Master's Thesis – Monika Burócziová

Molecular characteristics of mismatch repair pathway in ovarian cancer

ERRATA

Page	12,	line	3
------	-----	------	---

\mathbf{O}	ri	gina	1	sentence
\mathbf{v}	т.	gma	1	Semente.

5.1.2	Design and validation of MS-HRM	533
Corrected to:		
5.1.2	Design and validation of MS-HRM	53

Page 32, line 13-16

Original sentence:

The machinery of MMR includes core enzymes, in humans, the mis-paired bases are recognised by the heterodimers MutSa (MSH2/MSH6), MutSB (MSH2/MSH6).

Corrected to:

The machinery of MMR includes core enzymes, in humans, the mis-paired bases are recognised by the heterodimers MutSa (MSH2/MSH6), MutSb (MSH2/MSH3).

Page 32, line 16-22

Original sentence:

The canonical MMR cascade is replication based, and covers four steps i) mismatches detection by heterodimeric MutSa (MSH2/MSH6), MutSa (MSH2/MSH6) (Groothuizen and Sixma, 2016).

Corrected to:

The canonical MMR cascade is replication based, and covers four steps i) mismatches detection by heterodimeric MutSa (MSH2/MSH6), MutSa (MSH2/MSH3) (Groothuizen and Sixma, 2016).

Page 42, Table 4.3

Original table:

Table 4.3. List of used primary antibodies

Antibody	Host	Source	Cat.No.	WB
MLH1	m/mono	Cell Signaling, Technology Inc.,	#3515	1000×
		Denvers, USA		
MSH2	rb/mono	Cell Signaling, Technology Inc.,	#2017	1000×
		Denvers, USA		
PMS1	rb/poly	Cell Signaling, Technology Inc.,	#3996	1000×
		Denvers, USA		
α-tubulin	m/mono	Santa Cruz Biotechnology Inc, Santa	sc-8035	1000×
		Cruz, USA		
anti-BrdU		BD Biosciences, San Jose, USA	# 347583	500×
FITC				
рН3	rb/poly	Merck Millipore, Darmstadt, Germany	#06-570	500×

Abbreviations: rb- rabbit; m - mouse; poly — polyclonal; mono — monoclonal; WD - working dilution for western blot from original stock

Corrected to:

Table 4.3. List of used primary antibodies

Antibody	\mathbf{Host}	Source	Cat.No.	WD
MLH1	m/mono	Cell Signaling, Technology Inc., Denvers, USA	#3515	1000×
MSH2	rb/mono	Cell Signaling, Technology Inc., Denvers, USA	#2017	1000×
PMS1	rb/poly	Cell Signaling, Technology Inc., Denvers, USA	#3996	1000×
α-tubulin	m/mono	Santa Cruz Biotechnology Inc, Santa Cruz, USA	sc-8035	1000×
anti-BrdU FITC		BD Biosciences, San Jose, USA	# 347583	500×
pH3	rb/poly	Merck Millipore, Darmstadt, Germany	#06-570	500×

Abbreviations: rb- rabbit; m - mouse; poly – polyclonal; mono – monoclonal; WD - working dilution for western blot from original stock

Page 42, Table 4.4

Original table:

Table 4.4. List of used secondary antibodies

Antibody	Host	Source	Cat.No.	WB
Anti-mouse IgG, HRP-linked	Goat	Cell Signaling, Technology Inc., Denvers, USA	#7076	5000×
Anti-rabbit IgG, HRP-linked	Goat	Cell Signaling, Technology Inc., Denvers, USA	#7074	5000×
Anti-mouse Alexa Fluor® 647 conjugate	Goat	Thermo Fisher Scientific Inc, Waltham, MA USA	# A21236	500×

Abbreviations: HRP - horseradish peroxidase; $\rm IgG$ - immunoglobin WD - working dilution for western blot from original stock

Corrected to:

Table 4.4. List of used secondary antibodies

Antibody	Host	Source	Cat.No.	WD
Anti-mouse IgG, HRP-linked	Goat	Cell Signaling, Technology Inc., Denvers, USA	#7076	5000×
Anti-rabbit IgG, HRP-linked	Goat	Cell Signaling, Technology Inc., Denvers, USA	#7074	5000×
Anti-mouse Alexa Fluor® 647 conjugate	Goat	Thermo Fisher Scientific Inc, Waltham, MA USA	# A21236	500×

Abbreviations: HRP - horseradish peroxidase; ${\rm IgG-immunoglobin~G~WD}$ - working dilution for western blot from original stock

Page 53, Figure 5.1

Original figure:

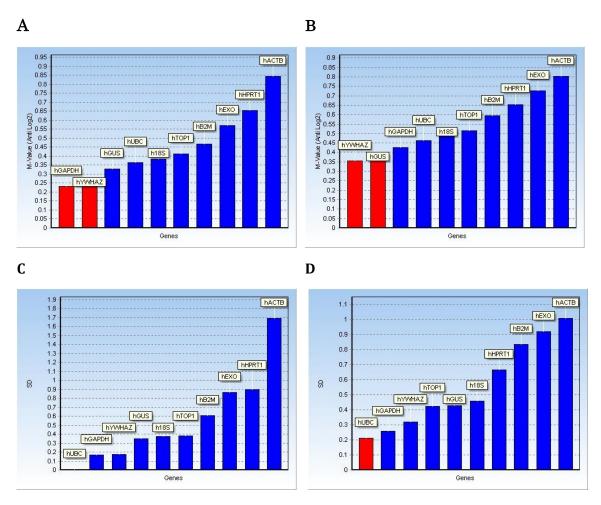


Figure 5.1. Reference genes optimisation. Expression levels of the most stable reference genes are represented in red colour A) B) Reference gene normalization using geNorm algorithm C) D) Reference gene normalization using NormFinder algorithm

Corrected to:

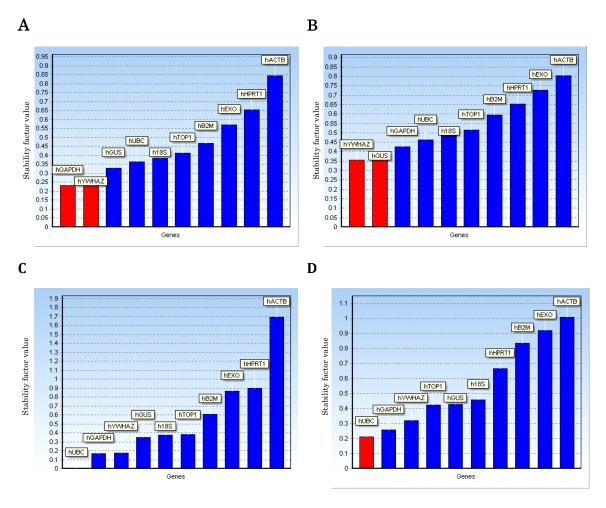


Figure 5.1. Reference genes optimisation. Stability factor value of the most stable reference genes are represented in red colour A) B) Reference gene normalization using geNorm algorithm (C) D) Reference gene normalization using NormFinder algorithm