19 data1=load( 'OM103 Cu.dat' );
20 hkl=data1(:,1:3);
21 th2 1=data1(:,4);
22 Intensities 1=data1(:,5);
23

24 data2=load( 'OM103 Co.dat' );
25 th2 2=data2(:,4);
26 Intensities 2=data2(:,5);
27 %%%%%%%%%%%%%%%%%%%%%%%%%
28

29 % types of atoms
30 atoms.type= {'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ;
31 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ;
32 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ;
33 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ;
34 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ;
35 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ;
36 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ;
37 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; 'Mn' ; 'Sn' ; 'Co' ; 'Rh' ; };
38

39 % atomic sites in the unit cell
40 atoms.positions=[0 0 0; 0 0 0; 0 0 0; 0 0 0;
41 1/2 1/2 0; 1/2 1/2 0; 1/2 1/2 0; 1/2 1/2 0;
42 0 1/2 1/2; 0 1/2 1/2; 0 1/2 1/2; 0 1/2 1/2;
43 1/2 0 1/2; 1/2 0 1/2; 1/2 0 1/2; 1/2 0 1/2;
44 1/2 1/2 1/2; 1/2 1/2 1/2; 1/2 1/2 1/2; 1/2 1/2 1/2;
45 1/2 0 0; 1/2 0 0; 1/2 0 0; 1/2 0 0;
46 0 1/2 0; 0 1/2 0; 0 1/2 0; 0 1/2 0;
47 0 0 1/2; 0 0 1/2; 0 0 1/2; 0 0 1/2;
48 1/4 1/4 1/4; 1/4 1/4 1/4; 1/4 1/4 1/4; 1/4 1/4 1/4;
49 3/4 3/4 3/4; 3/4 3/4 3/4; 3/4 3/4 3/4; 3/4 3/4 3/4;
50 3/4 1/4 1/4; 3/4 1/4 1/4; 3/4 1/4 1/4; 3/4 1/4 1/4;
51 1/4 3/4 1/4; 1/4 3/4 1/4; 1/4 3/4 1/4; 1/4 3/4 1/4;
52 1/4 1/4 3/4; 1/4 1/4 3/4; 1/4 1/4 3/4; 1/4 1/4 3/4;
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53 3/4 3/4 1/4; 3/4 3/4 1/4; 3/4 3/4 1/4; 3/4 3/4 1/4;
54 3/4 1/4 3/4; 3/4 1/4 3/4; 3/4 1/4 3/4; 3/4 1/4 3/4;
55 1/4 3/4 3/4; 1/4 3/4 3/4; 1/4 3/4 3/4; 1/4 3/4 3/4;];
56

57 % all occupancies are zero at the beginning of simulation
58 atoms.occ=zeros(size(atoms.type));
59

60 % dispersion corections
61 for k=1:length(atoms.type)
62 [atoms.f1(k),atoms.f2(k)]=DispCorrF1F2(atoms.type {k}, ...
63 12398.41815/lam 1);
64 end
65

66 atoms2=atoms;
67 for k=1:length(atoms.type)
68 [atoms2.f1(k),atoms2.f2(k)]=DispCorrF1F2(atoms2.typ e{k}, ...
69 12398.41815/lam 2);
70 end
71

72 %%% GUESS OF PARAMETERS %%%%%%%%
73 weight=Intensities 2(3)/Intensities 1(3);
74 par0=[3e-4 6e-5 200]; % [scale1 a 2, Debye temperature]
75 lb=[0 0 30]; % lower bounds
76 ub=[1e4 1e4 1000]; % upper bounds
77

78 %%% GENERATION OF OCCUPANCY %%%%%%
79 % space group P1
80 % total amount of atoms to distribute
81 % - they are 16 in one unit cell
82 am Mn=8;
83 am Sn=4;
84 am Co=(1-dop) * 4;
85 am Rh=dop* 4;
86

87 list=zeros([N gen,length(atoms.occ')+length(par0)+1]);
88 for n=1:N gen
89 disp(n); % it prints the actual number of n
90

91 % starting values
92 am Mn=8;
93 % amSn=4;
94 am Co=(1-dop) * 4;
95 am Rh=dop* 4;
96 atoms.occ=zeros(size(atoms.type));
97

98 % we go over all position until the sum of occupation numbers
99 % in individual positions is equal to 1

100 positions=1:16;
101 positions2=ones(size(positions));
102 while sum(positions2) >0
103 % list of positions, which have not been filled yet
104 rest=positions(positions2==1);
105 % generation of the position number to fill it
106 % - it should avoid to prefer any position
107 kk=round((length(rest)-1) * rand)+1;
108 k=rest(kk);
109 positions2(k)=0;
110 % total occupancy in one position has not be bigger than 1
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111 while round(10 * (atoms.occ(4 * k-3)+atoms.occ(4 * k-2)+ ...
112 atoms.occ(4 * k-1)+atoms.occ(4 * k)))/10 <1
113 if k<5
114 atoms.occ(4 * k-3)=0;
115 atoms.occ(4 * k-2)=1;
116 atoms.occ(4 * k-1)=0;
117 atoms.occ(4 * k)=0;
118 else
119 % generation of 4 numbers (4 types of atoms)
120 hlp=[(1:4)', [2 * rand; 0; (1-dop) * rand; dop * rand]];
121 [w,j]=sort(hlp(:,2)); % sorting of generated numbers
122 % site corresponding to the smallest generated number
123 % will be filled
124 type=hlp(j,:);
125 switch type(4,1)
126 case 1
127 if round(10 * am Mn)/10 >0
128 am Mn=amMn-0.1;
129 atoms.occ(4 * k-3)=atoms.occ(4 * k-3)+0.1;
130 end
131 % case 2 - case of Sn - solved before
132 case 3
133 if round(10 * am Co)/10 >0
134 am Co=am Co-0.1;
135 atoms.occ(4 * k-1)=atoms.occ(4 * k-1)+0.1;
136 end
137 case 4
138 if round(10 * am Rh)/10 >0
139 am Rh=am Rh-0.1;
140 atoms.occ(4 * k)=atoms.occ(4 * k)+0.1;
141 end
142 end
143 end
144 end
145 end
146 atoms2.occ=atoms.occ;
147

148 % Fitting
149 [parT,Feval]=fminsearchbnd(@(x) ...
150 sum((weight * Intensities 1-x(1) * MyFun(hkl,th2 1, ...
151 cthm 1,atoms,1,sys,lam 1,T,x(3))).ˆ2)+ ...
152 sum((Intensities 2-x(2) * MyFun(hkl,th2 2,cthm 2, ...
153 atoms2,1,sys,lam 2,T,x(3))).ˆ2),par0,lb,ub);
154

155 % List of results
156 list(n,:)=[atoms.occ',parT,Feval];
157 end
158

159 %%% sorting of the list with respect to the value of residui
160 [w,j]=sort(list(:,size(list,2)));
161 list T=list(j,:);
162

163 %%% Result with the smallest residuum
164 atoms.occ=list T(1,1:length(atoms.occ));
165 parT=list T(1,length(atoms.occ)+1:size(list,2)-1);
166 Feval=list T(1,size(list,2));
167

168 %%% PLOTTING %%%%%%%%%%%%%%%%
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169 figure(1)
170 plot(th2 1,Intensities 1, 'bo-' ,th2 1,parT(1)/weight * MyFun(hkl, ...
171 th2 1,cthm 1,atoms,1,sys,lam 1,T,parT(3)), 'ro-' );
172 xlabel( '$$2 \Theta \left[ˆ \circ \right]$$' , 'Interpreter' , 'latex' );
173 ylabel( 'Integrate intensity $$ \left[ \textrm {a.u. }\right]$$' , ...
174 'Interpreter' , 'latex' );
175 title( 'Measurement on CuK$$ {alpha }$$' , 'Interpreter' , 'latex' );
176

177 figure(2)
178 plot(th2 2,Intensities 2, 'bo-' ,th2 2,parT(2) * MyFun(hkl, ...
179 th2 2,cthm 2,atoms2,1,sys,lam 2,T,parT(3)), 'ro-' );
180 xlabel( '$$2 \Theta \left[ˆ \circ \right]$$' , 'Interpreter' , 'latex' );
181 ylabel( 'Integrate intensity $$ \left[ \textrm {a.u. }\right]$$' , ...
182 'Interpreter' , 'latex' );
183 title( 'Measurement on CoK$$ {alpha }$$' , 'Interpreter' , 'latex' );
184

185 %%% REPORT %%%%%%%%%%%%%%%%%
186 disp(Feval);
187 disp(list T(1:5,:))

Function for integrated intensities, which is used within the fitting
(MyFun.m)

1 function y=MyFun(hkl,th2,cthm,atoms,N,sys,lam,T,ThD)
2 % Script computes an integrated intensity.
3 % hkl - hkl indices of diffractions
4 % th2 - 2theta positions of measured diffractions
5 % cthm - cos(2th M) of monochromator
6 % atoms - struc type of variable
7 % atoms.type ... cell array with names of atoms/ionts
8 % atoms.occ ... occupation numbers
9 % atoms.positions ... fractional coordinates of atoms

10 % atoms.f1, atoms.f2 ... dispersion corrections
11 % atoms.B ... temperature factors
12 % N - scale
13 % sys - crystallographic system
14 % lam - wavelength
15 % T - temperature
16 % ThD - Debye temperature
17

18 % Lorenz and polarisation factor
19 L p=(1+cthm * (cos(th2 * pi/180)).ˆ2)./(1+cthm). * ...
20 1./(sin(th2 * pi/180). * sin(th2 * pi/360));
21

22 % Structure factor
23 F=StrucFactor(hkl,th2,lam,atoms,T,ThD);
24

25 % p hkl is a multiplicity of diffraction
26 y=N. * L p. * abs(F).ˆ2. * p hkl(hkl,sys);
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Structure factor evaluation (StrucFactor.m)

1 function y=StrucFactor(hkl,th2,lam,atoms,T,ThD)
2 % Function y=StrucFactor(hkl,th2,lam,atoms,T,ThD)
3 % returns the structure factor.
4 % hkl - indices of diffractions
5 % th2 - 2theta positions of diffractions
6 % lam - used wavelength of x-rays
7 % atoms.positions - positions of the atoms in the unit cell
8 % .occ - occupation numbers
9 % .f1, .f2 - dispersion corrections

10 % .type - types of the atoms
11 % T, ThD - temperature and Debye temperature
12

13 % prelocation before a sumation
14 hlp=zeros(size(hkl,1),1);
15

16 % temperature factor - if the temperature and Debye temperat ure
17 % are specified, B factors is computed by them
18 if nargin >4
19 atoms.B=DWTF(atoms.type,T,ThD);
20 end
21

22 % sumation over atoms in the unit cell
23 for k=1:length(atoms.type)
24 hlp=hlp+ ...
25 (ScatFacF0(atoms.type {k},sin(th2 * pi/360)/lam)+ ...
26 atoms.f1(k)+1i * atoms.f2(k)). * ...
27 atoms.occ(k). * ...
28 exp(-atoms.B(k). * (sin(th2 * pi/360)/lam).ˆ2). * ...
29 exp(-2 * pi * i * (hkl(:,1). * atoms.positions(k,1)+ ...
30 hkl(:,2). * atoms.positions(k,2)+ ...
31 hkl(:,3). * atoms.positions(k,3)));
32 end
33 y=hlp;

Change of FEFF input with respect to disorder (MakeDisorder.m)

1 % The script, which will read the file with cluster of atom
2 % generated for the FEFF input - originaly ideal
3 % non-disordered structure will be edited with respect
4 % to the degree of disorder. Core atom will stay original.
5

6 close all
7 clear all
8

9 %%% INPUT %%%%%%%%%%%%%%%%%%
10 name in= 'feff.inp' ; % name of the file with original input
11 name ex= 'disorder.inp' ; % name of the file to edit
12

13 del=1; % degree of disorder
14 X='Mn' ; ipotX=2; % labels of atoms corresponding to original file
15 Y='Rh' ; ipotY=3; % labels of atoms corresponding to original file
16 %%%%%%%%%%%%%%%%%%%%%%%%%
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17

18 occ4b X=1-del/3; occ4b Y=del/3;
19 occ4c X=2* del/3; occ4c Y=1-2 * del/3;
20 occ4d X=1-del/3; occ4d Y=del/3;
21

22 % opening for the reading and writting
23 file1=fopen(name in, 'r' );
24 file2=fopen(name ex, 'w' );
25

26 counter=-1;
27 change=0;
28 while 1
29 string=fgets(file1); % reading of the line
30

31 if length(string) >5 & all(string(2:6)== 'ATOMS' )
32 counter=0;
33 end
34

35 if length(string) >3 & all(string(2:4)== 'END' )
36 fprintf(file2,string); % writting
37 fclose(file1);
38 fclose(file2);
39 break
40 end
41

42 % counter, which is switched on at the beginning of atoms list
43 if counter >=0 & length(string) >2
44 counter=counter+1;
45 % the first line corresponds to the headlines,
46 % the second to the core atom
47 if counter >2
48 % manganese at 4b site in ideal structure
49 % will be replaced
50 if all(string(36:42)==[num2str(ipotX) , ' ' ,X, '4b' ])
51 hlp=rand(1);
52 if hlp <occ4b Y
53 string(36:42)=[num2str(ipotY), ' ' ,Y, '4b' ];
54 change=change+1;
55 end
56 end
57 % cobalt at 4c site in ideal structure
58 % will be replaced
59 if all(string(36:42)==[num2str(ipotY), ' ' ,Y, '4c' ])
60 hlp=rand(1);
61 if hlp <occ4c X
62 string(36:42)=[num2str(ipotX), ' ' ,X, '4c' ];
63 change=change+1;
64 end
65 end
66 % manganese at 4d site in ideal structure
67 % will be replaced
68 if all(string(36:42)==[num2str(ipotX), ' ' ,X, '4d' ])
69 hlp=rand(1);
70 if hlp <occ4d Y
71 string(36:42)=[num2str(ipotY), ' ' ,Y, '4d' ];
72 change=change+1;
73 end
74 end
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75 end
76 else
77 counter=-1;
78 end
79

80 fprintf(file2,string); % writting
81

82 end
83

84 disp([ 'Number of changes: ' num2str(change)]);

Fit of the integrated intensities of satelites peaks caused by a structure
modulation (ModulationFit.m)

1 % Script for the fitting of the integrated intensities of sat elite
2 % peaks caused by modulation in the structure
3

4 close all
5 clear all
6

7 lam=1.54056; % used wavelength
8

9 %%% FIT OF THE LOGARITHM OF INTENSITIES? %%%
10 log fit=1; % 1 if yes, 0 if no
11 %%% GUESS %%%%%%%%%%%%%%%%%%%%%
12 A n=[0.07 -0.002 0]; % amplitudes of the harmonical function
13 L=5; % period of modulation
14 N=0.1; % scale factor
15 bgr=0.5; % background
16 B=1; % Debye-Waller temperature factor
17

18 par0=[A n, N, bgr, B];
19

20 % lower bounds
21 lb(1:3)=[0.00 -0.030 -0.010];
22 lb(4)=0;
23 lb(5)=0;
24 lb(6)=0;
25

26 % upper bounds
27 ub(1:3)=[0.15 0.030 0.010];
28 ub(4)=1e3;
29 ub(5)=10;
30 ub(6)=5;
31

32 %%% LOADING OF MEASURED DATA %%%%%%%%
33 hkl(:,:,1)=[0 4 0;
34 0.4 4.4 0;
35 0.8 4.8 0;
36 1.2 5.2 0;
37 1.6 5.6 0;
38 2 6 0;
39 1.6 6.4 0;
40 1.2 6.8 0;];
41
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42 Intensities(:,1)=[299.6039321; % 040
43 27.02710817; % 0.4 4.4 0
44 0.828013474; % 0.8 4.8 0
45 0.612932801; % 1.2 5.2 0
46 15.55226308; % 1.6 5.6 0
47 105.7475566; % 2 6 0
48 21.07043308; % 1.6 6.4 0
49 3.29658631;]; % 1.2 6.8 0
50

51 th2(:,1)=[62.4;
52 70.2;
53 78.2;
54 87.9;
55 97.7;
56 109.7;
57 117.2;
58 126.7;];
59

60 om(:,1)=[28.5;
61 26.75;
62 26.8;
63 28;
64 30.2;
65 33.7;
66 47.3;
67 56.1;];
68

69 %%%%%%%%%%%%%%%%%%%%%%%%%%%
70 % SOME CALCULATION BEFORE FIT %%%%%%%
71 % The structure will be discribed by unit cell, which is rotat ed
72 % about 45deg around c-axis = > this easier way for the modulation
73 % description, because the direction of modulation is [110]
74

75 % position of atoms in non-distorted unit cell
76 atoms.positions=[0 0 0;
77 1/2 1/2 1/2;
78 0 1/2 1/4;
79 1/2 0 1/4;
80 0 1/2 3/4;
81 1/2 0 3/4;
82 1/2 1/2 0;
83 0 0 1/2;];
84 % corresponding types of atoms
85 atoms.type= {'Ga' ;
86 'Ga' ;
87 'Ni' ;
88 'Ni' ;
89 'Ni' ;
90 'Ni' ;
91 'Mn' ;
92 'Mn' ; };
93 % transformation of diffraction indices
94 hkl new=[(hkl(:,1,:)+hkl(:,2,:))/2, ...
95 (-hkl(:,1,:)+hkl(:,2,:))/2, ...
96 hkl(:,3,:)];
97

98 % refraction index obtained from X0h search
99 RefInd=1-0.22352e-4+i * 0.10018e-5;
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100 % dispersion correction
101 for k=1:length(atoms.type)
102 [atoms.f1(k,1),atoms.f2(k,1)]=DispCorrF1F2(atoms.ty pe{k}, ...
103 12398.41815/lam);
104 end
105

106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 %%% FITTING %%%%%%%%%%%%%%%%%%%%%
108 options=optimset( 'display' , 'iter' , 'maxfunevals' ,1e6, 'maxiter' ,1e6);
109 if log fit==1
110 [parT,Feval]=fminsearchbnd(@(x) ...
111 sum((log(Intensities)-log(MyFun2(x,hkl new,L,th2,om, ...
112 RefInd,atoms,lam))).ˆ2),par0,lb,ub,options);
113 else
114 [parT,Feval]=fminsearchbnd(@(x) ...
115 sum((Intensities-MyFun2(x,hkl new,L,th2,om, ...
116 RefInd,atoms,lam)).ˆ2),par0,lb,ub,options);
117 end
118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
119 %%% ERRORS ESTMATION %%%%%%%%%%%%%%
120 % prelocation of Jacobian
121 J=zeros([length(Intensities),length(parT)]);
122 for j=1:length(Intensities)
123 for k=1:length(parT)
124 eta=1e-9;
125 par=parT;
126 par(k)=par(k)+eta;
127 hlp1=log(MyFun2(parT,hkl new,L,th2,om, ...
128 RefInd,atoms,lam));
129 hlp2=log(MyFun2(par,hkl new,L,th2,om, ...
130 RefInd,atoms,lam));
131

132 J(j,k)=(hlp1(j)-hlp2(j))/eta;
133 end
134 end
135 % statistical error
136 err st=sqrt(diag(Feval * inv(J' * J)/ ...
137 (length(Intensities)-length(parT))))';
138

139 %%% PRINT %%%%%%%%%%%%%%%%%%%%%
140 disp([ 'A 1: ' num2str(parT(1)) ' +/- ' num2str(err st(1))]);
141 disp([ 'A 2: ' num2str(parT(2)) ' +/- ' num2str(err st(2))]);
142 disp([ 'A 3: ' num2str(parT(3)) ' +/- ' num2str(err st(3))]);
143 disp([ 'period: ' num2str(L)]);
144 disp([ 'scale: ' num2str(parT(4)) ' +/- ' num2str(err st(4))]);
145 disp([ 'bgr: ' num2str(parT(5)) ' +/- ' num2str(err st(5))]);
146 disp([ 'DWTF: ' num2str(parT(6)) ' +/- ' num2str(err st(6))]);
147 disp([ 'resnorm: ' num2str(Feval)]);
148

149 Int 0=MyFun2(par0,hkl new,L,th2,om,RefInd,atoms,lam);
150 Int T=MyFun2(parT,hkl new,L,th2,om,RefInd,atoms,lam);
151

152 %%% PLOTS %%%%%%%%%%%%%%%%%%%%%
153 % Intensities
154 for k=1:length(N)
155 figure(k)
156 stem(Intensities(:,k), 'b * ' , 'MarkerSize' ,8, ...
157 'display' , 'Measurement' );
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158 hold on
159 stem(Int 0(:,k), 'k' , 'MarkerSize' ,3, 'display' , 'Guess' );
160 stem(Int T(:,k), 'r' , 'display' , 'Fit' );
161 hold off
162 end
163

164 % Modulation wave
165 figure()
166 x=linspace(0,L,512);
167 plot(x,par0(1) * sin(2 * pi * x/L)+par0(2) * sin(2 * pi * 2* x/L)+ ...
168 par0(3) * sin(2 * pi * 3* x/L), 'k' , ...
169 x,parT(1) * sin(2 * pi * x/L)+parT(2) * sin(2 * pi * 2* x/L)+ ...
170 parT(3) * sin(2 * pi * 3* x/L), 'r' );

Function computing integrated intensities by the crystal with mod-
ulated structure (MyFun2.m)

1 function y=MyFun2(par,hkl,L,th2,om,RefInd,atoms0,lam)
2 % Function y=MyFun2(par,hkl,L,th2,om,RefInd,atoms0,la m)
3 % returns the value of integrated intensities correspondin g
4 % to the modulated structure determined by parameters
5 % An and L.
6 % par - free parameters
7 % hkl - indices of the diffractions
8 % th2, om - angular coordinations of the diffractions
9 % L - period of the modulation

10 % RefInd - refraction index of the material
11 % lam - used wavelength
12 % atoms.type - types of atoms in the original unit cell
13 % .positions - positions of atoms in the original unit cell
14 % .f1, .f2 - dispersion corrections
15

16 A n=par(1:3); % amplitudes of the harmonical function
17 N=par(4); % scale factor
18 bgr=par(5); % background
19 B=par(6); % Debye-Waller temperature factor
20

21 Cthm=0.7998; % cos(2th) of monochromator
22 r el=2.81794e-5; % classical radius of electron
23

24 %%% MODULATION %%%%%%%%%%%%%%%%%%
25 atoms=Modulation(atoms0,A n,L);
26

27 % prelocation of structure factor before sumation
28 F=zeros([size(hkl,1) 1]);
29 for k=1:size(atoms.positions,1)
30 F=F+...
31 (ScatFacF0(atoms.type {k},sin(th2 * pi/360)/lam)+ ...
32 atoms.f1(k)+i * atoms.f2(k)). * ...
33 exp(-2 * pi * i * (hkl(:,1) * atoms.positions(k,1)+ ...
34 hkl(:,2) * atoms.positions(k,2)+ ...
35 hkl(:,3) * atoms.positions(k,3)));
36 end
37

38 P=(1+Cthm * cos(th2 * pi/180).ˆ2)/(1+Cthm); % polarisation factor
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39 Qiz=2 * pi/lam * imag(RefInd). * ...
40 (1./sin(om * pi/180)+1./sin((th2-om) * pi/180));
41 S=1./sin(om * pi/180); % irradiated area correction
42 DWTF=exp(-2 * B* (sin(th2 * pi/360)/lam).ˆ2); % temperature factor
43

44 y=N. * P. * abs(F).ˆ2. * 8* piˆ3 * r elˆ2. * DWTF.* S./(2 * Qiz)+bgr;

Calculation of the modulated structure (Modulation.m)

1 function atoms=Modulation(atoms0,A,L)
2 % Function atoms=Modulation(atoms0,A,L)
3 % function returns coordinates and corresponding types of a toms
4 % after the consideration of modulation in the structure.
5 % atoms0.type - types of atoms in the original unit cell
6 % .positions - positions of atoms in the original unit cell
7 % .f1, .f2 - dispersion corrections
8 % A - amplitudes of the modulation wave
9 % L - period of the modulation

10

11 % number of atoms in non-distorted unit cell
12 N=size(atoms0.positions,1);
13

14 % positions of the atoms in the five neighbouring unit cells
15 for k=1:L
16 pos2((k-1) * N+1:k * N,:)=[atoms0.positions(:,1)+k-1, ...
17 atoms0.positions(:,2),atoms0.positions(:,3)];
18 end
19

20 % modulation function
21 fcn=A(1) * sin(2 * pi * pos2(:,1) * 1/L)+A(2) * sin(2 * pi * pos2(:,1) * 2/L)+ ...
22 +A(3) * sin(2 * pi * pos2(:,1) * 3/L);
23

24 % distortion of the atomic positions
25 atoms.positions=[pos2(:,1) pos2(:,2)+fcn pos2(:,3)];
26

27 % save of the results
28 for k=1:L
29 atoms.type((k-1) * N+1:k * N,1)=atoms0.type;
30 atoms.f1((k-1) * N+1:k * N,:)=atoms0.f1;
31 atoms.f2((k-1) * N+1:k * N,:)=atoms0.f2;
32 end

The scripts mentioned above are included in a CD in the attachment together
with the corresponding examples of data files. Fundamental and less important
scripts used above (such as DispCorr.m, p hkl.m, etc.) can be found in the CD
as well.
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