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Chapter 1

Introduction

Here we present a brief overview of definitions used in the paper.

1.1 Preliminaries

By a first-order signature Σ we mean a set of function and predicate symbols.
X denotes set of variables. Given a signature Σ we define set T (Σ, X) of
terms and set A(Σ, X) of atomic formulas in a usual way. We shall write
T0(Σ) and A0(Σ) to denote set of ground terms (i.e. not containg variables).
If Σ and X is clear from the context we shall write T and A as well as T0

and A0. For skolemization we shall use infinite set Fsko of Skolem function
symbols that is disjoint with function symbols in Σ. A signature Σ extended
by symbols from Fsko will be denoted as Σ∗.

A literal is either an atomic formula or negation of such that. A clause is
a set of literals interpreted as a disjunction. An equation is an atomic formula
of the form s = t and a disequation is of the form ¬(s = t) denoted also as
s 6= t where s and t are terms. Given a term t we write ts to denote that the
term t contains term s as a subterm. We shall also use the expression ts[s

′]
to denote a term where s′ is substituted for a single occurence of s in t.

A substitution σ is a mapping from a finite subset of variables to terms and
is denoted as {x1/σ(x1), . . . xn/σ(xn)}. We shall use symbol ε to denote the
empty substitution. We write an application of substitution ϑ to the term t
as tϑ. We write a composition of substitutions ϑ and σ as ϑσ. A substitution
σ is called an unifier of terms t and s if tσ = sσ. A substitution σ is called
a subset unifier of the clause D1 against the clause D2 iff D1σ ⊆ D2σ. Let
σ ≤ θ means that there is a substitution τ such that στ = θ. Then σ is the
most general unifier (respectively the most general subset unifier) of s and
t (respectively of D1 against D2) iff it is minimal w.r.t. ≤ among all unifiers

6



CHAPTER 1. INTRODUCTION 7

of s and t (respectively among all subset unifiers of D1 against D2).
A first-order formula is called to be in negation normal form (NNF) if each

occurence of negation symbol in it is part of a literal. There is a provability
preserving translation of any first-order logic formula to the formula in NNF.



Chapter 2

The Tableaux Calculus

The Tableaux Calculus is a decision procedure used to solve the problem of
satisfiability of the first-order logic formula. In this section we first adopt
some basic notions used in tableaux literature. Then we present the tableau
calculus with unification in the style used in Hanhle [2]. Finally we de-
mostrate the tableau calculus on a simple example.

2.1 Basic Notions

By a compound first-order formula we mean a first-order formula such that
it’s NNF is not a literal. In Hanhle [2] compound first-order formulas are
divided into four types according to the leading logic compound. Conjuctive
formulas are called α, disjunctive β, universally quantified γ and existencial
formulas δ. We shall use these letters to denote formula of coresponing type.
To denote first and second part part of conjunction (respectively disjunction)
we shall write α1 and α2 (respectively β1 and β2). If we want to denote the
variable x bounded in γ- or δ-formulas by leading quantifier, we shall write
γ(x) or δ(x) respectively. The γ(x) or δ(x) formula without it’s leading
quantifier is denoted as γ1 respectively δ1 and the result of substituting term
t for x in γ1 or δ1 is denoted as γ1(t) or δ1(t) respectively. Note that there is
no type for formulas that are negations of compound formulas. Such formulas
can be eliminated by the translation into the negation normal form.

2.2 Tableaux Rules

In the tableaux method described here skolemization is done during the proof
search. Following sko function is used.

8



CHAPTER 2. THE TABLEAUX CALCULUS 9

Definition. Let Σ be a first-order signature and > arbitrary but fixed or-
dering on Fsko. The function sko assigns to each δ-formula over Σ∗ a symbol
skoδ ∈ Fsko such that

1. skoδ > f for all f ∈ Fsko occuring in δ and

2. for all δ-formulas δ and δ′ over Σ∗ the symbols skoδ and skoδ′ are
identical iff δ and δ′ are identical up to variable renaming.

Tableaux are usually presented as trees (in this case binary) with nodes
labeled by first-order formulas. To construct such a tree we shall use rules
that can expand branch of the tree with some formula. The following table
contains four rules schemata:

α

α1

α2

β

β1 | β2

γ(x)

γ1(y)

where y is
a fresh variable

δ(x)

δ1(skoδ(x1, ..., xn))

x1, . . . , xn are the
free variables in δ

Each rule scheme corresponds to one of four compound formula types
defined above. We shall denote these rules in turn α, β, γ and δ. Premises
and extensions of each rule are separated by horizontal bar. Vertical bar
in the β-rule separates different extensions. Formulas in the same extension
(i.e. α1 and α2 in the α-rule) are implicitly conjunctively connected whereas
different extensions are connected disjunctively. The α rule tells us that
whenever the α-formula α is allready placed on some branch, we can expand
the branch with one of α1 or α2. In the case of β-rule when we have the
β-formula β on the branch, we can split the branch and place β1 as the
left successor of the last node of the branch and β2 as the right one. In
γ-rule the γ-formula γ(x) is stripped from the leading universal quantifier
and the branch can be extented by formula γ1 where the fresh variable y is
substituted for x. The δ-rule replaces existencially quantified variables with
a Skolem term.

2.3 Tableaux with Unification

Here we present the tableaux calculus for the First-Order Logic that is in
Hanhle [2] called tableaux with unification. The tableau over Σ∗ is a finitely
branching tree whose nodes are first-order formulas over Σ∗. A tableaux cal-
culus has one initialization rule (the axiom) and two inference rules each
deriving tableau from another tableau. Inferable objects of the calculi are
defined in the following way.
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Definition Let Φ be a set of sentences over Σ. Than the tableau with unifi-
cation for Φ is a tableau constructed with the following rules:

1. The tree consisting of a single node true is a tableau for Φ (initialization
rule).

2. Let T be a tableau for Φ, B a branch of T , and ϕ a formula in B ∪ Φ.
Consider an arbitrary instance of a tableau rule scheme in the above
table which has ϕ as a premise. Obtain the tree T ′ from T by expanding
B with linear subtrees whose nodes are formulas in the extensions of
the rule instance. Then T ′ is a tableau for Φ (expansion rule).

3. Let T be a tableau for Φ, B a branch of T , and ϕ and ϕ′ literals in
B ∪ Φ. If ϕ and ϕ′ are unifiable with mgu σ, and T ′ is constructed by
applying σ to all formulas in T (i.e., T ′ = Tσ), then T ′ is a tableau for
Σ (closure rule)1

The initialization rule constructs initial tableau consisting of one root
node. The expansion rule is used to expand derived tableau. Note that
the use the expansion rule with ϕ that is β-formula leads to branching the
tableau. New tableau T shall have one more branch. Usage of expansion
rule with formula ϕ of another type only extends the branch not increasing
number of branches. The closure rule is used to close branch which means to
find a unificator of two complementary literals placed on the branch and ap-
plying such substitution to the whole tableau. Our aim is to close all tableau
brances.

Definition Let T be a tableau with unification for set of sentences Φ and B
a branch of T . We say that B is closed iff B ∪ Φ contains a pair ϕ, ¬ϕ of
complementary literals, otherwise, it is open. A tableau with unification is
closed iff all its branches are closed.

A tableau proof for a set Φ of sentences over Σ is a closed tableau with
unification for Φ.

Now we can finally connect the unsatisfiability of the set Σ of sentences
with some derivation in tableau calculus.

Theorem (Soundness and completness) Let Φ be a set of sentences over
Σ. Then Φ is unsatisfiable iff there is a tableau proof for Φ.

1Note that we use the complement ϕ′ of the the literal ϕ′ defined as ¬ϕ′ when ϕ′ is an
atom and as ψ′ if ϕ′ is the negation of an atom of the form ¬ψ′.
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As a consequence of the previous theorem we can formulate following.

Conclusion Let Φ be a set of sentences over Σ and ϕ the sentence over
Σ. Then Φ ⊢ ϕ iff there is a tableau proof for Φ ∪ {¬ϕ}.

The proof of previous theorems and more detailed description of tableaux
methods can be found in Hanhle [2].

2.4 Example

As said above, to prove that Φ ⊢ ϕ we want to find the tableau proof for
Φ ∪ {¬ϕ}. It can be seen as a proof by contradiction and case distinction.
We should start with the negation of conjecture ϕ by expanding it using
expansion rule as much as possible. Then we shall try to use axioms from Φ
to find elementary contradiction. The branches of the constructed tableau
correspond to different subcases of the proof. We shall demonstrate this in
example problem of composing implications also known as Aristotelian Syl-
logism.

Example. Let us prove that (∀x)(P (x) → Q(x)) and (∀x)(Q(x) → R(x))
implies (∀x)(P (x) → R(x)). The previous theorem tells us to find a tableau
proof for

Φ = {(∀x)(¬P (x) ∨Q(x)), (∀x)(¬Q(x) ∨ R(x)), (∃x)(P (x)&¬R(x))}

Note that we have translated all formulas into the NNF. To expand the
initial tableaux we shall start with the negated conjecture first. This is
usually good idea because we usually assume that our theory is consistent
and thus there is no tableaux proof for the set of axioms. Hence the negated
conjecture plays principal role in tableau proof. We shall apply expansion
rule three times to get following tableau:
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true

(∃x)(P (x)&¬R(x))

P (sko1)&¬R(sko1)

P (sko1)

¬R(sko1)

. . .

We now have the tableau with one opened branch. We have two literals on
this branch P (sko1) and ¬R(sko1). We should say that we suppose P (sko1)
and ¬R(sko1) and we are trying to reach the contradiction. We shall use now,
for example, the first axiom. Using expansion rule twice we will branch our
tableau but we shall be able to close one branch immediately. The situation
after two expansions is as follows.

true

P (sko1)

¬R(sko1)

(∀x)(¬P (x) ∨Q(x))

¬P (y1) ∨Q(y1)
HHH

���
¬P (y1)

. . .

Q(y1)

. . .

Now we can use the closure rule to close the left branch using unification
{y1/sko1}. Recall that this unification has to be applied to the whole tableau,
so that the right open branch shall after the application of closure rule end
with the literal Q(sko1). Note that we have omited some irrelevant nodes of
the tableau. The next step is to use the second axiom to expand the right
opened tableau branch. It shall branch the opened branch but both new
created branches should be closed immediately. The resulting tableau proof
without irrelevant parts is in the next figure.
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true

P (sko1)

¬R(sko1)XXXXX
�����

¬P (sko1)

×

Q(sko1)
aaa

!!!
¬Q(sko1)

×

R(sko1)

×



Chapter 3

The leanTAP Prover

The leanTAP is a sound and complete theorem prover for the First-Order
Logic created by Berhhard Beckert and Joachim Possega Beckert and Pos-

sega [5]. leanTAP can be implemented in five lines of Prolog code. It makes

the leanTAP probably the smallest theorem prover for the First-Order Logic

around the world. The leanTAP is based on tableaux with unification pre-
sented in previous section. Here we present just a short overview in order

to extend the leanTAP by irrelevant proof parts pruning technique and to

compare it with original program. For more information about the leanTAP

refer Beckert and Possega [5] or leanTAP FAQ Beckert and Possega [6].

3.1 The leanTAP Code

Here we present the core of the leanTAP code.

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

\+length(FreeV,VarLim),

copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)],UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

14
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prove(Lit,_,[L|Lits],_,_) :-

((Lit= -Neg; -Lit=Neg)) ->

(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-

prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

In order to achieve maximal efficiency from minimal means, as much work as
possible is left to the Prolog itself. First-order logic variables are represented

by Prolog variables. This representation allows the leanTAP to use Prolog
unification1. First-order function and predicate symbols are encoded using
Prolog functors and first-order terms and atomic formulas are encoded using
Prolog terms. To denote the negation symbol Prolog unary functor - is
used. Conjunction and disjunction are encoded using binary functors ”,”
and ”;”. Finally Prolog term of the form all(X,Fml) encodes the first-
order formula (∀x)ϕ where Prolog variable X encodes first-order variable x

and Prolog term Fml encodes the first-order formula ϕ. The leanTAP also
supposes skolemization to be done before translating the input formula into
the Prolog term.

The leanTAP soundness and completeness is stated in the following theo-
rem Beckert and Possega [6].

Theorem (Soundness and completness of the leanTAP )
Let Φ be the set of first-order formulas in skolemized NNF and ϕ the first-
order formula. Let also notfml be the Prolog term encoding skolemized NNF
form of the first-order formula ¬ϕ. Finally let h be the Prolog list of terms
encoding formulas from Φ.

1. Let d be a natural number encoded in a Prolog term. If the query

prove(notfml,h,[],[],d) to the program leanTAP returns success as
an answer then Φ ⊢ ϕ.

2. If Φ ⊢ ϕ then there is a natural number d (and corresponding Prolog

term d) such that the query prove(notfml,h,[],[],d) to the leanTAP
terminates with success.

When the leanTAP is runned it searches the space of all tableaux for the
tableau proof. Because the tableaux calculus as presented here is destructive2

1For efficiency reasons most of Prolog interpreters omit occur-check during unification.

On the other hand the leanTAP uses standard unification with occur-check encoded in the
unify/2 predicate. Most of Prolog interpreters have this predicate built-in with special
name such as unify with occurs check/2.

2see Hanhle [2] section 3.3 for definition and more information



CHAPTER 3. THE LEANTAP PROVER 16

we need to divide search space into finite parts. This is the reason of natural

number d in the previous theorem. This means that For fixed d leanTAP
searches for the tableau proof in the space of all tableaux constructed using at
most d applications of the γ-rule. We can also choose different interpretation
for d, e.g. the height of the constructed tableau. The way of dividing search
space is called completion mode and different ways are described in Hanhle

[2]. To find the right d iterative deepening technique is used in leanTAP .
Note that the code implementing iterative deepening is not presented here.

Now we describe how the leanTAP does work in the way as short as pos-
sible. The first argument of prove/5 predicate is representing the formula
to be expanded in the current step. The second argument UnExp is a list of
unexpaned formulas. The third argument Lits is a list of literals existing on
the current branch. The fourth argument is a Prolog term containing vari-
ables that are free on the current branch. Finally the last argument holds the
iterative deepening limit. See Beckert and Possega [5] for more explanation.

The leanTAP always tries to close the left most tableau branch first. Other
branches of tableau are not represented using some argument of prove/5.
They are represented on the Prolog call stack. According to the type of the

formula to be expanded the corresponding clause of the leanTAP is called.
The first clause corresponds to α-formulas, second to β and the third to
γ-formulas3. Note that we don’t have a clause for δ-formulas because we
suppose the formula to be in skolemized NNF. The fourth clause is trying
to close the current branch and it is always called with a literal, possibly
containing variables, as a first argument. Finally the fifth clause just chooses
next formula to be expanded.

3.2 Irrelevant Proof Parts Pruning

In this section the speed-up technique of searching for the tableau proof is
presented. This technique irrelevant proof parts pruning is in short described

in Hanhle [2] section 3.5.2 but is not implemented in leanTAP . Here we

introduce simple way of implementing this technique into the leanTAP . The

results of tests comparing this implementation with the original leanTAP are
presented in Appendix C.

3Note that when using γ-rule with some γ-formula, new instance of γ is added to the
end of the list of unexpanded formulas. This is necessary for achieving completeness.
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3.2.1 The Speed-up Technique

Now we introduce the above technique in a short way. Suppose that some
branch is expanded by a β-rule. Denote in turn by β1 and β2 the left and right
extension. Suppose that the left branch begining with the extension β1 is
closed during the proof search without using β1. Closing the branch without
using β1 means that no literal originated from β1 is used in any closure rule
used to close any branch below β1. Then the right branch begining with
β2 should be closed immediately. The tecnhinque is illustrated in the figure
below.

β
@@��

β1

...

×

β2

...

=⇒ β
@@��

β1

...

×

×

3.2.2 Implementation

To implement the above method into the leanTAP we use the concept of
Prolog anonymous variables. For each formula we remeber if formula itself
or some of it’s subformula was used in a branch closure. For every formula
this information is saved in the variable denoted Prune. Instead of working
with formulas in the first argument, the second and the third arguments, we

extend the original term of the leanTAP Fml to the term Fml-Prune. When
the formula or some of it’s subformula is used in a branch closure the prune
of that formula is set to the Prolog atom true. Let prune of the formula
denotes value of the variable Prune corresponding to the formula.

When using α- or γ-rule we just propagate prunes of variables down.
This way is the prune propageted to the literals. When branching tableau

using the β-rule, which corresponds to the second clause of the leanTAP ,
new anonymous variable is created. This anonymous variable will be the
the prune of β1 that is the left extension of the β-formula beeing expanded.
Then when going to the right branch to try to close β2, the prune of β1 is

tested. If the prune of β1 is true then the leanTAP set the prune of β to true

and creates new anonymous variable as a prune for β2. But if the prune of
β1 is still a variable then the current goal succeeds. When closing a branch
both the prune of literal beeing added on the branch and of it’s complement
allready presented on the branch are unified with the Prolog atom true.
Finally when selecting next formula to expand then the prune of the literal
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is stored with the literal in the third argument of the prove/5 predicate.
The resulting code is presented bellow.

prove((A,B)-Prune,UnExp,Lits,FreeV,VarLim) :- !,

prove(A-Prune,[B-Prune|UnExp],Lits,FreeV,VarLim).

prove((A;B)-BetaPrune,UnExp,Lits,FreeV,VarLim) :- !,

prove(A-Beta1Prune,UnExp,Lits,FreeV,VarLim),

nonvar(Beta1Prune) ->

( BetaPrune = true,

prove(B-_,UnExp,Lits,FreeV,VarLim)

) ).

prove(all(X,Fml)-Prune,UnExp,Lits,FreeV,VarLim) :- !,

\+length(FreeV,VarLim),

copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)-_],UnExp1),

prove(Fml1-Prune,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit-Prune1,_,[L-Prune2|Lits],_,_) :-

(Lit= -Neg; -Lit=Neg) ->

( ( unify(Neg,L), Prune1=true, Prune2=true ) ;

( prove(Lit-Prune1,[],Lits,_,_) )

).

prove(Lit-Prune,[Next|UnExp],Lits,FreeV,VarLim) :-

prove(Next,UnExp,[Lit-Prune|Lits],FreeV,VarLim).



Chapter 4

The System Tξ

4.1 Introduction

The system Tξ is tableaux based deductive system presented in Degtyarev
and Voronkov [3]. The main benefit of the system Tξ is the handling of
the equality. Tableaux based provers are known not to work well with the
equality. The system Tξ is based on extending a tableau prover by a bottom-
up equation solver using basic superposition.

In the system Tξ indirect version of the the tableaux calculus from pre-
vious sections is turn round to the direct one. It means that the role of
logic compound will turn round. For example we shall branch the tableaux
branch when expanding the branch by conjunction instead of by disjunction
as in previous sections. Also the skolemization will turn round to the anti-
skolemization which is the same as the skolemization but we just replace
universally quantified formulas by their Skolem versions instead of replacing
existencial quantified formulas.

4.2 Term ordering

Partial ordering is a binary transitive and irreflexive relation on some set.
We say that partial ordering S on a set S is total on S iff for each disctinct
x, y ∈ S one of (x, y) or (y, x) is in S.

Now suppose that ≻ is an ordering on T (Σ, X). Then ≻ is called reduction
ordering iff

1. ≻ is well-founded and

2. if s ≻ t then us[sϑ] ≻ ut[tϑ] holds for every substitution ϑ and for all
terms s, t, u where s and t are subterms of u.

19



CHAPTER 4. THE SYSTEM Tξ 20

Reduction ordering doesn’t need to be total in general, but later on we
shall use reduction ordering that is total on set of ground terms T0(Σ). We
shall use the ordering ≻lpo called lexicographic path ordering (LPO1) that is
defined as an extension of any total ordering >F on a (finite) set of function
symbols in Σ in the following way:
Let s and t denote terms and in the case that it’s compound term (i.e. neither
variable nor constant) let f and g denote it’s leading function symbols and
si and ti it’s i-th argument. So s = f(s1, . . . sm) and t = g(t1, . . . tn).
Then s ≻lpo t iff

1. si �lpo t for some i such that 0 < i ≤ m or

2. f >F g and s ≻lpo tj for all j that 0 < j ≤ n or

3. f = g and s ≻lpo tj for all j that 0 < j ≤ n and (s1, . . . , sm) ≻lex
lpo

(t1, . . . , tn) where by ≻lex
lpo we mean lexicographical ordering on n-tuples

with respect to ≻lpo.

In the following sections we shall always suppose that ≻ denotes reduction
ordering that is total on ground terms.

4.3 ξ-names

We say that a first-order formula is in anti-Skolem negation normal form if it
consists only of literals composed using connectives &, ∨ and by existencial
quantifier ∃. It can be proved that it is possible to translate every first-order
formula into formula in anti-Skolem negation normal form preserving it’s
provability in the First-Order Logic. Let ξ is a formula in anti-Skolem nega-
tion normal form. We say that ϕ is superformula of ψ iff ψ is a subformula of
ϕ. Let ϕ is a subformula of a formula ξ. The occurrence of subformula ϕ of ξ
is called conjunctive iff it is an occurrence in a subformula ϕ&ψ (or ψ&ϕ). A
conjunctive superformula of ϕ is a superformula of ϕ that is conjunctive. The
least conjunctive superformula of ϕ is such conjunctive superformula ψ of ϕ
that any other cunjunctive superformula of ϕ contains ψ as it’s subformula.

As a simple example consider formula P (x)∨ (Q(x)&P (x)). The first oc-
currence of P (x) has no least conjunctive superformula. The least conjunctive
superformula for the second occurrence of P (x) is Q(x)&P (x). Q(x)&P (x)
is also the least conjunctive superformula for the occurrence of Q(x). We
also note that every formula that has conjunctive superformula has unique
least conjunctive superformula.

1See for example Nieuwenhuis and Rubio [12].
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We now fix some enumeration ξ1, . . . , ξn of all conjunctive subformulas in
ξ for example by their occurrencies from the left. Let A1, . . . , An are fresh
predicate symbols not occurrencing in Σ. We say that Ak(x1, . . . , xm) is the
ξ-name of a subformula ϕ of ξ iff

1. The least conjunctive superformula of ϕ is ξk and

2. x1, . . . , xm are all free variables occurring in ξk in order of their oc-
curencies in ξk.

For an arbitrary subformula ϕ of ξ it’s ξ-name need not exist. If it exists,
than it is unique. The set of ξ-names of subformula ϕ of ξ we define as ∅ if
no ξ-name exists or a singleton {Ak(x1, . . . , xm)} if it does.

4.4 Closure Part of the System Tξ

In this section we present tableaux deductive system Tξ as presented in Degt-
yarev and Voronkov [3]. System Tξ depends on input formula ξ (formula to
be proved) in anti-Skolem negation normal form. In following sections we
always assume that ξ is the input formula in anti-Skolem negation normal
form. System Tξ as presented in Degtyarev and Voronkov [3] consists of
two parts. Equality solution part and tableaux part. In the first part input
formula is searched for equalities and complementary literals. From search
results axioms of equality part of Tξ system are computed. In the second
part inferred results from the first part are used to compute closed tableau
for input formula.

4.4.1 Closures

By a closure we mean a pair C · σ where C is a clause and σ a substitution.
These closures are provable objects of equality solution part of the system.
We say that two closures C1 · σ1 and C2 · σ2 are disjoint in variables iff
V ar(C1 ∪ C1σ) ∩ V ar(C2 ∪ C2σ) = ∅. The application of a subtitution ρ to
the closure C · σ is defined as C · σρ and denoted as (C · σ)ρ.

A clause C is called solution clause iff it contains neither equalities nor
disequalities. In particular closures containing a solution clause are objects
that ”we want to prove”. Closures containing a solution clause are just these
closures that play role in the second tableaux part of Tξ system. The axioms
of equality part of the system Tξ are called inital closures. Recall that a set
of ξ-names of subformula ϕ of ξ is either empty set or a singleton. They are
generated by the following definition:
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Initial closures of Tξ system are generated according to one of the fol-
lowing rules:

1. Whenever a literal s 6= t occurs in ξ and C is the set of ξ-names of this
occurence of s 6= t, then the closure s = t, C · ε is the corresponding
initial closure.

2. Whenever a literal s = t occurs in ξ and C is the set of ξ-names of this
occurence of s = t, then the closure s 6= t, C · ε is the corresponding
initial closure.

3. Let literals P (s1, . . . , sn) and ¬P (t1, . . . , tn) occur in ξ and C1, C2 are
their sets of ξ-names. Let the substitution σ renames variables such
that variables in P (s1, . . . , sn)σ and P (t1, . . . , tn) are disjoint. Then
the closure s1σ 6= t1, . . . snσ 6= tn, C1σ, C2 · ε is the corresponding initial
closure.

Aside from the initial closures that are the axioms of the equation part,
Tξ system contains also three inference rules: two basic superposition rules
and one equality solution rule. They are presented below. In the following
we assume that premises of rules are disjoint in variables. Disjointness can
be achieved by renaming variables in one of the premise if necessary.

Basic (right and left) superposition

(s = t, C) · σ1 (us′ = v,D) · σ2

(us′[t] = v, C,D) · σ1σ2ρ

(s = t, C) · σ1 (us′ 6= v,D) · σ2

(us′[t] 6= v, C,D) · σ1σ2ρ

where:

1. ρ is a most general unifier of sσ1 and s′σ2

2. tσ1ρ 6� sσ1ρ and vσ2ρ 6� us′σ2ρ

3. s′ is not a variable

4. (for left superposition only) us′ 6= v is the leftmost disequation in the
second premise.

The equality solution rule has the form:

(s 6= t, C) · σ

C · σρ
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where ρ is a most general unifier of sσ and tσ and s 6= t is leftmost disequation
in the second premise.

Note that all initial closures are of the form C · ε where C is a clause
containing only equations, disequations and ξ-names. In particular C doesn’t
contain any predicate symbol from ξ, because neither superpositions nor
equality solution rules add such a predicate to clause part of closure. This
holds also for any closure derived from initial closures. Moreover, derived
solution clauses contain only ξ-names.

4.5 Tableau part of the System Tξ

In case of the Tξ system the tableau is defined as a set of clauses {C1, . . . , Cn}
and is denoted as |C1| . . . |Cn| if n > 0. In particular for n = 0 we have empty
tableau denoted by #. Such expresions are in addition to closures second
provable objects of the whole Tξ system. The tableau part of the system
consists of one axiom called initial tableau that is of the form |�| where �

is an empty clause. Note that this is not the same as # because |�| is a set
containing empty clause and thus n here is 1. In addition to above axiom
there are also inference rules called tableau expansions and a branch closure.
Note that the number of tableu expansion rules depends on the input formula
ξ. Rules are defined as follows.

Tableau expansion Let D1, D2 andD be the sets of ξ-names of formulas
ϕ, ψ and ϕ&ψ respectively, provided that ϕ&ψ is a subformula of ξ. Then
the following is the tableu expansion rule:

|C1|C2| . . . |Cm|

(|D1, C1|D2, C1|C2| . . . |Cm|)σ

where σ is a minimal subset unifier of D wrt. C1 (we assume that the vari-
ables of the premise are disjoint from the variables of D,D1, D2).

Branch closure rule is defined as follows:

|C1|C2| . . . |Cm| C · ρ

(|C2| . . . |Cm|)σ

where σ is a minimal subset unifier of Cσ against C1.
Note that in branch closure C has to be solution clause because no rule

introduces equality or disequality to the tableau. Moreover every derived
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tableu contains only ξ-names in it’s clauses (on it’s branches). In every
expansion rule σ has an influence on D1 and C2 only. Furthermore, D is
either an empty set or singleton of the form {Ai(x1, . . . , xn)} where xj ’s have
to be variables distinct with all variables in the tableau. Thus, most general
subset unifier of D wrt. C1 can be found in form {x1/t1, . . . , xn/tn} for some
tj ’s. We can say that expansion rules are local on a branch. On the other
hand σ computed in branch closure can affect the whole tableau. So it is
the only rule that can affect the variables in the whole tableau. We say that
such a branch closure is non-local.

4.6 Soundness and completeness

The following theorem shows the correspondence of provability of the input
formula ξ in the First-Order Logic with some derivation in Tξ system.

Theorem (Soundness and completeness) The formula ξ is provable in
the First-Order Logic iff there is a derivation of the empty tableau # in Tξ.

4.7 Examples

We now demonstrate the proofs in the system Tξ on two expamples. The
first one is the Aristotelian Syllogism from the section 2.4. After translating
the input formula into the anti-Skolem NNF we obtain the following formula
ξ illustarted as a tree.

∨hhhhhhhh
((((((((

∨
XXXXXX

������
∃x1

&
HHH

���
P (x1)
{A1(x1)}

¬Q(x1)
{A2(x1)}

∃x2

&
HHH

���
Q(x2)
{A3(x2)}

¬R(x2)
{A4(x2)}

∨
HHH

���
¬P (sk1)

∅

R(sk1)
∅

Note that we have mentioned sets of ξ-names below each literal in tree
leaves. Initial closures are as follows.

1. {x1 6= sk1, A1(x1)} · ǫ

2. {x2 6= x′1, A3(x2), A2(x
′
1)} · ǫ
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3. {sk1 6= x′2, A4(x
′
2)} · ǫ

From these initial closures the following solution clauses are computed
using only the equality solution rule.

1. {A1(sk1)}

2. {A3(x2), A2(x2)}

3. {A4(sk1)}

From inspecting the input formula ξ we obtain two tableau exapnsion
rules. They are as follows. See also section 5.3 below and Degtyarev and
Voronkov [4] for more explanation of this representation of expansion rules.

HHH
���

A1(x1) A2(x1)

HHH
���

A3(x2) A4(x2)

The resulting tableaux proof in the system Tξ is in the next figure. Note
that we represent the tableau proof as a tree rather than the linear represen-
tation used in the definition.

PPPP
����

A1(sk1)

×

A2(sk1)
HHH

���
A3(sk1)

×

A4(sk1)

×

We have used in turn solution clauses 1,2 and 3 to close branches from
the left to the right.

As well as the main benefit of the system Tξ is the handling of equality
we now demonstrate this system on the example taken from Degtyarev and
Voronkov [4]. Let us prove the following formula in the First-Order Logic.

(∃x)((g(f(x)) 6= c ∨ (f(x) 6= g(x)&(B ∨ ¬B))) ∨ g(g(a)) = g(f(b)))

There are two conjunctive subformulas with the following ξ-names. A1(x) is
ξ-name of subformula f(x) 6= g(x). Next A2 is the ξ-name of the subformula
B ∨ ¬B. We have one tableau expansion rule as follows.

ZZ��
A1(x) A2
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Initial closures are

1. {g(f(x)) = c} · ǫ

2. {f(x′) = g(x′), A1(x
′)} · ǫ

3. {g(f(b)) = g(g(a))} · ǫ

4. {A2} · ǫ

We shall now have to use superposition rules. To do that we need reduc-
tion ordering discussed in the section 4.1.1. We shall use LPO described in
the above section. To use LPO we have to fix ordering on function symbols.
We consider following ordering f > g > c > a > b. Using the superposition
and equality solution rules we have following clauses.

5. {g(g(a)) 6= c} · ǫ [left superposition from 1,3]

6. {g(g(x)) = c, A1(y)} · {x/y} [right superposition from 2,1]

7. {A1(y)} · {y/a} [left superposition + equality solution from 6,5]

Note that only closures 4 and 7 contains solution clauses and after apply-
ing the substitution we will get {A2} and {A1(a)}. The tableau part of the
proof is very easy. We just apply these solution clauses.

ZZ��
A1(a)

×

A2

×



Chapter 5

Implementing the Tξ System
Prover

In this section we describe our implementation of the automated Tξ system
prover. At first we present the main implementation idea. Then we present
the closure solver structure. Finally we describe how the tableaux part of
the system Tξ is compiled into the Prolog program.

5.1 Basic Strategy

There are several ways to automate proof in the system Tξ denoted in Degt-
yarev and Voronkov [3]. The one way is to derive closures using a saturation
algorithm and then to derive tableaux proof by top-down search with back-

tracking as in the program leanTAP . Another way is to use a saturation
algorithm for the whole system Tξ. We have choosen the first way because
from our point of view this implementation seems to be more easily extended
with additional features in the future.

Our program consists of two parts. The first part is the closure solver.
The main function of the closure solver is to compute initial closures and then
to derive solution clauses using superposition and equality solution rules. For
doing this it is necessary to implement some reduction ordering like LPO
described in section 4.1.1. The second part of the prover takes solution
clauses from the first part and tries to find tableaux proof for the input
first-order formula.

27



CHAPTER 5. IMPLEMENTING THE Tξ SYSTEM PROVER 28

5.2 The Closure Solver

The first part of the program is written in the object oriented programming
language Python. The Python language was choosen because programming
in Python is very fast and effective. Python adopts some features known from
functional programming languages like lambda abstraction, filter, map and
reduce functions or list comprehensions. Python has also built in support
for lists, finite sets and associative arrays.

This part also takes care of reading the input formula from the input
file. As an input file syntax the TPTP language Sutcliffe and Suttner [7]
was choosen. The main reason is that this language seems to be widely
dispersed and that there exists a tool tptp2X1 to convert TPTP syntax files
into the another theorem provers input syntax. After reading the input file
the closure solver computes initial closures. Then it runs the main loop of
the solver which aim is to derive solution clauses. The main loop structure
is implemented in the way described in Lusk [8]. After computing solution
clauses the second part of the prover is initialized. The second part of the

prover is the Prolog program with a structure similar to the leanTAP . This
Prolog program structure depends on the input formula. The translation
of the system Tξ rules into that Prolog program is described below in the
section 5.4.

5.2.1 Closure Solver Main Loop

Here we describe the solver main loop. The main goal of the closure solver
is to infer all closures inferrable from initial closures. The main loop design
is similar to the main loop in resolution based theorem provers. For more
information see for example Lusk [8].

To keep generated closures in reasonable space we use the closure sub-
sumption relation. If we infer new closure that is subsumed by previously
generated closure, we can remove a new closure from the next computing.
More information about closures subsumption can be found in Bachmair [9].

The solver works in steps. One step is only one passing the while loop
below. The solver remembers two sets of closures. The set New is the set
of closures inferred in the last step. The set S is the set of closures inferred
before the last step. The solver starts with initial closures computed from
the input formula. The solver computes in one step new closures that are in-
ferred using superpositions or equality solution rules from closure computed
in one of previous steps. To infer a closure using one of superposition rules

1see http://www.tptp.org/ for more information
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we have to specify two closures. Then the solver computes all closures that
can be inferred by one of superposition rules taking one closure from S and
one closure from New as premises. Then the solver computes all closures
inferred by superposition taking both premises closures from New. Note
that the solver shall not try to use superposition rules for two closures from
S because they are supposed to have been tried in one of previous steps.
Then the solver computes all closures that can be inferred from New by the
equality solution rule. Then the solver initializes the next step. At first the
set S is extended by New. Finally the set New is set to hold all closures
computed in the current step that are not subsumed by any closure from S.
Main solver loop ends, returning the set S, when no more new closures were
inffered.

S := ∅
New := initial closures
while New 6= ∅ do

D1 := closures inferred by superposition from New and S
D2 := closures inferred by superposition from New and New
D3 := closures inferred from New using equality solution
S := S ∪New
New := all closures from D1 ∪D2 ∪D3 not subsumed by one of S

done

return S

5.3 Compiling Expansions into the Prolog Pro-

gram

In this section we are going to describe how expansions of the system Tξ into
the Prolog program are compiled. The resulting Prolog program tries to find
the tableaux proof for the input first-order formula. The resulting Prolog
program is generated by the closure solver after computing solution clauses.
The basic idea of compiling proof search into the Prolog program is taken
from Possega [10].

The resulting Prolog program consists of two parts. The first part is the
same for every input formula and does not depend on results of the closure
solver. The second part depends on expansions of the input formula and also
contains solution clauses computed in the closure solver.

Let ξ be the first-order formula in anti-Skolem NNF to be proved. Recall
that according to the definition of tableau expansion rule in the section 4.3
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we have exactly one expansion rule for each subformula of ξ of the form ϕ&ψ.
Note that we can divide expansion rules into two subcases. The first one is
that the set of ξ-names D from the tableau expansion definition is empty.
The resulting expansion rule can be illustrated as follows. Note that sets
of ξ-names D1 and D2 from the definition of tableau expansion can not be
empty so they have to be singletons. We denote their only members in turn
A1 and A2.

@@��
A1 A2

It can be interpreted that we can whenever branch the tableau branch
putting D1 as the left and D2 as the right successor of the last branch node.
The second case is that the set of ξ-names of is the singleton of the form
{A(x1, . . . , xn)}. In this case we can illustrate the expansion rule as follows.

A(x1, . . . , xn)
@@��

A1 A2

Note that A1 and A2 can also have some variables as arguments. In
this case these variables are restricted to be in the set {x1, . . . , xn}. This
expansion can be interpreted as follows - suppose we can unify A(x1, . . . , xn)
with some ξ-name atom allready presented on the branch using the most
general unifier σ. Then we can branch this branch and put A1σ as the left
successor and A2σ as the right one. We will denote the ξ-name A(x1, . . . , xn)
as the tableu expansion premise. Recall that the form of σ has been discussed
in the last paragraph of the section 4.3.

We shall enumerate expansion rules by natural numbers. In the Prolog
program maintaining the tableau proof search we have just one Prolog clause
for each expansion rule. Each such clause shall have Prolog predicate node/5
in it’s head. Everytime this node/5 clause is entered it expands the left most
tableau branch in the way described above. Whenever we expand the branch
with the ξ-name Ai, and Ai is the premis of some other expansion rule, then
we also insert that expansion into the list of avaible expansions. This list
is hold in the fourth argument of node/5 predicate. It has members of the
form exp(n,bind(...)) where bind is a Prolog term containing variables
figuring in the expansion number n. Note that we choose some fixed order
of expansions in the system Tξ. When we have several expansions with the
same expansion premise (this covers also the case of the first expansion rule
type with no premise) then we apply them all at the same time.
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Now we describe the arguments of node/5 predicate. The first argument
is the number of the expansion. The second is the current value of the
limit controlling iterative deepening. As a completion mode discussed in the
section 3.1 we use the depth of the tree. This corresponds to the number

of δ-rule apllication in the leanTAP program. The third argument is the
list of ξ-names allready presented on the current (left most) branch. The
fourth argument is discussed above and the fifth argument is used only in
expansions with non-empty premise. In the case of the fifth argument it is
the term holding current values of variables in the premise.

Aside from node/5 clauses the resulting Prolog program contains solution
clauses computed in the closure solver. Recall that the solution clause is a
clause containig only ξ-names. Each computed solution clause is represented
as a Prolog fact closure/2. The first argument is a natural number of the
closure and the second argument is a list containing the Prolog representation
of the solution clause.

The resulting Prolog code contains also procedures closepath/2, expand/3
and rotate/3. First procedure tries to close the current branch using one
of the closure computed in the closure solver. Procedure expand/3 chooses
the expansion from the list of allowed expansions and calls this expansion.
The expansion is choosen by the procedure rotate/3 which chooses the first
member of the list and returns the list with that first member removed and
added to the end of the list of avaible expansions. The resulting code also
contains procedure iterate/1 controlling the iterative deepening and run/0

running the tableau proof search.
We illustrate this conversion on the Aristotelian Syllogism problem from

the section 4.7. The corresponding node/5 clauses are as follows.

node(0, Limit, Path, Exps, Bind) :-

node(1, Limit, [a3(X_2)|Path], Exps, Bind),

node(1, Limit, [a4(X_2)|Path], Exps, Bind).

node(1, Limit, Path, Exps, _) :-

expand(Limit, [a1(X_1)|Path], Exps),

expand(Limit, [a2(X_1)|Path], Exps).

Inferred solution clauses are encoded into the following Prolog facts.

closure(0, [a1(sk_1)]).

closure(1, [a3(X_9), a2(X_9)]).

closure(2, [a4(sk_1)]).

There is also remaining Prolog code that is the same in all Prolog pro-
grams generated by the closure solver. We call it static code. At first there
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is another static node/5 clause before all other node/5 clauses.

node(_, _, Path, _, _) :- closepath(Path).

This just calls closepath that tries to close the current path.

closepath(Path) :-

closure(N, Closure),

copy_term(Closure, FreshC),

subset_unify(FreshC, Path),

There is also expand/3 clause discussed above.

expand(Limit, Path, Exps) :-

rotate(Exps, exp(N,Bind), NewExps),

node(N, Limit, Path, Exps, Bind).

Finally there is the last one non-static clause running the proof search. In
the case of Aristotelian Syllogism it has the following form.

run_limit(Limit) :-

node(0, Limit, [],[exp(0,_),exp(1,_)], _).

Note that the code implementing iterative deepening is not presented here.
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Outline

In this paper we have studied the automated theorem proving using the
tableaux methods. We have implemented the speed-up technique into the

theorem prover leanTAP . The benchmark results are presented in the Ap-
pendix C. We have also studied one expansion of the tableaux method sup-
posed to include equality raesoning in tableaux based methods. The main
benefit of this paper is the implementation of the the system Tξ theorem
prover. The benchmark results and some discussion is also presented in the
Appendix C.

6.1 Future Work

We are going to implement other speed-up technique to the xitap prover.
For example the irrelevant proof parts pruning should be simply implemented
in the prover. Also some powerfull expansion selection strategy should be
implemented. But the main improvement we are expecting from the com-
puting closures in a lazy way. But nowadays it is not clear how to simply
implement this improvement. Some additional future work is mentioned in
the Appendix C.
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User Documentation

A.1 Using the xitap Prover

The main benefit of this paper is the implementation of the Tξ system prover.
It can be found on attached CD-ROM in the directory xitap. To run the
xitap system you need the Python and the Prolog interpreter installed on
your system. Despite of the fact that the implementation can be run on
every system for that Python and Prolog interpreters are avaible (in covers
the most of nowaday operating systems) we recommend runnig the xitap

system on the Linux box1. The implementation was tested with the Python
2.4.22 interpreter and with SWI-Prolog interpreter version 5.6.163 on Redhat
Linux Fedora Core 5 operating system.

After installing Python and Prolog interpreters (that are by default in-
stalled on most Linux distributions) no additional installation is necessary.
Just if you have Prolog interpreter installed in the path other than /usr/bin/pl

you need edit the 11-th line in the file FOL/problem.py to fit your system
(note that you can specify Windows path here). Find and edit following line
if necessary.

PrologPath = "/usr/bin/pl"

To run the xitap system type simply ./xitap.py on command line in the
xitap directory. You will see following output.

1On other systems you shall not be able to use –challenge command line option
2Interpreter can be downloaded from http://www.python.org/ website
3Interpreter can be downloaded from http://www.swi-prolog.org/ website
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XiTaP system - The theorem prover for the First-Order Logic

version 1.0

Usage: xitap.py [OPTION] ... [FILE]

FILE is the file in the TPTP syntax containing a problem

to be proved.

Avaible options:

-t, --tptp-problem=name ... prove TPTP problem,

e.g. ’PUZ001+1’

-r, --tptp-root=path ... system path to TPTP

problems library

-n, --no-forks ... runs as a single

proccess

-v, --verbose ... print more information

-r, --challenge ... runs with 300s limit

Error: You must specify exactly one input file (or specify

the --tptp-problem option).

There is also version of the TPTP library installed on the attached CD-
ROM. TPTP library contains many problems to test the system. Of course
you can write your own problem file. If you have the TPTP library installed
in a different path you can you either use the --tptp-root option to specify
your own path or you can edit the value of the variable TPTPRoot in the file
TPTPTools.py to fit your system settings. You can try the test run of the
system. Just type following (without leading $) to the command line from
the xitap directory.

$ ./xitap.py --tptp-problem=PUZ001+1
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Implementation Documentation

In this section we describe the main concepts of the closure solver imple-
mentation. The structure of the Prolog program have been discussed in the
section 5.3.

B.1 Main Objects Description

As well as the Python is an object oriented language the main role in the pro-
gram have object classes. Here we describe the main hierarchy of classes in-
cluding most important attributes and methods. Each class named ClassName

is implemented in the separated file called classname.py or similar1. We
have implemented the Python library FOL offering classes encapsulating ba-
sic objects of the First-Order Logic such are terms and formulas. This library
can be found in the directory xitap/FOL on the attached CD-ROM.

We start with the description of classes implementing first-order terms.
We have the following class hierarchy.

AbstractTermhhhhhhhhh�
�

(((((((((
Variable Constant

SkolemConstant

CompoundTerm

SkolemTerm

The basic abstract2 class AbstractTerm contains methods supposed to be
overwriten in inherited classes. We just note here that all Python methods are
virtual. Most important are methods __eq__(self, other), __gt__(self, other),

1For example the class CompoundTerm is implemented in the file term compound.py
2Althought Python does not support abstract classes we can still use ordinary class in

an abstract way. It means we do not create instances of such class.

36



APPENDIX B. IMPLEMENTATION DOCUMENTATION 37

__ge__(self, other) which are Python way of overloading opearators ==, >
and >=. Then when for two instances of some class inherited from AbstractTerm

the expresion a == b is evaluated just the following method is called a. eq (b).
Note that for all Python class methods (except of static methods) the first
argument always contains the current instance of the object3. We overload
these opearators (in classes inherited from the AbstractTerm) to implement
the LPO ordering from section 4.2.

Other methods implemented for all classes inherited from the AbstractTerm
class is the method contains. This methods takes one argument and re-
turns True if it is an instance of the class Variable encapsulating the first-
order variable contained in the encapsulated first-order term. Next method
is unify(self, other) which tries to unify current term (self) with the
term specified as other and returns the most general unifier. We represent
substitutions as associative hash arrays with the domain of variables (in-
stances of the Varbiable class) and terms range. So there is no special class
encapsulating substitutions. Finally every instance of each class inherited
from the AbstractTerm contains also the method variants(self,other)

which returns True if self and other encapsulates the same term up to the
variable renaiming. Every term object contains also the attribute variables
that is the set of all variables contained in the term.

Now we are going to describe classes encapulating first-order formulas.
The part of class hierarchy encapulating first-order literals is in the next
figure.

Literal
PPPP

����
Equality Disequality

Note that we don’t have any abstract ancestor of these classes. Except of
these three classes we have also following classes encapsulating first-order for-
mulas which are not literals: ConjFle, DisjFle, EquivFle, ImplFle, NegFle,
UnivQFle and ExQFle. They in turn encapsulates first-order formulas which
leading logical connective are conjunction, disjunction, equivalence, impli-
cation, negation and universal and existencial quantifier. Among others all
these classes contains methods nnf and antiskolem which returns in turn
new objects encapulating the NNF and anti-Skolem form of the original first-
order formula. All of these also contains method subformulas providing the
way of enumerating all subformulas of the encapsulated formula. They also
implement the method complement returning new object encapsulating the

3This is done in an automatic way. You don’t need to specify this argument when
calling a method.
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complement of the original first-order formula computed using de Morgan
rules.

Now we shall describe classes encapsulating objects of the system Tξ. We
have a class XiName inherited from the class Literal encapsulating the ξ-
name atom. In addition to all methods and attributes inherited from the
Literal class the XiName contains also the attribute xiset containing a sin-
gleton containing self instance of the XiName class. In the Python code this
set is created in the contructor (called init for each Python class) by the
following code.

self.xiset = set([self]).
Here the set is Python built-in set type constructor contructing the set in-
stance from the list denoted in an usual way with [ and ] brackets. There
is also the class EmptyXiName which is used as a ξ-name for formulas that
have no ξ-name. Next class is the class XiClause encapsulating closures of
the system Tξ. Recall that the closure is a double containing a clause and a
substitution. The clause contained in the closure contains only equations, dis-
equations and ξ-names atoms. In our implementation we remember these in
three different lists. Each list contains only corresponding literals of one type
(for example just equations). Then we can identify solution clauses by testing
lists containing equations and disequations to be empty lists. This is done
in the method called solvedtest. This class also encapsulates the system
Tξ inference rules - equality solution and left and right superposition rules.
The method equality solution returns the new instance of XiClause en-
capsulating the closure derived by the equality solution rule if it is applic
Otherwise it returns None. Methods right superpositions(self,other)

and left superpositions(self,other) returns the list (possibly empty) of
all closures that can be derived by using right respectively left superposition
rule from closures self and other. Last but not least the class XiClause

contains the method variantof implementing the closures subsumption re-
lation.

Finally we have the class XiFormula implementing the translation of the
input first-order fromulas into the anti-Skolem NNF and also computing ξ-
names. We pass the input first-order formula to be proved by the argument
of the construcotor. In the contructor we also computes expansions and
initial closures of the system Tξ. The method solve of the class XiFormula

calls the main closure solver loop. It also contains the method genprolog

which generates the resulting Prolog program implementing the tableau proof
search.

The main solver loop is implemented in the source file solver.py and is
not encapsulated in any class. It contains the function solve(inits) which
takes initial closures computed in the contructor of the class XiFormula and
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implements the main closure solver loop as described above in the section
5.2.1.

We have also the class Theory encapsulating the First-Order Logic theory.
We are limited to have finite number of axioms. Then the class Theory is
just a list of axioms. The prime of the FOL library is the class Problem. This
class encapsulates the first-order problem including axioms and conjectures
to be proved. The main method of the class Problem is the method prove

running the proof search including runnig the closure solver and the resulting
Prolog program.

B.2 The TPTPTools Package

In our distribution of the xitap system we have also included the package
allowing reading the problems wriiten in the TPTP language. It can found
in t he file TPTPTools.py in the directory containing the file xitap.py not
in the FOL subdirectory. It contains the function ReadTPTPProblem(name)

which only argument is the TPTP problem name. The function will find the
problem file according to the value of the variable TPTPRoot discussed in the
user documentation.

It returns the instance of the FOL.Problem class. It also contains the
function ReadTPTPFile(filename) which reads the input file in the TPTP
syntax and returns the instance of the FOL.Problem class.



Appendix C

Benchmark Tests Results

In this appendix we are presenting our results of our implementation of ir-
reflexive proof parts pruning technique and of our implementation of the
sytem Tξ. We are testing both implementations on the subset of Pelletier
problems for testing automated provers taken from Pelletier [11] found in
the Sutcliffe and Suttner TPTP library [7].

The implementation of the irrelevant proof parts pruning seems to be a

good improvement of the original leanTAP program. Althought we can see
a little decline on some problems, that is causes by additional computation,
this decline is futile in comparsion with improvent on other problems. We
can say that we have same results in the worst case but better in the general
case.

Also our implementation of the Tξ system prover is tested on these prob-
lems. But we have to say that these systems are not well comparable because

the main benefit of the system Tξ is handling of equality and the leanTAP
program is known not to work well with equality. But in order to compare
these implementations we have extened the problems with the First-Order
Logic equality axioms. Problems containing equalities are indicated by ∗ in
the problem name.

Similar approach that in our prover is used in Moser etc. E-SETHEO
prover [13]. It should be interesting to test our implementation against this
prover. Unfortunately we don’t have working installation of the E-SETHEO
prover at this moment. This and other comparsions are subjects of the future
work.

In the following table the results are presented. In the first column the
number of Pelletier problem is presented (see Pelletier [11]). In the second
column the corresponding TPTP-name is presented. In the third, the fourth

and the fifth column runtimes in miliseconds of the original leanTAP pro-
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gram, leanTAP with irrelevant proof parts pruning and the xitap system are
presented. The value ∞ means that the program did not finish after 300
seconds. More testing is the subject of the future work.

1 SYN040-1 55 63 166
4 LCL181-2 23 27 109
5 LCL230-2 112 118 123
10 SYN044-1 34 38 64
13 SYN045-1 42 49 230
17 SYN047-1 32 39 90
18 SYN048-1 53 57 24
20 SYN050-1 43 49 66
21 SYN051-1 63 66 157
22 SYN052-1 45 53 125
23 SYN053-1 56 59 81
24 SYN054-1 213 52 192
25 SYN055-1 43 46 176
26 SYN056-1 53 49 ∞
27 SYN057-1 48 52 1645
28 SYN058-1 52 56 302
30 SYN060-1 44 34 3215
34 SYN036-1 2561 211 ∞
38 SYN067-1 160 140 2023
45 SYN069-1 162 113 2323
47 PUZ031-1 ∞ ∞ 2076
48∗ SYN071-1 ∞ ∞ 433
49∗ SYN072-1 ∞ ∞ ∞
50 SYN073-1 23 24 37
52∗ SYN075-1 ∞ ∞ ∞
53∗ SYN076-1 ∞ ∞ ∞
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