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doc. RNDr. Tomáš Skopal, Ph.D.
Department of Software Engineering
email: skopal@ksi.mff.cuni.cz

Abstract:
Multimedia retrieval systems are supposed to provide the method and
the interface for users to retrieve particular multimedia data from mul-
timedia collections. Although, many different retrieval techniques evolved
from times when the search in multimedia collections firstly appeared as
a research task, not all of them can fulfill specific requirements that the
multimedia exploration is determined for. The multimedia exploration is
designated for revealing the content of a whole multimedia collection, quite
often totally unknown to the users who retrieve data. Because of these facts
a multimedia exploration system has to solve problems like, how to visual-
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Abstrakt:
Vyȟladávacie systémy nad multimediálnymi databázami sú určené k poskyt-
nutiu metód a už́ıvatělského rozhrania pre už́ıvatělov, ktorý chcú źıskať
konkrétne dáta z multimediálnej kolekcie. Od čias, keď sa vo vede prvý krát
objavila problematika źıskavania dát z multimediálnych kolekcíı, vzniklo
věla rôznych vyȟladávaćıch techńık, ale nie všetky z nich sú vhodné pre
špecifické podmienky, ktoré predpokladá multimediálna explorácia. Multi-
mediálna explorácia je určená na odhǎlovanie obsahu celej multimediálnej
kolekcie, vělmi často úplne neznámej už́ıvatělom, ktorý chcú źıskať in-
formácie o tom, čo kolekcia obsahuje. Na základe týchto faktov, multime-
diálny exploračný systém muśı riešǐt problémy ako zobrazǐt (zvyčajne vi-
acdimenzionálne) multimediálne dáta, ako škálovať problematiku źıskavania
dát z ľubovǒlne vělkých kolekcíı a ako navrhnúť také už́ıvatělské rozhranie,
ktoré by už́ıvatelia mohli intuit́ıvne využǐt pri explorácii multimediálnych
kolekcíı.

Ako odpoveď na tieto problémy sme navrhli a vyhodnotili naše idey pre
vytvorenie vhodného systému pre multimediálnu exploráciu. Načrtli sme
celkovú architektúru (všeobecného) multimediálneho exploračného systému,
vytvorili sme viacvrstvovú exploračnú štruktúru Multi-Layer Exploration
Structure (MLES) ako indexovú štruktúru, ktoré by mala vyriešǐt problémy
efekt́ıvneho a intuit́ıvneho źıskavania dát z multimediálnych kolekcíı, a tiež
sme ponúkli defińıcie exploračných operácii ako podporu interakt́ıvneho a
intuit́ıvneho rozhrania, ktoré môžu už́ıvatelia použǐt pri explorácii.



Vytvorenú štruktúru MLES sme integrovali do webového multimediálneho
exploračného systému a zároveň sme obohatili jeho zobrazovaciu kompo-
nentu nami definovanými exploračnými operáciami. Pomocou tohoto ex-
ploračného systému sme vykonali evaluáciu vlastnost́ı exploračnej štruktúry
MLES a aj exploračných operácii so zapojeńım reálnych už́ıvatělov, takže
sme boli schopńı vyhodnotǐt výsledky z evaluácie v rozsiahlej už́ıvatělskej
štúdii.

Kĺıčová slova:
multimediálne databáze, podobnostné vyȟladávanie, podobnostné indexo-
vanie, multimediálna explorácia, aproximat́ıvne vyȟladávanie, MLES
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Preface

The enormous amount of data collections spread over the Internet has given
an impulse for research of ideas how to store and access such data. These data
were produced in different ways and from various devices, they had not a com-
mon structure, but if we want to include all kind of data under some specific
designation, these data are referred to as multimedia data.

We can meet different sort of collections containing multimedia data every-
day. They come to us, especially, as some form of entertainment in a television,
cameras, social networks, but they are also a part of our everyday and work life as
medical records, video records from security cameras or histories of share prices
from stock markets. However, the multimedia collections are not bound to these
areas and in future, we can suppose continuous growth of the multimedia collec-
tions of any sort and that leads to the larger and generally unknown collections.
These facts and the latter assumption arise into questions how to store, access
and search such collections. A common character of these collections is that they
are generally unstructured, as opposed to data stored in relational databases or
document management systems, so there is need for different access methods
than, e.g., structured query languages. One traditional approach for accessing
data in the multimedia collection is so called query by example scenario. In this
scenario, a user who wants to access data in the collection, formulates his1 in-
tent with a query object and he expects to get relevant (usually similar) data
to this query object. But in some multimedia collections, where their content
is rather general than specific, e.g., images from a social network, it is hard to
express the querying intent using a query object, because the user does not know
what kind of objects the collection contains. Hence, it is more intuitive to browse
such a collection, where the query object provided by the user in advance is not
necessary.

Information used for browsing in multimedia collections can be stored next
to data objects in some text annotations or in any other meta-data, but as these
are optional the only information that browsing systems often have is the content
of data itself. In such a case, it is necessary to create a model of the multimedia
collection, which defines relations between particular data objects. Through the
relations in the modeled multimedia collection the user can browse from one view
of the collection to another. The relations between the data objects are usually
based on some kind of differences or similarities between particular objects of the
collection.

We can say that in our research topic, browsing, or better term, the explo-
ration, is a continuous process of revealing the content of an explored collection.

1A user can be ’he’ or ’she’, however, for better readability we will refer to a user as to ’him’
in the whole thesis.
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Thus, there is nothing like a final result of the retrieval process, the user is getting
the results in form of new information that he obtains in each step of the explo-
ration. Due to this fact, the methods how the user is performing his exploration
steps are more important than precision of the exploration process. Methods for
the exploration steps, we refer to them as to exploration operations, should nav-
igate the user through the collection in a direction he wants to go – from more
general to more specific concepts or vice-versa, or to navigate to (similar) objects
within the same level of details.

Summary of Contributions

In our research, we study properties of retrieving information from a multimedia
collection, where a user does not generally know about its content. More specif-
ically, we try to provide the answers to the user who stays in front of the tasks:
to extract information, or to get a global overview of such a collection its content
he previously does not know about.

We also contribute with a survey of exploration and browsing systems and
techniques that were proposed so far.

We propose the architecture of a general multimedia exploration system,
where we study data flow from user requests to a data layer where the data
collection resides. Next we study how to evaluate these requests and also partly
how to schedule them.

We define the multilayer model over an explored collection, the MLES, a
hierarchical exploration structure that enables the user to get the overview of a
specific area in the multimedia collection within different levels of details. In this
model we define exploration operations Zoom-In, Zoom-Out and Pan that allow
the user to navigate through the collection.

The user is usually browsing/exploring the collection using some multimedia
exploration system, so we implement our multilayer model into a multimedia
exploration system, where we study problems of visualizing and mapping a mul-
tidimensional space into 2 dimensions of a computer screen and we study also the
user interaction with the system.

Structure of Thesis

The thesis is divided into 6 chapters. The first chapter overviews basic terms and
methods of multimedia retrieval and similarity search. Chapter 2 introduces prin-
ciples of the multimedia exploration and compares it to the traditional scenario
of query by example. Following the introduction of the multimedia exploration,
in Chapter 3 we put down our ideas about the architecture of a multimedia
exploration system. The principles of our general solution for the multimedia
exploration are outlined in Chapter 4. Experimental evaluation and user study
are summed up in Chapter 5, where experiments on the proposed solution are
evaluated. The conclusion of the thesis is summarized in the Chapter 6.
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Chapter 1

Multimedia Retrieval

When speaking about multimedia data, we refer to any unstructured data like
text documents, image collections from social networks, medical records - images,
videos or also cardiographs, movies, videos from security cameras, stock market
records, music/speech records, and so on. A common characteristic of these data
collections is the fact that unlike relational data, multimedia data are inherently
unstructured. The only information that multimedia data generally have is their
content, the raw data itself. Therefore, multimedia databases are studied in a
specific research area which can use this content information in processing of the
multimedia collections, the content-based multimedia retrieval (CBMR).

The CBMR, as its name says, includes retrieval techniques that are primarily
based on the content of raw data and not on additional information, like text
annotations. If we imagine the content of unstructured multimedia data as raw
bytes, there have to be suitable data structures and methods developed, that
can process this low-level raw information. For example, in a photo collection
the raw information is a matrix of color pixels, or in a video collection we can
also expect some additional information about the camera, like its motion and
position. Subsequently, in the case of an image collection, a bit higher-level
information could be extracted from the matrix of color pixels like the distribution
of edges or texture information. Then, this extracted information - so-called
data descriptors are used in content-based retrieval instead of raw data itself.
The format of some general descriptors has been standardized in the MPEG-7
standard [1], but many more complex descriptors are still being proposed, trying
to improve performance of retrieval, e.g., feature signatures [2], or descriptors
extracted by deep neural networks [3], which become a groundbreaking solution
in recent years.

As the multimedia collections are generally unstructured, it is hard to query
them with some structured query language which is a traditional way in relational
databases. Instead, a model representing the space of specific multimedia data is
created from a particular collection, allowing the retrieval of objects from the col-
lection. For the collection represented by the model the exact match, popular in
relational databases, is not very suitable, due to the absence of a query language,
strong-type data structure, and thus also data semantics. Hence, new query ap-
proaches are required for querying the collections like, for example, searching
based on similarity, which is the main concept of research area referred to as the
similarity search [4].
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1.1 Similarity Search Paradigm

As we mentioned in the previous paragraphs, raw data of an unstructured mul-
timedia collection are transformed into data descriptors of features, where this
transformation from an object space Obj to a descriptor space U is called feature
extraction:

ϕ : Obj→ U (1.1)

The extracted descriptors usually have a format of a numerical vector, but other
formats are also possible as it is, for example, in case of strings used to describe
the primary structure of DNA molecules.

1.1.1 Similarity Modeling

The format of extracted descriptors and the definition of a descriptor space rep-
resents the first component of a model in the similarity search. The other compo-
nent consists of the definition of a proximity measure. Retrieval in the similarity
search is based on a proximity search, where the proximity is understood here
as either a similarity between objects in a collection or a dissimilarity between
them, also known as a distance. This proximity measure determines in what re-
lation two objects of the feature space are, where magnitude of this relation is
determined by the proximity function δ:

δ : U × U → R (1.2)

In the case when the proximity measure is the similarity, a higher value means
higher similarity and vice versa for the distance. In further reading, we will use
distance function as it allows to intuitively illustrate the search problem as a
geometrical problem (searching certain region in space).

The most used classification of models in similarity search is division into
those based on the theory of metric spaces, referred to as metric space models
and the others, which are referred simply as non-metric space models. When the
theory of metric spaces is applied in similarity modeling, it presumes a metric
space (U , δ) consisting of a descriptor domain U and a distance function δ, which
has to satisfy the following metric axioms:

non-negativity ∀x, y ∈ U , δ(x, y) ≥ 0
symmetry ∀x, y ∈ U , δ(x, y) = δ(y, x)
identity ∀x, y ∈ U , x = y ⇐⇒ δ(x, y) = 0
triangle inequality ∀x, y, z ∈ U , δ(x, z) ≤ δ(x, y) + δ(y, z)

A knowledge about the metric axioms can be exploited in creation of the
similarity model and afterwards, in the process of retrieval. As two different
models can be created over the same collection, they can be compared with
regard to their retrieval performance. When it is considered which model is more
effective, we refer to their effectiveness - how is the model precise in comparison
to the reality. The second useful measure is efficiency, which considers how fast
can model be in the retrieval process. Sometimes, the metric axioms tend to be
very strict, therefore to improve effectiveness, the non-metric models [5, 6, 7, 8, 9],
which do not satisfy all metric axioms can be also useful. They usually try to
relax the metric axioms to reach some level of trade-off between efficiency and
effectiveness.
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1.2 Query by Example

As we mentioned before, an exact search is not very suitable for searching in
a space that is based on similarity model. Extracted features are usually too
complex and often in such a format that is not understandable by a human.
Therefore, it is hard to state a query with use of any query language as we are
accustomed from searching in relational databases.

As the answer to these facts, similarity modeling specifies a suitable alternative
– similarity querying – a retrieval that is based on similarity and a specific query
by example scenario. As its name indicates, searching in the query by example
scenario requires an input element, an example query object, which can, but does
not necessarily have to be from a queried collection. In fact, a search where the
query object is not from the queried collection appears to be intuitively more
useful, because the user gets only new information from the result of his search
as the query object itself is not present in the result. Beside the query object, the
next search parameter in the query by example is a restrictive condition which
is put on the objects that the search returns. In the following paragraphs we
outline basic types of similarity queries and their variants.

For the following definitions we presume a descriptor space U , its subset S ⊆ U
as the queried collection and the query object q ∈ U .

1.2.1 Range Query

A range query puts the restrictive condition on the value of distance from the
query object, it returns all objects, of which their distance from the query object
q is at most as the value of the query radius r. Formally, the range query for the
query object q and the query radius r ∈ R is defined as:

R(q, r) = {o ∈ S, δ(o, q) ≤ r} (1.3)

A useful application of the range queries can be used, for example, in the text
search area, to solve type of problems like: Give me the english words that are
not more different from the word ’word’ than in change/insert/delete of a single
letter. The range query returns among others also the words: ’world’, ’sword’,
’wood’.

From the above definition it is clear that the number of the returned objects
is not known in advance until the whole search is evaluated. That is not very
practical in many applications, hence to solve this problem the following type of
the similarity query is an alternative.

1.2.2 Nearest Neighbor Query

A nearest neighbor query just returns an object from the queried collection that
is the nearest one to the query object. However, more useful is its variant of
k-nearest neighbors (kNN ) query, which also put the restrictive condition on the
query result similarly as the range query, but instead of the query radius, the
number of objects k in the final query result is stated. Formally, the kNN query
for the query object q and the number k of wanted objects in the result is defined
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as:

kNN (q) = {R ⊆ S, |R| = k ∧ ∀x ∈ R, y ∈ S −R : δ(q, x) ≤ δ(q, y)} (1.4)

Applications of the kNN queries can be, for example, e-shops, which recommend
similar products to the one currently shown, in such a task it is desired to have
a fixed number of recommended objects.

One of consequences of the restriction which is put on the number of objects
in the query result is the fact that there can still exist objects not returned by the
kNN query with the same distance as some of the returned objects. Applications
that employ the kNN queries should take this fact into account.

1.2.3 Other Query Approaches

Range and kNN queries are basic types of the similarity queries that are used in
the query by example scenario, but other query approaches are derived from them.
For example, both types of queries can be combined into the variant where the
limitation for the number of objects in the result is used beside the restriction
on the query radius [4]. Another interesting variant of the kNN query is an
incremental similarity search [10, 11, 12], where the search algorithm is designed
in the way to return more nearest neighbor objects also after the first k objects
in the result. It can be useful for applications when a user is not satisfied with
the first returned objects and want to see the next, possibly less similar, ones.

1.3 Indexing

In the previous, we mentioned two measures that reflect a quality of similarity
queries, the first one, effectiveness, is connected to the precision of a query and the
second one, efficiency, is linked to the speed of query evaluation. For improving
effectiveness it is usually necessary to improve the similarity model, while the
basic method for improving efficiency of querying is indexing. As indexes in
relational databases improve performance of query evaluation, similarly we can
use indexes to improve similarity querying in multimedia databases.

If you think about the evaluation algorithm of a range query, you will realize
that for making a decision if a particular object is or it is not within the query
radius, a distance between this object and the query object should be computed.
Hence, for complete evaluation of the range query such a distance computation
(DC) should be determined for each object in the queried collection. This fact
leads to the computationally expensive evaluation, unless some of distances can
be determined from the ones which were evaluated previously. And that is exactly
the basic principle of similarity indexing.

An indexing technique that is extensively used in the similarity search is metric
indexing [13, 4], which utilizes the existence of metric axioms. The fundamental
principle of metric indexing is estimation of lower bounds of real inter-object
distances with use of some precomputed distances, as depicted in Figure 1.1.
The smaller circle represents the query ball where all objects meeting a query
condition reside, q ∈ U is the query object, r ∈ R is the query radius, o ∈ S is
some object from the collection compared with the query condition and p ∈ U
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Figure 1.1: The lower-bounding principle.

is a reference object, selected in advance. The whole principle is based on the
previously computed real distances between the query object q and the reference
object p and also between the database object o and the reference object p. With
knowledge of these distances we can compute the triangular lower bound distance

LB(δ(q, o)) = |δ(q, p)− δ(o, p)| (1.5)

of the real distance δ(q, o) between the query object q and the database object o.
If this lower bound distance is greater than the query radius r, the real distance
does not have to be computed, because the object o is definitely out of the
query ball. Obviously, this kind of filtering can be very useful in cases when the
computation of the lower bound distance is computationally less expensive than
the computation of the real distance as it is, for example, in the cases of the
Signature Quadratic Form Distance [14, 15] and the Earth Mover’s Distance[16].

1.3.1 Metric Access Methods

Advantages of metric indexing are exploited in the index structures called metric
access methods (MAMs) or metric indexes. Their general purpose is to minimize
costs of query evaluation, where beside well-known I/O costs, they are designed
to minimize also the number of distance computations, usually with use of the
principles mentioned in the previous paragraph. The MAMs usually rely only
on the distance function δ, without knowledge of the exact structure of indexed
features. Many MAMs for different applications were designed in last two decades,
we return back to them later in the next chapter in Section 2.2, where we examine
some of well-known MAMs.

1.4 Motivation for Exploration

So far, we discussed the query by example scenario, but multimedia retrieval does
not have to be used only in the scheme formulate query -¿ get results. Enormous
growth of mobile devices, especially those with touch screens, leads to more con-
tinuous and interactive retrieval scenarios. The mobile devices offer a simple way
to create multimedia data, e.g., with a built-in camera people can take a photo, or
capture a video. Such created data can be simply viewed directly on the mobile
device or they can be uploaded to some collection on the Internet, e.g., to social
networks. Since multimedia collections can be nowadays created so fast and so
simply, typical requirements for multimedia retrieval have also changed. In the
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next four points we try to review the requirements for a new retrieval scenario,
the multimedia exploration.

User Interface

Firstly, due to rapid growth of social networks and mobile devices, the user of a
retrieval system can be almost anyone. Hence, the system should provide a simple
intuitive user interface to satisfy any kind of a user from a technique expert to a
computer laymen. Similar suggestions offers the survey by Lew et al. [17] aimed
on a future direction of content-based retrieval, their conclusions among others
also include human-centric methods and an interactive search.

Starting Point of Retrieval

Secondly, the user who performs retrieval in a multimedia collection typically does
not know in advance what he is searching for, the collection can be totally un-
known to him. In such a case, the user can hardly state any query object, instead,
he should be provided with some options that give him a direction where to start.
This starting suggestion should be a representative sample of the whole collection
as the retrieval system cannot generally suppose what the user is interested in.

Continuous Re-retrieval

Since the retrieval task in the multimedia exploration consists of uncovering what
the whole collection contains, it cannot be usually satisfied with evaluating one
single query, especially in case when the collection is very large. Thus, it is likely
that the process of retrieval will continue when first query results are returned, by
that time already with some knowledge about the objects from the first results.

Efficiency

The previous requirement of continuous retrieval assumes efficient evaluation of
similarity queries in order to not discourage the user with long responses between
particular steps of the search. In a single-step-like retrieval scenario, the user
forgives a little delay of getting the results, but when it happens repeatedly in
consecutive steps of continuous retrieval it can be very intimidating.

Taking these requirements into consideration, we proposed the general architec-
ture of a multimedia exploration system [18], we describe it in more detail in
Chapter 3. Before that, in the next chapter we continue examining assumptions
of the multimedia exploration started in the previous paragraphs and look at the
solutions of multimedia exploration systems proposed so far. Finally, in Chap-
ter 4 we propose a multimedia exploration structure, the MLES [19], capable of
the multimedia exploration in different levels of granularity.
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Chapter 2

Related Work

The previous chapter ends with the motivation for a different scenario from the
query by example that satisfies new requirements on multimedia retrieval. We
mentioned that one of presumptions for such a scenario is the different character
of a user retrieval task, the user does not want to retrieve concrete data as a
response to his stated query. Instead, the user wants to explore, to find out what
the multimedia collection contains and what kind of multimedia data are hidden
in the collection. According to exploring behavior of the retrieval scenario, such
a type of retrieval has got the name multimedia exploration.

The idea of the multimedia exploration was raised two decades ago and one
work that was directly involved in was the paper by Santini and Jain with a
rendering title Beyond Query by Example [20]. As the title indicates the authors
of the work deal with limitations which a traditional query by example scenario
has. They demonstrate those limitations on an exemplary search scenario, thus
we demonstrate it in the same way. Try to imagine the following scenario: you
have the task in your mind to search image collection for the houses with a gable
red roof. You have an example object, so you query the collection by this example
image. In a result, the retrieval system returns you a collection of images where
some of them are relevant, they are the houses with the gable red roof, but many
of them are not, they are, for example, desert dunes, tents or red houses with a
flat roof. As Santini et al. remark this happens because the retrieval system uses
the content of the images during the query evaluation, but it is not able to work
with their semantics. The authors see the source of this problem in the different
perception of an image content between the user and the retrieval system. In the
previous exemplary scenario, the system returns the images with the desert dunes
because they have similar shape to the gable roof. Similarly, the red houses with a
flat roof were returned in the result, because the red color was dominant in both,
the result and the query image - all images in the result are semantically similar
to the example image according to the perception of the system, but according
to user’s perception, they are not. Hence, the author propose the solution, not to
create the system that sees and understands all semantics in an images, but to
build the system which provides the user with right tools enabling the exploration
of the perceptual space of the database.

In the spirit of the previous observation, in the following paragraphs we discuss
the particular limitations that the query by example scenario has.
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Need of an Example. The very first problem of the query by example scenario
is in its fundamentals, in the example query object. In many cases a user is not
able to provide the example object, because he does not have a clear query intent
in his mind, instead the user wants to find out what data the explored collection
contains. For example, in the real life scenario, doctors are examining a collection
of roentgen images with the non-clear concept in their minds, they do not know
what they are looking for, but everything is made clear when they find it.

One-Dimensional Expression of Results. In most cases of querying sys-
tems, the query result is presented as a list of objects ordered with regards to
their distance to the query object. Such ordering does not express the relation-
ships between the particular items in the result collection. With knowing of
connections between them, the user would better understand the system’s per-
ception of the queried collection.

Counterintuitive Relevance Feedback. In order to give feedback to the
retrieval system, the users usually have some options to express which items of
the result are relevant and which are not. For example, some objects can be
explicitly marked as relevant, or the system can offer techniques for adjusting
the used similarity function, e.g., in image collections, the users are able to put
more emphasis on the color and less on the shape. But, if the user does not have
an idea what kind of objects are stored in the collection, such adjustments are
not intuitive for him. In such a scenario, better for him would be to continue
searching in some direction with regards to one or more objects from the current
result.

Non-Interactivity. This limitation is related to the previous ones. In the
query by example scenario the user interacts with the system first by providing
an example object and afterwards, when he evaluates relevance of the results,
by rating particular images or adjusting underlying similarity. But for achieving
more interactive feeling, it would be better to truly interact with the underlying
similarity model, by providing tools for examination of the model and also tools
for changing the model.

Considering the limitations of query by example, more and more ideas were trans-
formed into proposals of browsing and exploration scenarios. Beside the individ-
ual browsing and exploration proposals, there were introduced surveys that try
to summarize pros and cons of the proposed systems. In the significant survey by
Smeulders et al. on the topic of content-based image retrieval [21], the authors
address ability of a user to interact with a retrieval system together with visual-
ization of an underlying similarity model – in the survey designated as the query
space. Although the survey reviews also other concepts of content-based image
retrieval, it is primarily aimed on query by example systems.

Six years later, in 2006, the work of Lew et al.[17] concludes five major chal-
lenges of content-based multimedia information retrieval and two of them include
the interactive search and also the experiential multimedia exploration systems
which allow users to gain insight and explore media collections.
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Later, in 2008, next two surveys appeared, aimed more or less on the systems
for browsing multimedia collections. First of them, the work of Datta et al. [22]
is primarily focused on the systems for automatic annotation, but the authors
discuss all aspects of image retrieval. They themselves consider their work as the
successor of the work by Smeulders et al. [21] from the beginning of the decade.
In Datta et al. [22] the authors believe that the intent of a user can act as a
guideline for system design. They subdivide the user by clarity of his intent into
three main categories:

• Browser: The user that browses the collection with no clear goal in his
mind. In such a case the user session consists of more unrelated searches.

• Surfer: The user that browses the collection with no clear goal in the
beginning, but with subsequent searches the clarity of what the surfer wants
from the system tends to increase.

• Searcher: The user that searches the collection with very clear goal in his
mind. The session of the searcher is typically short and leads directly to
the end-result.

The authors conclude their categorization with the interesting idea: the image
retrieval systems can gain wide acceptance if they will implement the human-
centered perspective.

The second survey from the year 2008, by Heesch [23], can be considered as
the first survey fully-oriented on multimedia browsing and exploration systems.
On behalf of defending browsing, the author gives the interesting idea of the
mental query, meaning that the very best version of the query exists only in the
mind of the user. When the user tries to formulate it, he is limited by means of
expression of a retrieval system. In the case of browsing, the query does not have
to be formulated explicitly, the search of the user is driven by the virtual query
formulated only in the mind of the user. In some cases, the user even does not
have the query in his mind in the moment when he starts to search. Thereafter,
the query intent is getting its shape only after the user gradually interacts with
the retrieval system.

In 2011, Beecks et al. [24] state new challenges for the multimedia exploration
of very large collections. They aim for performance of an exploration system
with adaptability on one side and scalability on another. They think that high
scalability of the exploration can be achieved by a near-real-time index support
for evaluation of similarity queries. The authors conclude this idea with the
statement that the interplay between user-centric similarity queries invoked by
actions of the user and data-centric indexing methods should be optimized.

2.1 Exploration and Browsing Systems

2.1.1 Exploration versus Browsing

The term exploration is not commonly used as a name for the scenario of content-
based retrieval, because its concepts are often confused with the term browsing.
But from our point of view, there is a difference between browsing and exploration.
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During browsing, the users typically have the idea in their minds, what they want
to find, while in the exploration they do not. Therefore, browsing is categorized
as a direct search1, similarly like query by example, while the exploration is an
indirect search. Similar differentiation of the term browsing from other concepts
is contained in the definition of the term browsing in BussinessDictionary.com:

browsing - Exploration of the World Wide Web by following one
interesting link to another, usually with a definite objective but with-
out a planned search strategy. In comparison ’surfing’2 is exploration
without a definite objective or a search strategy, and ’searching’ is
exploration definite in both objective and strategy [25].

Nevertheless, browsing and exploration have many properties in common. In the
consecutive text we discuss ideas from both of these retrieval scenarios.

In the following, we introduce the survey of existing browsing and exploration
systems beside the overview of browsing and exploration concepts that we con-
sider crucial for the multimedia exploration. We focus on three aspects of the
exploration systems:

• Exploration structure, how it is created and how it supports the explo-
ration itself.

• User interface, especially on the options that the user has for interaction
with the system.

• Visualization, how the explored collection is mapped to the space of the
visualization.

2.1.2 Visualization, Mapping and Exploration Structures

The corner-stone of the multimedia exploration is the visualization of an explored
collection. If the visualization is intuitive and truly reflects the reality it helps
the user orient easier in the explored collection, and on the contrary if the visu-
alization is inaccurate, the best of all performance properties of such a system
happen to be useless. In the excellent work by Nguyen and Worring [26] about
similarity-based visualization, the authors define three general requirements that
are put on the system which visualize a multimedia (image) collection:

• Overview requirement: The visualization should give a faithful overview
of the distribution of images in the collection.

• Structure preservation requirement: The relations between images
should be preserved in the projection of the information space3 to the vi-
sualization space.

1See Footnote 2 and a corresponding text in the following paragraph.
2Notice, that in comparison to categorization of users by Datta et al. [22] from the beginning

of this chapter the terms surfing (exploration) and browsing are swapped. Since for content-
based retrieval, the term exploration is more suitable than the term surfing, we will use the
term exploration in the rest of the thesis.

3The information space here is meant the descriptor space.
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• Visibility requirement: All displayed images should be visible to the
extent that the user can understand the content of each image.

The all three requirements are not independent, i.e., when one of them is accom-
plished in a good degree the fulfillment degree of another can decrease. Hence,
to design good, the reality demonstrating visualization means to find balance
between these three requirements. As the authors propose, balancing can be
achieved, for example, by defining a cost function for each of three requirements
and then by optimizing the linear combination of these cost functions. For more
information about the cost functions, you can revisit the proposal of the authors.

The fundamental question that should be answered when visualizing a result
collection of some query or the whole multimedia database is the mapping from
a descriptor space to a space of visualization. The visualization space is typically
two- or three-dimensional, while the descriptor space is typically multidimension-
al. Hence, almost in every exploration system, visualization design leads to the
problem of dimensionality reduction. A lot of research was done and many tech-
niques were proposed on this subject, in the next paragraphs we introduce some
of them.

One of the algorithms determined for dimensionality reduction is the FastMap
[27], which is able to project objects from n-dimensional space to k-dimensional
space, so in case when k is 2 or 3, it made it the suitable technique for visualization
of the data collection. The main idea of the algorithm is based on projection of
data objects on the geometric line between two reference objects which are far
from each other. With consecutive applications of the idea the n-dimensional
space can be reduced to the k-dimensional, where k < n. The advantage of the
FastMap is in the fact that the algorithm is completely based on the distances
between objects and not on the representation of the objects itself.

Another well-known technique used for projection from the descriptor space to
the visualization space is the Principal Component Analysis (PCA) [28, 29]. The
PCA algorithm is based on the mapping to objects the new orthogonal system
where the variance along axis in the new system is maximized (from the largest
variance to the smallest). In case when the dimensionality of the new system is
lower then the initial one, the dimensionality reduction occurs. The PCA does
not adhere to the requirement of structure preservation (see categorization above)
because from its nature it is not preserving the mutual distances from the original
space, it simply ignores the less important dimensions.

Unlike the PCA, the Multidimensional scaling (MDS) [30] is an algorithm that
tries to preserve the mutual distances from the original space to the highest de-
gree. Whereas computation of optimal mapping for large collections is expensive,
the incremental MDS proposed by Basalaj [31] is less expensive, thus more suit-
able for the interactive application. The core principle of the incremental MDS is
the cluster analysis of a mapped collection, which helps to avoid computations of
distances between too similar objects. Another mapping used for dimensionality
reduction, which is based on the MDS, is the Sammon’s mapping [32]. While
another one is the self-organizing map (SOM) [33], which is based on an artificial
neural network and the MDS.

A visualization idea from the area of graph drawing, the force-directed place-
ment [34], has also its origin in the MDS. The idea is based on a spring network,
where the anchors are particular objects from a visualized collection and physi-
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cal properties of the springs, the attractive and the repulsive forces between two
anchors, are based on the similarity and the dissimilarity between the connected
objects. The algorithm contains the optimization part utilizing different opti-
mization methods, for example, the modifications of the original algorithm that
use the optimization method called the simulated annealing is offered in the works
by Fruchterman et al. [35]. and by Davidson et al. [36].

Nguyen and Worring [26] prefer methods for non-linear mapping like the iso-
metric mapping (ISOMAP) [37], the local linear embedding (LLE) [38] and the
stochastic neighbor embedding (SNE) [39]. The authors claim that these methods
perform better in fulfilling the requirement of structure preservation than the
PCA or the MDS and they use them in their exploration system, see Figure 2.1.

Figure 2.1: The layout of the exploration system by Nguyen et al., in the upper-
left corner is depicted distribution of a whole collection in a visualized space,
while the main screen displays images from a particular part of the space.

In the work by Pečenović et al. [40], the authors introduce the retrieval system
CIRCUS, which integrates browsing and querying subsystem in the single user
interface. The CIRCUS visualizes the underlying descriptor space represented as
the precomputed visual map. The multidimensional descriptor space is projected
into the 2-D map using the Sammon’s mapping, where performance of the Sam-
mon’s algorithm is improved by the preprocessing step that prepares the initial
configuration for the algorithm by using PCA projection. To show images in more
detail the CIRCUS is supported by a hierarchical tree-based structure, created
by repetitive k-means clustering. The constructed tree is kept balanced using a
limit for the sizes of the clusters, where the limit is determined heuristically.

After mapping, the next issue that the visualization systems have to challenge
is the overlapping of visualized objects. Nguyen and Worring [26], the authors
of the visibility requirement from the beginning of this section, represent each
rectangular image by a circle and try to eliminate overlapping of the circles. For
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simplification, they presume square images with the same height h of the image
as its width w, i.e., w = h. Then the visible part of the image (the representing
circle with its middle in the middle of the image and with the radius equals to
w/2) covers π/4 ' 80% of the image, which is sufficient for visibility.

The question of overlapping is also answered in the visualization systems based
on the force-directed placement. Desired overlapping is achieved by adjusting the
repulsive forces between individual images. In the work by Rodden et al. [41], the
authors use for visualization the force-directed placement next to the incremental
MDS. They analyze the impact of similarity-based visualization on the speed of
locating a target image. In their experiments, they compare similarity-based
visualization with random distribution of images in a 2-D grid and the results of
the similarity-based visualization results are better. But the interesting side result
of the experiments is finding that the participants of the experiments prefer non-
overlapping regular placement in the 2-D grid over more overlapping visualization
because of the readability of the images displayed on the screen. On behalf of
this observation, the authors propose the method that fits the force-directed
placement in the regular 2-D grid, the differences can be seen in Figure 2.2.

(a) (b)

Figure 2.2: a) Visualization of 80 random images based on the force-directed
placement b) the same collection rearranged in the 2-D grid in the post-processing
step, the structure of the force-directed placement is largely preserved

Another system that use the force-directed placement in its visualization is the
SIR [42] and its successors [43, 44, 45]. The attractive forces between the images
are based on the similarities between these images and affect only neighboring
images. The repulsive forces are set globally, they affect all images and they are
not based on the similarity, they are modeled in the way to prevent overlapping
of the images (see Figure 2.3).

Visualization based on the force-directed placement uses also the authors of
the NNk Networks [46], but only in the detail mode (when one image is in the
center of the screen), see Figure 2.5. In the underlying structure, their solution
connects one image to the images that are the nearest neighbors in at least one of
the multiple descriptor spaces in which the images are represented. Each image
is represented by a vector of weighted descriptors and the algorithm that the
authors propose tries to find the neighbors of the image while it changes this
weighting vector. All nearest neighbors are connected in the network, while fur-
ther clustering is applied for visualizing only the representatives of some clusters.
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Figure 2.3: A force-directed placement layout of the SIR engine.

For clustering, they use the graph-based Markov clustering algorithm proposed
in [47], see Figure 2.4.

Figure 2.4: A visualized image collection clustered with the Markov Clustering
algorithm.
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Figure 2.5: The local NNk network around the chosen butterfly image in the
middle.

The next work, by Liu et al. [48], proposes the visualization of images that
are the result of some web search. With omission of the web environment, it can
be generally considered as the visualization component of a querying system. The
authors of the work suggest to map the images into a 2-D space involving the MDS
and they contribute also with a research over image overlapping. Their research
results in the visualization component where users are able to dynamically change
the overlapping ratio and even to display the image collection in the regular grid.

Beecks et al. [49] describe the process of the multimedia exploration in four
entities: the first is the multimedia database consisting of data themselves, the
second is the initial mapping process that maps the multidimensional space to
the space that has the number of dimensions which visualization can work with
(usually two or three dimensions), the third one is the visualization itself and
the fourth is the user who is interacting with the exploration system. In the
consequent works by Beecks et al. [50, 24, 51], the authors face up challenges of
the exploration of large collections and propose their prototype of the exploration
system, see Figure 2.6. The system is based on the modularity of its components,
where beside the exploration operations like zoom in or zoom out, the users can
choose the similarity model, which is used for the visualization and the querying,
e.g., feature histograms or feature signatures. The users can also choose the query
strategies that improve the effectiveness of evaluating similarity queries. The
authors suggest two different strategies, the first one is the approach based on
the well-known filter-refinement paradigm and the second one involves supporting
evaluation of the queries with some similarity index like the M-tree [52].

The interesting visualization idea that goes beyond more than the pure 2
dimensions is introduced by the Hue Sphere Image Browser[53, 54]. The objects
from the database are visualized on the globe, placed according to their values of
the hue and the value in the HSV color space. The visualization space is divided
regularly in the multiple sections, each section displays one image ensuring that
the images do not overlap.
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Figure 2.6: The prototype of the exploration system by Beecks et al. [51].

(a) (b)

Figure 2.7: The comparison of visualizations a) using multidimensional scaling
b) using the Hue Sphere

Lokoc et al. [44] indirectly categorize the exploration according to the used
structures. They distinguish between two approaches, the difference is in the
method that exploration systems use when they explore space:

• Iterative querying, which is the sequence of consecutive similarity queries
that users use for getting closer to their (possibly formerly unknown) query
intent. When the users interact with some object, the similarity query,
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usually the k−NN query, is performed in a background and similar objects
to the target of the interaction are returned back to the users.

• Iterative browsing, which is the sequence of consecutive user actions
that the users use for navigating through objects in the explored space by
following a hierarchically organized structure, which was created in advance.

The difference between these two approaches is also in the initial phase, before
the users start to explore. The systems based on the first approach evaluate the
similarity queries during the exploration phase, hence for the efficient evaluation,
the explored space should be indexed with some similarity index. On the contrary,
the systems based on the iterative browsing actually do not evaluate similarity
queries in the exploration phase, instead, they traverse the created structure,
hence in the pre-exploration phase such a hierarchical structure has to be created.

The browsing system PIBE [55] is based on the idea of following the hierarchy
of a clustered structure called the Browsing Tree. The Browsing Tree uses the
repetitive k-means algorithm to create the clustered hierarchy of a visualized
collection and for visualization of the images on the screen the authors of the
PIBE adopt the MDS. The PIBE allows the user to personalize his visualization
by performing personalizing actions that can modify the Browsing Tree, without
the need to fully reorganize the visualized structure. On behalf of basic browsing
operations, the user can browse vertically along the created hierarchy. Beside
that, the authors define the new horizontal operation for displaying descendants
of more visualized clusters at once.

Figure 2.8: The PIBE browsing system using a hierarchical visualization struc-
ture. The system allows the horizontal browsing by selecting a point in the ”white
space” between images and also the vertical browsing by selecting some image to
display descendant images in the clustered hierarchy.

The next visualization layout that browses a hierarchical structure is proposed
in the work by Chen et al.[56], the authors call it the similarity pyramid. Each
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level of the pyramid is organized as a 2-D grid, where similar data are near to each
other. The structure of the pyramid is built by employing an efficient version of
hierarchical clustering, the fast-sparse clustering, which the authors also propose.
The result of the fast-sparse clustering, the clustered binary tree, is subsequently
transformed into the Quad Tree [57], whose each level is mapped into one level of
the pyramid. Since the pyramid is created as the clustered hierarchy, each level
represents the different level of details of the visualized space.

Another exploration system from the category of hierarchical browsing is the
ImageMap proposed in [58]. The ImageMap allows to visually explore and search
millions of images as it is proven in the web-application Picsbuffet [59], see Fig-
ure 2.11. The underlying visualization structure of the ImageMap is, in a similarly
way to the solution from the previous paragraph, a hierarchical clustered pyra-
mid (as depicted in Figure 2.10) sorted by visual and semantics similarities. The
bottom level of the hierarchical pyramid structure is based on the self-organizing
maps (SOM), while the higher levels are created from the bottom one on the
principles of the Quad Tree [57].

Figure 2.9: The display mode the Fractal tree map in the ImagMap exploration
system.

The basic idea of the ImageMap comes from map services like the Google
Maps. In visualization, the user sees a so-called viewport that in the lowest level
shows a part of the whole image map, while in the higher levels it shows a part
of the particular representatives selected from clusters created in the lower levels.
For the sake of the intuitive and continuous exploration, the use of the map-based
approach in the area of multimedia retrieval has to follow some rules. Thus beside
the necessity of a hierarchical structure, the authors state two requirements that
have to be satisfied:
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Figure 2.10: The ImageMap - the example pyramid with four levels.

Figure 2.11: The Picsbuffet - the web-application based on the ImageMap explo-
ration system.

• Images on the lowest level of the image pyramid need to be arranged in
such a way that similar images are placed close to each other.

• Images of the higher levels need to be chosen as the good representatives of
corresponding images from the lower levels.

In the sequel work by Barthel et al. [60], the authors solve the problem how
to organize the underlying 2-D structure of a visualized database. The problem is
in dimensionality reduction, the high dimensional relationships between images
could not be represented in the two-dimensional SOM, so they are lost. The
authors propose the solution, the structure is visualized as the hierarchical graph
where the vertices are the images and the edges represent the relations between
the vertices that are similar to each other. But as there is none obvious way
to display such a graph with similarity-based relations, the authors propose the
new visualization mode, the Fractal tree map, see Figure 2.9, which allows fast
navigation through the graph.
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The self-organizing maps are used as a mapping approach for visualization of
image collection in a 2-D map also in the work by Strong et al. [61]. The authors
use the Graphics processing unit (GPU) for evaluation of difficult computations
to increase training of the SOM. They suggest to use the k-means algorithm for
dynamic clustering, to allow displaying the images with an increased size, the
difference can be seen in Figures 2.12a and 2.12b. Beside changing the size of
displayed images, the user interface of the visualization system allows users to pan
or zoom in the visualized map to see details of the specific part of the database.
If necessary, the users can also display all images of the clusters not just their
representatives (notice the difference between Figures 2.12c and 2.12d).

(a) (b)

(c) (d)

Figure 2.12: The photo collages dynamically generated based on the user inter-
actions: (a) the initial SOM trained using 256 images (b) increasing of the photo
display size results in the state where fewer images are shown, each of them rep-
resents a cluster (c) zooming into the portion of the SOM where some ocean
pictures are mapped to (d) showing remaining images in the clusters of reduced
size [61].
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2.1.3 User Interface

The intuitive interface is, from the user perspective, one of the fundamentals
of an acceptable exploration system. The user interface consists of both, the
visualization layout and also of the operations that the system offers for active
interaction with it. As the visualization we address in the previous section, in
the following we focus on the exploration operations.

There are many perspectives, from which the user interaction with the visu-
alized collection can be seen. One of them, proposed in the work by Plant et
al. [62], offers two categories of browsing in retrieval systems according to the
direction of browsing. The first category, the horizontal browsing, allows the op-
erations with images placed on a visualization plane, such operations could be
panning (2-dimensional moving on the plane), zooming4 (here it means focusing
on some part of the visualization plane for seeing more details of some images),
magnification (focusing on one image on the plane to see more details of it, see
Figure 2.13) and scaling (dynamically resizing the resolution of some images on
the visualization plane). The second category is the vertical browsing, which al-
lows users to navigate between different levels of hierarchical visualization. As
the authors conclude, the operations that the hierarchical browsing introduces
could be practically used in every visualization which displays images on a single
plane. Whereas the operations of the vertical browsing are limited only to the
systems with hierarchically organized visualization.

Figure 2.13: The demonstration of the magnifying operation in horizontal brows-
ing.

Another perspective on the exploration operations is introduced in 3-D like
visualizations, e.g., placement on a globe provides to the user the intuitive in-
terface, see the Hue Sphere visualization [53, 54] in Figure 2.14. With rotating
the globe (the operation panning), the user browses the image collection in ac-
cordance with different hue values and by tilting the globe the user can see more
darker or more brighter images. In case when the database is large, more images
are internally assigned to one section on the globe and only the representative
image of that section is displayed. While exploring, the user is able to open such

4In the latter text we connect zooming to the vertical, not the horizontal browsing.
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Figure 2.14: The Hue Sphere Image Browser on a multi-touch screen.

a section and its content is visualized applying the same rules (changing hue from
left to right and changing brightness from top to bottom) that are applied for
visualization of the whole collection.

With the rapid growth of mobile devices, the techniques for usual user inter-
action with visualized collection are changing. In the work by Schoeffmann et al.
[63], the authors study different ways how to visualize image collections within
the limited space that the screens of mobile devices typically have. With con-
sidering the third dimension in the visualization, the systems are able to display
much more images on the screen at once. The solutions by Schoeffmann et al.
consist of the 3-D visualization on the 2-D screen as it is also in case of the 3-D
Cylinder visualization [64] (see Figure 2.15). The images are placed in the similar
manner as those in the Hue Sphere, based on the hue value from the HSV color
system. The 3-D cylinder can be rotated to show more images from another part
of the visualized database. The authors try to utilize specifics of mobile devices,
e.g., by employing touch gestures, swiping for rotating and pinching for zooming.
Moreover, an accelerometer integrated in the devices is also exploited, horizontal
tilting rotates the cylinder and vertical tilting switches the vertical perspective of
the whole cylinder.

The principles of the multi-touch 3-D Cylinder were joint with the principles
of the Hue Sphere (see Figure 2.14) the authors of both systems cooperate and
they propose the new multi-touch 3-D Globe [65], you can see it in Figure 2.16.
The 3-D Globe utilizes the visualization on a sphere from the Hue Sphere and
the user interface for mobile devices from the 3-D cylinder.

For helping the user to see details of some part of the visualized space but still
in a global context, the fisheye view [66] can be used. The visualization system
by Liu et al. [48] uses this technique for highlighting some images when the user
interacts with the visualization through a mouse click.
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Figure 2.15: Multi touch visualization on the 3-D Cylinder.

Figure 2.16: Multi-touch visualization on the 3-D Globe - combination of the
multi touch 3-D Cylinder and the Hue Sphere.

In the system proposed by Chen et al. [56], the users are able to follow the
hierarchy of a hierarchical structure called the similarity pyramid. Following the
hierarchy down or up involves the operations zooming in or zooming out, where
the next level (lower or upper) is displayed centered with regards to the spatial
position in the hierarchy of the previous view. Moreover, if the currently viewed
level of the pyramid is too large to display on a single screen, the users can use
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direction arrows for panning to explore hidden parts of the current level also
horizontally.

Some systems provide the user interface that combines searching techniques
of the query by example scenario in addition to the explorations operations. For
example, the authors of the MediaMill search engine [67, 68] use in their proposal
a combination of four query techniques - query by concept, query by example, query
by keyword and user interaction. But their system (see Figure 2.17) is primarily
designed for a targeted interactive search and not for an indirected exploration.
The typical retrieval scenario in their system starts with the user defined query
and after obtaining the results, the user rephrases the previous queries to retrieve
the results that are more accurate than the first ones.

Figure 2.17: The interface of the MediaMill semantic video search engine.

Similarly, the hierarchical tree-based CIRCUS system [40] provides the user
interface (see Figure 2.18) for two content-based retrieval modalities - querying
and browsing. Beside query by example, the users performing querying are able
to query by text, color, or painting, or even use some combination of these query
types. The browsing operations include panning and zooming in the visualized
space. At each level of the hierarchy the users see the representative images
of clusters and the several sub-levels, which can be also displayed optionally
within the current level. The user interface of the CIRCUS provides a so-called
semantic zoom, i.e. at a particular zooming level, some additional information
(e.g., the annotation or meta-data) is visualized next to the own images. The
system displays the entire space also in the smaller overview component, for better
orientation within the visualized space (see Figure 2.18).

2.1.4 More Unconventional Approaches

Beside the approaches we mentioned in the previous sections, there exist un-
common visualization and exploration systems based on some special, typically
cross-disciplinary, ideas. In the works by Chen et al. [69, 70], the authors adopt
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(a) (b)

Figure 2.18: The search engine of the exploration system CIRCUS a) visualization
of one cluster b) the higher overview of a visualized collection at a given level of
the hierarchy

the Pathfinder networks used in the psychology [71] to visualize image and video
collections, see Figure 2.20. Their visualization can be based on different met-
rics - color, layout or texture, while with the change of the metric the visualized
structure also changes. The whole multimedia collection is visualized at once and
beside exploring, the users can also search with the traditional query by example
scenario. The layout of their searching engine you can see in Figure 2.19.

Figure 2.19: The searching engine of Pathfinder network visualization.
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Figure 2.20: Pathfinder network visualization of a video collection.

The very complex visualization and the user interface are offered in the ap-
plication MediaMetro [72], which uses the 3-D city metaphor for visualizing and
browsing the document collections, see Figure 2.21. The MediaMetro is useful for
the visualization of documents organized in a directory hierarchy (subdirectories
are visualized in a repetitive way), where each directory is visualized as a build-
ing in the virtual city. The buildings have the images instead of their windows
that represent the documents contained in the directory, while on the top of each
building is a single representative frame which shows the directory storyboard.
The visualized documents can be of any type, from images or texts to presenta-
tion slides and videos, which can be selected for media playback. The users of
the application are able to explore the city in the 3-D manner, well known from
computer games, the authors liken it to the movement like flying around in a
helicopter.

Figure 2.21: The MediaMetro - browsing a documentary collection in the city-like
visualization.
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2.2 Index Support of Multimedia Exploration

Heesch in his survey [23] mentioned in the beginning of this chapter is giving
into parallel the searching and the indexing of the multimedia browsing systems
with the World Wide Web (WWW). He states that a browsing structure can
be navigated very quickly when it is already built, as it happens in the WWW.
This observation emphasizes the necessity for building the scalable structure that
subsequently supports the actions of the user when he is exploring the multimedia
collection.

But, the principles of the WWW cannot be directly transposed into the multi-
media exploration systems. The majority of the exploration systems we outlined
in the previous sections create the structures that can be quickly followed during
the exploration phase, but these proposals were tested on the relatively small
collections with hundreds of thousands of images. Only the ImageMap [58] has
proven to explore huge collections with over millions of images. With the growing
size of the indexed collection, it is legitimate to ask if these proposals are able to
perform the responsive exploration on respectively large collections.

The majority of the outlined systems more or less follow some hierarchy cre-
ated from the explored collection during the exploration phase, but such an ap-
proach is not the only one used in the multimedia exploration systems. The
concept of iterative querying [44] we mentioned in the Section 2.1.2 does not
directly require the hierarchical structure, it assumes the support of evaluating
the exploration operations based on similarity queries employing some indexing
methods. The metric access methods (MAMs), we mentioned in Section 1.3.1,
can be used in such a scenario to improve the efficiency of query evaluation.

2.2.1 Metric Indexing

Many different MAMs and other indexing methods [73] were proposed in the last
two decades to improve the efficiency of the query evaluation. In the following
paragraphs, we outline general principles of some of them.

One of the most efficient (yet simple) MAM is the pivot table [74], originally
introduced as the LAESA [75]. Basically, the structure of the pivot table is the
simple n×m matrix of distances δ(oi, pj) between n database objects oi ∈ S and
the pre-selected static set of m reference points, called the pivots pj ∈ P ⊂ S.
For querying, the pivot table allows us to perform cheap lower bound filtering
by computing the maximum lower bound (see Equation 1.5) to the real distance
δ(q, o) using all the pivots as we described it in Section 1.3.

As we mentioned in Section 1.3, the fundamental principles of metric indexing,
which are used in the MAMs, utilize the metric axioms. Beside the principle of
lower bound estimation based on the triangle inequality, described in Section 1.3,
the similar principle based on the Ptolemy’s inequality called the ptolemaic in-
dexing [76] is for example used in the Ptolemaic Pivot Table [77]. The Ptolemy’s
inequality states that for any quadrilateral with points q, o, u, v (as depicted in
Figure 2.22) holds:

δ(q, v).δ(o, u) ≤ δ(q, o).δ(u, v) + δ(q, u).δ(q, v) (2.1)

If we consider the situation, where q is the query object, o is the database
object and u, v are two pivots, from the above inequality we can deduce the
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Figure 2.22: The ptolemaic lower-bounding principle

ptolemaic lower bound distance of the real distance δ(q, o) between the query
object q and the database object o as

LBPtolemy(δ(q, o)) =
|δ(q, v).δ(o, u)− δ(q, u).δ(o, v)|

δ(u, v)
(2.2)

Similarly, like in the case of the triangle lower bound (see Section 1.3) if
the ptolemaic lower bound distance is greater than the query radius r, the real
distance does not have to be computed. Beside the Ptolemaic Pivot Table, the
ptolemaic lower bounds can be also employed in the indexing principles of other
MAMs [77].

Next MAMs, the M-tree [52], the PM-tree [78, 79] and their variants [80, 81,
82] are dynamic index structures that provide good performance in the secondary
memory (i.e. in database environments). The M-tree is a hierarchical index
where some of the data objects are selected as the centers (local pivots) of the
ball-shaped regions, while the remaining objects are partitioned among these
regions in order to build up a balanced and compact hierarchy of data regions,
see Figure 2.23. Each of these regions (the subtree) is indexed recursively in the
B-tree-like [83] (bottom-up) way of the construction.

The range and the kNN queries are implemented by traversing the tree start-
ing from the root, where only those nodes are accessed, whose parent regions are
overlapped with the query ball (q, r). In case of the kNN query the radius r
is not known beforehand, so the additional process is employed to dynamically
decrease the radius during the search algorithm (initially set to ∞). The kNN
algorithm performs the best-first traversal of the index, where the regions are
accessed in order of the increasing lower bound distance to the query object q.

Next MAM similar to the pivot table is the permutation index proposed in
[84]. The index also consists of the simple n×m matrix, but instead of the objects
to pivots distances, the permutation of the pivots is stored for each object oi from
the indexed collection. This permutation is ordered with regards to the distances
between the database/query object and the particular pivots. The main principle
of the permutation index is based on the idea that similar objects see the pivots
in the underlying space from the same perspective, hence their permutations of
the pivots are also similar.

While querying the permutation index, first the permutation for the query
object is computed and then the objects from the queried collection are ordered
in descending order according to the similarity of their pivot permutations to
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Figure 2.23: The M-tree - hierarchical space decomposition and the tree structure

the permutation for the query object. Next, in that order, the query-to-object
distances are evaluated until the stop condition based on some heuristic is fulfilled
(e.g., when the fraction of the whole collection is evaluated). Since it is not
ensured that all objects whose query-to-object distance was not evaluated yet5

are refined with the querying condition, this querying method belongs to the
category of the inexact (approximate) search.

Another index that employs the idea of the ordered permutations of pivots
is the M-index [85, 86, 87]. The M-index consists of the hierarchically organized
cluster tree which organizes the underlying data storage represented by the B-
tree [83]. For data clustering, the cluster tree repetitively uses the Voronoi-like
partitioning for dividing the objects into non-intersecting clusters. Each cluster
is identified by the pivot permutation that is computed for each object in the
cluster on the same principle as in the permutation index from the previous
paragraph. In addition, the clusters from the cluster tree are numbered using the
specific principle used in the iDistance [88], where these numbers together with
the distance to the nearest pivot are used as keys to the B-tree storage (see in
Figure 2.24).

The querying algorithm of the M-tree starts in the root of the cluster tree and
traverses the tree in a breadth-first manner to those subtrees which are represent-
ed by the prefixes of the permutation for the query object. While traversing the
tree, the known metric space postulates [4] are applied for pruning non-relevant
clusters. Finally, the iDistance-based identifiers are used for retrieving relevant
objects from the non-pruned clusters and the collection of these result objects is
subsequently refined by computing the real distances to the query object.

2.2.2 Non-Metric Indexing

As we mentioned in Section 1.3, the metric axioms help to build efficient indexing
structures, but the metric indexing has also some limitations as it is described in

5in the moment when the searching algorithm stops
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(a)

(b)

Figure 2.24: The principles of the M-Index Voronoi-like partitioning (left) and the
iDistance-like mapping (right) a) on the first level b) repetitively on the second
level [86].

the work by Skopal [5]. Skopal mentions that in many cases the metric axioms can
be very restrictive for the process of modeling similarity whereas the similarity in
real-world is perceived with the human perception. On the contrary, more general
similarity can be achieved when the non-metric similarity function is used, such
one which does not satisfy some of metric axioms. But it is not for free, with
relaxing some metric axioms the new problem is introduced in indexing: the
triangle lower bound principle (see Section 1.3) cannot be directly used, hence it
is necessary to find the new principles for non-metric indexing that improves the
indexing efficiency. One of possible solutions introduces Skopal in his work [5], he
proposes the TriGen algorithm which can transform the semi-metric similarity
function (fulfilling only nonnegativity and reflexivity of the metric axioms) into
the metric one, hence the triangle lower bounding principle can be still used. The
real-world usage of the TriGen principles in MAM is, for example, used in the
NM-tree [89], the non-metric M-tree.

But there are also other techniques of non-metric indexing, different from
those based on the technique of relaxing some metric axioms. For example, in
our research over the similarity modeling [90, 91], we tried to find new axioms in
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Figure 2.25: Axiom exploration in the SIMDEX Framework - the high-level
overview.

a created model by exploring the space of axioms (see Figure 2.25). By applying
them in the retrieval process, we examined their effectiveness and efficiency, and
proved their usefulness.

2.2.3 Approximation Search

Beside the exact search, when the query result exactly corresponds to the query
conditions and modeled reality, there exists also the approximate search which
allows the presence of some error in the query result. The approximate search is
based ob the idea of exchanging the query precision (effectiveness) for the query
speed (efficiency). Typically, the user adjusts this trade-off at the query time
using various approximation parameters, while these differ from one approxima-
tion method to another. The parameters can be of a different kind, for example,
the probability of an error in the query result, the maximal allowed number of
distance computations, or the threshold on improvement of the query result.

When considering the previous observations, the interactive preconditions of
the multimedia exploration can truly exploit from the advantages of the approxi-
mate search. In the following, we present four of many proposed scenarios for the
approximate search based on different principles. Although the following list is by
far not complete, the examples illustrate various ways how a user can manipulate
the trade-off between the effectiveness and the efficiency of retrieval.

Example 1 – Proprietary Methods Bounded on the Particular MAM.
In the work by Zezula et al. [7], the authors present three techniques for the
approximate nearest neighbor search in the M-tree. All the proposed techniques
guarantee the high degree of precision, when all objects of the approximate query
result are almost as good (to some extent given by the approximation parameter)
as those in the exact result. However, because of the strict guarantee, the speedup
is not as large as the one achieved when some of probabilistic techniques from
the next example are used, where the guarantee is not so strict.

In the first technique (presented also in the work by Arya [8]) the user-specified
parameter ε represents the relative distance error. The relative distance error
states how much larger can be the distance from the query object q to the returned
(approximate) nearest neighbor oA than the true nearest neighbor oN of the exact

search. It is computed as ε = d(oA,q)
d(oN ,q)

− 1. To employ this technique in a searching
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algorithm, the query radius should be decreased by the factor of 1/(1 + ε).

The second technique takes into consideration the relative distance distribution
Fq(x), which represents the fraction of database objects that are no more distant
from the query object q than in particular distance x. While searching, the stop
condition is fulfilled when the distance distribution Fq(d(q, Ok

A)) is lower than the
user-defined parameter ρ, where Ok

A is the k-th candidate object in the current
result.

The main idea of the third technique is based on observation that the refine-
ment progress of the kNN candidates on the result6 slows down with running
time of the query evaluation. Hence, this approximation technique stops the eval-
uation of the query at the moment when the collection of actual kNN candidates
is changing very slowly.

Example 2 – General Probabilistic Methods. Next approximation ap-
proaches are from the class of the probabilistic methods which introduce the
expected probability of an error – the user-defined parameter, for the query re-
sult. This parameter gives a user the possibility to get the result either faster or
more precise. Unlike the methods in the first example, the probabilistic methods
lead to much faster query processing, however, for the price of the qualitatively
weaker guarantee that the query result that it contains the correct objects (i.e.,
some query result may be completely wrong while the other one may be fully
correct).

In the work by Chavez et al. [9], the authors present the probabilistic tech-
nique for the approximate search when using the decreasing search radius – the
query radius is shrunk by the factor β derived from the user-defined probability
of an error.

The TriGen algorithm [5], we mentioned above, can be also utilized in the
approximate search. The special functions called the T-modifiers are used not
only for turning semi-metric distances into the metric ones, but also vice versa.
When utilized by some MAM, the evaluation of such a modified distance function
can result in approximate behavior. The T-modifiers can be also specified as the
user-defined parameter and modified at query time thus the different levels of
approximation can be achieved.

Example 3 – Transformation Methods. A quite different approximate ap-
proach is based on the transformation of a source metric space into another
(mostly vector) space. For example, the Fastmap [27], originally proposed as
the technique for mapping a metric space into an euclidean space, can be also
used as the approximation method. Other approaches [84, 85] use the permuta-
tions of pivots for mapping a metric space into a space of ordered permutations.
The problem of transformation methods is that they do not guarantee the query
time and moreover they even do not provide any user-defined probability of the
retrieval error.

6The principle of the kNN search is based on the progressive refinement of the collection
of those objects which potentially can be in the final result. This collection is changing during
the search, but this change is approximative with regard to the final result and the progress of
the change is typically decreasing.
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Example 4 – Iterative Improvements. The most suitable approximation
methods for the multimedia exploration seem to be ones that continuously im-
prove the query result, allowing the user or the exploration system to stop the
refinement process whenever the results are quite sufficient. A one of such approx-
imation methods is the proposal of Ferhatosmanoglu et al. [92] which combines
two approaches on the continuous refinement step. The first one is based on
the so-called retrieved set reduction, when data are clustered with the k-means
clustering algorithm and the clusters are subsequently accessed in order from
the nearest to the furthest ones with regards to the query object. The second
approach the authors classified as the representative size reduction, when the
dimensions of the descriptor vector are not considered for computation of the
distance fully at once but rather partially in order from the most important ones.
Considering more and more dimensions evidently improves the accuracy, while
accessing more clusters also improves the accuracy, since the query algorithm can
consequently choose from more candidate objects.

One of the inspiring approaches from the classification of the approximate
search scenarios by Patella et al. [6] is the RCES which stands for reducing
comparisons and early stopping. Like the approach mentioned in the previous
paragraph, the search is terminated whenever is necessary, while the partial re-
sults are returned.

Another relevant technique of this category is the concept of the incremental
similarity search [93] mentioned already in Section 1.2.3. It works with tree-based
index structures based on the idea of assigning higher priority to more promising
nodes of the tree. Based on this priority, the unprocessed nodes are processed
within the tree until the search process is stopped, which happens whenever
the most promising node in the processing queue guarantees worse value than
currently the ”worst” node in the result set (e.g., the greater distance to the
query object than the k-th nearest neighbor). This technique was later proven to
be range-optimal [11], firstly designed for spatial databases [10] and also optimal
for disk page accesses [12].

2.3 Real-Time Queries

If we consider the multimedia exploration generally as the continuous process of
revealing and examining the content of some multimedia collection, it is necessary
to perform the individual exploration steps in a non-discouraging way for the user
who performs exploration. The main factor of this non-discouraging way, which
influences the user satisfaction with the interactive exploration system, is the
system response time on user actions. In the historic survey by Shneiderman [94]
on the research over a human reaction and response time, the author tries to find
out how long will users wait for the response of the system before they become
discouraged of its delays. Although the survey is now three decades old and
from those times the response time of computer systems grows rapidly, some of
its general results still hold. Shneiderman firstly studies the expectations on the
response time of the users themselves. He observes that the previous experience
with a user task critically shapes their expectations, i.e. if the user uses the system
repeatedly he expects that it responses in like manner. This is related to the other
observation, the users are highly adaptive, they get used to long delays, but their
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satisfaction is likely to suffer. And in the last observations, Sheiderman states
that there is the enormous variation in the response time expectations among
particular users and also user tasks. One limitation statement that results from
the survey is the upper limit 1 second of a generally satisfying response time, of
course, if the user task is technically feasible of it.

In another study by Thorpe et al. [95], the authors examine the speed of
image processing in the human visual system. They conclude their research on
this topic with the statement that in the visual processing, the time needed for
performing a highly demanding task can be achieved under 150 milliseconds.
This limitation can be used as the lower limit for the response time, whereas,
if the multimedia exploration is performed in a reasonable way, one exploration
step could be hardly performed faster than it is the time which the user needs
for absorbing information from its result. This measurement is confirmed by the
simple benchmark on the human reaction time [96], where in the very simple
user task the average reaction time of twenty two and half million tests is ≈ 260
milliseconds.

The necessity for the near-real time query evaluation remarks also the authors
of the exploration vision study by Beecks et al. [24]. They state that the database
indexing structures were primarily designed for the efficient evaluation of simple
(single) similarity queries. But in the case of real world applications, as the
multimedia exploration systems are, one exploration step can invoke multiple
similarity queries and therefore the indexing methods should be optimized for
the near-real time data access at a large scale.

We can see the parallel between the user discouragement of long query re-
sponses and the task deadlines in real-time computations used in the theory of
real-time systems [97]. In the deadline theory of the real-time systems, the tasks
usually have the timing constraints which specify some task parameters like, for
example, the task release time when the computation begins and also the time in
which its computation should finish. Different tasks have different expectations
on their deadlines and according to consequences that can happen if the task
does not meet its deadline, the real-time tasks are generally categorized in those
with hard and soft deadlines. You can observe the value functions of such tasks
in Figure 2.26.

In Figure 2.26c we can see that the task value is increasing during the task
execution. The same impression we can get from the evaluation of such a sim-
ilarity query which precision of the result is increasing with its execution time.
Moreover, the decreasing character of the task value after it reaches its deadline
in Figure 2.26d can be put in the parallel with the reduction of user satisfaction
with the exploration system and its long response time. We tried to summarize
these facts in Figure 2.27. The figure depicts three queries (a), (b), (c) with differ-
ent behavior, and two thresholds that represent the state when the result is good
enough (d) and the point when the user starts to be annoyed with long query
evaluation (e). The query A represents the evaluation with slow improvement on
the query result. Such an evaluation is not very suitable for the interactive man-
ner of the multimedia exploration, because it takes very long time to get some
satisfying partial result. On the contrary, the query C is very suitable, because
its query execution gets the approximate result at the high level of precision very
early and for the rest of the execution the result is just lightly improved. The
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(a) Hard (Catastrophic) Deadline.

(b) Hard Deadline. (c) Ramped Hard Deadline.

(d) Soft Deadline. (e) Non-real-time.

Figure 2.26: Value functions during task execution.

query B depicts the situation when the task get the exact result much earlier
than in the case of the query C, but the evaluation of the query B improves its
result in the similar slow way as the query A, hence it is also not suitable for the
interactive search in the multimedia exploration.
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Figure 2.27: Precision of the query result during query execution.

2.4 Discussion and Summary

In the previous section we summarized the research over the topic of the mul-
timedia exploration and related areas as we saw it before starting our research
and also during the time when we worked on it. Within that summarization we
also outlined a direction where our research, described in the following chapters,
aims.

As we look at our survey of existing browsing and exploration systems, they
are generally based on some mapping principles. The whole database is firstly
somehow organized into a structure, this period of time we can designate as the
construction phase, where later in a so-called exploration phase this structure
is traversed with the help of various user interfaces. But in case of very large
collections, mapping the whole database into the traversable structure can take
a very long time and it does not matter if it is used the MDS, the SOM, or
any other mapping method. In such a situation, the more promising way seems
to be the iterative querying reported by Lokoc et al. [44], because it does not
expect the underlying structure for performing the exploration operations. Such
an approach solves the problem of the long times for building the structure in
the construction phase, but when there is no structure to follow, it seems that
the problem is only moved to the exploration phase. Therefore the exploration
phase should be additionally supported with some structure after all and there
the iterative querying utilizes the similarity indexes.

The similarity indexes support the efficient evaluation of similarity queries
and also, as we propose in the the following chapters, the exploration operations.
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But when the indexed collection is very large, the evaluation of the exact query
can take a very long time and that is not suitable for the interactive nature of the
multimedia exploration, the approximation queries should be considered instead.
The approximation techniques we reviewed in the previous section usually rely on
some approximation parameter and guarantee some level of precision. However,
the interactivity of the multimedia exploration requires also the guarantee on
the efficiency or the speed of evaluation, thus in the end of the previous section
we outlined parallelism between evaluation of the exploration operations and the
tasks in real-time systems.

When it comes to the visualization, beside the grid-based solutions, which
are very similar to the visualizations of results from querying systems, also more
progressive ones were used in the examined systems, e.g., the force-directed place-
ment. While the grid-based visualizations do not have to solve the problem
with overlapped visualized objects, the non-grid visualizations better preserve
the structure of relations between the objects from the descriptor space.

The user interface is another research topic in which the exploration systems
from our survey were reviewed. The common feature widely used in many of the
examined systems was two directions of the exploration operations – vertical and
horizontal. They are based on the user interfaces used in the map services, what
seems to be a reasonable choice as the map services are used by millions of users
every day.
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Chapter 3

Designing Multimedia
Exploration System

On behalf of the multimedia exploration overview presented in the previous chap-
ter, in this chapter we introduce the general multimedia exploration system which
is able to support the interactive multimedia exploration in arbitrary conditions.
In the first part of the chapter we describe the architecture of such a system and
in the second one we overview details of the instant queries, the similarity queries
that can be terminated whenever it is necessary.

3.1 Motivation

Although some of the multimedia exploration systems from the previous chapter
consider the index support and the approximate search to improve the efficiency
of the multimedia exploration, to the best of our knowledge, none of the relat-
ed techniques consider the real-time responses of the exploration process (i.e.,
decrease of lagging) in context of the large multimedia datasets and the mobile
environment. We believe that guaranteeing the real-time response is one of the
most crucial requirements on a successful multimedia exploration system, even
more important than steadily high precision of the retrieval process. Hence, in the
design of a multimedia exploration system, we focus on the approximate search
techniques guaranteeing the user-defined response time and allowing occasional
inaccuracies for long running queries. Furthermore, the response time can be
controlled by the user, who adjusts the trade-off between the precision and the
efficiency for various exploration tasks. For example, for the casual exploration of
an unknown collection, the user would probably prefer the quick response time.
While when already searching for some specific objects (e.g., at the end of their
exploration), the user more likely accepts longer responses for a qualitative better
result.

3.1.1 Real-Time Similarity Queries.

Before we introduce the proposed architecture of an exploration system, we pro-
vide the necessary background for the near real-time similarity queries performed
in a limited time frame.
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Very popular similarity queries are the k nearest neighbors (kNN) queries,
which return a collection of k most similar objects to the query object. With such
a design, they appear to be more suitable for the time-limited queries, because
unlike the range queries they guarantee the fixed number of result objects from
the very early point of their evaluation. Therefore, for the rest of the thesis, we
consider the kNN queries only.

Our main intention for the similarity exploration queries is to limit their
response time. Hence, to do so, we define kNN (t) as the time-limited kNN
query which returns up to k most similar objects obtained from such a subset of
the database collection which is accessed during the query processing within the
restricted time frame t. In our design, we suppose that these time-limited queries
occur in batches initiated by the user interaction with the exploration system.
We refer to the set of queries of such a batch as the query stream.

3.2 Architecture of Multimedia Exploration Sys-

tem

Following the chapter introduction, in this section, we provide detailed informa-
tion about the high-level architecture of a multimedia exploration system pro-
posed in [18], we reference to the system as to the RTExp. Beside that, we also
outline the functionality of the individual system layers in the architecture and
describe the data-flow of the whole system with the typical use cases. In the
proposed design of the RTExp, we follow these three invariants with respect to
the principles of the multimedia exploration:

• the system displays the visualized part (which corresponds to the currently
explored portion) of the whole underlying multimedia collection, the visu-
alized part is specific to the user session

• each user action (zoom, pan, select) generates the stream of similarity
queries, which are required (for the sake of scalability) to be evaluated
within a limited time period

• resulting objects are visualized according to their similarities – the objects
that are close to each other in the visualized space are more similar than
those located distantly (see Section 3.2.5)

The useful exploration system has to be provided with the intuitive and com-
fortable user interface that is easy to control. Moreover, as outlined in Section 2.3,
the user interface should be also responsive, otherwise the user performing the
exploration will be discouraged with the response time of the system. Therefore,
it is also needed to ensure the instant processing of all (underlying) operations
and, ideally, to distribute intermediate query results immediately. If the user
interface will be designed in this way, the users will not experience any lagging
or delays.

From the technical point of view, the RTExp combines the ideas from ex-
isting exploration systems (see Section 2.1) such as the approximate similarity
search or the intuitive user interface. In addition to those principles, we include
our innovations in the form of the timely-limited similarity queries and the query
streams (see beginning of this chapter) using a modular approach. In the design
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of the RTExp, we subdivide the whole system in smaller parts which correspond
to independent modules with predefined interfaces and which provide a specific
functionality. This enables us to better reflect the future change requests from
the users, to increase the support for the scalability, and to easily implement
enhancements in order to keep track with the state of the art technologies. From
the more general view, the architecture is divided into three layers: the presenta-
tion, the logic, and the data layer with one extra system layer for communication
purposes. In the following sections, each of these layers is described into details
in the top-down direction as they are depicted in Figure 3.1.

3.2.1 Presentation Layer

The presentation layer represents the graphical user interface visible and acces-
sible to the end users via a web browser or by a native application in mobile
devices. As it provides the only access point to the system intended for the end
users, it necessarily has to be intuitive and well-designed. Clear separation from
the underlying layers allows us to easily build the client application, no matter if
the client is a web, a desktop, or a mobile application.

Each user action performed in the visualized exploration space (e.g., pan-
ning, zooming, more details about these exploration operations will follow in
Section 3.2.5) is submitted to the logic layer, where this action is subsequent-
ly transformed into the query stream (see Section 3.1.1). If the user decides to
navigate his exploration in other directions while the system is still actively pro-
cessing the query stream, we send the request to terminate evaluation of this
query stream and the new one is generated based on the most recent user action.

Note that the presentation layer only handles the user interaction with the
system and provides the interface to work with the system. It does not contain
any logic of how to convert the user actions into the query streams, how to
evaluate individual queries, or when to return new results. This functionality is
transparently delivered by the application logic layer.

3.2.2 Logic Layer

The application of middle layers (i.e. an application logic) between the end user
interface and the data layer is not new and exists in various systems. Authors
either declare it explicitly, as it is in the case of the mediator component [98], or
include the layer implicitly based on the functionality requirements without any
special attention. There are two main tasks performed by the logic layer in the
architecture of the RTExp:

• to transform the exploration operations to the query streams

• to deliver the partial/final results from the data layer back to the user.

In the first of these tasks, we take the user input encapsulated in the ex-
ploration operations and analyze it within the Query analyzer component. The
analysis should take into consideration the query streams that are currently eval-
uated together with the direction of the exploration. While possibly in the future,
it can also consider the query costs and prioritize those queries which results add
more value to the current exploration context. Next, according to the result of
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Figure 3.1: The multimedia exploration system overview - the high-level archi-
tecture.

this analysis, it is decided, whether it is necessary to terminate some of the run-
ning similarity queries (or the query streams), or whether the new query stream
will be created. Our research concerning the ideas how to stop the running query
stream is covered in Section 3.3, while generating the new query stream involves
the research about the exploration operations, which is described in Section 3.2.5.
In our architecture depicted in Figure 3.1, the transformation of the exploration
queries is covered by the additional logic component, the Query stream generator
.

When the query streams are generated, all requests are transfered to the
Scheduler, another component of the logic layer that schedules and controls the
query processing by employing a prioritized queue. The concept of a scheduler
is well-established in real-time operating systems [97], from which we adopt the
prioritizing principle of the task execution and use it for the query streams – they
are executed in the order which is based on the user preferences (see more details
in the following paragraphs).

Once the query stream from the processing queue is ready to be executed
and has not been terminated yet, it is dispatched through the Dispatcher to
the underlying data layer where the dedicated sequence of the similarity queries
are evaluated. Afterwards, when the similarity queries are evaluated, the Result
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processor decides which query results are propagated to the presentation layer.
But first, they have to be retrieved from the data layer.

3.2.3 Data Layer

The data layer is the most important layer, because it consists of the multimedia
collection itself, and the guarantee of the efficient retrieval, the similarity access
method, is also located here. Because we expect the evaluation of numerous
similarity queries from the query streams, we prefer the access method that pro-
vides the best efficiency vs. effectiveness ratio. And while efficiency is usually
the question of an approximation search, we evaluate and compare several metric
access methods (MAMs) accompanied with the approximation technique that we
propose in Section 3.3. The results of our comparison are provided in Section
3.3.4.

We can say that two factors can influence the real-time capabilities of simi-
larity access methods in the RTExp architecture. The first one is the different
query execution plans for computationally cheap and expensive similarity queries.
We assume that the cheap similarity query can be executed ”as is”, however the
expensive one should be approximated in some way. For example, in the M-tree
[52] we can use the top-down search strategy for the cheap queries, however for
the expensive ones we should apply the bottom-up approach (fast traversing to
the leaf level followed by the enhancement of the first results), with regards to
the observations we get from Figure 2.27 in Section 2.3. The second idea is the
instant evaluation of similarity queries (the instant queries), already mentioned
in the introduction of this chapter. The main idea is to ensure that any running
query can be terminated from ’outside’ (the logic layer in our case) whenever it is
necessary. We believe that benefits of the instant queries can be utilized in many
scenarios:

• When the user requires to get the result of a similarity query very quickly,
while the relevancy of the obtained results is not so important.

• When the result of a similarity query is obsolete and not required anymore.
In the exploration scenario, it happens when the user decides to explore
other parts of the database.

• When the overhead of a similarity query influences the scalability of the
whole system. System scalability can be violated also when the number of
simultaneous queries rapidly increase.

Further details of the instant queries follow in Section 3.3.
Beside the research on the approximate technique that utilizes the multimedia

exploration, we study the user interaction with the exploration system and pro-
pose the exploration structure that directly supports the exploration operations.
More details about this multi-layer exploration structure are provided in the next
chapter.

3.2.4 Communication Layer

The communication layer establishes the virtual connection between individual
layers within the system and ensures that the messages (requests/responses) are

47



sent/delivered to the appropriate recipients (modules). The typical data flow is
in Figure 3.1 denoted by the sequence of numbers next to the appropriate arrows
– from the user actions translated into the requests for the query analysis (1),
their subsequent transformation into the query streams (2), to the appropriate
partial/final responses of the similarity queries (3), and their inclusion within the
visualized exploration space (4).

Connecting the presentation layer with the logic layer is simple and straight-
forward. The requests holding the exploration operations translated from the user
inputs are sent from the presentation layer and the system logic layer processes
them accordingly. The corresponding objects from the multimedia collection are
returned as a response to be included within the visualized exploration space.
Together with them is returned the list of objects that should be removed from
the current visualization.

3.2.5 User Interface

The applicability of a multimedia exploration system largely depends on the
user interface as we already mentioned in Section 2.1.3. The more intuitive and
ergonomic interface the client application provides, the more likely the end users
will use the system and benefit from it. As it results from Chapter 2 of the
related work, two most used user actions in the exploration process are zooming
(Section 3.2.5) and panning (Section 3.2.5). We select these two user actions
as the ideal candidates for the basic exploration operations because they are
intuitive and have been known to billions of users as the basic operations used in
the web mapping services. The list of these supported operations can be naturally
extended in the future, e.g., if the visualization of the system displays a 3D space
instead of the supposed 2D space, several other well-known operations could be
also used such as, for example, rotating.

As we already outlined in the description of the presentation layer (see Sec-
tion 3.2.1), all user actions captured as inputs from a touch device, a mouse,
or a keyboard are transformed into the exploration operations, which represent
the adequate requests for the lower layers within the RTExp system. These user
actions are changing the current state of the active user session, which is repre-
sented by the visualization of the exploration space on the user screen. In the
following sections, we describe the supported user actions into more details and
explain how we transform them into the actionable exploration operations.

Zooming

This operation is just a naive implementation of a zoom in/out mechanism, the
further research on this topic is necessary. Imagine that the visualized set of
objects from the multimedia collection represented by the objects Oi as depicted
in Figure 3.2a is the current exploration state. In this state, we are interested
in the context of objects similar to the specific object O8 and we zoom in to
this object. The action of zooming in on the target, depicted with the arrows,
subsequently reveals the previously invisible objects O10, O11 . . .O14. The newly
discovered objects are typically more similar than the previously shown objects
or provide the visualization of more specific object clusters. Notice that beside
the appeared objects, some of the previously displayed objects (e.g., O1, O6 )

48



(a) Zooming

(b) Panning

Figure 3.2: Exploration user actions

disappear from the visualization as they are not present anymore in the part of
the exploration space that is currently visualized (i.e., not present in the new
exploration state).

The opposite action, the zooming out, on the contrary returns the new objects
that are less similar to the previous ones. Furthermore, to preserve the impression
of the vertical exploration, some too specific objects should disappear as they are
replaced by those new appeared objects, which come from more general clusters.

Whenever the user executes a zooming action, the adequate exploration oper-
ation is created. It consists of (a) the target zooming point, (b) the object closest
to the target zooming point, and (c) the objects closest to the boundaries of the
visualization component. The zoom in initiates the single similarity query for
which the query object is the closest object to the zooming target point, while in
the case of the action zoom out the query stream is generated consisting of mul-
tiple similarity queries, where the query objects for them are used those objects
that are closest to the visualization boundaries.

Panning

The panning action advances the exploration in the specific horizontal direction
and thus also changes the current state similarly as the zooming action. The
action is depicted in Figure 3.2b, the dotted rectangle represents the current
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Figure 3.3: RTExp exploration system

state before the panning action is applied and the arrows outline the direction
of the action. After this operation is performed, we get the new set of visualized
objects, in the figure bounded by the solid black rectangle, which represents the
new exploration state.

The appropriate exploration operation is created for the panning action, it
includes several parameters such as (a) the panning direction and its size, (b)
the objects closest to the visualization boundaries following the panning direc-
tion, and (c) the objects that get outside the visualization boundaries of the new
state. Then, the query stream of multiple similarity queries is generated where
the query objects are those objects which are closest to the visualization bound-
aries following the panning direction and its size. As depicted in Figure 3.2b,
the panning action should also consider the exclusion of those objects of the cur-
rent state that reside in the opposite direction (with regards to the center of
visualization) to the objects which the panning action follows.

RTExp Presentation Layer for Mobile Devices

To validate the feasibility of the proposed exploration system architecture, we
implemented the first prototype, the RTExp, together with the presentation layer
for mobile devices.

The initial user interface for iPad tablets as depicted in Figure 3.3 gives the
overview of the RTExp as it is presented to the user. In every moment of the user
session, the screen displays the current state of the exploration process according
to all performed user actions and operations since the beginning of this session.
For better orientation, the objects from the underlying databases (i.e., images)
are displayed with different opacity values. These values represent the similarities
of the individual depicted objects relevant to the query object(s) of the previous
similarity query(ies). The more the object is similar to the query object with
respect to the corresponding similarity query, the smaller the opacity value is.

This similarity value is displayed for each object as the relevance value when-
ever the particular object is selected by the user. Additionally, we display other

50



metadata values of the currently selected object such as its name, as can be seen
in the figure for the ’Banana market’ object1.

The powerful slider control at the bottom of the screen (see Figure 3.3) enables
the user to adjust the evaluation process of all similarity queries within the context
of his session. Sliding to the left gives more precise (but potentially slower) results,
while putting the slider to the right returns faster (yet not necessary relevant)
results. This setting is transparent to the user as the system itself transforms
this value to the individual exploration query settings, such as the parameter for
the time-limited kNN query, mentioned in Section 3.1.1.

3.3 Instant Similarity Queries

Following the general architecture, in this section we focus on the one specificity
that is the crucial part of the proposed design, the time-limited similarity queries.
As their design is based on the termination of them, which can be performed
almost instantly, we refer to them as to the instant similarity queries.

3.3.1 Motivation

The approximate techniques presented in the end of the previous chapter provide
some user-specified parameter that more or less controls how ’good’ or ’bad’ the
query result should be. The perfectly tuned approximation parameter can lead
to more efficient queries, however, there is still no guarantee that the correctly
set parameters result in the desired efficiency, i.e., the query is evaluated in such
a query time which the user prefers.

The motivation for our work is firstly based on the basic requirements of a
multimedia exploration system, which is typically tightly connected to the GUI
where the highly interactive ’dialog’ between the user and the system is expected.
Considering this fact, the requirement on the precisely controlled real time of the
underlying similarity queries becomes critically important. Since the number of
queries generated by the user interaction at one particular moment is strongly
affected by the user behavior (clicking, panning, zooming) and/or by the number
of simultaneously working users, the main requirement on the query evaluation is
the guarantee of the query termination in expected time in arbitrary conditions.
The second motivation arises from the previous one. As the similarity queries
are continuously generated by the exploration system itself (while the user is
zooming, panning, etc.), such an approximate method is preferred that does not
require any user-defined parameter.

3.3.2 General Requirements

When taking all presumptions into consideration, the most suitable solution is
the model of the instant termination of a similarity query, i.e., the query that
is being processed might be terminated at any time and the partial results ob-
tained till that time must be immediately consolidated and returned. However,

1The name of the object is displayed only if it exists in its metadata, and it is not used as
the supportive information for the similarity queries.
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the completely any-time query termination puts some requirements on the cor-
responding similarity index (or the querying algorithm, respectively). The first
requirement concerns the results of the similarity query, the query should pro-
duce the monotonically approximative [99] (intermediate) results. In our case,
this means that the intermediate result in the time t + 1 cannot be worse than
the result available in the time t. The second requirement is a technical one, the
runtime environment supporting the instant termination should run at least in
two threads, one for ’the terminator’ (client) and one for ’the evaluator’ (server).

We implemented the instant query termination into some well-known met-
ric access methods to validate its benefits. The next section describes general
constructs as well as the particular implementations.

3.3.3 Instant Termination in MAMs

The idea of the query termination in specific MAMs is quite simple and straight-
forward. During the processing of the query, someone from ’the outside’ has to
notify the similarity index (or its querying algorithm, respectively) to immediate-
ly stop the query evaluation. Following this scenario, we have used two threads –
the first one represents the system performing the notification of the instant ter-
mination and the second one is used for the query evaluation itself. It is obvious
that for the query evaluation is possible to use more threads than single one, but
for our demonstrative purposes, it is sufficient to use just one.

The algorithm of the similarity query evaluation consist mostly of processing
the objects from the database within some loop, or in a recursion. Presuming
such cycling behavior, we can check for the notification of the termination in the
beginning of each cycle (or the recursion level), so when the notification occurs
we can break the cycle (or the recursion) and immediately return the results
computed so far. Actually, the query result cannot be usually returned exactly
immediately, because all MAMs perform some necessary operations (i.e., the
finalization phase) before returning the result, e.g., the cleanup of the temporary
structures, the re-ordering of the result objects, etc. Nevertheless, it is quite
obvious that such indexes are preferred for which the time of the finalization
phase is as low as possible (milliseconds or at most tens of milliseconds).

Sequential Scan

The sequential scan can be considered as the primitive MAM, and the extension
of its query algorithm with the instant termination is quite straightforward, see
Algorithm 3.3.1. At the very moment of the instant termination, the algorithm is
breaking its main loop and the result computed so far is returned (the additional
operations are not required).

Pivot Table

The next MAM whose query algorithm we extended with the instant query termi-
nation is the pivot table [73], based on the LAESA [75] variant. Moreover, beside
the original metric pivot table, we have implemented the instant termination also
into the Ptolemaic Pivot Table [77]. The extended range query algorithm of the
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Algorithm 3.3.1: SequentialScanRangeQuery(q, r) 7→ Result

1: Result = ∅
2: for each o in S do
3: if InstantTermination then
4: break for {no explicit finalization required}
5: compute δ(q, o)
6: if δ(q, o) ≤ r then
7: add o to Result

Algorithm 3.3.2: PivotTableRangeQuery(q, r,mode, k) 7→ Result

1: Result = ∅
2: for each o in S do
3: if InstantTermination then
4: break for {no explicit finalization required}
5: if mode = triangle or mode = triangle+pto then
6: if TriangleFilter(q, o, r) > r then
7: continue for
8: if mode = ptolemaic or mode = triangle+pto then
9: if PtolemaicFilter(q, o, r, k) > r then

10: continue for
11: compute δ(q, o)
12: if δ(q, o) ≤ r then
13: add o to Result

pivot table is outlined in Algorithm 3.3.2. Similarly like in the case of the se-
quential scan, the main loop is immediately broken when the instant termination
occurs (without the need of any additional cleanup operations).

(P)M-tree

The last group of MAMs we prepared for the instant query termination are hierar-
chical MAMs – the M-tree [52] and the PM-tree [79]. Algorithms 3.3.3, and 3.3.4
show the implementation of the range and the kNN query algorithm extended
with the instant termination for both MAMs. Whereas the instant termination
of the range query is similar to that one in the pivot table implementation, the
termination of the kNN query is little different and we propose two variants, the
strict and the lazy termination level.

Strict termination. The strict termination level is similar to the instant query
termination of the sequential scan or the pivot table, the main loop is instantly
broken and after some negligible cleanup the intermediate result is returned.

Lazy termination. On the contrary, the kNN query with the lazy termi-
nation level is not terminating instantly. After the termination is notified, the
priority queue (used for the unprocessed nodes in the kNN query algorithm of
the (P)M-tree) is checked for the leaf nodes. The entries of each leaf node are
then processed one by one (ignoring the inner nodes in the priority queue) and the
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Algorithm 3.3.3: PMTreeRangeQuery(q, r) 7→ Result

1: Result = ∅
2: Stack = {root}
3: while Stack <> ∅ do
4: node← Stack.Pop
5: if InstantTermination then
6: continue while {finalization - emptying of the stack}
7: for each entry in node do
8: if InstantTermination then
9: break for

10: if FilterObjectOrRegion(q, entry) > r then
11: continue for
12: if IsPMTree and not(RingsIntersect(q, r, entry) then
13: continue for
14: if IsLeaf(node) then
15: compute δ(q, o)
16: if δ(q, o) ≤ r then
17: add o to Result
18: else
19: Stack.Push(entry.ChildNode)

intermediate result are being improved as it happens during the standard query
evaluation. This idea of postponing the termination can significantly improve the
approximate result, especially when the query evaluation got almost to its end in
the moment of the termination. If we look at the kNN query in more detail, the
processing of the leaf nodes in the priority queue is actually the very moment of
improving the intermediate result. It is obvious that the lazy termination is not
for free and the overhead of postponing the termination has to be added to the
total query time. Unlike the pivot table (or sequential scan), the range or the
kNN queries of the (P)M-tree require some cleanup operations such as emptying
the stack (in the case of the range query) or emptying the priority queue (in the
case of the kNN query).

3.3.4 Experiments

In this section we provide and discuss the results of the experiments performed on
the MAMs with their querying algorithms extended by the instant termination,
as we present it in the previous chapter.

Testing Datasets

We tested the instant queries on the ALOI database [100] composed of 70,000
images, using extracted feature signatures based on the color, the position and
the image texture. The second dataset we used was the subset of the CoPhIR
[101] consisting of 1,000,000 images, while the feature vectors were represented
by the MPEG-7 descriptors – the Scalable Color and the Color Structure [102].
As the distance function we deliberately used one cheap metric, the Euclidean
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Algorithm 3.3.4: PMTreekNNQuery(q, k, termLevel) 7→ NNQueue

1: NNQueue = ∅
2: PRQueue = {root}
3: while PRQueue <> ∅ do
4: node← PRQueue.RemoveFirst
5: if InstantTermination then
6: continue while {finalization - emptying of the priority queue}
7: for each entry in node do
8: if InstantTermination then
9: if not(IsLeaf(node)) or terminationLevel = strict then

10: break for
11: if FilterObjectOrRegion(q, entry) > NNQueue.Last then
12: continue for
13: if IsPMTree and not(RingsIntersect(q,NNQueue.Last, entry) then
14: continue for
15: objDist← δ(q, entry.Obj)
16: if NNQueue.Count < k or objDist ≤ NNQueue.Last then
17: NNQueue.Update(entry, objDist)
18: PRQueue.Filter(objDist)

(L2) distance for the CoPhIR and one expensive metric, the SQFD [14] for the
ALOI database.

Experiment Settings

As mentioned in the previous section, we implemented the instant queries into
the sequential scan, the pivot table, the Ptolemaic Pivot Table, the M-tree, and
the PM-tree. We simulated the notification of the query termination (in a real-
world application invoked by the impulse of the user) using the separate thread.
The timing of the termination signal in the experiments was set from 1ms to
4096ms. In each of these termination times, the query result was compared to
the result of the exact (complete, respectively) search using the Jaccard distance
(see Equation 3.1) to determine the approximation error.

Jδ(Exact, Approx) = 1− |Exact ∩ Approx|
|Exact ∪ Approx|

. (3.1)

Besides the error, the time of the finalization phase was also measured as the
time between the moment of the termination notification and the time when the
query result was returned.

The testing environment consisted of 2x Intel Xeon X5660 2.8GHz, 24 GB
RAM and Windows Server 2008 R2 64-bit. For the better orientation in the
figures we summarized all used labels in Table 3.1.

Results

Firstly we present the comparison of the pivot tables with various parameters.
As we can see in Figure 3.4a, the parameter α of the SQFD distance2 has the

2For more details about the SQFD parameters see [14].
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Label Description
Seq sequential scan

PT(n, α) pivot table
PPT(n, α) Ptolemaic Pivot Table

MT(n, S|L, α) M-tree
PMT(n, S|L, T|P, α) PM-tree

n is the number of used pivots
α is the paramter of the SQFD
S|L stands for Strict or Lazy Termination Level
T|P stands for triangle or ptolemaic filtering
RI stands for forced reinsertions

range(k) range query returning approximately k objects
total time query time before termination signal

+ finalization time

Table 3.1: Labels used in figures.
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Figure 3.4: kNN queries by the pivot table on the ALOI database (a) the impact
of the SQFD parameter alpha (b) the impact of the number of pivots.

significant influence on the query efficiency. After 32ms the pivot table with
α = 0.01 shows four times lower error than the pivot table with α = 1. Moreover,
the configurations of the pivot table with α = 0.01 finished after 128ms, while
the others were not completed even after 1s. Hence, if not stated otherwise, in
the next experiments we used α = 0.01 for the SQFD distance.

Figure 3.4b shows the pivot tables and the Ptolemaic Pivot Tables with the
varying number of pivots. Here we can observe, how the number of pivots can
positively influence the speed of the approximation and also the query time (at
least for the classic pivot table). We can also see that the results of the Ptolemaic
Pivot Tables are significantly better than the results of the classic variants.

Next, as depicted in Figure 3.5, we compared tree-based structures, the M-
tree and the PM-tree. The querying process of the M-tree is not very suitable for
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Figure 3.5: Range queries in tree-based MAMs on the ALOI database. (a) the
impact of the number of pivots, (b) various PM-tree parameters.
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Figure 3.6: kNN queries by the tree-based MAMs on the CoPhiR database -
the impact of the postponed termination on (a) the error in the result (b) the
finalization time - in seconds

the instant termination as the error was still over 50% after 512ms, what is the
time when the PM-tree has already finished. For the latter, the influence of the
number of the pivots is quite interesting. While for the short termination times
the higher number of the pivots is just an overhead – 100% error with 30 pivots
in comparison to just 65% error with 10 pivots – with the increasing termination
times the benefits of more pivots take effect and the query finishes with lower
error in the result. It is also interesting that different variants of the PM-tree
have not significant impact on the approximation process at all, only the high
value of α is something that matters (similarly as for the pivot table).

The following tests show the results of different termination levels as they
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were proposed in Section 3.3.3. In Figure 3.6 we can observe that the postponing
of the termination (the case of the lazy termination level) should be beneficial,
however, if we analyze it in more depth we shall see that the finalization time
increases vastly.

The impact of the excessive finalization time is better shown in Figure 3.7,
where the total time (the time of query evaluation + the time of the finalization
phase) of the lazy termination level is sometimes even four times larger than the
case of the strict termination level. From the results in Figure 3.7b it is clearly
obvious that the strict termination level beats the lazy one.

Figure 3.8 shows the comparison of all presented MAMs. While in the case of
the dataset with the cheap distance function the PM-tree is the clear winner and
the pivot tables behave even worse than the sequential scan, the case of the ALOI
database with the expensive SQFD suits better for the pivot tables. We can also
see that the simple implementations of the instant query termination as presented
in this paper may be not sufficient; the fastest index on the ALOI reaches some
reasonable results after 100ms. Hence in the future, the more specific approaches
for particular MAMs are needed to design.

In the last figure (Figure 3.9), there are presented the results of the range
queries on the ALOI database. The pivot tables won also in this scenario, showing
even better results than in the case of the kNN query (because of the cheaper
maintenance of the intermediate result and also because of the quicker finalization
phase).
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Figure 3.7: kNN queries on the CoPhiR database - (a) the impact of the post-
poned termination on the total query time - in milliseconds (b) the aggregated
graph - the error for the total query time

3.3.5 Conclusions on Instant Queries

In this section, we showed the possible new direction in the research of the ap-
proximate similarity search based on the instant termination of the similarity
queries. We studied the behavior of several adapted MAMs in case that they are
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Figure 3.8: kNN queries on the CoPhiR and the ALOI database – an inter-MAM
comparison
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Figure 3.9: Range queries on the ALOI database – the inter-MAM comparison
(a) the error in the result (b) the time of the finalization phase in seconds

terminated before the full query evaluation is completed. It is quite understand-
able that the simple implementation of the instant termination into the existing
MAMs without any further modification of their query algorithms does not guar-
antee the best possible result, however, the concept of the instant queries which
can be terminated whenever it is necessary could be beneficial in many scenarios,
especially in the multimedia exploration systems. As said in one provocative sur-
vey [103]: ”Only the real-time cost is the moment of truth for an end user [...], a
MAM is either fast or slow.”
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3.4 RTExp Challenges

During designing the architecture of the RTExp, we experienced several issues,
which we would like to highlight, we suggest possible solutions, and we address
them afterwards.

• Continuous Query Evaluation. For the continuous performance, the
concept publish/subscribe data delivery from the real-time cloud systems
could be adopted. Whenever the user executes an action, it is translated
into the appropriate query stream. Then, the visualization of the underly-
ing database is continuously updated with the partial and the final results,
while the system is evaluating similarity queries in the background. The Re-
sult processor decides whether the obtained (partial, temporal) results are
propagated to the presentation layer and which change is the user notified
about.

• Exploration Operations. We realize that the definitions of the explo-
ration operations we provided in Section 3.2.5 are too high-level with no
emphasis on their detail implementation. In the next chapter, we propose
a new exploration structure together with the definitions of the exploration
operations on it, which are more detailed than the ones provided in this
chapter.

• Visualization of the Multimedia Collection. So far, we have not
addressed the nontrivial problem of mapping the multimedia collection to
the visualization space (see Section 2.1.2), because we wanted to address the
real-time challenges first. Hence, for the first simple visualization, it can
be considered the physical model based on the multidimensional scaling
and the simulated annealing [35], successfully used and verified in another
exploration system [43].

• Scalability. Sooner or later a successful exploration system will be chal-
lenged by the growing number of its users, followed by continuous additions
of objects to the multimedia collection. To be prepared for such a situ-
ation, besides the parallelization of the framework processes, at least the
data layer of the RTExp should be implanted in a distributed environment.
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Chapter 4

Multilayer Multimedia
Exploration

Following the research on the architecture of a multimedia exploration system,
in this chapter, we focus on two parts of the design proposed in the previous
chapter.

Firstly, we present the new structure intentionally designed for supporting the
multimedia exploration [19], and which in the proposed design can be understood
as the similarity access method in the data layer. The new structure combines
two approaches mentioned in Section 2.1.3, it utilizes the similarity indexes for
the horizontal browsing and employs the multiple layers enabling also the vertical
browsing.

Secondly, we present the exploration layout for this new multimedia explo-
ration structure. This layout can be understood as the visualized exploration
space, the component from the presentation layer mentioned in the previous chap-
ter.

4.1 MLES - Multilayer Exploration Structure

The multimedia exploration usually starts in the so-called page zero view, where
the users start the exploration using the limited number of representative objects.
Then, the users consecutively zoom in to specific parts of the view, pan to other
groups of objects, or zoom out if the actual view is filled with undesired objects,
all the time seeing the same (small) number of objects.

From the above exploration use case, we assume that the exploration structure
should be able to provide the representative distinct objects for the earlier phases
of the exploration, while the more related (similar) objects to each other should
be retrieved in the later stages, i.e. it should provide some mechanism to search
in the different level of details. At the same time, whenever the users select
the object to zoom in to the details of its neighborhood, this object should be
visualized also in the query result to preserve the fluency of the exploration.
Based on these assumptions, we define the Multilayer Exploration Structure (see
Figure 4.1):

Definition 4.1. (Multilayer Exploration Structure). Given a dataset S of ob-
jects (descriptors of the respective multimedia objects), the Multilayer Exploration
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Figure 4.1: The MLES with similarity indexes Index1 for the layer L1 and Index2
for the layer L2.

Structure, MLES(S,m, v, φ), is a system of m+ 1 subsets Li (layers), where the
subset condition holds:

Li ⊂ Li+1,∀i = {0, ..,m− 1}

The smallest subset L0 represents the first depicted v objects (i.e., page zero view)
and the proper subset Lm = S represents the whole database. Selection of objects
for each layer is determined by a selection function φ : N→ 2S, w has to comply
with the subset condition.

With such a definition, each layer could be indexed separately by the most
suitable similarity index that supports the kNN similarity query processing. For
example, the upper layers containing the small number of objects can use an
efficient memory-based indexes (e.g., the pivot table [74]), while the lower layers
in the MLES hierarchy containing a lot of objects can use an efficient disk-based
indexes [52, 79, 86] and/or GPU computing [61].

In order to select objects for the particular layers in the MLES, various tech-
niques can be utilized (e.g., the random sampling, the (hierarchical) clustering
techniques, or their combination). In the first design of the MLES, we consider
just simple random sampling of the subsets1 which is applicable for huge datasets.
The objects in the dataset have to be just randomly mixed and then the subsets
corresponding to the layers can be simply defined by using the prefixes of the
dataset.

Since the number of displayed objects v (see Definition 4.1) depends on the
size of a client device and on the user preferences, we need to answer the question
of a various configurations of the zero layer L0. However, as we use the prefixes
of the mixed dataset to define the layers, the page zero view corresponds just
to the first prefix of the dataset. Therefore, the page zero view can be changed
dynamically by using the prefix with a variable length according to the needs of
the device (e.g., two zero layer configurations, one consisting of 10 objects for a
small screen and one consisting of 50 objects for a large screen).

1Techniques guaranteeing the representativeness of the objects in the top layers are out of
the scope of this paper and we leave them for future work.
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4.1.1 Exploration Operations

A typical querying task in the similarity search, the k-nearest neighbor (kNN )
query (Definition 4.2) described also in Section 1.2.2, can be used also as the
supportive operation for the exploration operations. Moreover, for the lower
layers of the MLES with a huge number of objects, the approximate kNN search
techniques (see Sections 2.2.3 and 3.3) can be also utilized, to achieve higher
efficiency of the exploration. We believe that the multimedia exploration belongs
to such a category of retrieval tasks where maximal precision is not required and
thus the multimedia exploration can profit from the approximate search.

Definition 4.2. (k-nearest neighbor query). Given a dataset S of multidimen-
sional objects, a query object q ∈ S and a query parameter k, the k-nearest
neighbor query returns a set NNq(k) ⊆ S that contains the k most similar objects
to the query object, for which the following condition holds:

∀o ∈ NNq(k),∀o′ ∈ S −NNq(k) : d(o, q) ≤ d(o′, q)

In the following, we define the exploration operations for the MLES, but
before that, we introduce some labeling for better understanding of the described
exploration situations. The current user view represents the collection of objects
currently visualized on the user screen, while the next user view represents the
collection of objects resulting from some exploration operation. We assume that
the current user view of k objects is visualized as the static network [23], where
only the most similar objects are connected to each other and the positions of the
objects are influenced by the similarities between them. For that, we employed
the force-directed placement (see Section 2.1.2) introduced in [35]. In the first
design of the MLES, we do not focus on the precise positioning of the particular
objects in the user views.

We start with the definitions of the operations Zoom-In and Zoom-Out pro-
viding the vertical browsing between the layers and allowing to narrow or broaden
the user view that is actually explored in the collection.

Zoom-In

In the operation Zoom-In, first, the user selects one object from all objects avail-
able in the current user view that will be used as the query object. Then, using
the query object, the kNN query is performed on the layer immediately below
the layer of the current user view.

Definition 4.3. Given the Multilayer Exploration Structure E = MLES(S,m, v, φ),
a query object q ∈ Li and parameters k, i, the operation Zoom-In(E, q, k, i) on the
layer Li,∀i = {0, ..,m− 2} returns a set of objects being the k-nearest neighbors
to the query object q from objects in the layer Li+1.

In Figure 4.2, the differences between two MLES structures with a different
configuration are depicted. The arrow on the left shows the operation Zoom-In
performed in the MLES that has only two layers in total, the zero layer and the
leaf layer. In such a case, performing the Zoom-In operation is equivalent to the
iterative querying mentioned in Section 2.1.2. On the contrary, in the 3-layer
MLES (the arrows on the right in the figure), the Zoom-In operation from the
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same page zero view returns objects from the first (in this case labeled as middle)
layer. In this case, the returned objects also represent similar objects to the query
object, but in a lower level of details than in the leaf layer, hence the users can
select from more diverse set of objects (unlike in the case in the 2-layer MLES).
If the user performs another Zoom-In operation with the same query object from
this middle layer, the same next user view as in the case of the 2-layer MLES
scenario is returned.

Zoom-Out

The operation Zoom-Out is similar to the operation Zoom-In except that the
kNN query is performed on the layer immediately above the layer of the current
user view. As the layer Li does not contain all objects from the layer Li+1, the
query object does not necessary have to be present in the next user view, because
of the the subset condition in Definition 4.1 of the MLES.

Definition 4.4. Given the Multilayer Exploration Structure, E = MLES(S,m, v, φ),
a query object q ∈ Li and parameters k, i, the operation Zoom-Out(E, q, k, i) on
the layer Li,∀i = {1, ..,m−1} returns a set of objects being the k nearest neighbors
to the query object q from objects in the layer Li−1.

The motivation for the operation Zoom-Out is straightforward, to lower the
level of details in the current user view by navigating vertically to the upper
layers of the hierarchy. It is important to realize that the operation Zoom-Out
is not just the reverse operation to the previously performed Zoom-In operation.
The Zoom-Out can be performed on any actually displayed object and not just
the ones residing also in the upper layer. The Zoom-Out also differs from the
hypothetical operation of returning back in history of the previously performed
exploration steps.

The explanatory scenario is depicted in Figures 4.3 and 4.4. In the first four
steps of this scenario (Figure 4.3), the user explores through some images of
sunsets, while suddenly he decides to explore a different part of the collection
(but still similar to the actually displayed objects, e.g., with a sky), hence, he
performs the Zoom-Out on the image that mostly differs from the previously
explored images of the sunsets (Figure 4.4). The result in the next user view
contains the objects that are less similar to the sunsets (but still with the sky),
thus the user has more options to choose in what direction his exploration will
continue.

Pan

The operation Pan provides the horizontal navigation through the layer, allowing
users to locally browse the collection while keeping the actual granularity of the
exploration at the same level.

Definition 4.5. Given the Multilayer Exploration Structure, E = MLES(S,m, v, φ),
a query object q ∈ Li and parameters k, i, the operation Pan(E, q, k, i) on the lay-
er Li,∀i = {0, ..,m− 1} returns a set of objects being the k nearest neighbors to
the query object q from objects in the layer Li.
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Figure 4.2: The operation Zoom-in performed in two MLES structures with the
different number of layers (the enlarged image represents the query object for the
following operation).
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Figure 4.3: The first part of the exploration scenario in the 3-layer MLES involv-
ing all exploration operations for navigating horizontally and vertically through
all layers. In this part, the user starts exploring the images of sunsets and he
consecutively navigates to the leaf layer (the enlarged image represents the query
object for the following operation).
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This simple definition of the operation Pan follows the definitions of the op-
erations Zoom-In and Zoom-Out, except that the kNN query for the selected
query object is evaluated in the same layer. The operation Pan allows the user
to investigate the neighborhood of some object in the current user view while
the current level of details is not changed. In Figures 4.3 and 4.4, the operation
Pan is used for two purposes. In the leaf layer (Figure 4.3), the operation is used
to retrieve more similar images of a searched concept (e.g., sunsets) while in the
middle layer (Figure 4.4), it is used as the method for navigation to other parts
of the explored collection.

There is one problem in our definitions of the exploration operations that
comes from the non-symmetry of kNN queries. Lets assume that k is fixed and
an object B is in the result of the kNN query for an object A. Then, the object
A does not necessarily has to be in the result of the kNN query for the object
B. The consequence of this fact is that there could be some object which does
not have to be reachable in the MLES if the exploration operations are defined
with the definitions provided above. For completion of those definitions, we
need to ensure that each object is reachable by some sequence of the exploration
operations starting from the page zero view. Whereas the definitions of the
zooming operations seem to be quite intuitive, we simply extend the definition of
the panning operation by adding some random objects from the same layer to the
result of the kNN query. Although, with such a step we add some level of non-
determinism into the exploration process, we ensure that each object is with the
non-zero probability reachable from the page-zero view. The proportion between
the number of the objects that come from the result of the kNN query and the
number of the randomly selected objects can be handled by some parameter of
the operation Pan. More complex solution involving detection of outliers is out of
scope of this paper, we suggest it for a future work. The randomly selected objects
added into the result of the operation Pan solve also another unwanted behavior
of the exploration driven by the kNN queries that is depicted in Figure 4.5.
Such an unwanted situation includes the case when all objects in the current
user view reside within the same homogeneous cluster and all distances between
objects in this cluster are lower than the distance to any objects which are out of
that cluster. Let us note that in this scenario the users can also use the operation
Zoom-Out to successfully navigate the exploration process out of the cluster. Our
further research on the reachability can be found in Appendix A.2.
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Figure 4.4: The second part of the exploration scenario in the 3-layer MLES
involving all exploration operations for navigating horizontally and vertically
through all layers. In this part, the user continues from the previous exploration
of the sunset images and he consecutively navigates to the images of a nature in
daylight (the enlarged image represents the query object for the following opera-
tion).
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Figure 4.5: The example situation when the user gets stuck in the cluster of
pair-wise similar objects (the enlarged image represents the query object for the
following operation).
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4.2 Exploration Layout

Following the introduction of the MLES, designed as the index structure for the
data layer of the provided architecture from the previous chapter, in this section,
we describe the component of the presentation layer – the exploration layout
visualizing the MLES, together with its implementation in the demo application
[104, 105].

We implemented the MLES in the previous version of our demo application
used for the multimedia exploration [44]. The previous version of the demo fo-
cused on the efficiency of the exploration process, when it demonstrated the
exploration supported with some MAMs. That work also discussed two differ-
ent multimedia exploration techniques, see upper part of Figure 4.6, we already
mentioned in Section 2.1.2. For refreshing your memory – in the iterative query-
ing the exploration process starts in some initial view and consecutively uses a
well-known query based approach as a basic modality. While in the iterative
browsing, the user queries follow the hierarchy of some exploration structure. As
was mentioned in the work [44], both of these techniques have their drawbacks,
the iterative browsing depends on the compactness of the underlying structure
and the iterative querying depends on the first selected collection for the zero
view. On the other side, both ideas have also their advantages. In case, when
the hierarchical structure that supports the iterative browsing truly follows the
hierarchy of an indexed space, the subsequent steps in the browsing process are
supposed to reveal details in more continuous way. But, the problem is in the
claim ”truly following the hierarchy of an indexed space”, since to achieve such an
illusion is usually very difficult, at least in an arbitrary space, because creation
of such a hierarchical structure can be very expensive. Conversely, the index
support for the iterative querying seems to lead to very efficient evaluation of
underlying similarity queries. Following these ideas we propose a combination of
both these techniques and designate it as the hierarchical querying.

Hierarchical Querying

The idea of the hierarchical querying takes the concept of the hierarchy from the
iterative browsing, and the concept of the querying supported with the similarity
index and which does not directly follow any structure from the iterative querying.
At the beginning of the exploration process the user is provided with objects from
the page zero (the layer L0 in the MLES), using the very same approach as in
the iterative querying. But, when it comes to next querying from this page zero,
instead of returning objects from the whole database, only objects from a subset
are returned. This subset, we denoted as the middle page (here, the layer L1 in
the 3-layer MLES, see it in the bottom of Figure 4.6), is the collection of pre-
selected objects and is created during the phase of constructing the index for
the whole exploration environment. The middle page consists of all objects that
are in the page zero supplemented with the additional objects selected from the
rest of the database. We used randomly selected objects for both, the page zero
and the middle page (as mentioned in Section 4.1), but more complex selection
methods known from the area of hierarchical clustering or pivot selection can be
used. It should be known that the number of objects selected for the middle page
also influences the illusion of the hierarchical querying. We derived the object
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a)                                           b) 

Page zero                                                 Index 

Figure 4.6: a) iterative querying b) iterative browsing c) hierarchical querying

count from the number of objects in the page zero (objectsPZ) and the variable
parameter pow, which determines the granularity of details in the middle page,
see Equation 4.1, where |S| is the size of the whole collection.

objectsMiddlePage =

⌈
objectsPZ + (|S| − objectsPZ) ∗

(
1

2

)pow⌉
(4.1)

The parameter pow directly controls the number of objects in the middle page,
in Table 4.1 you can see the counts for few values of pow in case when the size
of the whole collection is |S| = 20, 000 and the number of objects in the page
zero is 20. We added this possibility to parametrize the number of objects in the
middle page because different multimedia collections have internally the different
level of granularity when it comes to the classification of objects. For example,
if the most of the objects are from the same class, the number of objects in the
middle page should be higher than in the case when the objects are distributed
in many small classes. Since, it is more desirable to get higher perspective over
the collection than just the representatives of the single class.
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pow 1 2 3 4 5 6

objectsMP 10,100 5,015 2,518 1,269 645 333

Table 4.1: The influence of the parameter pow on the object counts in the middle
page

4.2.1 More Continuous Way

Within our demo application, we introduce also the implementation of preserving
the user context in the visualization between the individual exploration steps.
In other words, the state of the visualization (i.e. the visualized objects and
their positioning on the screen) “before the query is evaluated“ should adhere the
consecutive visualization state “after the query evaluation“ more continuously.
The one of requirements for more continuous transition is the binding of the new
result set to the previous one. As you can see in Figure 4.7 the process of one
exploration step starts with the selection of the query object (by the user) in step
I. After the query is evaluated, the back-end of the exploration system sends
the new result set to the visualization component, while the old result set still
remains on a screen. Both results sets, the new and the old, are compared to each
other and the objects from their intersection are marked, they will be preserved
in the new visualized state (step II). After the rest of objects from the old result
set are removed from the visualization (step III), the rest of the new objects,
which are not already visualized, are placed next to the old preserved objects. For
the placing method of the new objects, we chose the strategy to place each new
object in the position next to the most similar object that is already visualized, as
depicted in step IV . There is also possibility to take into consideration more than
a single one most similar object and place the new object depending on distances
to more similar objects. When all objects from the new result set are placed in
the visualization, the process of adjusting the proper position according to the
particle physics model (i.e., force-directed placement) is iteratively run (step V )
until the position of each object is stabilized (step V I).

Figure 4.7: The schema of preserving the user context during the single explo-
ration step.
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Figure 4.8: The layout of the whole demo application. You can see the history
panel on the left side, some information about the current context on the right
side and the current exploration view on the main canvas.

4.2.2 Demo Application

Our demo application is the online software for the content-based exploration of
image collections and it is accessible from a web browser [105]. More information
about the architecture of the demo application can be found in Appendix A.1.

The layout of the client demo application is shown in Figure 4.8. The user can
explore the collection by clicking on some images of his interest. For returning
back in the querying history, he can use the history panel in the left part and
then continue by exploring a different part of the visualized collection. In the
right part, the user can see some information about the current context.

Figure 4.9 shows the exploration process of the hierarchical querying in par-
ticular exploration steps, starting from the page zero (a), continuing with the
middle page containing only some sample images (b) and ending in the bottom
of the hierarchy where all objects from the dataset are stored in (c). For a com-
parison, the process of performing the same exploration query in the concept of
the iterative querying is depicted in Figure 4.10. As you can see, the absence
of the middle page in the iterative querying results in the undesired effect, only
the most similar objects from the whole dataset are retrieved, and such a very
detailed view does not give the user the option to see the results of the query
from a bigger perspective.
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(a)

(b)

(c)

Figure 4.9: The exploration in the hierarchical querying. (a) The initial view of
the page zero. (b) The view of the middle page after clicking on the pigeon image.
(c) The view from the bottom of the hierarchy after clicking on the pigeon image
again in the middle page.
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(a)

(b)

Figure 4.10: The process of the iterative querying. (a) The initial view. (b) The
view after performing the kNN query with the pigeon image as a query object.

4.3 Index support for the MLES

The crucial part of the MLES structure is its index-presuming evaluation of un-
derlying similarity queries, and thus also the evaluation of the exploration oper-
ations. Each layer can be supported with a separate index structure, which can
improve the efficiency of the evaluation, and no matter that it is done in a met-
ric, in a non-metric or in an approximate way. In the next sections, we introduce
two techniques designed for improving the efficiency of the evaluation, which we
proposed in recent years.

4.3.1 Clustered Pivot Table

Our first work oriented on the efficient metric indexing proposes the persistent
variant of a pivot table [74] (see Section 2.2.1), the clustered pivot table [106]
(see Figure 4.11), which focuses on the minimizing of I/O costs when accessing
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small data blocks (a few kilobytes). The clustered pivot table employs: (a) the
preprocessing method utilizing the M-tree [52] (see Section 2.2.1) in the role
of a clustering technique, and also (b) the original heuristic for I/O-optimized
processing of kNN queries.

The idea of utilizing the clustering in the clustered pivot table is based on the
observation that the objects which it is necessary to process in the filtering phase
of the query algorithm can be spread over many database disk pages, while the
pre-clustering of these disk pages will lead to the accessing of only the necessary
ones. Hence, the clustered pivot table consists of the distance matrix connected
to the M-tree, where the vectors in the distance matrix are grouped according to
the corresponding M-tree leaf nodes. The main idea behind the efficient query
processing in the clustered pivot tables is to minimize the volume of data retrieved
from the disk. As the clustered pivot table groups similar objects within the M-
tree leaves, many of the data pages could be filtered out because the clusters they
represent do not overlap with the query region (see the lower-bounding principle
in Section 1.3).

Whereas, the range query processing is nearly the same as for the original pivot
table, for the kNN query we have to consider a completely different heuristic
if we want to minimize also the I/O costs. The kNN algorithm of the classic
pivot table is optimal in terms of the minimal distance computations spent, but
to prevent multiple accesses to the disk pages, we cannot use the reordering
of objects according to their lower-bound distance to the query object (as the
original LAESA (pivot table) [75] algorithm does). Moreover, for achieving the
quicker decrease of a dynamic kNN query radius, we keep data in the first few
disk pages unsorted and non-clustered, while the rest of the dataset is reordered
by the M-tree. Hence, when the kNN query tries to determine the dynamic
query radius, it first processes the objects from the non-clustered part (randomly
distributed through the whole space) so the radius is quickly decreased in first
cycles of the algorithm.

Figure 4.11: The clustered pivot table with data stored within the M-tree leaves.

4.3.2 Cut-Regions

In our second research of improving the efficiency of similarity search techniques
[107], we present the concept of cut-regions, which could heavily improve the
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performance of metric indexes that were originally designed to employ simple
ball-regions. The shape of the cut-regions is far more compact than that of the
ball-regions, while they still preserve the simple and concise representation.

The popular simple ball-regions, defined only by the center object and the
covering radius, have one main drawback – they cannot tightly cover the cluster
of similar objects in a sparse metric space. However, if the static set of k global
pivot objects is employed, the original ball-region can be further cut off by the
rings of each pivot (where the ring is an annulus centered in the pivot), forming
thus the cut-region. In particular, the ring (or the hyperring respectively, in case
of the multidimensional space) for a given pivot is determined by the distances
from the pivot to the closest and the farthest objects in the ball-region. The
example of the difference between the cut-region and the ball-region is depicted
in Figure 4.12 (where hr states for a hyperring).
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Figure 4.12: The overlap of the cut-region and the ball-region. The ball of the
cut-region on the right overlaps the ball-region on the left, but the the cut-region
itself does not overlap it because of its boundaries determined by the hr2 rings of
the pivot p2.

The idea of the cut-regions was first used in the PM-tree [78, 79] (see Sec-
tion 2.2.1), though there it was not described as the standalone formalism but as
the part of the PM-tree structure itself. In addition to the formalism, we present
two other redesigned metric indexes the M-index [85, 86] (see Section 2.2.1) and
the List of clusters [108] utilizing the cut-regions instead of the ball-regions (see
Figure 4.13).
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Figure 4.13: The M-Index cluster tree without (a) and with the cut-regions (b).

4.4 Discussion and Future Work

The provided proposal of the MLES can be certainly improved in many directions,
in next sections we provide some possibilities for the further improvement of the
MLES structure, of its presentation layout and also of its operations.

4.4.1 Employing Clustering

The effectiveness of clustering can be understood in the degree how the parti-
tioning to clusters reflects the distribution of objects in a description space. It
is known that if the objects are evenly distributed in the description space, it
is hard to partition them into the clusters, regardless how good in the cluster-
ing the particular algorithm is. But, in cases when the clustering works, various
clustering methods have positive effect on the hierarchic visualization.

It is necessary to realize that the MLES is not primarily visualizing a hierar-
chic structure, its operations are purely based on the nearest neighbors search.
Nevertheless, employing the clustering in the MLES can lead to the better selec-
tion of objects for the first layer(s). With replacing cheap random selection, the
first layer(s) of the explored collection can become more representative and that
can solve the problem of reaching the small distant clusters.

If we would like to to truly visualize a hierarchic structure, the natural op-
tion we will have is the agglomerative hierarchical clustering [109]. But, with the
growing size of the clustered collection, the hierarchical clustering becomes com-
putationally very expensive. Therefore, in the future, we want to employ more
efficient solution of the hierarchical clustering that is suggested in the work by
Kull et al. [110] with support of the Epsilon Grid Ordering [111] or the fast-sparse
clustering proposed by Chen et al. [56].
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4.4.2 Improving User Feeling

As we already mentioned in Section 2.1.3, the growth of mobile devices leads
to the new modern user interfaces, especially those allowing touch gestures. In
the section mentioned above, we reviewed some exploration systems that already
employs modern technologies like the touch screen and the accelerometer in their
user interfaces. The further research in this area can lead to the definitions
of additional MLES exploration operations (or to the improving of the previous
ones) by employing the tilting (a device), the swiping, the pinching, the spreading
(stretching), the sliding, the dragging, the flicking, or the other special multi-
touch techniques that employ even many fingers [112].

4.4.3 Improving Operations

Besides the improving of the exploration operations from the user’s perspective,
we can also improve the underlying transformation of the operations into the
similarity queries. The kNN queries generated from the exploration operations
are used in the MLES in their standard form, but there exist many variants of
the k-nearest neighbor search, which can be utilized in the MLES operations.
For example, the Weighted-kNN search considers the potential candidates for
the nearest neighbor according to their weights that reflect the distance from
the query object. Other variants can be, for example, the Condensed-kNN
(which omits repetitive and redundant data), the Reduced-kNN (omits data
that are ineffective in results), the Clustered-kNN (clusters data and omits very
distant data), the Continues-kNN (returns all results for the query objects that
are moving continuously along a straight line), or the Group-kNN (returns the
nearest neighbors for a group of the query objects) search. These techniques are
by far not exclusive, beside them, many other kNN techniques were proposed
and some of them are reviewed in the surveys on the kNN search [113, 114].

4.4.4 User Study

In order to demonstrate the benefits of more layers in the multimedia exploration,
many user studies focusing on the various retrieval scenarios have to be performed.
Hence, in the following chapter, we provide the evaluation of the MLES behavior
in the multimedia exploration performed by real users.
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Chapter 5

User Study on the MLES

In this chapter, we present the results of our user study [115] focused on the
effectiveness of the multilayer exploration using the MLES. We investigated the
behavior of the 3-layer MLES and compared it to the simple 2-layer MLES, which
we used for simulating the standard flat k-NN browsing.

In order to fully compare different exploration approaches, various exploration
tasks have to be utilized to challenge the performance of the examined structures.
In our study, we focused on the known-item search tasks, where users receive the
simple textual description of the searched class (a category of the annotated test
collection, e.g., pyramid, bottle, pineapple, pumpkin, handshake, etc.). Then,
starting from the initial page zero view, the users have to find as many objects
of the searched class as possible using just a limited number of exploration op-
erations (in our study we used 15 operations). Let us note that the initial page
zero view was the same for all search tasks and it did not contain any object
of the searched class. For each of the search tasks, we measured the number of
necessary clicks for finding the first object of the searched class together with the
cumulative number of found objects for each exploration step (i.e., one performed
exploration operation). Although that it was not the objective of the search tasks,
we also measured the cumulative number of visited classes for each exploration
step.

We performed this extensive user study on 94 participants from different coun-
tries (47 men and 47 women), who altogether completed 1661 search tasks. The
participants are students of the University of Finance and Administration at-
tending different study programs (IT, economics) and they were from different
student groups. All students of the same group received the instructions from
the same single person. In order to diversify the groups even more, some groups
were motivated to find as many images of the searched class as possible, while the
others received few more keywords, which describe the searched class. In each
group, the tasks were distributed uniformly for both compared structures. In the
following, we describe the Find the image application that was used for testing,
next we propose the test settings, following with the results of the executed tests
and in the end we discuss the overall results of the performed user study.

81



Figure 5.1: The layout of the Find the image application.

5.1 Find the Image Application

The user study was performed using the Find the image web application [44, 116].
It is an open platform for performing the user studies on the image exploration,
and it can be used also as a web service [117].

The layout of the application is depicted in Figure 5.1, the users are presented
with the current search task and their progress on the top of the screen. The
application shows and monitors the wall-clock time, the number of remaining
exploration steps and the number and the percentage of found objects fulfilling the
current search task. The main part of the screen is dedicated to the visualization
of the results of exploration operations. The results are visualized using the
force-directed placement which uses the objects as the nodes and the similarities
between the individual objects as the weights for the edges between the nodes.
Depending on the current level of the MLES, each node provides the interactive
Zoom-In, Zoom-Out and Pan operations (see definitions in Section 4.1.1). The
Zoom-Out can be performed by double-clicking on the individual depicted images
with the right mouse button, while the buttons for the Zoom-In and/or the Pan
operation are offered when hovering with the mouse cursor over the image node.
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The bottom part of the screen shows the images found so far, in the grid of
thumbnails. When the user spends all 15 allowed exploration operations, the
application saves the exploration statistics and offers to the user another search
task.

5.2 Test Settings

5.2.1 Dataset

As a dataset, the PROFIMEDIA test collection [118] comprising 21993 small
thumbnail images divided into 100 classes was employed. The position-color-
texture feature signatures [119] and the Signature Quadratic Form Distance
(SQFD) [14] were used as a similarity model.

5.2.2 MLES Configuration

As we mentioned in the introduction of this chapter, we compared 2-layer and
3-layer variants of the MLES. Both variants of the multilayer structures shared
the same set of images for the initial zero page view visualizing 50 images, while
the last layer comprises the whole dataset. The 3-layer structure used in addition
the layer in the middle consisting of one eighth of the objects from the third layer.
The PM-Tree index [79] was used to support the evaluation of the kNN queries
(see Section 4.3).

5.2.3 Test Configuration

The searched classes for the search tasks were selected from those classes whose
images were not present in the initial page zero view. More specifically, 10 homo-
geneous (images of the same class that are visually similar) and 10 heterogeneous
(images of the same class that can be less visually similar) searched classes were
manually selected. Each participant received the user ID, where for each user
ID there was generated the sequence of 20 search tasks. The sequence always
consisted of 10 permuted homogeneous searched classes followed by 10 permuted
heterogeneous searched classes. Using such sequences, the participants always
started with the easier search tasks and then continued with the more complex
ones. The participant could access the next search task only if he finished the
actual search task. Before starting the sequence of the tasks, each participant
could also perform one test task for each MLES structure with such a simple
searched class whose some of images appeared in the initial zero page view. The
results of these test tasks were not included in the following overall results of this
user study.

5.3 Results

In the first part of this section, we focus on the number of exploration operations
that were needed for finding the first objects of the searched class (the initial page
zero view did not contain the objects from the searched classes). In some of the
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search tasks, the users were not able to find any object of the searched class, as
depicted in Figure 5.2. We may observe that for the particular searched classes
– grain, pizza, running track and bee – it was difficult for the users to find the
objects of the searched class when they were given just a short textual descrip-
tion. Finding objects of these four classes was difficult for both compared MLES
structures, however, the 2-layer MLES resulted in more unsuccessful searches (in
the case of the bee class, only 30% of searches using the 2-layer MLES were suc-
cessful). Except five query classes, the 3-layer MLES outperformed the 2-layer
MLES in this experiment. Overall, there was 10% of unsuccessful searches for the
3-layer MLES and 18% of unsuccessful searches for the 2-layer MLES. Men par-
ticipants were slightly more successful than women participants for both indexes
(this information is not depicted in figures).
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Figure 5.2: The unsuccessful search.
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Figure 5.3: The average number of exploration operations needed for finding the
first object of the searched class.

In Figure 5.3,there is depicted the average number of exploration operations
needed for finding the first object of the searched class. Since the number of such
spent exploration operations is unknown for the case of unsuccessful searches, we
used the number 16 as the minimal number of operations required for finding
the first object in that case. We may observe that in most cases five exploration
operations were sufficient. Similarly, like in the previous figures, except few cases
the number of exploration operations needed for finding the first object was lower
for the 3-layer MLES.

Since the users always started the exploration from the same initial page zero
view, the learning effect could take part in the effectiveness of the exploration
significantly. In Figure 5.4 is outlined the average number of exploration opera-
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tions needed for finding the first object of the searched class for each search task.
Although the numbers are slightly lower for the search tasks that were performed
later, there is not any significant evidence of the learning effect. This is probably
caused by the fact that the next searched class was presented only after the pre-
vious search task was finished, and also by the fact that the descriptions of the
classes were textual. Therefore, any visual information that could be remembered
by the user, was not often connected to the actual search task. On the other side,
in some cases, the participants reported that the previous experience with the
visualized collection helped them to find some searched classes faster.
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Figure 5.4: The average number of exploration operations needed for finding the
first object of the searched class for each search task.

In the second part of this section, we present the graphs which depict how
many objects of the searched classes were found using 15 exploration operations.
In Figure 5.5, we may observe that searching for objects of the homogeneous
searched classes (1. - 10. search task) resulted in higher percentage of found
objects than the case of the heterogeneous searched classes (even though the
heterogeneous searched classes could benefit from the learning effect). This is
probably caused by the fact that with the finding of the first object of a homo-
geneous searched class the participant accesses a large cluster of visually similar
objects, which can be simply explored by the kNN queries. On the other side,
a heterogeneous searched class consists of more visually dissimilar clusters and
thus the participant often gets stuck in just one of them during all 15 exploration
steps.

Figure 5.6 depicts the number of found objects for individual classes in more
detail. Except for the classes – grain, railway and running track, the participants
were able to find at least 20% of objects from the homogeneous classes. The reason
of these three exceptions is probably the problematic formulation of the mental
query (i.e. the imagination of the representative object, see the introduction of
Chapter 2) for these classes. On the contrary, the results of the heterogeneous
classes show four exceptions that result over 20% of found objects, all others result
in lower numbers. The reason of the low numbers we mentioned in the previous
paragraph, while the exception classes – coin, football, scientist, windmill, are
probably easy to imagine and identify, even in their heterogeneous form.

In Figure 5.7a, there is depicted the average percentage of found objects from
the searched classes for each exploration step. We may observe that from the sec-
ond exploration step the 3-layer MLES starts to outperform the 2-layer MLES.
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Figure 5.5: The found objects and classes during the exploration – the learning
effect has minimal influence on the number of found objects.
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Figure 5.6: The found objects and classes during the exploration.
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We may also observe that in later steps the men participants were able to find
more objects of the searched class than the women participants for both struc-
tures. In Figure 5.7b are the same results depicted from a different perspective, it
shows the average percentage of the found classes for each exploration step. We
may observe that in each exploration step, the user visited more classes when us-
ing the 3-layer MLES. This behavior is caused by the presence of the middle layer
in the 3-layer MLES, which provides the higher variability of classes immediately
after the first exploration operation (which is always the Zoom-In operation).
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Figure 5.7: The found objects and classes during the exploration.
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5.4 Discussion

The results of the user study show that using more layers in the multimedia ex-
ploration could bring better effectiveness to the exploration process. Especially,
the finding of the first object of the searched class seems to be more effective
when using more than two layers. On the other side, when the first object of
the searched class is found, then simple kNN queries are utilized to explore the
cluster of visually similar objects. In this study, we did not primarily focus on the
searching for more visually dissimilar clusters of the same class, therefore we can-
not conclude if employing more layers could help with such a task. Considering
the results presented in Figures 5.6 and 5.7, there is not any significant perfor-
mance gain of the three layer exploration structure for the heterogeneous searched
classes. We can just intuitively guess from the results of Figures 5.3 and 5.4 that
if more than 15 exploration operations are used, the users will find the first object
from another visually homogeneous cluster of the searched class probably sooner.

The results would show bigger differences between both compared structures
if the utilized collection contained an order of magnitude higher number of objects
and classes. For example, if given 1 billion images and 1 million searched classes,
it would be probably much more complicated to find some object of the searched
class when using just the 2-layer MLES.

We also asked the participants to verbally compare both exploration struc-
tures. The participants did not see a big difference between effectiveness of both
structures, considering the percentage of found objects from the searched class.
For some search tasks the participants found the 3-layer MLES to be more useful
for finding the first object of the searched class. The participants also often prefer
simple user interfaces and therefore their zooming in to the last layer and using
just the simple pan operation could neglect the benefits of the 3-layer MLES. The
effect of the learning also slightly affected the results, because the participants
always started from the same initial page zero view (which was given by the ex-
ploration structure). Therefore, in some cases, the participants could quickly find
the objects of the searched class using their previous experience. On the other
side, the effect of learning was the same for both compared structures and so it
improved the results of both structures.
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Chapter 6

Conclusion

The main motivation that triggers our research summarized in this thesis was to
create the awareness of the exploration – the way of multimedia data retrieval
that is quite different from the well-known and widely used querying. We started
to advocate the exploration with stating the drawbacks that the querying suffers
from and we revealed the proper solutions which the exploration proposes. All
this, we provided together with the survey of existing browsing and exploration
systems and exploration principles in Chapter 2. That survey reveals and summa-
rizes common techniques used in the multimedia exploration, but also uncovered
the main problems like the scalability of used exploration methods and structures
in cases when the explored collection is very large.

When talking about the common techniques, we want to underline the fact
that the multimedia exploration is the retrieval aimed for the end users. Thus,
driven by such requirements of the end users as the modern user interface or the
truly continuous exploration, we proposed the architecture of the general real-time
multimedia exploration system (we refer to it as the RTExp) in Chapter 3. The
RTExp meets these criteria by providing the scalable multi-layered architecture,
applying the real-time similarity exploration queries, and delivering the intuitive
user interface. Besides the description of the overall architecture, in Section 3.3 we
introduced the approximation technique of the instant similarity queries, which
directly supports the requirement for the continuous exploration. The performed
evaluation of the instant similarity queries on the several metric access methods
showed that not all MAMs are suitable for supporting the continuous exploration
with a similarity index. The preferred are those ones, whose query evaluation
is monotonically approximative and whose evaluation process returns suitable
results very early.

The RTExp represents the high-level overview of the multimedia exploration,
where we tried to describe general parts of such a system, but beside the instant
similarity queries we did not focus on the particular details in it. Therefore, we
continued our research by introducing the particular details of the presentation
and the data layer of the RTExp architecture in Chapter 4.

Firstly, in the beginning of Chapter 4, we proposed the MLES – the new
structure for the multilayer multimedia exploration. Using the MLES, we de-
fined exploration operations enabling the horizontal and the vertical browsing
(described in Section 2.1.3) of any multimedia collection. The MLES consists of
multiple layers, where each layer can be indexed by a separate similarity index
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structure, which improves the scalability of the whole structure in case of the
growing database. So far, the defined exploration operations are based just on
the exact kNN queries, however, the further enhancements are possible. For
example, the approximate kNN queries could be used for the more efficient re-
trieval in the lower layers of the MLES, or the multiple kNN queries or the
multiple similarity models could be combined in one exploration operation.

Secondly, in Section 4.2 we aimed on the details in the presentation layer,
we introduced the continuity and the hierarchy into the real-world demo applica-
tion providing the multimedia exploration. Our ideas came out of two previously
discussed concepts the iterative querying and the iterative browsing. We tried
to adopt advantages from both of them and proposed the new technique - the
hierarchical querying. From our perception, when hierarchical querying was im-
plemented into our system the exploration process became more directed by the
user. Moreover, by introducing the preservation of the user context, we made
the exploration process notably more fluent. But, the demo is still missing the
desired improvements like presenting the intermediate results from continuous
evaluation of the exploration operations.

In Chapter 5, we performed the extensive user study on the MLES to prove
its suitability for the multimedia exploration. The MLES proved to be a more
suitable concept for multimedia exploration than the standard flat kNN querying
(simulated by 2-layer MLES), but we suppose that the 3-layer MLES does not
show all advantages of the multiple layers. For the further research, we plan to
use more than one middle layer in the MLES hierarchy to evaluate the scalability
of the system on very large collections.
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roqúın. Searching in Metric Spaces. ACM Computing Surveys, 33(3):273–
321, September 2001.

[14] Christian Beecks, Merih Seran Uysal, and Thomas Seidl. Signature
Quadratic Form Distance. In Proceedings of the ACM International Con-
ference on Image and Video Retrieval, CIVR ’10, pages 438–445, New York,
NY, USA, 2010. ACM.
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Large-Scale Multimedia Exploration. In Fifth International Workshop on
Ranking in Databases (DBRank 2011), Seattle, WA, USA, August.

[25] BusinessDictionary.com. Definition of word browsing,
http://www.businessdictionary.com/definition/browsing.html, 2015.

[26] Giang P. Nguyen and Marcel Worring. Interactive Access to Large Image
Collections Using Similarity-based Visualization. Journal of Visual Lan-
guages & Computing, 19(2):203–224, April 2008.

[27] Christos Faloutsos and King-Ip Lin. FastMap: A Fast Algorithm for
Indexing, Data-mining and Visualization of Traditional and Multimedia
Datasets. SIGMOD Records, 24(2):163–174, May 1995.

[28] Karl Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2(6):559–572, 1901.

[29] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24:417–441, 1933.

[30] Joseph B. Kruskal and Myron Wish. Multidimensional Scaling. Number 11
in 07. SAGE Publications, 1978.

[31] Wojciech Basalaj. Incremental Multidimensional Scaling Method for
Database Visualization. In In Proceedings of the Visual Data Exploration
and Analysis VI, SPIE, volume 3643, pages 149–158, January 1999.

[32] John W. Sammon. A Nonlinear Mapping for Data Structure Analysis.
IEEE Transactions on Computers, C-18(5):401–409, May 1969.

[33] Teuvo Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43(1):59–69, 1982.

[34] Peter Eades. A Heuristic for Graph Drawing. Congressus Numerantium,
42:149–160, 1984.

[35] Thomas M. J. Fruchterman and Edward M. Reingold. Graph Drawing by
Force-directed Placement. Software Practice and Experience, 21(11):1129–
1164, November 1991.

95



[36] Ron Davidson and David Harel. Drawing Graphs Nicely Using Simulated
Annealing. ACM Transactions on Graphics, 15(4):301–331, October 1996.

[37] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. Science
(New York, N.Y.), 290(5500):2319–2323, December 2000.

[38] Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction
by Locally Linear Embedding. Science (New York, N.Y.), 290(5500):2323–
2326, December 2000.

[39] Geoffrey Hinton and Sam Roweis. Stochastic Neighbor Embedding. Ad-
vances in Neural Information Processing Systems, 15:833–840, 2003.
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Appendix

A.1 Architecture of the Demo Application

As you can see in Figure A.1, the demo application is based on a client-server
architecture. The client is a single-page application and is responsible for handling
the user actions, for preserving the context between the individual exploration
queries and for the visualization of the result data. The server is an ASP.NET web
application which handles HTTP requests, creates and manages the collection of
metric indexes and prepares data for the client part in form of a similarity graph.

Figure A.1: The architecture of the demo application.

When the user opens the demo application, the Query Controller sends the
request to the server for the page zero via an AJAX call. This request is handled
by the Request Handler, which retrieves result objects from the page zero. The
result objects are the collection of multimedia objects containing the identifier of
the object, the specific URL address where the multimedia object itself can be
retrieved from and the index-specific metadata, which are preserved between the
individual exploration steps. After the objects are retrieved, the result collection
is passed to the Similarity Graph Generator, which is responsible for the com-
putation of distances between the objects in the result and for saving them in
the similarity matrix. The matrix is subsequently transformed into the similarity
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graph by keeping only those edges (the relations between individual the objects
from the matrix) whose similarity value is higher than the system-specific thresh-
old. The similarity graph is returned back to the client in the form of a JSON
structure containing the nodes (objects from the matrix) and those kept edges.

On the client side, the received similarity graph is passed to the Context
Controller, which compares the new result with the previous one. The objects
that are not present in the new result are removed from the screen, the rest of
objects stay at the same position where they had been located before the query
started. After that, each remaining object of the new result is placed next to
its most similar object already added in the visualized space (see Section 4.2.1).
This can be computed very quickly, since the result set already contains the edges
with their similarity weights. The graph with the x, y coordinates adjusted by
the Context Controller is passed to the Force Directed Visualization component.
Its responsibility is to tune the position of the visualized objects by using the
particle physics model (i.e., force-directed placement) until stable distribution of
the images on the screen is achieved.

In addition to the visualization, the client provides the user interface for the
exploration of the visualized collection by selecting the objects of the user inter-
est. After one or more objects are selected, the Query Controller generates the
exploration query from them and sends the query request to the server. Since
each of the visualized objects contains the index-specific metadata, the server
can retrieve the current context from the query request – the state in which the
exploration currently is – and then, according to the context, the sever deter-
mines which layer (the page zero, the middle page or the whole database) of the
underlying index should be queried.

A.2 Reachability of the MLES Operations

In this section, we introduce a qualitative criterion for the MLES (see Section 4.1),
where we focus on the number of objects which can be reached using the defined
exploration operations. Ideally, all objects should be reachable, however, the
reachability depends on several factors including the number of layers, the number
of objects in the layers (i.e., on the selection function φ, see Definition 4.1), the
layer selection techniques, the utilized exploration operations and the number of
displayed objects. Whereas the number of displayed objects is given by the size
of the concrete screen and the advanced (not random) layer selection techniques
can be too expensive for huge datasets, we focus mainly on the number of objects
in the layers to guarantee the user-given reachability for the specific exploration
operations (we consider just the Zoom-In and the Pan), and on the number of
layers. Let us note, the number of layers affects the number of similarity indexes to
maintain and also the number of user clicks to reach the searched items, therefore,
the number of layers should not be too high.

In order to define the reachability of the MLES operations, we utilize the
exploration closure which describes the set of objects that are accessible from the
initial layer L0 using a set of exploration operations. For simplicity, we start with
the closure according to the operation Zoom-In, which represents the natural
top-down manner of accessing information.
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Definition A.1. Let E = MLES(S,m, k, φ) be a multilayer exploration struc-
ture, l ∈ N, l ≤ m and Zl ⊆ S such that L0 ⊆ Zl and also ∀i ∈ N, 0 ≤ i < l : ∀q ∈
Zi : Zoom− In(q, i) ⊆ Zi+1, then Zl is called the exploration closure according to
the operation Zoom-In and the layer l.

Using the exploration closure Zl according to the operation Zoom-In, we can
simply define the Zoom-In reachability ZRl in E = MLES(S,m, k, φ) and the
layer l as the fraction:

ZRl = |Zl|/|Ll|.

If we utilize also the Pan operation defined for all layers, the number of reach-
able objects could be significantly higher because more objects from the specific
layer can be accessed by their neighbors. In some cases, the Pan operation can
even help users to access the desired objects more quickly. On the other side,
the Pan operation has also its limits, for example, according to our experience
the Pan operations can cycle in lower layers showing still the same objects (see
Section 4.1.1). However, the Pan operation is a significant extension of the Zoom-
In/Out exploration and can be used to extend the definition of the exploration
closure according to the operation Zoom-In as follows:

Definition A.2. Let E = MLES(S,m, k, φ) be a multilayer exploration struc-
ture, l ∈ N, l ≤ m and ZPl ⊆ S such that L0 ⊆ ZPl and also ∀i ∈ N, 0 ≤ i < l :
∀q ∈ ZPi : Zoom− In(q, i) ⊆ ZPi+1 and ∀q ∈ ZPi+1 : Pan(q, i+ 1) ⊆ ZPi+1,
then ZPl is called the exploration closure according to the operations Zoom-In and
Pan and the layer l.

Using the exploration closure ZPl according to the operations Zoom-In and
Pan, we can simply define the Zoom-In and the Pan reachability ZPRl in E =
MLES(S,m, k, φ) and the layer l as the fraction:

ZPRl = |ZPl|/|Ll|.

Having defined the Zoom-In (and the Pan) reachability, we can empirically
evaluate the effect of the number of layers and the selection function φ that should
be transparent to the users. However, to decide which exploration operations are
allowed is more complicated problem, because it is hard to decide whether just
the Zoom-In/ZoomOut operations can lead to the desired result faster then using
these operations also with the Pan operation. The suitability of the used strategy
depends on many factors like, for example, on the user preferences and behavior,
on the GUI, on the dataset or on the search intents, and many user studies
have to be evaluated to make some conclusions. Furthermore, employing the Pan
operation leads to the high computational complexity of the empirical evaluation.
Therefore, for this preliminary study on the reachability of the MLES operations,
we utilize just the closures with the limited number of the Pan operations. For
example, for the 3-layer exploration structure and two allowed Pan operations,
only the {Zoom−In, Zoom−In, Pan, Pan}, {Zoom−In, Pan, Zoom−In, Pan}
and {Zoom− In, Pan, Pan, Zoom− In} user action sequences1 are investigated.

1The user action sequence represents performing all exploration operations in order of the
sequence, while starting from the exploration starting point – the visualization of the layer L0.
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Configuration
Layer

Sum
0 1 2 3 4 5

CoPhIR(k(20), pow(0.5)) 0.01 38 54 66 76 85 319

CoPhIR(k(20), pow(2)) 0.01 3 13 31 55 85 187

Table A.1: The memory complexity of the multilayer exploration structures (in
MBs)

A.2.1 Experimental Settings and Results

Having introduced the theoretical definition of the MLES (see Chapter 4), we
experimentally demonstrate its assets, especially we focus on the reachability
properties. We start with the short description of the experimental environment,
then we provide the preliminary results of the Zoom-In and the Pan reachability
and then we end this section with some discussion on the matter.

All following experiments were performed on two datasets based on the MPEG-
7 descriptors [102], both consisted of 100,000 images. The first used dataset is
a subset of the MIRFLICKR [120] where the utilized descriptor vectors com-
prises two of the MPEG-7 descriptor, the Homogeneous Texture and the Edge
Histogram. The second dataset is a subset of the CoPhIR [101], where the de-
scriptor vectors are represented by the MPEG-7 descriptors the Scalable Color
and the Color Structure. For a distance function, we used the Euclidean dis-
tance for the CoPhIR, while for the MIRFLICKR we used the combination of
the weighted Manhattan distance, as it is suggested by the authors of the dataset
and the MPEG-7 standard.

To study the reachability properties thoroughly, we have used various con-
figurations of the MLES. The very first parameter k determines the number of
objects that can be displayed all at once on the screen (see the definition of the
page zero view in Section 4.1). We used the configuration with k = 20 to simu-
late the exploration on the devices with the small screen, e.g., smartphones, and
k = 50 for the larger screens. This parameter also defines the number of objects
in the zero layer of the structure as well as the number of objects retrieved by
the kNN queries2.

The next parameter we used is the number of layers – m that varies from 2
to 6, the first layer contains k objects and the last layer contains all objects of
the dataset as follows from the definition of the MLES in Section 4.1.

For the generation of the layer capacity, we employed the selection functions
φ(l) = (l/m−1)pow, where m stays for the total number of layers and the exponent
pow in our tests varies from 0.5 to 6. For better imagination of used selection
functions, we refer to Figure A.2, where we can observe how the number of
objects in the particular layer is directly affected by the selection function. In
order to process similarity queries efficiently, we have create the PM-Tree index
for each layer except the zero layer. As we can see in Table A.1, the choice of
the selection function is reflected also in the size of the PM-Trees. Hence, if the
memory complexity is one of the criteria for choosing the right configuration for
the multimedia exploration, the index sizes should be also taken into an account.

2The latter states only for these experiments, not for the MLES operations in general.
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Figure A.2: The influence of the selection functions used in the experiments on
object counts.

A.2.2 Zoom-In Reachability
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Figure A.3: The Zoom-In reachability per layer of the 6-layer structure – the com-
parison of different kernel functions: a) 20 displayed objects b) 50 displayed ob-
jects, and the comparison of a different number of displayed objects: c) CoPhIR
d) MIRFLICKR

In the first experiment, we studied the Zoom-In reachability ZRl on the MLES
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with six layers. Let us note that one point in Figure A.3 represents the Zoom-
In reachability (y-axis) for the individual layer l (x-axis) of total six layers with
k = 20 or k = 50 displayed objects and the kernel function power parameter
pow. From the results, we can observe the influence of the kernel function on
the individual layers. For low values of the pow parameter, the reachability in
top sparse layers is small due to big amounts of the indexed data in the layer L1,
while in bottom denser layers the kernel functions with the lower pow become
competitive. We can also observe that for the variants with 20 displayed objects,
the values of the reachability in bottom layers (up to 80%) do not reach the
results of the variants with 50 displayed objects (almost 100%). Hence, for 20
displayed objects and the random selection of objects in layers it is reasonable
to use the MLES with more than 6 layers. In the bottom part of Figure A.3,
we provide the direct comparison of the MLESes with the different number of
displayed objects in the single graph, where we may observe how significantly
a the higher number of displayed objects affects the reachability. We may also
observe that all experiments on both datasets result in the reachability values
similar to each other when using the same parameters.

While the previous experiments were performed on the MLESes with a fixed
number of layers, the next evaluation focuses on the comparison of the MLESes
with the varying number of layers where the Zoom-In reachability was always
examined just for the last bottom layer (see Figure A.4). One point in the figure
in this scenario represents, for example, the Zoom-In reachability (y-axis) for the
layer l = 2 in the 3-layer (x-axis) structure with k = 20 displayed objects and
the kernel function parameter pow = 2. From the results, we can observe that
the 2-layer or the 3-layer MLESes are not suitable for indexing 100,000 objects
because the Zoom-In reachability is too low (below 50%). Furthermore, for k = 20
displayed objects even the 4-layer structure is not sufficient. On the contrary, for
k = 50 displayed objects the improvement ensured by the additional layer of the
6-layer structure in comparison to the 5-layer structure is not significant.
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Figure A.4: The Zoom-In reachability for the last layer, the comparison of the
multilayer structures with the varying number of layers
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A.2.3 Zoom-In and Pan Reachability

In the second set of experiments, we studied the Zoom-In and the Pan reachability
ZPRl in the 3-layer MLESes. Additionally to two Zoom-In operations, we allowed
just two Pan operations, one performed in the layerL1 and one in the layer L2

(denoted as ZPZP ), or both in the layer L2 (ZPPZ) or both in the layer L2

(ZZPP ). In Figure A.5), we can observe the increased values of the reachability
when including also the Pan operations. The figure shows the results of the
experiments with the varying power of the kernel function, where we measured
the reachability right after the last operation of the sequence (e.g., the Pan in
sequence ZPZP ) was performed. For example, one point in the left part of
the figure means the Zoom-In and the Pan reachability for the layer l = 2 in
the 3-layer MLES with k = 20 displayed objects, the kernel function parameter
power = 1 (x-axis) and the sequence of operations ZPZP . We may notice that
the results are acceptable if the Pan operation is performed also on the last layer
(ZPZP , ZZPP ). But, if the last operation is the Zoom-In (ZPPZ), the results
are quite poor. For comparison, we also added the sequence containing just the
Zoom-In operations (ZZ), which yields the worst performance.

0.5 1.5 2.5 3.5 4.5 5.5

0.
05

0.
20

0.
35

0.
50

0.
65

CoPhIR
3 layers

kernel function power

re
ac

ha
bi

lit
y

●
● ● ●

● ● ●

●

●

ZZPP, k(20)
ZPZP, k(20)
ZPPZ, k(20)
ZZ, k(20)

(a)

0.5 1.5 2.5 3.5 4.5 5.5

0.
30

0.
45

0.
60

0.
75

0.
90

CoPhIR
3 layers

kernel function power

re
ac

ha
bi

lit
y

● ● ● ● ● ● ●
●

●

ZZPP, k(50)
ZPZP, k(50)
ZPPZ, k(50)
ZZ, k(50)

(b)

Figure A.5: The Zoom-In and Pan reachability on the 3-layer MLES with the
varying power of the kernel function: a) 20 displayed objects b) 50 displayed
objects

A.2.4 Discussion

In the experiments, we experimentally demonstrated that the exploration per-
formed on the MLES can result in the sufficiently high reachability (under the
specific configurations). Someone could object that 100,000 of objects and the
maximum of six layers is just not enough to prove the scalability of the MLES and
we partly agree. But as the evaluation of the reachability properties on bottom
layers was computationally too expensive and as we focused on the basic behav-
ior of the reachability properties and not on the absolute values, the suggested
experimental settings is merely enough for this study.
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