
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta
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Abstrakt: V této práci se zabýváme lineárńımi inverzńımi problémy Ax ≈ b,
kde A je zhlazuj́ıćı lineárńı opearátor a b reprezentuje vektor pozorováńı zat́ıžený
neznámým šumem. V práci [Hnětynková, Plešinger, Strakoš, 2009] bylo ukázáno,
že vysokofrekvenčńı šum se během Golubovy-Kahanovy iteračńı bidiagonalizace
vyjevuje v levých bidiagonalizačńıch vektorech. V práci navrhujeme metodu,
která identifikuje iteraci s maximálńım vyjeveńım šumu a redukuje vysokofrek-
venčńı šum odečteńım př́ıslušného (škálovaného) bidiagonalizačńıho vektoru od
vektoru b. Tato metoda je následně testována pro r̊uzné typy šumu. Dále
Hnětynková, Plešinger a Strakoš odvodili metodu k odhadováńı hladiny šumu
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Title: Regularization Techniques Based on the Least Squares Method

Author: Marie Michenková
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Abstract: In this thesis we consider a linear inverse problem Ax ≈ b, where
A is a linear operator with smoothing property and b represents an observa-
tion vector polluted by unknown noise. It was shown in [Hnětynková, Plešinger,
Strakoš, 2009] that high-frequency noise reveals during the Golub-Kahan itera-
tive bidiagonalization in the left bidiagonalization vectors. We propose a method
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List of Symbols
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b right-hand side
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ei i-th column of identity matrix
f solution function in integral equations
g data function in integral equations
I identity matrix
K kernel in integral equations
knoise + 1 noise revealing iteration
Lk lower-bidiagonal matrix of size k × k
Lk+ lower-bidiagonal matrix of size (k + 1)× k
m, n matrix dimensions, m ≥ n

p
(k)
1 left singular vector of Lk corresponding

to the smallest singular value
s, t independent variables in integral equations
si i-th left bidiagonalization vector
S matrix of right bidiagonalization vectors
ui i-th left singular vector/function
U matrix of left singular vectors
vi i-th right singular vector/function
V matrix of right singular vectors
wi i-th basis vector of projection method

i-th right bidiagonalization vector
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Wi matrix of basis vectors
matrix of right bidiagonalization vectors

xnaive naive solution
xT−SV D, xk T-SVD solution
xT ikh, xλ Tikhonov solution
yl solution to projected problem

αi i-th diagonal entry of Lk
βi i-th subdiagonal entry of Lk
µi singular value of kernel
Σ diagonal matrix with singular values
σi singular value of matrix
ωi quadrature weights

N (0, σ2I) normal distribution with zero mean and variance σ2

U(a, b) uniform distribution in interval (a, b)
Cov(·) covariance matrix
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Preface

Consider a linear inverse problem

Ax ≈ b , A ∈ Rn×n , b = bexact + bnoise ∈ Rn , (1)

where A represents a discrete model (smoothing operator), b represents an obser-
vation vector, and bnoise represents unknown perturbations in the data, usually
denoted as noise. Given A and b, the aim is to compute a numerical approxima-
tion of the exact solution xexact,

Axexact = bexact .

Inverse problems of the form (1) arise in many fields of application, e.g. signal
and image processing, geophysics, seismology, etc. [Han98, Vog02, Han10].

Typically, these problems are ill-posed, meaning that a small perturbation in
the data may cause significant errors in computed approximations of xexact. The
ill-posed nature of the problem is revealed by the singular values of A, which
decay gradually without a noticeable gap. Thus A is severely ill-conditioned, and
a form of regularization is necessary to compute a stable approximation of xexact

[Eld77, Han98, EHN00, Vog02]. Regularization can take many forms, but target
of all of them is to preserve sufficient information about the exact solution, while
suppressing the influence of noise. The most well known regularization meth-
ods are the Tikhonov’s regularization [Tik63, Gro90] and the truncated SVD
[Han71, Var73, Han87] belonging to spectral filtering methods. However, they
are usually confined to smaller problems, because they involve computing the
(partial) SVD of A. An alternative is iterative regularization, also called projec-
tion regularization. Iterative regularization is often based on Krylov subspaces,
where regularization is achieved via projection onto a Krylov subspace of smaller
dimension. Such methods are for example LSQR [PS82b, Bjö88], CGLS [BES98]
or CGNE [Cra55, FF63]. Hybrid methods combine both types of regularization.
First, the original problem is projected onto a Krylov subspace, and subsequently,
the projected problem is further regularized using spectral filtering [Bjö88].

Amount of regularization in every method is controlled by a regularization
parameter and no regularization method is effective without an appropriate choice
of this parameter. Methods for choosing regularization parameters can be divided
into two groups: methods based on a priori knowledge of the noise level in the
data, e.g. the discrepancy principle [Mor66, Mor84], and methods that work
without this a priori information, e.g. the L-curve [HO93] or the generalized
cross validation [GHW79].

In this thesis, we focus on the Golub-Kahan iterative bidiagonalization, which
is a core of the LSQR method. In [HPS09], it was shown, how white noise
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propagates through the iterative bidiagonalization. At some stage, a so-called
noise revealing appears. At this point the corresponding left bidiagonalization
vector becomes dominated by white noise. Identifying the point of noise revealing
allows determining the noise level in the data.

The goal of this thesis is to derive a method to eliminate high-frequency
noise in the data using the results of [HPS09]. The idea is to determine the
iteration in which white noise reveals in the left bidiagonalization vector most
significantly. Subsequently, we subtract this vector (properly scaled) from the
noisy data b. The method is computationally verified on problems from Reg-
ularization Tools [Han07]. In the remainder of the thesis, we investigate how
a change in spectral properties of noise influences the revealing of noise to verify
the robustness of the proposed method.

The thesis is organized as follows. Chapter 1 brings an introduction into dis-
crete inverse problems, and an overview of standard regularization methods. In
chapter 2, the Golub-Kahan iterative bidiagonalization is recalled and a summary
of the results of [HPS09] is given. In chapter 3, a method eliminating the trouble-
some high-frequency noise in the data is proposed and tested on problems with
white noise. Chapter 4 studies, whether and how our method is affected when
passing from white to a different type of noise. In chapter 5, a method possibly
reducing the computational cost of the noise level estimate proposed in [HPS09]
is derived. Conclusion summarizes the main ideas of the thesis and formulates
open questions.
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Chapter 1

Theoretical Background

This whole thesis deals with inverse problems, therefore it would be inappropriate
to skip the definition of this class of problems. In mathematics, we are usually
concerned with two general types of problems - forward problems and inverse
problems. The forward problem is to compute the output, given a system and
the input to this system, see the scheme 1.1. The inverse problem is to compute
either the input or the system, given the other two quantities, see the scheme 1.2.
Inverse problems generally arise when we wish to reconstruct the hidden data
from some accessible outer measurements.

Figure 1.1: Froward problem.

Figure 1.2: Inverse problem.
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1.1 Ill-posed problems

In connection with inverse problems, also the definition of well-posedness of the
problem should be mentioned. In 1902, Jacques Hadamard in [Had02] introduced
the following definition.

Definition 1.1 (Hadamard1). Mathematical models of physical phenomena are
well-posed if the following three requirements are satisfied:

• A solution exists.

• The solution is unique.

• The solution’s behaviour hardly changes, when there is a slight change in
the initial condition.

Mathematical problems that are not well-posed are called ill-posed. Alterna-
tively, ill-posed problems are problems that violate one or more requirements in
definition 1.1. Inverse problems are often ill-posed. A typical example of ill-posed
problem is the inverse heat equation, deducing a previous distribution of temper-
ature from final data, of which the solution is highly sensitive to changes in the
final data.

If the problem is well-posed, then it stands a good chance of solution on
a computer using a stable algorithm. If it is not well-posed, it needs to be re-
formulated for numerical treatment. For illustrative purposes, we will mention
the most common ways of re-formulating, see [Han10] for more detailed discus-
sion. The reformulations will be illustrated on systems of linear equations, for
simplicity.

The existence of the solution can be enforced by weakening the requirements
on the solution. Consider the following overdetermined system of linear equations(

1
2

)
x =

(
1
3

)
.

Obviously, there is no x, such that 1x = 1 and 2x = 3. However, we can re-
formulate the problem into the following associated least squares problem [Leg05].

min
x

∣∣∣∣∣∣∣∣( 1
2

)
x−

(
1
3

)∣∣∣∣∣∣∣∣
2

.

This problem already has the solution x = 1.4.
The uniqueness can be most in cases fixed by adding additional requirements

on the solution. Consider the following under-determined system of linear equa-
tions

(1 1)x = 1.

Obviously, there are infinitely many xs, such that x1+x2 = 1. However, requiring
that the norm ‖x‖2 is minimal, there is a unique solution x = (0.5, 0.5)T .

The stability condition is more tricky and can be usually achieved by some
type of regularization.

1adopted from Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/

Well-posed
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First, we will consider an inverse problem where a slight perturbation of the
system causes a significant perturbation of the solution. Consider the following
system of linear equations(

1 1
0 µ

)
x =

(
1
1

)
, where µ > 0.

It is easy to show that the system has a unique solution x = (1 − µ−1, µ−1)T .
Although the solution is unique, a small perturbation of µ may lead to a huge
perturbation in the solution if µ is small. This is caused by the fact that for
small µ, the system is close to the overdetermined system(

1
0

)
x =

(
1
1

)
.

Substituting the original problem by its associated least squares problem and
adding an extra condition bounding the norm of the solution re-formulates the
original problem into a more stable one

min
x

∣∣∣∣∣∣∣∣( 1 1
0 µ

)
x−

(
1
1

)∣∣∣∣∣∣∣∣
2

, such that ‖x‖ ≤ c.

Now, we will consider an inverse problem where a slight perturbation of the
right-hand side of the equation causes a significant perturbation of the solution.
Consider the following system of linear equations(

1 2
2 4.1

)
x =

(
3

6.1

)
.

It is easy to show that the system has a unique solution x = (1, 1)T . Changing
the right-hand side slightly by adding the vector (0, 0.1)T , we get the system(

1 2
2 4.1

)
x =

(
3

6.2

)
.

This system has a unique solution equal to x = (−1, 2)T . Despite the small
perturbation in the data, we obtained a solution far from the original one. This
type of instability is caused by the properties of the system matrix, which is
close to singular. It is not difficult to show that adding the vector (−2, 1)T to x
changes the right-hand side only by (0, 0.1)T , i.e. (−2, 1)T is ‘almost’ a null
vector of the given matrix. There are more ways, how to introduce more stability
into this type of problems. The most important ones will be described later in
this chapter.

The following sections will cover fundamentals of solving discrete ill-posed
problems resulting from discretization of Fredholm integral equations. This part
will be mainly based on books [Han10, Han98, HNO06]. Although the author
considers only problems based on Fredholm integral equations, the regularization
techniques can be (after some adjustments) used for a broad range of discrete
ill-posed inverse problems. We consider all functions and quantities to be real
to keep the notation simple, but the theory is mostly extendible to the complex
domain. Unless stated otherwise, we assume exact arithmetic.

8



1.2 Fredholm integral equations

In mathematics, the Fredholm integral equation is an integral equation of which
solution gives rise to Fredholm theory [Fre03], the study of Fredholm kernels
and Fredholm operators. Fredholm integral equation of the first kind is of the
following form

g(s) =

∫
It

K(s, t)f(t)dt, (1.1)

and the aim is, given the continuous kernel K(s, t) and the data - function g(s),
to find the source - function f(t).

There also exists Fredholm integral equation of the second kind, which has
the form of

φ(s) = f(s) + λ

∫
It

K(s, t)φ(t)dt,

but these equations are not considered further in this thesis.
Fredholm equations arise naturally in the theory of signal processing - statis-

tical signal processing, image processing and image deblurring (including medical
imaging), seismic signal processing, data mining, etc. For illustrative purposes,
we will show two basic problems resulting into Fredholm integral equation. The
first of them will be an image deblurring the second one a gravity survey problem,
both adopted from [Han10].

Image deblurring problem

Consider a 1D image (e.g. a barcode) scanned by some optical device (e.g. a bar-
code scanner). Although the original image is sharp, the record of the image
is, due to imperfections in the scanner, usually blurred. Blurring process in an
optical device is in most cases modeled by convolution with a Gauss kernel

k(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
,

where the parameter σ controls the amount of blurring and its square corresponds
to variance in statistics. The constant in front of the exponential, which normal-
ize the Gaussian function, is often omitted. In image processing field, usually the
term point-spread function instead of ‘kernel’ is used. Roughly speaking, it de-
scribes the response of an imaging system to a point source. Convolution kernels
are special type of Fredholm kernels defined as K(s, t) ≡ k(s − t). The idea of
blurring process in the scanner is shown by scheme 1.3.

Gravity survey problem

Compared to the previous example, which deals with some process taking place
in a technical device, this one describes a purely physical phenomenon. If we
have measurements of the Earth’s gravity field available, then we might ask the
question: ‘Given the vertical component of the gravity field g(s), what can we
deduce about the mass distribution with density f(t) located at the depth d below
the surface if we assume there is no mass outside this source?’ The solution to
this problem (i.e. the density distribution that best matches the data) is useful
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Figure 1.3: An illustration of blurring process in a bar-code scanner. Parameter σ
is chosen as 0.03. See example barcode.m .

Figure 1.4: A scheme of the gravity surveying model with mass density f(t) in
the depth d under the surface. Here, g(s) stands for the observed quantity –
vertical component of the gravity field.

because it generally tells us something about a physical parameter that we cannot
directly observe. We expect that the bigger distance d, the more difficult task it
is.

According to the Newton’s law of universal gravitation, the gravity field is
inversely proportional to the squared distance between the objects (denoted by r
here) and proportional to the mass, i.e.

dg = G
cos θ

r2
f(t)dt,

where G is the universal gravitational constant. We multiplied the right-hand
side by cos θ as we only measure the vertical component of the gravitational field,
see scheme 1.4. The total value of g(s) for any s consists of contributions from

10



Figure 1.5: An illustration gravity survey problem for different depths d. Grav-
itation constant was chosen 6.674 · 10−8, which corresponds to centimeter-gram-
second system of units. See example gravity.m .

all the mass along the t axis and therefore

g(s) = G

∫ b

a

cos θ

r2
f(t)dt = G

∫ b

a

d

(d2 + (s− t)2)3/2
f(t)dt , (1.2)

where in the last expression we substituted for cos θ and r. See [Han10] for more
detailed derivation. We see that (1.2) has a form of Fredholm integral equation
with the convolution kernel

K(s, t) ≡ G
d

(d2 + (s− t)2)3/2
.

An example of gravity survey model is shown in figure 1.5. As we supposed, for
smaller depth, we are at least able to guess that there was a steep decay in the
density around the middle, but for depth d = 0.4, the jump is almost smoothed
out. Intuitively, the second problem (d = 0.4) is ‘more ill-posed’, because even
very different mass densities will lead to similar gravity fields.

In the two examples from different research fields we saw that a smoothing
occurs while going from the source f to the observed data g. This is a univer-
sal phenomenon of integral equations. In mapping from f to g, higher frequency
components in f are dampened compared to the lower ones. Mathematical formu-
lation of this phenomenon is called Riemann-Lebesgue lemma and is included in
the appendix of the thesis. Analogously, if we solve the inverse problem, i.e. com-
pute the source f from the observed data g, high frequencies are amplified and
the higher the frequency, the greater the amplification. This leads to the fact that
even a small random perturbation of g can lead to a very large perturbation of f
if it has a high frequency component. This illustrates the fundamental difficulty
of solving inverse problems.
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1.3 Singular value expansion

The singular value expansion (SVE) [Sch07] is a very important theoretical tool
which helps us to understand the smoothing process in integral equations. It also
provides a necessary and sufficient condition of the existence and uniqueness of
the solution.

Consider a square integrable2 kernel K(s, t), then the kernel has an SVE, i.e.
a convergent expansion of the following form

K(s, t) =
∞∑
i=1

ui(s)µi vi(t), (1.3)

in which {µi} are singular values, and {ui} and {vi} are left and right singular
functions respectively. Moreover, the following holds

• µ1 ≥ µ2 ≥ . . . , µi ≥ 0,

•
∫
Is
ui(s)uj(s)ds = δij and

∫
It
vi(t)vj(t)dt = δij,

•
∫
Is
K(s, t)ui(s)ds = µivi(t) and

∫
It
K(s, t)vi(t)dt = µiui(s).

It can be shown that the smoother the kernel, the faster the singular values
decay to zero and that the singular functions resemble spectral bases. This is in
agreement with Riemann-Lebesgue lemma. Without loss of generality the {ui}
and {vi} form bases of L2(Is) and L2(It) respectively. If we now expand both f
and g in a standard manner (assuming that both of them lie in L2), we get

f =
∞∑
i=1

(vi, f)L2vi and g =
∞∑
i=1

(ui, g)L2ui .

Substituting for g and f in (1.1) we get, due to orthonormality of {vi},

g =
∞∑
i=1

µi(vi, f)L2ui .

This leads formally to

µi(vi, f)L2 = (ui, g)L2 and f =
∑
i

(ui, g)L2

µi
vi . (1.4)

The interpretation of the equation (1.4) is following: ‘the solution exists if and
only if all the projections of the right-hand side onto singular functions corre-
sponding to zero singular values are zero’. Nevertheless, for every degenerate
kernel (i.e. kernel with zero singular values) the solution is not unique, because
right singular functions corresponding to the zero singular values form the null-
space of the integral operator,∫

It

K(s, t) vi(t) dt = 0 if µi = 0.

2
∫
Is

∫
It
K2(s, t) dtds <∞
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Although the analysis in terms of SVE provides conditions of the existence and
uniqueness of the solution, it is of purely theoretical concern because the SVE
can be rarely determined analytically. However, it can always be approximated
numerically as described in the next section.

Before finishing this part, we will discuss the regularity of the solution. To
derive (1.4), we a priori assumed that the solution is square integrable, which
guarantees the convergence of the infinite sum in (1.4). Conversely, for a square
integrable solution f to exist, the sum of coefficients must be bounded, i.e.∑

i

(ui, g)L2

µi
<∞. (1.5)

Condition (1.5) has important consequences for numerical computations and is
called the Picard condition [Pic10]. More on SVE can be found in [Han10].

1.4 Discretization of integral equations

The aim of discretizing integral equations lies in turning them into systems of
linear equations

Ax ≈ b, A ∈ Rm×n, x ∈ Rn, and b ∈ Rm, (1.6)

which can be numerically solved to get approximate solutions3. This is often
necessary, because we usually cannot solve (1.1) analytically and also because
sometimes the right-hand side is evaluated in discrete points only. There is no
exclusive way of discretizing, a review of the methods can be found in appendix
of [VL05]. In the thesis, we will describe only the most common ones.

Quadrature rule

This is the most basic and straightforward approach. It is based on applying
a numerical integration method to the integral equation, i.e.∫

It

K(s, t)f(t) dt ≈
n∑
i=1

ωiK(s, tj)f(tj),

where tj are the nodes of the quadrature and ωj are the corresponding weights. We
assume that we are able to observe the data g in some discrete points s1, . . . , sm,
hence

n∑
j=1

ωjK(si, tj)f(tj) ≈ g(si), i = 1, . . . ,m.

Setting aij ≡ ωjK(si, tj), xj ≡ f(tj), and bi ≡ g(si), we get (1.6).
It may be tricky to use quadrature rule to solve the integral equations, because

there is not a clear link between the SVE analysis from the previous section and
properties of A. One also has to pay attention to the fact that norm ‖A‖F grows
as O(

√
m).

3We changed the notation to distinguish between functions K, f , and g and vector/matrix
objects A, x, and b.
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Expansion methods

The concept of expanding a function into a series is a pretty common method in
mathematics to express a particular element as being part of a space. The ability
of solving (1.1) consists in determining a good set of basis functions where to
expand the data and the solution functions. Otherwise, it will be impossible to
find even an approximation of this functions. The minimum requirement is that
the elements of the basis are L2 functions.

Orthonormal basis functions

The first approach is to approximate the data g and the unknown function f as
a linear combination of some orthonormal 4 functions {φj} and {ψi}

f(t) ≈ fn(t) ≡
n∑
j=1

xjφj(t), g(s) ≈ gm(s) ≡
m∑
i=1

bi ψi(s).

We assume that the residuals f − fn and g− gm are orthogonal to {φj} and {ψi}
respectively. Substituting for f and g in (1.1), we get

n∑
j=1

∫
It

K(s, t)xjφj(t) dt ≈
m∑
i=1

bi ψi(s).

Taking inner product with ψi, we get, from the orthonormality of the basis func-
tions,

n∑
j=1

∫
Is

∫
It

ψi(s)K(s, t)xjφj(t) dt ds ≈ bi, i = 1, . . . ,m.

Setting

aij ≡
∫
Is

∫
It

ψi(s)K(s, t)φj(t) dt ds, (1.7)

we get (1.6).
The advantage of this approach consists in the link between SVE and the

singular value decomposition (SVD) of A. It was proved in [Han88] that for any
two sets of orthonormal functions, the SVD of A converges to the SVE of K as
shown later in this section.

Galerkin method

This method is based on the previous one but the orthogonality condition has
been relaxed and it is only necessary that the basis functions used in the series
expansions are linearly independent and the residual is orthogonal to the bases,
allowing the employment of such functions as B-splines or Chebyshev polyno-
mials.

It is worth mentioning that not all the methods can always be used. If the
data is given (or observed) only in a finite number of points, we cannot use the
expansion method in a straightforward way, but some kind of discrete expansion
must be used.

4orthonormal in L2, that is
∫
φiφj = δij and

∫
ψiψj = δij
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It may also be impossible to evaluate the aij explicitly in expansion methods
and a quadrature rule must be employed to create the matrix A.

There exists a special case of basis functions which links the expansion meth-
ods and the quadrature rule. It is a set of so-called ‘top hat’ functions [Han87] –
scaled indicator functions

χi(x) =

{ √
xi − xi−1, x ∈ (xi−1, xi)

0 elsewhere
.

The following two approaches coincide (up to scaling):

• expanding the functions f and g using ‘top hat’ functions and then using
a quadrature rule to evaluate aij ≡

∫
Is

∫
It
ψi(s)K(s, t)φj(t)dtds,

• using a composed quadrature rule to solve the whole integral equation (for
a particular choice of tj and si).

The relationship between SVD and SVE

As we mentioned, there exists a link between the SVD of the matrix A and the
SVE of the kernel K for a particular type of discretization. This relation was
thoroughly described in [Han88], we will repeat only the most important results.
For simplicity, we will assume m ≥ n, i.e. the matrix A is either square or has
more rows than columns. Let A have the following (economic) SVD

A = UΣV T =
n∑
i=1

ui σi v
T
i . (1.8)

Here, Σ ∈ Rn×n is a diagonal matrix with the singular values on the diagonal

Σ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,

and U ∈ Rm×n and V ∈ Rn×n are matrices with orthonormal columns constitut-
ing left and right singular vectors respectively. Since the SVD is generally not
unique5 [Bjö96], in (1.8) we consider an arbitrary but fixed SVD of the matrix A.

Formally, the solution of (1.6) can be written in the form of

x = V Σ−1UT b =
n∑
i=1

uTi b

σi
vi ≡ A†b . (1.9)

Analogously to the continuous model: ‘the solution exists if and only if all the
projections of the right-hand side onto singular vectors corresponding to zero
singular values are zero’, see (1.4). To ensure that the solution (1.9) approximates
the solution (1.4) we expect a ‘correspondence’ between the SVE and SVD.

If m = n and we compute the matrix A according to (1.7), then the singular
values of A converge to those of K as n→∞. Left and right singular functions
of K are approximated by u

(n)
j and v

(n)
j , defined as follows

u
(n)
j ≡

n∑
i=1

uijψi and v
(n)
j ≡

n∑
i=1

vijφi for j = 1 . . . n.

5similarly to SVE
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(a) Barcode reading (µ = 0.3) (b) Gravity survey (d = 0.2)

Figure 1.6: The Picard plot for discretized problems from pages 10 and 11 –
barcode reading and gravity survey. See example picard.m .

The similar can be done for m 6= n6. This convergence, together with equa-
tions (1.4) and (1.9), has a fundamental consequence – the discrete Picard con-
dition. The discrete Picard condition is a discrete version of the Picard condi-
tion (1.5) and can be in outline formulated as follows: ‘on average, the sizes of
projections |uTi b| decay faster than the singular values of A’. The condition was
originally proposed in [Han90]. See an illustration in figure 1.6.

Due to the fact that in most cases there is only a finitely dimensional data
available (discrete measurements of some quantity, pixels in an image, already
discretized sample problems etc.), we will work directly with the resulting system
of linear equations (1.6). We will assume that the given system is good enough
to approximate well the underlying integral equation. Roughly speaking, we will
neglect the discretization error. Note that this is might be a bit tricky, because
adding more points/functions to the discretizations decreases the discretization
error but introduces more ill-posedness to the system (1.6) because the matrix A
becomes more ill-conditioned and this has to be taken into account.

1.5 Noise

As mentioned in the end of sections 1.1 and 1.2, the fundamental difficulty of
solving inverse problems lies in the fact that even a small random perturbation
of the observed data g can lead to a very large perturbation of the solution f if
it has high frequency components. The system (1.6) obviously inherits the ill-
posedness of the original integral equation (1.1). The perturbation of the system
is usually called noise. For the purpose of this thesis, we assume that noise is
confined to the right-hand side b. This is a clear oversimplification. However,
the perturbation of the system A is of different character than the perturbation
in the data b. Matrix A is mostly influenced by model errors (the model is
simplified relative to the real world) and discretization errors. Compared to
that, the perturbation of b is usually dominated by random variations caused

6note that the number of left and right singular functions is always equal to min(m,n)
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by measurement errors (physical measurements). For solving systems, where the
matrix A is contaminated by some errors, we refer the reader e.g. to the paper
on scaled total least squares [PS02].

From this point on, we consider the following problem. Assume that there
exists an exact solution xexact and the corresponding ‘exact’ right-hand side
bexact ≡ Axexact. The data thus have the form

b = bexact + bnoise, where bexact = Axexact. (1.10)

Moreover, we assume that the amount of noise is negligible compared to the
right-hand side, i.e. ∥∥bnoise∥∥� ∥∥bexact∥∥ , (1.11)

which is a natural assumption and a prerequisite for any numerical method. The
interpretation of xexact is the following - xexact is a solution to problem (1.6)
with the right-hand side free from random perturbations. Note that, this is not
completely true when a quadrature rule is used (either to discretize the problem
or to evaluate (1.7)) but xexact can still stand for a good approximation.

Analysis of the stochastic properties of the random noise bnoise represents the
essential tool for solving discrete inverse problems. In the rest of the section, we
cover the most important types of noise.

In this section, we use the same notation for both random and algebraical
vectors.

White noise

White noise is the most commonly considered kind of noise. This is a type of
perturbations in which all the elements of bnoise come from the same distribution
and are uncorrelated.

Due to the fact that the ‘observation error’ is usually modeled by Gaussian
distribution, in the rest of the thesis, white noise will stand for a noise from
normal distribution with zero mean and variance σ2, and will be denoted by

bnoise ∼ N (0, σ2I).

When the measurements are represented by a finite number of digits (linear
analogue-to-digital conversion), then the errors are uniformly distributed in the
interval

[
−a

2
, a
2

]
, where a denotes the smallest unit of measurement7. This will

be denoted by

bnoise ∼ U
(
−a

2
,
a

2

)
.

Coloured noise

Coloured noise is noise in which some of the frequencies are dominant, i.e. the
spectral density is not flat. The power spectral density (PSD), describes how the
power of a signal or time series is distributed with frequency. Here, power is
defined as the squared value of the signal. The formal definition of PSD can be
found in [GD04]. Many of these definitions assume a signal with components at

7when the error is due to rounding; for truncation error, it is [0, a]
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Table 1.1: Different colors of noise. The power spectral density is proportional
to 1

fβ
.

colour β

Brown(ian)/red 2
pink 1
white 0
blue -1
violet -2

all frequencies8, with a power spectral density per unit of bandwidth inversely
proportional to the power of density

PSD ∝ 1

fβ
.

Noise containing all frequencies is commonly referred to as broad-band.
To generate a colored noise, the routine powernoise.m [LMR+07] is used in all

experiment contained in the thesis. The most important noise colors are listed in
table 1.1. Any noise with β < 0 will be referred to as high-frequency noise (HF).
Low-frequency noise (LF) will stand for noise with β > 0.

Following five figures illustrate the properties of different noise colors. The
noise vectors bnoise are scaled to 1 in Euclidian norm.
See example coloured noise.m .

(a) noise vector bnoise (b) |fft(bnoise)| (c) PSD of bnoise

Figure 1.7: Brownian noise.

(a) noise vector bnoise (b) |fft(bnoise)| (c) PSD of bnoise

Figure 1.8: Pink noise.

8In the continuous case we consider all frequencies from some range (audible, visible etc.),
in the discrete case, the frequency is bounded by the number of elements.
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(a) noise vector bnoise (b) |fft(bnoise)| (c) PSD of bnoise

Figure 1.9: White noise.

(a) noise vector bnoise (b) |fft(bnoise)| (c) PSD of bnoise

Figure 1.10: Blue noise.

(a) noise vector bnoise (b) |fft(bnoise)| (c) PSD of bnoise

Figure 1.11: Violet noise.

Data correlated noise

In the previous part of this section, we considered noise that is either uniformly or
non-uniformly distributed but always independent of the ‘true’ data. Sometimes,
however, it is reasonable to assume that noise is proportional to the data in some
sense. For simplicity, we restrict ourselves to the case where noise is given by

bnoise ≡ diag(bexact) e, where e ∼ N (0, σ2I).

This kind of noise is obviously not white - the covariance matrix of bnoise is

Cov(bnoise) = σ2diag(bexact)2.

Nevertheless, it has a property that is known as to be ‘white-noise-like’. In
short, white-noise-like means that the covariance matrix of the Fourier transform
of bnoise is close to identity.
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(a) Smooth exact data bexact (b) White noise e (c) Noise bnoise

Figure 1.12: An example of a data correlated noise. The code is available under
example data correl noise.m .

Prewhitening

A number of methods is based on the assumption that noise in the right hand side
is white. If noise is not white, then we are usually able to transform the problem
into one with white noise. This technique is commonly called prewhitening [CS07].
The idea is to multiply the equation (1.10) by a non-singular matrix such that
the noise becomes white, i.e. the covariance matrix is a (scaled) identity. Let
now Cov(bnoise) = LLT be the Cholesky decomposition of the covariance matrix.
When we multiply the whole equation by the inverse Cholesky factor of the
covariance matrix 9, the noise becomes white

L−1Ax ≈ L−1b

(L−1A)x ≈ L−1bexact + L−1bnoise. (1.12)

Using the property of covariance matrices

Cov(Cx) = C Cov(x)CT ,

it easily follows that the covariance matrix of L−1bnoise is identity. The trans-
formation of the system also changes the spectral properties of the right-hand
side. If the noise was originally high-frequency, then the inverse Cholesky factor
dampens the high frequencies and L−1bexact becomes even more low-frequency
dominated and vice versa.

Prewhitening, however, does not have a regularizing effect – the transformed
problem remains as ill-posed as it was before prewhitening.

1.6 Regularization methods – part 1: Spectral

filtering methods

As explained in section 1.2, the main difficulty of solving discrete ill-posed prob-
lem consists in the fact that a small perturbation in the right-hand side b may
lead to a very large perturbation of the solution x. This happens in the case when
the perturbation has a high frequency component. Using the notation introduced
in sections 1.4 and 1.5, we can describe the problem more formally. Let us recall
that we search for x

Ax ≈ b, where b = bexact + bnoise and
∥∥bnoise∥∥� ∥∥bexact∥∥ . (1.13)

9we assume that the covariance matrix is non-singular
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According to (1.9), the solution to (1.13) has a form of

x =
n∑
i=1

uTi b

σi
vi = A†b. (1.14)

Substituting for b and using the definition of xexact (1.10), we get

x =
n∑
i=1

uTi (bexact + bnoise)

σi
vi

=
n∑
i=1

uTi b
exact

σi
vi +

n∑
i=1

uTi b
noise

σi
vi

= xexact +
n∑
i=1

uTi b
noise

σi
vi.

We see that the desirable exact solution xexact is perturbed by a linear combination
of the right singular vectors. If we want x to approximate xexact, we usually require∥∥∥∥∥

n∑
i=1

uTi b
noise

σi
vi

∥∥∥∥∥�
∥∥∥∥∥

n∑
i=1

uTi b
exact

σi
vi

∥∥∥∥∥ ≡ ∥∥xexact∥∥ ,
i.e. that the perturbation is small relative to the exact solution. This is, due to
the orthonormality of the singular vectors, equivalent to

n∑
i=1

|uTi bnoise|
σi

�
n∑
i=1

|uTi bexact|
σi

.

Since the singular values σi decay (usually very fast) with i, we want |uTi bnoise| to
decay fast as well. In the view of the fact that the singular vectors resemble the
spectral ones, this is equivalent to the requirement that the spectral components
of bnoise are much smaller than the corresponding singular values. For the setting
we consider, this is not the case. We assume that the kernel has a distinct
smoothing effect which leads to a very fast decay of singular values, which causes
the matrices to be extremely ill-conditioned. Compared to that, the noise is
assumed to be broad-band, and even for the LF noise (e.g. Brownian), the high-
frequency components are significant enough to make the last addends dominate
the whole sum, unless the noise is truly minute. The true solution is then fully
overlaid by the inverted noise. For this reason, solution (1.14) is commonly
referred to as naive and will be further denoted by xnaive. The Picard plot proves
as a useful tool to examine this behaviour.

In the figure 1.13 we see that even a white noise of order 10−6 can make the
naive solution completely useless. This phenomenon is nicely depicted in the

right Picard plot - the fractions
|uTi b|
σi

increase for i > 15. These projections onto
the left singular vectors are already dominated by the noise. This is the basis of
spectral filtering methods – to preserve the projections that are solution domi-
nated and dampen or remove the projections dominated by the noise. Generally,
the regularized solution of this kind can be expressed in the form of filtered SVD

xreg =
n∑
i=1

fi
uTi b

σi
vi. (1.15)
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(a) Smooth exact data bexact (b) White noise bnoise (c) Noisy right-hand side b

(d) Picard plot for bexact (e) Picard plot for bnoise (f) Picard plot for b

(g) xexact (h) A†bnoise (i) xnaive = A†b

Figure 1.13: An example showing how the noise in the right-hand side is amplified
when solving the inverse problem. The gravity matrix (see (1.2)) and a piece-wise
linear source function were used. See example noise amplification.m .

Scalars fi vary from 0 to 1 and are called the filter factors. Two most important
filtering methods – truncated SVD and Tikhonov’s method - are briefly described
in the following subsections. There are more methods of this type but these are
not covered here since they are not used in this thesis.

Truncated SVD

Truncated SVD [Han87, Han71, Var73] is the most straightforward method to
regularize the solution. The idea is basically to preserve only a few first addends
that correspond to the projections dominated by the exact solution and chop
off the rest of the components, i.e. the components dominated by noise. More
precisely, the truncated SVD method has one single parameter k ≤ n called the
truncation level and the corresponding filter factors are

fi =

{
1 for i ≤ k
0 for i > k.
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(a) Exact solution (b) xT−SV D for k = 15 (c) xTikh for λ = 10−4

Figure 1.14: Regularized solutions of gravity problem from figure 1.13. See
example regul.m .

The solution obtained by truncated SVD has the form

xT−SV D =
k∑
i=1

uTi b

σi
vi. (1.16)

The truncated SVD problem is less ill-posed than the original one, compare σ1
σk

to σ1
σn

, but is biased, see [Han10] for more detailed discussion. The choice of
regularization parameter(s) will be briefly mentioned in section 1.7. If we want to
express the importance of the truncation level, we denote the solution simply xk.

Tikhonov’s method

Tikhonov’s method [Tik63] explicitly incorporates the regularity requirement in
the formulation of the problem. It balances the norm of residual and the norm
of the corresponding solution, i.e.

min
x

{
‖Ax− b‖2 + λ2 ‖x‖2

}
. (1.17)

Using the formula (1.17), we define the Tikhonov solution in the form of spectral
filtering (1.15) as follows

xT ikh =
n∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi. (1.18)

For singular values σi larger than the parameter λ, the filter factors are close
to 1. For singular values much smaller than λ, the filter factors are small and
corresponding spectral components are dampened. Tikhonov’s regularization in-
troduces a bias into the problem similarly to truncated SVD. We will also use
alternative notation xλ if the need arises.

To demonstrate the usefulness, we solve the gravity problem from figure 1.13
using both truncated SVD and the Tikhonov’s method. We used a black-box
parameter estimator in this case.

Although the solution is not the best we could possibly get, there is a sig-
nificant improvement compared to the naive solution. Unless stated otherwise,
in the following experiments the methods tsvd and tikhonov implemented in
Regularization tools [Han94] will be used.
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1.7 Choice of regularization parameters

Finding the optimal regularization parameter k or λ is a difficult task and is not
of particular interest of the thesis. Throughout the experiments, the parameter
estimators will be used as black-box. Nevertheless, we decided to include a brief
description of the methods, purely for the completeness of the work.

The aim of all parameter choosing methods is to minimize the errors in the
regularized solution. For the spectral filtering methods, the error is of the follow-
ing form

xexact − xreg = xexact +
n∑
i=1

fi
uTi b

σi
vi

= xexact +
n∑
i=1

fi
uTi Ax

exact

σi
vi +

n∑
i=1

fi
uTi b

noise

σi
vi

=
n∑
i=1

(1− fi) vTi xexact vi +
n∑
i=1

fi
uTi b

noise

σi
vi.

The first part of the error comes from the introduction of the filtering and in-
troduces a bias into the problem. The error is generally called the regularization
error. The second part of the error is the perturbation error resulting from in-
verting and filtering the noise component in the data.

Both perturbation and regularization error are always present in the regular-
ized solution and their size depends on the regularization parameter. From the
nature of the spectral filtering methods it follows that if one increases the other
decreases and vice versa. Therefore we can say that the goal of choosing the
regularization parameters k or λ is to balance the size of these two error terms.

At the moment, there is no parameter-choice method that is sufficiently ro-
bust. We will use three methods that are generally considered as methods of first
choice. The disadvantage of all these methods is that they rely on the assumption
that the noise in the right-hand side is white.

L-curve

L-curve is a method that simply balances the residual ‖Axreg − b‖ against the
norm of the regularized solution ‖xreg‖. Its application to discrete inverse prob-
lems was suggested by Hansen and O’Leary in [HO93]. For both regularization
methods (1.16) and (1.18), the residual varies monotonically with the regulariza-
tion parameters. So does the norm of the solution, which varies inversely. For
truncated SVD, the residual decreases with k while the norm of the solution in-
creases. For an ill-posed inverse problem, this usually works in a special way. The
norm

∥∥xk∥∥ increases slowly with k until it reaches the level, where the components
are dominated by the noise. Then it starts growing rapidly, while the residual
does not change much any more. It works similarly for the Tikhonov method.
The aim of L-curve is to find the corner, from which the norm of the solution
grows dramatically compared to the decrease of the residual. Usually a log-log
scale is used to emphasize the corner of the L-curve. The corner is defined as
the point of maximal curvature. A discrete definition of curvature is used for the
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(a) L-curve for T-SVD (b) L-curve for Tikhonov

Figure 1.15: L-curves for gravity problem from figure 1.13. The code is available
under example l curve.m .

truncated SVD. An example of such an L-curve is shown in figure 1.15. The ‘L’
in the name refers to the shape of the curve.

Discrepancy principle

The discrepancy principle (DP) is a method introduced by Morozov in [Mor66]
and [Mor84], and is based on an a priori knowledge of the noise’s variance σ2.
We choose the regularization parameter such that the residual norm equals the
discrepancy in the data. The discrepancy is approximated by c ·

√
nσ, where

c ≥ 1 is a ‘safety factor’. The method can be defined as follows

choose the regularization parameter s.t. ‖Axreg − b‖ = c ·
√
nσ.

For the truncated SVD method, this is hard to achieve, therefore we choose the
largest k such that

∥∥Axk − b∥∥ ≥ c ·
√
nσ. For simplicity, c ≡ 2 will be used in

this thesis.
The obvious disadvantage of this method is that the variance of the noise or

the noise level has to be known a priori. This is however very rarely the case.
However, there are methods providing an estimate of the noise level. One of them
will be described in section 2.3.

Generalized cross validation

Cross-validation is a statistical technique based on partitioning a sample of data
into two complementary subsets, performing the analysis on one subset (called the
training set), and validating the analysis on the other subset (called the validation
set). To reduce variability, multiple rounds of cross-validation are performed using
different partitioning, and the validation results are averaged over the rounds.

For simplicity, the i-th training set is set to be the system (1.13) with i-th
row left out. And the results are averaged over all m rows. The goal is to find
the regularization parameter which minimizes the prediction errors for all the
validation sets, i.e. data elements. For Tikhonov we have

min
λ

[
1

m

m∑
i=1

(
A(i, :)xλ(i) − bi

)2]
, (1.19)
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where xλ(i) is the regularized solution of the i-th training set. The same can be

done for the truncated SVD. The generalized cross-validation (GCV) replaces the
optimization (1.19) by the minimization

min
λ

∥∥Axλ − b∥∥2
(m−

∑m
i=1 fi)

2 .

See [GHW79] for more details regarding GCV.

All three parameter-choice methods are implemented in Regularization Tools
[Han94, Han07] as l curve, discrep, and gcv and will be used in the following
experiments.

1.8 Regularization methods – part 2: Projec-

tion and hybrid methods

The general idea of projection methods is to compute an approximation of xexact

that effectively lies in a (low-dimensional) subspace of Rn. In some sense, this
holds also for truncated SVD, where the subspace is spanned by the first k right
singular vectors. For large-scale problems it is impossible to compute the SVD10

of A. But from the SVD analysis we know that the singular vectors resemble spec-
tral bases and that the solution is dominated by the low-frequency components,
therefore we can define a priori a setWl ≡ {w1, . . . , wl} that has the same overall
features as the first l singular vectors. These bases may be independent of the
matrix A (basis vectors of discrete cosine transform, wavelets etc.), or adapted
to a particular problem.

The construction of such a projection space leads to a constrained least squares
problem

min
x
‖Ax− b‖ subject to x ∈ span(w1, . . . , wl). (1.20)

Defining Wl ≡ (w1, . . . , wl) ∈ Rn×l, problem (1.20) can be reformulated as follows

xl = Wlyl, where yl = argmin
y
‖(AWl)y − b‖ . (1.21)

If l � n, which is usually the case, then we can compute the matrix AWl ex-
plicitly and then solve the least squares problem with m× l matrix. For reasons
of numerical stability, it is recommended that the matrix Wl has orthonormal
columns.

In some cases, the restricted least squares problem (1.21) may still inherit some
of the ill-posedness of the original problem, therefore it may be advantageous to
use some of the regularization techniques mentioned in the section 1.6 to solve
the projected problem (AWl)y ≈ b. The combination of a projection method and
a spectral filtering method is generally referred to as hybrid method [Bjö88]. The
hybrid methods have then two regularization parameters - one corresponding
to the size of the projection matrix (denoted as l) and one corresponding to

10In case of the T-SVD, not the entire SVD is needed, but only k first components. However,
we may need a few more components to find the regularization parameter, e.g. by L-curve.
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the spectral filtering (denoted as k or λ). For an orthonormal matrix Wl, the
Tikhonov regularization of the projected problem provides the identical solution
as the same projection method applied on Tikhonov problem (1.17). The latter
one is however not suited for large-scale problems, see [Han10].

As mentioned above, the basis can be a fixed set (usually some set of functions
associated with fast transforms) or adapted to the problem. We will restrict
ourselves to the bases that are problem-dependent, particularly to the Krylov
subspaces.

The l-th Krylov subspace associated with a square non-zero matrix C ∈ Rn×n

and a non-zero vector d ∈ Rn is defined in the following way

Kl(C, d) ≡ span
(
d, Cd, C2d, . . . , C l−1d

)
. (1.22)

For the setting we have, i.e. the matrix A is generally rectangular, we cannot
set C directly as A. Since m ≥ n, we set C ≡ ATA and d ≡ AT b.

The vectors that span the Krylov subspace converge to the principal eigen-
vector of the matrix C and therefore become close to linearly dependent. For
that reason, they are not ideal for practical implementation and should be al-
ways orthonormalized. In real implementation, the Krylov subspace is not con-
structed in the way described in (1.22) but the solution is computed iteratively
for l = 1, . . . , lmax, where the lmax is determined by some stopping criterion.

Next chapter will focus on Krylov subspace method with particularly good
computational properties - LSQR [PS82b, Bjö88]. It offers fast computation
with short recurrences, low storage requirements and easy memory allocation.
Moreover, this method will allow us to estimate the optimal lmax using several
stopping criteria.
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Chapter 2

LSQR and Golub-Kahan
Iterative Bidiagonalization

As suggested in the previous chapter, we (formally) apply a Krylov subspace
method to the normal equations

ATAx = AT b. (2.1)

There are three main ways how to treat the problem (2.1), i.e. how to generate an
orthonormal basis of Kk(ATA,AT b). We can apply the conjugate gradient (CG)
method [HS52]. The resulting method is then referred to as CGLS or CGNR.
However, for matrices that do not have full column rank a breakdown may occur.
The Lanczos method [Lan50, MS06] is mathematically equivalent to CGLS but
numerically more favourable. The most elegant and most stable method for
solving (2.1) is LSQR [PS82b] based on the Golub-Kahan iterative bidiagonal-
ization [GK65]. See [DTHP+12, sec. 9.5], [Han10, sec. 6.4] or [PS82a] for more
details and for the comparison of the methods.

2.1 Golub-Kahan iterative bidiagonalization

The aim of this section is to bring a brief overview of the Golub-Kahan bidiagonal-
ization algorithm and the LSQR method. We adopted the notation of [HPS09].
Given the initial vectors w0 ≡ 0, s1 ≡ b/β1, where β1 ≡ ‖b‖, the Golub-Kahan
iterative bidiagonalization computes for

αjwj = AT sj − βjwj−1 , ‖wj‖ = 1 ,

βj+1sj+1 = Awj − αjsj , ‖sj+1‖ = 1 ,
(2.2)

until αj = 0 or βj+1 = 0, or until j = n. After k iterations, this algorithm has
produced matrices Sk ≡ [s1, . . . , sk] ∈ Rm×k and Wk ≡ [w1, . . . , wk] ∈ Rn×k with
orthonormal columns, further referred to as matrices of left and right bidiagonal-
ization vectors, and a lower bidiagonal matrix

Lk ≡


α1

β2 α2

. . . . . .

βk αk

 ∈ Rk×k. (2.3)
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Using this notation, the matrix version of the bidiagonalization (2.2) has the
following form

ATSk = WkL
T
k , AWk = SkLk + βk+1sk+1. (2.4)

To simplify the second part of (2.4), we introduce the matrix Lk+,

Lk+ ≡


α1

β2 α2

. . . . . .

βk αk
βk+1

 ∈ Rk+1×k. (2.5)

Using this matrix, (2.4) can be further rewritten as

ATSk = WkL
T
k , AWk = Sk+1Lk+. (2.6)

Moreover, columns of matrices Sk and Wk form the bases of the Krylov subspaces
Kk(AAT , b) and Kk(ATA,AT b) respectively. Using the notation of section 1.8, we
can rewrite our problem as

xk = Wkyk, where yk = argmin
y
‖(AWk)y − b‖ ,

which is, due to (2.6) and the orthonormality of the columns of Sk+1, equivalent
to

xk = Wkyk, where yk = argmin
y
‖Lk+y − β1e1‖ . (2.7)

In other words, xk is the solution to the least squares problem restricted to
Kk(ATA,AT b). Equation (2.7) is solved via QR factorization1. The whole al-
gorithm is referred to as LSQR and is thoroughly described in [PS82a]. This
method is mathematically equivalent to CGLS and Lanczos tridiagonalization,
but superior regarding stability, see Appendix.

2.2 Noise propagation in Golub-Kahan bidiag-

onalization

In this section, we describe how the noise in the data propagates through the
bidiagonalization process. We will follow part 3 of [HPS09], where this phe-
nomenon is thoroughly studied for white noise and is subsequently demonstrated
on the problem shaw from Regularization Tools [Han07]. The idea is based on
the smoothing property of the matrix A or more precisely AAT (see section 1.2
of this thesis).

Consider the vectors sk, wk (left and right bidiagonalization vectors gener-
ated by the bidiagonalization algorithm). The starting vector s1 = b/ ‖b‖ is the
normalized noisy data. According to (2.2), the vector s2 is obtained from s1 as
follows

α1β2s2 = AAT s1 − α2
1s1. (2.8)

1In hybrid methods, a spectral filtering method is used instead.
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This relation has an interesting consequence. The smoothing operator AAT

smooths out the high frequency components of s1, i.e. AAT s1 is smooth. Subse-
quently, AAT s1 is orthogonalized against s1, which is the normalized noisy data
containing high-frequency components. This causes the high-frequency compo-
nents to be transferred to s2, while a portion of smooth part of s1 is subtracted
and therefore the relative level of the high frequency part of the noise can be ex-
pected to be higher in s2 than in s1. This occurs for any k with the vector sk+1

obtained from AAT sk via the orthogonalization against the vectors sk−1 and sk.
The high-frequency noise propagation can be described more precisely, when

we treat the white noise separately in the bidiagonalization process. Therefore
we decompose s1 into the exact component sexact1 ≡ bexact/ ‖b‖ and the noise
component snoise1 ≡ bnoise/ ‖b‖ , s1 = sexact1 + snoise1 . Substituting into (2.2), we
get

β2s2 = Aw1 − α1(s
exact
1 + snoise1 ) = Aw1 − α1s

exact
1 − α1s

noise
1 . (2.9)

Due to the distinct smoothing property of A, the term Aw1 is considered to
be almost free of high-frequency noise. Furthermore, the low-frequency noise
components of Aw1 are negligible relatively to the low frequency components of
the exact data. Therefore, the authors of [HPS09] suggest the following defini-
tion sexactk+1 and snoisek+1 for k = 1, 2, . . .

βk+1s
exact
k+1 ≡ Awk − αksexactk ,

βk+1s
noise
k+1 ≡ −αksnoisek .

(2.10)

Obviously, sk+1 = sexactk+1 + snoisek+1 and

βk+1sk+1 = Awk − αksk,

which makes the definition (2.10) consistent with the algorithm (2.2).
Note that sexactk and snoisek do not represent the exact and noise components

of sk. The idea of this white-noise-propagation analysis is to ‘neglect’ the part
of the noise vector that is multiplied by A (and therefore smoothed) within the
bidiagonalization process and focus only on the part that is multiplied by a scalar.
In other words, the smoothed noise components are included in the vectors sexactk .
There is no analogy for right bidiagonalization vectors, because all vectors wk are
smoothed and do not contain significant information about the noise.

From (2.10) it immediately follows that

snoisek+1 = − αk
βk+1

snoisek = (−1)k
k∏
j=1

αj
βj+1

snoise1 . (2.11)

In order to estimate the behaviour of the cumulative amplification ratio

ρ−1k ≡
k∏
j=1

αj
βj+1

, (2.12)

we need some additional information about αj and βj+1. This can be obtained
from the analysis of spectral components of the bidiagonalization vectors with
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respect to the left and right singular vectors of A. Using the SVD (1.8), we
rewrite the first step of the Golub-Kahan bidiagonalization (2.2) as

α1(V
Tw1) = Σ(UT s1) , (2.13)

β2(U
T s2) = Σ(V Tw1)− α1(U

T s1) . (2.14)

From (2.13) we see that V Tw1 is dominated by the same components as UT s1,
with the dominance amplified by the scaling by Σ. The subsequent orthogonal-
ization (2.14) of Σ(V Tw1) against UT s1 requires that the dominance in Σ(V Tw1)
and UT s1 is cancelled out, otherwise the orthogonality between UT s2 and UT s1
can not hold. Therefore we expect β2 � α1.

Analogously for k = 2, 3, . . .

αk(V
Twk) = Σ(UT sk)− βk(V Twk−1) , (2.15)

βk+1(U
T sk+1) = Σ(V Twk)− αk(UT sk) . (2.16)

In (2.15) the dominance in Σ(UT sk) and (V Twk−1) is shifted by one compo-
nent and one can not expect a significant cancelation. By contrast, in (2.16),
Σ(V Twk) and UT sk are dominated in the same components and the orthogonal-
ity between sk+1 and sk can not be achieved without a significant cancelation.
Summarizing,

αk ≈ βk and βk+1 � αk .

This leads us to the conclusion that the cumulative amplification ratio (2.12)
grows with increasing k, i.e. that the Golub-Kahan bidiagonalization for a smooth-
ing operator A amplifies the relative level of noise in sk+1 as k increases. This,
however, holds only until a certain stage. At some point, the discrete Picard
condition is violated, see e.q. figure 1.13, and sk+1 starts to be dominated by the
white noise component (snoisek+1 ). The phenomenon is demonstrated on problem
shaw from [Han07] in figures 2.1 and 2.2. Problem shaw is used to stay consistent
with the original paper [HPS09]. The point, where the dominating low-frequency
components are projected out and the left bidiagonalization vectors become dom-
inated by the high-frequency noise is referred to as the noise revealing iteration,
denoted by knoise, and will be further studied in the next section.

2.3 Noise revealing iteration and determination

of the noise level

In the previous section, it was shown, that the bidiagonalization process (2.2),
roughly speaking, in each step subtracts the low-frequency spectral components
from sk to obtain the successive left bidiagonalization vector sk+1. Due to this
elimination, the relative level of the high-frequency part of the noise is expected
to be higher in sk+1. This happens until the bidiagonalization process reaches
the noise revealing iteration. At that iteration, the low-frequency component are
projected out and vector sk becomes dominated by the high-frequency noise.

The cancelation of low-frequency components can be nicely illustrated in
the basis of left singular vectors of A. Such basis is, however, computation-
ally expensive and for larger matrices almost infeasible. Therefore the authors
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Figure 2.1: The amplification ratio for problem shaw(400) with the relative noise
level 10−4. See example s k.m .

of [HPS09] suggest using the standard Fourier trigonometric basis, which allows
the coefficients being computed efficiently using fast Fourier transform via the
MATLAB function fft. Sometimes it might be also useful and potentially more
straightforward to compute the components in the basis of discrete cosine trans-
form [ANR74], i.e. to use MATLAB function dct. First ten vectors of both bases
and the first ten left singular vectors of matrix shaw are shown in figure 2.3 for
comparison.

The projections of sk onto the left singular vectors allowed us to determine
visually when the low frequencies are projected out. The similar holds for Fourier
and discrete cosine transform, although the transition is less pronounced, see
figure 2.4.

The aim of [HPS09] was to determine the noise revealing iteration knoise + 1.2

This can be done manually, using a figure similar to 2.4 and visually determining
the iteration, where the large frequencies are projected out. But such user’s
interference should be of course avoided.

Therefore, Hnětynková, Plešinger, and Strakoš derived an automated criterion
based on relation between the Lanczos tridiagonalization and Riemann-Stieltjes
integral. To understand the relation between the Riemann-Stieltjes integral and
the Lanczos tridiagonalization, we refer the reader to [MS06]. Results of [MS06]
related to our topic are also included in [HPS09] and [Vas11].

Without going here further into details, they used a criterion searching for
a stagnation of particular entities - |(p(k)1 , e1)|, where p

(k)
1 denotes the left singular

vector corresponding to the smallest singular value of the bidiagonal matrix Lk.
The iteration knoise was then determined as the first iteration step k for which

|(p(k+1)
1 , e1)|

|(p(k+1+step)
1 , e1)|

<

(
|(p(k)1 , e1)|
|(p(k+1)

1 , e1)|

)ζ

, (2.17)

2the +1 is chosen to make the notation more convenient in the remainder of the thesis
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Figure 2.2: Left bidiagonalization vectors for the problem shaw(400) identical
with the problem from figure 2.1, their low-frequency ‘exact’ parts sexactk , the white
noise parts snoisek , and the first 100 spectral components. The noise revealing
iteration is the iteration 8 - the large spectral components are projected out and
the left bidiagonalization vector is dominated by white noise. See example s k.m .

tested for ζ = 0.5 and step = 3. The noise level estimate is then given by

δnoise ≡
‖bnoise‖
‖bexact‖

≈ |(pknoise+1
1 , e1)| . (2.18)

Subsequently, Vasiĺık derived several other methods for finding the noise reveal-
ing iteration knoise + 1 that are based on the behaviour of the entities |(pk1, e1)|.
These are included in chapter 2 of [Vas11]. Note that Hnětynková, Plešinger, and
Strakoš also derived a noise level estimate based on the amplification ratio (2.12).
This estimate was however less reliable than (2.18).
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Figure 2.3: A comparison of Fourier basis, discrete cosine basis and
left singular vectors of the matrix shaw(100). See example FFT basis.m,
example DCT basis.m, and example U basis.m .
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Figure 2.4: A comparison of the components of left bidiagonalization vectors
in different bases for the problem shaw(400) identical with the problem from
figure 2.2. See example s k.m .
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Chapter 3

Denoising for Problems with
White Noise

In this chapter, we return back to our original problem (1.13)

Ax ≈ b, b = bexact + bnoise and
∥∥bnoise∥∥� ∥∥bexact∥∥ ,

where multiplication by the matrix A has a distinct smoothing effect and bnoise

is white noise from the normal distribution. Our aim is now to apply the results
of [HPS09] covered in chapter 2 of this thesis to estimate the vector bnoise. Once
we have the noise estimate b̃noise, we can subtract it from the right-hand side b
and compute the solution of the transformed problem

Ax ≈ bdenoised, where bdenoised = b− b̃noise . (3.1)

We will refer to this process as denoising or noise reduction1.
Obviously, we want the transformed problem (3.1) to have better overall prop-

erties than the original problem (1.13). In practice, the aim is either to decrease
the relative noise level in the right-hand side∥∥bdenoised − bexact∥∥

‖bexact‖
<
‖b− bexact‖
‖bexact‖

=
‖bnoise‖
‖bexact‖

≡ δnoise ,

or to make the spectral properties of noise

bnoisetrans ≡ bdenoised − bexact

more favorable, which usually means that the high frequencies in noise are damp-
ened.

Implementation

All experiments in the remainder of the thesis are conducted on the same work-
station under Windows XP with Matlab 7.10.0 (R2010a). The linear systems
were adopted from the Regularization Tools [Han07, Han94] as well as the func-
tions tsvd, tikhonov, and l curve for spectral filtering methods. The Golub-
Kahan bidiagonalization was computed using the code bidiag gk available at

1Please note that in literature, denoising/noise reduction usually relates to reducing white
noise in images. We hope that the reader will not find this little inconsistency with the remaining
literature misleading.
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http://www.cs.cas.cz/krylov/ with default setting, i.e. with full double re-
orthogonalization. The noise level is measured relatively against the exact data,

i.e. δnoise =
‖b−bexact‖
‖bexact‖ . White noise is generated by the built-in function randn,

for coloured noise we adopted the function spatialPattern.m from MATLAB
Central - File Exchange.

3.1 Noise reduction via spectral filtering

In some sense, spectral filtering method (1.15)

xreg =
n∑
i=1

fi
uTi b

σi
vi

can be also viewed as a solution to a denoised problem. Modifying the equa-
tion (1.15), we get

xreg =
n∑
i=1

fi
uTi b

σi
vi

=
n∑
i=1

uTi b

σi
vi −

n∑
i=1

(1− fi)
uTi b

σi
vi

=
n∑
i=1

uTi b

σi
vi −

n∑
i=1

uTi (1− fi)(uTi b)ui
σi

vi

=
n∑
i=1

uTi [b− (1− fi)(uTi b)ui]
σi

vi

= A†

[
b−

n∑
i=1

(1− fi)(uTi b)ui

]
.

(3.2)

The interpretation of (3.2) is following. Spectral filtering methods are mathemat-
ically equivalent to the Moore-Penrose pseudoinverse applied to the right hand
side from which a part of spectral components was subtracted. Figure 3.2 illus-
trates the denoising process for the problem shaw using the truncated SVD and
the Tikhonov’s method. Figure 3.3 shows, how the Picard plot changes, when
the new right-hand side b−

∑n
i=1(1− fi)(uTi b)ui is used (compare to figure 3.1).

See example spectral denoising.m .
The spectral filtering methods, in the prospective of denoising, dampen the

high-frequency part in the right-hand side, which allows A† to be applied directly.
We are not able to distinguish which part of the high frequencies in b belongs
to bexact and which belongs to noise. Thus, dampening all high-frequency com-
ponents of b introduces a bias to the problem as described at the beginning of
section 1.7. This means that the solution of spectral filtering method applied
to the exact data bexact does not match xexact. Changing the regularization pa-
rameter we trade off the size of the bias and the dampening of large frequencies
in bnoise.
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Figure 3.1: Picard plot for the problem shaw(400) with the relative noise
level 10−4.
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(b) problem denoised via T-SVD with k = 9
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(c) problem denoised via Tikhonov regularization with λ = 2.96 · 10−4

Figure 3.2: Denoising via spectral filtering for the problem shaw(400) identical
with the problem from figure 3.1. The left column shows the real noise (the
first row) and the vectors that are (formally) subtracted from the right hand-side
(the last two rows). The middle column contains plots of the right-hand side
(in the last two rows after denoising). In the right column, we see the spectral
components of the right-hand sides from the middle column.
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(a) Picard plot for T-SVD
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(b) Picard plot for Tikhonov

Figure 3.3: Picard plot after denoising for shaw(400)

The spectral components are dampened depending only on their order in the
singular value decomposition. This may lead to an elimination of a significant
frequency in the data when some of the lower frequencies2 are already dominated
by noise. In other words, we can assume that these methods will work consider-
ably worse for problems, where the projections uTi b

exact oscillate and the discrete
Picard condition (1.5) holds only ‘on average’, than for problems where uTi b

exact

decrease monotonically.

3.2 Noise reduction via noise revealing: Analy-

sis

Let us now recall some of the results from chapter 2. We defined

sexact1 = bexact/ ‖b‖ ,
snoise1 = bnoise/ ‖b‖ ,

βk+1s
exact
k+1 ≡ Awk − αksexactk ,

βk+1s
noise
k+1 ≡ −αksnoisek ,

which yields

snoisek+1 = − αk
βk+1

snoisek = (−1)k
k∏
j=1

αj
βj+1

snoise1 ≡ (−1)kρ−1k snoise1 .

We emphasize that snoisek does not stand for the whole noise component of sk
but only for the part that stays white during the computation, i.e. has been
multiplied only by a scalar. This partitioning of sk plays the crucial role in the
estimation of the noise vector.

In (3.1), we estimated the noise vector bnoise, and the estimate was then sub-
tracted from the right-hand side. This is however equivalent to approximating

2frequency corresponding to the singular vector associated with a larger singular value
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the exact data bexact directly. In our case, using the equations above, we can
rewrite the (scaled) exact data as follows

bexact

||b||
= sexact1 = s1 − snoise1

= s1 − (−1)kρks
noise
k+1

= s1 − (−1)kρk
(
snoisek+1 + sexactk+1

)
+ (−1)kρks

exact
k+1

= s1 − (−1)kρksk+1 + (−1)kρks
exact
k+1 ,

yielding
bexact = ‖b‖

[
s1 − (−1)kρksk+1 + (−1)kρks

exact
k+1

]
. (3.3)

Although it may seem that we just substituted unknown entity bexact with some
other unknown entity sexactk+1 , the properties of sexactk+1 will allow us to transform the
problem (1.13) in to a more convenient one.

Let us define a new right-hand side of the system as the known part of the
equation (3.3), i.e.

bdenoised ≡ ‖b‖
[
s1 − (−1)kρksk+1

]
= b− (−1)k ‖b‖ ρksk+1 , (3.4)

which means that we took

b̃noise = ‖b‖ (−1)kρksk+1 (3.5)

as our noise estimate and

bdenoised − bexact = −‖b‖ (−1)kρks
exact
k+1 (3.6)

represents noise in our new system Ax ≈ bdenoised. In other words, we subtract
the (k+ 1)-th left bidiagonalization vector multiplied by scalar ‖b‖ (−1)kρk from
the right-hand side of the system, which transforms the white broad-band white
noise bnoise into (−1)k+1 ‖b‖ ρksexactk+1 . At this point it is not clear whether doing
such a transformation is of any use.

As mentioned at the beginning, we want the noise bdenoised − bexact either to
be of smaller size or to have better spectral properties than the original one.

Spectral properties

Our aim is now to find some ‘convenient subspace’ in which sexactk+1 is contained.
The phrase ‘convenient subspace’ should be understood as a subspace from which
the spectral properties of sexactk+1 can be deduced. Such a subspace can be found
iteratively:

• sexact1 ∈ span(bexact) from its definition;

• β2sexact2 = Aw1 − α1s
exact
1 , where w1 ∈ span(AT b), which gives sexact2 ∈

span(AAT b, bexact);

• β3sexact3 = Aw2 − α2s
exact
2 , where w2 ∈ span((ATA)AT b, AT b) and sexact2 ∈

span(AAT b, bexact), which gives sexact3 ∈ span((AAT )2b, AAT b, bexact); etc.
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Summarizing,
sexactk+1 ∈ span((AAT )kb, AAT b, bexact) . (3.7)

Thus sexactk+1 lies in a space spanned solely by smooth vectors (due to the smoothing
properties of A). This means, in the perspective of denoising, that the white noise
bnoise is replaced by noise that is more or less confined to low frequencies, when
k + 1� n.

Size

Even when we already know that the spectral properties of noise are improved
by replacing b by bdenoised, we do not want the relative size of (−1)k+1 ‖b‖ ρksexactk+1

to be considerably larger than the original noise level δnoise. We see that

‖b‖
∥∥ρksexactk+1

∥∥ = ρk ‖b‖
∥∥sk+1 − snoisek+1

∥∥
≤ ρk ‖b‖ ‖sk+1‖+ ρk ‖b‖

∥∥snoisek+1

∥∥
= ρk ‖b‖+ ρk ‖b‖

∥∥ρ−1k snoise1

∥∥
= ρk ‖b‖+ ‖b‖

∥∥snoise1

∥∥
= ρk ‖b‖+

∥∥bnoise∥∥ .
(3.8)

Thus in the worst case, we increase the error in the data by ρk ‖b‖. We want, the
ρk ‖b‖ to be small, preferably the same order as the original noise ‖bnoise‖. This
is the point, where the noise revealing iteration knoise + 1 comes into play.

From section 2.3, we know that at the noise revealing iteration, sk+1 is signif-
icantly corrupted by the white noise , i.e.

1 = ‖sknoise+1‖ ≤ c
∥∥snoiseknoise+1

∥∥ = c
∥∥ρ−1knoisesnoise1

∥∥ = cρ−1knoise
∥∥bnoise∥∥ / ‖b‖ , (3.9)

where c is a moderate number. If sknoise+1 is dominated by the snoiseknoise+1, we can
take c = 2. Equation (3.9) yields immediately

ρknoise ‖b‖ ≤ c
∥∥bnoise∥∥ . (3.10)

Combining (3.8) with (3.10), we get

‖b‖
∥∥ρknoisesexactknoise+1

∥∥ ≤ (1 + c)
∥∥bnoise∥∥ , (3.11)

which means that the size of our new noise (−1)k+1 ‖b‖ ρksexactk+1 is (at the noise
revealing iteration) at most a small factor of the original ‖bnoise‖. The size of the
factor depends on how much the noise reveals at the noise revealing iteration.

Note that in (3.8), the worst scenario was assumed. Usually for small knoise,
we do not expect much cancellation between sexactknoise+1 and snoiseknoise+1, therefore∥∥sexactknoise+1

∥∥2 +
∥∥snoiseknoise+1

∥∥2 ≈ 1. Substituting into the first line of (3.8), we obtain

‖b‖
∥∥ρksexactknoise+1

∥∥ ≈ ρknoise+1 ‖b‖ −
∥∥bnoise∥∥ ≤ (c− 1)

∥∥bnoise∥∥ , (3.12)

which means that we can expect the noise level in the right-hand side to be even
reduced when sknoise+1 is dominated by the white noise.

Let us now summarize the denoising method proposed above. To eliminate
white noise in the data, we suggest that ‖b‖ (−1)kρksk+1 is subtracted from the
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right-hand side b at the noise revealing iteration. This transforms noise into low-
frequency one with size of the same order as ‖bnoise‖. In many cases, we can even
expect that the relative noise level will become smaller after the denoising.

Till now, we supposed that the noise revealing iteration is found by some
black-box function. In the following section, we develop a method that will
determine the noise level iteration at a really negligible cost.

3.3 Determining the point of noise revealing

Let us recall that the noise revealing iteration is the iteration where the white
noise snoisek+1 significantly corrupts the left bidiagonalization vector sk+1. From the
equation (2.11) we know that the size of snoisek+1 depends linearly on the amplifica-
tion ratio ρ−1k , i.e.

∥∥snoisek+1

∥∥ = ρ−1k
∥∥snoisek+1

∥∥ = ρ−1k
‖bnoise‖
‖b‖

. (3.13)

This leads us to conclusion that the most significant noise revealing occurs, when
the amplification ratio ρ−1k =

∏k
j=1

αj
βj+1

is maximal. Therefore we decided to

redefine the term ‘noise revealing iteration’. From this point on, knoise+1 denotes
the iteration, where ρ−1k reaches its maximum, i.e.

knoise + 1 ≡ argmax
k

ρ−1k + 1. (3.14)

Computing ρ−1k s and finding their maximum requires O(n) operations, which
represents a negligible part of the total computational cost.

This definition of noise revealing iteration is different from the definition
of [HPS09] in the sense that (3.14) is the most noise revealing iteration, while
Hnětynková, Plešinger, and Strakoš defined the noise revealing iteration as the
first iteration, where the left bidiagonalization vector becomes dominated by snoisek+1 .
In many cases, these two definition coincide. However, sometimes ρ−1k oscillates
and they differ. An example, when ρ−1k oscillates, is shown in figure 3.4.
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Figure 3.4: An example of oscillating amplification ratio – problem
phillips(400) with the relative noise level 10−7. See example ampl ratio2.m .

42



3.4 Noise reduction via noise revealing: Exper-

iments

The aim of this section is to computationally verify the theoretical results of sec-
tion 3.2. We have chosen three problems from Regularization Tools: shaw(400),
phillips(400), and foxgood(100), and carried out 5 various experiments.

Experiment 1. The first experiment demonstrates the qualitative properties
of the denoising. Noise of the relative size 10−3 was added to the right-hand
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(a) amplification ratio and the size of snoisek+1

100 200 300 400
−0.2

−0.1

0

0.1

0.2

s
6

100 200 300 400
−0.2

−0.1

0

0.1

0.2

s
7

100 200 300 400
−0.2

−0.1

0

0.1

0.2

s
8

(b) the noise revealing vector (middle)

0 200 400
−0.01

−0.005

0

0.005

0.01
bnoise

0 200 400
−10

−5

0

5
x 10

−3
bnoise

trans

(c) noise transformation

50 100

10
0

UTb

50 100

10
0

UT(~bnoise)

50 100

10
0

UTbdenoised

50 100

10
0

UTbexact

(d) spectral analysis (noisy data, noise estimate, denoised data, exact data)

Figure 3.5: Denoising for the problem shaw(400) with the noise level 10−3.
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side. Results are shown in figures 3.5, 3.6, and 3.7. Each plot (a) depicts, how
the behavior of the relative size of white noise resembles the behavior of the
amplification ratio ρ−1k . Plot (b) shows the left bidiagonalization vector at the
noise revealing iteration together with its preceding and succeeding vector to
emphasize the revealing of noise. In plot (c), we see how white noise is transformed
to a low-frequency one. And finally, in the last plot (d), the change of spectral
properties is demonstrated (only the first quarter is plotted). Code is available
under test1.m .
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Figure 3.6: Denoising for the problem phillips(400) with the noise level 10−3.
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For shaw, the peak of the amplification curve is blunt, i.e. ρknoise−1, ρknoise , and
ρknoise+1 are of comparable size. This relates to a less significant noise revealing
at knoise + 1 = 7. For the other two matrices, the peak is sharp, which means
that the noise revealing vector sknoise+1 is significantly more oscillating than the
two surrounding vectors.

The right plots in part (a) demonstrate, how much white noise actually dom-
inates the noise revealing vector. For the first two matrices at the noise revealing
iteration, the vectors sexactknoise+1 and snoiseknoise+1 are of about the same size, so we cannot
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Figure 3.7: Denoising for the problem foxgood(100) with the noise level 10−3.
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expect a reduction of noise concerning the norm. For foxgood, the noise reveal-
ing vector is strongly dominated by snoiseknoise+1, which means that sknoise+1 resembles
the original bnoise and we can expect a significant decrease of the noise level after
denoising. Moreover, the noise reveals very quickly - in the third iteration. This
results in a very smooth noise vector bnoisetrans.

Experiment 2. In the second experiment, we focus on spectral properties of
the right-hand side bdenoised. As mentioned in section 1.4, the discrete Picard
condition plays a crucial role in solving discrete ill-posed problems. How the
Picard plot changes after denoising is shown in figures 3.8, 3.9, and 3.10. Code
is a part of test1.m .

We see that in all cases, the Picard plot improved in the sense that the projec-
tions of uTi b

denoised decay faster than the singular values σi. Note that for problems
shaw and foxgood, the discrete Picard condition becomes violated when the com-
putation reaches machine precision ∼ 10−16. This is purely a problem of finite
precision arithmetic, which is not a concern of this work.
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Figure 3.8: Picard plots for shaw(400) identical with the problem from the fig-
ure 3.5.
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Figure 3.9: Picard plots for phillips(400) identical with the problem from the
figure 3.6.
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Figure 3.10: Picard plots for foxgood(100) identical with the problem from the
figure 3.7.

Experiment 3. In this experiment, we study quantitative properties of the
denoising based on noise revealing. To our three testing problems, we added two

shaw(400)

δnoise 1e-002 1e-004 1e-006 1e-008

knoise + 1 5 8 10 13
ρknoise 1.09e-002 1.05e-004 1.32e-006 1.15e-008∥∥bnoisetrans

∥∥ /∥∥bexact∥∥ 4.57e-003 3.67e-005 8.73e-007 6.30e-009

phillips(400)

δnoise 1e-002 1e-004 1e-006 1e-008

knoise + 1 5 9 16 32
ρknoise 1.43e-002 1.44e-004 1.40e-006 2.28e-008∥∥bnoisetrans

∥∥ /∥∥bexact∥∥ 1.02e-002 1.08e-004 1.07e-006 2.08e-008

foxgood(100)

δnoise 1e-002 1e-004 1e-006 1e-008

knoise + 1 3 4 5 7
ρknoise 1.03e-002 1.07e-004 1.18e-006 1.18e-008∥∥bnoisetrans

∥∥ /∥∥bexact∥∥ 3.26e-003 4.31e-005 6.90e-007 7.54e-009

i laplace(100,1)

δnoise 1e-002 1e-004 1e-006 1e-008

knoise + 1 6 10 14 17
ρknoise 1.70e-002 1.42e-004 1.30e-006 1.22e-008∥∥bnoisetrans

∥∥ /∥∥bexact∥∥ 1.44e-002 1.15e-004 9.51e-007 8.71e-009

baart(400)

δnoise 1e-002 1e-004 1e-006 1e-008

knoise + 1 3 5 6 7
ρknoise 1.36e-002 1.08e-004 1.00e-006 1.12e-008∥∥bnoisetrans

∥∥ /∥∥bexact∥∥ 9.51e-003 4.19e-005 1.65e-007 5.46e-009

Table 3.1: Noise level in the data (first row), nose revealing iteration (second row),
amplification ratio at the noise revealing iteration (third row) and the relative size
of the transformed noise (last row). The results were averaged over 10 randomly
chosen vectors bnoise.
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more problems from Regularization tools - i laplace(100,1) and baart(400).
The results can be found in table 3.1. Code is available under test2.m .

The aim is to investigate, for different noise levels, when the amplification
ratio ρ−11 reaches its maximum and how the relative size of the noise changes
after the denoising. The results of this experiment support our hypothesis that
ρknoise is a small factor of the original noise level δnoise and that the size of noise
can be significantly reduced via denoising, when noise reveals in the first few
steps3.

Experiment 4. Let us recall that the aim of denoising is to dampen the high
frequencies of noise in the right-hand side, which would be otherwise amplified
when solving the system of linear equations (1.13). Although it is not in the main
focus of the thesis, we will investigate now what happens when we compute the
naive solution of the transformed problem, i.e.

xdenoised ≡ A†bdenoised. (3.15)

This solution will be subsequently compared to the naive solution A†b. We would
like to emphasize that applying the pseudoinverse of A to the denoised right-hand
side is not the way how the solution should be computed in practice and here we
did it only for illustrative purposes. The results in figures 3.11, 3.12, and 3.13
confirm a distinct regularizing effect of the proposed denoising. Code is available
under test3.m .
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Figure 3.11: Regularizing effect of denoising based on noise revealing for the
problem shaw(400) with the noise level 10−3.
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Figure 3.12: Regularizing effect of denoising based on noise revealing for the
problem phillips(400) with the noise level 10−3.

3For some matrices or for small noise levels, the noise revealing does not have to appear,
or it appears in the last few iterations. Then ρknoise

can be even smaller than δk, because

there is a large cancellation between sexactknoise+1 and snoiseknoise+1, and
∥∥sexactknoise+1

∥∥2 +
∥∥snoiseknoise+1

∥∥2 is

significantly larger than ‖sknoise+1‖2 = 1.
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Figure 3.13: Regularizing effect of denoising based on noise revealing for the
problem foxgood(100) with the noise level 10−3.

Experiment 5. Our aim will be now, in connection with experiment 4, to com-
pare the regularizing effect of the denoising procedure and the spectral filtering
methods - truncated SVD and Tikhonov. Here, xdenoised is computed as described
above, regularization parameters for the T-SVD and Tikhonov method are de-
termined via the L-curve. We do realize that standard spectral filtering methods
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Figure 3.14: A comparison of regularization methods for the problem shaw(400)

with the noise level 10−5.
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Figure 3.15: A comparison of regularization methods for the problem
phillips(400) with the noise level 10−5.
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Figure 3.16: A comparison of regularization methods for the problem
foxgood(100) with the noise level 10−5.
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combined with the L-curve are not the state-of-the-art methods. However, they
are often the methods of the first choice, therefore we find this comparison rel-
evant. The noise level was decreased to 10−5 to amplify the differences between
the methods. The results can be found in figures 3.14, 3.15, and 3.16. Code is
available under test4a.m . We can see that for the last two problems, denoising
provides much better results.

A more comprehensive study, measuring the relative error of the solution,
forms the second part of this experiment. The results are included in table 3.2.
Code is available under test4b.m .

shaw(400)

δnoise 1e-002 1e-004 1e-006 1e-008

denoising 1.69e-001 4.75e-002 3.20e-002 9.09e-003
T-SVD 7.26e-002 3.30e-002 4.26e-002 1.50e-002

Tikhonov 7.42e-002 3.49e-002 2.86e-002 1.43e-002

phillips(400)

δnoise 1e-002 1e-004 1e-006 1e-008

denoising 4.68e-002 8.50e-003 1.03e-003 1.41e-004
T-SVD 3.57e-002 1.95e-001 1.76e+000 1.88e-001

Tikhonov 5.43e-002 1.17e-001 3.01e-001 9.93e-002

foxgood(100)

δnoise 1e-002 1e-004 1e-006 1e-008

denoising 4.01e-002 8.41e-003 2.20e-003 7.30e-004
T-SVD 3.24e-002 2.79e-002 9.29e-002 8.81e-002

Tikhonov 4.19e-002 4.95e-002 6.47e-002 5.90e-002

Table 3.2: Noise level in the data (first row), relative errors of solutions (second
to fourth row). The results were averaged over 10 randomly chosen vectors bnoise.

As we can see, for shaw, denoising is comparable to the other two methods.
For phillips and foxgood, denoising seems to be superior to spectral filtering.
Solving problem phillips is generally considered a difficult task, because the
projections uTi b

exact oscillate extensively. The L-curve does not have then the
shape of the letter L (particularly for small noise levels) and it is difficult to
determine the optimal regularization parameter.

Let us now summarize the results of performed experiments. We observed
a distinct regularization effect of denoising without a substantial increase of the
noise level in the data. Moreover, for the presented problems, the proposed de-
noising is at least comparable to spectral filtering. In addition, finding the optimal
parameter knoise+1 (the point of noise revealing) can be done at a negligible cost.

We recall that all the experiments were performed via the Golub-Kahan bidi-
agonalization with full double reorthogonalization. However, similar results can
be obtained for bidiagonalization without reorthogonalization. In this case we
expect the noise revealing to be delayed as studied in [HPS09]. We would like
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to emphasize that to investigate the robustness of this kind of denoising, a more
comprehensive testing would be necessary. At this point, we find the results very
promising.
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Chapter 4

Propagation of Other Types of
Noise

So far, we assumed that in (1.13) the data is polluted by Gaussian white noise.
This is however not always the case. In this chapter, we illustrate how noise
propagation and noise revealing described in chapter 2 transforms when noise
comes from a different distribution. The aim is to present some ideas about what
we can expect for different types of noise, not to provide a thorough analysis.
Therefore, most of the content will be comprised of experiments.

To stay consistent with the work of Hnětynková, Plešinger, and Stra-
koš [HPS09], and Vasiĺık [Vas11], we restrict ourselves to the problem shaw.
The following types of noise will be considered: white noise from uniform dis-
tribution, data correlated noise, broad-band high-frequency and low-frequency
noise. Their definition and properties can be found in section 1.5 of this thesis.
The size of noise will be measured in the Euclidian norm, because measurements
in the norm corresponding to particular distribution (which is in practice often
unknown) would make the results of experiments hard to compare.

4.1 Data correlated and uniform white noise

In this part, we investigate noise propagation of two types of noise:

1. uniform white noise,

2. data correlated Gaussian noise1.

We decided to include both types of noise in one section because they have similar
spectral properties - both are white-noise-like2, i.e. the covariance matrix of their
Fourier transform is close to identity. Due to this property, we expect their prop-
agation in the Golub-Kahan bidiagonalization to be similar to the propagation
of Gaussian white noise. Therefore, we repeated the experiments of section 3.4.
Their results are shown in figures 4.1 and 4.2.

1The right-hand side of the problem shaw can be found in figure 3.2. From its shape,
we expect the data correlated noise to have the middle components amplified and the border
components dampened.

2White noise is white-noise-like from its definition.
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Figure 4.1: Denoising for the problem shaw(400) with uniform white noise of
relative size δnoise = 10−3. See test5.m .

As we see, the behaviour of ρ−1k for uniform and data correlated noise resembles
the behaviour of the amplification ratio for white noise from normal distribution,
see figure 3.5. For this particular setting, noise reveals at the same iteration
for all considered types of noise. Although the individual left bidiagonalization
vectors look different, their low-frequency part sexactk remains almost unchanged.
Therefore, the transformed noise bnoisetrans more or less coincides with the transformed
Gaussian noise.

These preliminary results let us believe that passing from Gaussian white noise
to another white-noise-like noise will not change the propagation of noise through
the bidiagonalization process significantly and the results of chapter 3 could be
possibly generalized in this sense. This however requires a thorough analysis and
more comprehensive testing, which we hope will be done in near future.

53



5 10 15 20
10

0

10
1

10
2

10
3

10
4

k

 

 
ρ

k
−1

5 10 15 20
10

−4

10
−2

10
0

k

 

 
||s

k
exact||

||s
k
noise||

(a) amplification ratio and the size of snoisek+1

100 200 300 400
−0.2

−0.1

0

0.1

0.2

s
6

100 200 300 400
−0.2

−0.1

0

0.1

0.2

s
7

100 200 300 400
−0.2

−0.1

0

0.1

0.2

s
8

(b) the noise revealing vector (middle)

0 200 400
−0.01

−0.005

0

0.005

0.01
bnoise

0 200 400
−5

0

5
x 10

−3
bnoise

trans

(c) noise transformation

Figure 4.2: Denoising for the problem shaw(400) with data correlated noise of
relative size δnoise = 10−3. See test5.m .

4.2 Coloured noise

Coloured noise, compared to uniform or data correlated noise, amplifies/dampens
some of the frequencies. Generally speaking, high-frequency noise is considered
the more convenient alternative when solving a discrete inverse problem because
it is usually easier to determine when the projections uTi b become dominated by
the noise component and the discrete Picard condition becomes violated.

Some results regarding coloured noise and noise revealing are already included
in [Vas11]. However, they are confined only to the noise level estimate (2.18).
We would like to focus more on the noise propagation itself.

For our experiments, the high-frequency noise will be represented by violet
noise and the low-frequency noise by Brownian noise, see table 1.1 for their defini-
tions. We expect the intermediate colours of noise, i.e. blue and pink, to inherit
the tendencies of violet and Brownian noise, but these tendencies will be less
pronounced.

54



5 10 15 20
10

0

10
1

10
2

10
3

10
4

k

 

 
ρ

k
−1

5 10 15 20
10

−4

10
−2

10
0

k

 

 
||s

k
exact||

||s
k
noise||

(a) violet noise

5 10 15 20
10

0

10
1

10
2

10
3

10
4

k

 

 

ρ
k
−1

5 10 15 20
10

−4

10
−2

10
0

k

 

 

||s
k
exact||

||s
k
noise||

(b) Brownian noise

Figure 4.3: Noise propagation for problem shaw(400) with high-frequency and
low-frequency noise of relative size δnoise = 10−3. See test5.m .

First of all, we investigate, how the colour of noise influences the behaviour
of the amplification ratio ρ−1k . Their plots are shown in figure 4.3.

For violet noise the amplification ratio looks similar to the amplification ratio
for white noise in figure 3.5. However, for violet noise ρ−1k after reaching its
maximum oscillates back around its starting value ρ−11 . For white noise it stays
above this value. This is caused by different size of cancelation between sexactk

and snoisek . Roughly speaking, for white noise at the point of noise revealing,
the noise is approximated by sk up to the low-frequency part sexactk . For violet
noise, the low-frequencies are dampened and noise is therefore approximated more
accurately. Subsequent orthogonalization of sk+1 against sk causes noise to be
almost fully projected out.3 Therefore, we expect denoising to work for high-
frequency noise comparably to white noise or even better.

In contrast, for Brownian low-frequency noise the cancellation between sexactk

and snoisek is noticeable, see figure 4.4. Having revealed for the first time, noise
stays present in the sks without being projected out. In this case, the rela-
tion (3.12) does not hold and we cannot expect a significant reduction of the
noise level after denoising. Moreover, the amplification ratio reaches its max-
imum much later than for the white-noise case, i.e. the regularization effect is
limited. In other words, for low-frequency noise the proposed denoising procedure
subtracts sk too late and we eliminate only the highest frequencies. This delay

3Note that for the problem shaw this is done in three subsequent iterations because the noise
reveals only partially, i.e. sk is not fully dominated by snoisek .
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Figure 4.4: Relative projection of snoisek onto sexactk for problem shaw(400) with

noise of relative size δnoise = 10−3; cosα ≡ (snoisek ,sexactk )

‖snoisek ‖‖sexactk ‖ . See test6.m .

causes the problem (3.1) to stay still severely ill-posed. Insufficient regularization
is a shortcoming of many other methods for solving discrete inverse problems
with low-frequency noise including the methods covered in this thesis. Therefore,
if one expect the noise in the right-hand side to be low-frequency, we recommend
using a method that is adapted for such type of noise.
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Chapter 5

Noise Level Estimate

One of the results of Hnětynková, Plešinger, and Strakoš [HPS09] was a method
to estimate the noise level in the data. As mentioned in section 2.3, they stud-
ied the behaviour of |(p(k)1 , e1)| – the first component of the left singular vector
corresponding to the smallest singular value of the bidiagonal matrix Lk. At
some point, this value starts to stagnate. Let us denote this point as kstag, see
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Figure 5.1: Iteration kstag for the problem shaw(400) with the noise level 10−8.
See example stagnation.m .

figure 5.1. The noise level is then estimated as

δnoise ≈ |(p(kstag)1 , e1)|. (5.1)

In [HPS09], an automated method for finding kstag was derived, see (2.17). Sub-
sequently, Vasiĺık in [Vas11] proposed some other ways of determining kstag. How-

ever, they were all based on the behaviour of |(p(k)1 , e1)|. Therefore, this entity
has to be computed in each step. This represents additional computational cost,
even though this cost is low.

In section 3.3, we introduced a new definition of the point of noise revealing,

knoise + 1 ≡ argmax
k

ρ−1k + 1.

Due to the fact that, according to [HPS09], the iteration kstag corresponds to the
noise revealing iteration, we propose to estimate the noise level as

δnoise ≈ |(p(knoise+1)
1 , e1)|, where knoise + 1 = argmax

k
ρ−1k . (5.2)
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Figure 5.2: A disappearance of stagnation for the problem phillips(400)

for a low noise level (right), compare to the plot on the left. See
example stagnation phillips.m .

The subject of this chapter will be to verify reliability and robustness of the
estimate (5.2). Note that in some cases, the stagnation may not occur, especially
when the noise level is low1. In this case, we are not able to determine the noise
level using neither (2.17) nor (5.2). An example is shown in figure 5.2.

To compare the proposed method with the stagnation criterion (2.17), we
repeated the experiment from section 4 of [HPS09]. To the problems shaw(400)
and i laplace(100,1) we added the problem gravity(400) and baart(400)

that are used in [Vas11]. Results are shown in table 5.1, the code is available
under test7.m .

We see that the estimates usually overestimate the noise level in the data.
When the noise level is underestimated, the difference is only a few percent.
In these cases, the point where the stagnation starts is determined correctly.
Whether the stagnation starts above or bellow the actual noise level depends
mostly on the problem and the noise level. The influence of the waveform of
the vector bnoise is minor, provided noise is white. We believe that the over-
/underestimation property depends somehow on the distribution of the singu-
lar/Ritz values around the noise level, but at the moment we are not able to
provide a trustworthy explanation.

From the results of the experiments we conclude that for the tested problems,
the criterion based on the noise revealing is comparably reliable as the stagnation
criterion (2.17). Both techniques allow to estimate the noise level very accurately.

Let us now look at some of the cases for which the two estimates differ –
gravity(400) with the noise level 10−8 and baart(400) with the noise level 10−4.

As already observed in [Vas11], for the problem gravity the corner we are
looking for is rounded, i.e. it is difficult to determine even visually where the
stagnation starts. This relates to the fact that at two successive iterations, the
noise revealing is of comparable rate, see figure 5.3. This situation will be further
discussed later in this section.

For baart, situation is different. The entity |(p(k)1 , e1)| decays very quickly

1We observed that in cases when there is no visually detectable stagnation and the noise
level is small, the Picard condition is usually not violated and regularization is not necessary.
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shaw(400)

δnoise 1e-002 1e-004 1e-006 1e-010 1e-014

kstag 5 8 10 14 17

|(pkstag1 , e1)| 1.03e-002 1.02e-004 1.31e-006 9.88e-011 1.80e-014
rel. error 3 % 2 % 31 % 1 % 80 %

knoise + 1 5 8 10 14 18

|(pknoise+1
1 , e1)| 1.03e-002 1.02e-004 1.30e-006 9.88e-011 9.83e-015
rel. error 3 % 2 % 30 % 1 % 2 %

i laplace(100,1)

δnoise 1e-001 1e-002 1e-007 1e-010 1e-013

kstag 3 6 15 20 23

|(pkstag1 , e1)| 1.12e-001 1.01e-002 1.34e-007 1.26e-010 9.17e-014
rel. error 12 % 3 % 37 % 34 % 8 %

knoise + 1 3 5 16 20 23

|(pknoise+1
1 , e1)| 1.12e-001 1.18e-002 9.92e-008 9.45e-011 9.17e-014
rel. error 12 % 19 % 6 % 6 % 8 %

gravity(400)

δnoise 1e-001 1e-002 1e-004 1e-008 1e-012

kstag 3 5 10 19 28

|(pkstag1 , e1)| 1.22e-001 1.25e-002 1.10e-004 1.12e-008 1.06e-012
rel. error 22 % 25 % 10 % 12 % 6 %

knoise + 1 3 5 10 18 27

|(pknoise+1
1 , e1)| 1.22e-001 1.25e-002 1.32e-004 1.40e-008 1.42e-012
rel. error 22 % 25 % 32 % 40 % 42 %

baart(400)

δnoise 1e-001 1e-002 1e-004 1e-008 1e-012

kstag 2 3 4 6 9

|(pkstag1 , e1)| 1.96e-001 1.37e-002 2.68e-004 8.37e-008 2.15e-012
rel. error 96 % 37 % 168 % 737 % 115 %

knoise + 1 3 3 5 7 10

|(pknoise+1
1 , e1)| 9.96e-002 1.33e-002 1.00e-004 1.11e-008 9.89e-013
rel. error 1 % 33 % 0 % 11 % 1 %

Table 5.1: Noise level in the data (first row), the point of stagnation determined
by (2.17) (second row), the point of noise revealing (3.14) (fifth row), the corre-
sponding noise level estimates (third and sixth row), and the relative errors of the
estimates (fourth and seventh row). Results were averaged over 100 randomly
chosen vectors bnoise.

to the noise level, but before it reaches the level, ‘quasi-stagnation’ occurs –
difference between two successive entities |(p(k)1 , e1)| is much smaller than it was
for smaller ks. See figure 5.4. The stagnation criterion evaluates this situation
as ‘real’ stagnation and the noise estimate is therefore inaccurate. In the view of
amplification ratio ρ−1k , a distinct noise revealing occurs before the noise revealing
iteration knoise+1. In this case, the criterion based on noise revealing outperforms
the criterion based on stagnation. The performance of stagnation criterion could
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Figure 5.3: A comparison of the two noise level estimators for the problem
gravity(400) with the noise level 10−8. See test8.m .

0 10 20 30
10

−5

10
0

k

 

 
|(p

1
(k),e

1
)|

δ
noise

k
stag

k
noise

+1

0 10 20 30
10

0

10
1

10
2

10
3

10
4

k

 

 
ρ

k
−1

k
stag

−1

k
noise

Figure 5.4: A comparison of the two noise level estimators for the problem
baart(400) with the noise level 10−4. See test8.m .

be possibly improved by a change of the parameter ζ.
There are inverse problems for which the noise estimator (5.2) fails (even

when a visually detectable stagnation is present). This, as observed, happens in
cases when noise reveals in the iteration knoise + 1 , but after a few iterations
it is revealed again. In other words, the amplification ratio after reaching its
maximum stays or oscillates close to its maximal value. To some extent it also
holds for the problem gravity(400), see figure 5.3. Another example is shown in
figure 5.5. Here, the point of maximal noise revealing is the iteration 5. But the
actual stagnation starts at iteration 9, i.e. at the point where the amplification
ratio ρ−1k is back close to its maximum and noise is revealed again. In such cases,
the noise level would be estimated more accurately if we take the last k for which
noise reveals significantly as our knoise + 1 in (5.2). This would however require a
human interaction we want to avoid.

Roughly speaking, we can expect the criterion (5.2) to provide a very re-
liable estimate of the noise level in cases when after the noise revealing itera-
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Figure 5.5: An example of a problem for which the noise level estimate based
on maximal noise revealing fails - the problem phillips(400) with the noise
level 10−3. See test8.m .

tion knoise + 1, noise is almost projected out and the subsequent left bidiagonal-
ization vectors are much smoother than sknoise+1.

It is worth noting that there is a slight difference between the computational
aspects of stagnation and the noise revealing criterion. To determine the iteration
kstag by the criterion (2.17), always only few additional iterations (their number
corresponds to the parameter step) have to be computed. By contrast, finding
the maximum of ρ−1k might be a tricky task, as there is theoretically no upper
bound for the number of iterations to be computed. In practice, we assume that
the maximum is reached within a few iterations and when ρ−1k starts to decrease2,
we terminate the bidiagonalization process.

We emphasize that all results in this chapter are confined to white noise and
to the bidiagonalization with full double reorthogonalization. As observed in
[Vas11], in the bidiagonalization without reorthogonalization, a series of short
stagnations may occur and it may be difficult to determine the final stagnation
even visually.

2on average as the values ρ−1k may oscillate
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Conclusion

In this thesis, we focused on linear inverse problems, where the coefficient ma-
trix A has a distinct smoothing effect and the right-hand side b is contaminated
by unknown noise.

Following [HPS09], we studied noise propagation through the Golub-Kahan it-
erative bidiagonalization. We identified the iteration in which white noise reveals
in the left bidiagonalization vector. This knowledge was then used to denoise
the right-hand side, i.e. to subtract high-frequency noise from b. This method is
considered optimal in the sense that it regularizes the problem while introducing
(locally) minimal perturbation into bexact.

Several numerical experiments were performed in order to show sufficient reg-
ularization effect of the proposed method combined with reasonable perturbation
of the data. The method was also compared to spectral filtering, showing its su-
periority for some testing ill-posed problems. The aim of denoising is to eliminate
high-frequency noise in the data. Solving the resulting denoised problem remains
an open problem, because in some cases further regularization by spectral filtering
might by advantageous.

We also investigated propagation of noise of other types. We conclude that
the method could be possibly used for noise that is white-noise-like or for high-
frequency noise. For low-frequency noise, the proposed method provides insuffi-
cient regularization and should not be used in the current form.

Knowing the point of noise revealing, we modified the noise level estimator
of [HPS09]. We proposed a method that is fully automated, and at a negligible
cost provides estimate that is comparable to the original one.

Throughout the thesis we considered the Golub-Kahan iterative bidiagonaliza-
tion with full double reorthogonalization. We believe that similar results could be
obtained using bidiagonalization without reorthogonalization. This will however
require further investigation.
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[LMR+07] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. E. Costello, and
I. M. Moroz. Exploiting nonlinear recurrence and fractal scaling
properties for voice disorder detection. BioMedical Engineering On-
Line, 6(23), 2007.

[Mor66] V. A. Morozov. On the solution of functional equations by the
method of regularization. Soviet Math. Dokl., 7:414–417, 1966.

[Mor84] V. A. Morozov. Methods for Solving Incorrectly Posed Problems.
Springer Verlag, 1984.
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Appendix

Riemann-Lebesgue lemma

Theorem (Riemann-Lebesgue lemma). Let f ∈ L1(a, b). Then

lim
n→∞

∫ b

a

f(x)e−inxdx = 0.

That is, the Fourier transform of an L1 function vanishes at infinity.

Lanczos tridiagonalization and Golub-Kahan bi-

diagonalization

An interesting relation between Lanczos and bidiagonalization process is briefly
explained here. A detailed discussion can be found in [HPS06, HPS07].

The Lanczos tridiagonalization of the matrix AAT with the starting vector
s1 = b/β1, β1 = ‖b‖, yields in k steps the symmetric tridiagonal matrix Tk such
that (using the notation of section 2.1)

AATSk = SkTk + αkβk+1sk+1e
T
k ,

and

Tk = LkL
T
k =


α2
1 α1β2

α1β2 α2
2 + β2

2
. . .

. . . . . . αk−1βk

αk−1βk α
2
k + β2

k

 ,
i.e. the bidiagonal matrix Lk from the Golub-Kahan bidiagonalization can be
considered the Cholesky factor of the tridiagonal matrix Tk from the Lanczos
tridiagonalization.
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