Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Be. Jan Vojt

Deep neural networks and their
implementation

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: doc. RNDr. Iveta Mrazova CSc.
Study programme: Informatics

Specialization: Software Systems

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, dated Author’s signature

Title: Deep neural networks and their implementation
Author: Be. Jan Vojt

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Iveta Mrazova CSc., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: Deep neural networks represent an effective and universal model ca-
pable of solving a wide variety of tasks. This thesis is focused on three different
types of deep neural networks — the multilayer perceptron, the convolutional neu-
ral network, and the deep belief network. All of the discussed network models are
implemented on parallel hardware, and thoroughly tested for various choices of
the network architecture and its parameters. The implemented system is accom-
panied by a detailed documentation of the architectural decisions and proposed
optimizations. The efficiency of the implemented framework is confirmed by the
results of the performed tests. A significant part of this thesis represents also ad-
ditional testing of other existing frameworks which support deep neural networks.
This comparison indicates superior performance to the tested rival frameworks
of multilayer perceptrons and convolutional neural networks. The deep belief
network implementation performs slightly better for RBM layers with up to 1000
hidden neurons, but has a noticeably inferior performance for more robust RBM
layers when compared to the tested rival framework.

Keywords: multilayer neural networks, convolutional neural networks, deep belief
networks

Néazev prace: Hluboké neuronové sité a jejich implementace
Autor: Be. Jan Vojt
Katedra: Katedra teoretické informatiky a matematické logiky

Vedouci bakalatrské prace: doc. RNDr. Iveta Mrazova CSc., Katedra teoretické
informatiky a matematické logiky

Abstrakt: Hluboké neuronové sité jsou efektivni a univerzalni model schopny resit
sirokou skéalu tdloh. Tato prace je zamérena na studium tii riznych typa hlubo-
kych neuronovych siti — vicevrstvy perceptron, konvoluéni neuronové site, a sité
typu DBN (deep belief). VSechny popisované modely hlubokych neurénovych
siti jsou naimplementovany na paralelni hardvérové architektute, a otestovany
pro riizna nastaveni architektury sité i jejich parametri. Implementovany sys-
tém je doplnén detailni dokumentaci softvérového navrhu a popisem pouzitych
optimalizaci. Efektivitu implemenetovaného frameworku dokladaji i vysledky
provedenych vykonnostnich testi. Vyznamnou soucast prace predstavuje i tes-
tovani dalsich existujicich frameworkt s podporou hlubokych neuronovych siti.
Porovnani ukazuje, ze framework vytvoreny v ramci této prace dosahl lepsich vy-
konnostnich vysledkl nez testované konkurenc¢ni implementace vicevrstvych per-
ceptronti a konvoluc¢nich neuronovych siti. Implementace siti typu DBN dosahuje
v porovnani s konkurencéni implementaci mirné lepsich vykonnostnich vysledki
pro RBM vrstvy o velikosti do 1000 neuront, ale znatelné slabsich vykonnostnich
vysledkil pro robustnéjsi RBM vrstvy.

Klicova slova: vrstevnaté neuronové sité, konvolucni neuronové sité, hluboké sité

ACKNOWLEDGEMENTS

I would like to thank my supervisor doc. RNDr. Iveta Mrazova, CSc for her
guidance, the considerable time spent on consultations, proof reading, and for
inspiring me to start the work on this thesis in the first place.

I would like to acknowledge the academic and technical support of the Charles
University in Prague, namely for the provided hardware used for evaluating var-
ious deep learning frameworks. Additionally, I would like to thank Mgr. Pavel
Semerad for maintaining the provided machines, and for promptly resolving the
arose issues.

Special thanks to Mgr. Jana Hajduova, whose patience and support gave me
the strength to work on this thesis.

Table of Contents

2.1 Perceptrono
2.2 Multilayer perceptrono oo o
2.2.1 The training processd oo
[2.2.2 Backpropagation aleorithml

2.3 Convolutional neural networks o v

[2.3.3 Subsampling laverdl
[2.3.4 Backpropagation in Convolutional Networkd
[2.3.4.1 Backpropagation in subsampling lavers

[2.4.4 Trainine Restricted Boltzmann Machines
[2.4.4.1 Contrastive Divergencd

13 Implementationl
3.1 Parallel computing platforms]
Bl FPGA

13.4 Installation procedure and launcho
13.5 Network confieurationl oo
[3.5.1 Laver confieuration

Uk = W

©

9
10
14
16
16
17
20
21
21
22
23
23
24
25
26
27
28
28
29

31
31

13.7.6 Logging moduld 50

B8 Mulllver peceplion elvorl .- o
ional neural network 54

‘ numbers
4.4.3 Recognition of handwritten digitd 70

.5 Convolutional Neural Networll 73

87

91

95

1. Introduction

The first known computational model of neural networks was formalized in
1943 by neurophysiologist Warren McCulloch and mathematician Walter Pitts [25].
Their work discusses how neurons in the brain might work. Their mathemati-
cal model marks the creation of a new field of study - Artificial neural networks
(ANNK). The motivation for the research at this point in time was to provide an
insight into the functionality of the brain.

A decade later, computers became powerful enough to simulate a hypothet-
ical neural network. Eventually, researchers realized the pattern-matching and
learning capabilities of neural networks could allow them to address a variety of
problems which were difficult to be solved effectively using conventional methods
and algorithms.

The first neural network model solving a real-world problem was developed by
Bernard Widrow and Marcian Hoff of Stanford in 1959. Its name was ADALINE,
and could recognize binary patterns. While reading a stream of bits from a
phone line, it could predict the next bit, which could eliminate echoes from the
stream. The research slowed down in the 1960’s, because of the book Minsky
and Papert published. They demonstrated that the simple two-layer perceptron
is incapable of usefully representing or approximating functions outside a very
narrow class [26]. Although they left the possibility of better performance open,
their claims halted research of multilayer feed-forward networks for several years.

The 1980’s brought a boom in the field, and showed that some of the percep-
tron limitations may be overcome [I8]. This is mainly attributed to the back-
propagation algorithm. It was invented a decade sooner, but the first computer
experiments demonstrating it can generate useful representations were published
in 1986 [29]. As a consequence, artificial neural networks proved to be a powerful
tool able to solve complex problems such as perception, concept learning, the
development of motor skills, voice recognition, etc.

The boom in the field continued throughout 1990’s, however there was still a
problem with the performance. Building more robust networks took weeks, even
months to train on contemporary hardware. The situation changed after lever-
aging new learning algorithms and parallel computing to speed up the learning
process. It allowed to construct deeper [ANN] models capable of recognizing very
complex and abstract patterns.

The parallel architecture found its use in the gaming industry. Gamers rep-
resented a big market, which provided generous funding for developing high-
performance chips with parallel architecture. In the past decade, these high
performance chips became relatively cheap, and hence available for masses. This
greatly fueled the research in the artificial intelligence field.

The achievements are astonishing. Artificial neural networks found applica-
tions in a wide range of fields. To name a few examples, they are used in medicine
to identify brain structures in magnetic resonance images [24], in geology to ana-
lyze 3D seizmic data volumes [33], in energetics for forecasting regional electricity
loads [19], or in logistics for driving trucks [2]. Autonomous navigation cars are
currently being researched [2I] and tested heavily, but the most apparent ob-
stacles today are legal barriers. Although in some states, autonomous cars are

already legal today (Nevada, Assembly Bill 511, 2011). Their use is about to
revolutionize the transportation of people and goods.

1.1 Motivation

Artificial neural networks are proving themselves to be a very effective and
extremely universal tool. All the above examples of usefulness and effectiveness of
artificial neural networks are showing a very promising future for their use. In the
past decade they were almost exclusively a domain of revolutionary companies
with virtually unlimited resources funding their research, like Google, Facebook,
Netflix, etc. However today, the methods of artificial intelligence seem to shape
as an indivisible part of any successful venture in the industry. Some experts
even predict that artificial intelligence will lead to the next industrial revolution.

The main objectives of this thesis are to discuss the theory behind deep artifi-
cial neural networks, design and build a high-performance implementation using
parallel architecture, and evaluate the obtained performance results. The network
architectures studied and implemented will comprise the multilayer perceptron
network, the convolutional neural network, and the deep belief network. This
work is not focused on solving any specific problem, but is rather universal. The
resulting implementation, however, should be very flexible in terms of the ability
to create any desired network architecture, and in terms of configuring the net-
work parameters. This will allow the users to model neural networks capable of
solving any specific task at hand.

1.2 Methodology

The outcome of this work will be an implemented framework for modeling
artificial neural networks. The supported network types will be the previously
mentioned multilayer perceptron network, the convolutional network, and the
deep belief network. The framework will provide a simple but user friendly ap-
proach to configuring the specific network architecture, and the network and
training parameters. All the configuration options will be accessible without the
need of recompiling the framework itself. This is an important property, as it will
not require the users to understand and edit the code.

The evaluation of the implemented framework will also form an important
part of this work. It will be done via automated test cases with different net-
work architectures and parameters. These test cases will be defined as code, so
that anyone can rerun the tests in the future and verify the achieved results.
An important part of the evaluation will also be a comparison with other avail-
able frameworks capable of working with the above mentioned neural network
types. These test cases will also be automated and defined as code for all of the
frameworks. This will again guarantee repeatable and verifiable results.

All the test cases along with the results will be included in the optical disk
attached to the physical copies of the thesis.

4

1.3 Thesis structure

This thesis consists of three chapters. The first chapter provides the theoret-
ical background for the studied artificial neural networks. The second chapter
documents the implemented framework for working with the supported neural
network types. The last chapter presents the evaluation of the implemented
framework.

The first chapter with the theory behind artificial neural networks explains
the structure of a neuron as the fundamental building block of the network. It
also discusses the universal concepts reused in all the implemented network types.
In the following sections, this chapter defines each of the studied network types.
It also describes the training process for each network type separately.

The second chapter compares the available parallel hardware architectures
and discusses whether they are suitable for implementing artificial neural net-
works. The decision regarding the chosen hardware platform is made, along with
explaining the supporting arguments. The chapter continues with a detailed de-
scription of the software architecture and the decisions made during framework
implementation. The installation procedure and the configuration options can be
also found here. The chapter concludes with the specifics in the implementation
of each network type.

The last chapter begins with testing requirements before explaining the test-
ing methodology. It continues with the presentation of the results obtained from
testing. The last two sections in this chapter compares the implemented frame-
work to other existing frameworks for working with deep neural networks. The
results are presented in graphs comparing the time performance of each tested
framework with the same network configuration and on the same hardware.

2. Artificial neural networks

Inspired by biological nervous systems, artificial neural networks (ANNk) aim
at reaching their versatility through learning. ANNs are commonly employed in
artificial intelligence, machine learning and pattern recognition. There has been
substantial research into how the human brain’s structure achieves such a high
level of versatility. This research has provided some important insights, however
the conclusions are far from completely explaining the complex functioning of
the brain. Even though we have not been able to replicate the brain so far, the
field of artificial intelligence offers very effective solutions to many problems by
simulating the observations of biological research of various nervous systems.

It is estimated, that the average human brain contains 86 billion neurons [13].
Together they form a huge network. Even if we knew the detailed inner struc-
ture of the human brain, we would still not be able to simulate it with current
technology because of its robustness. Our efforts are therefore rather different.
We want to build a neural network with a good ratio between its size and its
effectiveness.

Dendrite

Axon Terminal

Figure 2.1: Model of a biological neuron. Image was taken from Wikipedia, where
it is published under Creative Commons BY-SA 3.0 license. Image was adapted.

Generally, consist of a set of artificial neurons. Formally, an artificial
neuron has n inputs represented as a vector ¥ € R". Inputs in an artificial
neuron correspond to the dendrites in a biological neuron, while a single output
of an artificial neuron corresponds to the axon in a biological neuron, which
is depicted in Figure Il Each input ¢, 1 < ¢ < n, has an assigned weight
wy, ..., w,. Weighted input values are combined and run through an activation
function producing some output y, as shown in Figure[2.2l The network is formed
by connecting the neuron output with the input of a different neuron. [ANN] is
therefore effectively described as an oriented graph as shown in Figure 2.4, where
vertices represent the neurons, and oriented edges represent the output-input
connections between them.

A set of input neurons consists of the neurons which are the first ones in any
[complete path| in the graph. All input neurons have exactly one input, and all
inputs together represent an instance of the problem to be solved by the [ANN]
A set of output neurons consists of the neurons which are the last ones in any
[complete path| in the graph. All output neurons have exactly one output, and

7

all outputs together represent a possible solution to the problem to be solved by
the [ANNl A set of hidden neurons consists of the neurons which are not input,
nor output neurons. Their number and organization into layers may vary even
for the same problem, but is a key feature of the network vastly influencing its
performance.

An [ANN] works by feeding the data into the input neurons. The data flows in
the direction of oriented edges and ends when the output neurons are hit. The
result is interpreted from the values obtained in the output neurons.

inputs weights
X1

summing activation
junction function

X5 M potential output
d f

> Y
. T

5]
bias

Figure 2.2: Model of an artificial neuron.

Formally, an [ANNlis a 6-tuple M = (N,C,I,Y,w,t), where

e N is a finite non-empty set of neurons,

e U C N x N is a non-empty set of oriented edges between the neurons,

e X C N is a non-empty set of neurons in the input layer,

e Y C N is a non-empty set of neurons in the output layer,

e w:(C — Ris a weighting function,

e t: N +— Ris a function for network bias.

Let us consider neuron j with its input @; = (21, . .., Tpn;), weights wyj, ..., wy,;

and bias 6;. Then the potential of the neuron is computed:

& =Y wiij +0;. (2.1)

i=1

Consider the following activation function:

1
(&)= T7¢6

Then the output y; of the neuron j is computed:

(2.2)

yi=f(&)=1f (Zn: Wi T + 9j> : (2.3)

Considering [ANN] containing m such neurons in the output layer, we obtain
the output of the network as ¥ = (y1,...,Ym)-

A more general definition is given by Atencia, Joya and Sandoval [I], where
[ANN] is defined as a dynamic system whose state, at a given instant, is char-
acterized by M. Network states are referred to as configurations. During the
learning process, may change their weights, bias, or in some networks even
the number of neurons and their setup. In contrast, our definition does not allow
such modifications and M does not change in the process of learning.

2.1 Perceptron

The most trivial neural network is the perceptron that consists of one fully
functional neuron only. Its output is calculated directly by Equation 2.3 In
Figure 2.3 we can see the most commonly used activation functions: sigmoid
(Eq. Z2) and unit step function. The output of the sigmoid function produces
continuous output, while the unit step function produces strictly binary outputs.
By the standard definition, the single perceptron forming a trivial network uses
step function exclusively.

4
T

+0.8

+0.6

+0.4

+0.2

a)
\vJ

i 6 8 |~ B 6 4 2 0 2 4 6 8
Figure 2.3: Graph of the sigmoid and the unit step function.

[ANNE consisting of a single perceptron neuron are too trivial for complex
tasks. However, they can be combined into a multilayer perceptron network
(MLP) to address a wider set of problems. As we will see in Section 2211 dis-
cussing training of an [MLP| continuous functions are more suitable for gradient-
based learning, because we can calculate their derivative. This is important to
easily determine the weight adjustment rules.

2.2 Multilayer perceptron

The Multilayer perceptron (MLP]) is a feed-forward neural network consisting
of multiple mutually interconnected layers of neurons. The layers are stacked one
onto each other. Every neuron in one layer is connected to every neuron in the
following layer. The motivation behind designing multilayer networks is to be able
to solve more complex tasks. The [MLP| network is built of perceptrons defined in
Section [2.Jl. The unit step function is usually not a suitable activation function
to be used with the perceptrons. Because of continuity and greater flexibility,
the sigmoidal function is most commonly used instead. When choosing the most
suitable activation function, we want it to be differentiable at every point of its

domain, and to be non-linear. Non-linearity is important, because in general we
want the output to be non-linearly dependent on the given input.

Perceptrons are arranged into x > 2 layers. Let us consider a network M with
r layers. The set of neurons C' is split into mutually disjunct subsets called layers
Ly, ..., L. More formally it holds V4,5 : 1 <4,j <k (L; #OANL;NL; # 0) =
1 = 7. The network layers are stacked one onto each other, L; being the input
layer, Lo, ... L._1 being the hidden layers and L, being the output layer. As
shown in Figure 2.4 the edges are all oriented in the direction from the input
layer L, towards the output layer L,. Each neuron in layer L; is connected to
every neuron in layer L;,;. In other words all neighboring layers form complete
bipartite graphs.

Output layer

Hidden layer

Input layer

Figure 2.4: A Multilayer perceptron network consisting of 3 layers.

The output of the network is computed sequentially, layer by layer. We start
with the input layer by directly assigning ° = Z. Then the computation proceeds
by assigning input 7 = ¢*~! for layer L;. The weights and the activation function
are given by the network, thus the output of each layer depends only on the output
of the previous layer. The final output of the network is then produced as ¢* in
the output layer L,.

2.2.1 The training process

The ability to learn is the key concept of neural networks. The aim of the
process is to find the optimal parameters (and structure) of the network for
solving the given task. Before the training process starts, network parameters
need to be initialized. Initial values are often chosen randomly, however using
some heuristics may lead to a faster parameter adjustment towards the optimal
values. Learning is then carried out on the training set by feeding the training
data through the network. It is an iterative process, where the outputs produced
on each input from the training set are analyzed and the network is repeatedly
being adjusted to produce better results. The network is considered to be trained
after reaching the target performance on the training data. There exist different
metrics for assessing the network performance. I will use the mean squared error,
which I will define formally in the following text (Eq. 21).

In this thesis I will focus on learning from a labelled dataset. Such dataset
consists of input patterns for the network with their corresponding labels - ex-
pected network outputs. The process of learning from the labelled dataset is

10

reffered to as [supervised learning] If the data labels are not available, it is possi-
ble to employ [unsupervised learning| using specialized algorithms, which will not
be discussed here.

A common problem encountered in the process of learning is foverfitting] It
generally occurs when the learning is performed for too long, and especially when
the training set is too small to evenly represent all types of patterns from the
domain of possible network inputs. In such a case the learning may adjust the
network to random features present in the training data. Overfitting is observed
during the learning process, when network’s predictive performance is improving
on the training set, however worsening on previously unseen test data.

To combat this issue the labeled data is split into a training and a validation
set. The main reason why to use the validation set is that it shows the error
rates on the data independent from the data we are training on. A study by
Guyon suggests that the optimal ratio between the size of training vs. validation
data set depends on the number of recognized classes and the complexity of class
features [I1]. An estimation of feature complexity is however quite cumbersome.
A good starting point for determining this ratio is to put 80% of the available data
into the training set and 20% into the validation set. Further experimentation
may help to move closer to the optimal ratio. While learning, the performance of
the [ANN] is regularly examined on validation data set. When errors retrieved on
validation data reach a stopping point, learning process is stopped (see Figure 2.5])
and the network is considered trained.

Stopping point

Validation error

Mean squared error

Epochs

Figure 2.5: Graph comparing the evolution of the training error vs. the validation
error.

To define the learning process formally and in more detail, let us consider P
training patterns labeled (27, cﬁ’), where 7P is the input vector, dP is the desired
output vector, and 1 < p < P. Given the current configuration of the network,
the input a7 yields the output y?. Then for every pattern p we want ¢ to be as
close to the desired output b as possible. We can define the error of each neuron
J in the output layer as:

el =y; —d. (2.4)

Now we can define the squared error for pattern p as:

11

Bo= (@) = X - 29

where m,, is the number of neurons in the output layer. Note that if the actual
output is exactly the same as the desired output, we get zero for the squared error.
In other words the following holds true:

ViiE,=06d =0y =d. (2.6)

It may be useful to sum up the average error for all input patterns to assess
the network performance on the whole dataset, which can be achieved simply by
computing the mean squared error [12, pp. 183]:

1 P
By = =S B, (2.7)
P

When learning, for each interconnected pair of neurons (i,j), where i is a
neuron in layer [, j is a neuron in layer [+ 1 and w;; weights their connection,
we want to adjust w; ; to minimize the mean squared error E,,,. Provided the
activation function is differentiable everywhere on its domain, E,,, is also differ-
entiable. When adjusting the weight w; ; of the neuron j located in the output
layer k, we are therefore interested in the partial derivative:

0wy _ 1 0 < :liaEp
8wm~ P@wm p—1 b P

p=1

. 2.8
- (2.8)

To be able to adjust the network after each presented input pattern, we are
actually interested in the derivative for each given pattern p and its correspond-
ing E,. In the following equations we will therefore omit the pattern index p.
Applying the chain rule to Equation 2.8 we get:

OE OE oy,

—) 2.9
8w,~7j Oyj 8wm~ ()
Using Equation we can evaluate the first factor as:
oFE
— = (y; —d,;). 2.10
ayj (?/J]) ()
Then we evaluate the second factor:
oy, dy,; 0&; 0
L= L2 = f(¢) > wigyr = f (&) yie (2.11)

811]@'7]' N 8—@611}2‘,]' 6wi,j &
By combining both evaluated factors we get:

oFE

8wi7j

= (y; — d;) ' (&) yi- (2.12)

For convenience Haykin defines the so-called local gradient ; for neuron j in
the output layer [12, pp. 185] as the following relation:

_OE _ OBy _ e
_8—§j_8yja§j_(yj d])f(&])- (2.13)

12

Wy

Then we can reformulate Equation 2.12] into:

oF
3wi,j

Using Equation 2.14] we can compute the gradient of the error function for
each of the given patterns p. We need to adjust the weight w; ; proportionally
to the gradient but in the opposite direction. However doing so for every input
pattern would produce a very unstable system. To combat this problem we can

use a learning parameter 0 < 1 < 1. The weight adjustment is then computed
by:

OF
" 8’11]@'7]'

Aw; ;= = —10;yi. (2.15)

The weight adjustment Aw; ; in is only applicable to the neurons in the
output layer. Computation of the adjustment for neurons in the hidden layers
is more complicated. For instance, consider 3 neurons i, 7, and k, all following
each other on the same path along the layers [— 1,1 and [+ 1, respectively, as
illustrated in Figure 2.6l Then the adjustment of w; ; needs to be done carefully,
because besides influencing the output of neuron i itself, it also impacts all the
outputs (and thus errors) in all layers following {. Minding this, let us bring our
attention to the the layers | < L in the following text.

layer I-1 layer | layer 1+1

Figure 2.6: Illustration showing how a change in the weight w; ; of the neuron in
the hidden layer [— 1 influences the weight w;; of the neuron in the following
layer .

Note that Equation 2.12 still applies to hidden layers. However, we need to
look at the definition of the local gradient again. In the previous Equation 2.13]
we are using the desired output d; to calculate OE/Jy,. Of course, there is no
desired output known in hidden layers. It is actually dependent on the network
design. Because of this, we need to step back and use the following definition for
5j:
_OE 0Foy; O0F ,

9 Oy; 05 y;

13

5) (&) (2.16)

Now we need to redefine F /0y, for hidden layers. For any hidden layer [, the
following layer [+ 1 must exist (otherwise [would be the output layer). Given
the neurons 7, j and k each in a different layer as illustrated in Figure [2.6] we can
use the potential &;.

OF "X OFE 0¢, "X OFE il
Oy; 1= O& Oy, I; O T I; BRIk ()

Combining equations 216 and 217 we get:

5 = (z akwj,k)). (2.18)
k=1

Equation 1§ tells us, that knowing the local gradient of neuron k in layer
[+1, we can calculate the local gradient for neuron j in layer [. This fact will allow
us to recursively adjust the network weights going layer by layer in the direction
from the output to the input (backwards). It is used in the most common learning
algorithm discussed in Section 222.2]

Finally, we can summarize the weight adjustment applicable to all the layers
in a given network:

OF
n@wm N

Awm = —775]"3/2‘, (219)

where

mi+1
Vj in layer [< L d; = <Z 5kwj,k> f(&)
k=1

2 (2.20)
Vj in layer L 05 = (y; — d;) ' (&)

2.2.2 Backpropagation algorithm

The purpose of the backpropagation algorithm is to adjust the synaptic weights
of neurons, so that the network produces the desired output. The algorithm de-
scribes the process of training (also called learning). The result of this algorithm
is a neural network configured to minimize the error when solving given problem.

Training must be performed on labeled data and therefore is supervised. Be-
fore the algorithm starts, the weights need to be initialized to some values. The
initialization is not a part of the algorithm specification, as there may be differ-
ent approaches, the most common being the most trivial - random initialization.
Then the training algorithm starts.

Each input pattern with its class label (), az;) is sequentially processed in two
phases. The first phase called the forward phase puts the input pattern as the
input of the network, setting ¢° = Z,. The network then computes its output 7.
The sole purpose of the forward phase is to calculate the output for the presented
pattern, and the network is not adjusted at all. At this point the backward phase
starts. The purpose of this phase is to adjust the network weights to achieve a
better assessment of the input data.

Learning is performed in multiple epochs. In each epoch, all the data from
the training set is processed. The duration of an epoch directly depends on
the size of the network and the size of the training set, as each input pattern

14

from the training set is processed exactly once. However the number of epochs
is not limited. An important decision of the learning process is therefore the
determination of the stopping criterion. After each epoch we validate the error
on the validation data set. Once this error starts to increase, we achieved some
(local or perhaps global) minimum, and it is usually wise to stop the learning
process at this point (see Figure 2.5]).

Formally, the backpropagation algorithm will be described below:

Input:
e training patterns (7, cﬁ’), 1<p<P
e validation patterns (79, (Z‘}), 1<q¢<@Q
e activation function f and its derivation f’(§)

— e.g. the sigmoidal function: f(¢) = 1/(1+e7%); f/(€) = f(&)(1— £(€))

e learning parameter n € (0,1)

e feed-forward neural network M with randomly initialized weights
Output:

e a trained feed-forward neural network M’
Algorithm:

1. Set Egyy = o0.

2. Start a new epoch.

-

3. For each p € {1,..., P} present the pattern (27, dP).

o Set 0 = 7.
e forward phase

— Forl=1,2,..., k compute the output of M for 2 in the following
way:
Vj € L; compute & = Y7 wiz; + 6 and y; = f(£).
e backward phase
— Vi € Ly1,j € L, compute 6; = (y; — d5)f'(§;) and Aw;; =
—10;Y;-
— Forl=x—-1,...,1do
Vi € Li_1,j € Ly compute §; = 230" Gpwinf'(§), Awiy =
—19;Yi-
— Forl=1,2,...,k V(i,j) € Li_1 x L; adjust w; ; by Aw, ;.
— Compute the error for the pattern p: E, = 1/m, 37 (5 — df)>.

4. Set Epey = Eqyg and compute new E,,, = 1/P Z;]::1 E, for the validation
data set.

5. If By < Eprey g0 to step 2.
6. Finish.

15

2.3 Convolutional neural networks

Convolutional neural networks ([CNNk) are multi-layer feed-forward networks
specifically designed to recognize features in 2-dimensional image data. The ar-
chitecture of is inspired by Hubel and Wiesel’s study of neurobiological
signal processing in cat’s visual cortex [20]. A typical application of CNNs con-
sists of recognition of various objects in images. However convolutional networks
have been successfully used for various different tasks [7] [6], too.

are primarly used for 2D image recognition, so we will illustrate their
architecture on a 2D rectangular image consisting of pixels. Each pixel generally
carries colour information. Colour can be represented by multiple channels (e.g.
3 RGB channels). For the sake of simplicity, we will consider only one single
channel (shades of gray) while explaining the model.

The neurons in work by considering a small portion of the image, let
us call it subimage. The subimages are then inspected for features that can be
recognized by the network. As a simple example, a feature may be a vertical
line, an arch, or a circle. These features are then captured by the respective
feature maps of the network. A combination of features is then used to classify
the image. Furthermore, multiple different feature maps are used to make the
network robust to varying levels of contrast, brightness, colour saturation levels,
noise, etc.

There are two types of layers, both consisting of feature maps. The purpose
of the so-called convolutional layer is to recognize the features in the input image.
It usually consists of several feature maps, each map recognizing certain feature.
The subimages intentionally cover overlapping regions of the original image. Such
a design is important in order to tolerate image distortions, like translation,
rotation, skewing, etc.

The other layer type, the so-called subsampling layer, always follows after a
convolutional layer. It consists of the same number of feature maps, where each
map from the convolutional layer is used as an input for the corresponding feature
map in the following subsampling layer. Subimages covered by the neurons from
the subsampling layer usually do not overlap.

Depending on the network’s depth, the convolutional and subsampling layers
alternate until the last subsampling layer is reached. After the last subsampling
layer, there may be any number of fully connected layers as described in Sec-
tion 2.2 the last one of them is the output layer [22].

2.3.1 Architecture of CNNs

To explain the architecture of the convolutional network, let us consider the
image data in the input layer. From a high-level point of view, a convolutional
network is architecturally split into two important parts. Each part is designed
to fulfill a different purpose. The first part of the network performs feature
extraction, and is built of convolutional and subsampling layers. The second
part performs classification based on the extracted features. We will be using
fully-connected [MLPI for this part.

Let us describe the feature extraction process in more detail. Starting with the
presented input image, each pixel represents the input for the neurons grouped in

16

feature maps of the first convolutional layer. The neurons in the feature map are
organized in a 2-dimensional grid. All the neurons within the same feature map
share their weights. This allows to optimize the implementation by requiring less
memory and yielding a better performance.

More importantly, it is an architectural feature. Each neuron in a given feature
map is expected be recognize the same feature. The feature is recognized by a
combination of weights, which are essentially filtering neural inputs. Sharing the
same weights for all the neurons within the given feature map ensures the same
filter is used for each pixel.

Let F; be the set of feature maps in the layer [. All feature maps in F; have
the same size, let us denote it m; x n;. Further, V0 <i < m;,0 <7 <n; let yf}l
be the output of the neuron (i, 7, ¢, 1), at the position (7, j) in the feature map ¢
of the layer [.

input convolutional subsampling convolutional subsampling multilayer
feature maps feature maps feature maps feature maps perceptron
32x32 28x28 14x14 10x10 5x5

..

A A
. A A A
5x5 ' 2x2 5x5 2x2 *5x5 fully
convolution s, subsampling convolution subsampling convolution connected *
-- ‘~------------------
feature extraction classification

Figure 2.7: Example architecture of a convolutional neural network designed for
the classification of handwritten digits from the MNIST dataset.

We will consider the input image as the output of the layer with zeroth index,
having the size of mg x ng pixels. Note that the input layer can be also considered
as a subsampling layer with one single feature map. The input layer is then
followed by alternating convolutional and subsampling layers. The neurons of
the feature map ¢ in the convolutional layer [take the input from the set of
feature maps F};;, located in the previous subsampling layer (0 # Fj, C F;_,).
The convolutional layer is then followed by a subsampling layer, which reduces
the size of feature maps. The last subsampling layer ends the feature extraction
process.

At this point the second part of the network begins the classification process.
The classification is performed using a fully-connected [MLPl network, which clas-
sifies the inputs according to the extracted features. For an example of a
see Figure 271 In the following sections we will describe the convolutional and
subsampling layers in more detail.

2.3.2 Convolutional layer

The purpose of convolutional layers is to detect the features in the presented
images. It consists of multiple feature maps, each recognizing certain specific
feature. The feature recognition can be thought of as running the subimage
through a filter. The filtering is essentially done through weight adjustments.

17

A filter may highlight or suppress a pixel’s potential based on the surrounding
pixels. The filtering to use is determined automatically by the learning process
via weight adjustments.

The number of feature maps in the convolutional layer is an important archi-
tectural decision to make when designing the convolutional network. The optimal
value depends on the nature of the problem being solved. The best way to de-
termine the number of feature maps is to experiment. As a rule of thumb, more
complex images are recognized better using more features, while simple tasks
produce better results using just a few features. In fact, if the chosen number of
features is too big, the features learned will often be duplicated.

Let us consider a convolutional layer [with a set of feature maps F;. In
general, this layer is always preceded by a subsampling layer with a set of feature
maps F; ;. For the sake of simplicity, we will refer to a feature map in the
convolutional layer as a convolutional map. A feature map in the subsampling
layer will be referred to as a subsampling map.

All feature maps in the same layer have the same size. The size of convolution-
al maps is predetermined by the size of subsampling maps in the preceding layer,
by the layer parameter r\, and by the overlapping parameter s.. Each neuron
in a convolutional map takes its input from (r!)? neurons in the corresponding
subsampling map from the preceding layer. These input neurons form a square
of dimension r! x r!. The overlapping parameter s, > 1 determines how many
neurons apart are these squares from each other, as can be seen in Figure In
the following text we will refer to this square of inputs as the receptive field of
the neuron.

subsampling layer convolutional layer
-1 I

Figure 2.8: Illustration of the convolution operation on the input feature map of
size 28 x 28 neurons in layer [— 1. The convolution uses a receptive field of size
5 x 5 and overlapping parameter of 2 neurons, thus producing feature maps of
size 12 x 12 neurons in layer [. Note that neighboring neurons in convolutional
layers have overlapping receptive fields.

As illustrated in Figure [2.8], neighboring neurons in a convolutional map have

neighboring receptive fields that overlap in exactly (rl — s.)? neurons. If the
dimensions of the subsampling map are (m;_1,n;_1), the following convolutional

maps must have the dimensions of:

(e,) = qml‘l_d*ﬂ, {”"“Té“b. (2.21)

l l
Se Se

18

Each neuron (i, j, ¢,1) is thus connected to all the neurons (is! + Ai, js! +
Aj,¢',1 — 1) from the preceding layer, where ¢/ € F,; and 0 < Ai, Aj < rl.
Each connection within the receptive field of neuron (i, j, ¢,l) has the weight
wi? Alj This weight is shared for all the neurons within the same feature map,
i.e., for all 7, 7. At this point, we can compute the number of weights required by
Convolutional layer . No matter what the dimensions of convolutional maps are,

the total number of weights is:

Wil = R - ()2 (2.22)
The output yf 3-l and potential 55? f of the neuron (i, j, ¢,1) are then computed
as:
-1 rl-1
¢l _ gpl #'l-1 ¢¢’7l
Yij = éi,j - Z Z Z Yist +Az,]sl+A] Ai,Aj (223)

¢/6F¢l 1A’L OA_] 0

The algorithm processing the convolutional layer [must sum the weights for
each neuron. There are |F}| - m; - n; neurons in layer [. Each of them must sum
up |F_q| - (r!)? weights (Eq. 2.22). This yields the following time complexity for
processing the convolution in layer [.

O(|Fia] - B - (re)® - my - i) (2.24)

Given the above definitions, there are 3 important parameters that need to
be chosen to configure the convolutional layer.

e |F}] : the number of convolutional maps that will be corresponding to a
single preceding subsampling map,

l

e 7, : the receptive field size parameter,

e 5! : the overlapping parameter.

As we already discussed, an adequate number of convolutional maps depends
on the complexity of features in the classified input. We will test different values
for a specific problem in Chapter [4l.

The optimal value of the receptive field parameter also depends on the given
problem. Its values are often small, so that the network can detect simple and
small local features. The correct combination of the local features can then
be trained. For instance, LeNet-5 network [22] uses v\ = 5 for an input with
mo = ng = 32.

The value of overlapping parameter is usually equal to 1. Increasing the pa-
rameter rarely makes sense, because if the receptive fields are too far apart, the
network can miss important features. It might make sense to use higher over-
lapping parameter as an optimization technique for big images and big receptive
fields. It is however disputable whether resampling the input images to a lower
resolution would be a better approach. In our experiments in Chapter @] we will
be using relatively small input images, and therefore set this parameter to 1.

19

2.3.3 Subsampling layer

The subsampling layer is either the first layer in the network (the input layer),
or it follows after the convolutional layer. Let us consider a subsampling layer [
consisting of a set of subsampling maps F;. The purpose of the subsampling layer
is to reduce the sizes of feature maps to simplify and generalize the recognized
features.

convolutional layer subsampling layer
-1 I

>

Figure 2.9: Illustration of the subsampling operation on the input feature map of
the size 28 x 28 neurons from the layer [— 1. In this case, the subsampling uses
receptive fields of size 4 x 4 neurons, thus producing feature maps of the size 7x 7
neurons in the layer [. Note, that in this illustrated case, the receptive fields of
the subsampling neurons do not overlap.

Each convolutional map in layer [— 1 is connected only to the corresponding
subsampling map in layer [. The receptive fields of the subsampling neurons are

ified by th ters rl and 7!, and lly do not overlap. Such a setti
specified by the parameters 7, and r,, and usually do not overlap. Such a setting
reduces the size of the feature maps by the factors 7 and rly in each dimension,
as illustrated in Figure Formally, the new feature map sizes will be:

mp— ni—
my = [_ W and n; = {T—lw (2.25)

xT

By this definition, each neuron from the convolutional layer is connected to
exactly one neuron from the subsampling layer (and each convolutional map is
connected to exactly one subsampling map). This results into a simple network
design with the following time complexity when computing the output of the
subsampling layer in the forward pass.

O(|F’l_1| cmy—q - nl—l) (226)

Generally, the subsampling parameters can be chosen from the range 1...m;_

for r; and 1...n;_ for rly. The usual values are rt = rly = 2, which is the lowest

x

value that makes sense. If the receptive fields should be out of the limits of the
feature map bounds, their inputs will be simply considered to have the value of
zero. It is effectively the same as if we padded the feature map with neurons with
zero potential.

The neurons from the subsampling maps take their input from their receptive
fields. Multiple inputs (r} x ré) are then combined into a single value denoted as
the neuron potential. The most common approaches to combine these inputs is

20

through averaging (Eq. [227), or finding the maximum value (Eq. 228). Having
the feature map ¢ in layer [, its output yl-j is then multiplied by a trainable
coefficient a®!, added to trainable bias b?!, and passed to an activation function

f (Eq. 229).

rl—1 7" -1
b,l—1
Tl Z Z yzrl—l—Az,jré—i—Aj (227>
T2y Ai—0 Aj—0
loR A ¢,0—1
givj _ Aier(%itz(_l)(yiré-l—da:,jré—i—dy) (228)
Aje(0,rl—1)
l l
vl = fa™€l + b (2.29)

2.3.4 Backpropagation in Convolutional Networks

Convolutional networks are a kind of feed-forward networks. Hence it is
possible to train them using the backpropagation algorithm. We will use the
ideas and some definitions introduced in Section 221l The general objective
will be the same - minimize the network error rate E through gradient descend
technique. The weight adjustment will again start from the last layer. Using
[supervised learning, the expected neuron output is known here. We can use
Equation to compute the error E, for the pattern p. We will be considering
convolutional networks that have a conventional Multilayer Perceptron (MLP]) as
their last layer. The backpropagation process of is defined in Section 2.2.2]
and will be the same for this part of the convolutional network.

The details how to cope with different types of the network’s lower layers will
be discussed in the following subsections.

2.3.4.1 Backpropagation in subsampling layers

The subsampling layer does not have any trainable weight parameters. In
fact, its only trainable parameters are the coefficient a?! and bias b%!. As we are
interested in the influence of these parameters on the errors, we need to consider
OE/da®! and OE/Ob*! in the subsampling layer [. Using Equation and
applying the chain rule yields the following:

OF oyl

dadl Z e 3@‘1;?1 B Z oy f’(aaﬁ,l ' 5?11 + %) éfjl (2.30)
Zv] l,]

oE oyl

ol Z oy? 8b¢;,]l - Z P - f a5+ 00 (2.31)
17] 7 j

The partial derivative 0F/ 8y¢ =1 in the above equations is still unknown. It
expresses how the output of the layer [— 1 influences the error. Let ¢ denote
the respective feature map in the layer [, and ¢’ the corresponding feature map
producing the input for ¢. Note that ¢’ can only represent one single feature map,
because ¢ is a subsampling map. The chain rule can be leveraged here again:

21

OE v OE oyl ogl
Ay ¢>’l 1 '

oyl el oygi!

(2.32)

The derivative OF / 8yi,- is known by assumption. The expression 6y / 85
can be derived from Equation

5‘.%,]
afz’, J

The evaluation of the last term from Equation depends on the subsam-
pling type. As mentioned before, we will be considering the average or maximum
value.

Averaging yields:

= f(a® - & + v - a®! (2.33)

P! 1
by L (2.34)
8%/ ‘;‘/ T;L' : Ty
Maximization yields:
f¢’ 1 it yd’ 11 is the maximum value (2.35)
dy ‘W 1 0 otherw1se '

We are now able to compute the error gradients for both trainable parameters
a®! and b*!. However, the formal description of the Backpropagation algorithm
from Section needs to be adjusted, as it computes adjustment for weights
Aw; ; in fully-connected layer. In case of a subsampling layer, it needs to compute
the adjustment of the trainable parameters Aa®! and Ab%".

OE
ol _
Aa®" = Uy (2.36)
oF
¢7l—_ —_—
AP = (2.37)

At this point we are able to propagate the error down towards the input layer
using Equation 2.32] and adjust the trainable parameters using Equation [2.30]
and Equation 2.37

2.3.4.2 Backpropagation in convolutional layer

In the case of convolutional layer, the only trainable parameters are the
weights shared for neurons in the same feature map. Note that there is no acti-
vation function used in convolutional layers.

Let us discuss how the weights affect the error by computing the derivative
OFE/ 8w¢ 4 for the preceding convolutional layer [, feature map ¢, and the respec-
tive feature map ¢ in the layer [— 1. This derivative can be computed using the
chain rule and Equation 2223} The expression 0F/ 8y§7’é is assumed to be known.

m;—1n;—1 aE ayd),l m;—1n;—1 aE
Dyq ¢' -1
Ow ¢¢f Z Z ¢z) 9 &1 Z Z “Yprigti (2-38)
p=0 ¢= Ypa W; j p=0 ¢=

22

The last derivative we need to know to be able to backpropagate the errors
is OF/ 8yﬁ:qvl_1. To compute it, we need to consider the set of neurons in layer
[connected to the output yg:élfl. Let us denote this set @g:élfl. Let us further
denote the output of neuron n € @ff:él_l with y,, and denote the weight which
connects neuron (p, q, ¢’,l—1) to neuron n with w,. Then we can apply the chain
rule to obtain:

OF OF Oy, OF
=1 Z ’ / l— = E * Wp
aygvél ! ne@fél‘l 8yn ay]?,él ! ne@g))/(}l_l ayn (239)

Since we know all the outputs yf j in layer [, and y,, € U¢,i,jyf 3-l, the derivative
OF [0y, is also assumed to be known.

2.4 Deep belief networks

The first description modeling a Deep Belief Network (DBN|) was published
in 1986 by Smolensky [32]. At the time, the model was referred to as "harmo-
nium". It is a type of deep neural network composed of multiple layers, each
layer consisting of visible neurons representing the layer input, and hidden neu-
rons representing the layer output. In this text we will consider a layer to own
the hidden neurons. The visible neurons will be owned by the preceding layer,
for which these neurons are hidden. The visible neurons are fully interconnected
with the hidden ones. The distinctive feature of a DBN is that there are no
connections between the visible neurons, and no connections between the hidden
neurons. The connections are symmetric, and are exclusively between the visible
neurons and the hidden ones.

In the following text we will start with a definition of a stochastic neuron,
which will be used in the DBNs. Then we will describe the architecture of Re-
stricted Boltzmann Machines, which represent the main building block of [DBNk.
The following sections will explain the network’s architecture and the training
process.

2.4.1 Stochastic model of a neuron

The model of a standard neuron depicted in Figure is deterministic in a
sense that its output is exactly defined for a given input. On the other hand the
output of a stochastic neuron used in Boltzmann networks is probabilistic. The
output y is binary, given by the probability P(§).

0 with probability of 1 — P (&) (2.40)

The probability function used here is again the sigmoid-shaped function:

Y= { 1 with probability of P (&)

1

£

P(f):m

where T > 0 is the so-called pseudotemperature parameter used to control the
level of noise in the probability. The pseudotemperature T' may be thought of as
a parameter representing the effect of thermal fluctuations in the neural synapses

(2.41)

23

causing noise in the signal being transferred. Note that as T approaches 0, this
stochastic model becomes deterministic:

1 foré>0
lim P()= lim ———={ 1 foré=0 2.42
T—0+ (&) T—0+ 1 +€——T§ 6 for £ < 0 ()

2.4.2 Boltzmann machine

The Boltzmann machine is a stochastic neural network consisting of stochastic
neurons first introduced by Hinton et al. [9]. It is referred to as a recurrent
network, because all its connections are bidirectional, and there is a connection
between every pair of neurons, even within the same layer. Therefore the graph
of a Boltzmann network is always fully connected, as illustrated in Figure 210

Let w;; be the weight of the connection between neuron 7 and j, then the
following invariants hold true:

W; ; = Wy (243)
w; 5 Z 0

The weights are often represented as a matrix W with zeros on the diagonal.
Each neuron is binary and therefore can be either in 'on’ or ’off’” state, which is
represented by boolean truth values s; € {0,1}. We will again denote the bias of
the neuron i as 6;.

The neurons are partitioned into two functional groups: the so-called visible
and hidden neurons. The visible neurons provide an interface between the net-
work and its environment. The inputs are given as binary vectors. The hidden
neurons on the other hand are trained to represent underlying constraints con-
tained in the input vectors. In the following text, we will assume a sequential
numbering of neurons in the network. For a network with n neurons in total
and m visible neurons, the visible neurons will be numbered (1,...,m), and the
hidden neurons (m + 1,...,n). Having m visible neurons and an m-dimensional
input vector ¥/, the visible neurons can be initialized to the corresponding elements
of ¥, where Vi € (1,...,m) : s; = v;.

The primary goal of a Boltzmann network is to correctly model input patterns
according to Boltzmann distribution. The network can thus perform pattern
reconstruction. Specifically, provided the network has learned the underlying
model correctly, when presented only partial input pattern, it can complete the
missing values by computing the missing states of the visible neurons.

A good approach to assessing the performance of a network is to define a
measure for evaluating how its internal parameters and structure represent the
internal constraints in the input data. Such a measure can then be addressed as
a typical best-fit problem, solved by iterative attempts to decrease the value of
this measure, until reaching (perhaps the global) minimum. As Hopfield showed
in his research [I7], energy can be well used as such measure, and is analogously
defined in the context of Boltzmann machines. The energy of Boltzmann machine
for a configuration of neuron states s can be defined as:

24

Hidden neurons

Visible neurons

Figure 2.10: An illustration of a Boltzmann Machine with 3 hidden neurons and
4 visible neurons.

E(S) = — Zwi7jsisj — 29282 (244)

i<j
where s; are the binary states of neurons, w; ; are the weights between them,

and 6; are their biases. The impact of a single unit’s state s; on global energy
can then be computed simply by

J

The energy can be used in the training process using gradient descend method
to find the lowest possible energy of the system for the given input.

2.4.3 Restricted Boltzmann Machine

Equation suggests an iterative training, where the energy differential
AFE for each state s; must be computed sequentially. The root cause are the
interconnections between the visible and hidden neurons, which make the neuron
states dependent on each other. The Restricted Boltzmann Machine (RBM)
parallelizes this process by removing these connections, creating a bipartite graph
between visible and hidden neurons (see Figure [2.1T]).

Hidden neurons

Visible neurons

Figure 2.11: An illustration of a Restricted Boltzmann Machine with 3 hidden
neurons and 4 visible neurons.

25

Eliminating these connections results into new energy definitions for a joint
configuration of visible and hidden neurons (v, h):

E(7, ﬁ wavz Za v — ijhj. (2.46)
J

(4,9)

AE(UZ‘, ﬁ) = Z wijhj + a; (247)
J

where v;, h; are the binary states of the visible unit 7 and the hidden unit j, a;,
b; are their biases, and w; ; is the weight between them. Unlike in the case of the
standard Boltzmann Machine (Eq.[245]), the Restricted Boltzmann Machine does
not depend on visible or hidden neurons when computing the energy differential
for the visible or hidden neuron, respectively (Eq. 247 and 2:48). For this reason
we will be using this model and take advantage of its parallelization potential in
our implementation.

2.4.4 Training Restricted Boltzmann Machines

RBMs are trained using [unsupervised learning] They are not performing clas-
sification themselves, but instead they are able to learn to reconstruct data in
an unsupervised fashion. Let us assume we have some training set V', a matrix
where each row represents the input visible vector v. The further text in this
section we will be inspired by Hinton’s Practical guide to training RBMs [14].

RBMs learn by encoding the probability distribution of the input data into
the weight parameters. The purpose of training is to maximize the product of
probabilities assigned to the training patterns from V', thus we are looking for
weight assignment W, producing the maximal probability:

= max II p(@ (2.49)

vev

The RBM assigns a probability to every possible pair of a visible and hidden
vector via the energy function defined in Equation .46k

— 1 -7
p(U, h) = Ee’E(”’h) (2.50)

where Z is the so-called partition function defined by summing over the energy
of all possible neuron states:

7 =3 e Bwh (2.51)

The probability RBM assigns to a visible vector ' is then defined by summing
over all possible hidden states:

p(v) = = Y e FON (2.52)
i

The probability assigned to a visible vector (i.e. input pattern) can be effec-
tively raised by adjusting the weights and bias to lower the energy of that vector,
and to raise the energy of other visible vectors. To determine the desirable weight
adjustment we need the derivative of the probability with respect to the adjusted
weight, which becomes surprisingly simple for the log probability:

0log p(v)
8wm~

= <U@'hj>data - <Uihj>m0del (253>

where the notation () denotes the expectations under the distribution specified
by the training data and the model respectively. From the above equation we
can directly deduce the rule for performing stochastic steepest ascent in the log
probability of the training data:

Awivj =1 ((vihj>data - <vihj>model) (254)

where 1 > 0 is the learning rate.

The expectations under the distribution specified by the training data can
be obtained easily by sampling the hidden neuron states from the visible ones.
Given a training input pattern v, the probability of the binary state h; being 1
(the "on" state) is:

p(h; = 1]V) = o(b; + Zviwm) (2.55)

where ¢ is the activation function. The most commonly used activation func-
tion is sigmoid (Eq. 22). After sampling the hidden state, v;h; represents the
expectation under the data distribution in equation 2.541

p(v; = 1) = o(a; + 3 hjwiy) (2.56)

The sampling of the expectations under the distribution specified by the model
is much more difficult to obtain. It can be done by randomly initializing the visible
states and performing sampling back and forth using Eq. and Eq. [2.56l Since
the initial visible states are random, it takes a very long time until the RBM
converges to the model distribution.

2.4.4.1 Contrastive Divergence

Instead of randomly initializing the visible states, a much more effective ap-
proach is used in the constrastive divergence (CD) learning procedure first in-
troduced by Hinton [I5]. Note that for readability reasons, we will be labeling
the visible vector with v and hidden vector with A, instead of ¢" and h. Since
we eventually expect paata (V) & Dimoder(V), We can initialize the visible states with
input data, and reconstruct the model expectations from them. This results in
a much faster convergence to the model distribution. The CD algorithm can
be summarized by the below steps, which are iterated over each sample in the
training dataset:

1. Pick training sample v and clamp it onto the visible neurons (binary input
is assumed).

27

2. Compute the probabilities of hidden neurons p; by multiplying the visible
vector v with the weights matrix W as p, = o (v- W) (see Eq. [Z55).

3. Sample the hidden states h from the probabilities pj,.

4. Compute the outer product]| of vectors v and py, let us call it positive gra-
dient ¢+ = v - pl.

5. Sample a reconstruction of the visible states v’ from the hidden states h
(see Eq.256). Then resample the hidden states A’ from the reconstruction
of the visible states v'. (Gibbs sampling step)

6. Compute the fouter product| of v" and h', let us call it negative gradient
(b— — ’U, . h/T.

7. Compute the weight updates as the positive gradient minus the negative

gradient: AW =n(¢+ —¢7).
8. Update the weights with new values: w; ; = w; j + Aw; ;.

The Gibbs sampling step can be repeated multiple times to converge closer
to the model distribution. The number of repetitions is often included in the
abbreviation of the algorithm, where for k repetitions the algorithm is referred
to as CD-k [15, 14]. Experiments reported so far show, that CD-1 is already
producing very decent results [5].

2.4.4.2 Persistent Contrastive Divergence

At present, constrastive divergence is one of the most popular gradient ap-
proximations for RBMs. However, there are multiple alterations to the standard
CD algorithm, and it is not obvious which is the best one. A very common al-
ternation is Persistent CD, abbreviated as PCD. Some research claims that PCD
produces more meaningful feature detectors, and outperforms the other variants
of CD algorithms [35].

PCD algorithm uses a different approximation for sampling states than CD.
It eliminates Step 3 when compared to standard CD described in the above steps.
This step initializes the hidden states based on the input pattern. As a result,
the sampling chain is being restarted for every observed pattern. Instead, PCD
initializes the hidden states only once at the beginning of the training. This
causes the single chain of sampling throughout the whole training, which helps
move faster towards the model distribution p,,,qe; rather then pgqie. The smaller
the learning rate, the better PCD works [35]. It is because the smaller parameter
updates are then small enough compared to changes in the sampling chain (mixing
rate of Markov chain), and the chain can easier catch up to the changes in the
model.

2.4.5 Architecture of a Deep Belief Network

The Restricted Boltzmann Machines themselves are capable of detecting and
extracting features from input data. Several layers of RBMs can be stacked
one onto each other to form a multilayer network [16]. Each RBM layer uses

28

the hidden neurons from preceding RBM layer as its input (see Figure [2.12]).
The deep architecture with multiple layers can then extract deep hierarchical
representation of the training data.

multilayer
input pattern RBM layer RBM layer RBM layer perceptron

% fully connected fully connected %% fully connected ‘\‘
A h Y ““ g ‘\
. .] A}
' supervised gradient descent training®,) %
N h e meeeeeeeeeeeeeesssceeeesesmecsmmememams R 1
feature extraction classification

Figure 2.12: Architecture of a Deep Belief Network.

A set of RBM layers performs the feature detection task, while the classifi-
cation task is performed by using a multilayer perceptron as the last layer. The
last [MLPI layer is again using the hidden neurons of the preceding RBM layer as
its input. The resulting architecture is a mixture of probabilistic neurons in the
feature extraction phase, and deterministric neurons in the classification phase.

2.4.6 Training a Deep Belief Network

The [DBNl architecture consists of RBM and MLP layers. However, RBMs em-
ploy [unsupervised learning}, while MLPs employ [supervised learningl This results
into a two-phase training process.

The first phase, called pretraining, performs unsupervised training of each
RBM layer separately [16],4], as described in Section[2.4.4l The second phase uses
the gradient descend method for supervised training of the MLP as well as RBM
layers. It can be implemented using, for example, the standard backpropagation
algorithm described in Section

The pretraining and training process can be summarized as follows:

1. The network is initialized with small random weights, biases and other
parameters.

2. The first RBM layer is initialized with input data representing potentials
in its visible neurons. Then the unsupervised training is performed on this
layer iterating over the training dataset for predefined number of epochs.

3. The next layer obtains its input by sampling the potentials generated in
the hidden neurons of the previous layer. Then the unsupervised training
is performed on this layer iterating over the training dataset.

4. Tterate the previous step for the desired number of layers. In each iter-
ation the samples are propagated upwards deeper into the network. The
pretraining phase is finished when the first MLP layer is reached.

29

5. Fine-tuning via supervised gradient descend starts (see algorithm in Sec-
tion [Z2.2]). The training is stopped after reaching a predefined number of
epochs, or is finished successfully after reaching the target error rate.

Note that structurally, the neurons of the [DBN] are interconnected in the same
manner as the [MLP| network (see Figure Z12)). This allows the second phase of
training to be performed exactly as if training MLP network. Therefore the
whole training procedure is equivalent to initializing the weights and biases of
a deep MLP network with the values obtained in the unsupervised probabilistic
pretrainig.

After the network is trained, the classification of the presented input data is
performed exactly like in the case of [MLP| network.

30

3. Implementation

The main goal of this thesis consists of an efficient implementation of 3 dif-
ferent models of deep neural networks. Being the simplest one among the im-
plemented models, the architecture of the Multilayer Perceptron (MLP]) was de-
scribed in Section Convolutional Neural Networks (CNNE) were discussed in
Section 2.3l The last implemented model represents the Deep Belief Networks
(DBNK) described in Section [Z4l Each model has slightly different applications
depending on the required speed, size, and error rates.

While [MLPE are relatively simple to implement, the number of their neural
inter-connections grows exponentially with the number of their neurons. For this
reason they can quickly become robust. on the other hand are not fully
inter-connected, and share some connection weights. This facts allows to signif-
icantly optimize network performance when processing high resolution images.
[DBNk are able to also recognize abstract features. These different properties will
be discussed in more detail at the end of this chapter. The testing of the mod-
el implementations should provide some interesting comparisons of the different
network architectures.

In Section B.Il T will first discuss the available hardware platforms, which can
be used for parallel processing and are suitable for solving the problems of arti-
ficial neural networks. From the presented options, I will choose one hardware
platform, which I will use to implement all 3 neural network models. The imple-
mentation should be flexible enough to enable processing of user-defined input
data of variable size and structure. Section will state the requirements im-
posed on the implementation and explain them in more detailed. The following
Section 3.3 will be focused on the high-level architectural overview of the imple-
mented application, describing its modules and how they complement each other.
Section [3.4] will walk guide the reader through the process of installation, verifica-
tion, and launch of the implemented software. The next Section will describe
the available configuration options to customize network design, training, vali-
dation and testing process. The following Section will define the supported
input data formats. Section [3.7 will be split into subsections, each one of them
dedicated to a specific application module describing some key concepts of its
implementation.

In the text of this chapter, I will often refer to a graphic card with CUDA sup-
port as a device, and the[CPU with standard RAM memory as a host. This jargon
is present in the CUDA documentation, as it is prevalent in CUDA communities.

3.1 Parallel computing platforms

The network models will be implemented on a single-threaded and on
a parallel computing platform. There are a few candidates to choose the parallel
platform from: the so-called Field-Programmable Gate Arrays [FPGAl NVDIA
CUDA, and AMD Stream. In the below section we will briefly describe each of
them and choose the most suitable platform for the network models implemented
in this thesis.

31

3.1.1 FPGA

The so-called Field-Programmable Gate Arrays (FPGAK) form an integrated
circuit that can be programmed to rewire itself to be hardware-optimized for a
given task. The research and development of [FPGAE started in the late 1980s.
It was funded as an experiment by the Naval Surface Warfare Department, and
first patented in 1992. The circuitry in [FPGAE is programmed by means of the
Hardware Description Language (HDL) specifically developed for the task. The
work with HDL is, however, tedious, because the resulting design is quite difficult
to visualize.

The architecture of Graphics Processing Units (GPUK) conceptually differs
from [FPGAk most importantly because GPUs run software. The instructions
need to be fetched and stacked, perform computational operations and send the
results to the operating memory. On the other hand [FPGAk are designed to
provide a higher level of parallelism, which can be taken advantage of and lead
to a better performance.

The key criteria for the choice of the most suitable platform for our task
are cost and performance — cost being the most important one. Each architec-
ture might yield different performance results for different problems. A universal
computing performance is measured in instructions per seconds. Computing the
throughput in neural networks requires mostly floating point operations. There-
fore, a more accurate approach is to compare the performance in floating point
operations per second (FLOPs). For this reason, I will choose the best performing
model based on FLOPs and compare their peak performance and price.

peak 32bit peak 64bit
model / property price
performance | performance
Virtex-7 FPGA 1700 GFLOPs | 671 GFLOPs | $ 11 995
NVIDIA GTX Titan Z | 8122 GFLOPs | 2707 GFLOPs | $ 1 500

AMD Radeon HD 7990 | 8200 GFLOPs | 1894 GFLOPs $ 695

Table 3.1: Comparison of performance and cost of and [FPGA| parallel
architectures.

As you can see in Table Bl the [FPGAI architecture is significantly more
expensive than architecture from both its vendors. While [FPGAl might
perform better for some problems, the FLOPs that I am interested in are in
favour of the architecture. The comparison yields a clear conclusion about
the performance and price ratio. There are, however, more aspects, which I will
summarize in Table without going into too much detail. As this thesis is
about the implementation, an important argument for the choice of the hardware
platform is also the quality of the development toolkit. The community grouped
around the platform is thus also important, because it predicts the future efforts
devoted to the platform. The implementation in this thesis will benefit from
these improvements, as we expect to use the latest [APIs so compatibility with
the upcoming releases is highly probable.

When compared to [FPGAE, are superior except for power consump-

32

tion. For instance, GTX Titan Z from NVIDIA has its peak consumption at 375
Watts. At current electricity prices ($0.3 per 1 kWh) operating this device costs
$0.11 per hour at full utilization. Compared to other expenditures on staff and
hardware supporting the device, the operation costs are negligible. The conclu-
sion is therefore clear, are more suitable for our task to implement artificial
networks.

criterion / architecture | FPGA | GPU

cost -

performance (FLOPs) -

development toolkit -

+o4 [+ |+

community size -

power consumption +

availability - +

Table 3.2: A brief comparison of [GPUl and [FPGAI parallel architectures. Supe-
riority of the platform with regard to the considered criterion is marked with a
plus sign, inferiority with a minus sign.

Add-in Board Unit Market Share

H NVIDIA BAMD
1009
90%
80%
705

50%
40%
30%
20%
10%

0%
03 04 Gl 02 Q3 04 Q1 Q2 Q3 04 Q1 Q2 43 Q4 Q1 Q2 O3 04 Q1 Q2
2010 2010 2011 2011 2011 2011 2012 2012 2012 2012 2013 2013 2013 2013 2014 2014 2014 2014 2015 2015

Figure 3.1: Shares of NVIDIA and AMD on [GPU| market. Research was car-
ried out by Jon Peddie Research and Mercury Research, graph provided by The
Montley Fool [10].

The presented comparisons justify the choice of architecture for the
implementations in this thesis. are primarly used for gaming, where parallel
operations are suitable for computing multi-dimensional graphic objects. Gaming
represents a big market, which allows for an affordable price. There are two

33

mainstream vendors of - AMD and NVIDIA. The parallel framework for
working with the cards from AMD is Stream, and the framework provided
by NVIDIA is named CUDA. Both vendors are strong competitors with a big
market share. NVIDIA started to increase their share recently [10] as can be seen

in Figure [3.11

3.1.2 NVIDIA CUDA

CUDA is a complete parallel computing platform consisting of multi-purpose
graphic cards and a programming model invented by NVIDIA. CUDA is released
as a toolkit supporting all major operating systems (Linux, OS X, Windows). The
core of the tookit is CUDA Runtime [APIT and CUDA Driver [APT used for low-
level programming and access to the device. Optimized mathematical functions
provided by NVIDIA are included in CUDA Math [APIl NVIDIA invested heavily

into supporting researchers, providing additional libraries:

e cuBLAS basic linear algebra subprograms,

e cuFFT Fast Fourier Transform,

e cuRAND efficient generators of [pseudorandom|and |quasirandom|numbers,

e cuSPARSE computing with sparse matrices,

e cuDNN primitives for deep neural networks.

CUDA offers three programming languages to choose from for development,
namely CUDA C, CUDA Fortran, and Python. The syntax of the first two
languages is a superset of native language constructs of C/C++ and Fortran
respectively, additionally providing extra libraries and extra hints for the CUDA
compiler.

3.1.3 AMD FireStream

AMD FireStream is a brand name for the Radeon-based product line tar-
geting general purpose computing leveraging the parallel processing power of
AMD [GPUk. AMD is a member of the Khronos group, a not-for-profit member-
funded industry consortium standardizing cross-platform parallel programming
(OpenCL). OpenCL is an attractive framework that is supported by many differ-
ent vendors and architectures (including [FPGAJ), thus prevents vendor lock-in.
AMD releases the Accelerated Parallel Processing SDK (APP SDK) to provide
the developers with documentation, samples, libraries and other materials to get
started with OpenCL.

3.1.4 Comparison of AMD and NVIDIA

In Table B.I we can see that the performance difference measured in FLOPs
for single precision is negligible. The cost is slightly more favourable for AMD
products. For the double precision case, NVIDIA seems to perform better. This

34

Theoretical Peak Performance, Single Precision

10* r T T T T T =
e CPUS, Intel ‘ ; P eI
—fl— GPUs,NVIDIA : : o1 ot
! o 9 : 0 o 20°
—@)— GPUs, AMD ‘\,\05@ o‘f’c'ﬂ '9691 pe® ©

o e

- MIC, Intel

GFLOP/sec

2007 2008 2009 2010 2011 2012 2013
End of Year

Figure 3.2: Historical evolution of 32bit FLOPs in [GPUl products of NVIDIA,
AMD, Intel and [CPU] products of Intel [30].

comparison is, however, based only on the currently best performing models of
the respective vendors.

A more objective overview [30] over their performance is displayed as a his-
torical evolution in Figure 3.2 Here we can see that AMD had a significant
lead in 2009, but NVIDIA quickly caught up. Intel joined the market in 2013
and started putting embedded into its line of [CPUk, which makes them a
cheap bundle. While being enough for rendering graphics, the performance still
lacks behind separate dedicated devices.

While AMD and NVIDIA have comparable performance for single precision,
in the case of double precision Figure shows that NVIDIA is performing
somewhat better [30]. In 2009 NVIDIA did not consider the market for double
precision to be big enough. However, a year later they decided to put double pre-
cision into consumer and made a huge leap towards improved performance,
which defeated AMD in 2012.

To summarize our considerations, NVIDIA products have a slightly higher
price, and similar performance with a small lead of NVIDIA in the field of double
precision computing. Although AMD uses an open vendor-independent standard
OpenCL supporting several architectures, NVIDIA provides a much better de-
velopment toolkit. For this reason, I chose the NVIDIA CUDA SDK for the
implementational part of this thesis.

CUDA SDK supports several programming languages to communicate with
the involved devices. Available options are C/C++, Fortran, and Python. Python

35

Theoretical Peak Performance, Double Precision

—h— GPUs, Intel ' : : : : :
—— GPUs, NVIDIA

—@— GPUs, AMD

—g— MIC, Intel

GFLOP/sec

1060

L= f fe
LB 492 5520
+eo? 1A yeo® it %eoﬂwB

2007 2008 2009 2010 2011 2012 2013
End of Year

Figure 3.3: Historical evolution of 64bit FLOPs in [GPU] products of NVIDIA,
AMD, Intel and [CPU] products of Intel [30].

is a high-level programming language. With the aim to be able to optimize the
usage of parallel hardware, I will rather prefer a low-level programming language
instead. Although Fortran is used mainly for scientific computing, unfortunately,
it does not support object-oriented programming (OOP). OOP is on the other
hand important for an easily readable code supporting concepts like encapsula-
tion, polymorphism, abstraction and decoupling. Moreover, Fortran is not pop-
ular outside of the scientific community, leaving C+-+ with a better community
support. For these reasons I decided to prefer C++ and use it for the implemen-
tation of artificial networks.

3.2 Requirements

Before diving into the implementational details, let us impose some require-
ments that will serve as a guidepost when facing major architectural decisions.

o efficiency

— deep neural networks generally require a long time to be trained

— many computationally intensive operations are repeated several thou-
sand /million times

— even a minor optimization can make a difference of days of runtime

36

o flexibility

— support for multiple input data formats

— support human-readable as well as optimized machine-only-readable
binary data format

e cxtensibility

— use the Object Oriented Programming approach to support abstraction
resulting in an easily readable code

— use a loosely coupled architecture with well separated concerns
— use comments documenting code

— provide high-level documentation
e customization

— provide rich configuration options
e convention over configuration

— the user should not be overwhelmed by a complex configuration options
— use defaults for missing configuration parameters

— derive smart defaults based on other configuration properties

3.3 Architecture

All the models of neural networks to be implemented within the framework
of this thesis share several concepts common to feed-forward artificial neural net-
works. All of them consist of neurons, weighted connections between them, and
layers of neurons organized into the network. The respective learning algorithms
also work in a very similar manner, which will be discussed in more detail in
Section

For consistency reasons, the data format serving as the input for the network
should be as universal as possible. For these reasons I decided to create one single
application implementing all three models. It will allow me to reuse the code and
save some significant implementation efforts. For instance, all networks will use
the same datasets, the same output logging, and the same error computations.
The differences in specific implementations of the models will be dealt with using
an object-oriented approach, in particular polymorphism, loose coupling, and
good separation of concern. More details on this topic can be found in Section B.7]
describing the different application modules specifically.

I named the application deepframe and will refer to it by this name in
the following text. The name is derived from the fact that it is essentially a
framework for building and training deep neural networks. It is released un-
der the GNU Affero GPL v3.0 license and is publicly available on GitHub at
https://github.com/janvojt/deepframe. The deepframe application is ar-
chitecturally divided into several modules depicted in Figure 3.4l FEach of the
modules consists of objects modeling the behaviour specific for the given business
logic.

37

train net

train:Train network)|~~~ """ T 7 -

net::Run input through network

uses

C
%]
0]
wn
-’
<

ds::Parse testing dataset

9

ds |
err::Compute network error log::Print output ds::Parse training dataset

it

Figure 3.4: A simplified high-level package diagram showing the decomposition
of application logic into separate packages and their respective use cases.

3.4 Installation procedure and launch

The deepframe application is written in C++ and does not use any platform-
specific operations. Therefore it is possible to build and run it on any Operating
System (OS). In this thesis, Linux OS was used both for development and test-
ing. For this reason the build script bundled with the application works only
in Linux. I decided to use this OS, because it is open, stable, secure, and free.
Furthermore, unlike Windows/OSX for example, it can be setup and run without
a desktop manager. It saves resources and allows for independent testing with as
little irrelevant processes as possible. It is also relatively popular among the sci-
entific community. Furthermore, some of NVIDIA hardware setups targeted for
developers run only Linux, as is the case for currently the most powerful desktop
deep learning system [27].

The purpose of this thesis is not to create a cross-platform compiler. However,
if it is necessary to run the application on a different platform, a platform specific
build script can be created. To find out details about how the application is built,
please consult the Makefile located in the application root folder.

Also, several bash scripts are provided that can be used to run the tests
conducted in Chapter . These prepared scripts are, however, not guaranteed to
run on a different OS. They are not necessary to run the application, but I still
recommend to compile and run on Linux.

To build and run the application, the following libraries must be installed in
the system:

e log4cpp logging framework for C++-,

— library for flexible logging to files, syslog, IDSA and other destinations

— based on the successful Log4j Java library, staying as close to their
[API as is reasonable

38

— chosen mainly because of having the functionality of deffered string
building

— used for generating the output of the application (includes log messages
about network configuration, learning process, validation, and testing)

e gtest testing framework from Google Inc.,

— based on the xUnit architecture

— supports automatic test discovery, a rich set of assertions, user-defined
assertions, death tests, fatal and non-fatal failures, value- and type-
parameterized tests, and XML test report generation

— used for unit testing to aid development and early discovery of regres-
sions bugs

e cuRAND set of random number generators working on [GPU],
— included in CUDA SDK

— provides facilities that focus on a simple and efficient generation of
high-quality [pseudorandom| and |quasirandom| numbers

— random numbers can be generated on the [GPU| device or on the host
CPUL

— used for efficient random initialization of connection weights and biases
e cuBLAS Basic Linear Algebra Subprograms implementation for [GPUL

— included in CUDA SDK
— |GPUlaccelerated version of the complete standard [BLAS| library

— (currently) delivers 6x to 17x faster performance than the latest Math
Kernel Library implementing IBLAS on [CPUl

— leveraged for computing linear algebra operations (e.g. matrix multi-
plication in forward network run)

The application build is defined in a standard Makefile. The build itself is
triggered using the make utility. The resulting executable files are generated in the
bin folder. Application is then launched by executing the file bin/deepframe.
Another generated executable bin/deepframe-test runs unit tests. I recom-
mend to launch the unit tests prior to launching the application for the first time
after fresh installation. These tests will perform a basic functionality verification
printing the test results to standard output (stdout).

The CUDA C/C++ framework is used for leveraging the for parallel
computations. Parallelized parts of the application are written in CUDA C++,
and because of this the build process must use NVIDIA CUDA compiler nvcc.
If CUDA SDK is not installed in standard path (/usr/local/cuda), the correct
path must be set in the environmental variable CUDA_HOME.

The application source code is versioned in Git - a distributed revision control.
Once all the dependencies listed above are satisfied, to setup a local copy including
sources, and build the application, the following commands can be issued using
a Git client in console:

39

$ git clone git@github.com: janvojt/deepframe.git
$ cd deepframe
$ make install

Snippet 3.1: Shell commands used to download and compile the deepframe
application.

If the build proceeded without errors, first run the tests by issuing the follow-
ing:

$./bin/deepframe-test
Running main() from gtest_main.cc

[==========] Running 7 tests from 2 test cases.
[~] Global test environment set-up.

[-———————-] 6 tests from Network

[RUN] Network.NeuronCounters

[0K] Network.NeuronCounters (0 ms)

[RUN] Network.InputSetTest

[0K] Network.InputSetTest (0 ms)

[RUN] Network.SimpleRun

[0K] Network.SimpleRun (O ms)

[RUN] Network.SimpleWeightTest

[0K] Network.SimpleWeightTest (0 ms)

[RUN] Network.WeightsOffsetTest

[0K] Network.WeightsOffsetTest (0 ms)

[RUN] Network.NeuronInputOffsetTest

[0K] Network.NeuronInputOffsetTest (0 ms)
[~] 6 tests from Network (0 ms total)
[~] 1 test from SimpleInputDataset

[RUN] SimplelInputDataset.BinaryDatasetCreation

[0K] SimpleInputDataset.BinaryDatasetCreation (0 ms)
[~] 1 test from SimpleInputDataset (0 ms total)
[~] Global test environment tear-down
[s=========] 7 tests from 2 test cases ran. (0 ms total)

[PASSED] 7 tests.

Snippet 3.2: An example output of running unit test verifying correct behaviour
of the deepframe application.

The above snippet contains an example output, where all the tests passed
successfully. In case of an error tests fail, information about the problem is
printed, and you need to investigate the cause of the problem. If using a stable
release the usual cause are unsatisfied dependencies specified at the beginning of
this Section. Once the tests are passing successfully, proceed with running the
actual application:

$./bin/deepframe

2015-02-16 23:32:50 [INFO] : Seeding random generator with 85108201.

2015-02-16 23:32:50 [INFO] : Using CPU for computing the network runs.

2015-02-16 23:32:50 [INFO] : Started training with limits of 100000 epochs
and target MSE of 0.000100.

2015-02-16 23:33:14 [INFO] : Training successful after 42856 epochs with MSE
of 0.000100.

[0, 01 —->1[0.0100136]

[0, 1] ->1[0.988549]

40

[1, 01 -> [0.990581]
[1, 11 ->1[0.00893504]

Snippet 3.3: An example output of teaching a multilayer perceptron network
compute XOR operator on [CPUlL

Running the application with no arguments will set default values for all the
options. This means running a simple multilayer perceptron network with one
hidden layer consisting of two neurons and learning the XOR dataset. The learnt
results are printed on standard output. As you can see in the snippet, the network
successfully learnt the XOR bit operator. As the second line in the output says,
all the computations were run on [CPUL. To compute on [GPU|, we can run the
application with the option -p:

$./bin/deepframe -p

2015-02-16 23:42:54 [INFO] : Seeding random generator with 507738670.

2015-02-16 23:42:54 [INFO] : GPU Device O: "GeForce GTX 560" with compute
capability 2.1.

2015-02-16 23:42:54 [INFO] : Using GPU for computing the network runs.

2015-02-16 23:42:54 [INFO] : Started training with limits of 100000 epochs
and target MSE of 0.000100.

2015-02-16 23:43:43 [INFO] : Training successful after 43165 epochs with MSE

of 0.000100.
L0, 071 ->1[0.0110211]
[0, 1] ->1[0.990521]
[1, 01 -> [0.990493]
[1, 11 -> [0.00991258]

Snippet 3.4: An example output of teaching a multilayer perceptron network
compute XOR operator on [GPUl

This time, we can see the hardware, as well as its CUDA compute
capability.

3.5 Network configuration

The application can be configured by providing command line options. The
options are parsed by a standard shell utility getopts. Each option has a single-
letter variant, as well as a more verbose long alternative. To list all the available
options, launch the application with the --help option.

$./bin/deepframe -h
Usage: deepframe [OPTIONS]

Option GNU long option Meaning
-h --help This help.
-b --no-bias Disables bias in neural network. Bias is

enabled by default.

-1 <value> --rate <value> Learning rate influencing the speed and
quality of learning. This is a global setting used in case of MLP
configured via options. The external layer configuration file overrides
this setting and allows to assign a different learning rate for each
layer. Default value is 0.3.

41

-m

<value> --init <value> In case of uniform distribution, minimum and
maximum value network weights are initialized to. In case of Gaussian
distribution, the standard deviation. Default is uniform distribution
with interval (-1,1).

<value> --mse <value> Target Mean Square Error to determine when to
finish the learning. Default is 0.01.
<value> --improve-err <value> Number of epochs during which improvement of

error is required to keep learning. Default is zero (=disabled).

<value> --max-epochs <value> Sets a maximum limit for number of epochs.
Learning is stopped even if MSE has not been met. Default is 100,000

<value> --pretrain <value> Configures the number of pretraining epochs
for Deep Belief Network. Default is zero (no pretraining).

<value> --func <value> Specifies the activation function to be used.
Use ’s’ for sigmoid, ’h’ for hyperbolic tangent. Sigmoid is the default.
<value> --lconf <value> Specifies layer configuration for the MLP
network as a comma separated list of integers. Alternatively, it can
contain a path to configuration in an external file. Default value is
||2’2’1||‘

<value> --labels <value> File path with labeled data to be used for

learning. For IDX format separate the data and labels filepath with a
colon (":").

<value> --test <value> File path with test data to be used for
evaluating networks performance. For IDX data with labels for testing
dataset separate the data and labels filepath with a colon (":").

<value> --validation <value> Size of the validation set. Patterns are
taken from the training set. Default is zero.

<value> --k-fold <value> Number of folds to use in k-fold cross
validation. Default is one (=disabled).

--best-fold Uses the best network trained with k-fold
validation. By default epoch limit is averaged and network is trained on

all data.

--idx Use IDX data format when parsing files with
datasets. Human readable CSV-like format is the default.

<value> --random-seed <value> Specifies value to be used for seeding
random generator.

--shuffle Shuffles training and validation dataset do
the patterns are in random order.

<value> --use-cache <value> Enables use of precomputed lookup table for
activation function. Value specifies the size of the table.

--use-gpu Enables parallel implementation of the network
using CUDA GPU API.

42

a b W N -

-d --debug Enable debugging messages.

Snippet 3.5: The list of available options for configuring deepframe application
with the explanation of their respective purposes.

The options that are found are processed sequentially from the first to the
last one. In case of conflicts or duplications, the later option always overrides
the former one. The network configuration might be quite complex in some
cases. For this reason, I recommend to use shell script templates dedicated for
certain datasets or tasks with default configuration. Thanks to the possibility of
overriding former options, these default settings can be easily overridden when
calling the script templates. Some useful configuration templates may be found
in the examples folder.

The application business objects are built and configured based on the above
options in the main.cpp file, which represents the application entry-point. After
the options are parsed from command line, network configuration is created. The
configuration relevant to network is represented by the NetworkConfiguration
class. If[GPUlis selected for the computation, it also has to be configured specifi-
cally for the given task and for the given hardware. These configuration properties
are represented by the GpuConfiguration class. Both configuration representa-
tions are created in their dedicated factory methods.

Another responsibility of the configuration factory is also to seed the pseudo-
random generators. generator uses the srand function from the standard
C library. In case of generation on [GPUL the cuRAND library is leveraged and
the pseudo-random generator is built using the following code:

GpuConfiguration *gpuConf = GpuConfiguration::create();
curandGenerator_t *gen = new curandGenerator_t;
curandCreateGenerator(gen, CURAND_RNG_PSEUDO_DEFAULT) ;
curandSetPseudoRandomGeneratorSeed(*gen, conf->seed);
gpuConf->setRandGen(gen) ;

Snippet 3.6: The IDX data format definition.

After the configurations are built, the factory method creates the neural net-
work and initializes its parameters (weights and bias). The next step involves
parsing of the the datasets. Afterwards, the factory for the learner creates the
backpropagation learner. The actual training process is then triggered by calling
the train method of the learner object, while passing the training and validation
datasets as arguments.

After the network is learnt (meets the target mean square error) or the max-
imum number of epochs is reached, training is stopped and the testing phase
starts. The network is presented with the testing datasets and the output is
printed to the standard output. Finally, the application releases all acquired
memory and terminates.

3.5.1 Layer configuration

An important part of the network design is the configuration of the layer setup.
Configuring [MLP] can be done easily via the command-line option -—1conf or its

43

shorthand alternative —c. The parameter takes a comma-separated list of integer
values, where each integer corresponds to the number of neurons in the layer given
by the position in the list. For example, -1 2,5,1 configures input layer with 2
neurons, one hidden layer with 5 neurons, and an output layer with 1 neuron.

The configuration of an [MLP] is quite simple, but the configuration of other
more complex layers is done via external configuration files. The path to the
configuration file is again specified via the option --lconf. The configuration
syntax obeys the following rules:

e a line starting with a hash sign ("#") is a comment,
e if a line is not a comment, it represents a layer configuration,
e layer configuration starts with a layer type followed with a ":",

e the rest of the layer configuration is layer-specific.

The recognized layer types and their specific configurations are listed below.
All configurable parameters are separated by a colon (":").

e FullyConnected

1. number of output neurons (integer value)
2. learning rate (float value)

3. bias (boolean value)
e Convolutional

1. width of the convolution window (integer value)
2. height of the convolution window (integer value)
3. number of feature maps (integer value)

4. learning rate (float value)

5. bias (boolean value)
e Subsampling

1. width of the subsampling window (integer value)
2. height of the subsampling window (integer value)

3. learning rate (float value)
e Rbm

. number of hidden neurons (integer value)

. use of persistent contrastive divergence (boolean value)

1
2
3. number of steps in Gibbs sampling (integer value)
4. learning rate (float value)

5

. bias (boolean value)

For examples with comments explaining different configuration setups you can
consult directory examples in the root of the project. Out of the box included
configurations use cfg file extension (not mandatory).

44

3.6 Data format

The implemented feed-forward network uses supervised learning. Therefore
in the training phase, the data with input patterns with their respective labels
are needed. These are read from a file on the filesystem. Path to the training
data is specified in argument to the option --labels. Both relative and absolute
paths are allowed.

The default data format is a customized CSV format. Data is stored in human-
readable plain text. Each line consists of a single pattern with its respective label.
The pattern is stored as a comma separated list of values. These values will be
set as a potential of input neurons. The label is then separated by an arrow ->,
which designates that the expected output follows. The label itself is again a list
of comma separated values. These represent the ideal values of output neurons.
The testing phase then does not need labels for the data. The data format used
is a simple CSV format with a comma separated list of values representing input
pattern.

The benefit of the plain text format is that it is human-readable. However
the disadvantage is bad storage efficiency. When working with big datasets a
lot of storage can be saved by using binary data files. Also, the data parsing
process is more efficient, therefore the application run time can be improved.
The deepframe application can parse IDX binary data format, which is a simple
format for vectors and multidimensional matrices of various numerical types.
IDX format is also used by the MNIST dataset - the most popular dataset with
handwritten digits. The basic IDX format for a dataset with n dimensions is [23]:

magic number
size in dimension O
size in dimension 1

size in dimension n-1
data

Snippet 3.7: The IDX data format definition.

The magic number is an integer written in the most significant bit first format.
The first two bytes are always zero. The third byte codes the data type in the
following manner:

0x08: unsigned byte
0x09: signed byte
0xOB: short (2 bytes)
0x0C: int (4 bytes)
0x0D: float (4 bytes)
0xOE: double (8 bytes)

Snippet 3.8: Meaning of the magic number in IDX data format.

The fourth byte codes the number of dimensions (n) of the matrix. The sizes
in each dimension are always four-byte integers, written in the most significant
bit first format and in high endian. The magic number and the dimension sizes
are then followed by the data itself. No data separators are needed, because
the dimensions are defined at the beginning of the file. This approach provides
universal format with very effective storage capabilities. To parse IDX data files

45

O NO Ok WN -

use the --idx option.

3.7 Module description

The deepframe application is built of the modules depicted in Figure 3.4l In
this section, I will describe the role of each module in more detail. For simplicity
I will be using the term "interface" when describing the set of public methods the
objects or components use to mutually cooperate. The language syntax of C++
does not include the term, but is in fact represented by a header file.

3.7.1 Dataset module

The dataset module is responsible for reading, parsing and representing the
processed datasets. The central part of the module is the model of an input
dataset represented by interface InputDataset. It contains only the methods
necessary for fetching the input patterns:

// Returns a pointer to an array of next input values in the dataset.
virtual double *next() = 0;

// Tells whether the dataset contains more input patterns to process.
virtual bool hasNext() = 0;

// Resets the cursor to the beginning of the dataset.

virtual void reset() = 0;

// Returns the dimension of input patterns.

virtual int getInputDimension() = 0;

Snippet 3.9: Methods provided by InputDataset interface.

All other classes modeling the datasets inherit from this interface and provide
custom implementation of the methods. Probably the most trivial implementa-
tion of the dataset is storing the data in an array and reading from it. This is
the case of SimpleInputDataset. It is, however, possible to provide any other
suitable implementation, for example reading from a live stream of an unknown
length. Notice that this is possible because the InputDataset interface does not
have any method returning its size.

The representation of training datasets, however, needs labels corresponding
to desired output values for input patterns to make supervised training possible.
This is addressed by the LabeledDataset interface. It inherits the methods from
InputDataset and defines the following extra method for getting the dimensions
of the label:

// Returns the dimension of labels for input data.
virtual int getOutputDimension() = O;

Snippet 3.10: Methods provided by LabeledInputDataset interface.

The label itself is then read from the memory pointed to by the return of
next () method. The datasets are created by parsers. Their responsibility is to
read the data from external locations, parse it, and build the datasets. Each data

46

format has thus its own parser. It is also possible to implement the parsing logic
directly in the dataset, however this approach would be against the principle of
separation of concern.

The dataset module further contains idx package for parsing IDX files and
representing them in the form of the appropriate models. The IDX data format
was described in more detail in Section IDX is the format used by the authors
of the MNIST dataset [23]. The LabeledMnistParser is specialized in parsing
the MNIST IDX data and contains validations as well as correct configuration
for the IDX files.

The fold package further specializes in providing support for k-fold cross vali-
dation. It contains FoldDatasetFactory, which produces the respective training
and validation datasets. These are built from any standard datasets implementing
LabeledDataset interface. They consist of a collection of k& embedded standard
datasets, representing the k validation folds. Internally, both training and valida-
tion datasets use the same physical data used by the original dataset they were
created from. This approach saves memory by avoiding duplication of data and
also improves efficiency, because there is no need to copy the underlying data.
The validation and training datasets, however, have customized iterators pointing
to the correct patterns in the data. The iterator in the training dataset iterates
over the £ — 1 datasets meant for the training. At the same time the validation
dataset iterates over the one embedded dataset meant for validation.

3.7.2 Network module

The network module encapsulates application logic for the network as a group
of layers. The actions this module is responsible for are the configuration of the
network parameters, setup of the network layers, passing the configuration to lay-
ers and triggering forward and backward network runs. We will discuss these roles
in more detail in the paragraphs below. We will start with the general description
of the interface and follow with the descriptions of specialized implementations.

The Network constructor takes a single parameter - NetworkConfiguration.
It represents the user input for the configuration as an object, so it is easy to
work with. After the Network object is constructed, we need to call the setup()
method, which does the heavy initialization. I decided to incorporate quite a
lot of responsibilities into the Network objects. This allows for performance
optimizations and reduces boiler plate code.

The network setup starts with the configuration and setup of layers. The layer
configuration logic is actually delegated to the layers themselves, which allows for
flexibility and layer polymorphism. The Network itself does not need to know
what kind of layer it is dealing with. It just passes the configuration data, and
the layer configures itself.

The next step is the allocation of memory. This is a specialty of deepframe, as
for the contrary some learning frameworks actually delegate this to the layers (see
Section 7). Instead, I am asking the layers how many weights they need, how
many neurons they need, and then manage this global chunk of memory for them.
This results in a better collocation of the memory, and allows to parallelize some
tasks on a global network level. It allows me, for example, to apply the weight
adjustments Aw in one single CUDA call for the whole network. The memory

47

allocation is also faster, as multiple malloc calls can be relatively expensive.

The next step is initialization of random weights and bias. This step also
benefits from memory management at the network level, because when using
[GPUII can generate random numbers in one CUDA call for the whole network.
The generator itself can take a seed from the user input, so that the computation
can be repeated. This is very useful for debugging purposes. For the production
runs, the generator by default generates the seed based on the output of the
/dev/urandom device. It would be possible to use current timestamp, however
this approach can cause problems on clusters with parallel runs - producing the
same random sequences.

The last step in the network setup is to assign correct pointers to the layers.
They need to point to the right place in the big chunk of globally managed net-
work memory. This helps to keep the layers working on their dedicated memory
partitions.

The network interface has two implementations out of the box. The first
one is computing on the [CPU] the second one on the They each call the
relevant methods on the layers, so the computation takes place consistently on
the same device. Most of the logic is already implemented in the Network class.
A special behavior is required for GpuNetwork when allocating memory on
device, when generating random weights and bias, and when copying memory
from device to host and back.

The copying of the memory content between the host and the device is an
expensive operation. I implemented lazy copying to only perform the operation
when it is really needed. This is implemented by keeping the state variables
on GpuNetwork tracking whether the given device memory is in sync with the
host memory (and vice versa). Once a network method requiring this memory is
called, the state variable is consulted first. The copying takes place only in the
case the device/host memory has changed since the last copy.

3.7.3 Layer module

The layer module is a submodule of the Network module. All layers must
inherit from the Layer class. It defines generic layer operations, which allows for
polymorphism. Layer logic is highly dependent on the layer type. For this reason,
the Layer class does not contain much business logic itself. It mainly consists of
property getters and setters.

Several layer implementations come out of the box with deepframe applica-
tion. These usually implement:

e parsing of the custom configuration,

e deriving and computing their parameters from configuration,

allocating specialized buffers if they need them,

forward run on the [CPU],

forward run on the [GPU]

backward run on the [CPUl

48

O N O Ol WN -

1

e backward run on the |[GPUI

A notable feature of the layers is a specialized method for backpropagating
the last layer. This method is called instead of the standard backpropagation
in the case we are dealing with the output layer. The motivation behind this
is the fact that the last layer computes its differentials Aw from the expected
output (for better understanding, see Section 2.3.4]). Therefore it saves us the
trouble of checking whether we are in the last layer in the backpropagation step
for every hidden layer. This results into a slightly improved performance, and
better readability and method scope.

Additional layer types can be added by putting relevant classes into the pack-
age folder for the layers (src/main/net/layers). These classes need to inherit
from Layer and implement its virtual methods.

virtual void forwardCpu() = O;

virtual void forwardGpu() = 0;

virtual void backwardCpu() = 0;

virtual void backwardGpu() = 0;

virtual void backwardLastCpu(data_t *expectedOutput) = O;
virtual void backwardLastGpu(data_t *expectedOutput) = 0;

Snippet 3.11: The virtual methods of Layer interface.

If the newly implemented layers contain some specialized initialization logic,
this goes into setup() method, which can be overridden for such purposes. For
examples on how to implement new layers consult the source code for existing
layers. Once the layer implementation is ready, it needs to be registered in the
application. For example, if the class name of the new layer is MyLayer, and we
want to choose this layer type by typing My into the configuration, we can register
it with the following statement at the end of MyLayer.cpp file.

static LayerRegister<MyLayer> reg("My");

Snippet 3.12: The layer registration code.

Note that placing the registration code is an important design feature, as it
allows the layer to be self-contained. This way the layer is not polluting the
application code outside its own header and cpp file. To remove the layer, we can
simply delete these two files.

3.7.4 Error computing module

The error computing module contains different implementations for comput-
ing network error. The base interface declares a single method with the signature
below.

virtual data_t compute(Network *net, data_t *expectedOutput) = O;

Snippet 3.13: The virtual method of ErrorComputer interface.

49

It takes the network itself as the first parameter, and the expected output as
the second. It defines a contract to compute the network error from these inputs.
In fact, the network output would be sufficient parameter instead of the whole
network object. However, in that case we would also need to pass the number of
outputs. Having the whole network object provides more flexibility for possible
future enhancements, and allows for fewer parameters in the method signature.

In the testing part of this work, I relied mainly on the Mean Square Error to
assess the accuracy of tested network models (see Chapter [). It is implemented
in the MseErrorComputer class.

Additional implementations for computing error can be added by inheriting
from the ErrorComputer base class and implementing its virtual method (see
snippet B.I3). To start using it in the learning process, one needs to configure
the learner to use it via the provided setter setErrorComputer (). For example
consult the main. cpp file, where it is setup for BackpropagationLearner.

3.7.5 Training module

The training module has the responsibility of training the network by updating
their learning parameters towards the state in which they can perform the desired
task. The training process is dependent on the layer type used, so the parameter
updates are actually taking place in the layer implementation, outside of the
training module. However, the training module manages this process.

The training algorithm implemented and used for supervised learning in all
layer types supported out of the box is the backpropagation algorithm, and is
implemented in class BackpropagationLearner. It implements the gradient de-
scend method described in more detail in Section It handles initializing
the network with input data, performing the forward and backward runs, which
within the specific layer implementations update the learning parameters. Back-
propagation also checks the training and validation error, and terminates the
training when target error rates or epoch limits are achieved.

The [DBNI network is composed of RBM layers, which require a special pre-
training phase. This is also implemented in the training module, more specifically
in class NetworkPretrainer. It manages the whole pretraining process, including
initializing the network input and pretraining layers sequentially. More details
on the implementation of pretraining can be found in Section B.10.

The TrainingResult class, also located in the training module, is a data
transfer object. Its role is to carry information about the results of the training
process. Its attributes include the number of epochs run during training, and
achieved training and validation errors.

3.7.6 Logging module

The purpose of the logging module is to provide a flexible [AP]] to easily print
messages informing about the application state. Each logged message contains a
timestamp, which is produced by the logging framework gtest. The framework
also provides flexibility in configuring output at one place. By default, the appli-
cation is logging to standard output. This can be changed in the logger factory,
and it is possible to easily redirect all the logged messages into a specific file. An

50

W N -

©O© 00 N O O

10

12

~N O O WN

important functionality of the logger is the ability to choose a logging level. This
can be used to easily suppress logging of the debugging messages for the user,
while allowing the developer to enable the debugging messages by a command-
line option. Another advantage is to decouple the logic of concatenating strings,
and to delegate the building of strings to the logger. The logger can then optimize
and decide to truncate the message if it is configured not to log it (for example
because of low severity level).

The log module contains a factory for the logger. This is the place where
the logger is configured and built. To change the log destination (both files
and consoles may be used), just edit the appropriate setter in the factory. The
following snippet demonstrates how to build a log4cpp logger with INFO priority
level and logging to console:

logécpp: :Category* LoggerFactory::create() {

logécpp: :Category *logger = &logécpp: :Category: :getRoot();
logdcpp: :Appender *p_appender = new

logécpp: :OstreamAppender("console", &std::cout);
log4cpp: :PatternLayout *layout = new logécpp: :PatternLayout();
layout->setConversionPattern("’,d{/,Y-Ym-%d %H:%M:%S} [Ypl %c: Ymin");
p_appender->setLayout (layout) ;

logger->setPriority(logécpp: :Priority: : INFO) ;
logger->addAppender (p_appender) ;
return logger;

}

Snippet 3.14: Factory building a logger instance of INFO priority logging to
console (stdout).

The produced logger is meant to be a singleton across the whole applica-
tion. The only proper way to obtain it is through calling the static getLogger ()
method on the factory. This method always returns the same instance:

log4cpp: :Category *LoggerFactory: :getLogger() {
if (!isCreated) {
isCreated = true;
instance = create();

¥

return instance;

Snippet 3.15: Definition of method for obtaining logger.

To obtain the logger in a less verbose manner, the following helper macro is
defined in LoggerFactory.h:

#define LOG() Log::LoggerFactory: :getLogger()

Snippet 3.16: Static getter for obtaining logger singleton instance.

o1

D w N -

To log a message all that is needed is to include the LoggerFactory.h,
Category.hh and invoke the macro. The logécpp library handles the string
building using given parameters according to the specified format.

#include "../log/LoggerFactory.h"
#include "logécpp/Category.hh"

LOG()->debug("Message logging string parameter ’Y%s’ and decimal
parameter ’%d’.", stringParam, floatParam);

Snippet 3.17: Example code logging a sample message.

Note that this approach builds the string only if it is actually appended to the
log. Thus if the logging level is above the level specified for the message, there is
little overhead in invoking the logger.

3.8 Multilayer perceptron network

The first implemented model is Multilayer perceptron. It consists of a vari-
able number of mutually fully inter-connected layers of variable size. The design
characteristics of this network are very simple. The architecture can vary based
on the number of layers and the number of neurons in each layer. Because of such
a simple design, I decided to configure the MLP architecture via a command-line
option --1conf. This allows for a very flexible reconfiguration of the network’s
architecture. For a complete list of configuration options, please read Section

All the layers of an MLP have the same functionality, inter-connections, and
differ only in their size. For this reason, I decided to implement their logic in the
Network object. The forward run of the network simply performed a standard
matrix multiplication. The backward run in version v0.1 was handled in the
BackpropagationLearner. This would have allowed for using a different learner
implementation, for example genetic algorithms, or exhaustive search, simply by
swapping the learner implementation. Because of the architectural simplicity, I
also implemented custom CUDA [kernelk for testing and training the network.
The argument in my mind was to optimize the kernels for the task. You can see
the performance achieved in version v0.1 in Figure

After I compared my performance results with existing frameworks (see Sec-
tion 7)), I was not satisfied with the results. Further investigation and testing
revealed, that my custom CUDA [kernelk actually performed worse than standard
linear algebra libraries. Those are apparently optimized at the assembly code
level, and heavily tested by their maintainers. I researched and analyzed the al-
gorithms searching for places where standard linear algebra operations could be
leveraged, and implemented these using the cuBLAS library provided by NVIDIA.
This approach led to a significant improvement in the performance, compare
Figures and

A careful reader may notice a slight jump in the performance around 1500
hidden neurons. This is caused by the way CUDA operates. The number of parallel
threads running a [Kernell is usually a multiple of 32 (depends on model).
If the dimension of data is a multiple of 32, it can be efficiently aligned in the

52

Time performance for MNIST with 1 hidden layer.

90 I 1 Measured
Mean

80 - B — Linear fit

70 - -

60

40

time (seconds)
ul
o
[

20 —

10 i i i i
0 500 1000 1500 2000 2500
hidden neurons

Figure 3.5: Time results of the MNIST test run with different number of neurons
in one hidden layer. Values are averaged out of 20 runs. Test was run with version
v0.1 of deepframe on the test machine using [GPUl for parallel computations.

memory so that all threads have data to work with. In such case there is no need
to check the data boundaries, and performance is improved noticeably. This
phenomenon is replicated and explained in the research of Barrachina [3].

Before I started implementing the model, I realized that the layers can-
not be generally considered as having the same architecture as in simple MLP
case. Therefore I abstracted out the logic of the forward run into a new Layer
object. The backpropagation also differs by layer type, so I moved that logic into
the Layer’s responsibilities. This took away the possibilities to switch learner
implementations, however needed to be done as a preparation for implementing
and models.

Then I implemented the only layer used in MLP - the FullyConnectedLayer.
It contains a single vector of neurons. The neurons in the neighboring layers are
fully interconnected with each other. Let us consider a layer with a set of m input
neurons [, we will denote the set of n output neurons O. The weights between [
and O form a matrix W of dimensions m x n. The forward propagation in this
model can be implemented using the matrix multiplication operation:

Iy, Wixn = Oy, (3.1)

The implementation of FullyConnectedLayer uses simple for loops I
implemented to perform the matrix multiplication. The parallel implementation
uses the gemm call from cuBLAS library, which is highly optimized. The
performance could be very likely improved by using a third-party library for
linear algebra operations. The most popular are MKL, and ATLAS. MKL is
from Intel and is optimized for Intel hardware. ATLAS is opensourced under

53

Time performance for MNIST with 1 hidden layer.
32 ‘
30
28
26
24
22
20
18
16
14
12 b T
10 | | | |
0 500 1000 1500 2000 2500
hidden neurons

[Measured
— Mean
— Linear fit

time (seconds)

Figure 3.6: Time results of the MNIST test run with different number of neurons
in one hidden layer. Values are averaged out of 20 runs. Test was run with version
v0.2 of deepframe on the test machine using [(GPUl for parallel computations.

the BSD license, and is dynamically optimized for the given hardware. I did not
experiment with these libraries because of time constraints and the focus of this
work on implementation.

The backward run in the fully connected layer is again implemented using
a custom code on [CPUl For the parallel implementation I used custom CUDA
[kernels. T have been getting good results with these (see Section 7)), so I never
tried to replace them with cuBLAS alternatives.

3.9 Convolutional neural network

The model of convolutional neural network introduces two new layer types on
top of fully connected perceptron layer: Convolutional and Subsampling layer.
Their architectural design is described in Section .31l In the text below I will
focus on the implementational details.

The implementation of the forward run in the Convolutional layer uses
a matrix multiplication call provided by cuBLAS (the gemm call). However, to
convert the forward run into a matrix multiplication problem, it is required to
reorganize the data in the memory. This is done using cuBLAS call im2col,
which rearranges the rectangular convolution kernels into matrix columns (see
Figure B.7). Let us call such a matrix to be a column buffer. Afterwards we can
use a standard gemm call to multiply the column buffer with the weights vector
to produce layer outputs. For optimization reasons, both im2col and gemm calls
can be run in parallel for all feature maps in the given layer.

The implementation of the forward run in the Convolutional layer uses

54

albf|d]|e
alb|c

blcl|le]|f
dle | f | -

d|le|g]lh
gl hli

el f|lhf|i

Figure 3.7: Illustration of converting a 3 x 3 feature map into a 4 x 4 matrix with
kernel images rearranged into columns using 2 x 2 convolution.

a set of nested for loops. Again, using specialized libraries might prove to provide
better performance. However, I did not test this, and instead focused on the
parallel implementation on On the other hand, having custom loops saves
us the trouble of rearranging the memory (as in Figure B.1), so the performance
penalty for not using optimized calls is likely to be negligible.

The backpropagation of the Convolutional layer on starts with con-
verting the convolution kernels for input features into the column buffer (see
Figure B.7)). The produced column buffer matrix is then multiplied by local gra-
dients for the layer outputs (0F /0y,). The resulting matrix then consists of the
weight differentials Aw. To backpropagate the differentials down to the input we
can multiply the local gradients for output with the weights, and put the result
into the column buffer. The data then needs to be rearranged back to image data
by calling the col2im operation (reverse process of the one illustrated in Fig-
ure 37). The produced image data represent the total differentials for the layer
input. The backpropagation process can then continue in the layer below. For
explanation of the theory behind these computations please consult Section 2Z.3.11

A notable optimization I implemented was leveraging the coefficients for ap-
plying learning rate directly in the matrix multiplication calls. This saves one
vector multiplication for every layer at each backpropagation step. This opti-
mization is used in the Convolutional layer as well as the Subsampling layer. The
backpropagation of the Convolutional layer on the again uses custom loops
for computing the differentials.

The forward run in the Subsampling layer on the [GPUl is implemented via a
custom-coded CUDA [kernell Subsampling operates by picking the neuron with
maximum potential and passing that value forward. In this process the index of
the neuron is stored in a cache, so it can be used in the backpropagation step.
The forward run on [CPU] obeys the same logic, however in serial nested for loops.

Backpropagation in the Subsampling layer on is also implemented by a
custom CUDA [kernell The cached index of the activated neuron is used, and the
total differential is passed down from the output neuron, only to this one input
neuron. The implementation performs the same logic again in serial nested
for loops.

Please note, that the implementation of the Subsampling layer is different
from the one explained in the theoretical part in Section The implementa-
tion is not using any learning parameters. The subsampling simply chooses the
maximum potential and passed that to the upper layer. In the backpropagation
step, the total differential is simply passed from the output to the activated in-
put neuron. Also, the activation function is not used. By not implementing these

95

© 0 NO O W N -

T T e o
D Ok W NN = O

extra features I was able to cut down on performance cost. The reason why I did
not include these features is that it led to a better classification accuracy without
slowing down the learning.

3.10 Deep belief network

The Deep Belief Network introduces a new layer type, the RBM layer. It is
formally described in Section [Z4.3] Its implementation in deepframe application
is located in the net/layers package, in the RbmLayer class. Its configuration
options are described in Section B.5.11

The RBM layer is the only layer in deepframe application, which is provided
out of the box and does not support CPU implementation. The reason for this
is the very poor performace of CPU, caused by performance intensive sampling
in contrastive divergence algorithm in the pretraining phase. This implies ex-
tremely long running time for single-threaded implementation. Instead, the GPU
implementation is highly optimized taking advantage of parallel computing.

The forward run in RBM layer computes the inner product multiplying the
visible neurons with their respective weights. This produces the potentials for
hidden neurons, and is implemented using the gemm call from cuBLAS library.
The potentials are then normalized by the sigmoid function. Note that the im-
plementation of the forward run is in fact the same as in the network. The
backward run in RBM layer does not do anything, because all the learning takes
place prior to supervised learning phase — during pretraining.

The RBM layers in the Deep Belief Network introduce the pretraining process,
which is not used in any of the previously described networks. The pretraining is
launched just before the supervised training, and is run for a predefined number
of epochs. As the help explains, the number of pretraining epochs is configured
by the option -n or its longer alternative -—pretrain. The default is zero epochs,
which effectively disables pretraining.

The class responsible for the pretraining is named NetworkPretrainer and is
located in the train package. Its main logic is encapsulated in the pretrain()
method.

void NetworkPretrainer::pretrain(LabeledDataset *trainingSet) {
LOG()->info("Started pretraining in %d epochs...", epochs);
// input is never trainable -> start from 1
int noLayers = netConf->getLayers();

for (int i = 1; i<nolayers; i++) {

Layer* layer = net->getLayer(i);
if (layer->isPretrainable()) {

for (int e = 0; e<epochs; e++) {
LOG()->info("Pretraining layer %d in epoch %d.", i, e);

// iterate over all training patterns and pretrain them

56

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

1
2

trainingSet->reset();
while (trainingSet->hasNext()) {
data_t* input = trainingSet->next();

// do a forward run till the layer we are pretraining
net->setInput (input);
for (int j = 1; j<i; j++) {
Layer* 1 = net->getLayer(j);
if (useGpu) {
1->forwardGpuQ) ;
} else {
1->forwardCpu() ;
}
}

// pretrain the layer

if (useGpu) {
layer->pretrainGpu() ;

} else {
layer->pretrainCpu() ;

}

¥

LOG()->info("Finished pretraining.");
b

Snippet 3.18: Implementetition of pretraining process for the Deep Belief
Network.

As we can see in Code Snippet B.I8 the pretrainer runs the pretrain()
method on the layer. The pretraining capability of the layer is determined by
calling layer->isPretrainable(), which returns false by default. To imple-
ment pretraining, this method can be overridden in the layer implementation to
return true. Also, the pretrain() method obviously needs to be implemented
in such case, otherwise no learning would take place in the pretraining phase.

The pretrainer also handles assigning input from the training dataset into the
visible neurons of the first layer. Then it makes sure all the layers performed
the forward pass propagating the signal potentials upward reaching the visible
neurons of the layer being pretrained. This ensures pretraining is performed with
the correct input signals.

The RBM layer then implements the pretraining by performing the Gibbs
sampling. This is done by a predefined number of Gibbs sampling steps. The
implementation of sampling activations in the hidden neurons from the activations
in the visible neurons can be seen in Code Snippet

void RbmLayer::sample_vh_gpu() {

o7

~N O 0w

~N o ok WwWN e

0 N O Ok W N =

propagateForwardGpu(sInputs, shPotentials, sOutputs);

k_generateUniform(*curandGen, randomData, outputsCount);

k_uniformToCoinFlip(sOutputs, randomData, outputsCount);
}

Snippet 3.19: Implementetition of pretraining process for the RBM layer.

The sampling starts by forward propagation of the signal potentials, which
essentially represents the probabilities of neuron activations. The activations
are then sampled from these probabilities. It is implemented by generating an
array of random numbers from uniform probability distribution. Then a custom
CUDA kernel is used to determine the activations by comparing the random data
with the probabilities of activations (see Code Snippet B20]). The sampling of
activations in the visible neurons from the activations in the hidden neurons is
implemented analogously.

__global__
void uniformToCoinFlip(data_t *p, data_t *dArray, int elements) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < elements) {
pli]l = (dArray([i] < pl[il) 7 1 : O;
}
}

Snippet 3.20: Implementetition of a custom CUDA kernel sampling the
activations from their probabilitues and random data generated under uniform
probability distribution.

The implementation of the pretraining for RBM layer can be seen in Code
Snippet B.2I] It starts with doing a forward run on the layer, which computes
the probabilities of activations py,.

In the next step the sampling chain is restarted by sampling the hidden ac-
tivation states in case PCD is enabled. Then the visible activation states are
sampled from hidden states, and these are resampled back to hidden states. This
is the Gibbs sampling step, and is performed for a preconfigured number of times.

Pretraining continues by computing the positive gradient matrix ¢+ and sub-
tracting the negative gradient matrix ¢, which produces the weight differentials.
Differentials for biases are computed by axpy calls from cuBLAS library, for both
the visible and hidden neurons separately. Pretraining is finished by applying all
the computed parameter updates (weights and biases).

void RbmLayer: :pretrainGpu() {
data_t *inputs = previousLayer->getOutputs();
// single forward run will compute original results

// needed to compute the differentials
forwardGpuQ) ;

o8

9 // Reset the parameters sampled from previous training

10 if (!conf.isPersistent || !samplesInitialized) {

11 samplesInitialized = true;

12 int memSize = inputSize * sizeof(data_t);

13 checkCudaErrors(cudaMemcpy(sInputs, inputs, memSize,
cudaMemcpyDeviceToDevice)) ;

14 sample_vh_gpu();

15 }

16

17 // perform CD-k

18 gibbs_hvh(conf.gibbsSteps);

19

20 // COMPUTE THE DIFFERENTIALS

21

22 // First we will compute the matrix for sampled data,

23 // then for real data and subtract the sampled matrix.

24 k_gemm(cublasHandle, CblasNoTrans, CblasNoTrans,

25 outputsCount, inputSize, 1,

26 lr, sOutputs, sInputs, (data_t) 0., weightDiffs);

27

28 k_gemm(cublasHandle, CblasNoTrans, CblasNoTrans,

29 outputsCount, inputSize, 1,

30 lr, outputs, inputs, (data_t) -1., weightDiffs);

31

32 if (conf.useBias) {

33

34 data_t *vdiffs = weightDiffs + genuineWeightsCount;

35 data_t *hdiffs = vdiffs + inputSize;

36

37 // clear the bias diffs just before working with them

38 checkCudaErrors(cudaMemset(vdiffs, 0, (inputSize +
outputsCount) * sizeof(data_t)));

39

40 // compute bias for visible neurons

41 k_axpy(cublasHandle, inputSize, (data_t) lr, inputs, 1, vdiffs,
D

42 k_axpy(cublasHandle, inputSize, (data_t) -1lr, sInputs, 1,
vdiffs, 1);

43

44 // compute bias for hidden neurons

45 k_axpy(cublasHandle, outputsCount, (data_t) lr, outputs, 1,
hdiffs, 1);

46 k_axpy(cublasHandle, outputsCount, (data_t) -1lr, sOutputs, 1,
hdiffs, 1);

47 }

48

49 // adjust RBM parameters according to computed diffs

50 k_sumVectors(weights, weightDiffs, weightsCount);

51 }

Snippet 3.21: Implementetition of pretraining process for the RBM layer.

99

It is important to note, that all RBM layers need to be pretrained in a se-
quential order from the first hidden layer to the last one. This process cannot be
parallelized well, because the input signals coming from the preceding layer must
already be coming from the modeled probability distribution, and hence must be
coming from an already well-pretrained layer.

60

4. Testing

In this chapter I will test all the implemented models of neural networks.
In Section 1] I will specify the requirements on the test cases, test scenarios
and testing workflows. I will describe the hardware and software I used for
testing in Section In Section 4.3, T will describe the methodology and specify
the properties of the implementation I want to investigate and assess. In the
following 3 sections, I will summarize the results of each network implementation
for different sets of problems. In Section 4.7 I will compare my implementation
with an existing alternative solution tackling the same problems.

4.1 Testing requirements

First, let me specify important requirements that I want to follow when de-
signing performance tests for the implemented system. Each item in the following
list of requirements is accompanied with an explanation of the motivation behind
the requirement.

e casily repeatable tests

Tests will be repeated multiple times with different input [pseudorandom|
sequences to ensure representative results. It would be time-demanding
to launch each test case manually. To prevent this, it should be possi-
ble to launch a batch of tests via a single command.

e automated process from testing to reporting

The whole process from launching the tests, through processing the
results, to presenting the results should be automated. This will make
it possible to easily repeat the test scenarios, which helps to identify
regression bugs. It will also eliminate human error and inconsistencies
when dealing with many test cases.

e testing scripts must be tied to a specific application version

If the application configuration or [APIl changes, the testing scripts
must be adjusted so they are compatible. To ensure this, the version
of the code running the tests must be tied to a specific version of the
application. It will also allow to repeat the tests in future, even though
application [APIl changed. Note that there is no need to version the
test results, only the launch scripts. Test results can be generated from
these launch scripts at any point in time.

e future reuse of results

The test results should contain all potentially useful data, even if they
are not used in the presentation of results at the moment. It will allow
to compare different tested properties and additionally include them
in the presentation of the results without the need to rerun the tests.

61

By obeying these requirements I will achieve stable test cases, that can be
repeatable and verifiable in future. It will also allow me to easily launch long-
running batch of tests, and work on the implementation in the meantime.

4.2 Testing environment

While working on the implementation, I was using two machines. Both were
standard desktop machines. The first one was used primarily for the development,
let us call it the development machine. It had desktop manager along with
other active services installed that were used for the development. The testing
performed on this machine occasionally showed spikes and anomalies in the test
results caused by other services running simultaneously.

The second machine was on the other hand used primarily for testing purposes,
let us call it the testing machine. This machine had no desktop manager and no
services other than the required dependencies for the implemented deepframe
application. This allowed to test as independently of other running services as
possible and also allowed to perform long-running tests, while still having an
extra machine for development purposes.

4.2.1 Hardware specification

The development machine hardware specification follows below. A detailed
specification of the GPU installed in the development machine can be found in
Attachment [3

e CPU
Intel Core i7-950 3.06GHz

— 4 cores, 8 threads

64bit instruction set

— 8MB cache
e RAM

PATRIOT 12GB KIT DDR3 2000MHz Viper Xtreme Series
— triple channel (3 x 4GB)

CL9-11-9-27

— actual frequency 1066Mhz

e HDD

— Data disk: WESTERN DIGITAL Caviar Green 2000GB 64MB
— System disk: SSD OCZ Vertex 3 Series 60GB

¢ GPU
— GIGABYTE N56GOC-1GI
— NVIDIA GeForce GTX 560 GPU

62

— 1GB GDDRA, 256-bit memory interface
— 336 CUDA cores

The testing machine has a faster memory with higher capacity. The processor
has the same number of cores, but being i5, it does not support hyper-threading.
This should give the development machine an advantage when computing on the
CPU only. However the testing machine has a GPU with a significantly higher
memory capacity and a higher number of CUDA cores. This should support
faster computations on GPU. A detailed specification of the GPU can be found
in Attachment Bl A brief hardware specification follows:

e CPU

— Intel Core 15-4570S 2.90 GHz

— 4 cores, 4 threads

64bit instruction set

— 6MB cache
e RAM

— 16GB DDR3
e HDD

— SSD ADATA SX910 XPG 256GB
e GPU

— NVIDIA GeForce GTX 980 GPU
— 4GB GDDRA5, 256-bit memory interface
— 2048 CUDA cores

4.2.2 Software specification

The development machine is running under the Operating System (OS) Linux
Debian Jessie. The compiler used to compile deepframe was gcc 4.8.3. Further
this machine was running the Gnome Desktop Manager, Apache server, and many
other services at all times, even during testing. Therefore the test results obtained
on this machine may suffer from occasional inconsistencies.

The testing machine is running under the OS Linux Gentoo 2.2. This machine
was used primarly for testing, and was therefore not running any extra services,
in order to provide as independent tests as possible. The machine does not have
any graphical interface installed, and all the tests were run from the console.

63

4.3 Testing methodology

I will test the implementation of each network model on an appropriate prob-
lem. The aim of testing is not to get the best classification results, but to assess
the performance of my implementation and compare it to the performance of third
party implementations. The testing conforms to all the requirements stated in
Section [4.11

The requirement of an easy launch of the test scenarios will be tackled by
means of bash scripts. They will allow running a batch of tests by issuing a
single command.

The second requirement of an automated process will be also solved by bash
scripts. The presentation of the results will be done using graphs. These will also
be generated by scripts using the gnuplot. Gnuplot is a portable command-line
driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS, and many
other platforms. Gnuplot is able to generate graphs in vector graphic, which
I will leverage in this thesis. The generated graphs are saved in encapsulated
postscript files (eps).

The third requirement of having tests and application source tied together in
the version control will be satisfied by using git for versioning the test scripts
along with the application. You can find the scripts in the tools folder in the
root of the application that has been included in the attached disk [Il. The tools
folder contains the scripts for launching a batch of tests and generating the graphs
with the results. Additional script templates for running a single test of learning
and testing of one single network on one dataset, are included in the examples
folder. These scripts can be used as examples of how to configure the application
to solve the provided sample problems.

The last requirement of possible future test reuse will be satisfied by keeping
the output produced by the application. As discussed in Section B.7.6] all the
log messages are printed on the standard output by default. These logs should
contain all the important data about the application run. The specific data we
will be interested in to present the testing results will be parsed out from these
logs. As we have the logs, we can later decide again to parse different values, if
we need them. This satisfies the requirement.

Our motivation behind the testing is to asses the performance of my im-
plementation. It is quite problematic to do an unbiased assessment, given the
variety of available hardware architectures. To get around this, I will be com-
paring all the implementations on the same hardware, which will be the testing
machine. Obviously, different implementations might be taking advantage of cer-
tain architectural features of a specific hardware. Therefore, the fact that an
implementation A is performing better than implementation B on hardware X,
does not imply that it will perform better on hardware Y as well. However, since
I have access to a high-end GPU GTX 980, and an older less-performing GPU
GTX 560, testing on both should yield a good comparison across hardware with
different performance.

Before we start the testing, it is important to specify the key performance
indicators for each implemented model. The most important indicator is the time
it took for the application to run, which I will measure in seconds. Besides time
constraints, it is also important to look at the RAM memory consumed by the

64

process. When choosing hardware for the testing, we cannot let the application
request to allocate more memory than the capacity we have available. Once we
are allocating more, the memory will start to swap into a much slower persistent
storage (HDD), which will heavily impact the performance. I will be measuring
the memory consumption in kilobytes.

Note, that the GPU has its own memory for parallel operations that is not
included in the RAM memory metrics. This is intentional, because parallel cal-
culations proceed in small units called warps, and each warp has a memory limit
which depends on hardware specification. In case we were using too much mem-
ory in a warp and exceed the limit, the process would just crash. Furthermore,
there is a limit for the number of warps that can be run in parallel. If we were
using too many warps, then only a limited portion of them would run in parallel,
and the remaining ones would have to wait for the next cycle.

Therefore the usage of memory within a warp is restricted by the design. Using
more warps to redistribute memory will impact the time performance, which will
be visible in the time reports. For these reasons it is sufficient to track time, and
for our purposes not necessary to track GPU memory usage.

The last interesting performance indicator of a model is the Mean Square
Error that was obtained for the solution of a given problem. This will be used to
assess the properties of the implemented model rather than the achieved hardware
performance.

We explained the metrics we want to be looking at to understand the per-
formance. To measure them, I chose to use the standard Linux utility time. It
supports tracking of all the indicators we need. To summarize, I decided to use
the following as performance indicators:

e run time
— the total number of CPU-seconds used directly by the process (in user
mode).

— this also includes the time when CPU was waiting on GPU to finish
its parallel computations

— will be measured using the U specifier of time
e RAM memory

— the maximum resident set size of the process during its lifetime

— note that we are only interested in the maximum, since we want to pre-
vent any swapping when choosing sufficient hardware to solve certain
problem

— will be measured using the M specifier of time
e Mean Square Error

— a metric used to asses the variations of actual results learnt from the
provided dataset

— defined in Equation 2.7]

— will be measured by a direct computation using deepframe

65

In the default setting, deepframe has a certain error threshold. Once it is
achieved, the learning process is stopped, and the network model is considered
learnt at this point. For our testing purposes this scenario is not desirable. Instead
we want each test run to perform exactly the same number of training epochs.
This will keep the performance indicators independent of the random initialization
of network parameters. Note that this independence is made on the assumption,
that identical operations performed with different numbers always result in only
negligible performance differences. To account for the performance differences
caused by the random initialization of variables (along with similar other aspects),
I will run each test multiple times and average out the results.

4.4 Multilayer Perceptron

The first tested model is the Multilayer Perceptron. As already explained in
previous chapters, it is a fully-connected feed-forward network build solely from
perceptrons - neurons formally described in Section 2.1l The fully-connectiveness
implies a big number of network weights. For this reason the model is quite
robust for big numbers of hidden neurons. The first two problems to be tested
are quite small in terms of network size. This is intentional. It allows us to run
a lot of tests quickly, while still being able to show the linear trends of increased
computational requirements with increased network size. We will start with the
XOR operator. It will be followed by the problem of summing two 4-bit numbers.
For both of these models quite small networks are satisfactory, as will be seen
from the test results. We will focus on showing the complexity of the software
implementation and its scalability on these 2 problems. The last tested problem
of recognizing handwritten digits will require a relatively robust network. This
model should advertise the advantage of using parallel processing on GPU for the
computation.

4.4.1 Exclusive OR operator

The exclusive OR operator (XOR) is considered as a "Hello World" applica-
tion in the field of artificial intelligence. It is a trivial problem, however more
complicated than the other binary logical operators, because of its linear insepa-
rability.

input input output
x1 T2 Yy
0 0
0 1 1
1 0 1
1 1 0

Table 4.1: A table with all possible inputs and outputs for XOR operator.

66

The XOR problem has 2 binary inputs, and a single binary output. The binary
values represent true and false boolean values. All the possible inputs with their
respective outcomes are represented in Table L1l Since there are only 4 possible
cases, all of them will be used for training in the experiment. Otherwise we would
suffer from lack of information in the training dataset. The same dataset will be
used for testing the network’s performance, too.

To perform the test experiment, we need the dataset to learn from. Given
the problem has only 4 possible inputs, the dataset was created manually and
is located at resources/xor-labels.dat. The test cases can be run by execut-
ing the command ./tools/run-tests.sh tools/xor.conf.sh. The tests are
configured to run for 1000 epochs in each of 100 iterations. Each iteration is ini-
tialized with random network weights and bias, which result in independent test
runs. The configuration repeats these iterations with various different network
architectures. The first set of tests continually increases the number of neurons
in hidden layers. These tests should verify the scalability of an increasing layer
size. The second set of tests keeps the number of neurons in hidden layers con-
stant, and increases the number of hidden layers. These tests should verify the
scalability of incorporating more layers into the network and making it deeper.

Time performance for XOR operator with 1 hidden layer.

0.7 ‘ ‘ ‘ ‘ ‘ [Measured
‘ N Mean
0.65 o L . R . i . L : L | —— Linear fit
0.6 L N L N N N N . N R N T —
0.55 + _

time (seconds)

e
f

i \ i i i
0 100 200 300 400 500 600
hidden neurons

0.4

Figure 4.1: The time results of the MLP network solving XOR with a variable
number of neurons in one hidden layer. The resulting values are averaged over
100 runs. The test was run on the development machine using GPU for parallel
computations.

As depicted in Figure 1] the time it takes for the network to run increases
with the number of hidden neurons. The important fact to notice is, that the
time increases linearly. What happens if we are increasing the number of layers
can be observed in Figure Each hidden layer consists of 8 neurons. Again, in
this case the time costs increase also linearly with the number of layers. This is an

67

Time performance for XOR operator.

1.3 ‘ ‘ ‘ 1 Measured
‘ ‘ ‘ ‘ ‘ ‘ ‘ R — Mean
1.2 oo b bbb - . ,
‘ ! ‘ ‘ ‘ ‘ — Linear fit
1.1 —

n

° | | | | | |

o L. N . . I] . . .]

: 0.9 i T gl

g —_—

S 07 —]
06 F
Y S T R SN T SR R S

hidden layers

Figure 4.2: The time results of the MLP network solving XOR with a constant
number of neurons grouped into a variable number of hidden layers. The values
are averaged over 100 runs. Test was run on the development machine using GPU
for parallel computations.

important property of my implementation, as, e.g., an exponential growth would
make this implementation inappropriate for bigger networks. The measured time
intervals are depicted by red ranges, which also look stable.

The graph of mean square error in Figure shows, that increasing the
number of hidden neurons is not always producing better results. The trend is
rather opposite. Having 50 hidden neurons causes big variations in the MSE
values. After reaching 100 hidden neurons, the network’s MSE stabilizes around
0.25. Increasing the number of hidden neurons produces MSE of 0.5, which is
a terrible result. The reason behind this phenomenon is that having too many
connections between neurons causes diminishing of gradient values. Therefore it
takes much longer for the network to learn the patterns from the data.

The graphs with the results obtained on memory consumption can be found
on the attached Disk [II They are not providing any valuable information which
would allow to make any conclusions about the memory requirements of the
deepframe application. This is because the network modeling the XOR operator
is too small to affect the memory significantly. To optimize storage requirements,
each weight and potential of a neuron is represented by a single 4-byte number
(or 8-byte number if compiled with double precision). An increase in memory
consumption of several bytes caused by adding several neurons is thus negligible.

Additional graphs where the tests were run on the CPU can also be found on
the attached Disk [Il Note, that the time performance is even better in this case.
This implies that for small networks it is not beneficial to leverage GPU and its
parallelization capabilities. The bottleneck here is caused by the copying of data

68

MSE for XOR operator with 1 hidden layer.

0.7 ! ! [1 Measured
Mean

0.6 [R

0.5 = S SR = —

e

Mean Square Error

| | | |
200 300 400 500 600
hidden neurons

Figure 4.3: Mean Square Error results of the MLP network solving XOR with
variable number of neurons in one hidden layer. Values are averaged over 100 runs.
Test was run on the development machine using GPU for parallel computations.

from the RAM memory on the host, to the memory on the GPU device. The
copying overhead is then not compensated enough by the parallel computations,
since there are only few neurons in each layer.

Let us summarize the results of the experiment. In Figure [£.3] we can see low
MSE values. This proves that the network is learning, which can be also verified
directly by inspecting the test logs included on the attached disk. Furthermore,
Figure [41] and Figure show linear increase in performance costs with an
increased network’s size.

4.4.2 The sum of two four-bit numbers

The next problem I decided to use for the test of my implementation of [MLP]
is the sum of two 4-bit numbers. Given two numbers, each represented by 4
bits, the task is to calculate their 5-bit sum. It is modeled by a network with
8 input neurons, and 5 output neurons representing the result. The testing was
conducted using the same methodology as in the case of the XOR operator in
Section [4.4.1]

The training dataset comprises all possible inputs, totaling to 256 (2®) training
patterns. The testing dataset contains again all the possible input patterns. The
dataset was generated by a PHP script included on the attached disk. This
script takes an argument that specifies the number of bits in each of the summed
numbers. The generated dataset is printed out to the standard output. Code
snippet 7?7 demonstrates how to generate such datasets and execute the tests.

$ php tools/create-bitsum-dataset.php 4 > resources/4bitsum-labels.dat

69

Time performance for 4-bit sum with 1 hidden layer.
70 I

[Measured
Mean
— Linear fit

time (seconds)

15 i i i i i
0 100 200 300 400 500 600
hidden neurons

Figure 4.4: The time results of the MLP network solving the 4-bit sum problem
with a variable number of neurons in one hidden layer. The values are averaged
over 100 runs. The test was run on the testing machine using GPU for parallel
computations with 64bit precision.

$ cat resources/4bitsum-test.dat | sed "s/\\s>.*x$//" >
resources/4bitsum-test.dat
$./tools/run-tests.sh tools/4bitsum.conf.sh

Snippet 4.1: Shell commands used to generate the training and testing datasets
for 4-bit sum and to run the tests.

The obtained test results show the same patterns that were revealed in the
case of the XOR operator. In Figure 4.4 we can see that the time increases
linearly with the number of hidden neurons. The same applies also in the case of
increasing the number of hidden layers when keeping the number of neurons in
each layer constant.

Additional graphs where the tests were run on both the GPU and the CPU can
be found on the attached Disk [Il Similarly as in the case of the XOR operator,
the 4-bit sum problem requires a relatively small neural network. The test run
for 600 hidden neurons takes for example around 28 seconds to complete on the
CPU and 65 seconds on the GPU. Clarly, it is still not beneficial to leverage the
GPU and its parallelization capabilities for this problem. The bottleneck is again
the copying of the data from the RAM memory on the host, to the memory on
the GPU device.

4.4.3 Recognition of handwritten digits

The last problem chosen to test the MLP|limplementation is aiming at the con-
struction of a bigger neural network, which can take better advantage of parallel

70

computations on the GPU. A suitable problem is the recognition of handwritten
digits. A well-known and well-tested MNIST dataset serving this very purpose
is publicly available for research purposes [23]. It comprises of 60000 labeled
patterns to be used for training, and 10000 labeled patterns for validation and
testing. Fach pattern represents an image of the size 28 x 28 pixels, each pixel
colored with one of 256 shades of gray. The MNIST dataset is published in the
IDX format. A detailed explanation describing the representation of the patterns
is provided in Section [B.6l

Time performance for MNIST with 1 hidden layer.
80 I

[Measured
Mean

— 64bit

—— 32bit

70

60 -

50

40 -

30

time (seconds)

20

10

0 | | | |
0 500 1000 1500 2000 2500
hidden neurons

Figure 4.5: The time results obtained for the MLP network solving MNIST with
a variable number of neurons in one hidden layer. The values are averaged over
20 runs. The test was run on the testing machine using GPU for parallel compu-
tations with 32bit and 64bit precision.

The MNIST datasets were downloaded from MNIST website and are included
on the attached Disk [too. The testing was conducted with the same methodol-

ogy as in the previous problems. To run the tests you can issue the shell command
demonstrated in Code snippet

$./tools/run-tests.sh tools/mnist-mlp.conf.sh

Snippet 4.2: Shell commands used to run the tests of MLP implementation on
MNIST dataset.

The testing configuration can be customized by editing the mnist.conf.sh
file. It is possible to adjust the architecture of tested networks, number of epochs,
number of tests run for each network, run on GPU vs. CPU, learning rate,
initialization intervals, and much more.

In Figure 4.5 you can see the time results for the test runs on MNIST dataset.
The tested networks had one single hidden layer with a variable number of neurons
(x-axis). The time performance for both single and double precision is displayed.

71

As expected, double precision is more performance intensive. Note that the in-
crease in number of neurons causes only a linear increase in time performance.
The network and learning parameters used were:

e 1 learning epoch,

20 repeated test runs for each network type,

network bias enabled,

weights and biased initialized randomly with normal distribution within
interval (-0.3, 0.3),

learning rate of 0.2.

In figure you can see the time results for networks with multiple hidden
layers (x-axis). Each hidden layer contained 784 neurons, the same number as
the size of input. Otherwise the network and learning parameters were the same
as in previous tests.

Time performance for MNIST.
180 [[[[

1 Measured
Mean
Linear fit

160

140
120
100

time (seconds)

1 2 3 4 5 6
hidden layers

Figure 4.6: The time results of the MLP network solving MNIST with a constant
number of neurons in variable number of hidden layers. The values are averaged
over 20 runs. The test was run on the testing machine using GPU for parallel
computations with 32bit precision.

Note that for 32 bit precision, having 2352 hidden neurons in one hidden
layer takes around 28 seconds to compute. Having the same number of hidden
neurons spread across 3 different layers, however, takes around 80 seconds. Such
an increase occurs, because neurons in one layer can be easily parallelized. In case
of multiple layers, before we can start the computation in any layer, we must wait

72

for the computation of previous layer to finish. Only then we can proceed with
the next layer. As a consequence such serialized computation takes more time.

Figure [4.7] illustrates the accuracy of the model for the task of classifying the
handwritten digits. The accuracy is measured in Mean Square error, for formal
definition see Equation[Z77l The Mean Square Error (MSE) is depicted for various
numbers of neurons in hidden layer. Otherwise the network parameters used were
the same as in previous testing.

We can see that for more than 1000 hidden neurons the error is increasing,
and the variability of error is increasing as well. This happens because there are
too many weights, which slows down the backpropagation. The networks with
less than 1000 hidden neurons on the other hand are producing stable results
with low error rates.

MSE for MNIST with 1 hidden layer.
0.25 T I I I

1 Measured
Mean

02F » -

015 S | | |

T o

0.05 7 777777777 rrrrrr T
| L

Mean Square Error

-0.05 | i i i
0 500 1000 1500 2000 2500
hidden neurons

Figure 4.7: MSE results of the MLP network solving MNIST with a variable
number of neurons in one hidden layer. The values are averaged over 20 runs.
The test was run on the testing machine using GPU for parallel computations
with 32bit precision.

4.5 Convolutional Neural Network

The second tested model is the Convolutional Neural Network. It is formally
described in Section The main architectural difference when compared to
[MLPlis the reduction of neuron interconnections. Less connections quite naturally
imply a faster computation. On the other hand, usually involve more layers
when compared with traditional MLPk. Having a deeper network then supports
improved recognition of more abstract patterns.

73

4.5.1 Recognition of handwritten digits

I tested the Convolutional network on the MNIST dataset, so we can easily
compare the results achieved with [MLP| network in Section The testing
conducted followed exactly the same procedures, only with different network pa-
rameters to better suit the given model.

The purpose of the first set of tests I ran was to determine suitable learning

rates for Convolutional network. The test can be run by launching a shell script
in Code Snippet below.

$./tools/run-tests.sh tools/mnist-cnn-1lr.conf.sh

Snippet 4.3: Shell commands used to run the tests with varying learning rates
for CNN implementation on the MNIST dataset.

I tested different learning rate values in the range between 0.0001 and 1. The
results can be seen in Figure The Mean Square Error keeps slightly improv-
ing up to the learning rate of 0.001. At a rate of 0.0001 the error significantly
increases. For this reason I used the learning rate of 0.001 for the following tests.

MSE for CNN solving MNIST
0.11 I I I

1 Measured

01 O S : : i | Mean

009 - | _— - -
008 ; .

T I s T W ot S f

Mean Square Error

005 | 1

TV R T R S e s S 1

0.03 4= | S | |
0 0.02 0.04 0.06 0.08 0.1
hidden neurons

Figure 4.8: MSE results of the CNN solving MNIST with variable learning rates.
The values are averaged over 20 runs. The test was run on the testing machine
using GPU for parallel computations with 32bit precision.

The next set of tests I conducted was to determine the time performance of
my implementation of in relation to the number of features in the first
convolutional layer. This set of tests can be run by launching a shell script in
Code Snippet [£.4] below.

$./tools/run-tests.sh tools/mnist-cnn-1lr.conf.sh

74

Snippet 4.4: Shell commands used to run the tests of CNN implementation on
the MNIST dataset.

I used the network configuration below:
e input layer

— 28 X 28 neurons
e convolutional layer

— 5 x 5 convolutional window
— 20 - 100 feature maps
— learning rate of 0.001

— bias enabled
e subsampling layer

— 2 X 2 subsampling window

— learning rate of 1
e convolutional layer

— 5 % 5 convolutional window
— 40 feature maps

— learning rate of 0.001

bias enabled
e subsampling layer

— 2 x 2 subsampling window

— learning rate of 1
e fully connected layer

— 500 neurons
— learning rate of 0.001

— bias enabled
e output layer

— 10 neurons
— learning rate of 0.001

— bias enabled

The results of the test runs can be seen in Figure Both single and double
precision was tested. Double precision again requires more time to compute.

75

Time performance for CNN classifying MNIST.

90 1 Measured
Mean
— 64bit
—— 32bit
s 60l
C
o
O
Q
o
GEJ : : : : : : :
= 30F T . S : e : : -
ol]
- -
0 | | | | | | |

20 30 40 50 60 70 80 90 100
feature maps

Figure 4.9: The time results of the Convolutional Neural Network solving the
MNIST problem with a variable number of feature maps of size 5 x 5 pixels. The
graph compares the results obtained for both 32bit and 64bit precisions. The
values are averaged over 20 runs. The test was run on the testing machine using
GPU for parallel computations.

4.6 Deep Belief Network

The last tested network type is the Deep Belief Network. It is the most per-
formance demanding one of all the implemented models. The reasons are the
extra pretraining phase, which needs to train sequentially layer by layer iterat-
ing the training dataset multiple times, the probabilistic nature of the sampling
algorithms, and the deep architecture. However, once the network is trained, it
behaves the same way as a basic MLP network. This makes it suitable for tasks
where the performance of classification of unseen data is more important than
the training time.

The depth of the [DBN] network is very flexible, which allows to construct a
deeper network for recognizing very abstract features. In case of solving simpler
tasks, a more shallow network will suffice and provide the benefit of a better
performance. The number of hidden neurons is also very flexible, unlike in the
case of CNN for example, which needs to adjust their number according to the
size of the input images.

4.6.1 Recognition of handwritten digits

Again, I tested the [DBN] network on the MNIST dataset, so that the results
are easily comparable between the different network types, as well as different
implementations. The testing was performed with the same methodology, by

76

running the automated Code Snippet below.

$./tools/run-tests.sh tools/mnist-dbn.conf.sh

Snippet 4.5: Shell commands used to run the tests of DBN implementation on
the MNIST dataset.

Time performance for MNIST with 3 hidden layers
700 T T T I [

1 Measured
Mean
600 - = Linear fit

500

400 -

300

time (seconds)

200

100 -

0 | | | | |
0 500 1000 1500 2000 2500 3000
hidden neurons

Figure 4.10: The time results of the DBN solving MNIST in 1 pretraining and
1 training epoch with a variable number of neurons in three hidden layers. The
values are averaged over 10 runs. The test was run on the testing machine using
GPU for parallel computations with 32bit precision.

The DBN network is initialized with random weights and biases polled from
normal probability distribution with zero mean and standard deviation of 0.01.
The network is further configured to be composed of the below layers:

e input layer
— 28 X 28 neurons
e RBM layer (repeated 3 times)

— 250 - 3000 hidden neurons

— non-persistent contrastive divergence
— 1 Gibbs sampling step (CD-1)

— learning rate of 0.01

— with bias

e MLP layer (output layer)

77

— 10 output neurons
— learning rate of 0.1

— with bias

MSE for MNIST with 3 hidden layers

0.014 ! [1 Measured

0.0135 | T rrrrrrrrrrrrrrrrrrr | - Mean

0013 F L . -

0.0125 S T : i | -

0.012 — L . | | }

0.0115 - I T : i | -
Jf : : : :

0.011 S e : a : -

0.0105 | e Lo 5 | -

\ | T~ T
001 - ——————— ,,,,,,,, 4L B

Mean Square Error

0.0095 | | | | |
0 500 1000 1500 2000 2500 3000
hidden neurons

Figure 4.11: MSE results of the DBN solving MNIST in 1 pretraining and 1
training epoch with a variable number of neurons in three hidden layers. The
values are averaged over 10 runs. The test was run on the testing machine using
GPU for parallel computations with 32bit precision.

The time performance is the most demanding one of all implemented network
types, which can be seen in Figure [L.I0. The time required for the computation
grows linearly with the number of neurons within a single hidden layer. This is
also true when stacking multiple layers one onto each other. Additional tests and
reports supporting this statement are available on the attached optical disk.

The Mean Square Error rates for solving MNIST can be seen in Figure A.11]
Here we can see that, in a single pretraining epoch, the bigger the network,
the better results are achieved. Having less neurons makes it harder for the
network to comprehend the features. Having more neurons quickly enables better
recognition.

4.7 Comparison with other testing frameworks

A big part of this work is to learn how to parallelize and optimize artificial
neural networks. The previous sections and the results attached on the optical
disk sufficiently show that the parallel implementation using significantly
improves the performance when compared with the serial implementation.

78

In this section we will instead focus on how the deepframe implementation cre-
ated within the framework of this work can be compared to other state of the art
frameworks.

The frameworks chosen for comparison were picked based on their popularity,
size of their user base, maturity, and development activity. These criteria yielded
two winners - Caffe and Theano.

During testing, both frameworks were installed and run on the same hardware.
They were configured with the same parameters for the considered network types,
the same network architecture, learning rates, bias, and number of epochs. All
comparison tests were performed on the same problem - recognition of handwrit-
ten digits from the MNIST dataset. All tests were carried out using automated
scripts, which are repeatable, and automatically generate all the reports used in
the comparisons below. The conclusions should therefore be as fair as possible.

4.7.1 Caffe framework

Caffe is a deep learning framework developed by the Berkeley Vision and
Learning Center at University of Californuia, Berkeley, and by other community
contributors. The Caffe community tightly cooperates with NVIDIA, which al-
lows them to support the latest NVIDIA libraries, including cuDNN library for
deep learning. This results into a very efficient implementation supporting the
latest software and hardware optimizations.

Time performance for MLP solving MNIST.

70 T ‘ ‘ T 1 Measured
Mean
60 - — caffe
—— deepframe
50 -
m
©
S 40 -
O
[}
)
) 30 [1
£
)
20 -
10 |- -
0 | | | |
0 500 1000 1500 2000 2500

hidden neurons

Figure 4.12: The time results of the MNIST test run on the MLP network with
a variable number of neurons in one hidden layer using deepframe vs. caffe. The
values are averaged over 20 runs. The test was run on the testing machine using
GPU for parallel computations with 32bit precision.

Caffe is implemented in C++, which is the same language I picked for deepframe,
too. Caffe supports a wide variety of network layers, which can be combined into

79

a neural network of any desired architecture. It supports both [MLPl and [CNN]
architectures, so I decided to test these and compare the results with my imple-
mentation.

Time performance for CNN solving MNIST.

200 1 Measured
180 Mean
= ‘ ‘ ‘ ‘ ‘ ‘ caffe

160 -]] S SR SRR — deepframe

140 S O SRS RSSO S

2 120+ ‘ ‘ R

S ‘ ‘ ‘ ‘ ‘ ‘ ‘

g 100

(] S A S _

£ 80

+ 60 - |

feature maps

Figure 4.13: The time results of the MNIST test run on the CNN network with
a variable number of feature maps using deepframe vs. caffe. The values are
averaged over 20 runs. The test was run on the testing machine using GPU for
parallel computations with 32bit precision.

The scripts used for testing can be found on the attached optical disk. They
need to be copied into the examples directory inside the Caffe installation folder.
The test set for MLPlnetwork can be run by entering this newly created directory
and launching the commands in Code Snippet The first command will run
the tests, the second command will generate the test results. Once finished, the
test results will be located in the test-output folder. The test results referenced
in this work can be found in the same folder on the attached optical disk.

$./tools/run-tests.sh tools/mnist-mlp.conf.sh
$./tools/generate-reports.sh tools/mnist-mlp.conf.sh

Snippet 4.6: Shell commands used to run the tests of MLP implementation on
MNIST dataset with Caffe framework.

The test set for [MLP] network consists of 20 repeated runs for each network
configuration. The configurations differ by the number of neurons in one hidden
layer. The results show, that the parallel implementation of deepframe requires
roughly half of the computational time of parallel Caffe implementation (see
Figure 4.12)). Note that deepframe also scales better.

The test sets for [CNNl can be launched by the commands in Code Snippet .71
They consist of 20 repeated runs for each tested network configuration. The
configurations differ by the number of features in the convolutional layer. The

80

results show, that the parallel implementation of deepframe requires roughly
1/4 of the computational time of parallel Caffe implementation (see Figure L.13]).
Although both implementations scale with the same ratio, it is quite a significant
improvement.

$./tools/run-tests.sh tools/mnist-cnn.conf.sh
$./tools/generate-reports.sh tools/mnist-cnn.conf.sh

Snippet 4.7: Shell commands used to run the tests of MLP implementation on
MNIST dataset with Caffe framework.

The testing described above presents deepframe as a better performing frame-
work for working with [MLP] and networks on We already described
the optimizations made to achieve these remarkable results in Chapter [3, but
I will highlight the most important ones here. One of the key optimizations is
the global memory allocation for the whole neural network. This improves the
memory collocation and thus enables faster memory reads and updates. Another
important optimization was to incorporate the learning rate coefficient directly
into the matrix multiplication call. This saves an additional vector multiplication,
which would be otherwise required in each backpropagation step. Yet another
optimization was done in the backpropagation step of the fully-connected lay-
er, where I implemented custom CUDA kernels for efficient computations of the
gradients.

4.7.2 Theano

Theano is a Python library that allows to define, optimize, and evaluate math-
ematical expressions involving multi-dimensional arrays efficiently. It is one of the
most used [CPUl and [GPUl mathematical compilers — especially in the machine
learning community [34]. It integrates with NumPy, the fundamental package
for scientific computing with Python. Numpy contains, among other things, a
powerful n-dimensional array object, and useful linear algebra and random num-
ber capabilities. On top of NumPy, Theano provides a transparent use of
to perform data-intensive calculations, C code generation to evaluate expressions
faster, and other speed and stability optimizations.

An exceptionally useful feature of Theano is its efficient symbolic differentia-
tion capability. This means it can evaluate derivatives for mathematical functions
with one or many input variables. This is achieved by overloading the standard
Python operators to construct a computational graph for any given function.
Theano then optimizes this graph and generates sequences of operations which
evaluate the required derivatives. The derivative function produced by this pro-
cess has optimal complexity and does not suffer from round-off errors.

The above mentioned features of Theano make it extremely suitable for fast
prototyping of new machine learning algorithms. However, Theano itself is in
essence a framework for evaluating mathematical expressions. It does not con-
tain any implementation of algorithms used in machine learning or artificial in-
telligence. To perform the testing on [DBN| network, I used the Theano-based
implementation from Deep Learning Tutorials [§] published by the Motreal In-
stitute for Learning Algorithms.

The scripts used for testing can be found on the attached optical disk accom-

81

panied with the code from Deep Learning Tutorials. Python interpreter must be
installed on the system to be able to run the code, and bash must be in-
stalled to run the testing scripts. Note that only computations with 32bit floating
point precision can be accelerated on[GPU] as Theano currently does not support
64bit precision. The test sets can be run by launching the commands in Code
Snippet in the root directory of Deep Learning Tutorials.

$./tools/run-tests.sh tools/mnist-dbn.conf.sh
$./tools/generate-reports.sh tools/mnist-dbn.conf.sh

Snippet 4.8: Shell commands used to run the tests of DBN implementation on
MNIST dataset with Theano framework.

The test sets for DBNl network consists of 10 repeated runs of each network
configuration. All the configurations define a network with three hidden RBM
layers followed by a single fully-connected perceptron layer with 10 output neu-
rons. Each test is run for exactly one pretraining and one training epoch. For a
more detailed specification of the network configuration see Section [L.6.1], as the
same configuration was used for deepframe test cases.

Time performance for DBN solving MNIST
700 T [

1 Theano
! ! ‘ ‘ ‘ 1 deepframe
600 : ERRR o fo e = Linear fit

500 -

400 -

300 -

time (seconds)

200 -

100

0 500 1000 1500 2000 2500 3000
hidden neurons

Figure 4.14: The time results of the MNIST test run on the DBN network with
three hidden RBM layers after one pretraining and one training epoch using
deepframe vs. Theano. The values are averaged over 10 runs. The test was run
on the testing machine using GPU for parallel computations with 32bit precision.

The results show, that the implementation of deepframe performs slightly
better for RBM layers with up to 1000 hidden neurons (see Figure 14]). How-
ever, the Theano implementation starts to show better performance for the test
cases with RBM layers containing 1500 and more hidden neurons. This is noti-
cable especially with 2500 and 3000 hidden neurons, where the performance gap
gets even bigger. The results suggest, that deepframe does not scale linearly.

82

Further investigation could be done to identify the bottlenecks in the parallel
implementation and resolve this scaling problem.

83

84

5. Conclusion

Artificial neural networks represent a universal model, which can be leveraged
to solve a great variety of tasks. The latest research showed a significant progress
of this field in the past few decades. Deep architectures of neural networks started
to gain attention after proving success in image and speech recognition in the years
after 2000. After the parallel hardware became available for reasonable prices, it
fueled the research of efficient optimization of deep neural networks by leveraging
parallel architectures.

In this thesis I studied three different models of deep neural networks. I
explained the theory behind each model and described how it is trained to rec-
ognize the features in input patterns. The models were also implemented on
parallel hardware leveraging CUDA-capable [GPUk, and subsequently tested us-
ing custom-crafted automation scripts. All these scripts and tested configurations
for all problems are available on the attached optical disk and can be launched
by issuing simple commands (see Chapter [).

The first model of the fully-connected multilayer perceptron (MLP) was im-
plemented with the option to perform extensive computations on both the
or the The capabilities of this model were tested on the trivial problems
of evaluating XOR operator and 4-bit sum, as well as on a more complex hand-
written digit recognition using the MNIST dataset.

The performance comparisons between CPU and GPU confirmed GPU with
its parallelization capabilities as a clear winner, with the exception of extremely
small network architectures (XOR problem, 4-bit sum problem). Further com-
parisons of the deepframe application implemented as a part of this thesis with
the caffe framework showed, that the MLP model performed significantly better
when run on deepframe.

The second model of the convolutional neural network (CNNI) was also imple-
mented with the possibility to perform extensive computations on both the
or the [GPUl The model is designed primarily for image recognition, and
was therefore only tested on the problem of handwritten digit recognition again
using the MNIST dataset.

The performance comparisons of CNN between CPU and GPU also presented
GPU as a clear winner. The comparison with caffe framework again resulted in
a significantly faster execution in favor of deepframe. The difference was even
more noticeable than with [MLP], however, both frameworks scaled evenly with
an increasing number of feature maps.

The model of the deep belief network (DBN)) was again tested on the problem
of handwritten digit recognition using the MNIST dataset. This last model was
implemented only on The recurrent networks are much more computation-
ally intensive than feed-forward networks, which was presented in Section
Therefore running DBNs on does not yield acceptable run times for non-
trivial problems, and definitely does not surpass the performance benefits of par-
allel architecture. This is also supported by the experiments with the [MLP| and
models. These reasons led me into making the decision of not implementing
the DBNs on CPU, and instead devote more effort into optimizing the parallel
implementation.

85

The performance achievements of the implementation were compared
with a third-party framework Theano. The results showed, that for small hidden
layers (up to 1000 neurons) deepframe has a better performance. With bigger
layers Theano takes the lead and scales noticeably better.

5.1 Further work

The new tool for working with artificial neural networks achieved remarkable
performance results for certain network types. However, the other contemporary
frameworks support a much wider functionality regarding layer types, network
or layer parametrization, learning algorithms, network architectures, error esti-
mation, support for input formats, etc. This is achieved with at least tens or
hundreds of active developers, years of research and big user communities. The
scope of this work only included a minimum viable product, which achieves a
subset of the above mentioned functionalities.

The most common and useful functionality missing in the deepframe frame-
work is the support for parallel processing of mini-batches. This would enable
faster training by postponing the weight updates till after the mini-batch is pro-
cessed.

The comparison of deep belief network implementation with the Theano frame-
work showed some potential for improvement in performance. An important im-
provement would be to rework this implementation to optimize some of the par-
allel code by implementing custom kernels. Further performance improvements
could be achieved by implementing the support for the latest cuDNN library from
NVIDIA.

In the current implementation, the weight initialization interval is configured
on per-network basis. However, automatically adjusting both learning rates and
weight initialization intervals based on the layer size should also lead into im-
proved classification accuracy. This would be very beneficial for MLPk and [CNNk
composed of layers with considerably different sizes.

Since the deep neural networks are currently a popular research topic, the
future enhancements should bear this in mind and watch for the latest advances
in this field. One such example happened recently, when computers were able
to beat the best human players in the game of Go using deep neural networks
trained with a novel combination of supervised and reinforcement learning [31].
Any successful artificial intelligence framework must keep pace with the latest
scientific breakthroughs, as they enable new possibilities to solve problems, which
were never possible before.

86

Bibliography

1]

[10]

[11]

[12]

ATENCIA, M. A.; JovA, G. and SANDOVAL, F. A Formal Model for Def-
inition and Sitmulation of Generic Neural Networks. In: Neural Processing
Letters. 2000, Volume 11, Issue 2, pp 87-105. ISSN: 1370-4621, 2000.

AvDIN, M. M., YILDIRIM M. S., KARPUZ O. and GHASEMLOU, K. Modeling
of driver lane choice behavior with Artificial neural networks (ANN) and
Linear regression (LR) analysis on deformed roads. In: Computer Science &
Engineering. 2014, Volume 4, Issue 1, p. 47.

BARRACHINA, Sergio, CASTILLO, Maribel, IGUAL, Francisco D, MAYoO,
Rafael and QUINTANA-ORTI, Enrique S. Fvaluation and tuning of the level
3 CUBLAS for graphics processors. In: Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on 2008, pp. 1-8.

BENGIO, Y., LAMBLIN, P., Poprovici, D. and LAROCHELLE, H. Greedy

Layer-Wise Training of Deep Networks. In: Advances in Neural Information
Processing Systems. 2007, 19(NIPS’06):153-160. MIT Press.

CARREIRA-PERPINAN, M. A., and HINTON, G. E. On Contrastive Diver-
gence Learning. In: AISTATS. 2005, 10:33-40.

CLARK, Christopher and STORKEY, Amos. Teaching Deep Convolutional
Neural Networks to Play Go. arXiv preprint arXiv:1412.3409 2014.

COLLOBERT, Ronan and WESTON, Jason. A unified architecture for natu-
ral language processing: Deep neural networks with multitask learning. In:

Proceedings of the 25th international conference on Machine learning. 2008,
ACM, pp. 160-167.

Deep Learning Tutorials Development Team. Deep Learning Tuto-
rials. Downloaded 5 November 2015. URL: https://github.com/lisa-
lab /DeepLearning Tutorials.git

FaaLMmaN, S. E., HINTON, G. E. and SEJNOWSKI, T. J. Massively parallel
architectures for A.l.: Netl, Thistle, and Boltzmann machines. In: Proceed-

ings of the National Conference on Artificial Intelligence. 1983, Washington
DC.

GREEN, Timothy. Advanced Micro Devices Inc. Loses More Market
Share to NVIDIA. In: The Motley Fool. 2015. Downloaded 10 April
2016. Data sourced from Jon Peddie Research and Mercury Research.
URL: http://www.fool.com/investing/general /2015/08 /23 /advanced-micro-
devices-inc-loses-more-market-share.aspx

GUYON, Isabelle. A Scaling Law for the Validation-Set Training-Set Size
Ratio. In: AT&T Bell Laboratories. 1997.

HAYKIN, Simon. Neural networks : a comprehensive foundation. Second edi-
tion. Delhi: Pearson Education, 1999. ISBN 81-7808-300-0.

87

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[25]

HERCULANO-HOUZEL, Suzana and LENT, Roberto. Isotropic Fractionator:
A Simple, Rapid Method for the Quantification of Total Cell and Neuron
Numbers in the Brain. In: The Journal of Neuroscience. 9 March 2005,
25(10): 2518-2521. ISSN: 0270-6474, 2005.

HinTON, G. E. A practical guide to training restricted Boltzmann machines.
In: Momentum. 2010, 9(1):926.

HinTON, G. E. Training products of experts by minimizing contrastive diver-
gence. In: Neural Computation. 2002, 14(8):1711-1800.

HinTON, G. E. and SALAKHUTDINOV, R. R. Reducing the Dimensionality
of Data with Neural Networks. In: Science. 2006, 313(5786):504-507.

HopriELD, J. J. Neural networks and physical systems with emergent col-
lective computational abilities. In: Proceedings of the National Academy of
Sciences. 1982, Volume 79, Issue 8, pp 2554-2558.

HornNik, Kurt, STINCHCOMBE, Maxwell and WHITE, Halbert. Multilay-

er feedforward networks are universal approrimators. In: Neural networks.
1989, Volume 2, Issue 5, pp 359-366.

Hsu, Che-Chiang and CHIA-YON, Chen. Regional load forecasting in Tai-
wan - applications of artificial neural networks. In: Energy conversion and
Management. 2003, Volume 44, Issue 12, pp 1941-1949.

HUBEL, D. and WIESEL, T. Receptive fields and functional architecture of
monkey striate cortex. In: Journal of Physiology. 1968, Volume 195, Issue 1,
pp 215-243. ISSN: 0022-3751, 1968.

J1A, Baozhi, WEIGUO, Feng, and MING, Zhu. Obstacle detection in single

images with deep neural networks. In: Signal, Image and Video Processing
2015, pp. 1-8.

LECUN, Yann, BorTOU, Léon, BENGIO, Yoshua and HAFFNER, Patrick.

Gradient-based learning applied to document recognition. In: Proceedings of
the IEEE 86, no. 11 1998, no. 86, pp. 499-514. ISSN: 2278-2324, 1998.

LECUN, Yann, CORTES, Corinna and BURGES, Christopher J. C. The
MNIST database of handwritten digits. 1998. Downloaded 13 February 2015.
URL: http://yann.lecun.com/exdb/mnist/

MAGNOTTA, Vincent, HECKEL, Dan, ANDREASEN, Nancy, CizADLO, Ted,
CORSON, Patricia, EHRHARDT, James and YUH, William. Measurement
of Brain Structures with Artificial Neural Networks: Two- and Three-
dimensional Applications. In: Radiology. 1999, Volume 211, Issue 3, pp.
781-790.

McCuLLoH, Warren S. and PirTs, Walter. A logical calculus of the ideas
immanent in nervous activity. In: The bulletin of mathematical biophysics.

1943, Volume 5, Issue 4, pp 115-133. ISSN: 0007-4985, 1943.

88

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

MINSKY, Marvin and PAPERT, Seymour. Perceptrons. 1969, MIT Press,
Cambridge.

NVIDIA. NVIDIA DIGITS Devbox. 2015. Downloaded 23 March 2015.
URL: https://developer.nvidia.com/devbox

PERRY, O. Patrick. Cross-Validation for Unsupervised Learning. In: arXiv
preprint arXiv:0909.3052. 2009.

RUMELHART, David E., HINTON, Geoffrey E. and WiLLIAMS, Ronald J.
Learning representations by back-propagating errors. In: Nature. 1986, Vol-

ume 323, pp 533-536.

Rupp, Karl. CPU, GPU and MIC Hardware Characteris-
tics over Time. 2013. Downloaded 26 February 2015. URL:
http://www.karlrupp.net /2013 /06 /cpu-gpu-and-mic-hardware-
characteristics-over-time/. Published under Attribution 4.0 International
license.

SILVER, David, HuaNG, Aja, MADDISON, Chris J., GUEZ, Arthur,
SIFRE, Laurent, DRIESSCHE, George van den, SCHRITTWIESER, Ju-
lian, ANTONOGLOU, loannis, PANNEERSHELVAM, Veda, LANCTOT, Marc,
DIELEMAN, Sander, GREWE, Dominik, NHAM, John, KALCHBREN-
NER, Nal, SUTSKEVER, llya, LILLICRAP, Timothy, LEACH, Madeleine,
KavukcuvocrLu, Koray, GRAEPEL, Thore and HASSABIS, Demis. Master-
ing the game of Go with deep neural networks and tree search. In: Nature
2016, Volume 529, Issue 7587: 484—489.

SMOLENSKY, Paul, RUMELHART, David E. and MCLELLAND, James L.
Chapter 6: Information Processing in Dynamical Systems: Foundations of
Harmony Theory. In: Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations, 1986. MIT Press. pp.
194-281. ISBN 0-262-68053-X.

STRECKER, Uwe and UDEN, Richard. Data mining of 3D poststack seis-

mic attribute volumes using Kohonen self-organizing maps. In: The Leading
Edge. 2002, Volume 21, Issue 10, pp. 1032.

THEANO Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. In: arXiv e-prints. 2016, Volume:

1605.02688.

TIELEMAN, T. Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient. In: Proceedings of the 25th international
conference on Machine learning. 2008, ACM’08:1064-1071.

89

90

Glossary

ANN Artificial Neural Network is a computational model based on the structure
and functions of biological neural networks. Information that flows through
the network affects the structure of the ANN, which enables learning capa-
bilities of the model based on its input and output. 3], [[HI, [T

API Application Programming Interface is a set of functions and procedures
that allow to access the features or data of a third party application, or

other service. 321 34, 38, 50,

BLAS The Basic Linear Algebra Subprograms are routines that provide stan-
dard building blocks for performing basic vector and matrix operations.
Because the BLAS are efficient, portable, and widely available, they are
commonly used in the development of high quality linear algebra software.

B9 B, ba, By

CNN Convolutional neural network is a multi-layer network specifically designed
to recognize features in 2-dimensional image data. [16], 7, 3T, B3| [73] [74],
B0, BT, B3, KO

complete path A path in a graph that cannot be prolonged. [1]

CPU Central Processing Unit is the electronic circuitry within a computer that
carries out the instructions of a computer program by performing the basic
arithmetic, logical, control and input/output operations specified by the
instructions. Its instruction set and memory workflow is designed for uni-

versal computational tasks. 311 B3] [36] B9, (411 43, 48, H3H55] [78], KT,

DBN Deep Belief Network is a type of Deep Neural Network composed of mul-
tiple layers of hidden units. The hidden units are inter-connected between
the layers, however there are no connections between the units within each
layer. The connections between the units are bidirectional. 23] 29H3T], [50]
b3, [76], BT, 82,]S

FPGA Field-Programmable Gate Arrays is an integrated circuit that can be
programmed with hardware description language to rewire itself to be op-
timized for a given task. BTH34

GPU Graphics Processing Unit is a specialized electronic circuit designed to
rapidly manipulate and alter memory to accelerate the creation of images
in a frame buffer intended for output to a display. GPUs are however
increasingly leveraged for high-throughput computations that exhibit data-
parallelism, making them suitable for a wider set of problems. B2H36] 39|
(411, [43], (48, [49, G2H53), [78)], [81], 82, &3]

kernel CUDA kernel is a portion of an application code which is executed on a

GPU device. Only one kernel can be executed at a time. Each kernel can
be executed by multiple arrays of parallel threads. B2, 64

91

MLP Multilayer perceptron network is a feedforward artifical neural network
consisting of at least two layers. Each layer is built solely of perceptrons
interconnected with all perceptrons in the neighbouring layers. @, 16 I
DT, 29T, B3, 04, 56, 69, [70, (73, (74, 180, R, B, &6

outer product The outer product is an algebraic operation, which is applied
to a pair of vectors, treats them as matrices, and produces a matrix by
performing matrix multiplication on them.

overfitting Occurs when a neural network captures noise as random error, or
misinterprets the relationships contained in the training data. [11]

pseudorandom A pseudorandom sequence of numbers satisfies most of the sta-
tistical properties of a truly random sequence but is generated by a deter-
ministic algorithm. [34], 39|

quasirandom A quasirandom sequence of n-dimensional points is generated by
a deterministic algorithm designed to fill an n-dimensional space evenly. [34]

supervised learning Learning from a dataset with known outputs. For each
input pattern its expected output must be included in the dataset. [IT], 2T],
29

unsupervised learning Learning from a dataset, which does not contain any
information about expected output. [I1], 26,

92

List of Figures

2.1 Model of a biolog%
E_.2 Model of an artificial neuron!

3.3 Historical evolution of 64bit FI.LOPY

3.5 Time results of the MNIST test run in vO.1l.

44 Time results for MLP solving 4-bit sum (newrons) . |
4.5 Time results for MLP solving MNIST (neurons)
4.6 ime re or MLP solving MN layers)
4 \Y es1] or MLP solving MN peurons)
4.8 MSE results for CNN solving MNIST (learning rates) . .
4.9 Time results for CNN solving MNIST|
4.10 Time results for DBN solving MNIST

4,11 MSE results for DBN solving MNIST

4.12 Comparison of deepframe and caffe performance on MLP

[3.4 Package diagram showing the decomposition of application logid .

4.13 Comparison of deepframe and caffe performance on CN
4.14 omparison of deepframe and heano performance on

93

10
11
13
17
18
20
25
25
29

33
35
36
38
53
o4
55

67
68
69
70
71
72
73
74
76
7
78
79
80
82

94

Attachments

1. An optical disk is enclosed with the printed version of this thesis. The disk
contains:

(a) deepframe application
i. application source code
ii. bash scripts with the test cases used in this work
iii. Git repository with the source revision history
(b) Caffe framework
i. application source code
ii. Git repository with the source revision history
iii. bash scripts with the test cases used in this work

iv. Git repository with the revision history of the bash scripts used
for testing

(c) Deep Learning Tutorials

i. source code of the tutorials
ii. bash scripts with the test cases used in this work

iii. Git repository with the source revision history
(d) test logs and reports

i. test results for deepframe
ii. test results for Caffe

iii. test results for Theano-based implementation

(e) electronic version of this thesis

i. the PDF file
ii. Git repository with the revision history of LaTeX source files

2. A detailed specification of the GPU installed in the development machine.

Device 0: "GeForce GTX 560"

CUDA Driver Version / Runtime Version 7.0/ 6.5

CUDA Capability Major/Minor version number: 2.1

Total amount of global memory: 1023 MBytes (1072889856
bytes)

(7) Multiprocessors, (48) CUDA Cores/MP: 336 CUDA Cores

GPU Clock rate: 1660 MHz (1.66 GHz)

Memory Clock rate: 2004 Mhz

Memory Bus Width: 256-bit

L2 Cache Size: 524288 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,

65535), 3D=(2048, 2048, 2048)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048
layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768

95

Warp size: 32

Maximum number of threads per multiprocessor: 1536

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing (UVA): Yes

Device PCI Bus ID / PCI location ID: 3/0

3. A detailed specification of the GPU installed in the testing machine.

Device 0: "GeForce GTX 980"

CUDA Driver Version / Runtime Version 7.0/ 6.5

CUDA Capability Major/Minor version number: 5.2

Total amount of global memory: 4096 MBytes (4294770688
bytes)

(16) Multiprocessors, (128) CUDA Cores/MP: 2048 CUDA Cores

GPU Clock rate: 1278 MHz (1.28 GHz)

Memory Clock rate: 3505 Mhz

Memory Bus Width: 256-bit

L2 Cache Size: 2097152 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,

65536), 3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048
layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing (UVA): Yes

Device PCI Bus ID / PCI location ID: 1/0

96

	Introduction
	Motivation
	Methodology
	Thesis structure

	Artificial neural networks
	Perceptron
	Multilayer perceptron
	The training process
	Backpropagation algorithm

	Convolutional neural networks
	Architecture of CNNs
	Convolutional layer
	Subsampling layer
	Backpropagation in Convolutional Networks
	Backpropagation in subsampling layers
	Backpropagation in convolutional layer

	Deep belief networks
	Stochastic model of a neuron
	Boltzmann machine
	Restricted Boltzmann Machine
	Training Restricted Boltzmann Machines
	Contrastive Divergence
	Persistent Contrastive Divergence

	Architecture of a Deep Belief Network
	Training a Deep Belief Network

	Implementation
	Parallel computing platforms
	FPGA
	NVIDIA CUDA
	AMD FireStream
	Comparison of AMD and NVIDIA

	Requirements
	Architecture
	Installation procedure and launch
	Network configuration
	Layer configuration

	Data format
	Module description
	Dataset module
	Network module
	Layer module
	Error computing module
	Training module
	Logging module

	Multilayer perceptron network
	Convolutional neural network
	Deep belief network

	Testing
	Testing requirements
	Testing environment
	Hardware specification
	Software specification

	Testing methodology
	Multilayer Perceptron
	Exclusive OR operator
	The sum of two four-bit numbers
	Recognition of handwritten digits

	Convolutional Neural Network
	Recognition of handwritten digits

	Deep Belief Network
	Recognition of handwritten digits

	Comparison with other testing frameworks
	Caffe framework
	Theano

	Conclusion
	Further work

	Bibliography
	Glossary
	Attachments

