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0
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vzhledem k frakcionálnímu Brownovu pohybu BH , 0 < H < 1, coº také pokrývá
Itô·v integrál, nebo´ standardní Brown·v pohyb (Wiener·v proces) B se shoduje
s B

1
2 . Navíc, jak známo, Itô·v integrál je de�nován pomocí L2 procedur za

pouºití Itôovy izometrie, coº znamená, ºe nem·ºe být de�nován po trajektoriích.
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Abstract: In this Thesis we extend the classic theory of the Itô stochastic integral
(I)
∫ T

0
X dB on real line. We extend the Itô integral so that we can handle

anticipating (non adapted) processes. We also introduce the integration with
respect to the fractional Brownian motion BH , 0 < H < 1 which also covers
the Itô integral, because the standard Brownian motion B coincides with B

1
2 .

Moreover it is well-known that the basic Itô integral is de�ned via L2 procedures
using Itô isometry which means that it cannot be de�ned pathwise. Contrary we
introduce some concepts of pathwise stochastic integrals and compare them. In
the last chapter we show the usage of the concept of generalized Perron (Kurzweil)
integral for the stochastic integration.
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Chapter 0

Introduction

We start with a brief history of stochastic integration. Theory of stochastic
integration is closely related to the Brownian motion so let us begin with its ori-
gins. The earliest attempts to de�ne the Brownian motion mathematically were
done by three authors independently: T. N. Thiele, L. Bachelier and A. Einstein.
Thiele developed a model studying time series in 1880. Bachelier created a model
of Brownian motion while studying the dynamics of Paris stock market in 1900.
Einstein wanted to model the behaviour of small particles in a liquid in 1905.
Einstein proposed the model of a stochastic process with continuous paths and
independent stationary Gaussian increments. The models of Thiele and Bache-
lier were not particularly in�uential but the Einstein's was. However, Einstein
was unable to show the existence of such stochastic process. The existence was
shown later in 1923 by N. Wiener. After the existence, other important proper-
ties of the Brownian motion were proven, such as in�nite variation and �nite non
zero quadratic variation. In 1944 K. Itô introduced his �rst paper on stochastic
integration where the integrand was adapted stochastic process and integrator
was the Brownian motion. Later other important results were proven such as
Itô formula in 1951, the Doob-Meyer decomposition, conception of stochastic
di�erential equations driven by the Brownian motion, Black-Scholes' application
of stochastic calculus to �nance, change of time conception etc. A considerable
part of this Thesis is devoted to the fractional Brownian motion which was �rst
introduced in 1940 by Kolmogorov who called it Wiener Helix. The name frac-
tional Brownian motion was introduced by Mandelbrot and Van Ness in 1968. It
is a useful and widely used model for di�usion processes with correlated incre-
ments. Therefore it has many applications e.g. in �nancial mathematics. During
the second half of the 20th century until now many mathematicians studied and
developed various conceptions of stochastic integration. They wanted to handle
anticipating processes and extend the set of integrators, use di�erent approaches
of approximation etc. Many of the conceptions of stochastic integrals are studied
here.

In Chapter 1 we introduce Skorohod stochastic integral de�ned as an adjoint
operator to the Malliavin derivative. Chapter 2 is devoted to pathwise integrals.
In the third chapter we introduce and compare other "less usual" conceptions of
integration. Chapter 4 contains a small summary of results comparing the types
of integrals we introduce in the �rst three chapters and in Chapter 5 we introduce
the concept of generalized Perron (Kurzweil) integral and present our own result

2



in Theorem 43 and apply the conception of Kurzweil integral to the stochastic
calculus with respect to the fractional Brownian motion.

We expect the reader to know the basic theory of measure and Lebesgue-
Stieltjes integration, probability theory, theory of martingales and stopping times
as introduced in e.g. Karatzas and Shreve (1998, Chapter 1), existence and
basic properties of standard Brownian motion on real line (Karatzas and Shreve
(1998, Chapter 2)) and construction of Itô stochastic integral with respect to a
semimartingale via certain limit of approximating sums:

(I)

∫ T

0

Y dZ = lim
n→∞

2n−1∑
k=0

YkT/2n(Z(k+1)T/2n − ZkT/2n .) (0.1)

For detailed procedure see Karatzas and Shreve (1998, Chapter 3) or my Bachelor
Thesis: Filip Lacina: Stochastická integrace, Prague, 2013, supervisor: Prof.
RNDr. Josef �t¥pán, DrSc. Note that the Itô integral admits a continuous
version. In the whole Thesis we always assume that we work with the continuous
version.

As it is quite usual in some literature, when we state facts, equations, the-
orems etc., we sometimes do not explicitely state that the paticular statement
holds "only" almost surely. This might happen in the whole Thesis, especially
in Chapter 1 because when we are talking about stochastic integral as an op-
erator, trajectories taken one by one are not so important as the whole object
is of primary interest. We omit the "a.s." because it might be a bit disruptive
and confusing and might cause the reader to think about issues which are not so
important for the actual topic.

Last but de�nitely not least part of this Introduction is discussion about the
tratment of measurability in this Thesis. We assume that all (joint) measurability
assumptions are automatically ful�lled without explicitely stating it. This of
course excludes the assumption of adaptedness (also being kind of measurablity
assumption) as anticipating processes are of primary interest in this Thesis. For
example we assume that when an object (e.g. random variable, random process
etc.) is determined only almost surely we de�ne the values of the object on the
"null set" set in a "suitable" way. Suitable means for example as zero when
considering random variable or as constant zero function when taking random
process. Of course we do not want to willingly work with objects that are not
measurable. This approach is allowable because when we want to work with
trajectories of a random process one by one we have an assumption on behaviour
of the single trajectory (which we of course want to be measurable). When we
are talking about process as a whole object (like in Chapter 1) we do not want
to work with trajectories one by one. The above descirbed approach means in
particular that when a process allows a measurable version we always work with
this version.
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Chapter 1

Skorohod type integrals

We follow the approach introduced in Nualart (2006, Chapter 1). Let us �x
a complete probability space (Ω,F , P ) assuming it is rich enough. We also use a
�xed space L2(X,B, µ), where µ is σ-�nite nonatomic measure.

1.1 Wiener space and Wiener chaos decomposi-

tion

Let H be a real Hilbert space equipped with scalar product 〈·, ·〉H and norm
induced by the scalar product ‖ · ‖.

De�nition 1. A stochastic process W = (W (h), h ∈ H) de�ned on (Ω,F , P ) is
called isonormal Gaussian process if W is a centered Gaussian family such that
E(W (g)W (h)) = 〈g, h〉H .

Remark. The mapping h → W (h) is linear and provides a linear isometry of
H onto a subspace of L2(Ω,F , P ) containing centered Gaussian variables. Note
thatW (h) exists by Kolmogorov theorem (see Nualart (2006, p. 4, remarks under
De�nition 1.1.1)).

Now let us introduce the de�nition and basic properties of Hermite polyno-
mials.

De�nition 2. Let

Hn(x) =
(−1)n

n!
e
x2

2
dn

dxn

(
e
−x2

2

)
, n ≥ 1.

Hn is called the n-th Hermite polynomial.

Lemma 1.

• Hermite polynomials are the coe�cients of Taylor expansion of the function

F (x, ·) where F (x, t) = exp
(
tx− t2

2

)
,

• H ′n(x) = Hn−1(x), n ≥ 1,

• (n+ 1)Hn+1 = xHn(x)−Hn−1(x), n ≥ 1,
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• Hn(−x) = (−1)nHn(x), n ≥ 1.

Proof. For sketch of the proof see Nualart (2006, p. 4, 5, remarks under De�ni-
tion 1.1.1).

k

Let us now introduce following lemma.

Lemma 2. Let X, Y be two centered variables with joint Gaussian distribution
and unit variances. Then for n,m ≥ 1 we have

E(Hn(X)Hm(Y )) =

{
0 if n 6= m.
1
n!
E(XY )n if n = m.

Proof. For the proof see Nualart (2006, p. 5, Lemma 1.1.1).
k

Now we �x the σ-algebra generated byW = (W (h), h ∈ H) and call it G. The
following results strictly depend on the fact that all the randomness is generated
by W .

Lemma 3. The set (eW (h), h ∈ H) is total in L2(Ω,G, P ) which means that
closure of its linear span equals L2(Ω,G, P ).

Proof. Sketch of the proof: Let X ∈ L2(Ω,G, P ) such that EXeW (h) = 0, h ∈ H.
Then from linearity of the mapping h→ W (h) it follows that

E

(
X exp

(
m∑
i=1

tiW (hi)

))
= 0, ∀t1, t2, ..., tm ∈ R.

It means that the Laplace transform of measure

ν(B) = EX1B(W (h1), . . . ,W (hm)), B ∈ B(Rm)

is identically zero which implies that X = 0.
For detailed proof see Nualart (2006, p. 6, Lemma 1.1.2).

k

Theorem 4. The space L2(Ω,G, P ) can be orthogonally decomposed:

L2(Ω,G, P ) = ⊕∞n=1Hn, (1.1)

where Hn denotes the subspace of L2(Ω,G, P ) generated by random variables
Hn(W (h)), h ∈ H, ‖h‖H = 1, n ≥ 1 and H0 denotes the set of constants. We call
Hn the n-th Wiener chaos.

Proof. For the proof see Nualart (2006, p. 6, Theorem 1.1.1).
k
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1.2 Multiple Wiener-Itô integrals

In this section we assume that the underlying Hilbert space H has the form

H = L2(X,B, µ), (1.2)

where X is a Polish space, B denotes the Borel sets on X and µ is a nonatomic
σ-�nite (nonnegative) measure.

De�nition 3. Let {W = W (A), A ∈ B, µ(A) < ∞} be a family of centered
Gaussian random variables such that (EW (A)W (B)) = µ(A ∩ B). W is then
called white noise with underlying measure µ (or based on µ).

Let us proceed to de�ne the multiple Wiener-Itô integral. Set
B0 = {A ∈ B, µ(A) <∞} and �x m ≥ 1.

De�nition 4. Let

f(t1, . . . , tm) =
n∑

i1,...,im=1

ai1,...,im1Ai1×···×Aim (t1, . . . , tm), (1.3)

where A1, . . . , An ∈ B0 are pairwise disjoint and ai1,...,im = 0 if any two of the
indices are equal. Such function is called step function and the set of all step
functions is denoted as Em.

De�nition 5. Let f be a function of the form (1.3), then we de�ne the Multiple
Wiener-Itô integral of f with respect to W as

(WI)

∫
Xm

f(t1, . . . , tm) d(W (t1), . . . ,W (tm)) =

=
n∑

i1,...,im=1

ai1,...,imW (Ai1)× · · · ×W (Aim).

For shorter notation we usually write WIm(f) instead of
(WI)

∫
Xm f(t1, . . . , tm) d(W (t1), . . . ,W (tm)).

Now let us list a few basic properties of such de�ned integral.

Lemma 5.

• WIm : Em → L2(Ω,G, P ) is linear.

• WIm(f) = WIm(f̃), where f̃ denotes the symmetrization of f:

f̃(t1, . . . , tm) =
1

m!

∑
π

f(tπ(1), . . . , tπ(m)),

where π runs over all permutations of the set {1, . . . ,m}.

•

E(WIm(f)WIq(g)) =

0 if m 6= q,

m!
〈
f̃ , g̃
〉
L2(Xm)

if m = q.
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The symbol Xm denotes the m-th product space.

Proof. Nualart (2006, p. 9).
k

Now we want to extend the Wiener-Itô integral to all elements of L2(Xm). In
order to do that we need to show that Em is dense in L2(Xm). The measure µ
is nonatomic and therefore every indicator function 1Bi1×···×Bim can be approx-
imated by a sequence of step functions from Em. And so Em is dense in the set
of all indicator functions which is of course dense in the set of all L2(Xm) func-
tions and so the density is proven. Moreover the last property in Lemma 5 shows
that WIm can be extended to a linear and continuous operator from L2(Xm) to
L2(Ω,G, P ) as we can let f = g in the third item of the previous Lemma and
obtain the estimate of E(WIm(f))2 (see (Nualart, 2006, p. 10)). Note that the
multiple Wiener-Itô integral cannot be in general (meaning when the integrand
is not deterministic) de�ned pathwise.

Relation between Hermite polynomials and multiple

Wiener-Itô integrals

We show two theorems which describe the relation between Hermite polyno-
mials and the concept of Wiener-Itô stochastic integrals.

Set H = L2([0, T ],B, λ), where λ denotes the Lebesgue measure, equipped
with the standard scalar product. The isonormal Gaussian process is then a -
Gaussian family of centered random variables such that

E(W (1(0,t1])W (1(0,t2])) =
〈
1(0,t1],1(0,t2]

〉
L2([0,T ],B,λ)

=

∫
[0,T ]

1(0,t1](t)1(0,t2](t) dt =

= t1 ∧ t2.
We see that after, as usual, taking continuous version, W̃t de�ned as W (1(0, t]),
t ∈ [0, T ] coincides with the standard Brownian motion B = {Bt, t ∈ [0, T ]}.

Theorem 6. Let Hm(x) be the m-th Hermite polynomial and h ∈ H = L2(X),
‖h‖H = 1. Then

m!Hm(W (h)) = (WI)

∫
Xm

h(t1) · h(t2) · · ·h(tm) d(Bt1 , . . . , Btm). (1.4)

Consequently WIm maps L2(Xm) onto the m-th Wiener chaos.

Proof. For the proof see Nualart (2006, p. 13, Proposition 1.1.4).
k

Theorem 7. Let F ∈ L2(Ω,G, P ). Then F can be decomposed as follows:

F =
∞∑
n=0

WIn(fn), (1.5)

where fn ∈ L2(Xn) and WI0(f) = E(f). By Lemma 5 fn can be without loss of
generality taken symmetric and then the decomposition is unique.
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Proof. (Nualart, 2006, p. 13, Theorem 1.1.2).
k

Relation between Wiener-Itô integral and classic Itô integral

In the following theorem we show the link between the concept of multiple
Wiener-Itô integral and the classical Itô integral recalled in Chapter 0.

Theorem 8. Let fm be a real symmetric function in L2(Xm) and let
W (h) = (WI)

∫
X
hs dBs, h ∈ L2(X) as de�ned in the previous section. Then

the multiple Wiener-Itô integral with respect to W coincides with the iterated Itô
integral. It means that when we assume X = R+, then for 0 ≤ t1 ≤ · · · ≤ tm:

WIm(fm) = m!(I)

∫ ∞
0

(I)

∫ tm

0

. . . (I)

∫ t2

0

fm(t1, . . . , tm) dBt1 . . . dBtm . (1.6)

Proof. The proof follows simply from the fact that the theorem clearly holds for
step functions and the general case is treated by the approximation argument.
(Nualart, 2006, p. 23).

k

1.3 Malliavin derivative

In this section we de�ne the Malliavin derivative operator and we mention its
basic properties. Recall thatW = W (h), h ∈ H is an isonormal Gaussian process
associated with a Hilbert space H. Also recall that we assume that W is de�ned
on a complete probability space (Ω,G, P ), where G is generated by W .

Notation:

• C∞p (Rn) denotes the set of all real functions on Rn which are in�nitely
continuously di�erentiable and all its partial derivatives have at most poly-
nomial growth,

• C∞b (Rn) denotes the set of real functions which are in�nitely continuously
di�erentiable, bounded and all its partial derivatives are also bounded,

• C∞0 (Rn) denotes the set of real functions which are in�nitely continuously
di�erentiable and have a compact support.

De�nition 6. Let a random variable F have the form

F = f(W (h1), . . . ,W (hn)), (1.7)

where f ∈ C∞p (Rn), h1, . . . , hn ∈ H and n ≥ 1. Such F is called smooth random
variable. The set of all smooth random variables is denoted S. Sb and S0 de-
notes the class of smooth random variables of the form (1.7), where f ∈ C∞b (Rn)
and f ∈ C∞0 (Rn) respectively. Finally let P denote the class of smooth random
variables of the form (1.7) such that f is a polynomial.

8



Remark. Clearly P ⊂ S and S0 ⊂ Sb ⊂ S. It is also obvious that S0 is dense
in L2(Ω) and due to the density of Hermite polynomials, which was shown in
Section 1.1, P is also dense in L2(Ω).

Now we de�ne the derivative operator (Malliavin derivative) for a smooth
random variable.

De�nition 7. Let F be a smooth random variable of the form (1.7). The Malli-
avin derivative DF is the H-valued random variable given by

DF =
n∑
i=1

∂if(W (h1), . . . ,W (hn))hi (1.8)

The next lemma represents one of the most important property of the Malli-
avin derivative.

Lemma 9. Let F be a smooth random variable and h ∈ H. Then it holds that

E(〈DF, h〉H) = E(FW (h)). (1.9)

Remark. The above lemma is called "Integration by parts lemma". However, the
name is not intuitive because the integration by parts formulae are usually of the
form

G′ ·H ∼ G ·H ′,

but here we have (after taking into account that DW (h) = h):

E(〈DF,DW (h)〉H) = E(FW (h))

which means both derivatives are on one side of the equation. I.e. we have
formula of the type:

G′ ·H ′ ∼ G ·H,

But the proof of the lemma justi�es the name.

Proof. Sketch of the proof: We proceed as in Nualart (2006, p. 25, Lemma 1.2.1).
We can normalize (1.9) and therefore assume without loss of generality that
‖h‖ = 1. We can also assume that F can be written as F = f(W (e1), . . . ,W (en)),
where f ∈ C∞p (Rn) and h = e1 and e1, . . . , en are orthonormal elements of H.
Let φ(x) denote the density of standard normal distribution on Rn. Then

E(〈DF, h〉H) =

∫
Rn
∂1f(x)φ(x) dx =

∫
Rn
f(x)φ(x)x1 dx =

= E(FW (e1)) = E(FW (h)).

k

The following result is a direct consequence of the previous lemma.

Corollary. Let F and G be two smooth random variables and h ∈ H. Then

E(G〈DF, h〉H) = E(−F 〈DG, h〉H) + E(FGW (h)).

9



Proof. The proof is a direct consequence of Lemma 9 when we apply it to FG.
k

Now we want to extend the domain of the derivative operator. To do it, we
need the following fact. As we can see, the previous lemma plays a crucial role
in the proof.

Proposition 10. The Malliavin derivative is closable operator from Lp(Ω) to
Lp(Ω;H) for any p ≥ 1.

Proof. As in Nualart (2006, p. 26, proof of Proposition 1.2.1) we show that if
Fn, n ≥ 1 is a sequence of smooth random variables such that Fn → 0 in Lp(Ω)
and the sequence DFn → ξ in Lp(Ω;H) then ξ = 0. Indeed, we can take h ∈ H
and a smooth random variable F ∈ Sb such that FW (h) is bounded. Then by
Lemma 9 it holds that:

E(〈ξ, h〉H F ) = lim
n→∞

E(〈DFn, h〉H F ) =

= lim
n→∞

E(−Fn 〈DF, h〉H) + E(FnFW (h)) = 0

because Fn goes to zero and 〈DF, h〉H and FW (h) are bounded. And hence
ξ = 0.

k

Now we are �nally able to extend the operator D.

De�nition 8. Let p ≥ 1. D1,p denotes the closure of S with respect of the norm
of the graph of D in Lp(Ω):

‖F‖1,p = (E(|F |p) + E(‖DF‖pH))
1
p . (1.10)

De�nition 9. If we take p = 2 in previous de�nition then D1,2 is a Hilbert space
with scalar product

〈F,G, 〉1,2 = E(FG) + E(〈DF,DG〉H).

The next proposition describes the connection between the Malliavin deriva-
tive and the concept of Wiener chaos expansion.

Proposition 11. Let F ∈ L2(Ω) with Wiener chaos representation
F =

∑∞
n=0 Kn(F ). Then F ∈ D1,2 if and only if

E(‖DF‖2
H) =

∞∑
n=1

n‖Kn(F )‖2
2 <∞. (1.11)

In that case we have for all n ≥ 1 that DKn(F ) = Kn−1(DF ).

Proof. The proof is very technical and can be found in Nualart (2006, p. 28,
Proposition 1.2.2).

k
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Now we assume again the case that H = L2(X,B, µ) which is of high impor-
tance. Recall that µ is a σ-�nite nonatomic measure. In this case, the Malli-
avin derivative of a random variable F ∈ D1,2 is a random process denoted as
{DtF, t ∈ X}.

Last but not least let us mention one very important lemma about the operator
D in this case.

Lemma 12. Let A ∈ B and F ∈ D1,2. If F is FA-measurable, then DtF = 0
µ⊗P -a.e. on Ac×Ω. The symbol FA denotes trace of σ-algebra B on A de�ned
as:

FA = σ({C : C = B ∩ A,B ∈ B}).

Proof. For the proof see Nualart (2006, p. 34, Corollary 1.2.1) which is a direct
consequence of Proposition 1.2.8 on the same page.

k

1.4 The divergence operator

Now we de�ne the Divergence Operator which we also call the Skorohod in-
tegral.

De�nition 10. Let δ denote the adjoint operator of D. It means δ : L2(Ω;H)→
L2(Ω) such that:

1. The domain of δ, called Dom(δ), is the set of u ∈ L2(Ω;H) which satisfy

|E(〈DF, u〉H)| ≤ c‖F‖2

for all F ∈ D1,2, where c is a constant depending on u. ‖F‖2 denotes the
standard norm of L2(Ω).

2. For u ∈ Dom(δ) it holds that δ(u) ∈ L2(Ω) characterized by

EFδ(u) = E(〈DF, u〉H), F ∈ D1,2.

The operator δ is called the Divergence Operator or Skorohod integral.

Remark. In the case H = L2(X,B, µ) we write (Sk)
∫
X
u dW instead of δ(u). In

case that X = [0, T ] we write (Sk)
∫

[0,T ]
ut dWt and not (Sk)

∫ T
0
ut dWt because

of the fact that u is Skorohod integrable does not imply that u1[0,t], t ∈ [0, T ] is
also Skorohod integrable. In the case of Skorohod integral 0 and T should not be
considered as bounds of the integral.

Remark. The δ operator is closed because it is an adjoint of a densely de�ned
operator. Moreover we can easily check by setting F = 1 in the above de�nition
that Eδ(u) = 0.

Now the problem is that Dom(δ) is quite a complicated object. So we want
to have a subspace of Dom(δ) which is easily describable yet large enough to be
useful. So let us de�ne a suitable space and then show that it belongs to Dom(δ).

11



De�nition 11. Let SH denote the set of all H-valued random variables u of the
form

u =
n∑
j=1

Fjhj,

where n ∈ N, Fj are smooth random variables and hj ∈ H. We de�ne the space
D1,2(H) as the completion of SH with respect to the norm ‖ · ‖1,2,H , where

‖φ‖1,2,H =
√
E(‖φ‖2

H) + E(‖Dφ‖2
H⊗H) .

The symbol H ⊗H denotes the second tensor power of H and ‖ · ‖H⊗H its norm.

Proposition 13. It holds that D1,2(H) ⊂ Dom(δ).

Proof. See Nualart (2006, p. 37, Proposition 1.3.1) and its proof.
k

The following result is quite useful when comparing di�erent types of integrals.

De�nition 12. Still assuming H = L2(X,B, µ), let A ∈ B. Then we de�ne space
DA,2 as the closure of S with respect to the seminorm:

‖F‖2
A,2 = E(F )2 + E

(∫
A

(DtF )2 dµt

)
.

Proposition 14. Let A ∈ B and F ∈ DA,2. Moreover let u ∈ L2(Ω;H) such that
u1A is in the domain of δ and Fu1A ∈ L2(Ω;H). Then Fu1A belongs to Dom(δ)
and it holds that

(Sk)

∫
X

Fu1A dW = F (Sk)

∫
X

u1A dW −
∫
A

DtFut dµt (1.12)

if the right side is square integrable.

Proof. For the proof see Nualart (2006, p. 40, Proposition 1.3.5) which is a
consequence of Nualart (2006, p. 39, Proposition 1.3.3).

k

The next proposition shows us the link between the Skorohod integral and
the Wiener chaos expansion.

Proposition 15. Let u ∈ L2(Ω×X). Then, as stated in Nualart (2006, p. 40),
u has Wiener chaos expansion

u(t) =
∞∑
n=0

WIn(k̃n(·, t)), (1.13)

where for each n ≥ 1, k̃n ∈ L2(Xn+1) is a symmetric function in the �rst n
variables. It also holds that u ∈ Dom(δ) if and only if the sum

∞∑
n=0

WIn+1(k̃n)

12



converges in L2(Ω). In that case

δ(u) =
∞∑
n=0

WIn+1(k̃n). (1.14)

Proof. The proof is provided in Nualart (2006, p. 41, Proposition 1.3.7).
k

De�nition 13. The space D1,2(L2(X)) is in the sequel denoted as L1,2.

Remark. The previous proposition results in

E(δ2(u)) =
∞∑
n=0

(n+ 1)!‖k̃n‖2
L2(Xn+1)

and hence the set of Skorohod integrable processes can be characterized as the
set of u such that

∞∑
n=0

(n+ 1)!‖k̃n‖2
L2(Xn+1) <∞ (1.15)

and

E(δ(u)δ(v)) =

∫
X

E(utvt) dµt +

∫
X

∫
X

E(DsutDtvs) dµsdµt (1.16)

whenever u, v belong to L1,2.

Proof. For proof see the construction in Nualart (2006, p. 42).
k

Relation between Skorohod and Itô integral

Now we explain why can be δ considered as a stochastic integral and we show
its link to Itô stochastic integral. First let us note that when we take random
process u of the form

u =
n∑
j=1

Fjhj,

where Fj are smooth random variables and hj ∈ H, then by Lemma 9 we can see
that u ∈ Dom(δ) and also that:

δ(u) =
n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj, hj〉H (1.17)

(cf. Nualart (2006, p. 37)). Indeed, we can verify the de�nition of the δ operator.
Let us take arbitrary F ∈ D1,2 and compute

EF

(
n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj, hj〉H

)
=

13



= E
n∑
j=1

FFjW (hj)− E
n∑
j=1

F 〈DFj, hj〉H =

= E
n∑
j=1

FFjW (hj)− E
n∑
j=1

FFjW (hj) + E

n∑
j=1

Fj 〈DF, hj〉H =

= E

〈
DF,

n∑
j=1

Fjhj

〉
H

= E 〈DF, u〉H .

The fourth equality follows from the corollary of Lemma 9. Hence the term∑n
j=1 FjW (hj)−

∑n
j=1 〈DFj, hj〉H satis�es the de�nition of the Skorohod

integral of u. The fact that the δ operator is de�ned uniquely completes the
proof.

In the case of H = L2([0, T ],B, λ) we can rewrite (1.17) as Nualart (2006, p.
43)

(Sk)

∫
X

ut dBt =
n∑
j=1

Fj(Sk)

∫
X

hj(t) dBt −
n∑
j=1

∫
X

DtFjhj(t) dµt. (1.18)

Now we consider stochastic basis (Ω,G,Gt, P ) where G is σ-algebra generated
by W and Gt is a �ltration. Set hi = 1(ti,ti+1](t) where
(0 = t1 < · · · < tn = T ) is a partition of [0, T ] and Fi such that Fi is smooth and
Gti-measurable. We constructed an adapted elementary process on [0, T ]. When
we recall that W (1(ti,ti+1]) = W (ti+1)−W (ti), Skorohod integral of u equals

(Sk)

∫
[0,T ]

ut dBt =
n∑
j=1

Fj(B(tj+1)−B(tj))−
n∑
j=1

∫
X

DtFj1(tj ,tj+1](t) dµt. (1.19)

Fj is Gtj -measurable so as was shown in Lemma 12 DtFj = 0 for t ≥ tj but
for t < tj the indicator 1(tj ,tj+1](t) equals zero so the second sum in (1.19) equals
zero. Therefore we have

(Sk)

∫
[0,T ]

ut dBt =
n∑
j=1

Fj(W (tj+1)−W (tj)). (1.20)

Finally we see that for smooth adapted elementary random process u we have

(Sk)

∫
[0,T ]

ut dBt = (I)

∫ T

0

ut dBt. (1.21)

This result can be of course extended by means of approximation of all L2(Ω)
random variables by smooth random variables to all Gt-adapted L2 random pro-
cesses. This approach really works because δ is closed.

1.5 Malliavin calculus with respect to fractional

Brownian motion

This section is devoted to non-pathwise integration with respect to fractional
Brownian motion.

14



De�nition and basic properties of fractional Brownian mo-

tion

De�nition 14. Let 0 < H < 1 and let BH = {BH
t , t ≥ 0} be a Gaussian process

with zero mean and covariance function

RH(t, s) = E(BH
t B

H
s ) =

1

2

(
s2H + t2H − |t− s|2H

)
. (1.22)

Then BH is called fractional Brownian motion (fBm) with Hurst parameter H.

Remark. A new problem with notation arises. In literature the Hurst index of the
fractional Brownian motion is usually denotedH but the underlying Hilbert space
is also usually denoted H. To avoid misunderstanding we denote the underlying
Hilbert spaceH .

Lemma 16. Let BH be fractional Brownian motion with Hurst parameter H.
Then it holds that:

1. For any a > 0 it is true that {a−HBat} has the same distribution as BH .

2. For any s, t it holds that E(|BH
s − BH

t |2) = |t − s|2H and so fBm has sta-
tionary increments.

3. FBm admits a continuous version and the continuous fBm BH has trajec-
tories which are Hölder of order H − ε for every ε > 0.

4. B1/2 after taking continuous version coincides with standard Brownian mo-
tion.

5. For H 6= 1
2
fBm is not a semimartingale.

Proof. The proofs of the parts of this lemma are not di�cult and can be found
in Nualart (2006, p. 273 - 275).

k

Remark. From now on, in the whole Thesis we consider only the continuous
version of fBm without explicitely stating it.

De�nition 15. Let u = {ut, t ∈ [0, T ]} be a stochastic process and take a partition
P = {0 = t0 < t1 < · · · < tn = T}. De�ne

Vp

(
u,P

)
=

n∑
i=1

|utk − utk−1
|p.

The strong p-variation of u over [0, T ] is de�ned as

Vp(u, [0, T ]) = sup
P

Vp

(
u,P

)
, (1.23)

where P denotes a �nite partition of [0, T ]. Moreover the index of p-variation
of a stochastic process is de�ned as

I(u, [0, T ]) = inf{p > 0;Vp(u, [0, T ]) <∞}.
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We also de�ne the weak p-variation of u over [0, T ] as

V p(u, [0, T ]) = lim
n→∞

n∑
i=1

∣∣∣∣u(Tin
)
− u

(
T (i− 1)

n

)∣∣∣∣p , (1.24)

where the limit is taken in probability.

We refer to Øksendal, Hu, Biagini and Zhang (2008, p. 13) that

I(BH , [0, T ]) =
1

H
.

Moreover it is stated there thatV p(B
H , [0, T ]) = 0 when pH > 1

andV p(B
H , [0, T ]) =∞ if pH < 1.

As we know from the construction of classic Itô stochastic integral, the weak
quadratic variation of the integrator plays an essential role. Let us have a closer
look at the quadratic variation of fBm. As we can see in Nualart (2006, p. 275),
there are three distinct cases:

• H < 1/2: In this case we choose p > 2 which satis�es pH < 1 and we see
that the weak p-variation is in�nite and hence the weak quadratic variation
is also in�nite.

• H = 1/2: The weak quadratic variationV 2(BH , [0, T ]) = T .

• H > 1/2: Set p such that 1
H
< p < 2. We see that the weak p-variation

is zero and so the weak quadratic variation is also zero. But if we choose
1 < p < 1

H
we can see that the total variation (weak 1-variation) is in�nite.

Now set X = [0, T ]. Let BH = {BH
t , t ∈ [0, T ]} be a fBm. Let E denote

the set of all step functions on [0, T ]. The underlying Hilbert space H is now
de�ned as the completion of E with respect to the scalar product〈

1[0,s],1[0,t]

〉
H

= RH(s, t). (1.25)

Now we can extend 1[0,t] → BH
t to an isometry betweenH and the Gausssian

space H1 de�ned in Theorem 4. After that, we see that
{
BH(φ), φ ∈H

}
is

an isonormal Gaussian process associated with H as de�ned in De�nition 1.
BH(φ) may be understood as the integral if the deterministic element φ ∈H
with respect to BH .

Case H > 1
2

We can easily check that

RH(t, s) = cH

∫ t

0

∫ s

0

|u− v|2H−2 dvdu,

where cH = H(2H − 1). And so for any two step funtions φ, ψ from E it holds
that

〈φ, ψ〉H = cH

∫ T

0

∫ T

0

|u− v|2H−2φuψv dvdu. (1.26)
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Now let us have a look at a square integrable kernel

KH(t, s) = αHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2 , (1.27)

where αH =
(

H(2H−1)

β(2−2H,H− 1
2

)

)1/2

and t > s. The symbol β denotes the standard

Beta function. It can be shown (see Øksendal, Hu, Biagini and Zhang (2008, p.
24)) that ∫ s∧t

0

KH(t, u)KH(s, u) du = RH(t, s). (1.28)

Now let us introduce the operator K∗H

(K∗Hφ)(s) =

∫ T

s

φ(t)
∂KH

∂t
(t, s) dt, φ ∈ E . (1.29)

It holds that
(K∗H1[0,t])(s) = KH(t, s)1[0,t](s)

(cf. Øksendal, Hu, Biagini and Zhang (2008, p. 30)) and moreover〈
K∗H1[0,t], K

∗
H1[0,s]

〉
L2([0,T ])

= RH(t, s) =
〈
1[0,t],1[0,s]

〉
H

. (1.30)

Therefore we can see that the operatorK∗H provides (after the standard extension)
an isometry betweenH and L2([0, T ]). As a consequence of (1.30) it holds that

BH
t =

∫ t

0

KH(t, s) dBs, (1.31)

where Bs denotes the standard Brownian motion. The above equality holds in
law and also pathwise with

Bt = BH((K∗H)−1(1[0,t]))

(see Nualart (2006, p. 279, 280)). It follows that (Øksendal, Hu, Biagini and
Zhang (2008, p. 32, Proposition 2.1.12))

BH(φ) =

∫ T

0

(K∗Hφ)(s) dBs, φ ∈H . (1.32)

Now let us de�ne an important subspace ofH .
∣∣∣H ∣∣∣ denotes the set of all

measurable functions which satisfy

‖φ‖2

|H | = cH

∫ T

0

∫ T

0

|φu| |φv| |u− v|2H−2 dudv <∞. (1.33)

Therefore the space
∣∣∣H ∣∣∣ is continuously embedded intoH .

Case H < 1
2
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The approach issimilar and so we need to �nd a square integrable kernel which
satis�es (1.28). The problem is solved in the following equation. In Øksendal,
Hu, Biagini and Zhang (2008, p. 35) we can see that in case H < 1

2
it holds that

the kernel

KH(t, s) = αH

[(
t

s

)H− 1
2

(t− s)H−
1
2 −

(
H − 1

2

)
s

1
2
−H
∫ t

s

uH−
3
2 (u− s)H−

1
2 du

]
,

(1.34)
where αH =

√
2H

(1−2H)β(1−2H)(H+1/2)
satis�es (1.28). Let us now introduce the

operator K∗H for the case H < 1
2
.

(K∗Hφ)(s) = KH(T, s)φ(s) +

∫ T

s

(φ(t)− φ(s))
∂KH

∂t
(t, s) ds, φ ∈ E . (1.35)

Again as in the case H > 1
2
, as we can see in Øksendal, Hu, Biagini and Zhang

(2008, p. 37), it holds that standard Brownian motion B can be expressed as

BH
t =

∫ t

0

KH(t, s) dBs.

1.5.1 Derivative and Divergence operator with respect to

fractional Brownian motion

Now we investigate the relation between the operators D and δ with respect to
fBm and standard Brownian motion. Let us denote DB and δB the derivative and
divergence operators with respect to the standard Brownian motion and D and δ
those with respect to fractional Brownian motion. The following two results from
Nualart (2006, p. 288, Proposition 5.2.1, Proposition 5.2.2) are called transfer
principles.

Regarding derivative, the smooth random variables are now of the form

F = f(BH(h1), . . . , BH(hn))

and the Malliavin derivative with respect to BH is de�ned as

DF =
n∑
i=1

∂if(BH(h1), . . . , BH(hn))hi.

Regarding the divergence operator the following two results hold.

Proposition 17. It holds that

K∗HDF = DBF, (1.36)

whenever F ∈ D1,2.

Proposition 18.

Dom(δ) = (K∗H)−1(Dom(δB)) (1.37)

and for any u ∈ Dom(δ) this equality holds

δ(u) = δB(K∗Hu). (1.38)

Both transfer principles follow from the fact that

BH(φ) =

∫ t

0

KH(t, s) dBs.
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Maximal inequalities

In this section we state a couple of maximal inequalities for the divergence
operator in case of the fractional Brownian motion.

Theorem 19. Let H > 1
2
, p > 1 and u be a stochastic process in D1,p

(∣∣∣H ∣∣∣).
Then we have that

E(|δ(u)|p) ≤ CH,p

(
‖Eu‖p|H | + E

(
‖D(u)‖p|H |⊗|H |

))
, (1.39)

where CH,p is a constant depending on H and p and

‖φ‖2

|H |⊗|H | = c2
H

∫
[0,T ]4

|φr,θ| · |φu,η| · |r − u|2H−2|θ − η|2H−2 drdudθdη.

Proof. For the proof see Nualart (2003, p. 19).
k

Theorem 20. Let H > 1
2
, pH > 1 and u be a stochastic process in D1,2

(∣∣∣H ∣∣∣)
which satis�es

‖u‖p,1 =

[∫ T

0

E(|us|p) ds+ E

(∫ T

0

(∫ T

0

|Drus|
1
H dr

)pH
ds

)] 1
p

<∞.

Then the maximal inequality

E

(
sup
t∈[0,T ]

∣∣∣∣(Sk)

∫
[0,t]

us dBH
s

∣∣∣∣p
)
≤ C‖u‖pp,1 (1.40)

holds. C denotes a constant depending on p,H and T . (Sk)
∫

[0,t]
us dBH

s denotes

(Sk)
∫

[0,T ]
us1[0,t](s) dBH

s .

Proof. For the proof we refer to Nualart (2003, p. 19.).
k

Remark. The above theorem implicitly says that under its assumptions us1[0,t] is
Skorohod integrable which is not always true.

Now we want to de�ne an analogy of the Wiener-Itô integrals with respect
to fBm and not only with respect to standard Brownian motion as above. To
do it we have to choose a di�erent approach because the model of white noise is
not useful here because the fBm has correlated increments over disjoint intervals
and hence the condition EW (A)W (B) = µ(A ∩ B) is too restrictive. To de�ne
the multiple integrals for an arbitrary isonormal Gaussian process we need the
following de�nitions.
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De�nition 16. Let W be an arbitrary isonormal Gaussian process. For a smooth
random variable F de�ned in (1.7) and a positive integer m we de�ne the m-th
Malliavin derivative as the H ⊗m-valued random variable satisfying

DmF =
n∑

i1,...,im=1

∂m

∂xi1 . . . ∂xim
f(W (h1), . . . ,W (hn))hi1 ⊗ · · · ⊗ him , (1.41)

where ⊗ denotes the tensor product:

f ⊗ g(h1, h2) = f(h1) · g(h2).

Remark. Them-th Malliavin derivative has similar properties as the classic Malli-
avin derivative as closability etc., cf. Nourdin and Peccati (2012, p. 26 - 29).

De�nition 17. Let m be a positive integer. We denote by Dom(δm) the subspace

of L2
(

Ω;H ⊗m
)
containing elements u satisfying for every smooth random vari-

able F
|E 〈DmF, u〉H ⊗m | ≤ c‖F‖2,

where c is a constant depending on u.
For a u ∈ Dom(δm) the m-th Skorohod integral of u, δm(u), is the unique

element of L2(Ω) de�ned by

EFδm(u) = E 〈DmF, u〉H ⊗m (1.42)

for any smooth random variable F .

Remark. Similarly as in the above remark, even the m-th divergence operator
has similar properties as the classic operator δ. For more details see Nourdin and
Peccati (2012, p. 30 - 35).

Now let us consider the set E of step functions on [0, T ]. The underlying
Hilbert spaceH is now the completion of E with respect to the scalar product〈

1[0,t],1[0,s]

〉
H

= RH(t, s) =
1

2

(
s2H + t2H − |t− s|2H

)
.

Consider an isonormal Gaussian process W on suchH . From the construction
we can see that the process {W (1[0,t]), t ∈ [0, T ]} is a family of centered Gaussian
variables with the same covariance structure as the fBm BH . Hence those two
processes, after taking continuous version, coincide. Therefore W (h), h ∈ H
can be considered as a stochastic integral of a deterministic function h with
respect to the fractional Brownian motion BH .

Now denote by Em the set of all step functions onH ⊗m of the form

f(t1, . . . , tm) =
n∑

i1,...,im=1

ai1,...,im1Ai1×···×Aim (t1, . . . , tm), (1.43)

where Ai's are pairwise disjoint Borel sets on [0, T ]. For such function f we de�ne
the multiple integral in a similar way as in De�nition 5:

Imf =
n∑

i1,...,im=1

ai1,...,imW (1Ai1 )× · · · ×W (1Aim ). (1.44)
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Now we use the fact that, as stated (without proof because the proof is similar
as in the case m = 1) in Nourdin and Peccati (2012, p. 34, Exercise 2.7.6), for
all m ≥ 1 the set Em is dense inH ⊗m and extend the Im operator to the whole
H ⊗m. This approach is really correct due to the fact that for a step function
f of the form (1.43) it holds that

Imf = δmf

(cf. Nourdin and Peccati (2012, p. 34, Exercise 2.7.6)). Now we can use the
closability of δm and really extend the operator Im to H ⊗m. Therefore we
have the complete analogy of the Wiener-Itô integral for the fractional Brownian
motion BH .
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Chapter 2

Pathwise integrals

This chapter is devoted to pathwise stochastic integrals. At �rst we need some
preliminaries and then we de�ne various types of pathwise stochastic integrals,
compare them and apply them to fBm. All the conceptions have in common that
they try to overcome problems with in�nite total variation of the integrator.

2.1 Preliminaries

Let us now de�ne a few terms which are very useful in the sequel.

De�nition 18. Let f ∈ L1 and α > 0 and �x an interval (a, b). We de�ne the
left- and right-sided Liouville integrals as

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y) dy, (2.1)

Iαb−f(x) =
(−1)−α

Γ(α)

∫ b

x

(y − x)α−1f(y) dy, (2.2)

respectively for λ-almost all x ∈ (a, b). Γ denotes the Gamma function.

We refer to Zähle (1998, p. 337) that for both forward and backward Liouville
integrals we have that

Iα(Iβf) = Iα+βf. (2.3)

The equation (2.3) is called the composition formula. As we de�ned Liouville
integrals now we de�ne the inverse operation, Liouville derivative.

De�nition 19. Let 0 < α < 1. The left- and right-sided Liouville derivatives of
order α are de�ned as

Dα
a+f(x) = 1(a,b)(x)

1

Γ(1− α)

d

dx

∫ x

a

f(y)

(x− y)α
dy, (2.4)

Dα
b−f(x) = 1(a,b)(x)

(−1)1+α

Γ(1− α)

d

dx

∫ b

x

f(y)

(y − x)α
dy. (2.5)

The composition formula for both types of Liouville derivatives also holds (see
Zähle (1998, p. 339)) and it reads

Dα(Dβf) = Dα+βf. (2.6)

Now we mention some basic but very important properties which may clarify
the names "derivative" and "integral".
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Lemma 21. For both right- and left- sided derivatives and integrals and for a
suitable f we have that

Iα(Dαf) = f,

Dα(Iαf) = f.

The second equation holds for any f ∈ L1, the �rst one for any function which
can be interpreted as Iα-integral of an L1 function. Moreover

lim
α→1

Dαf(x) = f ′(x), f ∈ C1

lim
α→0

Dαg(x) = g(x).

For g ∈ L1 we have
lim
α→0

Iαa+g(x) = g(x+),

lim
α→0

Iαb−g(x) = g(x−),

where g(x+) denotes limε→0+ g(x + ε) and similarly g(x−) = limε→0+ g(x − ε),
provided that those limits exist.

Proof. The proof is mostly straight calculation. For more details see Zähle
(1998, p. 339).

k

We use the following notation.

De�nition 20. For functions f, g we de�ne

fa+(x) = 1(a,b)(x)(f(x)− f(a+)), (2.7)
gb−(x) = 1(a,b)(x)(g(x)− g(b−)), (2.8)

provided the limits exist.

2.2 Fractional integral

In this section we use another approach in order to de�ne a pathwise integral.
Recall the De�nition 20.

De�nition 21. Let f, g be two functions then we de�ne

(Fr)

∫ b

a

f(x) dg(x) = (−1)α
∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x) dx+f(a+)(g(b−)−g(a+)),

(2.9)
whenever fa+ ∈ Iαa+(Lp), gb− ∈ I1−α

b− (Lq) such that 1
p

+ 1
q
≤ 1, 0 ≤ α ≤ 1. Here the

spaces Iαa+(Lp) and I1−α
b− (Lq) denote the sets of function which can be represented

as an Iαa+-integral of a function from Lp, respectively as an I1−α
b− -integral of a

function from Lq. For p > 1 it holds that Iαa+(Lp) ⊂ Lq, where 1/q = 1/p − α
(see Zähle (1998, p. 338)).

Remark. We refer to Zähle (1998, p. 340, Proposition 2.1) that the de�nition is
correct, which means independent of the choice of α.
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As we can see the fractional integral de�ned in (2.9) is directed because of the
choice of left- and right- sided derivatives of f and g. Similarly we could de�ne
the integral

(Fr)

∫ b

a

dg(x)f(x) = (−1)−α
′
∫ b

a

Dα′

b−fb−(x)D1−α′
a+ ga+(x) dx+f(b−)(g(b−)−g(a+))

(2.10)
for f, g such that fb− ∈ Iα

′

b−
(
Lp
′)
, ga+ ∈ I1−α′

a+

(
Lq
′)

for some p′, q′ such that
1
p′

+ 1
q′
≤ 1 and some α′ so that 0 ≤ α′ ≤ 1.

Remark. The notation (Fr)
∫ b
a

dg(x)f(x) cannot lead to misunderstanding be-
cause it is clear that it does not mean (Fr)

∫ b
a

1 dg(x) · f(x) because the variable
x is used as an integration variable so it cannot be used also as an argument for
a function outside the integral in the same formula.

Proposition 22. If the functions f, g satisfy both the conditions for (2.9) and
(2.10) then the fractional integrals de�ned in (2.9) and (2.10) coincide.

Proof. The proof can be found in Zähle (1998, p. 347, Theorem 3.1).
k

Application of fractional integral to stochastic calculus

Now we want to apply the concept of fractional integral to stochastic calculus.
Again we move to our �xed interval [0, T ]. We refer to Zähle (1998, p. 354) that
the integral

(Fr)

∫ T

0

u(s) dBH
s

exists almost surely for any measurable random function u on [0, T ] which satis-
�es
u0+ ∈ Iα0+(L1([0, T ])), where α > 1 −H. That means no requirement on adapt-
edness is needed.

At �rst we show how the classic Itô integral and fractional integral are related.

Theorem 23. Let B be a standard Brownian motion and u a random process
adapted to its �ltration. Assume that u ∈ Iα0+(L2([0, T ])) for some α > 1

2
. Then

we have

(I)

∫ T

0

u(t) dBt = (Fr)

∫ T

0

u(t) dBt (2.11)

almost surely. Recall that, as was stated in the Chapter 0, we assume the contin-
uous version of the Itô integral.

Proof. It can be seen in Zähle (1998, p. 355, Theorem 5.2.1) that if we have a
continuously di�erentiable process u, then we can use integration by parts formula
and obtain that both sides of (2.11) equal to

−
∫ T

0

u′tBt dt+ uTBT .
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The general case is solved by means of approximation.
k

According to Lemma 21 for a suitable function g it holds that

lim
α→0

Dαg(x) = g(x).

When we want to establish a similar formula for the Liouville integral

lim
α→0

Iαg(x) = g(x),

the situation is slightly more complicated but the following result shows us that
an "integral version" of this formula holds.

Proposition 24. Let u be an adapted stochastic process which satis�es
u ∈ Iα0+(L2) for some α < 1

2
almost surely. Then

P − lim
ε↘0

(Fr)

∫ T

0

Iε0+ut dBt = (I)

∫ T

0

ut dBt. (2.12)

Proof. We refer to Zähle (1998, p. 356, Corollary 5.2.2) for the proof.
k

Relation between Skorohod and fractional integral

Let us investigate the link between the Skorohod and the fractional integral
in case the integrator is the standard Brownian motion B.

De�nition 22. Let 0 < α < 1. Then we de�ne the class Iα0+(n, L2) of func-
tions from L2([0, T ]n+1) which are symmetric in the �rst n arguments and can
be interpreted as Iα0+-integral with respect to the last variable of an L2([0, T ]n+1)
function.

Theorem 25. Let u = {ut, t ∈ [0, T ]} be a stochastic process with representation
(1.13), where for every n ≥ 1 it is true that k̃n ∈ Iα0+(n, L2) for some α > 1

2
, then

the following equality holds almost surely

(Fr)

∫ T

0

ut dBt = δ(u) +
∞∑
n=1

n

∫ T

0

WIn−1(k̃n(·, t, t)) dt, (2.13)

where δ denotes the divergence operator with respect to the standard Brownian
motion.

Proof. The results follows from the fact that (see Zähle (1998, p. 360, Theorem
5.3.1 and note above it)) for processes u with such representation the right side
is well determined and from the fact that

(Fr)

∫ T

0

WIn(k̃n(·, t)) dBt = WIn+1(k̃n) + n

∫ T

0

WIn−1(k̃n(·, t, t)) dt
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and the equation (1.14) completes the proof.
k

The above equality suggests the following de�nition of a new integral.

De�nition 23. Let u = {ut, t ∈ [0, T ]} be a stochastic process with representa-
tion (1.13). We de�ne the anticipating integral of u with respect to the standard
Brownian motion B as

(A)

∫ T

0

ut dBt = δ(u) +
∞∑
n=1

n

∫ T

0

WIn−1(k̃n(·, t, t)) dt. (2.14)

2.3 Riemann-Stieltjes integral

In this short section we show a theorem which allows us to de�ne a path-
wise integral with respect to fractional Brownian motion in case we have Hölder
functions.

De�nition 24. Let f : [a, b] → R be a function. We say that f is Hölder
continuous of order α if there exist nonnegative real constants α, ξ such that for
all t1, t2 ∈ [a, b]

|f(t1)− f(t2)| ≤ ξ|t1 − t2|α

holds. The set of all Hölder continuous functions of order α on [a, b] is denoted
Cα([a, b]).

De�nition 25. Let K be a �nite sequence of numbers such that

K = {α0, τ1, α1, . . . , αk−1, τk, αk}.

Moreover let
a = α0 < α1 < · · · < αk < b

and
αj−1 ≤ τj ≤ αj, j = 1, 2, . . . , k,

then we call K Kurzweil partition of the �nite interval [a, b].

De�nition 26. Let K be a Kurzweil partition of the interval [0, T ] as de�ned
above and u, v be two stochastic processes. We de�ne (pathwise) the Riemann-
Stieltjes integral sum as

RS
(
u, v,K , [0, T ]

)
=

k∑
j=1

u(τj)(v(αj)− v(αj−1)).

We say that the Riemann-Stieltjes integral of u with respect to v exists and equals
I ∈ R if for every ε > 0 there exists γ > 0 such that for all Kurzweil partitions
K γ satisfying maxj=1,...,n{αj − αj−1} < γ∣∣∣RS (u, v,K γ, [0, T ]

)
− I
∣∣∣ < ε (2.15)

holds. The Riemann-Stieltjes integral I will be denoted

(RS)

∫ T

0

ut dvt. (2.16)
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Theorem 26. Let {ut, t ∈ [0, T ]}, {vt, t ∈ [0, T ]} be random processes de�ned on
(Ω,F , P ) with Hölder sample paths such that u ∈ Cν([0, T ]), v ∈ Cζ([0, T ]) and
ν, ζ > 0 and ν + ζ > 1. Then the Riemann-Stieltjes integral

(RS)

∫ T

0

ut dvt (2.17)

exists (pathwise).

Proof. LetP ∆ denote the set of all partitions
P = {0 = t1 < t2 < · · · < tn = T} of the interval [0, T ] which satisfy supi(ti+1−
ti) < ∆. For arbitrary partition P and a random process u we de�ne the
approximating step function

ûP =
∞∑
i=1

u(ti)1(ti,ti+1].

Obviously for continuous functions it holds that

‖ûP − u‖L∞([0,T ])
∆→0−→ 0,P ∈P ∆.

Let us calculate

sup
P ∆

∣∣∣∣∣
n∑
i=1

u(t∗i )(v(ti+1)− v(ti))−
n∑
i=1

u(ti)(v(ti+1)− v(ti))

∣∣∣∣∣ ≤
≤ sup
P ∆

n∑
i=1

|u(t∗i )− u(ti)| · |v(ti+1)− v(ti)| ≤

≤ C(ν)C(ζ) sup
P ∆

n∑
i=1

(ti+1 − ti)ν+ζ ≤ C(ν)C(ζ)T∆ν+ζ−1 ∆→0−→ 0,

where C(ν), C(ζ) denote the Hölder constants of u and v and t∗i is an arbi-
trary point in (ti, ti+1]. Now we want to show that the Riemann-Stieltjes sums∑n

i=1 u(ti)(v(ti+1)− v(ti)) converge to (Fr)
∫ T

0
ut dvt. It is actually true because,

as stated in Zähle (1998, p. 350, proof of theorem 4.2.1), those sums agree with

(Fr)

∫ T

0

ûP (t) dvt

and according to Theorem 4.1.1 in Zähle (1998, p. 347) those sums really con-
verge to (Fr)

∫ T
0
ut dvt. Hence the existence of (RS)

∫ T
0
ut dvt is proven.

k

Now we apply this theorem to fractional Brownian motion. Recall that the
trajectories of fBm with Hurst parameter H are Hölder of order H − ε for every
ε > 0. So when we take a stochastic process u which has Hölder trajectories of
order greater than 1−H we can de�ne the stochastic integral

(RS)

∫ T

0

ut dBH
t . (2.18)
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Link between the Riemann-Stieltjes integral and fractional

integral

It is a natural question how the Riemann-Stieltjes and fractional integral
behave when they both exist. The following result solves this question for Hölder
continuous functions.

Theorem 27. Assuming the situation in Theorem 26 we already know that the
Riemann-Stieltjes integral exists. The fractional integral also exists and agrees
the Riemann-Stieltjes integral which means

(RS)

∫ T

0

ut dvt = (Fr)

∫ T

0

ut dvt. (2.19)

Proof. The proof can be seen in Zähle (1998, p. 349, Theorem 4.2.1) and is a
direct consequence of the construction of the proof of Theorem 26.

k
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Chapter 3

Other types of integrals

In this chapter we see other types of stochastic integrals with conception which
di�ers from those in the �rst two chapters.

3.1 Stratonovich integral

In this section we investigate the concept of so called Stratonovich integral.
Let us introduce an approximation.

De�nition 27. Let u = {ut, t ∈ [0, T ]} be a stochastic process such that∫ T
0
|ut| dt <∞ a.s. and let P be partition of the interval [0, T ]. We de�ne the

approximating family of processes uP as

uP (t) =
n−1∑
i=0

1

ti+1 − ti

(∫ ti+1

ti

us ds

)
1(ti,ti+1](t). (3.1)

Remark. In the sequel we need the convergence of the approximating family uP .
The family is indexed by set of partitions and hence forms a net. Indeed, it is not
a sequence because the set of partitions is not linearly ordered. When we write
that something converges as |P | → 0 we understand it that the convergence
holds for any sequence of partitions whose norm tends to zero.

Lemma 28. The family uP converges to u in the norm of the space
L2([0, T ]×Ω) as |P | → 0. This convergence holds also in L1,2 if u ∈ L1,2. Recall
that L1,2 denotes the space D1,2(L2([0, T ])), where D1,2 is de�ned in De�nition 9.

Proof. The proof can be found in Nualart (2006, p. 171, Lemma 3.1.2).
k

Now let us de�ne the partial sum for the oncoming Stratonovich integral.

De�nition 28. Let u be a stochastic process with approximation as in (3.1).
Then we de�ne the partial sum SP as follows

SP (u) =
n−1∑
i=0

1

ti+1 − ti

(∫ ti+1

ti

us ds

)
(B(ti+1)−B(ti)). (3.2)
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Now we are ready to de�ne the Stratonovich integral.

De�nition 29. Let u = {ut, t ∈ [0, T ]} be a stochastic process such that∫ T
0
|ut| dt <∞ a.s. We say that u is Stratonovich integrable when the

family SP (u) converges in probability as |P | → 0. The limit is then called the
Stratonovich integral and is denoted

(St)

∫ T

0

ut dBt. (3.3)

The set of all Stratonovich integrable functions is rather complicated. It is not
su�cient for a process to be in L1,2 to be Stratonovich integrable. We follow the
approach in Nualart (2006, p. 173) to establish a reasonable class of Stratonovich
integrable functions. Now let u be a stochastic process in L1,2 and 1 ≤ p ≤ 2.
We denote by D+u (resp. D−u) the element of Lp([0, T ]× Ω) satisfying

lim
n→∞

∫ T

0

sup
s<t≤(s+ 1

n
)∧T

E(|Dsut − (D+u)s|p) ds = 0, (3.4)

resp.

lim
n→∞

∫ T

0

sup
s− 1

n
∨0≤t<s

E(|Dsut − (D−u)s|p) ds = 0, (3.5)

where D denotes the Malliavin derivative with respect to the standard Brownian
motion.

We denote by L1,2
p+ (resp. L1,2

p−) the class of processes in L1,2 such that (3.4)
(resp. (3.5)) holds. We de�ne L1,2

p as L1,2
p+ ∩ L1,2

p−. For u ∈ L1,2
p we set

(∇u)t = (D+u)t + (D−u)t. (3.6)

As we can see in Nualart (2006, p. 173), if the mapping (s, t)→ Dsut is continuous
from the neighbourhood of the diagonal Nε = {s, t : |s− t| < ε} into Lp(Ω), then
u ∈ L1,2

p and D+u = D−u = Du. It holds that processes from the space L1,2
1 are

Stratonovich integrable.

Relation between Stratonovich and Skorohod integral

The following result shows us how are the concepts of Stratonovich and Sko-
rohod integral related in case of u ∈ L1,2

1 .

Theorem 29. Let u be a measurable stochastic process in ∈ L1,2
1 , then both

Stratonovich and Skorohod integral exist and it holds that

(St)

∫ T

0

ut dBt = (Sk)

∫
[0,T ]

ut dBt +
1

2

∫ T

0

(∇u)t dt. (3.7)

Proof. The proof can be found in Nualart (2006, p. 174, Theorem 3.1.1).
k
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Remark.

• If the mapping (s, t) → Dsut is continuous from the neighborhood of the
diagonal Nε = {s, t : |s− t| < ε} into Lp(Ω) then (3.7) has the form

(St)

∫ T

0

ut dBt = (Sk)

∫
[0,T ]

ut dBt +

∫ T

0

Dtut dt. (3.8)

• If u is a continuous semimartingale, then we have

(St)

∫ T

0

ut dBt = (Sk)

∫
[0,T ]

ut dBt +
1

2
〈u,B〉T , (3.9)

where 〈u,B〉t denotes the covariation between u and the standard Brownian mo-
tion B.
Remark. The relation (3.8) and suggest another approach how the Stratonovich
integral can be de�ned. If we take a stochastic process u of the form (1.13) and
take into account Proposition 11 and (1.14) we could de�ne the Stratonovich
integral as

∞∑
n=1

(
WIn(k̃n−1) +

n

2

∫ T

0

(WIn−1(k̃n(·, t, t−)) +WIn−1(k̃n(·, t, t+))) dt

)
(3.10)

whenever the sum converges in the mean square.

3.2 L2-integral

In this section we show the possibility of integration using the Fourier coef-
�cients. We have the same setup as at the beginning of Chapter 1. We have a
space (X,B, µ) and a Gaussian measure
W = {W (A), A ∈ B, µ(A) <∞}. We also consider the Hilbert space
H = L2(X,B, µ). We can �x a complete orthonormal system {ei, i ≥ 1} in H.
We can pathwise compute the (random) Fourier coe�cients of u ∈ L2(X ×Ω) as

u(t) =
∞∑
i=1

〈u, ei〉H ei(t) (3.11)

and de�ne the L2-integral as

(L2)

∫
X

u dW =
∞∑
i=1

〈u, ei〉HW (ei), (3.12)

provided that the sum converges in probability and the result does not depend
on the choice of the complete orthonormal system.

Now we return to the case when X = [0, T ] and the processW as an isonormal
Gaussian process coincides with the standard Brownian motion. In this case we
have the L2 integral with respect to the Brownian motion:

(L2)

∫ T

0

ut dBt.
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Link between L2-integral and Stratonovich integral

The following result shows us, that the concept of L2 integral is closely related
to Stratonovich integral.

Theorem 30. Let u be measurable stochastic process such that
∫ T

0
u2
t dt < ∞

a.s. Then both L2 integral and Stratonovich integral exist and

(St)

∫ T

0

ut dBt = (L2)

∫ T

0

ut dBt. (3.13)

Proof. For proof see Nualart (2006, p. 177, Theorem 3.1.2).
k

3.3 Three integrals theorem

Let us de�ne a special class of functions called Slobodetsky-type space.

De�nition 30. Let us denote by Wα
2,+ the space of random processes u which

satisfy

1.
E(u(0+)2) <∞.

2.

E

∫ T

0

(u(t)− u(0+))2

t2α
dt <∞.

3.

E

∫ T

0

∫ T

0

(u(t)− u(s))2

|t− a|2α+1
dsdt <∞,

where 0 < α < 1.

Remark. Note that it is not hard to check the �rst two properties in the above
de�nition imply that

E

∫ T

0

u(t)2 dt <∞.

The following result shows us the behaviour of three stochastic integrals on
the above de�ned Slobodeckij-type space.

Theorem 31. Let u ∈ Wα
2,+ for an α > 1

2
. Then the fractional integral,

Stratonovich integral and anticipating integral exist and

(A)

∫ T

0

ut dBt = (St)

∫ T

0

ut dBt = (Fr)

∫ T

0

ut dBt (3.14)

holds.

Proof. For the proof see Zähle (1998, p. 365, Theorem 5.3.4).
k
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3.4 Symmetric, forward and backward integral

Let us return to the fractional Brownian motion.

De�nition 31. Let 0 < H < 1. Moreover let u = {ut, t ∈ [0, T ]} be a stochastic
process with integrable sample paths. Provided the limits on the right side exist
in probability, we de�ne the symmetric integral of u with respect to BH as

(Sy)

∫ T

0

ut dBH
t = lim

ε→0+

1

2ε

∫ T

0

ut(B
H
t+ε −BH

t−ε) dt, (3.15)

forward integral as

(Fo)

∫ T

0

ut dBH
t = lim

ε→0+

1

ε

∫ T

0

ut(B
H
t+ε −BH

t ) dt (3.16)

and backward integral as

(Ba)

∫ T

0

ut dBH
t = lim

ε→0+

1

ε

∫ T

0

ut(B
H
t −BH

t−ε) dt, (3.17)

whenever the limits exist P -a.s.

We need the following de�nition to establish the relation between the sym-
metric and the forward integral.

De�nition 32. Let u, v be two continuous stochastic processes. Their extended
covariation is de�ned as the limit

[u, v]t = lim
ε→0

1

ε

∫ t

0

(us+ε − us)(vs+ε − vs) ds (3.18)

if the limit exists in uniform convergence in probability.

As it is written in Øksendal, Hu, Biagini and Zhang (2008, p. 125) we claim
the following result:

Proposition 32. Let u, v be two continuous stochastic processes, then it holds
that

(Sy)

∫ t

0

us dvs = (Fo)

∫ t

0

us dvs + [u, v]t,

provided that two of the three terms exist.

3.5 Relation between symmetric and Skorohod in-

tegral

First let us recall the de�nition of |H| (1.33) and the space D1,2 introduced in
De�nition 9 and the notation DH of the Malliavin derivative with respect to the
fractional Brownian motion with Hurst parameter H. As usual let us start with
the case H > 1

2
.
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Theorem 33. Let H > 1
2
and let u = {ut, t ∈ [0, T ]} be a stochastic process in

D1,2
(∣∣∣H ∣∣∣). Suppose that

∫ T

0

∫ T

0

|DH
s ut| · |t− s|2H−2 dsdt <∞ a.s., (3.19)

Then the Skorohod integral and the symmetric integral exist and we have

(Sy)

∫ T

0

ut dBH
t = (Sk)

∫
[0,T ]

ut dBH
t +H(2H−1) ·

∫ T

0

∫ T

0

DH
s ut|t−s|2H−2 dsdt.

(3.20)
Moreover the symmetric, forward and backward integrals coincide and su�-

cient condition for (3.19) is that for some p > 1/(2H − 1) it holds that∫ T

0

(∫ T

0

∣∣DH
s ut
∣∣p dt

) 1
p

ds <∞. (3.21)

Proof. The proof can be found in Øksendal, Hu, Biagini and Zhang (2008, p.
130, Proposition 5.4.1).

k

The following theorem shows us a su�cient condition for existence of the
symmetric integral.

Theorem 34. Let H > 1
2
and let u be an adapted stochastic process which is

continuous in the norm of D1,2
(
H

)
, which means for s, t ∈ [0, T ] s → t

implies u(s)→ u(t) in ‖ · ‖D1,2(H ), and

lim
n→∞

∫ T

0

sup
s,s′∈(r,r+1/n)∩[0,T ]

E
[∣∣DH

r us −DH
r u(s′)

∣∣2] dr = 0,

then

lim
|P |→0

n∑
i=1

uti(B
H
ti+1
−BH

ti
) = (Sy)

∫ T

0

ut dBH
t , (3.22)

where we used the notation for partitions as in the proof of Theorem 26. The
convergence holds in L2(PH), where PH denotes the law of BH and hence the
convergence holds also almost surely.

Proof. For the proof see Øksendal, Hu, Biagini and Zhang (2008, p. 131, Propo-
sition 5.4.2).

k

Now we move to the case H < 1
2
. This case is again more complicated than

the previous one but we establish conditions under which the symmetric integral
exists and we show its relation to the divergence operator. To do that we need
the following de�nition.
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De�nition 33. Recall the space E of all step functions on [0, T ]. We equip it
with the following seminorm

‖φ‖2
KH

=

∫ T

0

φ2
sKH(T, s)2 ds+

∫ T

0

[∫ T

0

|φt − φs|(t− s)H−
3
2 dt

]2

ds,

the operator KH was de�ned in Chapter 1. The completion of E with respect to
‖φ‖KH is denoted H KH .

Now we are ready to investigate the existence of symmetric integral and its
relation to Skorohod integral from a slightly di�erent point of view than in The-
orem 33.

Theorem 35. Let H < 1
2
and u = {ut, t ∈ [0, T ]} be a random process in

D1,2
(
H KH

)
. Assume that the trace de�ned as

Tr DHu = lim
ε→0

1

2ε

∫ T

0

〈
DHus,1[s−ε,s+ε]

〉
H

exists as a limit in probability and moreover

E

[∫ T

0

u2
s(s

2H−1 + (T − s)2H−1) ds

]
<∞

and

E

[∫ T

0

∫ T

0

(DH
r us)

2(s2H−1 + (T − s)2H−1) dsdr

]
<∞.

Then both symmetric and Skorohod integral exist and we have that

(Sy)

∫ T

0

ut dBH
t = (Sk)

∫
[0,T ]

ut dBH
t + Tr DHu. (3.23)

Proof. The theorem was taken from Øksendal, Hu, Biagini and Zhang (2008, p.
130, Proposition 5.3.2) and the reference for the proof is also there.

k

35



Chapter 4

Summary

This chapter provides a summary of de�nitions and relation formulae between
the concepts of stochastic integrals we have already introduced. Here we omit
some technical details which were mentioned in the chapters before.

4.1 De�nitions

Multiple Wiener-Itô integral:
For a step function f of the form

f(t1, . . . , tm) =
n∑

i1,...,im=1

ai1,...,im1Ai1×···×Aim (t1, . . . , tm)

we de�ne in De�nition 5 (and extend thereafter) the multiple Wiener-Itô integral
as

(WI)

∫
Xm

f(t1, . . . , tm) d(W (t1), . . . ,W (tm)) =

n∑
i1,...,im=1

ai1,...,imW (Ai1)× · · · ×W (Aim).

For a general f the integral is de�ned via approximation by step functions as
limit of the multiple Wiener-Itô integrals of the approximating sequence.

Skorohod integral:
For a random process u such that for any F ∈ D1,2 it holds that

|E(〈DF, u〉H)| ≤ c‖F‖2

the Skorohod integral δ(u) is de�ned in De�nition 10 by the relation

EFδ(u) = E(〈DF, u〉H),

which must hold for all F ∈ D1,2.

Riemann-Stieltjes integral
Let {ut, t ∈ [0, T ]}, {vt, t ∈ [0, T ]} be two random processes such that
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u ∈ Cε, v ∈ Cζ , ε, ζ > 0 and ε + ζ > 1. Then, as proved in Theorem 26, the
Riemann-Stieltjes integral of u with respect to v de�ned in De�nition 26 exists.

Fractional integral
For two functions f, g such that fa+ ∈ Iαa+(Lp), gb− ∈ I1−α

b− (Lq), where
1
p

+ 1
q
≤ 1, 0 ≤ α ≤ 1 we de�ne the fractional integral in De�nition 2.9 as

(Fr)

∫ b

a

f(x) dg(x) = (−1)α
∫ b

a

Dα
a+fa+(x)D1−α

b− gb−(x) dx+f(a+)(g(b−)−g(a+)).

Anticipating integral
The anticipating integral is de�ned in (2.14) for a random process of the form

u(t) =
∞∑
n=0

WIn(k̃n(·, t))

as

(A)

∫ T

0

ut dBt = WIn+1(kn) +
∞∑
n=1

n

∫ T

0

WIn−1(k̃n(·, t, t)) dt,

whenever the sum on the right side converges in the mean square.

Stratonovich integral
Let u be a random process with integrable trajectories. The Stratonovich integral
of u with respect to B is de�ned in De�nition 29 as the limit in probability (if it
exists) of

SP (u) =
n−1∑
i=0

1

ti+1 − ti

(∫ ti+1

ti

us ds

)
(B(ti+1)−B(ti))

as |P | goes to zero.

L2-integral
Let u ∈ L2(X × Ω), then we de�ne the L2-integral in (3.12) as

(L2)

∫
X

u dW =
∞∑
i=1

〈u, ei〉HW (ei),

whenever the sum converges in probability and the result does not depend on the
choice of the orthonormal system {ei, i ≥ 1}.

Symmetric, forward and backward integrals
For a random process u with integrable trajectories and 0 < H < 1 we de�ne
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(provided the right sides converge in probability) in De�nition 31 the symmetric
integral of u with respect to fBm with Hurst parameter H as

(Sy)

∫ T

0

ut dBH
t = lim

ε→0+

1

2ε

∫
ut(B

H
t+ε −BH

t−ε) dt,

the forward integral as

(Fo)

∫ T

0

ut dBH
t = lim

ε→0+

1

ε

∫
ut(B

H
t+ε −BH

t ) dt

and the backward integral as

(Ba)

∫ T

0

ut dBH
t = lim

ε→0+

1

ε

∫
ut(B

H
t −BH

t−ε) dt.

4.2 Relation formulae

Multiple Wiener-Itô integral and iterated Itô integral
Let fm be a real symmetric function in L2(Xm) and let
W (h) = (WI)

∫
X
hs dWs, h ∈ L2(X), then, as stated in Theorem 8, it holds that

WIm(fm) = m!(I)

∫ ∞
0

(I)

∫ tm

0

. . . (I)

∫ t2

0

fm(t1, . . . , tm) dWt1 . . . dWtm .

Skorohod integral and Itô integral
For an adapted process u, as we show in (1.21), it holds that

(Sk)

∫
[0,T ]

ut dBt = (I)

∫ T

0

ut dBt,

provided u is both Skorohod as well as Itô integrable.

Riemann-Stieltjes integral and fractional integral
Let {ut, t ∈ [0, T ]}, {vt, t ∈ [0, T ]} be two random processes such that
u ∈ Cε, v ∈ Cζ , ε, ζ > 0 and ε+ ζ > 1, then, as we show in Theorem 27, we have
that

(RS)

∫ T

0

ut dvt = (Fr)

∫ T

0

ut dvt.

Itô integral and fractional integral
Let u be an adapted stochastic process which satis�es
u ∈ Iα0+(L2) for some α < 1

2
almost surely. We show in Theorem 23 that

P − lim
ε↘0

(Fr)

∫ T

0

Iε0+ut dBt = (I)

∫ T

0

ut dBt.
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Skorohod integral and fractional integral
Let u be a random process which can be interpreted as (1.13), where for every
n ≥ 1 it holds that k̃n ∈ Iα0+(n, L2) for an α > 1

2
. Then Theorem 25 suggests that

(Fr)

∫ T

0

ut dBt = δ(u) +
∞∑
n=1

n

∫ T

0

WIn−1(k̃n(·, t, t)) dt.

Skorohod integral and Stratonovich integral
Let u be a measurable stochastic process in ∈ L1,2

1 , then we state in Theorem 29
that

(St)

∫ T

0

ut dBt = (Sk)

∫
[0,T ]

ut dBt +
1

2

∫ T

0

(∇u)t dt.

Stratonovich integral and L2-integral
Let u be measurable stochastic process such that

∫ T
0
u2
t dt <∞ a.s. Then as we

can see in Theorem 30 it is true that

(St)

∫ T

0

ut dBt = (L2)

∫ T

0

ut dBt.

Anticipating integral, Skorohod integral and fractional integral
Let u ∈Wα

2,+ for an α > 1
2
. Then according to Theorem 31 it holds that

(A)

∫ T

0

ut dBt = (St)

∫ T

0

ut dBt = (Fr)

∫ T

0

ut dBt.

Symmetric integral and forward integral
Let u, v be two continuous (locally bounded) stochastic processes, then according
to Proposition 32 it holds that

(Sy)

∫ t

0

us dvs = (Fo)

∫ t

0

us dvs + [u, v]t.

Symmetric integral and Skorohod integral

Let H > 1
2
and u = {ut, t ∈ [0, T ]} be a stochastic process in D1,2

(∣∣∣H ∣∣∣).
Suppose that ∫ T

0

∫ T

0

|DH
s ut| · |t− s|2H−2 dsdt <∞, a.s.

Then as we can see in Theorem 33 we have that

(Sy)

∫ T

0

ut dBH
t = (Sk)

∫
[0,T ]

ut dBH
t +H(2H−1) ·

∫ T

0

∫ T

0

DH
s ut|t−s|2H−2 dsdt.

39



Symmetric integral and Skorohod integral II

Let H < 1
2
and let u = {ut, t ∈ [0, T ]} be a random process in D1,2

(
H KH

)
.

Assume that the trace de�ned as

Tr DHu = lim
ε→0

1

2ε

∫ T

0

〈
DHus,1[s−ε,s+ε]

〉
H

exists as limit in probability and moreover

E

[∫ T

0

u2
s(s

2H−1 + (T − s)2H−1) ds

]
<∞

and

E

[∫ T

0

∫ T

0

(DH
r us)

2(s2H−1 + (T − s)2H−1) dsdr

]
<∞.

Then Theorem 35 says that

(Sy)

∫ T

0

ut dBH
t = (Sk)

∫
[0,T ]

ut dBH
t + Tr DHu.
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Chapter 5

Kurzweil integral

The idea of Kurzweil integration is to use non-uniform meshes. Recal the
de�nition of Kurzweil partition in De�nition 25. We start with the conception
of weak Kurzweil-Stieltjes integral as introduced in Toh and Chew (2012). The
word "weak" suggest that the result is not a pathwise integral but a limit taken
in L2.

De�nition 34. Let [a, b] be a �nite interval and K be its Kurzweil partition.
Any strictly positive function γ on [a, b] is called gauge. Given a gauge γ on [a, b],
the Kurzweil partition K is called γ-�ne if

[αj−1, αj] ⊂ [τj − γ(τj), τj + γ(τj)], j = 1, 2, . . . , k.

The set of all γ-�ne Kurzweil partitions of [a, b] is denoted K (γ). A Kurzweil
partition K is called belated if

K = {α0, α0, α1, . . . , αk−1, αk−1, αk}

i.e. the tag τj always coincides with the left point of the interval [αj−1, αj].

In the sequel we need the following Cousin lemma.

Lemma 36. Let [a, b] be a �nite interval and let γ be a gauge on [a, b]. Then the
set of γ-�ne partitions in nonempty.

Proof. For the proof we refer to Schwabik (1985, p. 7, Lemma 1.4).
k

We see that given a gauge γ the setK (γ) of partitions of [a, b] is nonempty.
However we refer to Toh and Chew (2003, p. 135) that for a particular gauge γ
belated γ-�ne Kurzweil partition does not always exist. This fact suggests us to
introduce the following concept.

De�nition 35. Let λ denote the one-dimensional Lebesgue measure and let γ be
a gauge on [a, b]. A �nite collectionB of intervals
{(αj, βj] : j = 1, 2, 3, . . . k} is called a γ-�ne partial belated Kurzweil partition if

1. (αj, βj] are left-open subintervals of [a, b],

2. each [αj, βj] is γ-�ne belated, i.e. [αj, βj] ⊂ [αj, αj + γ(αj)).
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Moreover, given a positive real number ξ we say that a partial belated Kurzweil
partitionB fails to cover [a, b] by at most λ-measure ξ if

λ([a, b])−
k∑
j=1

λ([αi, βi]) < ξ.

The concept of partial belated Kurzweil partition is very useful because given
a gauge γ there always exist a γ-�ne partial belated Kurzweil (cf. Toh and Chew
(2003, p. 135)).

Remark. The Lebesgue measure was chosen in De�nition 35 due to the fact that
we want to build an integral with respect to standard Brownian motion. Hence
the Lebesgue measure plays the role of the measure induced by quadratic varia-
tion of the integrator. If we wanted to integrate with respect a general continuous
semimartingale M , we would have to replace λ by the appropriate measure in-
duced by the quadratic variation of M in the following construcion.

5.1 Weak Kurzweil integral

Now we are ready to de�ne the weak Kurzweil integral.

De�nition 36. Let us �x interval [0, T ]. Moreover, let B = {Bt, t ∈ T} be the
standard Brownian motion and let u = {ut, t ∈ [0, T ]} be a stochastic process
adapted to the �ltration generated by B. We say that u is weakly Kurzweil inte-
grable over [0, T ] with respect to B to a random variable A ∈ L2(Ω) if for any
ε > 0 there exist a gauge γ on [0, T ] and a positive number ξ such that for any

γ-�ne partial belated partition B = {(αj, βj] : j = 1, 2, . . . , k} of [0, T ] which
fails to cover [0, T ] by at most ξ

E

(
k∑
j=1

uαj(Bβj −Bαj)− A

)2

< ε

holds. A is then called the weak Kurzweil integral of u with respect to B and is
denoted

(WK)

∫ T

0

ut dBt.

Now we show the link between weak Kurzweil integral and classic Itô integral.

Theorem 37. Let u be a stochastic process adapted to the �ltration generated by
B which satis�es

E

(∫ T

0

u2
t dt

)
<∞.

Then both classic Itô integral and weak Kurzweil integral exist and it holds that

(I)

∫ T

0

ut dBt = (WK)

∫ T

0

ut dBt.
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Proof. For the proof of a stronger result see Toh and Chew (2003, p. 145,
Theorem 4.15).

k

Hence we see that the weak Kurzweil integral encompasses the classic Itô
integral in the case of E

(∫ T
0
u2
t dt

)
< ∞. In Toh and Chew (2003) is studied

even the case of integration with respect to a local semimartingale and even then
the Weak Kurzweil integral, de�ned for a local semimartingale as an integrator,
exists and coincides with the classic Itô integral provided the Itô integral exists.
However, we want to use the fractional Brownian motion as the integrator and
even the more general construction in Toh and Chew (2003) heavily relies on the
fact that the integrator is at least local semimartingale so it is not useful for our
purpose. To be able to construct a Kurzweil stochastic integral with respect to
the fractional Brownian motion we need to de�ne the strong (pathwise) Kurzweil
integral.

5.2 Strong Kurzweil integral

In this chapter we introduce the concept of strong (pathwise) Kurzweil (gen-
eralized Perron) integral according to Schwabik (1985). Firstly we mention some
preliminaries and de�nitions. After that we apply this concept to the stochastic
case via building the Kurzweil integral pathwise for a proper set of integrands,
where the integrator is the fractional Brownian motion.

First we need to de�ne a special set which plays an important role in the
concept of the Kurzweil integral.

De�nition 37. Let S = S([a, b]) denote the system of all sets S ⊂ R2 such that
there exists a gauge γ so that

{(τ, t) ∈ R2; τ ∈ [a, b], t ∈ [τ − γ(τ), τ + γ(τ)] ∩ [a, b]} ⊂ S.

De�nition 38. Let f be a real function of two variables de�ned on S ∈ S. Let
γ be the gauge corresponding to S then for every Kurzweil partition
K = {α0, τ1, α1, . . . , αk−1, τk, αk} we de�ne the Kurzweil integral sum as

s
(
f,K

)
=

k∑
j=1

(f(τj, αj)− f(τj, αj−1)). (5.1)

Now we are ready to de�ne the strong Kurzweil integral.

De�nition 39. Let f be a function on S ∈ S. Then f is called Kurzweil integrable
over [a, b] if there exists a number I such that for every ε > 0 there is a gauge γ
so that for every γ-�ne Kurzweil partition K it holds that∣∣∣s(f,K )

− I
∣∣∣ < ε.

Such I, if it exists, is called the Kurzweil integral of f over [a, b] and is denoted

(SK)

∫ b

a

f(τ, t) d(τ, t). (5.2)

The set of all Kurzweil integrable functions f over [a, b] is denoted by K([a, b]).
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The following remark shows us the connection of the Riemann, respective
Riemann-Stieltjes integral and the Kurzweil integral.

Remark. If the function f(τ, t) is of the form g(τ) · t then for τ ∈ [a, b], α1, α2 ∈
[a, b] it holds that f(τ, α2) − f(τ, α1) = g(τ)(α2 − α1). For a Kurzweil partition
K = {α0, τ1, α1, . . . , αk−1, τk, αk} of [a, b] the Kurzweil integral sum s

(
f,K

)
coincides with the usual Riemann integral sum

∑k
j=1 g(τj)(αj − αj−1). Similarly

if the function f is of the form f(τ, t) = g(τ) ·h(t), then the Kurzweil integral sum
coincides with the Riemann-Stieltjes integral sum

∑k
j=1 g(τj)(h(αj)−h(αj−1)). If

the function f is of the form f(τ, t) = g(τ)·h(t) we usually write (K)
∫ b
a
g(t) dh(t)

instead of (K)
∫ b
a
f(τ, t) d(τ, t). In that case we sometimes call the integral

Kurzweil-Stieltjes.

The de�nition of Kurzweil integral requires the the existence of a γ-�ne
Kurzweil partition for a given gauge γ. As was mentioned in the beginning of
this chapter, the setK (γ) is nonempty and hence the de�nition of the Kurzweil
integral is indeed not trivial.

Lemma 38. As can be seen in Schwabik (1985, p. 7., Theorem 1.5 and Theorem
1.6), the Kurzweil integral is linear. More precisely, for a real constant α and
two Kurzweil integrable functions f, g it holds that

(SK)

∫ b

a

αf(τ, t) d(τ, t) = α (SK)

∫ b

a

f(τ, t) d(τ, t),

(SK)

∫ b

a

f(τ, t) + g(τ, t) d(τ, t) = (SK)

∫ b

a

f(τ, t) d(τ, t)+(SK)

∫ b

a

g(τ, t) d(τ, t).

Moreover, as it is usual for integral it is additive which means if a function f is
Kurzweil integrable over [a, c] as well as [c, b], then the integral of f over [a, b]
exists and equals the sum of the integrals over [a, c] and [c, b].

The following lemma shows an interesting property which is not intuitive for
an integral, namely that the inde�nite Kurzweil integral is not continuous in
general.

Lemma 39. The inde�nite Kurzweil integral

(SK)

∫ s

a

f(τ, t) d(τ, t), a ≤ s ≤ b,

as a function of s, is continuous at a point c ∈ [a, b] if and only if f(c, t), as
function of t, is continuous at the point c.

Proof. The proof can be found in Schwabik (1985, p. 14, Remark 1.16 as a
direct consequence of Theorem 1.15).

k

Remark. The Kurzweil integral has more, for integral usual, properties such as
monotonicity, change of limit and integral formula, change of variable formula,
dominated convergence, per partes formula etc. For detailed survey see Schwabik
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(1985, Chpater 1). A considerable part of the Chapter 1 there is devoted to the
case when the integrated function f(τ, t) is of the form g(τ) · h(t) and h(t) is
of bounded variation. In stochastic calculus this case is not particularly useful
because the fBm of course is not of �nite variation.

Now we are ready to apply the concept of the Kurzweil integral to stochas-
tic calculus. Let us return to our in previous chapters �xed interval [0, T ] and
(Ω,F , P ). We can set a random process u of two variables to have the form
u(τ, t) = v(τ)BH(t), where v = v(τ, ω), ω ∈ Ω is now random and then path-
wise de�ne (if it exists) the stochastic Kurzweil integral (almost surely) of u with
respect to the fractional Brownian motion

(SK)

∫ T

0

v(τ)BH(t) d(τ, t) (5.3)

and use the notation

(SK)

∫ T

0

v(τ) dBH(τ).

However, although the Kurzweil integral is a very powerful tool which, in
certain situations, even generalizes the Perron integral (see Schwabik (1985, p.
5)), taking into account that fBm is not of �nite strong 1-variation, it is rather
complicated to establish conditions on v which imply the existence of the integral.
It can be shown (cf. Tvrdý (2012, p. 146, V¥ta 6.34)) that if v has sample paths
with �nite 1-variation then the integral (SK)

∫ T
0
vt dBH

t exists a.s. as BH has
continuous sample paths. However, this result is not particularly useful because
the assumption of �nite strong 1-variation is too restrictive for stochastic calculus.
It can be shown (see Tvrdý (2012, p. 105, V¥ta 5.32)) that if for a �xed function
g the integral (SK)

∫ T
0
f(t) dg(t) exists for every function f then g has �nite

strong 1-variation over [a, b]. Hence we are not able to integrate all continuous
functions with respect to the fractional Brownian motion.

From the construction it is clear that the strong Kurzweil-Stieltjes integral
is a very powerful instrument and it generalizes the Riemann-Stieltjes integral
de�ned in De�nition 26 as the approximating sums coincide but the Riemann-
Stieltjes integral assumes only uniform meshes. So one might think that the
Kurzweil integral could exist even for pair of Hölder functions where the sum of
their Hölder orders is less than one. However the answer is negative as we show
in the construction below which is our own result.

Our approach consists of four steps. At �rst we construct two functions f, g
and show some of their basic properites. In second step we show that they are
Hölder continuous of order ν, ζ so that the ν + ζ < 1. Then we show that those
functions are not Hölder of higher orders. Last step is to show that the integral
(SK)

∫
f dg does not exist for such constructed functions.

Lemma 40. Let ν be a real number such that 0 < ν < 1. We construct a func-
tion f : [0, 1] → R as a limit of a sequence of functions (fn, n ≥ 0) which are
continuous and piecewise a�ne in the following way:
For a given n the function fn has "break points"

(
k

2n
, k = 1, 2, . . . , 2n − 1

)
. Set

f0 ≡ 0. Assume that we already have (fi, i = 0, 1, . . . , n). We construct the func-
tion fn+1 as follows: fn+1(x) := fn(x), x ∈

{
k

2n
, k = 0, 1, . . . , 2n

}
. Let Zn denote

the set
{
k

2n
, k = 0, 1, . . . , 2n

}
. Now we de�ne fn+1 on
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Zn+1 \ Zn =
{

j
2n+1 , j = 1, 2, . . . , 2n+1

}
where j is odd. Set xk := k

2n+1 , x
+
k := k+1

2n+1

and x−k := k−1
2n+1 . There are two di�erent cases:

fn+1(xk) :=

{
fn(x+

k )+fn(x−k )

2
if |fn(x+

k )− fn(x−k )| ≥ 2
(

1
2n+1

)ν
,

max
{
fn(x+

k ), fn(x−k )
}

+
(

1
2n+1

)ν
otherwise.

Now we claim that:

1. there really exist a function f such that fn ⇒ f on [0, 1],

2. for all n ≥ 1, for all x ∈ Zn it holds that f(x) = fn(x),

3. for all n ≥ 1, for all x, y ∈ Zn which are "neighbours" in Zn (means
|x− y| = 1

2n
) we have that for all n ≥ 1 it holds that |f(x)− f(y)| ≥

(
1

2n

)ν
and |f(x)− f(y)| ≤ 3

(
1

2n

)ν
.

Proof.
Proof of 1.:
It is clear that function fn+1 di�ers from fn on [x−k , x

+
k ] only if |fn(x+

k )−fn(x−k )| <
2
(

1
2n+1

)ν . However, for all k it holds that the deviation does not exceed 3 ·(
1

2n+1

)ν on [x−k , x
+
k ]. Hence ‖fn+1 − fn‖∞ ≤ 3 ·

(
1

2n+1

)ν for all n ≥ 1. Clearly∑∞
n=1 3 ·

(
1

2n+1

)ν
=
∑∞

n=1 3 ·
(

1
2ν

)n+1
< ∞ hence there exists a function f such

that
∑∞

n=1(fn+1− fn) ⇒ f as n→∞ on [0, 1] and so fn ⇒ f as n→∞ on [0, 1].
Proof of 2.:
Immediate consequence of the construction of {fn}∞n=0.
Proof of 3.:
The �rst inequality follows directly from the construction. The second
inequality is proven by means of mathematical induction. For i = 0 the in-
equality |f(x) − f(y)| ≤ 3

(
1
2i

)ν holds. Now assume the inequality holds for
i = 0, 1, 2, . . . , n− 1 and we want to show that it holds for i = n. Let us �x the
two points x, y ∈ Zn so that |x − y| = 1

2n
. Clearly either x ∈ Zn−1 or y ∈ Zn−1.

Without loss of generality assume that y ∈ Zn−1 hence x ∈ Zn \Zn−1. Also with-
out loss of generality assume that y = x−, i.e. y < x. The value of f(x) = fn(x)
was �xed during the construction of fn when we were working with the triplet
x− < x < x+. Let A denote |fn(x) − fn−1(x+)| + |fn−1(x+) − fn−1(x−)|. If
|fn−1(x+) − fn−1(x−)| < 2

(
1

2n

)ν then fn(x) = fn−1(x) because x ∈ Zn and it
holds that

|f(x)− f(y)| = |f(x)− f(x−)| = |fn(x)− fn−1(x−)| ≤

≤

{(
1

2n

)ν if fn−1(x−) = max{fn−1(x−), fn−1(x+)},
A if fn−1(x+) = max{fn−1(x−), fn−1(x+)}.

Note that in this case it holds that |fn(x)− fn−1(x+)|+ |fn−1(x+)− fn−1(x−)| <
3 ·
(

1
2n

)ν . On the other hand, if |fn−1(x+) + fn−1(x−)| ≥ 2
(

1
2n+1

)ν then from the
base case follows that

|f(x+)− f(x−)| ≤ 3 ·
(

1

2n−1

)ν
= 6 · 1

2

(
1

2n−1

)ν
∗
< 6 · 1

2ν

(
1

2n−1

)ν
= 6 ·

(
1

2n

)ν
,
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where the inequality
∗
< follows from the fact that ν ∈ (0, 1) hence 2ν ∈ (1, 2).

Recall that in this case |f(x)− f(y)| = |f(x)− f(x−)| = 1
2
|f(x+)− f(x−)| hence

the inductive step is proven.
k

We use notation of the sets Zn, n ∈ N in the oncomming lemma and theorem
without de�ning it again.

Lemma 41. Let 0 < ν < 1. We construct a function f as in the Lemma 40. We
claim that f is Hölder of order ν on [0, 1].

Proof. Let us �x arbitrary two points a, b ∈ [0, 1], a < b and let n be the smallest
index such that [a, b] ∩ Zn contains at least two points (i.e. [a, b] ∩ Zn−1 contains
at most one point). Then we have that 1

2n
≤ b− a < 4 · 1

2n
. From this inequality,

construction of fn and Lemma 40 claim 3. it follows that

|fn(b)− fn(a)| < 4 · 3 ·
(

1

2n

)ν
= 12 · 2−νn. (5.4)

Moreover, (recall proof of Lemma 40 claim 1.)

|fn(b)− f(b)| ≤ ‖fn − f‖∞ ≤
∞∑
k=n

‖fk − fk+1‖∞ ≤

≤ 3 ·
∞∑
k=n

(
1

2k+1

)ν
= · · · = 3 · 1

2ν − 1
· 2−νn.

Similarly |fn(a)− f(a)| ≤ 3
2ν−1
· 2−νn and therefore we have

|f(b)− f(a)| ≤ |fn(b)− f(b)|+ |fn(b)− fn(a)|+ |fn(a)− f(a)| ≤

≤ 3

2ν − 1
· 2−νn + 12 · 2−νn +

3

2ν − 1
· 2−νn =

(
12 +

6

2ν − 1

)
· 2−νn ≤(

12 +
6

2ν − 1

)
· (b− a)ν .

Hence f is indeed Hölder continuous of order ν.
k

Lemma 42. Let 0 < ν < 1. We construct a function f as in Lemma 40. Let
I = [a, b] be a nondegenerate subinterval of [0, 1]. We claim that f is not Hölder
of order ψ on [0, 1] for every ψ > ν on I.

Proof. We �x a ψ > ν. Let c > 0 be an arbitrary constant. Let us �x n such
that

(
1

2n

)ν−ψ
> c and I ∩Zn contains at least two points. Let us choose arbitrary

two points x, y ∈ I ∩ Zn such that |x − y| = 2−n. Then according to Lemma 40
claim 3. it holds that

|f(x)− f(y)| ≥
(

1

2n

)ψ
·
(

1

2n

)ν−ψ
>

(
1

2n

)ψ
· c.

Hence f is not Hölder of order ψ on I.
k
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Theorem 43. Let ν, ζ be two nonnegative numbers such that ν+ζ < 1 then there
exist two real functions on [0, 1] such that f is Hölder of order ν and g is Hölder

of order ζ such that the integral (SK)
∫ 1

0
f(t) dg(t) does not exist.

Proof. Let us take the numbers ν, ζ and construct two functions f, g as in
Lemma 40. According to Lemma 41 we know that they are Hölder of orders ν
and ζ respectively. Now we show that the integral (SK)

∫ 1

0
f(t) dg(t) for those two

functions does not exist. Let K = {α0, τ1, α1, . . . , αk−1, τk, αk} be a Kurzweil
partition of the interval [0, 1]. In this proof we use the notationK = (α, τ ). α
is called set of points and τ is called set of tags. We also introduce the notation
of the Kurzweil integral sum for this case

S(f, g,α, τ ) =
k∑
j=1

f(τi)(g(αi)− g(αi−1)).

Indeed, it can be easily checked that the sum s in (5.1) coincides with the sum S.
To prove that the integral (SK)

∫ 1

0
f(t) dg(t) does not exist it is su�cient to show

that for every gauge γ there exist two γ-�ne Kurzweil partitions (α1, τ1), (α2, τ2)
of interval [0, 1] such that

|S(f, g,α1, τ1)− S(f, g,α2, τ2)| > 1. (5.5)

Let γ be an arbitrary gauge on [0, 1]. De�neMn = {x ∈ [0, 1] : γ(x) > 1
2n
}. Then

[0, 1] =
⋃∞
n=1 Mn and hence, according to the Baire Theorem, there exists n0 ≥ 1

such that Mn0 is not nowhere dense, i.e. there exists a nondegenerate interval
I := [a, b] such that I ⊆Mn. The sequence (2n(b−a)−2)(2−n−1)ν+ζ converges to
in�nity as n→∞ because ν + ζ < 1. Therefore we can �x n so that n > n0 and
for every m ≥ n : (2m(b − a) − 2)(2−m−1)ν+ζ > 1 and 1

2m
< b−a

3
. Moreover, �x

an arbitrary ε > 0 such that
(

1
2n

)ζ − 2ε >
(

1
2n+1

)ζ and ( 1
2n

)ν − 2ε >
(

1
2n+1

)ν . The
functions f and g are continuous on [0, 1] hence they are uniformly continuous so
we can �x an η > 0 such that η < 1

2n+1 and for all x, y ∈ [0, 1] it holds that

|x− y| < η ⇒ |f(x)− f(y)| < ε

and also
|x− y| < η ⇒ |g(x)− g(y)| < ε.

Let D̃ denote Zn ∩ I = Zn ∩ [a, b]. As we are assuming 1
2n
< b−a

3
we have that

D̃ contains at least two points. We use the notation D̃ = {d0 < d1 < · · · <
dN}, N ∈ N. Set P̃ = {p0 < p1 < · · · < pN} so that

∀i∈{0,1,...,N} : pi ∈Mn0 ∩ I ∩ (di − η, di + η).

We have that

∀i∈{0,1,...,N−1} : |f(pi)− f(pi+1)| ≥ |f(di)− f(di+1)| − |f(di)− f(pi)|−

−|f(di+1)− f(pi+1)| >
(

1

2n

)ν
− ε− ε >

(
1

2n+1

)ν
.
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Similarly it holds that

∀i∈{0,1,...,N−1} : |g(pi)− g(pi+1)| >
(

1

2n+1

)ζ
.

Now de�ne two partitions (α̃1, τ̃1), (α̃2, τ̃2) as follows:
(α̃1, τ̃1) := (P̃ ,T ) and (α̃2, τ̃2) := (P̃ , t), where T = {T0, T1, . . . , TN−1} and
t = {t0, t1, . . . , tN−1} such that

Ti =

{
pi if (f(pi+1)− f(pi)) · (g(pi+1)− g(pi)) < 0,
pi+1 if (f(pi+1)− f(pi)) · (g(pi+1)− g(pi)) ≥ 0

and

ti =

{
pi+1 if (f(pi+1)− f(pi)) · (g(pi+1)− g(pi)) < 0,
pi if (f(pi+1)− f(pi)) · (g(pi+1)− g(pi)) ≥ 0.

Observe that both (α̃1, τ̃1) and (α̃2, τ̃2) are γ-�ne partitions of [p0, pn]. Indeed,
the tags are from P̃ which means the border points of the intervals which means
they are elements of the set Mn0 . Hence for all i = 0, 1, . . . , N it holds that

γ(Ti) >
1

2n0

∗∗
≥ 1

2n
+

1

2n
> (di+1 − di) + 2η > pi+1 − pi,

where the inequality
∗∗
≥ holds because of the fact that n > n0. Similarly

γ(ti) > pi+1 − pi.

According to Lemma 36 we can extend the partitions (α̃1, τ̃1), (α̃2, τ̃2) to be
γ-�ne by adding points and tags (same for both partitions) and obtain two par-
titions (α1, τ1) and (α2, τ2) which are γ-�ne on [0, 1]. Note that only tags on
[minP̃ ,maxP̃ ] are di�erent. Finally let us compute

|S(f, g,α1, τ1)− S(f, g,α2, τ2)| = |S(f, g, P̃ ,T )− S(f, g, P̃ , t)| =∣∣∣∣∣
N−1∑
i=0

f(Ti)(g(pi+1)− g(pi))−
N−1∑
i=0

f(ti)(g(pi+1)− g(pi))

∣∣∣∣∣ =

=

∣∣∣∣∣
N−1∑
i=0

(f(Ti)− f(ti))(g(pi+1)− g(pi))

∣∣∣∣∣ .
Let E = {i : (f(pi+1)− f(pi)) · (g(pi+1)− g(pi)) < 0} and let
F = {i : (f(pi+1)− f(pi)) · (g(pi+1 − g(pi))) ≥ 0}. We continue our computation∣∣∣∣∣

N−1∑
i=1

(f(Ti)− f(ti))(g(pi+1)− g(pi))

∣∣∣∣∣ =

=

∣∣∣∣∣∑
i∈E

(f(pi)− f(pi+1)) · (g(pi+1)− g(pi))

∣∣∣∣∣+
∣∣∣∣∣∑
i∈F

(f(pi+1)− f(pi)) · (g(pi+1)− g(pi))

∣∣∣∣∣ .
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Note that all summands are greater or equal to zero due to the choice of tags.
Therefore∣∣∣∣∣∑
i∈E

(f(pi)− f(pi+1)) · (g(pi+1)− g(pi))

∣∣∣∣∣+
∣∣∣∣∣∑
i∈F

(f(pi+1)− f(pi)) · (g(pi+1)− g(pi))

∣∣∣∣∣ =

N−1∑
i=0

|f(pi+1)− f(pi)| · |g(pi+1)− g(pi)| >
N−1∑
i=0

(
2−n−1

)ν (
2−n−1

)ζ
=

= N
(
2−n−1

)ν+ζ
.

Recall that N is de�ned as the number of intervals in D̃. D̃ divides the interval
[a, b] into parts of length at most 2−n. Hence it is clear that N ≥ (b−a)

2−n
− 2 =

2n(b− a)− 2 therefore

N
(
2−n−1

)ν+ζ ≥ (2n(b− a)− 2)
(
2−n−1

)ν+ζ
> 1,

where the last inequality holds due to the choice of n. Hence we proved that

|S(f, g,α1, τ1)− S(f, g,α2, τ2)| > 1.

The proof is now completed.
k

However, the Kurzweil integral can be useful but we need to use variational
approach and not Hölder continuity.

Theorem 44. Let ν, ζ be two nonegative numbers such that

1

ν
+

1

ζ
> 1.

Let f, g be two real continuous functions on [a, b] such that f has �nite strong
ν-variation and g has �nite strong ζ-variation. Then the strong Kurzweil integral
(SK)

∫ b
a
f(t) dg(t) (and therefore (SK)

∫ b
a
g(t) df(t) as we can change f and g

in the assumptions) exists.

Proof. In Dudley and Norvai²a (2010, p. 183, Corollary 3.95) there is proven
that the assumption on variation of f and g implies the existence of Kolmogorov
integral which under the assumption of continuity of f and g imply the existence
of the strong Kurzweil-Stieltjes integral.

k

Remark. We note that (cf. Dudley and Norvai²a (2010, p. 88) ) if we take
nonnegative numbers ν, ζ such that 1

ν
+ 1

ζ
≤ 1 then the integral (SK)

∫ b
a
f(t) dg(t)

does not exist in general, i.e. there exist functions f and g with �nite µ- and ζ-
variation such that the integral (SK)

∫ b
a
f(t) dg(t) does not exist.
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Finally we apply this result to the stohcastic calculus with respect to the
fractional Brownian motion. Recall that

I(u, [0, T ]) = inf{p > 0;Vp(u, [0, T ]) <∞}

and
I(BH , [0, T ]) =

1

H
.

We return to our �xed interval [0, T ]. We take the fractional Brownian motion
BH with 0 < H < 1 on [0, T ]. Then the above theorem suggests that the integral
(SK)

∫ b
a
ut dBH

t exists pathwise for any continuous stochastic process u whenever
u is of �nite strong p-variation such that H + 1

p
> 1, i.e. p < 1

1−H .
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Afterword

At the end of this Thesis we note that many of interesting conceptions related
to the stochastic integration were not studied here. It is due to the fact that they
are rather complex and, as we want to introduce and compare various ways to
de�ne a stochastic integral, they are not of primary interest. For example Itô
formulas for the particular integrals. In the majority of cases the Itô formulas
can be found in appropriate chapters of the referred sources because they are
important for investigating the stochastic di�erential equations which are also
not studied in this Thesis, as it is focused on integration. Next important issue
which was not studied is the conception of inde�nite integral. If there is �xed
interval [0, T ] it could be useful to de�ne the particular integral not only as
(·)
∫ T

0
f dg (the symbol (·) before the integral means that we have an arbitrary

type of integral discussed in this Thesis) as a random variable but as a random
process, i.e. as a function of the upper bound: (·)

∫ t
0
f dg, t ∈ [0, T ]. In the case

of integrals de�ned pathwise there is no problem. On the other hand, in the case
of integrals not de�ned pathwise, e.g. the Skorohod integral, some di�culties
appear. The inde�nite integral is in the case of non-pathwise integrals usually
de�ned as

(·)
∫ T

0

f1[0,t] dg, t ∈ [0, T ].

The problem is that existence of the integral (·)
∫ T

0
f dg does not in general imply

that the integral (·)
∫ T

0
f1[0,t] dg also exists. The conditions for the existence

of such de�ned inde�nite integral are also usually discussed in the appropriate
chapters of the books and articles which were cited.

Moreover there are other conceptions of stochastic integration which were
not studied in this Thesis. Namely for example fWIS and WIS integrals de�ned
by means of the Wick product. This conceptions are rather complex and very
di�erent from the conceptions which were studied and hence they are beyond the
scope of this Thesis. An exhaustive survey of the fWIS and WIS integrals can
be found in Øksendal, Hu, Biagini and Zhang (2008), Chapter 3 and Chapter 4
respectively.
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