
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Leonid Buneev

Arithmetic coding on GPU

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: RNDr. Jan Horacek

Study programme: Computer Science

Specialization: Programming and software systems

Prague 2013

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Aritmeticke kodovani pomoci GPU

Autor: Leonid Buneev

Katedra: Kabinet software a výuky informatiky

Vedoućı bakalářské práce: RNDr. Jan Horáček, Kabinet software a výuky infor-
matiky

Abstrakt: Ćılem této práce je prozkoumat možnosti vytvářeńı implementace par-
alelńıho aritmetického kódováńı a změřit mı́ru zlepšeńı výkonu.

V prvńı části, krátký přehled aritmetického kódováńı s jeho seriovou implementaćı
(Amir Said, FastAC) je popsaná. Práce dále popisuje zásady práce s GPU a
identifikuje možnosti zlepšeńı algoritmu a jeho paralelizace. Několik implementaci
jsou uvedeny, s měńıćımi se mı́rami zlepšeńı výkonu a nedostatky.

V závěru práce poskytuje výsledky r̊uzných test̊u naš́ı implementace, stejně jako
diskuse o proveditelnosti uplatněńı GPU-orientované verze algoritmu mı́sto sériové
v reálném světě.

Kĺıčová slova: aritmetické kódováńı, komprese, gpu, cuda, kódováńı entropie

Title: Arithmetic coding on GPU

Author: Leonid Buneev

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Jan Horáček, Department of Software and Computer Science
Education

Abstract: The aim of this thesis is to investigate possibilities for creating parallel
arithmetic coding implementation and measure performance improvements.

In the first part, short overview of Arithmetic coding with its serial implementa-
tion (FastAC by Amir Said) is presented. The thesis then describes principles of
work with GPUs and identifies possibilities of algorithm improvement and paral-
lelization. Several parallel implementations are given, with varying performance
improvements and occasional drawbacks.

In conclusion, thesis provides results of performance tests of our implementa-
tion, as well as discussion about feasibility of applying GPU-oriented version of
algorithm instead of serial one in real-world applications.

Keywords: arithmetic coding, compression, gpu, cuda, entropy encoding

Contents

1 Introduction 3
1.1 Why to speed up AC . 3
1.2 Goal of this paper . 3
1.3 Paper structure . 3

2 Prior work 4
2.1 Arithmetic coding development history 4
2.2 Arithmetic coding parallelization 5

3 Arithmetic coding in general 6
3.1 Lossy and lossless compression . 6
3.2 Entropy . 6
3.3 Huffman coding . 7
3.4 Arithmetic coding . 7

3.4.1 Encoding process . 7
3.4.2 Decoding process . 10

4 FastAC 12
4.1 Overview . 12
4.2 Encoding process . 12
4.3 Decoding process . 14
4.4 Data models . 15

5 NVIDIA CUDA Basics 17
5.1 Hardware Architecture . 17
5.2 Programming model . 18
5.3 Features and Limitations of CUDA 18

6 Parallel AC implementation 21
6.1 The main idea . 21
6.2 Encode kernel . 21

6.2.1 Split . 22
6.2.2 Compress . 22
6.2.3 Stream compaction . 23
6.2.4 Limitations . 23

6.3 Decode kernel . 24

7 Software architecture, documentation 25
7.1 Codecs . 25
7.2 Developer manual . 26

7.2.1 Compiling . 28
7.3 User manual . 28

1

8 Tests 29
8.1 Environment . 29
8.2 Compression ratio . 29
8.3 Performance . 30

Conclusion 33

Bibliography 34

Attachments 36

2

1. Introduction

1.1 Why to speed up AC

In the modern world data compression is a very important area of research,
because the volume of data that need to be transported and stored is growing
very fast - faster, than technologies of data storage and transfer. However, quite
often, especially in the current world of home computers, computing powers are
not wholly used. That is why compression is useful nowadays - while increasing
computational costs, it reduces usage of other resources, such as data storage
space or transmission capacity.

Arithmetic coding is one of the most popular lossless compressing algorithms
out there. It is universal algorithm - it works just with data stream, regardless
of their type, and therefore can be applied to any data. It is very effective for
entropy-based compression algorithm - in fact, it achieves almost the best theo-
retically possible compression rates for given statistical models. But encoding and
decoding processes are quite computationally expensive in comparison with, say,
Huffman coding (less effective but faster entropy-based compression algorithm).
Sometimes computational price may be too expensive, especially with large da-
ta streams. For example, with compression of high definition video usually less
efficient and less complex algorithms are used, such as Huffman coding, because
AC is too slow for real-time encoding even with the most modern processors.

1.2 Goal of this paper

The popularity of Graphic Processing Units (GPUs) opens new possibilities for
general-purpose computation including the acceleration of algorithms. Massive-
ly parallel computations using GPUs have been applied in various fields by re-
searchers. This paper tries to implement data-parallel arithmetic coding on GPUs
using the NVIDIA GPU and the Computer Unified Device Architecture (CUDA)
programming model.

1.3 Paper structure

The second chapter will give general overview of arithmetic encoding and decod-
ing principles in theory. In the third chapter theory behind arithmetic coding
is explained. Fourth chapter introduces sequential implementation of AC, called
FastAC, written in C++ by Amir Said. The fifth chapter fill focus on general-
purpose computations of GPU, and after it our parallel AC implementation using
CUDA is described. In Chapter 7 we will overview Class library for AC compres-
sion, that use our parallel implementation and FastAC as sequential implementa-
tion, and provide developer instructions for using it. The last chapter will provide
test results, overview them and provide some use cases for our algorithm.

3

2. Prior work

2.1 Arithmetic coding development history

The first step toward arithmetic coding was taken by Shannon[1], who observed
in a 1948 paper that messages N symbols long could be encoded by first sorting
the messages in order of their probabilities and then sending the cumulative
probability of the preceding messages in the ordering. The code string was a
binary fraction and was decoded by magnitude comparison. The next step was
taken by Peter Elias in an unpublished result; Abramson [2] described Elias’
improvement in 1963 in a note at the end of a chapter. Elias’ code was studied
by Jelinek[3]. The codes of Shannon and Elias suffered from a serious problem:
As the message increased in length the arithmetic involved required increasing
precision. By using fixed-width arithmetic units for these codes, the time to
encode each symbol is increased linearly with the length of the code string.

Meanwhile, another approach to coding was having a similar problem with
precision. In 1972, Schalkwijk [4] studied coding from the standpoint of provid-
ing an index to the encoded string within a set of possible strings. This is a
last-in-jirst-out (LIFO) code, because the last symbol encoded was the first sym-
bol decoded. Cover [5] made improvements to this scheme, which is now called
enumerative coding. These codes suffered from the same precision problem.

Both Shannon’s code and the Schalkwijk-Cover code can be viewed as a map-
ping of strings to a number, forming two branches of pre-arithmetic codes, called
FIFO (first-in-first-out) and LIFO. Both branches use a double recursion, and
both have a precision problem. Rissanen [6] alleviated the precision problem by
suitable approximations in designing a LIFO arithmetic code. Code strings of any
length could be generated with a fixed calculation time per data symbol using
fixed-precision arithmetic.

Pasco [7] discovered a FIFO arithmetic code, discussed earlier, which con-
trolled the precision problem by essentially the same idea proposed by Rissanen.
In Pasco’s work, the code string was kept in computer memory until the last
symbol was encoded. This strategy allowed a carry-over to be propagated over a
long carry chain. Pasco also conjectured on the family of arithmetic codes based
on their mechanization.

In Rissanen [6] and Pasco [7], the original (given, or presumed) symbol prob-
abilities were used. In [8], Rissanen and Langdon introduced the notion of coding
parameters “based” on the symbol probabilities. The uncoupling of the coding
parameters from the symbol probabilities simplifies the implementation of the
code at very little compression loss, and gives the code designer some tradeoff
possibilities. In [7] it was stated that there were ways to block the carry-over.

Rissanen and Langdon [8] successfully generalized and characterized the fam-
ily of arithmetic codes through the notion of the decodability criterion which
applies to all such codes, be they LIFO or FIFO, L-based or P-based. The arith-
metic coding family is seen to be a practical generalization of many pre-arithmetic
coding algorithms, including Elias’ code, Schalkwijk [4], and Cover [5].

In 1979 Nigel and Martin [9] rediscovered FIFO Arithmetic code while using
slightly different approach to representing coder internal values and probablities

4

and defining Range code method based on it. While Range code is essentially
Arithmetic coding, it provides more practical view on coding process by using
more integer and fixed-precision arithmetic.

At this point arithmetic coding was well-defined, and later research was fo-
cused on increasing encoding speed without sacrificing compression ratio, either
by using approximate multiplication, or approximate division.

2.2 Arithmetic coding parallelization

In 1992, Howard and Vitter [10] made first attempt at designing parallel arith-
metic encoder for image compression, and defined ”quasi-arithmetic coding”. The
main idea behind it was by limiting amount of possible arithmetic coder ”states”
and represent coder in lookup tables. While achieving good results performance
wise, quasi-arithmetic coding still have huge memory requirements for building
lookup tables and, as a result of limiting coder states, worse compression ratio.
In 1999 Mahapatra et al. [11] introduced multialphabet arithmetic coding algo-
rithm and its parallel pipelined implementation, where different coders work on
different levels of a binary tree representing the symbol.

With introducing of massively-parallel general purpose GPUs the idea of arith-
metic coding parallelization gained new breath. In 2008, Balevic et al. [12] have
shown that usage of block-parallel arithmetic coding directly on GPU may signif-
icantly reduce resulting simulation data size, which will to smaller and faster data
flow between host and device memory. In 2010, Rusňák [13] focused on imple-
menting parallel EBCOT (JPEG2000 entropy encoding algorithm) - and gained
significant overall speed increase, but the arithmetic coding step of EBCOT have
shown slowdown that prevented gaining optimal speed for realtime HD-video
compression.

In 2011, Xiao et al [14] have studied negative effects of block-parallel arith-
metic encoding on compression ratio (as opposed to serial version) and concluded,
that there is ”the loss by breaking the probability prediction process and the loss
by breaking the information for context decision at the starting of each slice
<...>the loss by breaking probability adaptation process takes the most of loss-
es”. Meanwhile, Chen[15] tried to implement arithmetic coding on GPU and
gained ”speedup values ranging from 26x to 42x” as opposed to CPU version.

This paper is aimed on implementing particular type of arithmetic coder -
bitwise arithmetic coder - on GPU. Using bit model leads to slightly better com-
pression ratios, have much less requirements on memory (which is very limited
while working on GPU), but is way more computationally-expensive. As a refer-
ence CPU implementation, Amir Saids FastAC is used, which is currently state
of the art (in terms of performance) serial bitwise arithmetic coder.

5

3. Arithmetic coding in general

3.1 Lossy and lossless compression

There are different approaches to data compression problem. Compression can
be either lossless or lossy.

Lossy data compression algorithms allow discarding (using) some of it. Lossy
compression algorithms are mainly used for multimedia data - images, audio and
video. They exploit knowledge about the nature of data being compressed, and
try to discard less valuable data parts (for example, discard less recognised by
human ear frequencies from audio file). Compression ratio (that is, the size of the
compressed file compared to that of the uncompressed file) , that can be achieved
by lossy algorithms without easily visible differences from source, is sufficient -
up to 1:10 for audio and still images, and up to 1:100 for video.

Usually lossy-compressed file is quite different from original at the bit-level.
Lossless algorithms, on the other hand, allow the exact original data to be recon-
structed from the compressed data, but they cant offer as efficient compression
rates as lossy algorithms do. It is common practice to apply lossy and lossless
compression technique as different steps in the same compression program - for
example, H.264 video codec, apart from lossy video encoding techniques, can use
Huffman or arithmetic coding for slightly improving compression rates. Main idea
behind lossless compression is mapping input data to a bit sequences in such way
that ”probable” (e.g. frequently encountered) data will produce shorter output
than ”improbable” data. This process is known as entropy coding.

3.2 Entropy

In information theory, entropy is a measure of the uncertainty in a random vari-
able. The term usually refers to the Shannon entropy H - measurement of average
unpredictability in a random variable. Shannon entropy measures actual data
”value”, and provides an absolute limit on the best possible lossless compression
ratio.

Shannon denoted the entropy H of a discrete random variable X with possible
values x1, ..., xn and probability mass function P (X) as

H(X) = E[I(X)] = E[− ln(P (X))] (3.1)

Here E is the expected value operator, and I is the information content of X.
I(X) is itself a random variable.

When taken from the finite sample, the entropy can be explicitly written as

H(X) =
∑

i P (xi) I(xi)
= −∑

i P (xi) log2 P (xi)
= −∑

i
ni

N
log2

ni

N

= log2N − 1
N

∑
i ni log2 ni,

(3.2)

Data with high entropy value is unpredictable and cannot be efficiently com-
pressed with lossless algorithm. But data with low entropy value contain rela-

6

tively predictable values, and can be efficiently encoded to high-entropy message
with lower size. One of the most basic entropy encoding algorithms is Huffman
Coding.

3.3 Huffman coding

Huffman coding uses a specific method for choosing the representation for each
symbol, resulting in a prefix code (sometimes called ”prefix-free codes”, that is,
the bit string representing some particular symbol is never a prefix of the bit
string representing any other symbol), that expresses the most common source
symbols using shorter strings of bits than are used for less common source sym-
bols. Huffman was able to design the most efficient compression method of this
type: no other mapping of individual source symbols to unique strings of bits will
produce a smaller average output size when the actual symbol frequencies agree
with those used to create the code. The running time of Huffman’s method is
fairly efficient, it takes O(n log n) operations to construct it. A method was later
found to design a Huffman code in linear time if input probabilities (also known
as weights) are sorted.

3.4 Arithmetic coding

3.4.1 Encoding process

Huffman coding maps each symbol to its most efficient bit representation, and
this approach works perfectly, when symbol probabilities are powers of 0.5. But
with distributions, where symbols have frequencies far from a power of 0.5, such
as 0.75 or 0.375, Huffman code cannot achieve best possible compression rates.

Arithmetic coding - one more entropy encoding algorithm - uses different
approach. It doesn’t map symbols - instead, it maps whole message to a single
number, a fraction n where (0.0 ≤ n < 1.0). Fundamentally, the arithmetic
encoding process consists of creating a sequence of nested intervals in the form
Φk(S) = [αk, βk), k = 0, 1, ..., N , where S is the source data sequence, αk and
βk are real numbers such that 0 ≤ αk ≤ αk+1 and 0 ≤ βk ≤ βk+1. For better
understanding of arithmetic coding principles, we will represent intervals in the
form |b, l〉, where b is the base (starting point) of the interval, and l - the length
of the interval. The relationship between the traditional and the new interval
notation is

|b, l〉 = [α, β) if b = α and l = β − α (3.3)

The intervals used during the arithmetic coding process are, in this new no-
tation, defined by set of recursive equations

Φ0(S) = |b0, l0〉 = |0, 1〉,
Φk(S) = |bk, lk〉 = |bk−1 + c(sk)lk−1, p(sk)lk−1〉, k = 1, 2, ..., N,

(3.4)

where S is data sequence, sk is symbol at position k, and N is total symbols
count in S. The properties of the intervals guarantee that 0 ≤ bk ≤ bk+1 < 1,
and 0 < lk+1 < lk ≤ 1.

7

The final task is to define a code value C(S), that will represent data sequence
S. Later we will show that decoding process works properly for any code value
C ∈ Φ(S). But we cannot provide the code value to the decoder as pure real
number - it must be stored, using a conventional number representation. Since
we have the freedom to choose any value in the final interval, we will choose the
values with the shortest representation.

Example 3.1. Let us assume that source alphabet A has four (M = 4) symbols,
the probabilities and distribution of the symbols are p = [0.2, 0.5, 0.2, 0.1] and
c = [0, 0.2, 0.7, 0.9, 1], and the sequence of (N = 6) symbols to be encoded is
S = {2, 1, 0, 0, 1, 3}

Figure 1.1 illustrates, how the encoding process corresponds to the selection
of intervals in the line of real numbers. We begin at the top of the figure, with
the interval Φ0 = [0, 1), which is divided into four subintervals, each with length
proportional to symbol probabilities, and one of this interval will be chosen de-
pending on first symbol in sequence S. Specifically, interval [0, 0.2) corresponds
to s1 = 0, interval [0.2, 0.7) corresponds to s1 = 1, interval [0.7, 0.9) corresponds
to s1 = 2, and [0.9, 1) corresponds to s1 = 3. First symbol of data sequence is
s1 = 2, and interval Φ1 = [0.7, 0.9) is chosen. Interval Φ1 is again divided into
four subintervals, with lengths, proportional to symbol probabilities (note that
their lengths are proportional to the length of interval they belong to as well).
One from these intervals is chosen based on second data sequence symbol s2, and
so on.

The interval lengths are reduced by factors equal to symbol probabilities in
order to obtain code values that are uniformly distributed in the interval [0, 1).
For example, if 20% of all sequences start with symbol s1 = 0, then 20% of the
code values must be in the interval assigned to those sequences, which can only
be achieved if the first symbol is assigned with 0 an interval with length equal to
its probability, 0.2. Same reasoning applies to the assignment of the subinterval
lengths: every occurrence of symbol 0 will reduce the interval length to 20% of
its current length. This way, after encoding all symbols the distribution of code
values should be close approximation of a uniform distribution, which means that
the code will have nearly highest possible entropy.

The process of finding the shortest binary representation is quite simple. We
will show it by induction. The main idea is that for large intervals we can find
the optimal value by testing a few binary sequences, and as the interval lengths
are halved, the number of sequences to be tested has to double, increasing the
number of bits by one. Thus for interval length lN use following rules:

• If lN ∈ [0.5, 1), then choose v̂(S) ∈ {0, 0.5} = {0.02, 0.12} for 1-bit repre-
sentation.

• If lN ∈ [0.25, 0.5), then choose v̂(S) ∈ {0, 0.25, 0.5, 0.75} =
{0.002, 0.012, 0.102, 0.112} for 2-bit representation.

• If lN ∈ [0.125, 0.25), then choose v̂(S) ∈ {0, 0.125, ..., 0.75, 0.875} =
{0.0002, 0.0012, ..., 0.1102, 0.1112} for 3-bit representation.

By looking at this pattern conclusion can be made, that the minimum number
of bits required for representing v̂ ∈ ΦN(S) is

8

Figure 3.1: Graphical representation of the arithmetic coding process of Example
1: the interval Φ0 = [0, 1) is divided in nested intervals according to the probabil-
ity of the data symbols. The selected intervals, corresponding to data sequence
S = 2, 1, 0, 0, 1, 3
are indicated by thicker lines.

9

Bmin = d−log2(ln)ebits (3.5)

Actually we may use even less bits, because trailing zeros can be safely re-
moved. But with optimal coding average number of saved bits is one, and for
that reason it is not useful in practice.

3.4.2 Decoding process

In arithmetic coding the decoded sequence is determined by the code value v̂. We
will represent decoded sequence as

S(v̂) = {s1(v̂), s2(v̂), ..., sN(v̂)}. (3.6)

In decoding process any code C ∈ ΦN(S) can be used for decoding the correct
sequence. The decoding process recovers the data symbols in the same order
that they were encoded. Fundamentally, decoding process recovers the sequence
of intervals created by the encoder, and searches for the correct value in each of
these intervals. It is defined as

Φ0(S) = |b0, l0〉 = |0, 1〉,
sk(v̂) = {s : c(s) ≤ (C − bk−1)/lk−1 < c(s+ 1)}, k = 1, 2, ..., N
Φk(v̂) = |bk, lk〉 = |bk−1 + c(sk)lk−1, p(sk)lk−1〉, k = 1, 2, ..., N.

(3.7)

Example 3.2. Lets decode the data obtained in Example 1.1. In Figure 1.1
we can see graphical meaning of code value v̂ - it is a value, that belongs to all
nested intervals, created during coding. The dotted line shows that, while moving
during magnifying, its value remains the same. Therefore, we can start we can
start decoding from the first interval Φ0(S) = [0, 1) - we will compare v̂ with the
cumulative distribution c to find the only possible value of s1

ŝ1(v̂) = {s : c(s) ≤ v̂ = 0.74267578125 < c(s+ 1)} = 2 (3.8)

The value of ŝ1 can be used for determining ŝ2. In fact, we can ”remove”
effect of s1 in v̂ by defining the normalized code value

v̂2 =
v̂ − c(s1)
p(s1)

= 0.21337890625 (3.9)

v̂2 ∈ [0, 1), i. e. its value is normalized to its initial interval. In this interval
we can use the same process to find

ŝ2(v̂) = {s : c(s) ≤ v̂2 = 0.21337890625 < c(s+ 1)} = 1 (3.10)

Then process continues, and the updated values computed while decoding.

But the decoder has only the initial code value v̂, and cannot know right time
to stop decoding. This happens because intervals are mapped to sets of sequences,
and each real number actually corresponds to one infinite sequence. For example,
the sequences corresponding to Φ6(S) = [0.7426, 0.7428) are all those that start
as {2, 1, 0, 0, 1, 3, ...}. Our code value v̂ = 0.74267578125 corresponds to one such
infinite sequence, and the decoding process can go on forever.

In practice there are two solutions of this problem:

10

1. provide the number of data symbols (N) at the beginning of compressed
file

2. Use a special symbol as ”end-of-file”, and assign the smallest allowed by
coder probability value to it.

The fact that S 6= S ′ ⇐⇒ ΦN(S) ∩ ΦN(S ′) = ∅ guarantees, that decoded
sequence is correct.

11

4. FastAC

4.1 Overview

There is a lot of different serial AC implementations out there. As a reference
serial implementation we will use Fast Arithmetic Coding (FastAC) by Amir
Said. The source code is free and transparent, and at the same time it contains
several tweaks that help ”achieve optimal compression and higher throughput by
better exploiting the great numerical capabilities of the current processors”. It
also contains several advanced tricks for bitwise AC in particular, and those will
help us create parallel version as well.

FastAC contains its own set of classes to create an interface for advanced
using of this implementation in real-world projects. But this interface contain
some excess functionality for us, like advanced data-source model classes, and is
not suitable to embed GPU implementation without some code refactoring. We
have created our own interface instead, and took just core encode and decode
functionality from FastAC. Our interface allows using of both FastAC as serial
and our parallel implementations. It will be described in detail in Chapter 6.

FastAC actually consists of four slightly different versions of AC implemen-
tation - we will use one with 32-bit integer variables and 32-bit products, which
”is the most portable, reliable and usually the fastest, integrating all the main
acceleration techniques”. It is simpler as well, because it uses 32-bit arithmetic
all the time. This restriction have a potential drawback - the ”total number of
bits of precision assigned to interval length and probability must not exceed 32”
(the reason will be explained later in this chapter). However, as long as we focus
on binary model, 32 bit for storing length and probability is more than enough.

4.2 Encoding process

We need to take a look into the source code to better understand arithmetic
coding principles and tweaks used in FastAC. First of all, there are some variables
that contain current state of encoder and constants specific for binary data model.
You can see them in listing 3.1.

Listing 4.1: FastAC state variables

1 // I/O
2 unsigned char * code_buffer, * new_buffer, * ac_pointer;
3 // Arithmetic coder state
4 unsigned base, value, length;
5 // Binary model settings - zero bit probability
6 unsigned bit_0_prob;
7

8 // threshold for renormalization
9 const unsigned AC__MinLength = 0x01000000U;

10 // maximum AC interval length
11 const unsigned AC__MaxLength = 0xFFFFFFFFU;
12 // length bits discarded before multiplication
13 const unsigned BM__LengthShift = 13;

12

The meaning of variables is straightforward, and constants will be explained
later in this chapter.

The encoding process is focused in function encode(), that encodes one bit of
information and changes coder state accordingly. You can see it in listing 3.2.

Listing 4.2: encode()

1 void encode(unsigned bit)
2 {
3 unsigned x = bit_0_prob * (length >> BM__LengthShift);
4 if (bit == 0)
5 length = x;
6 else {
7 unsigned init_base = base;
8 base += x;
9 length -= x;

10 if (init_base > base) propagate_carry();
11 }
12 if (length < AC__MinLength) renorm_enc_interval();
13 }

Here some explanation is needed. We calculate x - new interval length, in
case that new symbol is zero. For that we just need to multiply current length
by probability of zero symbol (between 0.0 and 1.0). But we don’t want to use
floating-point arithmetic, and that is why the type of bit_0_prob is unsigned

int. To be clear, that is how bit_0_prob could be calculated:

Listing 4.3: set zero probability()

1 void set_zero_probability(double p0)
2 {
3 bit_0_prob = unsigned(p0 * (1 << BM__LengthShift));
4 }

BM__LengthShift is the trick here. Normally, we would map probability onto
whole range of unsigned int values, and then make something like x = length*((

float)bit_0_prob/max_unsigned_value), but here division and float conversion
operations are involved, and those are expensive. Instead, we decide to use just
12 lower bits of unsigned int for storing probability, and other 20 bits for length
calculation. In other words, length >> BM__LengthShift substitutes division
and doesn’t involve float, but loses some precision by discarding lower 12 bits
of length. Amount of bits for storing probability can be changed - more bits for
probability increases its precision but decreases precision of calculation.

Then we update our interval. If our bit is actually zero, we just set interval
length to x, base remains the same. Otherwise, base is increased and length is
decreased by x.

Note, that in theory we operate with absolute values of interval base and
length, but in practice it will lead to extremely large numbers and expensive
calculations. To address this issue, when length become small enough we can
discard some top bits of base, send them directly to output, update length ac-
cordingly (multiply by 2discarded bits count), continue encoding. This procedure is
called renormalisation. For this reason at line 12 of listing 3.2 we check if the
length is small enough and call renorm_enc_interval() if needed. Listing 3.3
shows this procedure.

13

Listing 4.4: renorm enc interval()

1 void renorm_enc_interval()
2 {
3 do {
4 // output and discard top byte
5 *ac_pointer++ = (unsigned char)(base >> 24);
6 base <<= 8;
7 }
8 while ((length <<= 8) < AC__MinLength); // length*256
9 }

For performance reasons FastAC sends to output whole bytes only when they
are ready. We need to code some number between base and base + length, and
that is why AC__MinLength is set to 0x01000000 - when length will be less than
this value, first 8 bytes in binary representation of every number in this interval
would equal first 8 bytes of base.

Line 8 of listing 3.2 contains hidden trap. The sum of base and x can exceed
the maximum possible value of unsigned int. Line 10 takes care about such
situation - it compares new base with old base, base can only be increased or
remain the same, therefore if value of new base is lesser overflow has happened.
The propagate_carry() function is called then, it is straightforward as well and
you can find it at listing 3.5.

Listing 4.5: propagate carry()

1 void propagate_carry()
2 {
3 unsigned char * p; // carry propagation on

compressed data buffer
4 for (p = ac_pointer - 1; *p == 0xFFU; p--) *p = 0;
5 ++*p;
6 }

And this is everything that needs to be noted about encoding process. The
encode() function is just called for every bit from input, then some simple clean
up is made to finalize output and compressed stream is ready. The next section
will explain how FastAC can decompress it back.

4.3 Decoding process

The same set of state variables and constants from listing 3.1 is used during
decoding. Listing 3.6 provides decode() function.

Listing 4.6: propagate carry()

1 unsigned decode()
2 {
3 unsigned x = bit_0_prob * (length >> BM__LengthShift);
4 unsigned bit = (value >= x);
5 if (bit == 0)
6 length = x;
7 else {
8 value -= x;
9 length -= x;

14

10 }
11 if (length < AC__MinLength) renorm_dec_interval();
12 return bit;
13 }

Decode process is just inverted encode. The value variable is set to first 32
bits of input (compressed stream) at initialization step, and then additional data
is read from input during renormalisation when needed.

Firstly we calculate the length of interval for symbol 0 same way as we did
during encoding. Then we decide what bit will be sent to output (uncompressed
stream) - zero if value falls into x interval, and 1 otherwise. Then we need to
update coder state accordingly and make renormalization if needed. Renormali-
sation function for decoding is shown at listing 3.7.

Listing 4.7: renorm dec interval()

1 void renorm_dec_interval()
2 {
3 do {
4 // read least-significant byte
5 value = (value << 8) | unsigned(*++ac_pointer);
6 } while ((length <<= 8) < AC__MinLength);
7 }

There are several interesting things to note about decoding and encoding
differences.

1. The decode() doesn’t need to propagate carry to output, because value is
never increased like base in encode.

2. In spite of input for decode() (compressed stream) being lesser than for
encode() (original stream), decode() is potentially slower, because both
functions are called once for every bit of their output stream. In other
words, decode() is O(uncompressed stream size), while encode will be
O(compressed stream size).

3. Renormalisation in both functions work with compressed stream - it reads
from it during decode() and writes during encode().

4.4 Data models

Everything said earlier was about static binary data model. It means, that there
are only two symbols in the alphabet - ’0’ and ’1’, and zero probability is given
to the algorithm and is fixed. This is the simplest algorithm variant and it needs
to be understood first, but there are many better data models.

One enhancement is extending alphabet - storing probabilities of 2-bit, 3-bit,
or 8-bit symbols. It needs more memory but leads to way better compression
ratios. Extended alphabet variant is not targeted by this paper, but there is
a CPU implementation of 8-bit adaptive data model in the program, just to
compare binary coding with non-binary.

Another enhancement is adaptivity - both encoder and decoder start with zero
symbol probability = 50%, and according to certain rules modify this value on the

15

fly based on symbols already encoded / decoded. There may be many different
rules how to react on already encoded. Both CPU and GPU implementations of
Adaptive binary data model are available in our implementation.

Third variant is context - there are several binary models (either static or
adaptive), and for each symbol program decides which model to use according
to previous symbols. Needs more memory but leads to way better compression
ratios, especially when model-choosing rules are carefully crafted according to
data stream type. Both CPU and GPU implementations of context-adaptive bi-
nary model are available in our implementation (although in our implementation
model choosing rules are very primitive - just choose model, indexed by last 8
bits).

16

5. NVIDIA CUDA Basics

The fact that the performance of graphic processing units (GPUs) is much big-
ger than the central processing units (CPUs) of nowadays1 is hardly surprising.
GPUs were formerly focused on such limited field of computing graphic scenes.
Within the course of time, GPUs became very powerful and the area of use dra-
matically grew. So, we can come together on the term General Purpose GPU
(GPGPU) denoting modern graphic accelerators. The driving force of rapid rais-
ing of the performance are computer games and the entertainment industry that
evolves economic pressure on the developers of GPUs to perform a vast number
of floating-point calculations within the unit of time. The research in the field of
GPGPU started in late 70’s2. In the last few years, we can observe the renais-
sance in this area caused by rapid development of graphic accelerators. Two main
players in the field of GPGPUs are AMD with their ATI Stream Technology and
NVIDIA which introduced Compute Unified Device Architecture (CUDA), the
parallel computing engine accessing GPGPUs resources to software developers.
Through the frameworks extending commonly used programming and scripting
languages such as C, Java, Python or MATLAB, CUDA enables easy way to
make applications using NVIDIA GPUs.

This chapter introduces the architecture of CUDA-capable graphic accelera-
tors in comparison with the present multi-core CPUs. The overview of memory
hierarchy and programming model as well as advantages and limitations of CUDA
are discussed.

5.1 Hardware Architecture

Present multi-core CPUs usually have 2 - 8 cores. These cores usually work asyn-
chronously and independently. Thus, each core can execute different instructions
over different data at the same time. According to the Flynn’s taxonomy, we are
talking about Multiple Instruction stream, Multiple Data stream (MIMD) class
of computer architectures.

On the other hand, GPUs are designed for parallel computing with an em-
phasis on arithmetic operations, which originate from their main purpose - to
compute graphic scene which is finally displayed. Current graphic accelerators
consist of several multiprocessors (up to 30). Each multiprocessor contains sev-
eral (e.g., 8, 12 or 16) Arithmetic Logic Units (ALUs). Up to 480 processors is
in total on the current high-end GPUs. Figure 4.1 shows the general overview of
the CPU and GPU.

Also the memory hierarchy is specific in the case of graphic accelerators.
Each multiprocessor has registers that are used by ALUs. Processors within a
multiprocessor can access shared memory of typical size 16KB, or a main memory
of the accelerator, which is not cached on the majority of present accelerators4.
Global memory in terminology of CUDA, is accessible from all the processors
on the accelerator. In addition, there are two separate memory areas (constant
memory and texture memory) also shared across the multiprocessor and both
cached and read-only. When accessing some element from the texture memory,
a couple of surrounding elements are also loaded. This feature is called spatial

17

Figure 5.1: Comparison CPU and GPU architectures. Source:
http://ixbtlabs.com/articles3/video/cuda-1-p1.html

locality. One of the most limiting factors is a very small capacity of shared
memory and registers. If application uses more variables per thread than available
registers, they are stored in a local memory which is, in fact, the dedicated part
of global memory. Accessing these variables is as time-consuming as accessing
any other variable stored in the global memory. For better understanding, we
can see the memory hierarchy in Fig. 4.2

5.2 Programming model

A CUDA-capable GPU is referred to as a device and the CPU as a host. Thread is
the finest grain unit of parallelism in CUDA. Thousands of threads are able to run
concurrently on the device. Threads are grouped into the warps. Size of a warp
is usually 32 threads. Warp is the smallest unit that can be processed by multi-
processors. Warps scheduled across processors of one multiprocessor are coupled
into a thread blocks. Block is a unit of the resource assignment. Typical size of
a thread block is 64-512 threads and depends on the particular application what
is the optimal size of a thread block to ensure the best utilization of the device.
Thread blocks form a grid. Grid can be viewed as a 1-dimensional, 2-dimensional
or 3-dimensional array. Figure 4.3 is depicting the described hierarchy.

5.3 Features and Limitations of CUDA

It is easy to learn the CUDA API, but hard to program efficient applications
which utilize the GPU’s performance. CUDA API is a set of extensions based
on the standard C language. Counterweight to many features of this massively
parallel architecture is that there are limitations mostly caused by HW architec-
ture. CUDA belongs to the class of Single Instruction, Multiple Thread (SIMT)
according the Flynn’s taxonomy. SIMT originates in Single Instruction Stream,
Multiple Data Stream (SIMD) class known for example from the supercomputers
based on vector processors (e.g., Cray 1). SIMT also implies the divergence in
the program that usually leads to the serialization of the run. Recursive func-
tions are not supported either. As introduced before, graphic accelerators were

18

Figure 5.2: CUDA memory model. Source:
http://ixbtlabs.com/articles3/video/cuda-1-p5.html

developed with the focus on computing vast amounts of arithmetic operations.
Many of them are implemented directly in the hardware with a cost of units of
warp-cycles. Besides arithmetic functions there is a set of bitwise operations also
implemented ”in hardware”.

Of course, a set of constructs used in parallel programming is present in
CUDA. For example several methods of barrier synchronisation primitives, native
broadcast of a single variable, scatter and gather functions or atomic operations
which prevents from race conditions.

The use of shared memory has also significant impact on the overall perfor-
mance but the limiting factor is its size (8-48 KB). Talking about memory, CUDA
brought more efficient data transfer operation between the host and the device.
Unlike OpenCL6, CUDA is closed source belonging to NVIDIA corp. which can
be considered as a limitation as well.

There is a lot of information about CUDA on the web. For more detailed
information see http://www.nvidia.com.

19

Figure 5.3: NVIDIA CUDA programming model. Source:
http://ixbtlabs.com/articles3/video/cuda-1-p5.html

20

6. Parallel AC implementation

6.1 The main idea

There are two main forms of parallelization algorithms - task parallelism and data
parallelism.

Task parallelism analyses individual algorithm steps, search independent ones
and calculates them at the same time. Often this is a hard task and involves some
algorithm modifications to make some steps independent from others. There are
no major independent steps in arithmetic encoding or decoding, so we cannot par-
allelize the algorithm itself. Moreover, this class of parallel algorithms can utilise
multi-core nature of modern processors, but it is very tough to make effective use
of GPU resources because GPUs have single-instruction (SIMT) architecture.

Another approach, data parallelism, is used more often and generally is easier
to implement. It analyses algorithm to find, which parts of data stream can be
processed independently, and then processes many data chunks at the same time.
This class of parallel algorithms, in contrast to task parallelism, can effectively
utilise GPU resources, because the same procedure is used to process every data
chunk - perfect hit for SIMD architectures.

Unfortunately, it is impossible to process different small parts of input stream
(bytes, for example) for arithmetic coder at the same time without serious draw-
backs, because each new calculation requires result of previous calculation to be
done. In other words, every call of function encode() from FastAC relies on data
calculated by previous calls. Instead, input stream is divided to rather large parts
(chunks), and all chunks are processed independently but simultaneously. It al-
lowed us to write a kernel that effectively utilises GPU resources without making
major modifications to serial algorithm - which is very important, because serial
decoder on CPU should be able to process data encoded in parallel by GPU.

The fact that each chunk is compressed individually means that overall com-
pression ratio of data stream should theoretically be somewhat worse than with
processing whole stream sequentially. That turned out to be true only for static
models - adaptive, context-adaptive and byte-adaptive models all provided better
compression when applied to chunks individually.

6.2 Encode kernel

First of all, data must be split into chunks. Chunk size and amount of chunks
should be chosen very carefully - it directly impacts effectiveness of GPU usage.
Then, we process each chunk with its own thread, which will create compressed
version of every chunk. But this is not everything - compressed chunks must be
united in continuous stream. This operation is special case of reduce algorithm,
which is commonly used in data processing - to form a resulting output stream.
Whole process is illustrated by figure 4.1.

21

Figure 6.1: Parallel arithmetic encoding steps

6.2.1 Split

The most important part here is choosing chunk size. Too small chunks will lead
to significant loss in compression ratio, and too big chunks will mean that we can-
not place enough of them into device memory at the same time (usually about
1-2 Gb) to fully utilize GPU parallel processing potential. The implementation
allows setting chunk size explicitly, because concrete usage scenarios and target
hardware may vary. Default chunk size is 16 kilobytes, which means that the-
oretically up to 65536 chunks can be stored simultaneously on device with 1Gb
memory.

After compressing one chunk of data information about compressed chunk
size must be stored. In our implementation by default we store it in first two
bytes of every chunk, which means that algorithm can handle chunks up to 64
Kb in size.

6.2.2 Compress

Algorithm for compressing of one separate chunk is fairly straightforward modi-
fication of serial version. Firstly, thread must determine correct address of input
chunk start from blockId and threadId, and after that just apply serial algorithm.
In its easiest version (with given static probability of zero symbol) algorithm uses
very little additional memory - which usually is a bottleneck for GPU compu-
tations. This operation produces compressed data chunks, but we still need to
provide compaction - e. g. move every chunk right to the end of previous chunk.
This operation is called ”Stream compaction”

22

6.2.3 Stream compaction

In usual circumstances, stream compaction should be done on CPU. Our tests
have shown, that on usual media files stream compaction takes about 2% of
whole encoding time, which is neglicible. Moreover, in some situations (such as
streaming) stream compaction on CPU and compressing on GPU can be done at
the same time.

However, there is another approach - stream compaction on GPU itself. It can
be very useful in situations, where data is already on gpu before compressing (for
example, as a result of some scientific computation), is very redundant (which will
lead to high compression ratios), and needs to be transformed to CPU. In such
systems memory transfer itself is a bottleneck, and compressing data on GPU with
decompressing on CPU afterwards can lead to some performance improvements.

Stream compaction on GPU. Straightforward GPU implementation is time-
consuming and has O(nlog2n) addition operations, while serial version performs
only O(n) operations. Harris et al [16] have shown in 2007 more effective approach
for stream compaction, which use tree-like sum ordering to effectively limit sum
operations count by O(n), and his algorithm can be used as separate kernel right
after compression step. The tests have shown that stream compaction is signif-
icantly faster on GPU compared to CPU. Unfortunately, our implementation of
GPU-based stream compaction in some cases introduced instability. We didn’t
investigate it much further - it didn’t promise any significant performance im-
provements in usual use cases. Theoretically it must work, though, and we will
be happy if someone will enhance our parallel compression implementation with
flawless parallel prefix sum.

6.2.4 Limitations

There are several limitations that need to be considered while using our imple-
mentation. First of all, it works better for large datasets and large chunkSizes,
and developer should choose chunk size to split whole dataset in about 4096
chunks to fully utilize GPU powers - so, for significant performance improvement
the size of uncompressed data must be more than two megabytes. Usually this is
the case - serial implementation is fast enough for almost-instant compression of
small files, but with larger file sizes (streaming HD video) you may want to use
the power of GPU. Although our GPU implementation can work with input of
any size, it works more effectively when dealing with amount of chunks, that is
a power of two. Thus, for further acceleration it makes sense to delegate correct
amount of work to GPU (chunk size * some power of two) and process everything
that was left on CPU at the same time.

Also, there are some memory considerations. For more complex data models,
you will need more memory. If algorithm needs isolated copy of those data models
(which is usually the case when using adaptive data models), this may become a
problem - if all additional data wont fit in shared memory, global memory access
overhead will most likely heavily slow down the algorithm.

23

6.3 Decode kernel

Decode kernel is not part of this work, although the parallelization process will
be similar and easy to implement. But our compressed data stream model (every
chunk has 2 bytes header with compressed size) doesn’t fit parallel decompression
- to correctly split work between threads, you need to know all chunks sizes before
decoding. Simple fix will be storing all chunks sizes right at the beginning of the
file - this approach is a little worse for some use cases (video streaming), but other
than that there is no drawbacks to it. After you extract chunk sizes (on cpu), you
can calculate starting position in compressed data for every thread, and after that
just slightly adapt serial algorithm for parallelization and use it in CUDA kernel.
Decoding process needs access to the same data models as encoding process, and
perform almost the same operations, so the same memory considerations as for
encode kernel apply here.

24

7. Software architecture,
documentation

7.1 Codecs

Part of this work is quite simple class library, which contains implementation of
both GPU and CPU arithmetic coders. They are compatible with each other -
CPU and GPU encoder will produce absolutely identical outputs for given input.

First of all, there is an ArithmeticCodec abstract class, which defines abstract
methods for encoding and decoding data. Important definitions are shown in
listing 6.1.

Listing 7.1: ArithmeticCodec

1 class ArithmeticCodec
2 {
3 uint chunkSize;
4 uint chunkSizeBytes;
5

6 uint64 EncodeData(
7 byte* iData,
8 uint64 iDataSize,
9 byte* oData,

10 DataModel& model);
11

12 void DecodeData(
13 byte* iData,
14 byte* oData,
15 uint64 oDataSize,
16 DataModel& model);
17 }

Several things are worth noting here. There are no streams, as one might
expect from program that supposed to work which large datasets, because for
effective parallel processing as much data as possible must be loaded in memory
at the same time. There are chunkSize and chunkSizeBytes, that are needed
for implementing splitting logic (it will have different implementations on GPU
and CPU, but will lead to same results). Function DecodeData needs oDataSize,
that is needed for determining correct ending of decoded data stream. Finally,
Datamodel is reference on instance that describes data model that should be
used. There are several simple data models predefined:

• StaticBinaryModel - probability of zero bit is given and fixed.

• AdaptiveBinaryModel - probability of zero bit is modified during execution
according to already-encoded symbols.

• AdaptiveByteModel - table of probabilities for each byte symbol. Is adapt-
ing during execution.

• ContextAdaptiveBinaryModel - several AdaptiveBinaryModels, which one
to choose is determined from previous symbols.

25

All of them are defined in the file ’DataModels.cu’. They are compiled for
both CPU and GPU - it is very useful to define some simple helper functions
inside data model class to use them in both CPU and GPU coders.

There are two key classes, that implement ArithmeticCodec - CPUCodec and
GPUCodec. Not all of them implement every method from ArithmeticCodec - for
example, AdaptiveByteModel is supported only by CPU codec. CPUCodec uses
”only” CPU for encoding, and GPUCodec - ”only” GPU. If you want to mix both
approaches, it is advised to write some wrapper, for example MixedCodec, that
will contain CPUCodec and GPUCodec instances and delegate work between them
- should be fairly simple to do.

Both codecs implement encoding logic for static, adaptive and context-adaptive
binary models. CPUCodec also supports adaptive byte model and contains decod-
ing logic for all of them as well. All variants support situation, where potential
output is actually bigger than input - in this case, ”00 00” is written instead of
output chunk size, and a copy of corresponding input data chunk after that.

7.2 Developer manual

There is wide variety of scenarios, where our algorithm may be useful. You will
need to modify the code itself to achieve optimal performance on your system.
The most important file for customization is ” Constants.h” - it contains several
#define directives, which define codec behaviour. The single most important
constant is THREADS_PER_BLOCK - it is amount of threads that will be spawned by
CUDA per single block. Feel free to experiment with it - higher values will lead
to better performance, but larger memory requirements. On our system, 32 and
64 were the most effective values, although on more modern devices this value
will be higher.

If you want to compress some large data stream and send it to another PC, or
pack in a file, you will need to perform some extra work - namely, you probably
will need to manually split data into large, ”level 0” chunks, and call EncodeData
for each one. Moreover, you will need to add some logic to store uncompressed
size of whole data stream somehow (for example, in compressed file header). Nice
example of it is given in file ”helpers.cpp”. The method ”EncodeFile” divides files
in large ”Level one chunks” - 32 megabytes each - and then encodes them with
selected encoding method. After that it stores safety header and compressed data
stream in the resulting file itself. The method ”DecodeFile” does corresponding
inverse operation as well.

If you want to write your own data model, you need to:

1. Write MyDataModel class

2. Implement corresponding overloads of EncodeData and DecodeData func-
tions in CPUCodec and/or GPUCodec.

3. For GPUCodec you will possibly need to implement kernel itself in separate
file with extension ”.cu”.

If you have followed the rules, you may even use your new data model with
our sample program and test your results.

26

Figure 7.1: GARCoder static library core classes diagram

27

7.2.1 Compiling

Program was written with using as few advanced c++ constructs as possible. The
only modern class in entire program (from C++11) std::chrono::high_resolution_clock
- without it, program should be compilable by older compilers. Only STL and

Cuda libraries are used. You need to have CUDA Toolkit (at least version 4.0) in-
stalled and correctly configured on your system (https://developer.nvidia.com/cuda-
downloads) to compile kernels.

Folders description:

• ”Bin” contains compiled Windows executable

• ”Tests” contains several files for compression testing

• ”Code - MSVS Solution” archive contains Microsoft Visual Studio 2013
solution

• ”Code - clean” archive contains source files only

Note: ”main.cpp” and ”helpers.cpp” are parts of the sample program. Every
other code file - part of the library.

7.3 User manual

There is a sample command line program provided, which is able to encode
file, decode it, compare two files to find out if they are identical. It’s inter-
face is straightforward, you just need to follow command line instructions (not
all combinations of parameters work, though. For example, decoding is im-
plemented only on CPU). It also measures execution time using std::chrono

::high_resolution_clock from C++11 standard. This program was used in
”Testing” chapter of this paper. Its source code will provide you an example of
correct using GARCoder library.

To run the program you will need to have CUDA-compatible NVIDIA GPU in
your system with Compute Capability at least 2.1. You can find list of all CUDA-
enabled GPUS here https://developer.nvidia.com/cuda-gpus. It is advised to
have the latest Display Driver installed for optimal performance.

Known bugs: after many iterations under some circumstances, GPU may
refuse to allocate huge chunks of memory due to memory fragmentation. In
this case command line will show ”Bad Allocation” message. Usually restarting
program is enough to resolve the issue.

Program was tested with NVIDIA GeForce GTX 460M.

28

8. Tests

8.1 Environment

Our AC implementations were tested in terms of performance, correctness and
compression efficiency on the following data sets:

• Generated files - random bit sequencies with different zero probabilities
p(0) = 0.001, 0.01, 0.05, 0.25, 0.5. Size of each file is 128 MB = 134 217 728
bytes

• Generated files - random bit sequencies with zero probability p(0) = 0.25
and sizes from 1 KB to 128 MB.

• 1995 CIA World Fact Book - english text, txt, 2.8 MB = 2 988 578 bytes

• Audio sample - wav (Waveform Audio File), 100 MB = 104 768 684 bytes

• Image - high-definition png, 3 MB = 3 094 761 bytes

• Video sample - high-definition yuv (uncompressed video), 748 MB = 783
820 800 bytes

During every test every file was compressed and decompressed. Then every
decompressed file was compared with source file to be exactly same. Every file
was loaded to RAM before coding so hard disk read/write operations duration
does not affect results. Tests were executed 10 times, the best and the worst
results were discarded and the mean of remaining 8 measurements was used as
the result.

8.2 Compression ratio

First of all, to give context about different compression methods, let’s compare
different data models - binary static, binary adaptive, simple binary context-
adaptive (just use 8 last bits as context), and adaptive with byte symbols.

Figure 8.1 shows compression ratios of different data models with different da-
ta types. Results are unsurprising - algorithms with ”memory” (context-adaptive
ant byte table) perform significantly better, than plain algorithms. In real appli-
cations, context-adaptive algorithm should perform way better - our implemen-
tation is very simple, while real implementations have specific context selection
rules for getting best results out of their data. Also note, that plain adaptive
algorithm always performs slightly better than static. Static data model knows
exact zero probability right at the beginning, while adaptive model starts with
uniform probability - but adaptive model also reflects changes in data stream
with time, while static only looks at data stream as a whole. So, adaptivity is
more important than knowing exact probabilities.

29

Figure 8.1: Compression ratios for different data models. Higher is better.

8.3 Performance

Finally, lets look at our results.
Figure 8.2 shows performance of different approaches while compressing large

text file (The 1995 CIA World Factbook). Even at 3MB data size there is solid
lead (70%) of GPU version for simple algorithms. Surprisingly, more complex
context-adaptive version doesn’t perform as well.

Figure 8.2: Time needed to compress 3MB .TXT file. Shorter is better.

Results for compressing .PNG file you can see at figure 8.3. It shows almost
exactly the same picture as previous chart. This is important, because, while
chunks of .TXT file almost always were successfully compressed, chunks of .PNG
file usually weren’t compressed at all. This means, that result of compression
doesn’t affect compression performance at all.

After that much larger .WAV file (about 100 MB) was compressed. Results
are displayed in chart 8.4. GPU still performs about 70% better than CPU
on simple algorithms, and, suddenly, context-adaptive GPU version is almost 2
times faster than CPU one as well.

Finally, figure 8.5 shows results for the largest file from our dataset, .YUV
file (about 800 MB). GPU performs better with all three algorithms used - static
binary coding is 81% faster, adaptive binary coding is 86% faster, and context-
adaptive binary coding with 8 bits context is 46% faster. Those are results using
GPU exclusively - so, using GPU and CPU at the same time, context-adaptive
algorithm will perform about 65% faster than using only CPU.

30

Figure 8.3: Time needed to compress 3MB .PNG file. Shorter is better.

Figure 8.4: Time needed to compress 101MB .WAV file. Shorter is better.

What is wrong with context-adaptive algorithm, though? The problem is
in memory usage. Thread needs to remember probabilities for every possible
context - 256 variants for 8 bit context. Actually, not only probabilities, but 4
more internal variables that adaptive model is used. It is already 5120 bytes.
And every thread on GPU needs his own copy of probabilities table to update
it. 5120 bytes is too much to store in registers (the fastest memory), so CUDA
tries to store it into shared memory. But with 64 threads per warp, 327680 bytes
need to be stored in memory - it is too much, so CUDA stores entire probabilities
table in global memory - which is not ideal, as its values are always accessed
and changed. So, to achieve optimal performance, there is requirement to fit all
DataModel variables into shared memory somehow. When context was cut from
8 bits to 4, probability table became 16 times smaller, so kernel needs 16 times
less shared memory - and indeed, when tests show that with 4bit context GPU
performance gain was the same as with simpler algorithms (70-80%), although
compression rate has slightly fallen.

Bear in mind, though, that everything becomes much simpler if we will use
non-adaptive version. Threads don’t need to update context-probability table, so
all threads may read from the same table - that means that all shared memory
(48KB for modern devices) can be used to store probability tables. Sometimes
it is preferable to use non-adaptive version - in such cases, GPU will provide
acceleration even for large or complex probability models.

31

Figure 8.5: Time needed to compress 765MB .YUV file. Shorter is better.

32

Conclusion

We have successfully developed static, adaptive and context-adaptive binary
arithmetic encoder, adapted for use on GPU. It has shown significant acceleration
as opposed to serial arithmetic coding (FastAC), mainly on large data streams -
up to 13x in ideal circumstances - while negative effect on compression efficien-
cy is almost negligible on large data chunks (less than 0.2% on 16Kb chunks,
adaptive versions performed even better). As opposed to previous research, we
have used binary data model, which allowed our basic algorithm to be much
more memory-effective - it doesn’t use shared memory, which means that shared
memory is available for some complex data models.

Although results are good, our implementation is more about proof-of-concept,
than real-world ready algorithm. It still needs to be adapted for particular data
types to be useful, and some more sophisticated adaptive data models may be
problematic to parallelize due to memory restrictions, as it was shown with 8-bit-
context-adaptive data model in our work. At the same time, it shows that static
context data models are ideal for parallelization, as they offer good compression
efficiency and dont need as much memory as adaptive variants.

CUDA has proven to be mature, stable, powerful and fairly easy-to-use tech-
nology. We have chosen very parallelization-unfriendly serial algorithm (linear,
very fast even in serial version, data depend on each other), and still succeeded
- so there must be many more algorithms that can be accelerated by unmatched
performance power of GPU.

In future we will try to develop parallel AC with some more practical data
models, as well as explore possibility of unification GPU and CPU code - the
first step to it was shown in our DataModels, which use same functions on both
devices. Probably, it is possible to unify entire codebase and just switch between
cpu and gpu modes as needed.

33

Bibliography

[1] Shannon, C. A Mathematical Theory of Communication. The Bell System
Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October, 1948

[2] Abramson, N. Information Theory and Coding. McGraw-Hill Book Co.,
Inc., New York, 1963.

[3] Jelinek, F. Probabilistic Information Theory. McGraw-Hill Book Co., Inc.,
New York, 1968.

[4] Schalkwijk, J. An Algorithm for Source Coding. IEEE Trans. Info. Theory
IT-18, 395 (1972).

[5] Cover, T. M. Enumerative Source Coding. IEEE Trans. Info. Theory IT-19,
73 (1973).

[6] Rissanen, J. J. Generalized Kraft Inequality and Arithmetic Coding. IBMJ.
Res. Develop. 20, 198-203 (1976).

[7] Pasco, R. Source Coding Algorithms for Fast Data Compression. Ph.D.
Thesis, Department of Electrical Engineering, Stanford University, CA, 1976.

[8] Rissanen, J. J. and Langdon, G. G., Jr. Arithmetic Coding. IBM J. Res.
Develop. 23, 149-162 (1979).

[9] Nigel, G. and Martin, N. Range encoding - An algorithm for removing
redundancy from a digitized message. Video and Data Recording Conference,
Southampton, UK, July 24–27, 1979.

[10] Howard, P. G. and Vitter, J. S. Parallel Lossless Image Compression
Using Huffman and Arithmetic Coding. Proceedings of the IEEE Data Com-
pression Conference, Snowbird, Utah, March 23-26, 1992, 299-308.

[11] Mahapatra, S. Parallel implementation of multialphabet arithmetic coding
algorithm.

[12] Balevic, A.; Rockstroh, L.; Wroblewski, M.; Simon, S. Using Arith-
metic Coding for Reduction of Resulting Simulation Data Size on Massively
Parallel GPGPUs. Recent Advances in Parallel Virtual Machine and Message
Passing Interface 2008, pp 295-302, ISBN 978-3-540-87474-4

[13] Rusňák, V. Design and Implementation of Arithmetic Coder for CUDA
Platform. Ph.D. Thesis, Faculty of informatics, Masaryk University, Brno,
2010.

[14] Xiao, W.; Zhou, Y.; Jizheng, X.; Guangming, S. A scheme of parallel
arithmetic coding . Circuits and Systems (ISCAS), 2011 IEEE International
Symposium, 15-18 May 2011, ISBN 978-1-4244-9473-6

[15] Chen, L.; Fang, Y.; Huang, B. Accelerating arithmetic coding on a graphic
processing unit. Proc. SPIE 8183, High-Performance Computing in Remote
Sensing, 81830B (November 02, 2011); doi:10.1117/12.897112

34

[16] Harris, M.; Sengupta , S.; Owens, J. D. Parallel Prefix Sum (Scan) with
CUDA. GPU Gems 3, Chapter 39, pp. 145-158, ISBN 978-0321515261, 2007

35

Attachments

36

Attached CD-ROM Contents

• thesis.pdf - copy of thesis

• Bin - compiled windows executable

• Code - clean - source files only

• Code - MSVS Solution - Microsoft Visual Studio 2013 Solution

• Tests - Several files for testing

– small.txt - small file (16KB) where every byte is 0x67

– test.txt - The 1995 CIA World Factbook text file, 2935KB

– test.png - PNG picture (3023KB). Rarely compresses (probably is
already compressed by .png format itself), but useful for testing worst-
case scenario.

– test.wav - WAV audio file (102314KB)

37

Reference GPU specification

Listing 8.1: GPU specs

1 Device 0: "GeForce GTX 460M"
2 CUDA Driver Version / Runtime Version 5.5 / 5.5
3 CUDA Capability Major/Minor version number: 2.1
4 Total amount of global memory: 1536 MBytes

(1610612736 bytes)
5 (4) Multiprocessors x (48) CUDA Cores/MP: 192 CUDA Cores
6 GPU Clock rate: 1417 MHz (1.42

GHz)
7 Memory Clock rate: 1250 Mhz
8 Memory Bus Width: 192-bit
9 L2 Cache Size: 393216 bytes

10 Max Texture Dimension Size (x,y,z) 1D=(65536), 2D
=(65536,65535), 3D=(2048,2048,2048)

11 Max Layered Texture Size (dim) x layers 1D=(16384) x
2048, 2D=(16384,16384) x 2048

12 Total amount of constant memory: 65536 bytes
13 Total amount of shared memory per block: 49152 bytes
14 Total number of registers available per block: 32768
15 Warp size: 32
16 Maximum number of threads per multiprocessor: 1536
17 Maximum number of threads per block: 1024
18 Maximum sizes of each dimension of a block: 1024 x 1024 x 64
19 Maximum sizes of each dimension of a grid: 65535 x 65535 x

65535
20 Maximum memory pitch: 2147483647 bytes
21 Texture alignment: 512 bytes
22 Concurrent copy and kernel execution: Yes with 1 copy

engine(s)
23 Run time limit on kernels: Yes
24 Integrated GPU sharing Host Memory: No
25 Support host page-locked memory mapping: Yes
26 Alignment requirement for Surfaces: Yes
27 Device has ECC support: Disabled
28 CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows

Display Driver Model)
29 Device supports Unified Addressing (UVA): Yes
30 Device PCI Bus ID / PCI location ID: 1 / 0
31 Compute Mode: < Default (multiple host threads can use ::

cudaSetDevice() with device simultaneously) >
32

33 CUDA Driver = CUDART, CUDA Driver Version = 5.5, CUDA Runtime
Version = 5.5, NumDevs = 1, Device0 = GeForce GTX 460M

38

Basic encode kernel

Listing 8.2: encodeKernel.cu

1 __global__ void encodeKernel
2 (unsigned const bit_0_prob,
3 unsigned char* iData,
4 unsigned const iSize,
5 unsigned char* oData,
6 unsigned* oChunksSizes,
7 unsigned const chunkSize)
8 {
9 int chunkId = blockIdx.x*blockDim.x + threadIdx.x;

10 iData += chunkId*chunkSize;
11 oData += chunkId*(chunkSize + 2);
12

13 unsigned char* ac_pointer = oData + 2;
14 unsigned length = AC_MaxLength;
15 unsigned base = 0;
16 if (chunkId*chunkSize < iSize) {
17 unsigned sizeToProcess = min(chunkSize, iSize - chunkId*

chunkSize);
18 unsigned char* end = ac_pointer + sizeToProcess;
19

20 for (unsigned i = 0; i < sizeToProcess; ++i)
21 {
22 unsigned char byte = iData[i];
23 for (unsigned j = 0; j < 8; ++j)
24 {
25 unsigned x = bit_0_prob * (length >> BM_LengthShift);
26 if ((byte & (1 << j)) == 0)
27 length = x;
28 else
29 {
30 unsigned init_base = base;
31 base += x;
32 length -= x;
33 if (init_base > base) //Overflow? Carry.
34 {
35 unsigned char * p;
36 for (p = ac_pointer - 1; *p == 0xFFU; p--)
37 *p = 0;
38 ++*p;
39 }
40 }
41 if (length < AC_MinLength) //Renormalization
42 {
43 do
44 {
45 if (ac_pointer >= end)
46 break;
47 *ac_pointer++ = (unsigned char)(base >> 24);
48 base <<= 8;
49 } while ((length <<= 8) < AC_MinLength);
50 }
51 }
52 }
53 if (ac_pointer < end) {

39

54 unsigned init_base = base;
55 if (length > 2 * AC_MinLength) {
56 base += AC_MinLength;
57 length = AC_MinLength >> 1;
58 }
59 else {
60 base += AC_MinLength >> 1;
61 length = AC_MinLength >> 9;
62 }
63

64 if (init_base > base)
65 {
66 unsigned char * p;
67 for (p = ac_pointer - 1; *p == 0xFFU; p--)
68 *p = 0;
69 ++*p;
70 }
71 do
72 {
73 if (ac_pointer >= end)
74 break;
75 *ac_pointer++ = (unsigned char)(base >> 24);
76 base <<= 8;
77

78 } while ((length <<= 8) < AC_MinLength);
79 }
80

81 unsigned codeBytes = 0;
82 if (ac_pointer < end) {
83 codeBytes = unsigned(ac_pointer - oData);
84 }
85

86 oData[0] = codeBytes >> 8;
87 oData[1] = codeBytes;
88 oChunksSizes[chunkId] = codeBytes;
89 }
90 }

40

	Introduction
	Why to speed up AC
	Goal of this paper
	Paper structure

	Prior work
	Arithmetic coding development history
	Arithmetic coding parallelization

	Arithmetic coding in general
	Lossy and lossless compression
	Entropy
	Huffman coding
	Arithmetic coding
	Encoding process
	Decoding process

	FastAC
	Overview
	Encoding process
	Decoding process
	Data models

	NVIDIA CUDA Basics
	Hardware Architecture
	Programming model
	Features and Limitations of CUDA

	Parallel AC implementation
	The main idea
	Encode kernel
	Split
	Compress
	Stream compaction
	Limitations

	Decode kernel

	Software architecture, documentation
	Codecs
	Developer manual
	Compiling

	User manual

	Tests
	Environment
	Compression ratio
	Performance

	Conclusion
	Bibliography
	Attachments

