
Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

Tomáš Kalibera

Performance in Software Development Cycle:
Regression Benchmarking

Department of Software Engineering
Advisor: Doc. Ing. Petr Tůma, Dr.

Abstract

Title: Performance in Software Development Cycle:
Regression Benchmarking

Author: RNDr. Tomáš Kalibera
email: kalibera@nenya.ms.mff.cuni.cz
phone:+420 2 2191 4232

Department: Department of Software Engineering
Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Advisor: Doc. Ing. Petr Tůma, Dr.
email: tuma@nenya.ms.mff.cuni.cz
phone:+420 2 2191 4267

Mailing address (both Author and Advisor):
Dept. of SW Engineering, Charles University in Prague
Malostranské nám. 25
118 00 Prague, Czech Republic

WWW: http://nenya.ms.mff.cuni.cz
This thesis: http://nenya.ms.mff.cuni.cz/∼kalibera/phd-thesis

Abstract:
The development cycle of large software is necessarily prone to introducing soft-
ware errors that are hard to find and fix. Automated regular testing (regression
testing) is a popular method used to reduce the cost of finding and fixing func-
tionality errors, but it neglects software performance.
The thesis focuses on performance errors, enabling automated detection of per-
formance changes during software development (regression benchmarking). The
key investigated problem is non-determinism in computer systems, which causes
performance fluctuations. The problem is addressed by a novel benchmarking
methodology based on statistical methods. The methodology is evaluated on a
large open-source project Mono, detecting daily performance changes since Au-
gust 2004, and on open-source CORBA implementations omniORB and TAO.
The benchmark automation is a complex task in itself. As suggested by experi-
ence with compilation of weather forecast model Arpege/Aladin and implemen-
tation of component model SOFA, large systems place distinguishing demands
on tasks such as automated compilation or execution. Complemented by experi-
ence from Mono benchmarking, the thesis proposes an architecture of a generic
environment for automated regression benchmarking. The environment is being
implemented by master students under supervision of the author of the thesis.

Keywords: regression benchmarking, non-determinism in performance

http://nenya.ms.mff.cuni.cz
http://nenya.ms.mff.cuni.cz/~kalibera/phd-thesis

Acknowledgments

It is my pleasant obligation to thank all the people who have helped me
with my research. I appreciate the help and counseling I received from my
advisor Petr Tůma. My thanks also go to the head of the Distributed Systems
Research Group, Frantǐsek Plášil, for his support and encouragement.

The thesis assumes the form of a collection of published papers. I would
like to thank the co-authors of the included papers, my colleague Lubomı́r
Bulej and my advisor Petr Tůma, for their collaboration, for sharing their
experience from CORBA benchmarking projects, and for their consent with
including the papers in the thesis. I am especially thankful to Lubomı́r Bulej
for helping me at the beginning of my study, before his research focus shifted
to component deployment.

I would like to thank Jaromı́r Antoch, Alena Koubková and Alena
Koubková, jr., for their enduring advice on mathematical statistics and
on methods potentially applicable to regression benchmarking. My special
thanks go to my friend Tomáš Ostatnický, who has helped me with solving
an integral that for long had been the missing bit in one of the proofs. I would
also like to thank Michal Beneš for his help with mathematical analysis.

The thesis includes a design and architecture of a generic benchmarking
environment. Such a design would be of a limited value without an imple-
mentation. I am grateful to master students Jakub Lehotský, David Majda,
Branislav Repček, Michal Tomčányi, Antońın Tomeček, and Jaroslav Urban
for implementing the environment under my demanding supervision. I would
also like to thank them for their significant help with writing a paper about
the environment design and for their consent with including the paper in my
thesis.

I would like to thank Vladimı́r Mencl, Jǐŕı Adámek and Tomáš Bureš
for carefully proofreading some of the papers. My thanks also go to Martin
Janoušek, Filip Váňa, Maria Derková and my other colleagues from Czech
Hydrometeorological Institute for the unique opportunity: to get in touch
with a huge real application, which is both developed and used on daily basis
– the numerical weather forecast model Arpege/Aladin. I would like to thank
Miguel de Icaza, Radek Douĺık, Ben Mauer, and other Mono developers for
their interest in the Mono Regression Benchmarking Project, their valuable
comments, and support.

Contents

1 Introduction 6

1.1 Performance in Software Development Cycle 7

1.2 Continuity: Development Cycle
in Broader View . 10

1.3 Goal of the Thesis . 13

1.4 Structure of the Thesis . 13

2 Regression Benchmarking 15

2.1 Automated Analysis of Benchmark
Results . 16

2.2 Locating Causes of Performance
Changes . 20

2.3 Automated Running of Benchmarks 21

3 Repeated Results Analysis for Middleware Regression Bench-
marking 23

4 Benchmark Precision and Random Initial State 40

5 Quality Assurance in Performance: Evaluating Mono Bench-
mark Results 51

6 Automated Detection of Performance Regressions: The
Mono Experience 70

7 Precise Regression Benchmarking with Random Effects: Im-
proving Mono Benchmark Results 79

8 Generic Environment for Full Automation of Benchmarking 95

9 Automated Benchmarking and Analysis Tool 104

4

10 Intelligent Source Dependency Tool 115

11 Distributed Component System Based On Architecture De-
scription: The SOFA Experience 127

12 Contribution 142
12.1 Regression Benchmarking Methodology 142
12.2 Mono Regression Benchmarking

Project . 147
12.3 Regression Benchmarking Environment 151

13 Related Projects and Methods 153
13.1 Regression Benchmarking Projects 153
13.2 Statistical Methods . 156
13.3 Environments for Running of Benchmarks 159

14 Conclusion, Evaluation and Future Prospects 165
14.1 Conclusion . 165
14.2 Evaluation . 166
14.3 Future Work . 166

References 167

5

Chapter 1

Introduction

Performance is an important factor of software quality. Performance require-perfor-
mance
goals

ments drive the design, implementation, and use of computer systems, where
the most common objective is to get the highest possible performance for a
given cost [16]. A closely related objective is to design a system with a given
performance for a minimal cost (capacity planning).

Typical tasks solved to achieve these objectives are: comparing perfor-perf.
tech-
niques

mance of multiple systems, finding an optimal value of a system parameter
(system tuning), finding a system component which is the performance bottle-
neck, characterizing the realistic workload of a production system, predicting
performance for a given workload or predicting performance of a system built
of components with known performance (performance prediction) [16].

Software systems differ in the performance metrics of interest. Inter-perf.
metrics active systems are designed to minimize duration of a single operation or

a user request (minimize the latency or response time). Batch systems are
designed to process a maximum number of operations or user requests per
second (maximize throughput) or to use the most expensive devices to the
limit (maximize utilization). A complex system may consist of both an in-
teractive and a batch sub-system. Additional low-level performance metrics,
such as memory consumption, binary code size, network utilization, utiliza-
tion of the garbage collector, or the duration of an application start-up, are
of interest in specialized systems with limited system resources.

With the current trend of growing software size, complexity, and use [55],
it is increasingly more important and more challenging to fulfill the perfor-
mance requirements.

6

1.1 Performance in Software Development

Cycle

The possible approaches to meeting software performance requirements de-
pend on how the software is being developed. In this section, we discuss
existing performance evaluation techniques in the context of the software de-
velopment process (software development cycle).

There are many different models of the software development process.
While the models differ in the ordering of the steps leading to a software
product, they generally agree that the steps include design and implementa-
tion. Some models identify finer-grained steps, such as requirements analysis,
verification and testing, but these steps can be understood as parts of the de-
sign and implementation. The software performance requirements influence
both design and implementation.

Performance in Software Design

Design decisions that influence performance include the distribution of the
system on different computers, remote communication, parallelization, lock-
ing granularity, and selection of algorithms and data structures. The perfor-
mance evaluation methods appropriate for the design are performance mod-
eling and simulation.

Performance modeling analytically evaluates parameters of a mathemat- model-
ingical model of the software system of interest. The key analytical modeling

technique is the queueing theory [16]. Its application to performance mod-
eling is based on the common pattern in computer systems, where multiple
requests are waiting in lines (queues) to be served or to get access to a system
resource.

Simulation methods can be used for substituting not-yet-available parts simula-
tionof the system by stubs that have performance characteristics similar to the

real system parts. Different algorithms can be prototyped and evaluated
using the simulated system parts, and the best algorithm with respect to
the performance requirements can be chosen. The simulation methods rely
heavily on good knowledge of the simulated system. Realistic simulations of
complex systems can be by orders of magnitude slower than the real systems.

Performance in Software Implementation

There is no clear distinction between design and implementation. The deci-
sions that influence performance at design level gradually merge into technical

7

decisions at the implementation level, such as selecting types for variables,
selecting compiler optimizations or advising the compiler how to optimize
different parts of the code. The optimizations, both manual and automated
by the compiler, can be targeted at better processor data- or instruction-
cache utilization, better performance of the branch prediction unit, better
performance of simultaneous multi-threading, or on other aspects, depending
on a given platform. Both today’s hardware and software are very complex
and their internal specifications on the level of detail that would enable pre-
cise optimization are often not available to the developers. Predicting the
performance implications of the listed decisions on optimizations is therefore
hard or even impossible. The decisions are thus based on experiments with
different implementations. The basic experimental methods are performance
profiling and benchmarking.

Benchmarking is an experimental performance evaluation technique thatbench-
marking attempts to estimate performance of a system under a realistic workload. The

workload is usually generated by a probabilistic model, but a real workload
snapshot can be replayed if available. The evaluated system is exercised by
a specialized application called a benchmark, which should be designed to
closely mimic a real usage scenario of the system. Benchmarking can answer
the basic question, whether the system fulfills its performance requirements.
The answer has to be backed statistically, because of frequent performance
fluctuations in current systems.

When the system does not fulfill the performance requirements, its pa-
rameters or implementation have to be modified. The hard part is to find
the optimal parameter changes (system tuning) or implementation modifi-
cations that would improve performance. The optimal values of parameters
can be found experimentally by running a benchmark for each combination
of the possible values. If the number of combinations is too large, and the
parameters are not inter-dependent, the optimum can be found without test-
ing all possible combinations. Selecting the combinations of parameters and
their values to test by a benchmark can be based on experimental design
theory [16].

Profiling helps to find out which parts of the implementation should beprofiling
modified to improve system performance. Profiling is similar to benchmark-
ing, except that it monitors the behavior of the running system and collects
as much performance data as possible. By collecting big amounts of data,
the profiler significantly slows down the execution of the system, and thus
the performance results are incorrect in absolute values. The behavior in-
formation, such as call trace or lock contention, attached with approximate
performance data, however, helps the developers to find out which parts of

8

the implementation use most resources. Improving performance of the iden-
tified parts (if possible) is an efficient way to improve the performance of the
whole system. If the identified parts cannot be improved, the investigation
moves on system parts that are using less system resources.

Performance in Development Models

Although the design and implementation steps are typically present in the
development of a software system, the design does not always precede the
implementation.

The typical development process models where the design does precede com-
mon
models

the implementation include derivatives of the sequential model, described and
criticized in [21, 22]. In the sequential model, each step is done only once, in
the following order: requirements analysis, specification, design, and imple-
mentation. This model is believed to be feasible for mission critical applica-
tions with design well known in advance, and it is believed to allow realistic
planning of software product milestones in advance [59, 58]. The model is
used for U.S. Air Force and NASA software development [58].

In [21], the sequential model is criticized for neglecting that some design
problems can be discovered only during implementation or testing, as well
as for neglecting inconsistencies in requirements found at design time. A
modified model is proposed that allows this feedback [21]1. The approach
of designing as much as possible before implementing is also advocated and
supported by a case study in [56]. The model is further extended to the spiral
model, which allows an incremental creation of parts of the application [22].
Each iteration is modeled by the sequential model with feedback propagation.

The performance evaluation of the design can be especially useful in these
models, where the implementation is not available at the design time. Similar
to fixing functionality problems, fixing a performance problem at design time
is cheaper than fixing it after the implementation is finished. Unfortunately,
some design performance problems may be very hard to find at the design
time. This is the case of performance problems caused by hardware and
software with too complex or unknown internal behavior. Such a behavior
obviously cannot be modeled or simulated by the developers, but may have
design implications. For instance, the performance of applications that are
memory and computation intensive heavily depends on CPU memory cache
performance [8]. Structuring the code of such applications into functions or
methods can affect the cache performance in a way impossible to predict. The

1Both the proposed model and the original sequential model are sometimes called “wa-
terfall” models. We do not use the term “waterfall” to avoid confusion.

9

performance requirements, more than the functional ones, therefore suggest
the use of a development process model that allows incorporating the feedback
from the implementation into the design.

The agile development process models [14, 20] are built on this feedbackagile
models from the outset. In these models, the design is created incrementally based

on the feedback from the implementation. The most widely known of these
models is the extreme programming model [14]. The extreme programming
model is iterative, where each iteration is formed by coding, testing and de-
sign. In each iteration, only minimal changes are made to the code. A key
technique of the model is automated regular testing, which not only helps
to discover errors, but also partially supplies the design – a test implements
what the tested code part should do. Despite the model being relatively new,
there are several published case studies [23, 24, 25]. More case studies are
referenced in [23]. In extreme programming, the major performance evalu-
ation techniques would be benchmarking and profiling. The simulation and
modeling techniques are of lower importance, unless performance prediction
or system dimensioning are required.

1.2 Continuity: Development Cycle

in Broader View

Despite the increasing popularity of agile programming, prevailing develop-
ment practices still largely assume designing before implementing. The au-
tomated regular testing, propagated by the agile models, is, however, widely
used, especially in large and continuously developed systems. In this section,
we emphasize the role of regular testing in continuous software development,
and argue for extending the testing to cover performance.

In live and large software systems (e.g. a with million or more lineslive sys-
tems of code), requirements change frequently. The changes of requirements are

caused by new scientific results, new potential of the hardware, social changes,
or discontinued support for hardware or software the system depends on.

The incorporation of such new requirements into a system can be achieved
either through a complete re-design and re-implementation of the system, or
through adapting both the design and the implementation of the existing
system. The first approach is very expensive and time-consuming, but due to
its nature allows even very large changes, and is believed to be less prone to
errors. This approach is used for mission-critical applications, for example in
NASA [59]. The approach of adapting the existing system is more common,contin-

uous
develop-
ment

yielding a continuous development of a single system for tens of years. The

10

continuous development is, however, technically challenging and potentially
prone to introducing errors.

The technical challenges are caused by the extent of the code base, a large
and geographically distributed team of developers, and by dependencies on
dated technologies from earlier development of the project. There are numer-
ous specialized tools that help to face these challenges, such as incremental or
modular build systems for large code, versioning systems, hyper-linked source
browsers, and debuggers.

In this context, an incremental and modular source dependency tool was source
depen-
dencies

designed and implemented for the Arpege/Aladin numerical forecast model.
This tool is used by Arpege/Aladin developers in Czech Hydrometeorological
Institute, Prague, and is integrated into its versioning and build system. The
tool is described in [5], included in Section 10. The main advantage of the tool
is that it is scalable enough to support a project with a million lines of code
(which is the case of Arpege/Aladin) and complex inter-dependencies among
source files.

In the continuous development, gradual implementation changes in ways incorpo-
rating
errors

not foreseen by the original design, as well as the mentioned technical chal-
lenges, necessarily end up importing errors into the code. This trend includes
not only functional errors, which result in the application failing to do what
it was designed for, but also performance regressions, which are (avoidable)
degradations of performance. This problem can be approached both by pre-
vention – improving design methods to be more flexible, and by automated
testing – detecting the errors as soon as possible and thus making them
cheaper to fix.

Designing for Continuity

One of the design methods that aim at making software more flexible and com-
ponent
design

reusable is component design. In component design, systems are fully or
partially built of inter-connected components that have to explicitly declare
how they communicate. The components not only declare the functionality
they provide, but also declare the functionality they require. The component
design makes an application easier to adapt, because of the explicit decla-
ration of inter-dependencies and explicit architecture. Moreover, replacing
a component can be supported at run-time, components can be distributed
transparently on different computers, and the behavior of a component can
be described and checked statically or at run-time [82, 83, 84]. References to
different component models can be found in [82].

There is no strict definition of a single generally accepted component

11

model. Thus many component models exist that do not have all of the fea-
tures described above. Current systems can still benefit from the component
design ideas, being implemented either ad-hoc or using an infrastructure of
some of the available component models.

In this context, support for SOFA component model in the C++ envi-SOFA
comp.
model

ronment was designed and implemented. The prototype implementation is
available on-line [11], and the experience was published in [10], included in
Section 11. The experience report focuses in detail on the limitations of static
component architectures and of run-time CORBA interoperability.

Testing for Continuity

Neither the component design nor other design techniques may fully prevent
incorporating errors into a continuously developed system. It is well known
that early locating of errors makes their fixing cheaper. Manual testing after
each source code modification would however not be feasible.

The functionality tests are therefore fully automated [53, 15]. The testsregres-
sion
testing

are either run daily, usually at night when the developers do not commit
new changes, or immediately after each commit. The tests are also called re-
gression tests, since their purpose is to detect regressions in software quality.
They include unit tests, which test functionality and robustness of small and
isolated parts of code on synthetic data, and system tests, which test function-
ality of the whole system. The regression tests are written by the source code
developers and/or by dedicated developers responsible for software quality.
The operation of the testing is fully automated, up to notification of the au-
thors of the failing code. The automation necessarily includes regular builds,
the developers are thus also informed when they break the very ability to build
the system. The regular builds themselves are considered a useful technique
that simplifies testing and locating of errors [57].

Incorporating detection of performance problems into regression testingperfor-
mance
testing

seems to be a logical step, but it is surprisingly difficult. The basic problem
is the definition of a performance problem. In terms of functionality, the
objective is to have no error for any workload or input data. The hard real-
time systems may have strict performance requirements on any workload or
input, and then any performance test failing to meet these requirements is an
evidence of a performance problem.

The performance objectives are not always that clear in soft real-timeregres-
sion
bench-
marking

systems or non real-time systems. Often, getting the highest possible perfor-
mance for a given cost is the objective [16]. In these situations, any avoidable
degradation of performance (performance regression) is considered a perfor-

12

mance error. It is unlikely that any automated testing could detect that a
performance degradation is avoidable, thus the testing can only focus on de-
tecting all performance changes. Such performance testing is based on regular
automated benchmarking and automated detection of changes in the bench-
mark results (regression benchmarking). The regression benchmarking is used
or planned to be used by many systems and vendors, as described in detail
in Section 13. However, the automation support of running the benchmarks
is usually created ad-hoc for each system, and the performance changes are
not detected automatically.

The automated running of benchmarks, which is necessary for regres- automa-
tion of
bench-
marking

sion benchmarking, is more challenging than automated running of functional
tests. There are two distinguishing problems. In order to minimize interfer-
ences, the benchmarks have to be run in an isolated environment and on a
stable platform. Moreover, the random nature of current systems makes it
necessary to repeat each benchmark execution, based on statistical charac-
teristics of the results.

The automated detection of performance changes is hard because of the
random fluctuations in current systems. These fluctuations might easily be
mistaken for performance changes. Last but not least, an important task is to
match performance regressions in the system to modifications of the system’s
source code. For a wide adoption of regression benchmarking into software
development processes, tools that would help the developers with these tasks
are required.

1.3 Goal of the Thesis

The goal of the thesis is to realize the concept of regression benchmarking
and to evaluate its applicability on a real, live and large software project.
The main problem is to devise a methodology for running benchmarks and
to automatically detect performance changes based on benchmark results.
The methodology should be reliable – it should not produce too many false
notifications of changes, it should be benchmark- and system-independent,
and the whole regression detection process should be automated as much as
possible.

1.4 Structure of the Thesis

The thesis, being a collection of published papers with an unifying text, is
structured as follows. Section 2 gives an introduction to regression bench-

13

marking with references to the included papers; the papers are included in
Sections 3–11. Section 13 provides a detailed overview of the projects related
to regression benchmarking and to the problems solved in the thesis. The
contribution of the thesis is summarized in detail in Section 12. The thesis is
briefly concluded and evaluated in Section 14, with an outlook to potential
future work.

14

Chapter 2

Regression Benchmarking

Compared to functionality, performance is a slightly overlooked aspect of soft-
ware quality. Functionality can be defined and checked more easily, it can
be even specified formally and the code proven automatically to follow the
specification, programming models are built on functionality testing [14, 15],
and automated functionality testing frameworks are available [53]. However,
especially large and continuously-developed projects are prone to incorpo-
ration of not only functional errors, but also performance regressions. The
performance regressions can have the form of slowing down the system or
increasing the use of other resources, such as memory or network capacity,
and may be very hard to find.

As a response to this problem, the Distributed Systems Research Group regres-
sion
bench-
marking

introduced the concept of regression benchmarking [79]. The main objective
of regression benchmarking is to automatically detect performance regressions
during software development. The additional objective is to help developers
with finding modifications of the source code that have caused the regres-
sions. The basic idea of regression benchmarking is very simple – a stable set
of benchmarks is run regularly, i.e. on daily versions of the tested software
system. The benchmark results from consecutive software versions are then
compared and a significant increase in response time (or in use of a system
resource) is reported as a performance regression. As a consequence, regres-
sion benchmarking can easily be used to detect performance improvements,
and to monitor software performance during development.

In the last two years, a demand for monitoring performance during soft-
ware development has been formulated by many software vendors or project
managers, for systems such as the Linux kernel, GNU Compiler Collection,
Open Office (Sun Microsystems), and Solaris (Sun Microsystems). The cur-
rently performed regression benchmarking, however, lacks the automated de-

15

tection of changes. 1

This section follows by an analysis of the automated detection of perfor-
mance changes, automated running of benchmarks, and locating source code
modifications that are causing the performance changes.

2.1 Automated Analysis of Benchmark

Results

The objective of the automated analysis of benchmark results for regression
benchmarking is to reliably detect performance changes. An exact detection
of performance changes is not possible due to non-determinism in current
computer systems, both in hardware and software. The objective therefore is
a detection of changes with a small number of false alarms (reported changes
when there is no change), and with a small number of undetected changes.
To meet the objective, the benchmarks have to be well designed and their
results analyzed by statistically sound methods.

Benchmark Design

Designing a good benchmark is itself a technically challenging task. The
Distributed Systems Research Group has been involved in several CORBA
benchmarking projects [80, 81], and based on this experience, typical prob-
lems of benchmark design were published [78]. These problems are general in
nature, and thus also applicable to systems other than CORBA.

One of the problems that is not surprising, but still is broadly overlooked,bench-
mark
warm-
up

is the warming-up of software systems. It is common that performance of a
software system changes abruptly at some moment after the benchmark is
started.

The problem is caused by various initializations (warm-up). The tech-
nical reasons for and the duration of the warm-up period are system- and
benchmark-dependent. Although performance of an already-warmed-up sys-
tem is usually of interest, benchmarks often measure the performance during
the warm-up period, either estimating the duration of the warm-up period
incorrectly or completely ignoring the warm-up period.

Estimating the duration of the warm-up period is a complex task. Al-
though there are many relevant statistical methods (a good list of references
can be found in [26]), they are not readily applicable on general computer

1A detailed overview of existing regression benchmarking projects is provided in Sec-
tion 13.

16

systems. The duration of a benchmark warm-up period on a given computer
system can be estimated experimentally: the benchmark is executed several
times to collect many observations, the results are visualized, and the upper
bound for the duration of the warm-up period is determined manually.

sepa-
rating
mea-
sure-
ment
and
analysis

Benchmarks should be designed not to interfere with the system they
measure, and therefore the measurement code should be simple and non-
intrusive. In particular, the code should not analyze the results, but it should
report them in a raw format. Such a design also allows re-using the results for
different types of analysis. In particular, it allows the described experimental
detection of the duration of the warm-up period to be performed off-line.

Any benchmark, be it used for regression benchmarking or not, should work-
load
com-
plexity

be designed to measure performance that is relevant to a real system. The
relevancy of results largely depends on how realistic is the applied system
workload. Generating a realistic workload for a nontrivial system may be a
complex task and may require a complex infrastructure, both for the large
number of requests per second and for concurrency of the requests. 2 In
respect to workload, we identify two distinct benchmark designs in [3], in-
cluded in Section 3: a complex benchmark, which uses the realistic workload,
and a simple benchmark, which uses a synthetic workload with minimized
interferences.

A complex benchmark uses a realistic workload to provide results very
close to a real use of the evaluated system. It tests most of the evaluated
system, but its execution is expensive. A simple benchmark, on the other
hand, measures performance of a small part of the system under a trivial
synthetic workload, in which a single system operation is invoked repeatedly.
Simple benchmarks are cheaper to execute than complex benchmarks, provide
performance information on selected parts of the system, but do not test
performance of the interplay of the system parts, such as parallelization, lock
contention, etc. In [3], we show that the results from simple and complex
benchmarks require different evaluation methods.

The simple benchmarks suffer less from random fluctuations in results non-de-
termin-
ism in
perfor-
mance

than the complex benchmarks, because they test a small code part (a sin-
gle operation) in an isolated environment. The low result fluctuation allows
detecting even small changes in performance. The problem described first
in [3] is non-determinism in benchmark execution that influences the mea-
sured operation performance, in particular the operation response time. The

2For example, according to [64], up to 5 client machines may be needed to generate a
realistic workload for an application server.

17

non-determinism can result in much larger variation in response times of op-
erations measured in different benchmark executions, compared to relatively
small variation in response times of operations measured in the same execu-
tion. This effect largely depends on the benchmark: in some benchmarks,
there is a difference in several orders of magnitude, in some there is no dif-
ference. Ignoring this effect would easily lead to false alarms when detecting
changes, because performance of the same software is, due to this effect, dif-
ferent in each benchmark execution.

The complex benchmarks measure performance of a heterogeneous setperfor-
mance
over-
shadowing

of operations forming a realistic system workload. As a consequence, perfor-
mance changes in some parts of the system may easily be over-shadowed by
absolute performance of the parts of the system that dominate the workload.
The over-shadowed changes may still be important, but their discovery by
simple benchmarks may be too expensive in large systems, because too many
benchmarks would have to be run; the time available for regular benchmark-
ing is usually limited. In addition, identifying all parts of the system that
would require a dedicated benchmark would be a hard task. The performance
changes that appear only in interplay with other parts of the system cannot be
detected by simple benchmarks at all. In [3], we show that the over-shadowed
performance changes can sometimes be distilled from the results of complex
benchmarks using cluster analysis of the results.

Change Detection in Face of Non-determinism

The problem of non-determinism in benchmark execution is further evaluatednon-de-
termin-
ism in
execu-
tion

in [8], included in Section 4. It is shown that the problem exists on different
hardware platforms, different operating systems and in different benchmarks,
and it affects performance to a varying degree. The paper defines a metric
which allows quantification of this effect and compares different systems using
this metric. The cause of this effect is tracked down by analyzing the informa-
tion collected from hardware performance monitoring counters. Among other
things, the non-determinism in performance is caused by random selection of
physical memory addresses for code and data allocated by the operating sys-
tem at process start-up. The actual selection of physical memory addresses
predetermines the number of memory cache misses during benchmark execu-
tion, and thus the response time of the measured operation.

The paper identifies yet another source of non-determinism: the compi-non-de-
termin-
ism in
compi-
lation

lation. It is shown that compilation may be intentionally randomized by the
compiler, and that different binaries created from the same source code may
have different performance. The reason of the impact on performance is sim-

18

ilar to the case of benchmark execution: the different binaries have different
memory layout, and thus are subject to different numbers of cache misses
during execution. Therefore, not only different executions, but also different
binaries of the same software may differ in performance.

Both sources of non-determinism are inherent to current computer sys- living
with
non-de-
termin-
ism

tems, may have significant effect on performance, and thus cannot be over-
looked in regression benchmarking. It is often technically impossible to re-
move this non-determinism. Moreover, performance results with artificially
removed non-determinism would not be realistic. The problem can be solved
by repeating compilations and executions, and statistically evaluating the
data. The non-determinism can be statistically modeled by random effects,
and parameters of such model can be estimated based on experiments. The
challenge is to devise a model that will cover the widest possible range of
benchmarks, but will still allow reliable detection of performance changes.

We did not find any statistical model that could readily be used for statis-
tical
model
of non-
deter-
minism

modeling the non-determinism in performance of computer systems. The
closest model is the random effects model in one way classification [13]. 3

In [1], included in Section 6, we describe a new statistical model of benchmark
performance that incorporates the non-determinism in benchmark execution.
The model allows detection of changes in the mean of a performance metric,
typically a response time. It also allows determining the optimum number
of benchmark executions and operations in each execution so that the best
results precision is reached within a given time. The more precise are the
results, the more reliable and powerful is the change detection.

The model is evaluated in the Mono Regression Benchmarking Project [6], Mono
bench-
marking

which automatically performs regression benchmarking of Mono [70], from
downloading sources to reporting detected performance changes. The results
are available on the web [6], covering daily Mono versions since August 2004.
Selected performance changes from the discovered ones are experimentally
verified as not being false alarms – the true cause of the changes is located in
the sources. Verifying all the detected changes would, however, require too
much effort and very good knowledge of the sources.

The Mono project was chosen as it is open-source, has a large code base Mono
(over 2 millions lines of code), over 70 developers and is being actively worked
on. The project implements the standard .NET platform [65], including the
C# language compiler, the virtual machine (Common Language Runtime)
and the standard class libraries.

3The related statistical models are mentioned in Section 13.

19

The problem of non-determinism in compilation, not covered by the sta-non-de-
termin-
ism in
compi-
lation

tistical model in [1], is further evaluated in [9], included in Section 7. The
experiments with the Mono benchmarks used in the Mono Regression Bench-
marking Project, and the results from CORBA benchmarks, show that ignor-
ing the non-determinism in compilation can significantly increase the number
of false alarms in regression benchmarking.

The paper includes a new statistical model, which incorporates the non-
determinism both in benchmark execution and in compilation. The model
assumes that both benchmark compilation and benchmark execution is re-
peated, and it allows statistical detection of changes. The model makes it
possible to determine optimum numbers of compilations, executions and op-
erations that maximize the precision of results reached in a given time.

The evaluation of the model is based on the same Mono and CORBA
benchmarks on which the problem was demonstrated. The evaluation shows
that when used for regression benchmarking, the model and the repetitions of
the compilations help to dramatically cut down the number of false alarms.
The model is also applicable to benchmarking in general, when precise results
are needed. Regression benchmarking is, with respect to the model, only an
application of benchmarking, which is indeed very sensitive to the precision
of results.

2.2 Locating Causes of Performance

Changes

For regular use of regression benchmarking in software development, it is very
important not only to minimize the chances of false alarms, but also to help
developers with finding the modifications of source code that have caused the
detected performance regressions.

The modifications can be located partially with the support from a ver-locat-
ing in
general

sioning system. The versioning system can reveal a list of modified source
files between two software versions, and sometimes can group these modifica-
tions into logical units. The logical grouping may help the developers to faster
identify the modifications causing the performance changes. Still, most of the
executed benchmarks would likely not test all the code of the evaluated sys-
tem, and thus not all code from the modifications, either. The code actually
covered by a specific benchmark can be discovered by run-time behavior anal-
ysis of the benchmark and/or by off-line static analysis of source code. The
various options, in the context of Mono benchmarking, are analyzed in [2],
included in Section 5.

20

The Mono Regression Benchmarking Project links each detected perfor- locating
in Monomance change to a list of source files modified between the compared Mono

versions. The list of modified files is further restricted to the files possibly
used by a specific benchmark. These files are found approximately, using a
run-time analysis of method invocations supported by Mono, and by a sim-
plified static analysis of source files. The run-time analysis is performed in a
dedicated execution of the benchmark, because it significantly slows down the
benchmark execution. The analysis only covers modifications in the Mono li-
braries. Automated mapping of performance changes to modifications of the
C# compiler itself, or to modifications of the virtual machine implementation,
does not seem to be realistically achievable.

2.3 Automated Running of Benchmarks

Regression benchmarking is based on fully automated running of bench- automa-
tion
require-
ments

marks. The automation has to include all the necessary steps from code
checkout and download through software compilation, benchmark compila-
tion, deployment, execution and monitoring, and data collection to analysis
and presentation. Although many of these steps are already present in func-
tional regression testing, automation of benchmarking brings several unique
problems. Benchmarks should be run without any interfering applications,
benchmarks of consecutive software versions should be run with identical con-
figurations, and non-deterministically failing benchmarks should be restarted.

In our experience with the Mono project, benchmarks of software under
development may crash non-deterministically – some executions of the same
benchmark are successful and some fail. When the failures are rare, the
execution environment should automatically restart the failing benchmarks
several times, to get a required number of successful executions. There are
even some cases when a part of a benchmark fails, but the results are still
relevant. For example a client emulator of the Rubis benchmark [54, 63]
sometimes hangs during shutdown. The problem is caused by limited Java
interoperability with the underlying operating system, and cannot be fixed
easily. Any benchmark execution environment should be extensible enough to
overcome different types of failures, including those that do not have impact
on the results.

A benchmark execution environment should be distributed, because it
needs to be able to test distributed systems, and because multiple hosts may
be required to generate workload that would saturate a tested server. In addi-
tion, the distribution may be required for parallelizing the software compila-
tion and benchmark execution. In regression benchmarking of large software

21

systems with many benchmarks, the parallelization may become necessary
to get results from each system version on-time. With the requirement of
running benchmarks on consecutive software versions on identical configura-
tions, the assignment of different tasks to hosts may be complicated: a typical
requirement would be to adaptively assign available hosts for compilation of
a benchmark, but run the benchmark on a fixed set of hosts.

More requirements on a benchmark-independent environment for auto-
mated benchmarking are analyzed in [4], included in Section 8. The paper
confronts these requirements with the existing projects that use automated
benchmarking, and proposes a high-level architecture of a generic environ-
ment for full automation of benchmarking, with support for regression bench-
marking.

The environment is being implemented in a student project BEEN [7]automa-
tion
design

under the supervision of the author of the thesis. Based on experience with
an early beta version of the environment, the architecture was detailed and
published in [12], included in Section 9. The beta version of the environment
is mature enough to validate the usefulness of the proposed architecture. In
particular, it supports automated benchmarking with a distributed CORBA
benchmark [80] targeted at comparing performance of different versions of
omniORB [71]. The environment currently has over 65,000 lines of code.

22

Chapter 3

Repeated Results Analysis for
Middleware Regression
Benchmarking

Lubomı́r Bulej,
Tomáš Kalibera,
Petr Tůma

Contributed paper in Performance Evaluation [3].

In Performance Evaluation: An International Journal, Perfor-
mance Modeling and Evaluation of High-Performance Parallel
and Distributed Systems,
published by Elsevier B.V.,
vol. 60,
pages 345–358,
ISSN 0166-5316,
May 2005.

The original version is available electronically from the pub-
lisher’s site at http://dx.doi.org/10.1016/j.peva.2004.10.013.

23

http://dx.doi.org/10.1016/j.peva.2004.10.013

Repeated Results Analysis for
Middleware Regression Benchmarking

Lubomír Bulej1,2, Tomáš Kalibera1, Petr Tůma1

1Distributed Systems Research Group, Department of Software Engineering

Faculty of Mathematics and Physics, Charles University
Malostranské nám. 25, 118 00 Prague, Czech Republic

phone +420-221914267, fax +420-221914323

2Institute of Computer Science, Czech Academy of Sciences
Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic

phone +420-266053831

{lubomir.bulej, tomas.kalibera, petr.tuma}@mff.cuni.cz

Abstract: The paper outlines the concept of regression benchmarking as a variant of

regression testing focused at detecting performance regressions. Applying the
regression benchmarking in the area of middleware development, the paper
explains how the regression benchmarking differs from middleware
benchmarking in general, and shows on real-world examples why the existing
benchmarks do not give results sufficient for regression benchmarking.
Considering two broad groups of benchmarks based on their complexity, novel
techniques are proposed for the repeated analysis of results for the purpose of
detecting performance regressions.

Keywords: middleware benchmarking, regression benchmarking, regression testing

1. Introduction

The development and release process of a software system is typically subject to a demand for
certain level of quality assurance. One of the approaches to meet this demand is regression
testing, where a suite of tests is built into the software system so that it can be regularly tested
and potential regressions in its functionality detected and fixed. Regression testing has many
potential uses. Applied to the source code of a software system, it verifies the syntactical
correctness of the tested code across the range of supported platforms. Applied to the running
software system or its parts, it helps guarantee correct functionality of the tested code.

Regression testing is becoming an integral part of the development and release process of
communication and application middleware. The complexity of the middleware has led many
middleware projects to adopt some form of regression testing, as evidenced by open source
middleware projects such as CAROL [19], OpenORB [17], or TAO [16] with its distributed

24

scoreboard [15], which collects results of daily build and test runs on various platforms from
across the world. Focusing on functionality, however, the regression testing of middleware
tends to neglect the performance aspect of quality assurance, which is typically orthogonal to
correct functionality and thus seen as a minor factor in quality assurance. This contrasts with the
otherwise common use of middleware performance evaluation to satisfy the obvious need to
evaluate and compare performance of numerous implementations of communication and
application middleware standards, such as CORBA [18], EJB [22], or RMI [23].

To remedy the existing neglect of the performance aspect in regression testing, we focus on
incorporating middleware performance evaluation into regression testing. Our experience from
a series of middleware performance evaluation and comparison projects [13][14][10][11] shows
that systematic benchmarking of middleware can reveal performance bottlenecks and design
problems as well as implementation errors. This leads us to believe that detailed, extensive and
repetitive benchmarking can be used for finding performance regressions in middleware, thus
improving the overall process of quality assurance. For obvious reasons, we refer to such
middleware performance evaluation as regression benchmarking.

In section 2 of the paper, we investigate in more depth the concept of regression benchmarking,
explaining why and how it differs from benchmarking in general. Dividing the existing
benchmarks into two broad groups based on their complexity, sections 3 and 4 discuss the
suitability of the two groups for regression benchmarking and propose techniques for the
repeated analysis of results for the purpose of detecting performance regressions. Section 5
concludes the paper.

Throughout the paper, we use TAO [16] and omniORB [12] as real world examples of a
complex and mature open-source middleware to illustrate the individual points and proposed
techniques.1 Illustrating the points and techniques on commercial middleware coming from a
closed-source vendor would be difficult because the development practices of such a vendor are
not public and we would be limited to a user experience with the middleware. Nevertheless, our
past middleware performance evaluation and comparison projects have revealed several
performance problems in commercial middleware, ranging from minor performance flaws to
major scalability issues. These problems would probably have been found had the middleware
been subjected to regression benchmarking. From this, we conclude that regression
benchmarking also has a valid application in the commercial sphere.

2. Regression Benchmarking

Regression benchmarking is a special application of benchmarking for software regression
testing. As such, it has to be tightly integrated with the development process, fully automated,
comprehensive and repetitive. Architecture of an environment for regression benchmarking is
outlined in figure 1.

1 The TAO examples use TAO 1.3.1 to 1.3.5 on Pentium M 1.3GHz, 512MB RAM, Linux 2.4.22, GCC 3.3.2. The
omniORB examples use omniORB 4.0.3 on Dual Pentium Xeon 2.2GHz, 512MB RAM, Linux 2.4.22, GCC 3.3.2.

25

In the outlined architecture, the regression benchmarking is started by the control module,
responsible for executing all the configured benchmark modules. To keep the benchmark
modules as small and simple as possible, the common functionality of the benchmarks is
factored into the benchmark framework that supports the modules. The results collected by the
benchmark modules are stored in the results repository, forming a history of results. The
analysis module examines the history of results and detects performance regressions. To avoid
repetitive or redundant notifications, the analysis module consults the notification repository for
a history of notifications.

System Under Test

Benchmark Modules

Control
Module

Analysis Module

Results
Repository

Notifications
Repository

Benchmark Framework

System Under Test

Benchmark Modules

Control
Module

Analysis Module

Results
Repository

Notifications
Repository

Benchmark Framework

Figure 1: The architecture of an environment for regression benchmarking.

The nature of regression benchmarking makes it different from middleware benchmarking in
general in the areas of benchmark integration, benchmark automation, result precision and
result interpretation.

2.1. Benchmark Integration

The regression benchmarks must be comprehensive in how they cover the functionality
provided by the middleware. This is best achieved by integrating the benchmark framework
with the middleware so that new benchmark modules can be added alongside new middleware
features. The integration minimizes the cost of creating and maintaining benchmark modules.2

2 It is not without interest that the integration fits well with the very similar guidelines for unit testing and
acceptance testing from the extreme programming methodology [1].

26

The integration of the benchmark framework with the middleware has the added benefit of the
benchmarks supporting the same platforms as the middleware. Unlike middleware
benchmarking in general, the portability of the benchmarks between middleware platforms is
less of an issue with regression benchmarking. For a real-world example of the difference,
consider the benchmark suite [13], which has 2500 platform-independent and 13500 platform-
dependent lines of code to support 12 middleware implementations on 3 operating systems, or
the benchmark suite [14], which has 6000 platform-independent and 8000 platform-dependent
lines of code to support 4 middleware implementations on 3 operating systems.

2.2. Benchmark Automation

The regression benchmarks must be fully automated so that they can run unattended. The
requirement of automation concerns not only the execution of the benchmarks, but also the data
acquisition and the results analysis. Of these three tasks, automated execution is the simplest,
with the existing remote access and scripting mechanisms being well up to the task.

The automated data acquisition must be able to recognize when the regression benchmark
outputs stable data as opposed to data distorted during the warm up period of the benchmark.
Middleware benchmarking in general either uses long warm up periods or expects the warm up
periods to be set by trial and error, neither of which is acceptable for regression benchmarking.

Another problem associated with the automated data acquisition is the need to collect and store
large amounts of data without interference with the benchmark. For a real-world example,
consider the benchmark suite [14], which generates about 80 megabytes of data in a single run.
A rough estimate of an individual observation consisting of the measured operation duration
accompanied by annotations such as resource usage data and relevant event lists yields tens of
bytes per observation, which in turn yields tens of kilobytes per second for one observation per
millisecond.

2.3. Result Precision

The regression benchmarks must detect performance regressions as early as possible. The
longer the period between the occurrence and detection of a performance regression, the more
difficult it is to find the source of the regression and the more costly it is to fix the regression.
The requirement for early detection implies a need for benchmarks that are so short they can be
run daily and so precise they can detect minuscule changes in performance. This is especially a
problem for creeping performance degradations, which consist of a sequence of individually
negligible changes over a long period of time.

2.4. Result Interpretation

The results of the regression benchmarks are interesting in how they change rather than in what
absolute values they have. This means that compared to middleware benchmarking in general,

27

tuning for maximum performance and comparing maximum performance across platforms is
less of an issue.

The changes in the results of the regression benchmarks can have many causes, ranging from
random fluctuations through effects of inadvertent configuration changes to true performance
regressions. The automated interpretation must be able to distinguish these causes reliably to
minimize the number of both false positive interpretations and false negative interpretations.

3. Simple Benchmarks

In the paper, we consider the suitability of the existing benchmarks for two broad groups of
benchmarks based on their complexity. The group of simple benchmarks covers benchmarks
such as [13][14][15][6][8], where an isolated feature of the middleware is tested under artificial
workload. The intuitive justification for the simple benchmarks is that they provide little space
for interference and thus yield precise results with straightforward interpretation.

A real-world example of a simple middleware benchmark is a remote method invocation
benchmark that measures the duration of an isolated remote method invocation. The results of
such benchmarks in [13][14][15] suggest that individual runs of a simple benchmark typically
yield results that differ in units of percents. Using such results for regression benchmarking
would imply a need to ignore these differences and only identify differences of tens of percents
as performance regressions. Such a precision is clearly too low.

3.1. Minimizing Interference

The difference in the results of individual runs of a simple benchmark can be partially attributed
to interference from the operating system, consisting especially of involuntary context switches
and device interrupts.

One way of minimizing this interference is keeping the measured operation duration below
the period of the interference and thus making the probability of interference during the
measured operation reasonably small. In our example, this means measuring the low-level
operations that form the remote method invocation, such as the marshaling and unmarshaling
operations, data conversion operations and dispatching in various stages of the invocation,
rather than the entire remote method invocation. The durations of the low-level operations range
from tens to hundreds of microseconds, which is well below the period of the operating system
interference, ranging from tens to hundreds of milliseconds.

It is also possible to mitigate the impact of the interference on the results by expressing the
results using robust estimators that are not affected by a small number of exceptional
observations. In our example, this means using the median of the operation duration rather than
the average.

28

3.2. Collecting Observations

Another reason for the difference in the results of individual runs of a simple benchmark can be
an insufficient number of observations collected by each individual run. When estimating the
median of the operation duration, we assume the observed durations to be independent
identically distributed observations and estimate the median using order statistics. To determine
the minimal number of observations necessary to ensure a precise estimate of the median, we
employ a quantile precision requirement proposed by Chen and Kelton in [4], which uses a
dimensionless maximum proportion confidence half-width instead of the usual maximum
absolute or relative confidence half-width. We then determine the required sample size np for
fixed-sample-size procedure of estimating the p quantile of an independent identically
distributed sequence using the formula proposed in [4]:

()

()2

2

2
1

1

ε

α

′

−⋅⋅
≥

−
ppz

np

where 2

2
1 α
−

z is the 21
α

− quantile of the normal distribution, ε′ is the maximum proportion half-

width of the confidence interval, and α−1 is the confidence level.

For a 95% confidence that the median estimator has no more than 005.0=′ε deviation from
the true but unknown median, we need to collect at least 38416=pn observations. For our
experiments, we choose , for which the confidence level borders with 99%.65536=pn 3

3.3. Comparing Results

Even after minimizing the interference and collecting the necessary number of observations, the
individual runs of a simple benchmark yield different results. A real-world example of a simple
middleware benchmark that minimizes the interference by measuring the duration of
marshalling as a low-level operation and uses 65536 observations to estimate the median of the
operation duration is shown in figure 2.

The differences in figure 2 suggest that we do not have enough control over the initial state of
the system to make the results repeatable across runs, even for a very simple middleware
benchmark. This prevents a direct comparison of results from individual runs. Figure 3
illustrates this problem on the results of 10 benchmark runs for two subsequent releases of
TAO.

3 We have also considered other ways of determining the required number of observations, described in detail in
[3].

29

Figure 2: Results of consecutive runs of a benchmark measuring the time to marshal

an input array of 1024 CORBA::ULong values on TAO 1.3.1.

Although the results in figure 3 indicate that the two subsequent releases of TAO deliver
different performance, comparing results for the two releases using only a single run for each
release would be potentially incorrect. To compare the results correctly, we have to take into
account their random character, and treat each result of an individual benchmark run as an
observation of a random variable.

We can assume the results of several consecutive benchmark runs to be a sequence of
independent identically distributed observations of a random variable. The assumption of
independency and identical distribution can be supported by executing each benchmark run
after a system reset, making the initial state of the system for each benchmark run independent
from the initial state for the other runs. Under the assumption of independency and identical
distribution, the sets of results from multiple benchmark runs can be compared using the
nonparametric statistical tests for comparing samples from two populations, such as
Kolmogorov-Smirnov test, Wilcoxon rank sum test, and Kruskal-Wallis test.

Given the generally more pessimistic nature of nonparametric statistical tests when
compared to parametric statistical tests, we find it useful to also assume the results of several
consecutive benchmark runs to have a normal distribution and apply the parametric statistical
tests. The assumption of normal distribution can be tested using Shapiro-Wilk test for normality

30

either directly on the results of consecutive benchmark runs or after applying a normalizing
transformation, such as logarithm, reciprocal or reciprocal square root. Samples from two
populations with normal distribution can be compared using the unmatched two-sample t-test.
Generally, the t-test requires the two samples to have the same variance, but it is also fairly
robust against the inequality of variances if the sample sizes are equal, which is our case.

Figure 3: Results of consecutive runs of a benchmark measuring the time to marshal

an input array of 1024 CORBA::ULong values on TAO 1.3.1 and 1.3.2.

The results of the technique applied to a real-world example are illustrated in figure 4. The
example evaluates the development progress of the marshalling mechanism in TAO over five
releases from TAO 1.3.1 to TAO 1.3.5, separated by dashed vertical lines in the figure. At the
significance level of 0.05, the technique detects changes between TAO versions 1.3.1 and 1.3.2
and TAO versions 1.3.3 and 1.3.4, marked by bold vertical lines. The differences between other
releases are not considered significant. The p-values of the results of several nonparametric and
parametric statistical tests are tabulated in figure 5.

31

Figure 4: Results of consecutive runs of a benchmark measuring the time to marshal

an input array of 1024 CORBA::Octet values on TAO 1.3.1 to 1.3.5.

Compared TAO versions Results of statistical tests
(p-values) 1.3.1/1.3.2 1.3.2/1.3.3 1.3.3/1.3.4 1.3.4/1.3.5

Nonparametric (raw data only)
Kolmogorov-Smirnov 0.003323 0.167821 0.000011 0.164079
Wilcoxon 0.000877 0.052426 0.000011 0.256660
Kruskal-Wallis 0.000765 0.049366 0.000157 0.241145
Parametric (raw and transformed data)
t-test 0.000272 0.078836 0.000003 0.328786
t-test, log(x) 0.000225 0.079531 0.000001 0.318049
t-test, 1/x 0.000196 0.080375 0.000000 0.307710
t-test, 1/sqrt(x) 0.000209 0.079935 0.000001 0.312829

Figure 5: Results of nonparametric and parametric statistical tests for consecutive runs of a
benchmark measuring the time to marshal an input array of 1024 CORBA::Octet values on

TAO 1.3.1 to TAO 1.3.5.

32

4. Complex Benchmarks

In the paper, we consider the suitability of the existing benchmarks for two broad groups of
benchmarks based on their complexity. The group of complex benchmarks covers benchmarks
such as [20][21][24], where a set of features of the middleware is tested under real-world
workload. The intuitive justification for the complex benchmarks is that they provide results
directly applicable to real-world applications.

Complex middleware benchmarks are indispensable because they exercise multiple
functions of the middleware concurrently and therefore provide room for effects of complex
interactions among the functions to influence the results. Unfortunately, complex benchmarks
are more expensive to run than the simple benchmarks in terms of both the cost of the hardware
and software setup and the time to run the benchmark. The results of a complex benchmark also
have a less straightforward interpretation, especially when expressed as a single value of
throughput in a number of operations per second, as in [20][21][24].

These characteristics make the complex benchmarks unsuitable for regression
benchmarking. To remedy the situation, we proceed by implementing a simplified version of
the TPC-W benchmark [24], which is less expensive to run and collects the duration of
individual operations rather than a single value of throughput. The TPC-W benchmark
simulates an online bookstore, with a hypothetical architecture in figure 6.

Middleware

Web
Server

JSP
ServletsWeb

Browsers

Application
Server

Database

Simulated

Real
Middleware

Web
Server

JSP
ServletsWeb

Browsers

Application
Server

Database

Simulated

Real

Figure 6: The architecture of an online bookstore for the TPC-W benchmark.

Our simplified version of the TPC-W benchmark reproduces the workload that the TPC-W
architecture imposes on the middleware connecting the web server with the application server,
without requiring the entire TPC-W architecture to be present. The only interactions that are
actually executed and measured are the requests sent by the web server to the application server.

33

The interaction between the web browser and the web server is modeled by sending a sequence
of requests to the application server for each request received by the web server. The interaction
between the application server and the database is modeled as a delay for each request received
by the application server that would normally access the database.

4.1. Comparing Results

Figure 7 shows the duration of one of the frequently executed operations of the simplified TPC-
W benchmark, which retrieves a title and author information for a book. The figure contains
results obtained by running the same benchmark twice, each time with a different version of
omniORB. One version is the original omniORB, the other version is an artificially damaged
omniORB which takes roughly 10% longer to complete a trivial remote method invocation.
Ideally, we would want the regression benchmarking to detect the difference.

Figure 7: Results of the benchmark measuring the time to retrieve

book information on original and damaged omniORB.

As is clear from the figure, the results for the original omniORB and the damaged omniORB
are very similar, which means that the methods of comparing averages or medians cannot be
used to detect the difference. Indeed, the averages and medians of the results are almost the
same for the two versions, as shown in figure 8 for several consecutive runs of the benchmark.

34

Response time [µs] Benchmark version Run 1 Run 2 Run 3 Run 4

median 79910 79910 79910 79910 original
omniORB average 55890 56070 55920 56220

median 79910 79910 79910 79910 damaged
omniORB average 55850 55920 56330 55540

Figure 8: Medians and averages of the time to retrieve book information.

The reason why the difference between the results of the two versions is difficult to detect is
apparent from figure 9, which contains a zoom in of the results. The duration of the operation
differs for the cases where the operation takes about 100 microseconds, but the difference is
overshadowed by the cases where the operation takes about 80 milliseconds. An analysis of the
benchmark would reveal that the longer times occur because of waiting for database object
instantiation.

Figure 9: Results of the benchmark measuring the time to retrieve

book information on original and damaged omniORB.

4.2. Clusters of Observations

To better understand the results of the two runs, we can intuitively interpret each result as a
union of clusters of observations that roughly correspond to specific cases of interactions
among the functions of the middleware. An example of a coarse-grained interaction is in figure
7, where the two large clusters correspond to interactions that differ in that one hits while the
other misses accessing an object cache. An example of a fine-grained interaction is in figure 10,
which shows how the results for three individual operations of the simplified TPC-W
benchmark correspond to clusters in the complete set of results.

35

Figure 10: Contribution of three individual operations to the complete results.

While supporting the interpretation of results as a union of clusters of observations, figure 10
also emphasizes that it would be difficult to associate every single cluster with a specific
interaction among the functions of the middleware. The degree of insight into the system and
the amount of data collected to make such an association is technically prohibitive.
Nonetheless, the differences between the results in figure 7 become visible on individual
clusters in figure 9, suggesting that results can be compared cluster-by-cluster.

To compare the results cluster-by-cluster with no information about the association of every
cluster with a specific interaction, the clusters need to be identified in the results based on the
values of the individual observations only. In our experiments, the best results were obtained
when using traditional iterative clustering algorithms that start with a set of initial centers of the
clusters and then repeatedly assign data points to the nearest cluster and recompute centers of
the clusters. The basic algorithm known as k-means defines the center of a cluster as a mean of
the data points in the cluster. The algorithm can find a local minimum of the error measure
calculated as a sum of variances of the clusters. Such a minimum corresponds to a centroidal
Voronoi configuration, in which each data point is closer to the center of its cluster than to the
center of any other cluster [5].

The problem of the k-means algorithm with respect to regression benchmarking is that it
requires the initial set of cluster centers to be defined. The centers are often chosen randomly or
heuristically. When the centers are badly chosen, the algorithm requires more iteration steps and
may find worse solutions. Although improvements of the stability of the clustering results such
as bagged clustering [9] exist, the problem of choosing the number of centers remains. In our
example, we leave this problem open and select the initial set of cluster centers by hand. The
result of the k-means algorithm is in figure 11.

36

Figure 11: Clusters as identified by the k-means algorithm.

Once the clusters are identified, we can assume the observed durations to be independent
identically distributed observations of a random variable and use the technique proposed in
section 3. In our example, the technique classifies the identified clusters as having distributions
with different means, which is the correct result.

5. Conclusion

We have outlined the idea of regression benchmarking as a variant of regression testing focused
at detecting performance regressions. Applying the regression benchmarking in the area of
middleware, we explain how the regression benchmarking differs from middleware
benchmarking in general in its requirements on benchmark integration, benchmark automation,
result precision and result analysis, and show on real-world examples why the existing
benchmarks do not give results sufficient for regression benchmarking.

For the group of simple benchmarks, we propose techniques for minimizing interference of the
operating system on the benchmark results, collecting the necessary number of observations,
and comparing results while taking into account the fact that the results themselves are
observations of a random variable. This contrasts with the current practice in middleware
benchmarking, where the interference of the operating system is silently suffered, the necessary
number of observations is chosen offhand, and the results themselves are incorrectly treated as
precise numbers [2][7]. For the group of complex benchmarks, we propose a technique for
comparing results cluster-by-cluster, again in contrast with the current practice in middleware
benchmarking, where the results are expressed as a simple value of throughput [20][21][24].

37

With the exception of clustering, the proposed techniques are fully automated. All the
techniques are demonstrated on real-world examples of middleware performance evaluation.
Additional details are available at http://nenya.ms.mff.cuni.cz and in [3].

6. Acknowledgements

This work is partially sponsored by the Grant Agency of the Czech Republic grant 102/03/0672.

7. References

[1] K. Beck, Extreme Programming Explained: Embrace Change, Addison Wesley
Professional, Boston, 1999.

[2] L. Boszormenyi, A. Wickener, H. Wolf, Performance Evaluation of Object Oriented
Middleware - Development of a Benchmarking Toolkit, in: Proc. Euro-Par '99, Lecture
Notes in Computer Science, vol. 1685, Springer, Berlin, 1999, pp. 258-261.

[3] L. Bulej, T. Kalibera, P. Tůma, Regression Benchmarking with Simple Middleware
Benchmarks, in: Proc. IPCCC ’04, IEEE CS, New Jersey, 2004, pp. 771-776.

[4] E.J. Chen, W.D. Kelton, Simulation-based Estimation of Quantiles, in: Proc. WSC ’99,
ACM Press, New York, 1999, pp. 428-434.

[5] V. Faber, Clustering and Continuous k-Means Algorithm, Los Alamos Science 22
(1994) 138-144.

[6] A.S. Gokhale, D.C. Schmidt, Measuring and Optimizing CORBA Latency and
Scalability Over High-speed Networks, IEEE Transactions on Computers 47 (1998)
391-414.

[7] M.B. Juric, I. Rozman, M. Hericko: Performance Comparison of CORBA and RMI,
Information and Software Technology Journal 42 (2000) 915-933.

[8] A.S. Krishna, J. Balasubramanian, A. Gokhale, D.C. Schmidt, D. Devilla, G. Thaker,
Empirically Evaluating CORBA Component Model Implementations, OOPSLA ‘03
Middleware Benchmarking Workshop, USA, 2003,
http://nenya.ms.mff.cuni.cz/projects/corba/oopsla-workshop.

[9] F. Leisch, Bagged clustering, Adaptive Information Systems and Modeling in
Economics and Management Science 51 (1999).

[10] F. Plášil, P. Tůma, A. Buble, Charles University Response to the Benchmark RFI, OMG
bench/98-10-04, 1998.

[11] P. Tůma, A. Buble, Open CORBA Benchmarking, in: Proc. SPECTS ’01, SCS, San
Diego, 2001.

[12] AT&T Laboratories Cambridge, omniORB: Free High Performance ORB,
http://omniorb.sourceforge.net.

[13] Distributed Systems Research Group, Open CORBA Benchmarking Project,
http://nenya.ms.mff.cuni.cz/~bench.

[14] Distributed Systems Research Group, Vendor CORBA Benchmarking Project,
http://nenya.ms.mff.cuni.cz/projects.phtml?p=cbench.

[15] Distributed Object Computing Group, TAO Performance Scoreboard,
http://www.dre.vanderbilt.edu/stats/performance.shtml.

38

[16] Distributed Object Computing Group, The ACE Orb,
http://www.dre.vanderbilt.edu/TAO.

[17] ExoLab Group, OpenORB Community, The Community OpenORB Project,
http://openorb.sourceforge.net.

[18] Object Management Group, CORBA Specification 3.0.2, OMG formal/02-12-02, 2002.
[19] ObjectWeb Consortium, CAROL: Common Architecture for RMI ObjectWeb Layer,

http://carol.objectweb.org.
[20] ObjectWeb Consortium, RUBiS: Rice University Bidding System,

http://rubis.objectweb.org.
[21] Sun Microsystems, ECperf Specification, version 1.1, 2002,

http://www.theserverside.com/ecperf.
[22] Sun Microsystems, Enterprise JavaBeans Specification, version 2.1, 2003,

http://java.sun.com/products/ejb/docs.html.
[23] Sun Microsystems, Java Remote Method Invocation Specification,

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html.
[24] Transaction Processing Performance Council, TPC Benchmark Web Commerce

Specification 1.8, 2002, http://www.tpc.org.

39

Chapter 4

Benchmark Precision and
Random Initial State

Tomáš Kalibera,
Lubomı́r Bulej,
Petr Tůma

Contributed paper at 2005 International Symposium on
Performance Evaluation of Computer and Telecommu-
nication Systems (SPECTS 2005) [8].

In conference proceedings,
published by Society for Modeling and Simulation (SCS),
pages 853–862,
ISBN 1-56555-300-4,
July 2005.

40

��������	
�����
���
���
������
�������
�����

���������	
���
 ��
��	�������
�� ���� ����

�������������������	�����������	��
����������	 ���	���	�����!��

����������"�����#��$

%�&&����!�����'����(�)�
�	�

{tomas.kalibera,petr.tuma}@mff.cuni.cz

�*���	�����������)�����+�	����
�'����,����������+�	�����
����-�������"��� �'	��

%��&.����!���%���'����(�)�
�	�

bulej@cs.cas.cz

��
�����

�����))�	���	��� �������/����
�������"��)���������
 	���
��������������)���	�	�� �������
�������"��������#�,��	���0
	�	 ���������1���������)�������))����������
��	�	�!�)���	��
����!��
�������"���������	���� 	�!�����
�������"����������
���!�����
�� ������)��������������	�)���� ���!�����������0
/	�� � ����	��	����� �)��������# �2� � ���/ � ���� � ��	� � �))�����
	!���������	��������������� �	��
������������	�	���	�����
	�	�	����������������������������	��� �������������������	�!������
	�)����	
������	���������������)���	�	��#�2��)�������
�����0
�	�	�! � ��� � ������� ��� ����������	�	��� 	� �� � ��)	��� � �������
	��������	�! � ��� � 	�)��� � �� � ��� � ���������	�	�� ��� � ��������
������� � �� �
�������"�# � �	������ �/� � ��!!��� � � ������� � ���
1����	���	 ����������	�!�����	���������������������	�	�������

�������"�����/��������))�����������)�� 	������)����	
������	0
���� �� ������)���	�	�� 	������ �� ��� ���������	�	��#

�������
 ����������� 3 �����	��� (����� *�	�	�� +�����
+���	��	����,�����	�����������"�����	�	��#

�� ������ !����

+���/��� �
�������"� � ��� � �������� � ���� � ��� � ��)	�	���
� �����	������)����������#���)	��� ���������
�������"��	�0
����� � ������	� � �� � ������ �
��� 	��� � � �����	�� � �� � �
������
������)��������������������������������� ��))�	���	���� ���
���)��	��������������)���������������	��������	�)�������0
�	�����������))�	���	�� 4��56#�*��������������������	�����������
����	�����	����
�������"	�!�)�� 	������������
������������
�0
�� 	�� �����������������	����������� 	�������#�����
�������"
��������)�� 	������� ��������� ��	����)�����������	��	������
��������������	'������
��� 	�����������������������)���	�����
/��"����� ��#!# � ��� � ��)	��� ������	�� ��� ����������	��	� ��)���0
�	������������������)�	�������#

����
��	��������)	���� ����������)�����������	��	��������

�������"���������)�������������
����������������������
�����������������)	���� ������������ ���!���������	���������
�������������)���#�,�����!����	���))��������)�����������0

���)����	����	� 	� �� �����"	�!��� ������	����������)�	���
����������������������	���������7)�	�	���#

�����))����������������������� ������������������	�!��

�������"���������
������	������	���)�����������	����	������
�	���	
��������)���������������� ��	�
��� �/�	�����)�������
����)�����������	��	���������	�������#���������	�	���	����������
�����)�	�� ����� ���� ��� ���� ���� ��� �� ���)��7	�� �� ���0
���)����������/������������/��������������	�������������	 	��
�)����	�� � 	� � ��
���� � �� � ���1������ � ������	�! �
�� � �����	 ����
����������!����������	�����������������	�	���	���)����	��
�7����	��� � �� �/��� � �� � ������ �������	�! �
�� � �����	 ��� � ���!��
����!������� ����7������ ��	���)�	���#�������	!���� �����!	�!
 ������������	�!�������������������	�	���	���)����	����7���0
�	�����������	��������)��������	 ������������)�������7����	��
�� �����)����	��������!	 �������/����)�������#����� �����
�	��������
���7��������	���)�	�������� ��)���	�!��������)��0
)��� � �� � ��� �
�������"	�! � �7)��	����� � ����	����� � �	����
�7�������8/	������)�������������)	�����7����	����	����������
�7���	�����)����	��9��� ��)������������ ������
��� 	���������
������#

���� ��)	��� � ������� �� �)����������� 	��	������/�����
�
������� �������)��������	 ����������	���	
��	����������������
 ��	�
��#�+���� ����������������������������������� ��	����#
�������������"	�����������)�� 	����
������
�������"��/�����
�������������������������7	��#������������������ ��	��������
��)	����� ���	����� ��	�! � ���!� ��� ���)�� ��	����# ���
��)	��� ���� �� �)���������� 	��	����� 	� ��������� � ����	��	0
�������	�������������������������������������	�	���)���	�	��#
,�����!�������7�������������������)���	�	���������
����0
���"�����������)�����������)���	�����������������
�������"�
/������������������������������	�	����)���	�	�������� ���������
�
���!���������	������)����������	�)���
����������� �������������

�������" � ��!!���� ���� � � �)���	�� � ��)	�	��� � � �����	����
���������������	�)��������������	������	���������4$�
�6#

,�������/��������������������	�	���������������)��
�
	�	0
���������������
��������� ���!������
���))��7	��������	�!
��� :����� ��	���	
��	��# �����)���	�	����� � ��� �� ���!�����
�����
��������	������	�!��������!����������	������	���� ������

��	��/��"�/���)���	�������))������
������;�����,!�������������'����(�)�
�	��)���������&
<&5<&=

������&
<&$<>&
?#

41

����������/�	�������
�����	��������	�!���/����"��/�������0
��# �� 	�)�� � ���)���	�	�� �� ���
�������" �������� �

�������" ������� �������� ��� ���)���� ��� ��)	��� �����
��	�!���������)���#���	���))���������������
������	�����
������ �)����	��� � ��� ���� � � � �������	��� � �������	��� 	� � ���
2��"���/�������!��:��
���#

�����1������������)	����
�������"��7�����������)����	��
����)����	����������)��������� ���!����������������������
��������������)������)���������������#��������������������
������� 	� �	��������
������������)����������!��������	������
����	�	����)���	�	���!��/����������/	������!������
���������0
)���# � *� �)������� � �� � �7����� � ����� � ������ �
� � �7������
�	���)�	�����/������������
��������	��	�����	�����������������0
�	�������	�	!��������	��������������������	���������/	����������
������������	������������� ���!����������)����	������������
���)��7 �����/	������ ���� �������	���
��"	�!��� � ��� �2��"
��/�������!��:��
������� �������������	�	���������#

��	�������������
�������"����/� ������	�����������������
�	�����	��� ������
� ������� ����� ���� ��� 	������� ���0
������	�	�� ��� �7������ �	���)�	��� ������	�! ���	�! ���
�)����	�� �7����	��#������1�����������������
�������"������
���	����������� ���������	���)���	�	�����������������������
�
��	������������������������)�������������)	���� ����������)��0
���������	��	������/	��	��������������������������!	�#

*����	�)�)����/�����������	�)�� 	�!�����)����	
	�	���������
��������
��������������	�!������	�����	�����������
�������0
������	�	��	��)��� ��� � ��� 	�	�	�� � �������� � ��� � ������� ���� � 	�
� �������#� *� �+���	����� /��)�	�� ����� ��� ��	����)���	���
�0
�/��������������������)�	������������
��� 	����
��� �����
���	�)���
�������"� �/�	�����!!���� ����� ����	�	�	�� ������� 	�
)���	���� ����������	�	��	�#�+���	���5�)��������� ����������
����	�����������������������	�	�	������������
�������"��������
����������������������))�	���	����������������������� ����
�7��)���������)	����
�������"�#�+���	�� ?�����	��������)���	0

�����������������������	�	���	������	�	�	����������������/�
���	� � 	�)��� ��� � ������� � �7��)��� ��� �
�������"�# � *� �+��0
�	���$� � /� � ��!!��� � �� � �))����� � �� � ����	�! � /	�� � ���
���������	�	��	�)��� �� ��� 	�	�	�� ����� ��� �������� ���)�0
)�� 	� +���	�� @#

"� ��#$�%��&
��
����$�

����	��� ��� �	�)�� ����� �� �
�������" 	��������� 	�
+���	���
��/�	�����)	�	������� �����������������	���������)�0
�	�	� �)����	����7����	��#����������	���	����
��������������
����!�� �
��� � 	������� � ��� � �7������ � �� � ��� �
�������"��
�)����	��#������	�)�������������������������� �)������������
	�����������������	�	������	�! �7����	�����������)����	����
���������	�����������)����	�����)������������������)����	��

�	�!�)��������#�2�����/��������	�������)�	���	� ��������	0
�	��� ����)�� 	�������7����	�����������	�)����������/��������
�����	�����������)����	����7����	����������)�����������������
�������������������	��� �������������
�����������)����	����7�0

���	��#�*��	���������	���7����	���	���
 	������������������ ���0
�	����������	� ��� ����� 	� �7��	��� 	� ���� ����	�#

*������)	�������������������������������	�����������������0
�	�� �� � ��� � �)����	�� � �7����	�� � ����	��� � �� � ���� �)�����
���!	�!�������	���������	����������������������������)���������

����� �)���	��	�� � ��!	� � �� � 	������� ������� � ����� � �� � ����
)�!�����������������������������������	�!������)����	����7�0
���	��������	!�	�	���������/������������/��������	�!����������
����
�������"��)����������� 	����������	�������	�!�#�A�)���0
	�!��������	�)������������)����	����7����	��������	��	 	����
)����������������������
��
��������	 	����	�����/������!��	��#�
�������������������������������)���������
������)���	��	�����!	��
���	���������������������/	���������	"����!�������!���
������
�)����	����7����	��� �������� ����� � ���������� ��� ���������
)������� ���������#�������������������
�������"��)����������� 	�0
���� ����	�������	�!��/	���������	"���������������!���
������
�)����	����7����	��������������������������������������)����
������������#

,
�������" ��)	����� ������� ��� �����	�! ��� 	�	�	��
)���� �� ��� ����� 	� �	������� /���# ��� ����	�! �� ��� �����	�!
������	�������
������
�������"�	�������/�	���	����������/���0
�)�	�����	�	�����������������#������)����	����7����	���	�����
���� ����	�! �/���0�)� ��� ������������� �
�� � ���)��� � ���
�������������� ���	�!������������#�,����!�����!��/���0�)
/	�� �������������	�!��������������������������������)�������
��)��������	 ��������)��	�	 ���)����	����7����	�������	���)��0
�����������������	�!�������
������/���0�)#���������	�!��������
	�	�	���������	���	����������������	������
�������"������������0
�	�� � ��� �
�������"� � ����	�! � � �)��� � �� � ��� � �������
����	!����	������/�	��������������������)����������)�������0
�	 �#

,�!�������������)������1�	�������	�������
�������"���0
�������������
����)�����	
��#�*� ���������� ���������	�!����
	�	�	�� �)������� � ��� � ������ � ��)�����	
	�	���������)������	�!
���!�����!��/���0�)������"����������������	�!�������	����0
)�����	
�������������	
	�!�����	!����	���)���	���������!����
��"� ���� ��� 	�	�	�� ����� 	� ��)�����	
��� ���� �� ��	�! ���
)���� �� ��� ����� ���� ��� 	�������� ��� �����	����� ��� �)���0
�	����7����	���4
��?6#

��������7����	�!������	�)����������������� �/�������70
��	������������)�	�����������������������7��)�������������

�������"�4
&6��/�	���������������������	�����������������	0
�� � ��������� � �� � � �)�����	��� � ��1�����#
� �	!����
� ���/�
	��	 	��������)��������������
������
�������"����	�!�����	0
)���������/�����������	�����	�����	�)���������	�!����7����	��
�������
�������"��))�	���	���
�������)����	�! ������#�����
���	'�������7	��	�������)���	���7������ ���	�����7	��	���������0
)��� � ��� � ���)����	�� � �	��# � -���	��� �	��� � ������ � ��/

�������"�����#

 ����	�)��������	����� ��������
�������"�/����������A��������	�	���5?&
/��"����	���/	���*���������	���?�����#��;>'�����$
�����(,�������	�!
��������������/	���"�������#@#$�����!���5#5#5#

42

�	!����
����/��������������)�����������������	�!����	�!��
���������������
�������"�����������������������������������
�������)�����������������	�!��	��������������������
�������"#
�����	���������	��	���������������	�	�	����������������
�������"
/������������������������������� �������!�����������������

�������"�/����7�������������������	��������	�����������0
���� /	����	��
����������	'��	������ 	��������������������
�������	��� � 	����	����� ����������
���� 	���������	���������
�� ������	�!�����������	������������	�!�#

�����7����������	�	���������	���7)��	��������/��������
�������
�� � ������ � ����� � !�������� � ��� � 	�	�	�� � ����� � �� � ���

�������"����
�����������������������#�2���� �������)��/	��
��������	���������	������������	�	�	���������	��)����������������
����
�������" ���#

,��� 	�������
�� ��� � ������� ��� � ��� �����
�������" � 	�
�	!����
������	�)������������������	�	�	�� �������������)����0
���� �������/�����	�)����������������	�!������������������"	�!
��������� �� ��������)����	����
�������"������� 	�)�� �
�����
	�	����� ����
�������"���������	
������ ��������#���	�
����������/	��� ���������)�	��������� 	� � �����	�)�� �������
/������������	�!���������)����	�����	�!�������	�)�� ������

�������"�)���	�	��#�2������������	�������������/������
/�	�� ����!�	'��������������	�	�	���������/	��������������	��	��
�����)�����
�������"�)���	�	����	��������	��+���	���$#

'� (����)*��&
�%$
����+$#

,�����!������	�����������������������	�	�	�������������
����0
�����������������!��)�	������������/��	���	!����
��	� ����
�
�	��	�����������	����������!� �������������	��������
 	���������#
����� ��� � ��� �!��)�	��� � ��)��������	�� ����� ���� �)�� 	�� � �
�	�)�� �������� ��� � ������!���� �� �/�	�� � ��� ��������	�	�	��
������	��������������
�������"��������#

����	���	�!�����
��� 	��������������
�������"������	
��
	��+���	����� ����	�)�	��	���))������ ���1����	�	���	������ ���
	�������� �� ������ 	�	�	�� ����� /���� ���)��� ��� ��������
�� 	��	�� �� ��� ���)��� ��������� 	� ���
�������" ����
�!�	��� � ��� � �������� � �� 	��	�� � �� � ���)��� � ���� � 	��	 	����

�������"�����#�

>�/� ��� ������	�)�	��	���))�����������������"��	������0
����� ��� ���� ���� ��� ���)�� �������� �� 	��	�� ����������
���� ��� ��������� ���)��� ��)���� �� ��� ���
�� �� ���)���
	�������
�������"�������������������
����������#���	��	�0
)�	�����������	
	�	������������������������	��	������������/���
��������������
���������)���������������
������
�������"
����#�

,���7���������	���/�����
����������������	!�����
������
���)������������	�!�������������������	�!����������������0
�
��#�*���������������	���������������
�����������
��
��������
������������	��������������	�!�����/����)������������	!�����0

������
�������"���������������������	�)��������������	�	�	���
����� ���/��������������	�!����	!�����
���������)����������
��/���������������������	�)����������������	�!������#

������)������������������
���������)����)���������������
���
������
�������"����������
��� �	����/�������)��	�!
�������� � �� 	��	�� � �� � ���)��� � ��"�� � ���� � �	������� � ����
�!�	��� � ��� � �������� � �� 	��	�� � �� � ���)��� � ���� � 	��	 	����
����# ��"	�! ��� �
� � 	��� ���������/� ���	�� ��� ������� ��
��� 	�������� �� ��� ������ 	�	�	�� ������ ������ ��
��� ���

���� 	����������	����� ��������������� 	��	���������)��������
�	��������
�������" ������ �������������� 	��	����� ����)���
�����	��	 	�����
�������"�����#����� ��������	�)�����������
!������ �����
�	��	����������	�����������������������	�	�	��
�������������
�������"��������#

��� � ��������	�� � �� � ��� � 	�)��� � ������ � ��� � � �)���	�����

�������"���1�	�������)�������������)���������������
����0
���"#�����
��	��)����	
���1����	�	���	����������	�����������
�����������	�	�	������������
�������"����������������������	��

��,-�.

# �	���� �����������)���	�!�����	
�������"������ ����
�����	�	�!��	���)���

�# ���
���������)���������������������������	�	��������
5# ���
������	�����	�����

�-�,-�.

# ���	������������	�)�������������������	�)�������

��/������.

# ��)�����	�	���

# �����������������	����������������)���	�!�����

�������"�����

����������������
����)��������������� �����

������������������
�# ���)��� �������� �� 	��	�� +A
 ���� ��� �

������������)���
�# ����������������
�������������������	�)�������

# �����������������	���)���������������������
��������

�# ���)��������������� 	��	���+A������������
������������)���

5# ���)�������	��+A
<+A����������/���������� �� 	��	���
�# ���)��������	�)�������������������	�����������	���	��

)�/-��
"�
,�!��	�����������	���	�!�	�)��������������
�������	�	�	��������#

)�/-��
��
*�)������ 	�	�	����������������
�������"�
�������#

43

�������	�)�������������1�	���������	 �������!�����������������#
*� ����� �� �� � �	�� ��� ���������� /� ��������� ��� 	�)���
������ ��	�! �
�������) ������ �����	
�� 	� �	!��� #

��
���
� ���/������	�)����������������� �����
�������"�
���������������������������������������	�������������������0
����	�	�	����������������
�������"����������7	����	����/	��
 ��	�������
�������"�#������������	�!�
�������"���������
���������	�� ����������	�!���������	�!�������������	�!����	�0
)����������)�������������#������	�!�
�������"�������������
�����	�� � �� � � � �	�)�� � ������ �)�������� � ����# � ��� �(��	+

�������"�������������������	����������)����	������������0
�	���/�
�	���4?6#�� 2���� ������������	�	��� ���	���������
(��	+�
�������"�/�	�������/�������������"��������)����
�	�������	��	 	������������#

���������
�������"��/���� ���7������������
�����������
�� � 	��	����� 	� � ��
��
� *� � ���� � ���� � /� � �� � � ���������

��/�����&&&�����
&&&&&����)�������)���	�!��������
����0
���"# � *� � ���� � �� � ��� �(��	+ �
�������"� � ��� � ���
�� � ��
���)��� /�� ������	���
� ��� ������� �7����	�� �	�� �	�	�#
2�����)���	
�����������
�������������������)����/����	����0
�	������������	!�����)�� 	�����������������!��������������

�������)#�2���� ��)���������
&&&&�	�����	�����������
���0
����)���������������	�)���������/	����������
��������������
����������)����� 	�������&#.$�	����	�����������
�������#�����
	�)���������������
�������)���������������	������
&&&&���0
�	�� � �� � �������� � �� 	��	��� � �� � ���)��� � ��������� � ���	�!
�	������� � ���� ��� � ��� �
�������" ��� ����������� 	��	������
���)�����������������	�!����	��	 	����������������
�������"#

� ��������	���?��	��7�����2	���/� ��������/����A��������	�	���5?&�/��"0
����	�� /	�� *���� ����	�� ? �� �#� ;>' ��� $
� �� (,�# ��� *���	��
�������/�� A������/��3�!��.
$&���� ���/	����/��*�����*���	���)���������
���%&&��>'�����
�;��(,�#

��� ��������	��	��������������	�)�����������	�� �������!��	��
��� ���
�������"� �7��)� ��� AB+ �)����	�!������� /����
	� 	� ��!�	!	
��� �	!�	�	���� ��� ��� ��������	�!
�������"�
���������������	�!�
�������"�������!�	!	
�����������(��	+

�������"# � ����� � ������� � �!��� � /	�� � ��� � ������	� � �� � ����
��������������������	�	���)�� 	����	��+���	���?#
#

0� �� �!$�
�)
����$�$�#����#

��� 	�����������������������	�	�	�� �������������
�������"
��������	������/��������������� ���������������������	�!����
��
�������"�����
���������!�������)�����	
���)������#�����70
���������)���	
	�	���������0��)�����	
���
�������"��������
�	��������	��+���	����� �/�	���)�	������������7	�������������
�������	�	�	�������������	���	����������������
�������"���0
������ /� � ������� � ����� � ��� � �7)��	� � ���� � ������ � �� � ���
���������	�	�� � 	� � ��� � 	�	�	�� � �����# �2� � ���� � ���/ � ����
�����)����� ��	�	���������������� ������������	�	����������
)�� 	������	�
�������!������
����	��#

0�� ������������
�
��
#�����
����������

B����������������������	�	���	������	�	�	���������	�������������
��������������	��#�,���!�������������	 	�	����� �)����	�!
�������)��������/���������	�!���
�������"��))�	���	���	�����
�������	��
����0
���"# � ��� � �������	�� � ����	�� � ��� � ������	�� � �� � ��� � 	������
���
�������"���������
���	!���������)���	����)�!������
��"��������������� 	��������0
�������#�3 �������!����	���������������	������ 	����������������
��� � ��� � ���	!����� � �� �)���	��� �)�!�� � ��� � �� � ����	� � ��0
����!�� � ���	�! � ��� �
�������" � �7����	��� � 	� � 	� � �	"��� � ���
����	� � ��� � ��)��	���� �/��� � ��� � ������ � ���� � �7������ ���

�������" ���� � ����!� ������� � �� � � �	� � �/�))	�!# �3 ��
/���������)����	�!�����������	!���)���	����)�!��������������
�������	!��������"���)��������	�!�����/���0�)�)�����������

�������"�������!�	���	���	"�����������	��������!������	�!�
��������0�������	���)������������
�������"#

��� ������	�� �� 	����� ��������� ��� ��� ���	!����� ��
)���	���)�!�� ��� ���� �� � �	������� �	���	
��	�� �� �����
�	��������	��������	�!������7����	����������
�������"#����
�	��������� 	����	��� ��������
�� ��� � �	�	���������	��	 	������
����8��������	�� ����"0,�	��� ������9� �������������������
/	�����������/������))	�!��� �����)���	��������������������
���������������#�+	����)��!����������������������	�� 	�����
)�!���	�������	�����/�����	�����������	!���������)���	����
)�!������ 	��������������������������	�����������
������������
�	��������	����������������	�������	�!�����
�������"��������#
��	� � 	�������� � ��� �
� � ��	�	���
�� �����	�! � ��� �
�������"
������� � /	�� ��� � ����� � �� �)��������0�)��	�	� �)�����������
��������������"��)�����"��������������������������	�������
�	����#

�	!����5� ������������������ �����������������	�����/	��
�����������������������
�������"�������	!����
������7����	��
����/��)����������
����/	����	7���������	������ 	�������������0

�����
���*�)���������������������)�������	�	�	��������#

��������	 �-�
 ���,��

,��
�-�

��,���
)�����

1������2

�����?<���
$& �&&& �$#%

�������	�!�
�?<���

&&
&&&&& �#@

�	�!��?<���
&&
&&&&&
#
&

�����?<AB+
&& �&&&
#&@

�����?<2��
&& �&&& =?#.?

����*,@?<+��!�
&& �&&& 5$#=

(��	+��?<���
$
$��	�#�C�$$&&
#&

44

�����������������	!���������)���	����)�!��#�������)�)����	�
��� � �	!��� � 	� � ��� ��� � *���� �*���	���)��������� ��� ����/���
�����!)��	�	 � �	���� ��)������� �� �������� �	��� ��
��������������	����#�����
������)����	�������	!����	���������
*���������	���?)�������� �������/����/��"�)��	�	 ���������0
�	��� � ��/� �� � ��� � ������� � ��� � ��	� �)������� � ��� � ����
�))��7	��������������
�!�	������)���������/�	���)�� ����
)���	��������	�!������������������ ����#����������������	��0
��) 	�	
���	���	!����5� ��� /������������	�������� �� 	�)���
�������������������/	����	�������������������������������0
��	���������	����
���
� �����	��������	�)�����������������
�������	������������
�������"��������#

2�	�������������	������ 	����������������
�������)����	�!
����������
�������������	�	��	����� ������������)�����	
��
������������������)����	�!�����������������	!���������)���	0
��� �)�!�� � �� � 	����� � ���������� 	� � ��� � ��)�����	
�� �/	�����
�����	 	������	�	���	������������)����	�!���������/�	���	���
0
 	��������� �������1����	�� ���������
�������"�#

0�" ������������
� �� !��� !��,�������

,��������������������������	�	���	������	�	�	���������	�������0
�� � �� � ���� � ���)	���	��# ���� �)������ � �� � ���)	���	�� � ���
�	�"	�!������
�������"��))�	���	���	������
	�����	�����������0

���	�� � ��)�����	
�� �� ���/������	�!� ������������)	���	��
��� �	�"	�! �������� �� ��� ����
�������" �������#

��
���� ���/�������������������������	�	���	�����)	��0
�	�� ����� �	�"	�!��� � ��� ��������	�!������	�! �
�������"��
�������
���
#���������� ������������	�	�� 	����	��)���	�����
�7��)�������
���
��� ���/	�������;:���DD����)	����4@6
�	���� ���	���5#5#
#���� ���)	������������������������0
!�	�!��������
�������	����	������������������)����#���	�
�����������	�������	�"����	�"	�!��������
����	���	��������������
����)���	�!� ���������	������������������	������
	����# �����
)�������������������
��������	������������������	������
	����
	�����������������	��)�������������������
��������	����������0
�������� 	� �����������	�!������	� � �	�"	�!� �/�	��� 	� � �����
	��������������
�������"���������	�����	�	����/�������������0
������	�	���	����������������	��#

,�����!������������������������	�	�� 	����	��)���	�����
�7��)�������
��� �	����
����	�!������	�����)	�����)�	�����	�
��������
��)���	
�����������
�������"��������#������	�)��0
������� � ��� � ������ � �� � ���������	�	�� � �����	
�� �
��� � 	�
+���	���?#
� ����	��+���	���?#�� �����	��	��������� �	���/�	��
�������"���	� �	��	��������)�� ����������������������������������
���������	�	���	������	�	�	���������4=6#�*����������������������
���������	�	���	������	�	�	�������������
����������)���	�!���
����
�������"����������������������7�����������
�������"#

0�' ������������
�
�

 ��3�������

�������������	�	��	��)�����������	�	�	�������������
����	�	�����
�	�����
������ 	�!�����	��	 	�������������������������	�	��
���
���	�����	�!� ��� �/���� �������# ����� ��))���������� �
���	�����/
��"�#

,������	����	��)�� 	��������	��������� 	�!����������������
���������	�	���	������ ��������	
������	����
�������/�����0
������������������� ���������������������	�	���	��)���	�����

�������"��7)��	������� ��
����	����	�	���������	�	�����#�
3 �������!��	�����������������������������	�	���	��������
�������	��������	
��� 	� �+���	���?#
� ������
�� ��	�	������
�
����	�! �
�������" �7)��	���� 	����	����� ����� ������
��
���� ��	� �����	�� 	� ��� ����	�	��� �� ������)����� ���0
����#����)��7�
�������"���/�	�� ��1�	������ 	�����������
����
��������/�
���� �����/	����� ���������	����������	�	��	�
����	����� ����������������
���#

����� "�
*�)���������������������	�	�	���������	��
���)	���	��#

��������	 �-�
 ��,���
)�����
1������2

�	�!
&&
#
5

�������	�!
&&
#&@

)�/-��
'�
������)��������������������������	����������

�������"�/	�����������������	����#

45

*�����������	�)���
�������"������������������ 	���������
��)�!� ������� *<B �������� �� �	�� ������ �������	�!
������� ��� �����)�� 	���
� ��� �)����	�! ������ "�����
�����������
���������/�#������ ������������� 	���������������
�������������/	�������������������	���7����	���������	����
�
����������������/�����������/�	���/	����!�	���������	�������0
����	�	��	� � 	�	�	�� � ����� � ��� � � �
�������" � �7������ � ���	�!
�������
������1�����#

��� � ���������	�	�� � 	� � ���� ���)	���	�� � �����	
�� � 	�
+���	���?#������
����	�	���������������
�������"���
������
�����	��������������	���������)	����!������	�!�	�������������#
,��������������/�������	�������/�����������
�������"�	����	��
	��������� �
� � ���������	�	��	� � 	�	�	�� � ����� � 	� � �� � ��� � ���

�������"�����)����	���������
��� �������	����������	�����
�������#������	���������������
�����	�������
��	����������������0
	�! � ��� � �))����� �/� ������	
� � �������� �/�	�� � 	� �
���� � ��
������	� � �� � ��� � ������� � ���� �����)�� � ���� � �� � ��� � ����

�������"#

2	����� � ����� �))����� �� ��	�	���	�! ��� ������ ��
���������	�	�� 	� ��� 	�	�	�� ������ /� ��� ����	��� �	�����0
	�!�����/�������������/�	���/�����
����������	�	��	��)������
����/���������/�����	�!�	����	����	�	�	�������	�	����)�	�����
������7����	��������
�������"#�2�	����	�����	���	������	�0
�������������������	��������������)������������ �����	����	��
�))�	���	�� ���
�������"	�! �/�����
� � �	�� �������	�!���

���#������E��
�������"����))�	���	�������������������/���
����������)��7�������	�����	�!�� �������������������
����0
���"��7����	���/������������������������������������	��
�������������#������	�!����	�)�����������������������	�)�	��0
	�! ��� �
�������" � �� � ��� � �))�	���	�� � ��� � ��� �)��)��� � ��
�	�����	������	��������
 	����!�������� �������)�������������
�������������	��������	��	��������	�#�*�����	�	�������������)��	�	0
���	����� ����/��� ��������/���������/���������/����	!�	�!
���� �	�����	���/�����
������� �� �!�� � ��� � ������� � �������
������������	����	�!��������#

��	��������������������������������������
�������"�������
����
��������������������������)�����	
���)��������/�	������

��� ���)����	�� �� ����
�� ������ �� �)������ ���� 	�
	��������� ��� ��� �	��
�� ���������	�	��	�
������ �� ���
�7	���������������������	�	�	�������������	���	���������������

�������"��������#

4� +�5��&
6��%
����$�$�#����#

����)��������������������	�	���	����� 	�	�	������������������
���������	����������"�/����	��������������������)���	�	�������

�������"	�!��7)��	����#

2	����� � ����	���	�! � ��� � ���������	�	�� � 	� � ��� � 	�	�	��
��������������/����������1����	���	�������������	!�����/���#����

�������"	�!��7)��	���������	����������	�!������������
����0
���"��/�	�����������������
���������)�������������	�� ���
 ������� ��)�����������	��	�����#����������)����������)��0
������	 � � ��� ��� � ��)��	�	 � � �7����	�� � �� � ��� � ��������
�)����	�����������	
���	��+���	���
#��������)������������	�0

���� � 	���)������ � ��� � 	����	����� � �	���	
����� �
�� � ���
�	���	
��	�� 	� ��)	����� ��"��/�# �� ���	���� � �	�!�� ����
/�	�� 	� � ��)��������	 � �� ��� ��)����� �7����	�� �� ���
����������)����	�������� ���!������������)����	�� ��)	�����
����������������������	����	��+���	���
���������/��"���/���
���!�����
������ �������!�������	���	
��	���	����"��/������
� ���!������������)����	����!�������	����������������� ����
��������������	�!��	���	
��	����/�	���	��������������	��������
��)��������	 �� ��������������	���	
��	��#�����)���	�	�������

�������"�	��	����	�����������)���	�	�� ����������	������������
����� �������������
�������������	�!��������������	�	������0
���#

*�)��������������������	�	���	������	�	�	����������/�����
�	���� �����)� � �� � ��	�	���� � ��� � ���������	�	�� � ��� � ����
���	� ������������	�	��	��	�	�	�������	�	����������� ��
������
�����	���������������	���������)����	�������/����������)�
�������������	�	�����������	��������������������������������
������ � ��/������
��	�	�!�����	�!��� � ������� � 	� �)�����������
���������	�	���	��	�	�	��������#

,���	��������	��+���	�� ?#5��������������������������	�	��
	� � �)���	����� �
�������" � ������ �
� � ��/��� � ���	�
��
��	�	������������ �������	���	�!������	�������������������0
1�	��������������	����������	��������������	�����������	����	��
������������������������	�	��#������������))������	�������0
��)������	�������������������������	�	��	��	�	�	��������������)����
�����������������������"��	��	������������/����
�������"	�!#�
������)�����������	��	���������	�����������	����1�	���������0
�	�	�!����� ���� ����)���	�	��������������)��������	 �����
����
������)�������7����	��������������������)����	�����������	�0
)��������������������	�	��	��	�	�	��������#

4�� #��
-���/
����
������������
�

2� �� � ���/� ���� ��� ������ 	�	�	�� ����� 	��������� ���

�������"���������/����
�������"	�!��������������������
�������	��	����������������
�����	�����	�	�����#���������������
�������	�	�	��������������)������� �����
�������"�/	����	���
�	������� � �������� � ����)�����������	��	����� ���� 	����������

�������"��������# ����� ������������)�����������	��	�����
��)������
�����	�!���
�������"�����	����������������)�������0
�	 � � �� � ��� � ���)��� � ����� � 	� � � ������ �/	�� � � �)���	������
����	'��	�����������������	�	�	����������/�	���	�����������������
��������)����	�!��������)�������/	������)����������	!���������
)���	������� 	������)�!�����������	
���	��+���	���?#
�����+��0
�	���?#�������)���	
������������)������#

*�������������������	
������������	�	��� ���	����
����0
���"	�!��7)��	�����/�����
�������)�������������
�������"�
/�����
�������)	�������������������/�������)�
���������0
����	�!������	��	 	��������)��# � *� � ��	������)� � ��������������
���)����/�������	���
��	���)�����������	����	�������	���	
��0
������������������� ���!����������������������)����/�������	��

� � !��� ���	���� �� ��� ����# ��	� ����) /���� ������ ���
��)����
	�	�� ��
�������"	�! �7)��	����� ��� ���)���	�	��
����������	�����������������/�����
������������������
��� 	���
�������������������	����������� 	�������#

46

>�/� ��� � ���������� �/�� 	������/	��� �����
� ��������	�#
�	���� 	� /� ���� ������� � �	�!�� ���)�� ����� /���0�))����
���	�! ����
�������" ���� /� �	�"��������	�! � ���� �� ����
�	�����������)�����������
������	�����������������	�	���	�
�)����	����7����	������
������7��������	���)�	��#����������
��������������	� ��	���	�!�������������
�������������	�!����	�0
����������)��� �/��/������� ������������������!�����
�����
���)���#���	���������� ��������������	��������������������	����
������	���/�	���	�����	�	������������
�������"��7)��	����#

A����	
������	��/��������	���������)��������
�������"	�!
�7)��	�����	�� �����7)���	 ��������#�*��!	������	�!�
����0
���"�/�	���������B(�,�8�������B
�����(�1��������"��
,���	�������9������������������	���	��#��������)	���	�����
����
�������"�	�����	�!�����B(��8B
�����(�1��������"��9
��"����
����5&��	������������	�!�����/���	�!��)���
�������"
��"����� �����������������������	�!������	�!���1�������"��
���������	����������#�

����� � ���� ��	������������ � �������	�! ����� � ���� � � � ��/
���)��������
��	����������	�	����)���	�	�������������	�������
��� ���	�� /���� ��1�	�� �� �������� ������ �� �	��# B�
��� ����� /�� ������� ��� ���
�� �� ���)��� ��������� 	� �
�������
����	�� ����
��������� ��/�����
��	����������	�	���
)���	�	��#

B
 	�����������!����	�������������������
���������������� �
�	����
������������������/�������)���	�	���
��	������	�!����
�����������������	�! ���	�����������)��# 2	�������"��/���!�
�������	�������� �� �����������	�	�	����������������
�������"
�������� � /� � ��� � �� � � �	�� �
� � ��)���	�! � ��� � ��������
�)����	����� ������	����	��������������	�)�� ������)���	�	��
��������������������	�!��������/�	��������1�����������/�������
�������������1�	�������
����������#

4�" $77������
��������	��/
����

������������
�

,�����!������	���������)����
�������"	�!�	�����������������0
������	�	�� � ����	��� � 	� � +���	����?#
� ��� �?#�� ��1�	����
��
�	��	�!������������	�!������
�������"����!���)���	������
��)����
�� � �������� � 	� � 	� � ��� � ��/��� � ��������� � �� � ������� � �

�������"���������
��	������/����)��#���� 	�)��������������
��
�������"�	��������/��������	!�����������������
�������"
������������������������
��� ����)�
��/����)���	
��� ��������
���)��� � 	� � �	������� �
�������" � ����# ������1������� ����

�������"��������������	
������������� �������)���������
���	���� �� ��� ���� ���� 	� ��)��������	 � ���
������� ��)���0
�� �7����	�� �� ��� �������� �)����	�� ��� ��� 	�)��� �� ���
���������	�	��	��	�	�	�� �����#

*�����������/	�!�)���!��)���/�����/����������������	�	 �
��)����������������)�����������������	�	�	������������	�!���	�
�))������)�� 	����������������	����������������������� ���
�����	
���	�������������7)��	����������+���	���$#
#�����0
� ����/��������������������)���	�	�������������	����������!	 ��
�������
���������)������1�	��������
�������"�/���0�)� ��0
����	��������)�	�������
���������)����)���
�������"�������
�
��	�����������)���	������	����������������#��������	�!����

����	����/�����/���/��������	�	 ����)���������7)��	�� ����
	�������� �� ������ 	�	�	�� ����� ��
�������"� �����	
���	�
+���	�� 5#

�������	�	 ������� ��� ���)���������� �� ����)�� ��� � ���
�������	�	�	���������	�����	������ �����/�5F

# �����������	�	�	������������������
�������"�����	����)0
���������
��������������)����	������������ ��	�
��
�	/	����	�	��� ��	���� ��������� ����

�# ���)��������������	� ���
�������"�����/	����������
	�	�	����������	8�� 	���	7��9 ��� 	���)��������	����	������
�	���	
��������)������ � ������� ��	�
�� ��8�9� �/����
�8�9��	�	�	�� 	������ 	��� ������� ��	�
���/	����	�	��
 ��	�������������� ����

��� ������ � �))�	�� � ���� � �� � ���)��� � ����� � ��� �/���0�)
)����������
�������"#�*���������)�������	�������������	����

�������"	�!��7)��	����������+���	�� $#
 �������������/	�!
	����)�����	��F

��� ����� �
�������" � ��� ��� �/���� ��	�	����� � � �	�!��
���)�� ��� 		�	�� �	������������� ��	�
���8���9	 	�����0
������

�# ��� � ���!� �� � �� ���)��� �� ���	����� ��� ����� ����

38���9 � �� � ������ � ��	�
�� � 8���9� /�	�� 	�
��)��������	 ������������)�������7����	�������������0
�������)����	�����������	�����������������������	�	�	���
���������
�������"��������

��� ���	�	 � ����� �� ��)������� 	� ��� �	�	��� �� �
��������������������/	������0/����)��	�	���	��������4

6�
/�	���	��
����������������	���	
��	��#��������	�	 ��������/�
)������������ ���/� ��� ����������������� ��� ������� ��	���	0

��	����� ��� ��� ��� 	�����	���	
��	������ ��� ��� ��8�9 �	������
�7)��	������/���� �	!��0�"�/��� ����� ���������������
����0
������������#

������� ���	�	 �������������)���������/���������/�����
������������	������������������������������� ��	�
���8���9�
����
���
��	����� ���/���������
�������"����������	
�����
�����������������)�������������	����#�����	������
�������"0
	�! � �7)��	���� � ���� � ����	��� � �� ���
�������" � ����� � �����
�������	�!������)�����������)�����������	��	���������	�������#
��� ��0�� � ���)�� � 	� ��0�� �
�������" � ��� � 	� � ��
���� ������
����	� ��	�	����#

����� ���!������������)�����������������

�� � ���

���
��
��

�

�
��

�

� � � �

����
���7)���������� �� � ���������� �� #

5 ���
�����������
	�	����/������������7��������	����/������������ ��	�
�������
�����	������������
����/����������������/�	���	������������))������	���	�0
������� �� �	������	��� ������� ���� ���4

6# 2� ���� ��� ��� /��� ���
�� 	�
��
�������������������	��	�!�	��	�!��	!��������
��/��������	'��	�����������0
���� ��	�
���G�����)���	�������	�!�	����/������������������������7�#

47

������������������	�	����������������	���	
��	������ ��� ����

��� �� ����
� �))��7	����� ��

���� ��! �&� "�� �� � ����� ��� ��� ��! �&� "�� ���� � #
���������)��)���	������������������	���	
��	���	�������/������

�� � ���� �� � ��! �&� "�� �� �
"�� �

��� � �
� � �� � ��! � &�
� 	 ��"�� ��"�� ����

8
9

������������������� ���� � ��� � ��� ����� ���!� � �� � 	�� ����

����� �����38���9����������� ��	�
���8���9��/�	���	����)0
��������	 � � ��� � ��� � ��)����� � �7����	�� � �� � ��� � ��������
�)����	�� ���� � ��� � 	�������� ��� � ��� �������� 	�	�	�� � ����� ���

�������"��������#���������	������	���� �������38���9����

����������������������/�

�r k , n
 z
1��

2 	 n�var A�var X
k�n

� 8�9

/�����#�
$%& 	����
0H<��1����	������������������	���	
��	��#�2	��
)��
�
	�	�� �
0H� ��� � 	���� �� � �����	�� � ��� � ���� � ���� � ��
38���9��/�	���	��������)��������	 �� ������������)����������
	��	���������	������������������������������������
�������"��70
)��	����# � 3 �� � ����!� � ��� � �	���	
��	��� � �� �� 	��� �� 	����
��"��/���/���������	��������	�� ��	������"����������"�����

������

"�� 8(8�99 I "�� 8���9 � "�� 8�9�

���������
�����	���	�!� ��	�����������)����	������
�������"
����/��������������	���	�!����� ��	���� "������������ ������
 ��	�
����# �+	����/����������)�����������)���������� � ���

�������"��/���������	�������� ��	�������������
�������"
����������������������� ���!��������������	�����F

S � X �k�n
2
�
1
k
�
j�1

k

S j � R�k
2
�
1
k
1

n�1
�
j�1

k

�
i�1

n

� r j , i��r j ,k �
2
859

*�����	�	�������������/	�!�����������

38�8�99�I�38���9	�	�	�	38�9#

������	����� ���� ��	���� �"������ � ��� ��������	��� �� � ������
 ��	�
�� �'� ����� ���������/�	���������������� ������������
)�����������	��	������	��
�������"������/	����	�������� ��0
��������������)������������������� ��	�
�����

��I�3,8�8�99�I��	�	38�9#

+	�������������/	�!������

"��	8'9�I�"��	8�	D�38�99�I�"��	8�9�

�������	�������� ��	���� �"���'�� ��������	���������� ��	����
"�����# �,��������������	����� � ��� � ���)������ � ��� � ������
 ��	�
��' ��� ��� ���� ����� �� �	�������
�������" �����

������� �
�� ��������� ����	������
�� ��� �� ���!� ��� ����)���
���� ��� ���)���	 �
�������" ���#

2����������	��������� ��	�����"��������

S � A�k
2
�
1

k�1
�
j�1

k

��r j , n��r k , n�
2
8?9

+�
��	���	�!��������	��������� ��	�����859�����8?9��������������

�����"��/�� ��	������	��8�9����������	������	���� ����������
����� ���� �� ���)���������� 	��	����� �� 	������� 	� ����

�r k , n
 z
1��

2 	 n�
S � A�k
2
�
S � X�k�n

2

k�n
8$9

2�����������
�������������������)�������	�������������1���0
�	����#����������������	���	
��	���������)������/	���1����	������
�����0�	���	
��	���/	�� ����	
	��� ��!���� ������������
������
��� ����
�� ��"��/� ��	����� /��� ��)�����
� ���)�� ��	0
�����#

����� � ��� ������)�	����� � ��� ����	�	 ������� ��� ���)��0
��������������������	�	�	������������������	������	���� ���8$9
����/��������	�	�! � ��� �)���	�	����� � ��� �
�������" � ������#
�������������������������	�!���������	������	���� �����������

������� ���������	�� � ��� ��)�	��� ����
�� ��� � ���)��� � ����
�������
������������	�������
�������"����#

����	�	�	'����������������������	����������������� ����������
)�����������	��	�������/���� ������	�	�	'�������������

	 n�var A�var X
k�n

8@9

2���������	�������������������
�������"��7)��	�����	��������
����������������
���������)�����������������
��������������

���� �	��(� ��� 8.9

/�����(���������
����� �/���0�)����)����������� �����
�
�������������������)���������
�������"������
���������
��	�0
������ � 	��� � ��� � � �����	��G �(� ���� � 	������� � ��� �)�	�� � ��
�����	�!�����/�
�������"����#�����7)����	�!������� 8.9����
0
��	���	�!�	��	����8@9�����	 	�!�
���	�����	��	�!��������/��!������
�)�	��� ���� �� � ��� ��� !	 �� ���� ��� /���0�) (

���	 (�
) � � ��

) � ��
� � # 8%9

B�)���	����� 	������� �������
� ��� ���� ���� ��� �)�	��� ���0

���������)���������������)����������� �������������
�������
�� � ��� ����
�� ��� �/���0�)� ���)��� �(� ��� � ��� � ����� ���

S � A�2 �����
S � X �2 #�*��	������������)���	
�������
��	��
����0

���" � ������� � /	�� �
����� �)���	�	�� � ��	�! � �7	��	�! � �������
/	�������������������	�	�����/	������)��� ���������������� ���

�������"	�!��7)��	����#

48

�������������������!!���������������
�������"��/��������
 ��	���� �� ���)��� ���� �	������� ���� 	� ���� !������ ����
��� ��	���� �� ���)��� ���� 	��	 	���� ����� 	������	�!
���
����� ���)����	�������������������)��/�	���	�������������
����
�������"�8�	!���
9#�,�����/�����������������������)��0
�	�	������������������
��	���������8%9���)������������)���	�	��

����������	����� ��� ��	������
S � X �
k�n
2

�����
S � A�
k
2
#

3 �������!���������	�	 �����������������)��������������
�������	�	�	�������������/��������������	�	���������������
8	������������������	�����
�������"	�!��7)��	����������	
��
	� � +���	���$#
9 � ��� � ������	�	�! � ��� �)���	�	�� � �� � ���

�������"����������	������	������
�����	������/�/��������
���
)���	�����
�������"������������������������)�	���������	0
�	 ����)�������#

������	��)��)�����/��������������	�)��������������	����	�
+���	���5#��������	�	 ����)��������������	�����������	��	��
�
��	��	�!������������)����	����
�������"�����
������������#����
�����
�������"�����/	������	�����������)����	������ �������
 ��	�
��������������/	�!������

�8�9 J 38�8�99 I � � �
 83� � �9 I � J 3�#

����� � ��� � �����)�	�� � �� � ��� � ���	�	 � � ��)������� �������
8�8�9�J�38�8�99 � ��� ��� � ���� � �	���	
��	�� � /	�� � ��	����
"����� 	��������� �����3�	��& ������ �������)�� ��� �/�	���
�����������	�������������)���������)���	������
�������"����#�

(����
�������	�)��������������	����	��+���	���5��/�	��
)�� 	������������������	���������
��/�������)����	���	����0
����������������)����	��	��	 	���������#�2�������))������
	�)�������������������	����� ����������������� 	��/�	���/�
�� ����
������������� ���!��������)����	������������������
���)����	���������#�*������	�)������������������������������
�����	�������������������������	!	����������/����������	�������
	�������� ��������������	�	�	�����������������)���	������
����0
���"���������/���� ���	�	 ����)�������������#�*������ �������
������/�	�)���������������� ���
��/����������������������	�	 �
��)�������������������	
�������	�����������������������	�	0
�	�����������������)���	������
�������"�/���#

��
�� 5 ���/� ��� ������ �� �))��	�! ��� 	�)��� ������
��������	�� �� ����������� ���� ��
�������"� �����	
�� 	�
+���	���5#�2���������������/�	�����������	��)����������������0
����	�	�	���������	���������������������������������
�������"
����� �����	!����!����8	�)������������������=&9���������	�	 �
��)�������������������	
�������	��������� ����/����8	�)���
���
9#

8� !��!+ ����

2���� �����/��������������������������/����
�������"���7�0
���������������)���������)���������	��������������)����	�!
����������� �	"��� ���
��	����������
�����������	�	�	�����������
����������#�A�)���	�!��������
�������"��������������������
�7�����������
�������"������	�����������������������	�	�	��
���������������������0����	��	���������0��)����
��
�������"

���������������	�)����	
������	�������� ����)���	�	������ ����
�������# � A�� � �� � 	�� � ����/��� � �������	���	�	 � � ������� � ��	�
�	����	�� � ��� � ����	� � �����	���� � ��)��	���� � /��� � ����

�������"�	�� 	���������������������������������	�	��	�����
������������)�����	
���)������#

37)��	������/	����	��������
�������"����)������	�!�����
������� � �� � ��	���	�	� � ���)����	�� �
�������"�� � �	���	
�����
�	����/����
�������"�������	���0
�������"�����/������	�
)����������������������	�	�	������������������	�	������))������
���)�� 	�	�!�����)��������	 �� ����������)�����������	��	�����

�����������	�!���
�������"�����)�� 	�����������������������)0
��������	 � � ���� � ��� � ���� �)���	����� � ���# � *�)�� 	�! � ����
)���	�	���
���������	�!���������)��� ���	�!����	�!�������	�
�������)������	 ��
������ 	� �������� ���� �	�� ��� ��0
������� ��� ���� 	�)�� �� ���)���	�	�� �� ��� ������ /	��
���)���������������#

��	�!���
�������)������������������������	�)�������������
�����������	�	�	��������������
�������"��/������1����	�����/�
�������)���	������
�������"�	�������)�	
��������� 	���������
��������������	�	�	��������#�2��)�	������������/�	�������	����0
�������������������	�	�	����������������
�������"�������������

��������������7)��	����	������	���	������
����� �	��
��#�2�
���/������	���������������	��	��)���	
�������
��	���� ���������
)����������� 	��	������ ���� � 	�� ��)��������	 ����� � ����
����0
���"����))�	���	������������������	������������	�!����)���
���������)��������������
�������"#�������	�!���� ���
��
�������������������
���������)��������������	�������������0
��/� � �� � �� � 	������� � ��� � ���	�	���� � �� � ��� �
�������"	�!�
�7)��	���� � ��� � ���	� � � ����	�	��� �)���	�	�� � /	��	� � !	 ��
�	��#

��7������

4
6 ��
����,#G �#������G��#�����#��&&5#�K�B(�,�
��������"	�!F�,��������2	���>	�����B
�������#L�*��

����� '�
A	�������� 	��	�)���������������������������
����������� ����#

��������	 ��,���
7�����

1���/����
����2

��,���
)�����

1����
7�����
����2

��� �?<��� �$#%

#&&

��� �?<AB+
#&@
#&&

��� *,@?<+��!� 5
#.%
#&

��� �?<2�� %.#?%
#&

�������	�!��?<��� �#@

#�&

�	�!��?<���
#&=
#&&

49

*�����+����	��	�,�	�-�,	.������������	*�������	��+	
/�����0���+ *���������)1�
����� �.*/*) &223�
4����,�
 �� *���������� '�+������ "�������� ��+
5
����#�����	��	*�������	��+	/�����0���+)1�����	
8:	������������,)�	����0�@9#�*333���	�����/����:M#

4�6 ��������#G��#����	
���G��#�����#��&&$#�K(�)������(�������
,�����	�������	����/����(�!����	�����������"	�!#L
*����������	 "��������	62��:�#
0?�����F�5?05%#

456 ��������#G��#����	
���G��#�����#��&&?#�K(�!����	���
��������"	�!�/	���+	�)�� �	����/������������"�#L�
�������+���� ��	.*777	&228	4����,�
	��	
'�++��(���	*�����������8�����	7��,N���+,��,)�	�

$0
.9#�*333���	�����/����:M��..
0..@#

4?6 ���������3#G�,#�������G�+#�3��	"���G�M#����!���	��G�2#�
N/����)���#��&&5#�K���������������)��	�������
�	����/����,���	�������������;������	�!�A����	��2�
�
�������#L�*��*�����+����	��	�,�	8�,	�7'%.9.*%:) !.�	
.������������	'�++��(���	7����������8(�����M���	����
���'	���M����
@0�&9#

4$6 A	���	
�����B
��������)��	�!�;���)#�7���������
'������	���	�7 �;�5�7.�5�	
���)F<<///#���# �����
	��#���<+����#

4@6 ���� +���/��� �������	��# ;,� <!: 7��
����
7��������������)F<<!��#!��#��!#

4.6 ��	!����#G�+#;#�M������#�=���,99;	>	�	*������	��	
=���,����	99;)���(��������)F<<///#���/#��!<
�������#

4%6 ;	���	� (#�����:#�,�	�� #�
==$#�K+�3������������������
3 �����	����������#L�7��
����	&?��:�#�%��,�!���F�550
?�#

4=6 ;���A#G�A#�-��
��!!�G�3#�;�!���#��&&?#�K���������������
��+���������:�	���	��M-�������������#L�*��50����

5������+ *�����������)1������	@���������	��+	
�

����������55*)@�	&228�	4����,�
	��	'�++��(���	
=���,��������8-����� ��� ��������B��#��?0�%9#

4
&6 �������(#�����B#��������#�99;	=���,�����	
��)F<<��)#����#�	�<)�
<�
����<���#

4

6 ������������#3#�����+#(#�+�����#��&&&#�<�������#�+�
@����� ��+ '���+ '�+����2	���0*������	����� :�/
O��"� :O#

4
�65A'	*��+����0����1	��+	*����������	=���,��������	
�&&?#����)F<<///#� ��#��!<
����#

���/��,��

���������	
��� 	������������ ����������������A�)����������
+���/��� 3�!	����	�!���������������������	�����������	����
����������	 ���	���	�����!�����'����(�)�
�	�#�>������	 ��
�	� ������� � ��!��� � 	� � ���)���� � ��	���� � ���� � ��� �������
��	 ���	���	���&&�#�>	��)�	�����	����������������	!��������0
)������������������)������������ �����	�������	����/���#�
>� 	�������
����������A	���	
�����+�������(��������;���)
�������������	 ���	��#

��
��	������������	 ����	�����������!����	��������	������!	0
����	�!�����������'���������	������	 ���	�������!�����'���
(�)�
�	��	���&&������	������������)����	�!������������!������
��� � A�)������� � �� � +���/��� � 3�!	����	�!� � ������� � ���
��������	�� � ��� � ����	��� � ������� � ��	 ���	�� � 	� � ���!��#
+	�����&&������������������������������	������)��	�	����������
*���	�����������)�����+�	������,����������+�	�������������
�'����(�)�
�	�#�>��	�������
����������A	���	
�����+������
(������� ;���) �� ������� ��	 ���	�� ��� �	�)�	���� ��0
������ 	�������� 	������)���������� � �����	�� ��
�	����/������������!	������������������	�����)�����0
�����
����/��������	��������#

���� �����	�������	������	������)���������/	�������A�)�������
�� � +���/��� � 3�!	����	�!� � ������� � �� � ��������	�� � ����
����	��� ����������	 ���	���	�����!�����'����(�)�
�	�#�>�
����	 ����	�����������!����	��������	������!	����	�!����������
�'���������	������	 ���	���	��
==?������	�������������!����
	� � ����/��� � ������� � ����� ��� �������� ���	 ���	�� � 	� �
==%#�
�����
==% ��
===� ��� �/��"������� � ���������� ��� � *:(*,�
(����� 	� �������# >	� �)�	���� � 	�������� � 	������ ��)����	�!�
������������)�������������������	����/���� /	�����������0
)��	���� � �� � ���	!� � ��� �)���������� � � �����	��# � >� � 	� � ��
���
�� � �� � ��� � A	���	
���� � +������ � (������� � ;���) � ��
����������	 ���	��#

50

Chapter 5

Quality Assurance in
Performance: Evaluating Mono
Benchmark Results

Tomáš Kalibera,
Lubomı́r Bulej,
Petr Tůma

Contributed paper at Second International Workshop on
Software Quality (SOQUA 2005) [2].

In Quality of Software Architectures and Software Quality,
published by Springer-Verlag,
LNCS 3712,
pages 271–288,
ISSN 0302-9743,
September 2005.

The original version is available electronically from the pub-
lisher’s site at http://dx.doi.org/10.1007/11558569 20.

51

http://dx.doi.org/10.1007/11558569_20

Quality Assurance in Performance: Evaluating

Mono Benchmark Results

Tomas Kalibera1, Lubomir Bulej1,2, and Petr Tuma1

1 Distributed Systems Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranske nam. 25, 118 00 Prague, Czech Republic

phone +420-221914267, fax +420-2219143232
{kalibera,bulej,tuma}@nenya.ms.mff.cuni.cz

2 Institute of Computer Science, Czech Academy of Sciences
Pod Vodarenskou vezi 2, 182 07 Prague, Czech Republic

phone +420-266053831
bulej@cs.cas.cz

Abstract. Performance is an important aspect of software quality. To
prevent performance degradation during software development, perfor-
mance can be monitored and software modifications that damage perfor-
mance can be reverted or optimized. Regression benchmarking provides
means for an automated monitoring of performance, yielding a list of
software modifications potentially associated with performance changes.
We focus on locating individual modifications as causes of individual per-
formance changes and present three methods that help narrow down the
list of modifications potentially associated with a performance change.
We illustrate the entire process on a real world project.

1 Introduction

The ever-increasing amount of available computing power is closely followed
by increasing scale and complexity of software systems, which in turn causes
increase in the size of development teams producing the software. For various
reasons, be it a distributed development model, which makes communication
and coordination difficult, or the Extreme Programming [1] approach, which
prefers rewriting code and rigorous testing to detailed analysis of all possible
requirements, the development of software puts more and more emphasis on
quality assurance.

Both the distributed development and the Extreme Programming approaches
depend on regular testing of all components of the developed software, which
is often automated and performed either on a regular basis, such as every day,
every week, or as soon as a change is introduced into the source code management
system. This testing process is known as regression testing.

The current practice typically limits the testing to functional correctness
and robustness of the code and neglects an important aspect of quality, which

52

is performance. Regression benchmarking fills the gap by extending the regres-
sion testing practice with automatic benchmarking and evaluation of software
performance [2, 3].

Regression benchmarking requires the testing process to be fully automatic,
which includes downloading and building the software, and executing the bench-
marks in a robust environment. The execution environment must be able to
handle most of the typical failure scenarios to allow running without systematic
supervision. These requirements alone constitute a technical challenge, if only
because the executed software is under development, where deadlocks, crashes,
or infinite loops can be expected, but their occurrence cannot be easily predicted.
Often, the same program repeatedly executed under (to a maximum possible and
reasonable extent) identical conditions finishes with success in one case and with
failure in another.

Many of these problems have been already solved for the purpose of regres-
sion testing, yet in case of regression benchmarking, the goal is also to minimize
the influence of undesirable effects on the benchmark results. During benchmark
execution, there should be no other users of the system, minimum number of
concurrently running system services, minimum or preferably no network com-
munication unrelated to the benchmark, and no substantial changes to the con-
figuration of the system. Also, the monitoring of benchmarks must not be too
intrusive, etc.

We have elaborated the requirements and described the design of a plat-
form independent environment for automatic execution of benchmarks in [4]. At
present, the benchmarking environment is under development.

As an experimental testbed, we have created a simple system for regression
benchmarking of Mono [5], which is being developed by Novell as an open source
implementation of Common Language Infrastructure specification [6], known as
the .Net platform. The Mono implementation of CLI comprises a C# compiler,
a virtual machine interpreting the Common Intermediate Language instructions,
and the implementation of runtime classes.

Since August 2004, the system monitors the performance of daily develop-
ment snapshots of Mono on the Linux/IA32 platform, using four benchmarks
focused at .Net remoting and numeric computing. The results are updated on
daily basis and publicly available on the web of the project [7]. The currently
used benchmarks do not cover all the functionality of Mono, but rather serve as a
test bed for developing methods for detecting performance changes and locating
their causes.

Compared to the envisioned generic benchmarking environment, the system
for benchmarking Mono is less universal, depends on the Unix/Linux environ-
ment, and is not distributed. Nevertheless, its operation is fully automatic and
provides experience which is used to drive the design and implementation of the
environment described in [4].

Software projects that employ regular and automated benchmarking, such
as [8] or [9], typically focus on tracking the performance of the particular project
and lack the automatic detection of performance changes. The automatic detec-

53

tion of performance changes is also missing in other related projects, such as the
generic framework for automated testing [10] and the framework for execution
and advanced analysis of functionality tests [11]. The foundations of a generic
environment for automated benchmarking in grids are implemented in a discon-
tinued project [12]. We are not aware of any other project that would support
automatic detection of performance changes and location of their causes.

The rest of the paper has the following structure. Section 2 describes the
methods for automatically detecting performance changes, while Section 3 deals
with identifying the source code modifications causing the performance changes
and provides an analysis of regressions identified by the regression testing system.
Section 4 concludes the paper and provides an outlook on future work.

2 Automatic Detection of Regressions

Regression benchmarking requires automatic analysis of benchmark results to
discover performance changes, be it performance regressions or improvements.
The complexity of contemporary platforms and software causes the durations
of operations measured by a benchmark to differ each time the operations are
executed, making it impossible to discover performance changes simply by com-
paring the durations of the same operations in consecutive versions of software.
The differences in operation durations often exhibit random character, which can
originate for example in the physical processes of hardware initialization, or in
the intentionally randomized algorithms such as generators of unique identifiers
and subsequent hashing.

Typically, the operations measured by a benchmark are therefore repeated
multiple times and the durations are averaged. The precision of such a result
can be determined if the the durations are independent identically distributed
random variables. Unfortunately, the requirements of independence and identi-
cal distribution are often violated. In Section 2.2, we describe several ways of
processing the benchmark data which help to satisfy the requirements without
distorting the results.

Another frequently overlooked effect of the complexity of contemporary plat-
forms and software is the influence of random initial conditions on the durations
of operations measured by a benchmark [13]. It is generally impossible to dis-
cover performance changes even by comparing the averaged durations of the
same operations in consecutive versions of software, because the averaged dura-
tions differ each time the benchmark is executed. The difference is not related
to the number of samples and therefore cannot be overcome by increasing the
number of samples.

Regression benchmarking thus requires not only repeating the operations
measured by the benchmark within the benchmark execution, but also repeating
the execution of the benchmark within the benchmark experiment. The precision
of the averaged durations can then be calculated as outlined in Section 2.1. Each
execution of a benchmark during a benchmark experiment, however, increases

54

the overall cost of the experiment. That is mainly due to initialization and warm-
up phases of a benchmark, which are costly in terms of time but collect no
data. During the benchmark warm-up, operation durations can be influenced by
transitory effects such as initialization of the tested software, operating system
or hardware. Ignoring this fact in analysis can lead to incorrect results, as shown
in [14].

The number of samples in a benchmark run and the number of benchmark
executions during a benchmark experiment both contribute to the precision of
the result of a benchmark experiment. The contribution of each of the compo-
nents depends on the character of the developed software. Because the most
costly factor of a benchmark run is the initialization and warm-up, our objective
is to minimize the number of benchmark runs and maximize the number of sam-
ples collected in each run. From this naturally follows the incentive to determine
the optimal number of samples that should be collected in a single benchmark
run and beyond which increasing the number of samples does not contribute to
the precision of the result anymore. After that, as explained in Section 2.1, we
only need to determine the number of benchmark runs required to achieve the
desired precision.

Knowing the precision of the result of a benchmark experiment is important
so that a comparison of results that differ by less than their respective precision
is not interpreted as a change in performance. Detection of performance changes
in regression benchmarking can be carried out using the approach described in
Section 2.3.

Digressing somewhat from the outlined approach of executing multiple mea-
surements and collecting multiple samples, we can also consider reducing the
variance of the samples by modifying the benchmark experiment in ways that
remove the sources of variance. Intuitively, things such as device interrupts,
scheduler events and background processes are all potential sources of variance
that could be disabled, minimized or stopped. The sources of variance, however,
may be not only difficult to identify [15, 16], but also inherent to the benchmark
experiment and therefore impossible to remove. Coupled with the fact that the
sources of variance would have to be identified and removed individually for each
benchmark experiment, this suggests that sufficiently reducing the variance of
the samples by modifying the benchmark experiment is generally impossible. For
illustration, a checklist of precautions to be taken to minimize variance in micro-
benchmarking in FreeBSD is given in [17]. The complexity of these precautions
demonstrates the infeasibility of this approach.

It should also be pointed out that to verify whether the sources of variance
were removed, executing multiple measurements and collecting multiple samples
is necessary anyway. Finally, the relevance of the modified benchmark experiment
to practice, where the sources of variance are present, may be questionable.

2.1 Statistics Behind the Scenes

We presume that the durations of operations measured by a benchmark in a run
are random, independent and identically distributed, that the distributions of

55

the durations from different runs can differ in parameters, and that the mean
values of the distributions from different runs are independent identically dis-
tributed random variables. The benchmark result is the average of all measured
operation durations from all runs. We consider the benchmark precision to be the
confidence with which the result estimates the mean value of the distribution.
Specifically, we define the precision as the half width of the confidence interval
for the mean, for a given fixed confidence level.

For each j = 1..m as a benchmark run with i = 1..n measurements, the
random durations of operations Rji, for i = 1..n and fixed j, are independent
identically distributed with a distribution that is described by the two traditional
parameters: the mean and the variance. The conditional mean and variance of
the distribution are E(Rj1|µj , σ

2
j) = µj < ∞, var(Rj1|µj , σ

2
j) = σ2

j < ∞.
The means µj are independent identically distributed random variables for

each j = 1..m as a benchmark run, E(µ1) = µ < ∞, var(µ1) = ρ2 < ∞.
The result of a benchmark experiment is

Rji =
1

mn

m∑
j=1

n∑
i=1

Rji

as an estimate of µ. Note that µ is also mean of Rji, if we do not know the
specific µj , since

E (Rji) = E (E (Rji|µj)) = µ.

From CLT, the distribution of µj as an estimate of µ is asymptotically nor-
mal:

1

m

m∑
j=1

µj = µj ∼ N

(
µ,

ρ2

m

)
. (1)

From CLT, the average Mj of operation durations from run j has asymptot-
ically the normal distribution:

Mj =
1

n

n∑
i=1

Rji|µj ∼ N

(
µj ,

σ2
j

n

)
.

From the properties of the normal distribution, it follows that

1

m

m∑
j=1

Mj = M j; M j |µj ∼ N

(
µj ,

∑m

j=1
σ2

j

nm2

)
. (2)

It can be shown that from (1), (2) and the known fact that the convolution
of Gaussians is again a Gaussian, it follows that:

M j ∼ N

(
µ,

ρ2

m
+

∑m

j=1
σ2

j

nm2

)
. (3)

56

The confidence interval for the estimate of µ can be constructed from (3).
The result of a benchmark experiment therefore is Rji = M j and with the
probability 1− α, the precision pr of the result value is

pr = u1−α

2
·

√
ρ2

m
+

∑m

j=1
σ2

j

nm2
, (4)

where u are quantiles of the standard normal distribution.

This result holds asymptotically for sufficiently large n and sufficiently large
m, needed for CLT to apply. The unknown variance ρ2 of the means µj can be
approximated by the variance of the averages of samples from individual runs,
which can be estimated using the S2 estimate:

S2
ρ =

1

m− 1

m∑
j=1

[(
1

n

n∑
i=1

Rji

)
−Rji

]2

.

The variance of the samples in a run σ2
j is still unknown. If the variance of

the individual runs was the same, σ2
j = σ2, we could estimate it as:

S2
σ =

1

m(n− 1)

m∑
j=1

n∑
i=1

(
Rji −

1

n

n∑
i=1

Rji

)2

to get the precision of the result value:

prσ = u1−α

2
·

√
nS2

ρ + S2
σ

mn
.

If we know the maximum variance σ2
max of the samples in a run, we can use

a similar approach and estimate the upper bound of the precision pr (lowest
possible precision).

Note also that the formula for pr does not rely on the individual values of
variance, but only on the average variance. We can therefore use the formulas
for the precision prσ and the variance estimate S2

σ for large m, as implied by
the Weak Law of Large Numbers, except for the precision of the estimate itself,
which is not included in the formula for prσ.

From (4) it follows that increasing the number of runs m always improves the
precision of the result, while increasing the number of measurements in a run n

improves the precision only to a certain limit. In practice, each benchmark run
has to invoke the measured operation w times discarding the results to warm-up,
prior to measuring n operation durations. Usually there is only a limited time c

(cost) for each experiment, which can be expressed as the number of all invoked
operations: c = (w+n)m. The question is how to choose m and n to achieve the
best precision pr for a given c. From (4) we can derive that the optimal number
of (non-warmup) measurements in a benchmark run is

57

nopt =

√
wS2

σ

S2
ρ

.

The optimal strategy to achieve the desired precision of the result is to first
increase n up to nopt, and only then increase m. However, determining nopt

requires the knowledge of the estimates S2
σ and S2

ρ . An experiment can therefore
be split into two parts – in the first part, a sufficient number of runs and number
of measurements in a run are chosen to get good estimates S2

σ and S2
ρ . The

benchmark precision is also calculated, and when it is not sufficient, nopt is
calculated using the variance estimates and a second part of the experiment is
performed which only invokes nopt operations in each run.

2.2 Handling the Auto-Dependence and Outliers

When determining the result of a benchmark experiment and its precision as
described in Section 2.1, the key assumption is that the samples of the dura-
tions of operations in a single benchmark run are independent and identically
distributed. Our experience suggests that these assumptions do not generally
hold. If the benchmark data is found to violate the assumptions, a simple trans-
formation can be often found that will remedy the situation without significant
impact on the results.

The assumption of independence can be easily verified using lag plots. The
lag plot is generally used for visually inspecting auto-dependence in time series
by plotting the original data against lagged version of themselves to check for
any identifiable structure in the plot. For example, in one of the benchmarks
used by the Mono regression benchmarking system, the data contained four
clearly visible clusters. Inspection using lag plot suggested that the values from
the individual clusters were systematically interleaved. We have numbered the
clusters and transformed the original data so that each value was replaced by
the number of the cluster it belonged to, which made the interleaving pattern
in the data obvious and confirmed the suspected violation of the independence
assumption.

We solve the auto-dependence problem by resampling the original data. For
each benchmark run, we generate a reduced subset from the original data using
sampling with replacement. The use of sampling with replacement is important,
because it eliminates a potential dependency on the number of samples in case
of systematic interleaving of values from different clusters. From the resampled
data, we can calculate the estimates of mean and the variance of the distribution
of the values collected by the benchmark, as outlined in Section 2.1.

The assumption that the samples come from the same distribution is typi-
cally violated in presence of outliers in the collected data. In benchmarking, the
nature of the outliers is such that under certain circumstances, the duration of
an operation can be as much as several orders of magnitude longer than in most
other cases. The exact circumstances leading to the occurrence of outliers are

58

difficult to identify, but some of the outliers can have a plausible explanation [3].
Even so, explicitly removing the outliers from the data is typically impossible,
because we do not have enough information to discriminate between valid data
and outliers.

The outliers can significantly influence the results, especially when they are
based on sample average or variance. The preferred solution is to use robust
statistics such as the median or median absolute deviation in place of the tradi-
tional but fragile sample average or sample variance [14, 3]. The main drawback
of using robust statistics lies with the fact that the analysis of their precision is
difficult compared to sample average or variance.

To handle outliers and auto-dependence in the benchmark data from the
Mono project, we use a combination of resampling and robust statistics, but
still report sample average or variance as the result of a benchmark run, which
makes the analysis of the precision easier.

If there are any outliers in the original data, they will likely be also in the
resampled subset, which means that the sample average or variance will be in-
fluenced by the outliers. We therefore generate a high number of reduced subsets
from the original data, and compute the required estimators using the generated
subsets. From the resulting set of sample averages or sample variances, we select
the median to obtain a single estimate of the mean or the variance from a single
benchmark run. These values still have the nature of the original sample mean
or variance, because they were computed using the data from one of the subsets.

2.3 Detecting and Quantifying the Changes

Detecting changes in performance between different version of the software in
development requires comparing benchmark results for the two versions. As out-
lined in Section 2.1, processing the benchmark data in order to carry out the
comparison is not so trivial a task.

Comparing performance of two versions of the same software requires com-
paring the mean values of the respective distributions of samples obtained by
running the benchmarks. Since the true means are unknown, the comparison has
to be carried out on their estimates and take into account the precision of the
estimates. Benchmarks provide the estimate of the distribution mean as a grand
average of average durations of an operation execution in multiple benchmark
runs and the precision of the estimate as a confidence interval for the grand
average.

When using confidence intervals to compare unpaired samples from the Nor-
mal distribution, Jain [18] suggests a method which considers the distribution
means different when the confidence intervals of sample averages do not overlap,
and equal when the center of either of the confidence intervals falls in the other.
In the last case, when the confidence intervals overlap, the decision is based on
the t-test.

For the purpose of regression benchmarking, the algorithm for detecting
changes in performance must avoid or minimize the amount of false alarms,

59

otherwise the whole system would be useless. Therefore, our system only reports
performance change if the confidence intervals do not overlap.

The developers, as the users of the regression benchmarking system would
be mainly interested in performance regressions resulting from an inappropriate
modification to the source code. Not all the changes in performance are caused
by inappropriate modifications though.

Changing the name of a variable or an identifier may change the binary lay-
out of the executable, thereby changing the layout of the executable in memory,
which may result in a performance change [16]. While not necessarily true in gen-
eral, the cosmetic code modifications such as the renaming of identifiers can be
assumed to have smaller impact on performance than a modification introducing
a real performance regression into the code.

In addition to detecting a performance change, it is therefore desirable to
assess the magnitude of the change, so that the developers can focus on perfor-
mance regressions they consider important. We report the magnitude of a per-
formance change as a ratio of the distance between the centers of the confidence
intervals for the older and the newer version and the center of the confidence
interval for the older version.

2.4 Automatically Detected Regressions

The method for detecting performance changes has been applied on the results
of TCP Ping, HTTP Ping, FFT Scimark and Scimark benchmarks compiled and
executed under Mono.

The TCP Ping and HTTP Ping benchmarks measure the duration of a re-
mote method execution using .Net remoting, the client and server being different
processes running on the same machine. The remote method is invoked with a
string argument, which it returns unchanged. The time is measured at the client
side and includes the time spent processing the request on the server side. The
TCP Ping uses the TCP Channels, while the HTTP Ping uses the HTTP Chan-
nels of the .NET remoting infrastructure.

The Scimark benchmark is the C# version of the Scimark2 numerical bench-
mark [19, 20]. The benchmark evaluates the performance of several numeri-
cal algorithms, such such as Fast Fourier Transform, Jacobi Successive Over-
Relaxation, Monte Carlo Integration, Sparse Matrix Multiplication, and Dense
Matrix Factorization.

The original benchmark does not measure the computations repeatedly, which
means that the results come from the warm-up phase of a benchmark and can
be influenced by initialization noise [14]. Based on the original benchmark, we
have created the FFT benchmark, which only contains the code for computing
the Fast Fourier Transform. The modified benchmark performs the execution
repeatedly and can provide data collected after the warm-up phase has passed,
which is more suitable for regression benchmarking.

All benchmarks are run on two configurations of Mono. The first configura-
tion has only the default optimizations turned on in the just-in-time compiler,

60

the other has all optimizations turned on. The performance has been monitored
from August 2004 till April 2005.

Within that period, the regression benchmarking system has found a number
of performance changes. The most notable change was a 99% improvement in
performance of the TCP Ping benchmark, which occurred in a development
version of Mono from December 20, 2004. The performance changes in the TCP
Ping benchmark are shown in Figure 1 and summarized in the table beside the
plot.

The detected performance changes are marked by bold black lines, confi-
dence intervals are marked by grey lines. The table shows the magnitude of the
changes, along with dates of versions between which a performance change oc-
curred (positive number represents an increase in the duration of a method and
thus a performance regression).

A number of significant performance changes has been identified using the
HTTP Ping benchmark and the FFT benchmark, see Figure 2 and Figure 3
respectively. The modifications of source code, which cause some of the more
significant changes are analyzed in Section 3.

TCP Ping

99
%

 C
on

fid
en

ce
 In

te
rv

al
 fo

r
T

im
e

M
ea

n
[m

s]

0
20

40
60

80

Version

20
04

−
08

−
09

20
04

−
08

−
11

20
04

−
08

−
13

20
04

−
08

−
17

20
04

−
08

−
19

20
04

−
08

−
23

20
04

−
08

−
25

20
04

−
08

−
27

20
04

−
08

−
31

20
04

−
09

−
02

20
04

−
09

−
07

20
04

−
09

−
10

20
04

−
09

−
13

20
04

−
09

−
15

20
04

−
09

−
20

20
04

−
09

−
22

20
04

−
09

−
24

20
04

−
09

−
28

20
04

−
09

−
30

20
04

−
10

−
04

20
04

−
10

−
06

20
04

−
10

−
08

20
04

−
10

−
12

20
04

−
10

−
15

20
04

−
10

−
21

20
04

−
10

−
26

20
04

−
10

−
29

20
04

−
11

−
02

20
04

−
11

−
04

20
04

−
11

−
30

20
04

−
12

−
05

20
04

−
12

−
08

20
04

−
12

−
21

20
05

−
01

−
04

20
05

−
01

−
06

20
05

−
01

−
10

20
05

−
01

−
12

20
05

−
01

−
20

20
05

−
01

−
31

20
05

−
02

−
03

20
05

−
02

−
07

20
05

−
02

−
09

20
05

−
02

−
12

20
05

−
02

−
14

20
05

−
02

−
25

20
05

−
03

−
02

20
05

−
03

−
04

20
05

−
03

−
08

20
05

−
03

−
11

20
05

−
03

−
17

20
05

−
03

−
22

20
05

−
03

−
28

20
05

−
03

−
30

20
05

−
04

−
01

20
05

−
04

−
05

20
05

−
04

−
07

20
05

−
04

−
12

20
05

−
04

−
15

20
05

−
04

−
19

20
05

−
04

−
21

20
05

−
04

−
27

20
05

−
04

−
29

Newer Older Change

Version Version

2004-09-03 2004-09-02 0.03%

2004-12-20 2004-12-08 -99.37%

2005-02-02 2005-01-31 6.53%

2005-02-28 2005-02-25 -5.02%

2005-03-02 2005-02-28 -2.77%

2005-03-04 2005-03-03 -4.87%

2005-03-07 2005-03-04 2.38%

Fig. 1. Changes detected in TCP Ping mean response time

3 Analysis of Discovered Regressions

Regression benchmarking uses the method for detecting changes in performance
from Section 2 on daily versions of software subject to modifications to yield a

61

HTTP Ping

99
%

 C
on

fid
en

ce
 In

te
rv

al
 fo

r
T

im
e

M
ea

n
[m

s]

10
11

12
13

14
15

Version

20
04

−
08

−
09

20
04

−
08

−
11

20
04

−
08

−
13

20
04

−
08

−
18

20
04

−
08

−
20

20
04

−
08

−
24

20
04

−
08

−
26

20
04

−
08

−
30

20
04

−
09

−
01

20
04

−
09

−
03

20
04

−
09

−
08

20
04

−
09

−
11

20
04

−
09

−
13

20
04

−
09

−
15

20
04

−
09

−
20

20
04

−
09

−
22

20
04

−
09

−
24

20
04

−
09

−
28

20
04

−
09

−
30

20
04

−
10

−
04

20
04

−
10

−
06

20
04

−
10

−
08

20
04

−
10

−
12

20
04

−
10

−
14

20
04

−
10

−
18

20
04

−
10

−
20

20
04

−
10

−
25

20
04

−
10

−
27

20
04

−
10

−
30

20
04

−
11

−
03

20
04

−
11

−
05

20
04

−
12

−
01

20
04

−
12

−
21

20
05

−
01

−
04

20
05

−
01

−
06

20
05

−
01

−
10

20
05

−
01

−
12

20
05

−
01

−
20

20
05

−
01

−
31

20
05

−
02

−
03

20
05

−
02

−
07

20
05

−
02

−
09

20
05

−
02

−
12

20
05

−
02

−
14

20
05

−
02

−
25

20
05

−
03

−
02

20
05

−
03

−
04

20
05

−
03

−
08

20
05

−
03

−
11

20
05

−
03

−
17

20
05

−
03

−
22

20
05

−
03

−
28

20
05

−
03

−
30

20
05

−
04

−
01

20
05

−
04

−
05

20
05

−
04

−
07

20
05

−
04

−
12

Newer Older Change

Version Version

2004-08-17 2004-08-13 -9.67%

2004-08-18 2004-08-17 -10.44%

2004-08-23 2004-08-20 -2.95%

2004-09-03 2004-09-02 3.4%

2004-09-07 2004-09-03 -4.57%

2004-10-15 2004-10-14 -4.29%

2004-10-29 2004-10-27 3.96%

2004-11-05 2004-11-04 -4.9%

2004-11-30 2004-11-05 -2.87%

2004-12-20 2004-12-01 19.64%

2005-03-02 2005-02-28 -7.81%

2005-03-07 2005-03-04 7.77%

2005-04-05 2005-04-04 39.29%

2005-04-06 2005-04-05 1.77%

2005-04-08 2005-04-07 -3.58%

Fig. 2. Changes detected in HTTP Ping mean response time

FFT SciMark

99
%

 C
on

fid
en

ce
 In

te
rv

al
 fo

r
T

im
e

M
ea

n
[m

s]

18
0

19
0

20
0

21
0

22
0

23
0

24
0

Version

20
04

−
08

−
06

20
04

−
08

−
10

20
04

−
08

−
12

20
04

−
08

−
16

20
04

−
08

−
18

20
04

−
08

−
20

20
04

−
08

−
24

20
04

−
08

−
26

20
04

−
08

−
30

20
04

−
09

−
01

20
04

−
09

−
03

20
04

−
09

−
08

20
04

−
09

−
11

20
04

−
09

−
13

20
04

−
09

−
15

20
04

−
09

−
20

20
04

−
09

−
22

20
04

−
09

−
24

20
04

−
09

−
28

20
04

−
09

−
30

20
04

−
10

−
04

20
04

−
10

−
06

20
04

−
10

−
08

20
04

−
10

−
12

20
04

−
10

−
14

20
04

−
10

−
18

20
04

−
10

−
20

20
04

−
10

−
25

20
04

−
10

−
27

20
04

−
10

−
30

20
04

−
11

−
03

20
04

−
11

−
05

20
04

−
12

−
01

20
04

−
12

−
07

20
04

−
12

−
20

20
05

−
01

−
03

20
05

−
01

−
05

20
05

−
01

−
07

20
05

−
01

−
11

20
05

−
01

−
13

20
05

−
01

−
28

20
05

−
02

−
02

20
05

−
02

−
04

20
05

−
02

−
08

20
05

−
02

−
10

20
05

−
02

−
13

20
05

−
02

−
23

20
05

−
02

−
28

20
05

−
03

−
03

20
05

−
03

−
07

20
05

−
03

−
10

20
05

−
03

−
15

20
05

−
03

−
21

20
05

−
03

−
24

20
05

−
03

−
29

20
05

−
03

−
31

20
05

−
04

−
04

20
05

−
04

−
06

20
05

−
04

−
08

20
05

−
04

−
14

20
05

−
04

−
18

20
05

−
04

−
20

20
05

−
04

−
25

20
05

−
04

−
27

20
05

−
04

−
29

Newer Older Change

Version Version

2004-08-11 2004-08-10 23.43%

2004-08-16 2004-08-13 0.53%

2004-08-17 2004-08-16 -14.59%

2004-09-10 2004-09-08 5.9%

2004-09-29 2004-09-28 -13.81%

2004-12-05 2004-12-01 -0.44%

2004-12-20 2004-12-08 1.03%

2005-01-03 2004-12-21 -1.22%

2005-01-05 2005-01-04 -0.43%

2005-01-10 2005-01-07 -0.34%

2005-01-28 2005-01-20 9.71%

2005-03-04 2005-03-03 21.55%

2005-03-07 2005-03-04 -17.31%

2005-04-07 2005-04-06 7.73%

2005-04-08 2005-04-07 -5.83%

Fig. 3. Changes detected in FFT mean response time

62

list of versions of software where the performance changes first exhibited them-
selves. Performance changes are either due to modifications that were done with
the intent of improving performance, or due to modifications that were done
for other reasons and changed performance inadvertently. In the former case,
the modifications that caused the performance changes are known and the list
can merely confirm them. In the latter case, the modifications that caused the
performance changes are not known and the list can help locate them.

It is necessary to correlate the performance changes with the modifications,
so that the modifications can be reviewed to determine whether to revert them,
to optimize them, or to keep them. Locating a modification that caused a per-
formance change is, however, difficult in general.

An extreme example of a modification that is difficult to locate is a change
of an identifier that leads to a change of the process memory layout, which leads
to a change in the number of cache collisions, causing a significant performance
change [16]. Locating such a modification is not only difficult, but also useless,
because the performance change will be tied to a specific platform and a specific
benchmark and not reliably reversible.

Locating a modification that caused a performance change is also difficult in
large and quickly evolving software projects, where the number of benchmarks
that cover various features of the software will range in tens or hundreds, and
where the number of modifications between consecutive versions will be high.

Achieving a fully automated correlation of the performance changes with
the modifications seems unlikely. Given that the correlation is indispensable
for practical usability of regression benchmarking, we focus on devising methods
that aid in a partially automated correlation. Specific methods that narrow down
the list of modifications potentially associated with a performance change are
described in sections 3.1, 3.2 and 3.3.

3.1 Modifications as Differences in Sources

An obvious starting point for correlating a performance change with a modi-
fication is the list of modifications between the version of software where the
performance change first exhibited itself and the immediately preceding version.
This list is readily available as an output of version control tools such as Con-
current Versions System or Subversion or text comparison utilities such as diff.

The list of modifications between consecutive versions is often large. Figure 4
shows the size of modifications between consecutive versions of Mono, with per-
formance changes detected using the method from Section 2 denoted by triangles
pointing upwards for regressions and downwards for improvements. The size of
modifications is calculated as a sum of added, deleted and changed source lines.
The scale of the graph is logarithmic, namely each displayed value is the decadic
logarithm of the modification size plus one.

The version control tools or text comparison utilities typically output a list
of physical modifications to source files and blocks of source lines. The knowl-

63

edge of physical modifications is less useful as it puts together multiple logically
unrelated modifications that were done in parallel. More useful is the knowl-
edge of logical modifications as groups of physical modifications done with a
specific intent, such as adding a feature or fixing a bug. The knowledge of the
logical modifications, ideally with their intent, helps correlating the performance
changes with the modifications.

The knowledge of logical modifications can be distilled from the output of
version control tools when the versions are annotated by a change log. A change
log entry typically contains a description of the intent of modifications. Given
that a change log entry is associated with a commit of a new version, this requires
maintaining a policy of a separate commit for each logical modification.

3.2 Statically Tracking Modifications

In large and quickly evolving software projects, the number of modifications
between consecutive versions will be high, even when logical rather than physical
modifications are considered. To further narrow down the list of modifications
potentially associated with a performance change, we can use the fact that a
benchmark that covers a specific feature of a software typically uses only the part
of the software that provides the feature. In general, this allows us to consider
only the modifications that can influence the result of the benchmark. Given that
determining whether a modification can influence the result of a benchmark
is difficult, we consider only the modifications that influence the part of the
software used by the benchmark instead.

Determining the modifications that influence the part of a software used by a
benchmark begins by obtaining the list of the called functions. This can be done
either by analyzing the sources of the benchmark and the software, or by running
the benchmark and collecting the list of the called functions by a debugger or
a profiler. The called functions are then associated with the source files that
implement them, and only the modifications that touch these source files are
considered.

Alternatively, only the modifications that touch the called functions could be
considered, which would further narrow down the list of modifications potentially
associated with a performance change.

Applying this method in case of Mono is complicated, because the result of a
benchmark depends not only on the application libraries, but also on the virtual
machine and the compiler, which are subject to modifications. Obtaining the
list of called functions is easiest for the application libraries, where the tracing
function of the virtual machine can be used. Obtaining the same list for the
virtual machine and the compiler is more difficult, because a debugger or a pro-
filer has to be used. This makes regression benchmarking more time consuming.
Furthermore, the usefulness of the list for the functions of the compiler is rather
limited, because of the indirect nature of the influence of a compiler function on
the result of the benchmark.

64

In case of the HTTP Ping and TCP Ping benchmarks, determining the mod-
ifications that influence the parts of Mono used by the benchmarks narrowed
down the list of modifications significantly. For a performance regression of al-
most 40% in the HTTP Ping benchmark between Mono versions from April 4
and April 5, the list of modifications contained 39 physical modifications of the
application libraries, but only 7 physical modifications belonging to 4 logical
modifications influenced the parts of Mono used by the benchmark.

Figure 5 shows how considering only the modifications that can influence
the result of a benchmark by means discussed above narrows down the size of
modifications between consecutive versions of Mono from figure 4 for the TCP
Ping benchmark. Figure 5 also demonstrates that the magnitude of detected
performance changes needs not to follow the size of the modifications, even
when only modifications that can potentially influence performance are taken
into account.

MONO Diff Sizes and Performance Changes of TCP Ping

Lo
ga

rit
hm

ic
 D

iff
 S

iz
e

(N
um

be
r

of
 L

in
e

C
ha

ng
es

)

0
1

2
3

4
5

6

Version

20
04

−
08

−
09

20
04

−
08

−
11

20
04

−
08

−
13

20
04

−
08

−
17

20
04

−
08

−
19

20
04

−
08

−
23

20
04

−
08

−
25

20
04

−
08

−
27

20
04

−
08

−
31

20
04

−
09

−
02

20
04

−
09

−
07

20
04

−
09

−
10

20
04

−
09

−
13

20
04

−
09

−
15

20
04

−
09

−
20

20
04

−
09

−
22

20
04

−
09

−
24

20
04

−
09

−
28

20
04

−
09

−
30

20
04

−
10

−
04

20
04

−
10

−
06

20
04

−
10

−
08

20
04

−
10

−
12

20
04

−
10

−
15

20
04

−
10

−
21

20
04

−
10

−
26

20
04

−
10

−
29

20
04

−
11

−
02

20
04

−
11

−
04

20
04

−
11

−
30

20
04

−
12

−
05

20
04

−
12

−
08

20
04

−
12

−
21

20
05

−
01

−
04

20
05

−
01

−
06

20
05

−
01

−
10

20
05

−
01

−
12

20
05

−
01

−
20

20
05

−
01

−
31

20
05

−
02

−
03

20
05

−
02

−
07

20
05

−
02

−
09

20
05

−
02

−
12

20
05

−
02

−
14

20
05

−
02

−
25

20
05

−
03

−
02

20
05

−
03

−
04

20
05

−
03

−
08

20
05

−
03

−
11

20
05

−
03

−
17

20
05

−
03

−
22

20
05

−
03

−
28

20
05

−
03

−
30

20
05

−
04

−
01

20
05

−
04

−
05

20
05

−
04

−
07

20
05

−
04

−
12

20
05

−
04

−
15

20
05

−
04

−
19

20
05

−
04

−
21

20
05

−
04

−
27

20
05

−
04

−
29

Fig. 4. Diff sizes of all sources with performance changes detected by TCP Ping bench-
mark

Even when considering only the modifications that can influence the result of
a benchmark, it can be difficult to determine which of the logical modifications
potentially associated with a performance change is the one that caused the
change. When the descriptions of the intent of modifications from the change

65

Diff Sizes of Used Library Sources and Performance Changes of TCP Ping

Lo
ga

rit
hm

ic
 D

iff
 S

iz
e

(N
um

be
r

of
 L

in
e

C
ha

ng
es

)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Version

20
04

−
11

−
30

20
04

−
12

−
05

20
04

−
12

−
08

20
04

−
12

−
21

20
05

−
01

−
04

20
05

−
01

−
06

20
05

−
01

−
10

20
05

−
01

−
12

20
05

−
01

−
20

20
05

−
01

−
31

20
05

−
02

−
03

20
05

−
02

−
07

20
05

−
02

−
09

20
05

−
02

−
12

20
05

−
02

−
14

20
05

−
02

−
25

20
05

−
03

−
02

20
05

−
03

−
04

20
05

−
03

−
08

20
05

−
03

−
11

20
05

−
03

−
17

20
05

−
03

−
22

20
05

−
03

−
28

20
05

−
03

−
30

20
05

−
04

−
01

20
05

−
04

−
05

20
05

−
04

−
07

20
05

−
04

−
12

20
05

−
04

−
15

20
05

−
04

−
19

20
05

−
04

−
21

20
05

−
04

−
27

20
05

−
04

−
29

Fig. 5. Diff sizes of sources used by TCP Ping benchmark with detected performance
changes

log do not help, additional benchmark experiments can be used for correlating
the performance change with one of the modifications.

3.3 Experimentally Tracking Modifications

Given a list of logical modifications potentially associated with a performance
change and the version of software where the performance change first exhibited
itself, auxiliary versions of software can be created by reverting the modifications
one by one, or by applying the modifications one by one to the immediately
preceding version. Regression benchmarking of the auxiliary versions can help
determine which of the list of logical modifications is the one that caused the
performance change.

Applying this method consistently, regression benchmarking can consider
all logical modifications on daily versions of software one by one. While such
an approach can be automated, it makes regression benchmarking more time
consuming.

Alternatively, the modification most likely to be the one that caused the
performance change can be selected manually. A pair of auxiliary versions can
then be created, one by reverting the modification from the version of software
where the performance change first exhibited itself, another by applying the

66

modification to the immediately preceding version. Regression benchmarking of
the auxiliary versions can help confirm or reject the choice of modification.

This method was used on the performance regression of almost 40% in the
HTTP Ping benchmark between Mono versions from April 4 and April 5. The
list of modifications potentially associated with the regression was first narrowed
down to 4 logical modifications. Regression benchmarking has shown that the
modification that caused the regression was a rewrite of the function for con-
verting the case of a string.

This method was also used on the performance regression of almost 24%
in the FFT benchmark between Mono versions from August 10 and August
11. The FFT benchmark does not use the application libraries and the list of
changes potentially associated with the regression therefore concerned only the
virtual machine and the compiler. Regression benchmarking has shown that the
modification that caused the regression was introduction of a particular loop
optimization into the set of default optimizations performed by the just-in-time
compiler.

In case of the performance improvement of almost 17% in the FFT bench-
mark between Mono versions from March 4 and March 7, regression benchmark-
ing has shown that the modification that caused the improvement was a rewrite
of the function for passing control between native and managed code and con-
firmed the improvement.

Finally, by far the biggest performance improvement of almost 99% in the
TCP Ping benchmark between Mono versions from December 8 and December
20 was caused by a rewrite of the communication code to pass data in chunks
rather than byte by byte. Regression benchmarking confirmed the improvement.
Before this particular modification, the HTTP Ping benchmark reported smaller
duration of operations than the TCP Ping benchmark, which is intuitively a sus-
pect result. Eventually, similar dependencies between benchmark results could
also be described and tested.

It should be noted that while regression benchmarking can detect perfor-
mance regressions, it cannot detect performance problems that have been part
of the software prior to regression benchmarking. The passing of data byte by
byte rather than by chunks is an example of such a situation.

We can consider other methods that narrow down the list of modifications
potentially associated with a performance change. In case of Mono, these include
separate regression benchmarking of modifications that influence the compiler,
the modifications that influence the virtual machine, and the modifications that
influence the application libraries. These methods would apply to any other
platform with a compiler, virtual machine and application libraries, such as the
Java platform.

As described, the method of using logical modifications does not depend on
the software, but only on the versioning system. Although the implementation
of the method of tracing calls to application libraries and then locating sources
of the called methods is specific to the Mono platform, it can be implemented
for other platforms that use dynamic linking or have debuggers and debug in-

67

formation in files. The implementation is then only specific to the platform the
tested software uses.

A challenge for future work on regression benchmarking lies in automating
the methods from sections 3.1, 3.2 and 3.3, so that performance changes can be
routinely correlated with modifications.

4 Conclusion

We have developed a regression benchmarking environment that automatically
and reliably detects performance changes in software. The features of the envi-
ronment include a fully automated download, building and benchmarking of new
versions of software and statistically sound analysis of the benchmark results.
The environment is used to monitor daily versions of Mono, the open source
implementation of the .Net platform. From August 2004 to April 2005, the en-
vironment has detected a number of performance changes, 15 of those exceeding
10%, and 6 of those exceeding 20% of total performance.

The regression benchmarking environment makes the results of the analysis
of the benchmark results available on the web [7], giving the developers of Mono
the ability to check the impact of modifications on the performance of the daily
versions. The developers of Mono have reacted positively especially to the con-
firmation of modifications done with the intent of improving performance. Our
effort focuses on locating the modifications that caused inadvertent performance
changes, which currently requires a good knowledge of the software and therefore
an attention of the developers to be successful.

In sections 3.1, 3.2 and 3.3, we have proposed three methods that help narrow
down the list of modifications potentially associated with a performance change.
The three methods were applied on the daily versions of Mono to locate modi-
fications that caused 5 out of 15 performance changes exceeding 10%, 4 out of
6 of those exceeding 20% of total performance. While these methods have been
tested on the Mono platform, they can be implemented for other platforms as
well. They specifically do not depend on the tested software itself.

Future work on regression benchmarking includes extending the methods
from sections 3.1, 3.2 and 3.3, as well as making the methods automated, so that
correlating performance changes with modifications is less demanding. This is
necessary to help regression benchmarking achieve the same status as regression
testing in the software quality assurance process.

Acknowledgement. The authors would like to express their thanks to Jaromir
Antoch, Alena Koubkova and Tomas Ostatnicky for their help with mathemat-
ical statistics. This work was partially supported by the Grant Agency of the
Czech Republic projects 201/03/0911 and 201/05/H014.

References

1. Jeffries, R.E., Anderson, A., Hendrickson, C.: Extreme Programming Installed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2000)

68

2. Bulej, L., Kalibera, T., Tuma, P.: Repeated results analysis for middleware regres-
sion benchmarking. Performance Evaluation 60 (2005) 345–358

3. Bulej, L., Kalibera, T., Tuma, P.: Regression benchmarking with simple middle-
ware benchmarks. In Hassanein, H., Olivier, R.L., Richard, G.G., Wilson, L.L.,
eds.: International Workshop on Middleware Performance, IPCCC 2004. (2004)
771–776

4. Kalibera, T., Bulej, L., Tuma, P.: Generic environment for full automation of
benchmarking. In Beydeda, S., Gruhn, V., Mayer, J., Reussner, R., Schweiggert,
F., eds.: SOQUA/TECOS. Volume 58 of LNI., GI (2004) 125–132

5. Novell, Inc.: The Mono Project. http://www.mono-project.com (2005)
6. ECMA: ECMA-335: Common Language Infrastructure (CLI). ECMA (European

Association for Standardizing Information and Communication Systems), Geneva,
Switzerland (2002)

7. Distributed Systems Research Group: Mono regression benchmarking. http://-
nenya.ms.mff.cuni.cz/projects/mono (2005)

8. DOC Group: TAO performance scoreboard. http://www.dre.vanderbilt.edu/-
stats/performance.shtml (2005)

9. Prochazka, M., Madan, A., Vitek, J., Liu, W.: RTJBench: A Real-Time Java
Benchmarking Framework. In: Component And Middleware Performance Work-
shop, OOPSLA 2004. (2004)

10. Dillenseger, B., Cecchet, E.: CLIF is a Load Injection Framework. In: Workshop
on Middleware Benchmarking: Approaches, Results, Experiences, OOPSLA 2003.
(2003)

11. Memon, A.M., Porter, A.A., Yilmaz, C., Nagarajan, A., Schmidt, D.C., Natarajan,
B.: Skoll: Distributed continuous quality assurance. In: ICSE, IEEE Computer
Society (2004) 459–468

12. Courson, M., Mink, A., Marçais, G., Traverse, B.: An automated benchmarking
toolset. In Bubak, M., Afsarmanesh, H., Williams, R., Hertzberger, L.O., eds.:
HPCN Europe. Volume 1823 of Lecture Notes in Computer Science., Springer
(2000) 497–506

13. Kalibera, T., Bulej, L., Tuma, P.: Benchmark precision and random initial state.
In: accepted for 2005 International Symposium on Performance Evaluation of Com-
puter and Telecommunications Systems (SPECTS 2005). (2005)

14. Buble, A., Bulej, L., Tuma, P.: CORBA benchmarking: A course with hidden
obstacles. In: IPDPS, IEEE Computer Society (2003) 279

15. Hauswirth, M., Sweeney, P., Diwan, A., Hind, M.: The need for a whole-system
view of performance. In: Component And Middleware Performance workshop,
OOPSLA 2004. (2004)

16. Gu, D., Verbrugge, C., Gagnon, E.: Code layout as a source of noise in JVM
performance. In: Component And Middleware Performance Workshop, OOPSLA
2004. (2004)

17. The FreeBSD Documentation Project: FreeBSD Developers’ Handbook. http://-
www.freebsd.org/doc/en/books/developers-handbook (2005)

18. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. Wiley-Interscience,
New York, NY, USA (1991)

19. Re, C., Vogels, W.: SciMark – C#. http://rotor.cs.cornell.edu/SciMark/ (2004)
20. Pozo, R., Miller, B.: SciMark 2.0 benchmark. http://math.nist.gov/scimark2/

(2005)

69

Chapter 6

Automated Detection of
Performance Regressions: The
Mono Experience

Tomáš Kalibera,
Lubomı́r Bulej,
Petr Tůma

Contributed paper at 13th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2005) [1], ac-
ceptance rate 30%.

In conference proceedings,
published by IEEE,
pages 183–190,
ISSN 1526-7539,
September 2005.

The original version is available electronically from the
publisher’s site at http://doi.ieeecomputersociety.org/10.1109/
MASCOT.2005.18.

70

http://doi.ieeecomputersociety.org/10.1109/MASCOT.2005.18
http://doi.ieeecomputersociety.org/10.1109/MASCOT.2005.18

Automated Detection of Performance Regressions: The Mono Experience

Tomas Kalibera1 Lubomir Bulej1,2 Petr Tuma1

1Distributed Systems Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranske nam. 25, 118 00 Prague, Czech Republic

phone +420-221914267, fax +420-2219143232
2Institute of Computer Science, Czech Academy of Sciences

Pod Vodarenskou vezi 2, 182 07 Prague, Czech Republic
phone +420-266053831

{tomas.kalibera, lubomir.bulej, petr.tuma}@mff.cuni.cz

Abstract

Engineering a large software project involves tracking
the impact of development and maintenance changes on the
software performance. An approach for tracking the im-
pact is regression benchmarking, which involves automated
benchmarking and evaluation of performance at regular in-
tervals. Regression benchmarking must tackle the nonde-
terminism inherent to contemporary computer systems and
execution environments and the impact of the nondetermin-
ism on the results. On the example of a fully automated
regression benchmarking environment for the Mono open-
source project, we show how the problems associated with
nondeterminism can be tackled using statistical methods.

1 Introduction

The increase in scale and complexity of software, as well
as the related increase in size of the development teams,
puts a growing emphasis on the process of quality assur-
ance. Indeed, continuous quality assurance is part of Ex-
treme Programming [8] and many distributed development
models, which rely on regular testing of all components of
the software. The process of testing is often automated
and performed either in given time intervals or whenever
changes are introduced. This is known as regression test-
ing.

The current practice of regression testing typically lim-
its the testing to correctness and robustness of the software.
Another important quality aspect, namely performance, is
often neglected. Regression benchmarking addresses this
gap by extending the regression testing to benchmarking

and evaluation of software performance [3, 2].
In an analogy to regression testing, regression bench-

marking must be fully automated. This requirement in-
cludes automated downloading and building of the software
and the benchmarks, as well as automated executing of the
benchmarks in a robust environment that handles typical
failure scenarios without supervision. This alone is a tech-
nical challenge, if only because the software is under devel-
opment and therefore prone to exhibiting bugs, crashes, or
ending up in a deadlock or an infinite loop.

While many of these problems have already been solved
in regression testing, regression benchmarking requires ex-
tending the solutions to include minimizing any undesirable
influence on the results. During benchmarking, the activity
of unrelated system services, the amount of unrelated net-
work communication, and the scope of system configura-
tion changes should all be minimized.

Importantly, regression benchmarking also requires an
automated analysis of the results to discover performance
changes. The discovery of performance changes is made
difficult by the complexity of contemporary platforms and
software, which causes the durations of the operations mea-
sured by a benchmark to differ each time the operations are
executed. Because of this, it is not possible to discover per-
formance changes from one version of the software to an-
other simply by comparing the durations of the same oper-
ations in the two versions.

Typically, the measured operations are therefore re-
peated multiple times and the durations are averaged. When
the durations can be assumed to be independent identically
distributed random variables, the precision of the averaged
result can be determined. The knowledge of the precision
is necessary so that a comparison of results that differ by

71

less than their respective precisions is not interpreted as a
performance change. Unfortunately, the requirements of
independence and identical distribution are often violated.
In Section 4, we describe a method of processing the col-
lected data that overcomes the problem of the violated re-
quirements.

Additionally, the nondeterminism inherent to contempo-
rary computer systems and execution environments is re-
flected in the form of random initial conditions that influ-
ence the durations of the operations measured by a bench-
mark [9]. The influence of the random initial conditions
makes the averaged durations differ each time the bench-
mark is executed. This difference makes it generally im-
possible to discover performance changes even by compar-
ing the averaged durations of the same operations in two
versions of software. Furthermore, the difference is unre-
lated to the number of durations that make up the averages
and therefore cannot be avoided by repeating the measured
operations more times. In [9], we also show that the differ-
ence cannot be avoided by simulation or by executing the
benchmark immediately after system initialization. In Sec-
tion 2, we show how to quantify the influence of the random
initial conditions.

To summarize, regression benchmarking requires not
only repeating the operations measured by a benchmark
within the benchmark, but also repeating the execution of
the benchmark within the benchmark experiment. The pre-
cision of the averaged durations can then be calculated even
when the requirements of independence and identical dis-
tribution are violated and the influence of the random initial
conditions is present, as outlined in Sections 3 and 4. Be-
cause of the cost of repeating the execution of the bench-
mark, however, it is necessary to determine the optimum
number of benchmark runs and the optimum number of
measurements in a run, as also explained in Section 3.

To verify the applicability of the methods described in
the paper, we have created an environment for regression
benchmarking of Mono [12]. Mono is being developed by
Novell as an open-source implementation of the Common
Language Infrastructure specification [5], also known as the
.Net platform. The Mono implementation of CLI comprises
a C# compiler, a virtual machine interpreting the Common
Intermediate Language instructions, and the implementa-
tion of runtime classes.

Since August 2004, the environment monitors the per-
formance of daily development snapshots of Mono on
four benchmarks focused at numerical calculations and the
mechanism of .Net Remoting, which implements remote
method invocation. Continuously updated results are pub-
licly available on the web of the project [4].

The structure of the paper is as follows. The analysis and
the quantification of the impact of random initial conditions
is in Section 2. A method of calculating the precision of the

averaged durations influenced by random initial conditions
is presented in Section 3. In Section 4, the method of cal-
culating the precision is extended to cope with a violation
of the requirements of independence and identical distribu-
tion. Section 5 explains how the knowledge of the precision
is used to detect performance changes. Finally, Section 6
provides details on applying the methods on Mono in the
framework of the Mono Regression Benchmarking Project.
Section 7 concludes the paper.

2 Random Initial Conditions of Benchmarks

In contemporary systems, the duration of operations
measured by a benchmark depends on a wide spectrum of
factors. Within the spectrum, classes of factors can be dis-
tinguished depending on when the influence of the factor
changes. First is the class of factors that change for each
individual operation. Second is the class of factors that stay
the same for all operations measured within a single bench-
mark process, because they depend on random initial con-
ditions of the process. On some systems, there is even a
class of factors that stay the same for all operations of all
benchmark processes run using the same benchmark binary
image. All these classes of factors are analyzed and evalu-
ated in [9].

The impact of random initial conditions of a benchmark
process on benchmark results is illustrated by Figure 1. The
graph shows the results of the FFT benchmark, which cal-
culates the Fast Fourier Transform. The operation measured
by the benchmark is a pair of forward and inverse transfor-
mations of a constant vector. The FFT benchmark is based
on the SciMark2 benchmark [14, 13].

The same benchmark has been run repeatedly. Each run
of the benchmark has measured the same operation repeat-
edly. The graph in Figure 1 plots the operation times on the
vertical axis and the sequential index of the measurement
on the horizontal axis, with the measurements from indi-
vidual runs separated by vertical lines. The graph shows
that while the durations from the same run typically differ
from each other only in units of percents, the durations from
different runs of the same benchmark can differ from each
other even in tens of percents. The difference between the
durations from the same run illustrates the existence of the
influencing factors that change when the benchmark is run-
ning. The difference between the durations from different
runs illustrates the existence of the influencing factors that
do not change when the benchmark is running but still differ
every time the benchmark runs.

The graph also shows that the durations from the same
run yield only a small number of different operation times,
which results in the operation times being grouped in clus-
ters. This effect is discussed in section 4.

The degree of influence of the random initial conditions

72

FFT SciMark
99.18% Measurements

Run Index (version 2005−07−07)

Ti
m

e
[m

s]

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

1 2 3 4 5 6 7 8 9 10

Figure 1. Durations of the same FFT compu-
tation in several benchmark runs.

on the duration of operations depends on the specific plat-
form and the specific benchmark. In [9], we have intro-
duced an impact factor as a metric of the degree of influence
of the random initial conditions. The impact factor is de-
fined as a ratio of the standard deviation of durations from
different runs to the standard deviation of durations from
the same run and is estimated using simulation as described
in [9].

A value of the impact factor that is close to 1 suggests a
negligible influence of the random initial conditions on the
duration of operations. The larger the value of the impact
factor, the more the durations from different runs differ than
the durations from the same run. Figure 2 shows the values
of the impact factor for the FFT benchmark for daily ver-
sions of Mono developed between August 2004 and June
2005. Especially in February 2005, the influence of the ran-
dom initial conditions was significant, as is indicated by the
values of the impact factor in the order of tens to hundreds.

In contrast to the FFT benchmark, the values of the im-
pact factor for the HTTP Ping benchmark suggest that the
durations from different runs differ only twice or three times
as much as the durations from the same run. The HTTP
Ping benchmark measures the time it takes to invoke a re-
mote method over an HTTP channel. The input argument
of the method is a short string constant, the output argument
of the method is the same string. The plots showing impact
factors for the HTTP Ping and other Mono benchmarks are
available on the web [4].

A value of the impact factor that is close to 1 indicates
that a representative set of durations can be obtained even
from a small number of runs of the same benchmark. A
large value of the impact factor indicates that a large number
of runs, rather than a large number of measured durations in
a run, is needed to obtain a representative set of durations, as

FFT SciMark

In
itia

l C
on

di
tio

ns
 Im

pa
ct

 F
ac

to
r [

ra
tio

]

0
50

10
0

15
0

Version

20
04

−0
8−

11
20

04
−0

8−
17

20
04

−0
8−

23
20

04
−0

8−
27

20
04

−0
9−

02
20

04
−0

9−
10

20
04

−0
9−

14
20

04
−0

9−
21

20
04

−0
9−

27
20

04
−1

0−
01

20
04

−1
0−

07
20

04
−1

0−
13

20
04

−1
0−

19
20

04
−1

0−
26

20
04

−1
1−

02
20

04
−1

1−
30

20
04

−1
2−

08
20

05
−0

1−
04

20
05

−0
1−

10
20

05
−0

1−
20

20
05

−0
2−

03
20

05
−0

2−
09

20
05

−0
2−

14
20

05
−0

3−
02

20
05

−0
3−

08
20

05
−0

3−
17

20
05

−0
3−

28
20

05
−0

4−
01

20
05

−0
4−

07
20

05
−0

4−
15

20
05

−0
4−

21
20

05
−0

4−
28

20
05

−0
5−

04
20

05
−0

5−
11

20
05

−0
5−

16
20

05
−0

5−
25

20
05

−0
5−

31
20

05
−0

6−
04

20
05

−0
6−

08
20

05
−0

6−
16

20
05

−0
6−

21
20

05
−0

6−
25

20
05

−0
6−

29
20

05
−0

7−
03

20
05

−0
7−

07

Figure 2. Impact factors of initial conditions
for FFT benchmark in different Mono ver-
sions.

is the case with the FFT benchmark. This line of reasoning
is made precise and formalized in section 3.

3 Benchmark Precision

As shown in section 2, to obtain a representative set of
operation durations, it is necessary not only to repeat the
operations measured by the benchmark within a single run
of the benchmark, but also to run the benchmark repeat-
edly. The factors impacting the benchmark results are often
unpredictable and random, covering for example random
initialization in hardware or intentionally randomized algo-
rithms in the application or the operating system. Conse-
quently, each benchmark experiment consisting of multiple
runs measuring multiple operation durations gives random
results. We expect the distribution of the results to have a
mean and to be well characterized by the mean. To simplify
comparison, we calculate a single result value from each
benchmark experiment, which is the average of all opera-
tion durations.

For a trustworthy detection of performance changes for
the purpose of regression benchmarking, it is necessary to
know the precision of such result values, so that a compar-
ison of result values that differ by less than their respective
precision is not interpreted as a performance change. An
ideal result can be defined as a parameter of a random dis-
tribution that depends on the specific benchmark and the
specific platform. This parameter is not known but can be
estimated using experiments.

We will focus on estimating the mean value of the ran-
dom distribution using an average of the measured dura-
tions. The precision of such an estimate can be determined
using statistical methods. In practice, using a median in-

73

stead of the average can improve robustness in presence of
outliers [1], but determining the precision of the estimate
analytically is difficult in such a case. Robustness in pres-
ence of outliers is addressed in section 4.

Since we consider the result value of a benchmark to
be the average of the measured durations, the result preci-
sion of the benchmark is the precision with which the result
value estimates the mean value of the random distribution.
We define the precision as a half-length of the 99% confi-
dence interval for the mean value, therefore shorter interval
means higher precision.

The exact formula that expresses the precision of a
benchmark result depends on the choice of the statistical
model that describes the benchmark. In [9], we have pre-
sented a simple additive model of initial conditions, which
expects an additive impact of process initial conditions on
operation durations. We introduce a more general model in
section 3.1.

3.1 Benchmark Precision for Arbitrary Initial
Conditions

We presume that the durations of operations measured
by a benchmark in a run are random, independent and iden-
tically distributed, that the distributions from different runs
can differ in parameters, and that the mean values of the
distributions from different runs are identically distributed
random variables. The result value is the average of the av-
erages of the measured durations as an estimate of the mean
value of the random mean values.

Specifically, for j = 1..m as a benchmark run with i =
1..n measurements,

• the durations of operations rji are observations of ran-
dom variables Rji identically distributed for i = 1..n,
E(Rj1|µj) = µj < ∞, var(Rj1 |σ

2
j) = σ2

j < ∞.

• µj are identically distributed random variables for each
j = 1..m, E(µ1) = µ < ∞, var(µ1) = ρ2 < ∞.

The result value of a benchmark is

Rmn =
1

mn

m
∑

j=1

n
∑

i=1

Rji

as an estimate of the ideal result of a benchmark µ. From
the rule of iterated expectations, it follows that µ is also the
mean of Rji if we do not know the specific value of µj :

E (Rji) = E (E (Rji|µj)) = µ.

We will show how to construct a confidence interval for
µ. From the Central Limit Theorem (CLT), the distribution
of µm as an estimate of µ is asymptotically normal:

1

m

m
∑

j=1

µj = µm ∼ N

(

µ,
ρ2

m

)

. (1)

From CLT, the average of the averages Mj from run j,

Mj =
1

n

n
∑

i=1

Rji,

for the given fixed µj , σj , j = 1..m also has an asymp-
totically normal distribution

Mj |µj , σ
2
j ∼ N

(

µj ,
σ2

j

n

)

.

From the properties of the normal distribution:

Mm|µm, σ2
m ∼ N

(

µm,
σ2

m

mn

)

. (2)

From (1) and (2), it can be shown that:

Mm ∼ N

(

µ,
ρ2

m
+

σ2
m

mn

)

. (3)

The mean and variance of Mm in (3) can by verified by
the rule of iterated expectations :

E[Mm] = E
[

E
[

Mm|µm, σ2
m

]]

= E [µm] = µ

V
[

Mm

]

= E
[

V
[

Mm|µm, σ2
m

]]

+V
[

E
[

Mm|µm, σ2
m

]]

=

= E

[

σ2
m

mn

]

+ V [µm] =
σ2

m

mn
+

ρ2

m
.

If we assume the variances σ2
j to be known or fixed and

only the means µj to be random, it can be shown that the
distribution of Mm is really normal. For details, see ran-
dom effects model in one way classifications in [11]. The
rationale behind the proof is that a convolution of Gaussians
is known to be a Gaussian.

The confidence interval for the estimate of µ can now be
constructed from (3). The result value of a benchmark is

Mm = Rmn

and the half-length of the 1 − α confidence interval for
the mean is

l = u1−α
2
·

√

ρ2

m
+

σ2
m

mn
,

where u are quantiles of the standard normal distribution.

74

This result holds asymptotically for large n and large
m. The unknown variance of the mean values µj can be
approximated by the variance of the averages of durations
from individual runs, which can be estimated using the S2

estimate:

S2
ρ =

1

m − 1

m
∑

j=1

[(

1

n

n
∑

i=1

Rji

)

− Rmn

]2

.

The variance of the durations in a run σ2
j is still unknown.

If the variance of the individual runs were constant, σ2
j =

σ2, we could estimate it by

S2
σ =

1

m(n − 1)

m
∑

j=1

n
∑

i=1

(

Rji −
1

n

n
∑

i=1

Rji

)2

to get the half-length of the 1−α confidence interval for
the mean:

lσ = u1−α
2
·

√

nS2
ρ + S2

σ

mn
. (4)

We can proceed using a similar approach when we know
a maximum variance of the durations in a run σ2

max and
estimate the upper bound of the length l, in other words a
lower bound for the precision. We can also note that the for-
mula for l does not rely on the individual values of variance,
but only on the average variance σ2

m. We can therefore use
the formulas for the length lσ and the variance estimate S2

σ

for large m, as implied by the Weak Law of Large Numbers
(WLLN), except for the error of the estimate itself, which is
not included in (4).

In benchmarking experiments, every benchmark process
has to be warmed–up by several measurements of operation
durations that are not included in the results, as they can be
influenced by initialization noise. It is therefore most time-
efficient to improve the result precision firstly by increasing
the number of measurements in a run n and only secondly
by increasing the number of runs m.

For ρ2 > 0, the optimum number of measurements in a
run nopt can be derived from (4) and from the definition of
the cost of the experiment c = (w + n)m, where w is the
number of warm–up measurements:

nopt =

√

wS2
σ

S2
ρ

.

4 Handling Auto-Dependence and Outliers

An important assumption when determining the result of
a benchmark and its precision as described in Section 3 is

the independence and identical distribution of the durations
of an operation execution in a single benchmark run. Our
experience suggests that these assumptions do not generally
hold in raw collected data.

The violation of the independence assumption is typi-
cally manifested by non-random patterns in the collected
data. This was the case for some of the Mono benchmarks,
where the violation of independence was probably caused
by the just-in-time compiler or the garbage collector. As for
the identical distributions, this assumption is typically vio-
lated by outlying measurements, caused by relatively infre-
quent distortions which influence the duration of the mea-
sured operation.

We therefore preprocess the collected data before apply-
ing the methods from Section 3.

4.1 Quantifying Auto-Dependence

The plot in Figure 1 shows that in each run of the FFT
benchmark, we can observe several values that are typical
for the run and around which we can find, with certain vari-
ance, all the measured values. These typical values differ
between benchmark runs and the variance is greater than
the variance of the values in a single run, which results in
the horizontal stripes or clusters that can be seen in the plot.

The clusters visible in Figure 1 appear to have the same,
or at least very similar, variance. This effect can be more
accurately quantified with the help of the impact factor of
the initial conditions described in Section 2. The approach
is similar to determining the extent to which the influence of
the initial conditions fits the additive model in [9]. The mea-
sured data are passed to a clustering additive filter, which
first splits the measured values into clusters using the M-
clust algorithm [7, 6]. Then, for each cluster, the average of
durations from the cluster is subtracted from each duration
in the cluster. This applies the additive filter to the individ-
ual clusters. After applying the filter, the impact factor of
the initial conditions is computed for the resulting data.

In case of the FFT benchmark, the impact factors for dif-
ferent versions of Mono after applying the clustering addi-
tive filter are close to 1, suggesting that the impact of the
initial conditions is described well by the model in 3.1 or
the additive model described in [9] when applied to individ-
ual clusters. The situation can be illustrated by comparing
the plot in Figure 3 with the plot in Figure 2.

The violation of the assumption of sample independence
in case of the FFT benchmark is clear from the following
experiment. First, we number the clusters and transform the
original data into a sequence of cluster indices by mapping
all values from the same cluster to the respective cluster in-
dex. We can then observe that the interleaving of the cluster
indices in the resulting sequence is very systematic. This ef-
fect is also clearly visible in a lag plot of the measured data,

75

FFT SciMark

Im
pa

ct
 F

ac
to

r a
fte

r M
clu

st
 A

dd
itiv

e
Fi

lte
rin

g
[ra

tio
]

0.
94

0.
96

0.
98

1.
00

1.
02

1.
04

Version

20
04

−0
8−

11
20

04
−0

8−
17

20
04

−0
8−

23
20

04
−0

8−
27

20
04

−0
9−

02
20

04
−0

9−
10

20
04

−0
9−

14
20

04
−0

9−
21

20
04

−0
9−

27
20

04
−1

0−
01

20
04

−1
0−

07
20

04
−1

0−
13

20
04

−1
0−

19
20

04
−1

0−
26

20
04

−1
1−

02
20

04
−1

1−
30

20
04

−1
2−

08
20

05
−0

1−
04

20
05

−0
1−

10
20

05
−0

1−
20

20
05

−0
2−

03
20

05
−0

2−
09

20
05

−0
2−

14
20

05
−0

3−
02

20
05

−0
3−

08
20

05
−0

3−
17

20
05

−0
3−

28
20

05
−0

4−
01

20
05

−0
4−

07
20

05
−0

4−
15

20
05

−0
4−

21
20

05
−0

4−
28

20
05

−0
5−

04
20

05
−0

5−
11

20
05

−0
5−

16
20

05
−0

5−
25

20
05

−0
5−

31
20

05
−0

6−
04

20
05

−0
6−

08
20

05
−0

6−
16

20
05

−0
6−

21
20

05
−0

6−
25

20
05

−0
6−

29
20

05
−0

7−
03

20
05

−0
7−

07

Figure 3. Impact factors of initial conditions
after clustered additive filtering in FFT Sci-
mark.

176 177 178 179

17
6

17
7

17
8

17
9

FFT SciMark

Time [ms] (lag 1)

Ti
m

e
[m

s]

Figure 4. Lag-plot of FFT computation times
in a single benchmark run.

which is commonly used for inspecting auto-dependence in
time series.

Figure 4 shows a lag plot of the data from a single run
of the FFT Scimark benchmark. For comparison, Figure 5
shows a lag plot of the same but randomly reordered data,
which represents the scenario where the individual mea-
surements are independent. The plot in Figure 4 shows that
observing a value from a particular cluster restricts the pos-
sible value of the next observation to a specific cluster.

4.2 Data Preprocessing

The presence of outliers in the data is a typical issue as-
sociated with measurements of real systems, and therefore
applies to benchmarking computer systems as well [2, 1].

176 177 178 179

17
6

17
7

17
8

17
9

FFT SciMark − Randomized Order

Time [ms] (lag 1)

Ti
m

e
[m

s]

Figure 5. Lag-plot of randomly reordered FFT
computation times in a single benchmark run.

The nature of the outliers is such that under certain circum-
stances, the duration of an operation can be as much as sev-
eral orders of magnitude longer than in most other cases.
Although the occurrence of the outliers is rare, it has a sig-
nificant impact on the results. Since we do not have a plau-
sible model for the collected data of a generic benchmark
on a generic system, we use a simple simulation technique
to preprocess the data, allowing us to neglect the impact of
the outliers on the results. This technique also tackles the
auto-dependence described earlier.

The algorithm for obtaining the result and precision of
a benchmark, including the data preprocessing, follows.
Symbols correspond to those used in Section 3.1):

• execute m benchmark runs, collecting w+k measured
durations rji, j = 1..m, i = 1..w + k of the same
operation each run,

• for each benchmark run j, repeatedly (e.g. 100 times)
generate a random sub-selection of size n using sam-
pling with replacement, where n < k (e.g. n = 0.75 ·
k) from measurements rj,(w+1)..rj,(w+k), and calcu-
late the median Mj of averages of all sub-selections,

• for each benchmark run j, generate another set of ran-
dom sub-selections using the method from the previ-
ous step and calculate the median S2

σj
of sample vari-

ances of all sub-selections,

• the result of the benchmark is Mm = 1
m

∑m

j=1 Mj ,

• the precision of the benchmark result as the half-length
of the 1 − α confidence interval for the mean is

lσ = u1−α
2
·

√

nS2
ρ + S2

σ

mn
,

76

where

S2
σ =

1

m

m
∑

j=1

S2
σj

,

S2
ρ =

1

m − 1

m
∑

j=1

(

Mj − Mm

)2
.

With the knowledge of the benchmark result and its pre-
cision in the form of confidence interval half-length, we can
automatically detect statistically significant changes in per-
formance, which is explained in Section 5.

5 Automated Detection of Changes

Regression benchmarking requires automated detection
of changes in performance between different versions of the
software under development. Performance is assessed us-
ing benchmarks that determine the average duration of the
measured operation as well as the confidence interval for
the mean as a measure of precision.

A performance change is reported whenever the confi-
dence intervals for the mean operation durations of two con-
secutive versions of the tested software do not overlap. To
assess the magnitude of a performance change, we use a
ratio of the distance between the centers of the confidence
intervals for the older and the newer version to the center
of the confidence interval for the older version. The center
of the confidence interval is the average of averages calcu-
lated as a result of the benchmark. This quantification has
only an informative character though, as it does not take
into account the lengths of the confidence intervals, i.e. the
precision of the benchmark results.

The plot in Figure 6 shows significant changes in per-
formance for different versions of Mono as measured by the
HTTP Ping benchmark. The horizontal axis shows an index
of the tested Mono version, the vertical axis is the response
time. The confidence intervals for the mean as described
in Section 3.1 are marked by gray lines, the performance
changes are marked by bold black lines. The table below
the plot summarizes and quantifies the detected changes.
Each row of the table contains the dates of the older and
newer versions between which the change was detected and
the size of the change as percentage of the older version.
Changes quantified as positive in the table are therefore re-
gressions.

For practical employment of regression benchmarking in
software development, it is important to be able to locate
modifications in sources that are suspect causes of the de-
tected performance changes. This issue is addressed in [10].

HTTP Ping

99
%

 C
on

fid
en

ce
 In

te
rv

al
 fo

r T
im

e
M

ea
n

[m
s]

8
10

12
14

16

Version

20
04

−0
8−

11
20

04
−0

8−
18

20
04

−0
8−

24
20

04
−0

8−
30

20
04

−0
9−

03
20

04
−0

9−
11

20
04

−0
9−

15
20

04
−0

9−
22

20
04

−0
9−

28
20

04
−1

0−
04

20
04

−1
0−

08
20

04
−1

0−
14

20
04

−1
0−

20
20

04
−1

0−
27

20
04

−1
1−

03
20

04
−1

2−
01

20
05

−0
1−

04
20

05
−0

1−
10

20
05

−0
1−

20
20

05
−0

2−
03

20
05

−0
2−

09
20

05
−0

2−
14

20
05

−0
3−

02
20

05
−0

3−
08

20
05

−0
3−

17
20

05
−0

3−
28

20
05

−0
4−

01
20

05
−0

4−
07

20
05

−0
5−

04
20

05
−0

5−
11

20
05

−0
5−

16
20

05
−0

5−
25

20
05

−0
5−

31
20

05
−0

6−
04

20
05

−0
6−

08
20

05
−0

6−
16

20
05

−0
6−

21
20

05
−0

6−
25

20
05

−0
6−

29
20

05
−0

7−
03

20
05

−0
7−

07

Newer Version Older Version Change

2004-08-17 2004-08-13 -9.67%
2004-08-18 2004-08-17 -10.44%
2004-08-23 2004-08-20 -2.95%
2004-09-03 2004-09-02 3.4%
2004-09-07 2004-09-03 -4.57%
2004-10-15 2004-10-14 -4.29%
2004-10-29 2004-10-27 3.96%
2004-11-05 2004-11-04 -4.9%
2004-11-30 2004-11-05 -2.87%
2004-12-20 2004-12-01 19.64%
2005-03-02 2005-02-28 -7.81%
2005-03-07 2005-03-04 7.77%
2005-04-05 2005-04-04 39.29%
2005-04-06 2005-04-05 1.77%
2005-04-08 2005-04-07 -3.58%

Figure 6. Confidence intervals for mean re-
sponse time in HTTP Ping with detected sig-
nificant changes.

77

6 Mono Regression Benchmarking Project

The Mono Regression Benchmarking Project applies the
methods described in the paper at detecting performance
regressions in daily development snapshots of Mono, an
open-source implementation of the .Net platform. The
project serves as a testbed for development and validation
of methods for benchmarking and analysis of data for the
purpose of regression benchmarking.

The project currently includes five benchmarks - the Fast
Fourier Transform (FFT) benchmark, the HTTP Ping and
TCP Ping benchmarks which test remove method invoca-
tion, Scimark [14, 13] which tests floating point computa-
tion and Rijndael which tests a single encryption algorithm.
A more detailed description of the benchmarks can be found
in [10].

The benchmarking environment is fully automated and
the results are continuously updated on the web of the
project [4]. The presented graphs are similar to the graph
on Figure 6 and other graphs presented in this paper.

7 Conclusion

Regression benchmarking, as a part of regression test-
ing, is a promising approach that allows the developers to
monitor the performance of software during development.
Regression benchmarking comprises regular execution of
many benchmarks. For practical use, the detection of per-
formance changes must be automated, which in turn re-
quires the knowledge of the precision of the benchmark re-
sults.

We bring attention to a frequently overlooked depen-
dency of benchmark results on random initial conditions,
present methods for quantifying their influence on various
benchmarks and characterize their influence on benchmark
results.

For determining the precision of benchmark results, we
present methods that take into account the random initial
conditions and auto-dependence in the data from a single
benchmark run, which is also an often-overlooked depen-
dency. The presented methods allow determining the op-
timal number of benchmark runs and the number of mea-
surements that should be collected in each run in order to
maximize the precision of a benchmark result in given time.

Most of the proposed methods and approaches have been
implemented in a simple and fully automated regression
benchmarking system that monitors performance and de-
tects performance changes in daily development snapshots
of the Mono project. Future development will focus on in-
tegrating the method for determining the optimal number of
benchmark runs and the number of measurements in a run
with the benchmarking system.

A challenge for future work comprises automated, or at
least partially automated, correlation of source code modi-
fications with the detected performance changes.

Acknowledgment. The authors would like to express their
thanks to Jaromir Antoch, Alena Koubkova and Tomas Os-
tatnicky for their help with mathematical statistics. This
work was partially supported by the Grant Agency of the
Czech Republic projects 201/03/0911 and 201/05/H014.

References

[1] A. Buble, L. Bulej, and P. Tuma. Corba benchmarking: A
course with hidden obstacles. In IPDPS, page 279. IEEE
Computer Society, 2003.

[2] L. Bulej, T. Kalibera, and P. Tuma. Regression benchmark-
ing with simple middleware benchmarks. In H. Hassanein,
R. L. Olivier, G. G. Richard, and L. L. Wilson, editors, In-
ternational Workshop on Middleware Performance, IPCCC
2004, pages 771–776, 2004.

[3] L. Bulej, T. Kalibera, and P. Tuma. Repeated results analy-
sis for middleware regression benchmarking. Performance
Evaluation, 60(1–4):345–358, May 2005.

[4] Distributed Systems Research Group. Mono regression
benchmarking. http://nenya.ms.mff.cuni.cz/
projects/mono, 2005.

[5] ECMA. ECMA-335: Common Language Infrastructure
(CLI). ECMA (European Association for Standardizing In-
formation and Communication Systems), Geneva, Switzer-
land, Dec. 2002.

[6] C. Fraley and A. E. Raftery. Mclust: Software for model-
based clustering, density estimation and discriminant anal-
ysis. Technical Report 415, Department of Statisticis, Uni-
versity of Washington, WA, USA, Oct 2002.

[7] C. Fraley and A. E. Raftery. Model-based clustering, dis-
criminant analysis, and density estimation. Journal of the
American Statistical Association, 97:611–631, 2002.

[8] R. E. Jeffries, A. Anderson, and C. Hendrickson. Extreme
Programming Installed. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2000.

[9] T. Kalibera, L. Bulej, and P. Tuma. Benchmark precision
and random initial state. In accepted for 2005 International
Symposium on Performance Evaluation of Computer and
Telecommunications Systems (SPECTS 2005), July 2005.

[10] T. Kalibera, L. Bulej, and P. Tuma. Quality assurance
in performance: Evaluating mono benchmark results. In
accepted for Second International Workshop on Software
Quality (SOQUA 2005), Sept. 2005.

[11] C. E. McCulloch and S. R. Searle. Generalized, Linear and
Mixed Models. Wiley–Interscience, New York, NY, USA,
2001.

[12] Novell, Inc. The Mono Project. http://www.
mono-project.com, 2005.

[13] R. Pozo and B. Miller. Scimark 2.0 benchmark. http:
//math.nist.gov/scimark2/, 2005.

[14] C. Re and W. Vogels. Scimark – c#. http://rotor.cs.
cornell.edu/SciMark/, 2004.

78

Chapter 7

Precise Regression
Benchmarking with Random
Effects: Improving Mono
Benchmark Results

Tomáš Kalibera,
Petr Tůma

Contributed paper at 3rd European Performance Engineer-
ing Workshop (EPEW 2006) [9], acceptance rate 40%.

In Formal Methods and Stochastic Models for Performance Eval-
uation,
published by Springer-Verlag,
LNCS 4054,
pages 63–77,
ISSN 0302-9743,
June 2006.

The original version is available electronically from the pub-
lisher’s site at http://dx.doi.org/10.1007/11777830 5.

79

http://dx.doi.org/10.1007/11777830_5

Precise Regression Benchmarking with Random

Effects: Improving Mono Benchmark Results

Tomas Kalibera and Petr Tuma

Distributed Systems Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranske nam. 25, 118 00 Prague, Czech Republic

phone +420-221914232, fax +420-221914323
{kalibera,tuma}@nenya.ms.mff.cuni.cz

Abstract. Benchmarking as a method of assessing software performance
is known to suffer from random fluctuations that distort the observed
performance. In this paper, we focus on the fluctuations caused by com-
pilation. We show that the design of a benchmarking experiment must
reflect the existence of the fluctuations if the performance observed dur-
ing the experiment is to be representative of reality.
We present a new statistical model of a benchmark experiment that
reflects the presence of the fluctuations in compilation, execution and
measurement. The model describes the observed performance and makes
it possible to calculate the optimum dimensions of the experiment that
yield the best precision within a given amount of time.
Using a variety of benchmarks, we evaluate the model within the con-
text of regression benchmarking. We show that the model significantly
decreases the number of erroneously detected performance changes in
regression benchmarking.

Key words: performance evaluation, benchmark precision, random effects,
regression benchmarking.

1 Introduction

Software performance engineering is generally understood as a systematic pro-
cess of planning and evaluating software performance [1]. One of the principal
approaches to evaluating performance is benchmarking, where the system under
test executes a model task, called benchmark, and the observed performance is
used for the evaluation. An important feature of benchmarking is that a choice
of a realistic benchmark and a realistic configuration of the benchmarking ex-
periment makes the observed performance representative of the performance of
a real system. This makes benchmarking an indispensable complement of other
approaches to evaluating performance based on modeling and simulation.

Both the performance of a benchmarking experiment and the performance of
a real system are subject to random fluctuations. Well known causes of these fluc-
tuations include for example the asynchronous device interrupts, whose often un-
predictable occurrence can add the device interrupt service time to the observed

80

performance. To keep the observed performance representative, benchmarking
experiments typically measure the benchmark multiple times. Averaging over
the multiple measurements is then used to filter out the random fluctuations.
In [2], however, we show that this practice suffers from a lack of understanding
of the causes of random fluctuations. Consequently, even after averaging, the
performance of a benchmarking experiment is not necessarily representative of
the performance of a real system.

In order to correctly understand the causes of random fluctuations in ob-
served performance, a benchmarking experiment must be viewed as a sequence
of steps. This sequence begins with the compilation of the benchmark and pro-
ceeds through booting of the system under test to the execution of the process
implementing the benchmark and the measurement of the benchmark itself as
the final steps. Importantly, each of the steps has the potential to influence the
observed performance, and each of the steps can be subject to nondeterminism
that makes the influence assume the form of random fluctuations. In [2], we il-
lustrate this influence by showing how the choice of physical memory pages used
to store the benchmark impacts the observed performance. This choice cannot
be practically influenced and as such is one of the sources of nondeterminism in
the execution of a benchmark.

The common practice of averaging can still be made to cover all the causes
of random fluctuations. To achieve this, all the steps of the benchmarking exper-
iment would have to be done once for each measurement, rather than just once
for all the measurements. Unfortunately, some of the steps of the benchmarking
experiment can take a long time and repeating them enough times to obtain
enough measurements for a representative average would take a prohibitively
long time. To avoid this problem, we propose a novel statistical model that re-
flects the understanding of the benchmarking experiment as a sequence of steps
that can be repeated starting with any step of the experiment and finishing with
the measurement step (e.g. compiling multiple times, executing each compiled
binary multiple times, collecting multiple measurements for each execution).

The model makes it possible to derive the asymptotic distribution of the
average of the observed performance, and use this distribution to create the
asymptotic confidence interval for the mean observable performance, as well
as determine the optimal ratio of the repetitions of the individual benchmark
experiment steps. The model can describe benchmark experiments where at most
three of the steps influence the observed performance, and is an extension of the
model from [3] that could describe benchmark experiments where at most two
of the steps influenced the observed performance.

As a proof of concept, we apply the statistical model in regression benchmark-
ing. Regression benchmarking [4] is a new methodology for automated tracking
of performance during software development. In our evaluation, we apply the
methodology on omniORB [5] and Mono [6] as large open source projects with
frequent changes. The omniORB platform is an open source implementation of
the CORBA standard, consisting of an IDL compiler, an object request broker
and object services, totaling almost 200k lines of code. The Mono platform is an

81

open source implementation of the Common Language Infrastructure [7], also
known as Microsoft .NET, consisting of a C# compiler, a virtual machine and
application libraries, totaling almost 3M lines of code. Our evaluation relies on
the Mono Regression Benchmarking Project [8], which tracks performance of
daily Mono versions on several different benchmarks since August 2004, with
the results continuously available on the web [8].

In the proof of concept, we focus on the nondeterminism in the compilation
step of a benchmark experiment, thus complementing [3], where only the nonde-
terminism in the execution and measurement steps of a benchmark experiment
is tackled. The quantification of the benefits is based on the percentage of “false
alarms” in the form of spurious reports of performance changes by the regression
benchmarking methodology, which can be reduced from as high as 50% when
using the model from [3] to as low as 4% when using the proposed model.

The paper follows by analysis and quantification of the random effects of
compilation in Section 2. A new statistical model that describes benchmarking
experiments with random effects of compilation is described in Section 3. The
model is evaluated in the context of the regression benchmarking methodology
in Section 4. The paper is concluded in Section 5.

2 Problem of Random Effects of Compilation

The compilation of benchmarks for complex software is necessarily a complex
task in itself. Using the example of the omniORB platform, compiling a typical
benchmark includes compiling the core libraries, compiling and linking the IDL
compiler, using this IDL compiler to generate stubs and skeletons, compiling the
benchmark itself and linking the benchmark with the core libraries. Similarly,
using the example of the Mono platform, compiling a typical benchmark includes
compiling and linking the virtual machine, compiling the C# compiler using
another bootstrap compiler and using this compiler to compile the core libraries
and the benchmark itself. It is important to note that the process of compilation
is not always entirely reproducible.

In [2], we have identified one particular source of nondeterminism in com-
pilation of C++ code by the GNU C++ compiler [9]. The compiler generates
random names for symbols defined in anonymous namespaces. As a consequence,
the linker places these symbols in different locations within the binary for each
compilation. During execution, a difference in the location of the symbols is
reflected as a difference in the number of cache misses. This source of nondeter-
minism can influence the compilation of the omniORB platform, other sources of
nondeterminism exist that can influence the compilation of the Mono platform.

It should be emphasized that various sources of nondeterminism exist in
various processes of compilation [10]. These are frequently associated with the
internal workings of a particular compiler on a particular platform. An exhaus-
tive search for all sources of nondeterminism in compilation with the goal of
eliminating them from benchmarking experiments is therefore not a feasible ap-
proach. To characterize how much the random effects of compilation impact the

82

observed performance in a way that is independent of the particular sources
of nondeterminism in compilation, we have introduced a metric called “impact
factor of random effects of compilation” [2]. The metric is defined as a ratio of
the standard deviation of the mean response times from different binaries to the
standard deviation of the mean response times from the same binary. An impact
factor of 1 indicates no impact of random effects on the response time, values
larger than 1 indicate an impact of the random effects. The value of the impact
factor is estimated by simulation (bootstrap). More details can be found in [2].

In Figure 1, we show the impact factors for selected benchmarks that cover a
range of software applications. The Ping and Marshal benchmarks are omniORB
benchmarks that assess remote method invocation, the other benchmarks are
Mono benchmarks that assess remote method invocation, numerical computation
and cryptography, see Appendix C and [8]. The figure also lists the variation of
the results attributed to the random effects in compilation, related to the mean.
Figure 1 shows that random effects of compilation influence results of almost
all of the selected benchmarks. For these benchmarks, ignoring these effects can
therefore mean that the performance of a benchmarking experiment will not
be representative of the performance of a real system. The practical impact of
relying on such benchmarking experiments depends on the particular use of the
experiment. An evaluation in the context of regression benchmarking follows in
Section 4.

Benchmark
Impact Relative (%)
Factor Variation

FFT 1.18 4.1
FFT (NA) 1.08 3.35
FFT (NA,OPT) 1.08 3.42
FFT (OPT) 1.13 4.41
HTTP 1.03 0.19
HTTP (OPT) 1.03 0.23

Benchmark
Impact Relative (%)
Factor Variation

Rijndael 1.01 0.38
Rijndael (OPT) 1. 0.38
TCP 1.05 0.56
TCP (OPT) 1.04 0.56
Marshal 1.05 2.
Ping 1.12 0.81

Fig. 1. Impact factor of random effects in compilation and relative variation caused by
these effects for selected benchmarks.

3 Benchmarking with Random Effects of Compilation

As suggested in Section 1, a simplistic solution to the problem of random effects
of compilation is to repeat all the steps of the benchmarking experiment that
preceed the measurement once for each measurement rather than just once for all
the measurements, and to estimate the response time of the benchmark from the
individual response times collected one in each measurement. Formally, the mean
response time can be estimated by average and the precision of the estimate by
an asymptotic confidence interval. Increasing the number of repetitions improves

83

the precision, with an obvious drawback – the repetition of the compilation step
takes too long.

In this section, we provide a statistical model of a benchmark experiment,
that covers random effects at all three levels – compilation, execution and mea-
surement. The model allows both to estimate the result precision and to choose
the optimal number of measurements per execution and the optimal number of
executions per binary. These numbers are optimal in respect that they minimize
the time needed for the benchmarking experiment. The model is designed to be
as generic as possible, so that it covers the widest possible range of benchmarks.
In particular, the model works both for benchmarks where repeating measure-
ments or executions helps as well as for benchmarks where it does not help. As
a consequence, the model requires to always repeat the executions and measure-
ments several times to adapt to a particular benchmark. This is not a problem,
since compilation of large projects takes several orders of magnitude longer than
execution or measurement.

3.1 Statistical Model of Benchmark with Random Effects

The intuitive idea behind the model is that the mean of measured response
times in each execution is in fact a realization of a random variable, which is
characteristic for the respective binary (the response times in an execution are
prone to random effects). Similarly, the mean of this random variable is also
in fact a realization of another random variable, which is characteristic for the
respective software version (the execution means are prone to random effects).

We will now formalize the intuitive idea. Let Y ∼ FY

(

µY , σ2
Y

)

denote a
random operation response time in a given software version. The distribution
FY of Y is unknown; we assume that it has finite mean µY and finite variance
σ2

Y . The parameter of interest is the mean response time µY .
We assume that response times in each benchmark execution are indepen-

dent identically distributed (i.i.d.), with a finite variance σ2
E that is fixed for all

executions in a given software version, and with a finite mean µE that differs for
each execution. The parameter µE is in fact a sample from a random variable
ME . For better readability, we will write “µE” and “Y |µE” instead of “ME”
and “Y | [ME = µE]”:

E (Y |µE) = µE , var (Y |µE) = σ2
E . (1)

We assume that the execution mean times µE for each binary are random i.i.d.,
with a finite variance σ2

B that is fixed for all binaries in a given software version,
and with a finite mean µB that differs for each binary:

E (µE |µB) = µB, var (µE |µB) = σ2
B. (2)

We assume that binary mean times µB for each software version are random
i.i.d., with a finite mean µV and a finite variance σ2

V , which are fixed for a given
software version:

E (µB) = µV , var (µB) = σ2
V . (3)

84

In this model, µY = µV . This can be easily shown using The Rule Of Iterated
Expectations [11], which says that for random variables X and Y , assuming the
expectations exist,

E [E(Y |X)] = E(Y) : (4)

µY = E(Y) =(4) E [E(Y |µE)] =(1) E(µE) =(4)

= E [E(µE |µB)] =(2) E(µB) =(3) µV .

It can also be shown, that σ2
Y = σ2

E + σ2
B + σ2

V , using The Rule Of Iterated
Expectations and a known property of conditional variance [11], which says that
for random variables X and Y ,

var(Y) = E [var(Y |X)] + var [E(Y |X)] : (5)

σ2
Y = var(Y) =(5) E [var(Y |µE)] + var [E(Y |µE)] =(4),(1)

= σ2
E + var(µE) =(5) σ2

E + E [var(µE |µB)] + var [E(µE |µB)] =(4),(2)

= σ2
E + σ2

B + var(µB) =(3) σ2
E + σ2

B + σ2
V .

The parameter of interest µY is unknown, we will estimate it from the data:
let us assume that we have compiled a given software version l times creating
l binaries, and that we have executed each benchmark binary m times, getting
n post–warmup measurements in each execution. In the rest of this section, we
will show that µY can be estimated by average of all the measurements

Y •••
def
=

1

lmn

l
∑

k=1

m
∑

j=1

n
∑

i=1

Yijk ,

and that this estimate is asymptotically normal:

Y ••• ≈ N

(

µY ,
σ2

E

lmn
+

σ2
B

lm
+

σ2
V

l

)

. (6)

Lemma 31 Let X1, ..., Xn be i.i.d. with mean µ and finite positive variance σ2.

Then, X• has asymptotically normal distribution: X• ≈ N
(

µ, σ2

n

)

. Lindeberg–

Levy Central Limit Theorem.

Lemma 32 Let X1, ..., Xn be independent, Xi ∼ N
(

µi, σ
2
i

)

. From the properties

of normal distribution [11], it follows that: X• ∼ N
(

µ•, σ
2
•

)

.

Lemma 33 Let X ∼ N
(

µX , σ2
X

)

and Y | [X = x] ∼ N
(

x, σ2
)

. Then, Y ∼
N

(

µX , σ2
X + σ2

)

. The proof is outlined in Appendix A.

85

By Lemma 31 we have, from (1),(2),(3):

Y kj•|µEkj ≈ N

(

µEkj
,
σ2

E

n

)

, (7)

µEk•|µBk
≈ N

(

µBk
,
σ2

B

m

)

, (8)

µB• ≈ N

(

µV ,
σ2

V

l

)

. (9)

By applying Lemma 32 on (7),(8), we get by turns (10),(11). Then, by applying
the same lemma again on (10), we get (12):

Y k••|µEk• ≈ N

(

µEk•,
σ2

E

mn

)

(10)

µE••|µB• ≈ N

(

µB•,
σ2

B

lm

)

(11)

Y •••|µE•• ≈ N

(

µE••,
σ2

E

lmn

)

(12)

By applying Lemma 33 on (9) and (11), we get

µE•• ≈ N

(

µV ,
σ2

B

lm
+

σ2
V

l

)

. (13)

Finally, by applying Lemma 33 on (13) and (12), we get (6). ⊓⊔

3.2 Change Detection

In regression benchmarking, we need to detect a performance change between
two consecutive versions of selected software. Currently, we focus only on mean
response time. In terms of the model described above, we want to detect a
change, whenever µY changes between two consecutive versions. Because we
cannot assume to have a long period of versions without a change, we cannot
directly use methods of change–point detection or quality control. The option of
modifying some of these methods for regression benchmarking is left for future
work.

Currently, we use a simple comparison method based on confidence intervals:
we detect a change whenever confidence intervals for the mean from two consec-
utive versions do not overlap. The method is similar to the Approximate Visual
Test described by Jain [12], where t–test is used to detect changes in case the
center of one confidence interval falls into the other confidence interval.

The asymptotic confidence interval for µY can be constructed using (6). We
can estimate the unknown variances σ2

E , σ2
B and σ2

E by S2
E , S2

B and S2
V as follows:

S2
E =

1

lm(n− 1)

l
∑

k=1

m
∑

j=1

n
∑

i=1

(

Ykji − Y kj•

)2
(14)

86

S2
B =

1

l(m− 1)

l
∑

k=1

m
∑

j=1

(

Y kj• − Y k••

)2
(15)

S2
V =

1

l − 1

l
∑

k=1

(

Y k•• − Y •••

)2
(16)

Since we do not assume normal distributions of µB, µE |µB and Y |µE , we can-
not assume Y ••• to follow the t–distribution. We therefore have to rely on the
asymptotic normality of Y •••, even after the estimates of the variances are used
instead of the unknown variances. The asymptotic (1 − α) confidence interval
for µY used for change detection therefore is

Y ••• ± u1−α
2

√

S2
E

lmn
+

S2
B

lm
+

S2
V

l
, (17)

where u• is the quantile function of the standard normal distribution. Thus, the
probability that µY lies within this interval is asymptotically (1− α).

3.3 Determining Optimum Number of Executions and

Measurements

When detecting changes using confidence intervals as described above, the shorter
the interval is, the higher is the chance of discovering a performance change. The
width of the confidence interval (17) can be reduced only by proper selection of
the numbers of measurements, executions and binaries – n, m, l, because the
confidence level (1 − α) is fixed and the variance estimates S2

E , S2
B and S2

V are
properties of the given software version.

From (17), it is clear that increasing the number of binaries l always reduces
the interval width. Increasing the number of executions m reduces the width
only partially, because it does not reduce the impact of S2

V (random effects
in compilation). Similarly, increasing the number of measurements n does not
reduce the impact of S2

B (random effects in execution) and S2
V . On the other

hand, increasing the number of measurements n is usually less expensive than
increasing the number of executions m, which is in turn less expensive than
increasing the number of compilations l. Therefore, optimum values of n and m

should exist, that guarantee the shortest confidence interval given a fixed time
for the benchmarking experiment. The optimum values would depend on S2

E ,
S2

B and S2
V . This intuitive idea will be formalized further in this section.

We define the cost c of a benchmarking experiment:

c = (b + (w + n) ·m) · l, (18)

where w is the number of measurements in the warm–up stage of each benchmark
execution (price for a new execution) and b is the number of measurements that
could be taken in the time needed for compilation (price for a new binary). The
values of w and b have to be estimated or determined by experience, as discussed

87

below. Our objective is to find m,n such that for the fixed cost c, f(m, n, l) is
minimal:

f(m, n, l) =
S2

E

lmn
+

S2
B

lm
+

S2
V

l
. (19)

After eliminating l using (18), f(m, n) is

f(m, n) =
mw + mn + b

c
·
(

S2
E

mn
+

S2
B

m
+ S2

V

)

. (20)

It is shown in Appendix B that the minimum is reached in

m0 =

√

b

w
· S2

B

S2
V

, n0 =

√

w · S2
E

S2
B

. (21)

In practice, the length of the warm–up stage w depends on the benchmark
platform and benchmark application and can be set by experience. It is impor-
tant not to understate w in order to get relevant results [13]. The value of b

can be estimated by experiments, it depends on the used compiler, the build
scripts and the code size. From our experience, neither b nor w vary significantly
between software versions. Still, the variances σ2

E , σ2
B and σ2

V do vary between
versions, and we have to collect enough measurements in enough executions for
enough binaries to get variance estimates S2

E , S2
B, S2

V . How much is enough de-
pends on each benchmark and platform. With these estimates, we can calculate
the confidence interval width (17), and if the width is too large, we can run an
additional experiment with the optimum values of m and n using (21).

Some benchmarks measure only the response time of a part of a larger op-
eration, where the whole operation is repeatedly invoked. An example of such a
benchmark is the Marshal benchmark, which in fact repeatedly runs a remote
procedure call, but measures only the marshaling part of the call. Let us assume
that the measured operation takes q times less time than the repeated operation.
The cost of the experiment is then still expressed in the number of measurements
of the measured operation:

c = (b + (w + n) ·m · q) · l. (22)

It is shown in Appendix B that the optimum numbers of measurements and
executions are:

m0 =
1√
q
·
√

b

w
· S2

B

S2
V

, n0 =

√

w · S2
E

S2
B

. (23)

The optimum number of executions m0 is smaller than in (21), because the cost
of the execution has been understated compared to the cost of the compilation.
The optimum number of measurements n is the same, because the cost of the
measurement compared to the cost of the execution did not change: both in
warm–up phase and non warm–up phase, the whole operation is repeated. The
value of q can be estimated by experiments. By our experience, it does not vary
significantly between software versions.

88

4 Evaluation

The evaluation of the proposed statistical model is done in the context of re-
gression benchmarking [4]. The essential part of regression benchmarking is an
automated comparison of observed performance between different software ver-
sions, with the goal of identifying instances of performance changes from version
to version. Regression benchmarking is therefore sensitive to random fluctuations
in the observed performance, which exhibit themselves as “false alarms” – spuri-
ous reports of performance changes that are caused by the random fluctuations
rather than differences between software versions.

The evaluation is made difficult by the fact that deciding whether a change
in observed performance corresponds to a change between software versions re-
quires manual analysis of the software versions in question. Such an analysis
becomes prohibitively expensive when enough data for a statistically significant
evaluation needs to be collected. We overcome this obstacle by comparing multi-
ple benchmarking experiments on the same software version in place of multiple
benchmarking experiments on multiple software versions. Then, all the detected
changes are necessarily false alarms.

In more detail, the evaluation begins with compiling the same software ver-
sion many times into a number of binaries, executing each binary a number of
times and collecting a number of measurements from each execution. The exact
numbers of compilations, executions and measurements are chosen to maximize
the reliability of the evaluation. The evaluation proceeds with simulation (boot-
strap). For each benchmark, the simulation is repeated a number of times, each
time two groups of binaries are chosen by random and compared using the pro-
posed statistical model. The results are shown in Figure 2, contrasted against
the results obtained using the model from [3] with only a single binary per group.

The evaluation suggests that different benchmarks suffer from false alarms to
different degrees. The FFT benchmarks suffer most – this can be explained by the
fact that they use a lot of memory and are therefore sensitive to the performance
of the memory cache. On the other hand, the Rijndael benchmark does not
suffer from false alarms at all – the encryption and decryption is computationally
intensive, but does not need much memory. It is also interesting that in omniORB
benchmarks, the decrease in the number of false alarms with the growing number
of binaries is much faster than in Mono benchmarks. We attribute this to the fact
that the random effects of compilation in Mono benchmarks are more complex
than in omniORB benchmarks.

5 Conclusion

The compilation of large applications is often a non–repeatable process. Com-
piling the same sources with the same compiler under the same settings can and
often does result in different binaries that deliver different performance. As a
result and contrary to the common practice, multiple binaries should be used
for benchmarking. We show on a diverse set of benchmarks how using only a

89

FFT FFT

(NA)

FFT

(NA,OPT)

FFT

(OPT)

HTTP HTTP

(OPT)

Rijndael Rijndael

(OPT)

TCP TCP

(OPT)

Marshal Ping

Benchmarks

F
a
ls

e
 A

la
rm

s
 [
%

]

0
1
0

2
0

3
0

4
0

5
0

1

10

15

20

25

30

Number of compilations of tested version

Benchmark
False Alarms (%) for Different

Numbers of Compilations
1 10 15 20 25 30

FFT 50.09 20.69 14.09 9.29 5.79 4.15
FFT (NA) 37.80 16.16 10.88 7.13 4.74 3.04
FFT (NA,OPT) 36.88 15.87 10.22 6.96 4.36 3.61
FFT (OPT) 41.35 19.66 13.25 8.46 6.01 3.95
HTTP 1.64 0.95 0.59 0.40 0.27 0.13
HTTP (OPT) 3.29 1.38 0.96 0.72 0.51 0.37
Rijndael 0.03 0.01 0.02 0.02 0.00 0.01
Rijndael (OPT) 0.00 0.00 0.00 0.01 0.01 0.00
TCP 6.01 2.50 1.63 1.36 0.82 0.55
TCP (OPT) 4.03 1.77 1.29 0.84 0.70 0.41
Marshal 4.97 0.29 0.10 0.01 0.02 0.00
Ping 16.68 1.16 0.35 0.08 0.03 0.00

Fig. 2. Reduction of false alarms in regression benchmarking for different numbers of
compilations. The same values are presented both in the graph and in the table.

90

single binary for benchmarking can lead to severe distortion of the benchmark
results.

We introduce a new statistical model of a benchmark experiment, one which
allows to estimate the precision of benchmark results, taking into account the
random effects in compilation, but also the random effects in benchmark exe-
cution described in [2] and the widely known random effects in individual mea-
surements. In addition to this, the model makes it possible to determine the
optimum number of measurements within each benchmark execution and the
optimum number of executions for each benchmark binary, which allows us to
achieve the best possible precision for a given time limit on the benchmark ex-
periment.

As an application of the model, we demonstrate a significant reduction of the
number of erroneously detected performance changes between different versions
of the same software in the context of regression benchmarking [4]. As a striking
example, with 25 Mono binaries, the number of erroneous detections using a
standard numerical benchmark falls down from 50% to 6%, as illustrated in
Figure 2. This improvement is achieved by incorporating the random effects of
compilation into the precision estimates of the results.

There are numerous related projects that track performance changes during
software development, such as [14, 15]. Although these projects do not attempt
to detect the changes in performance automatically, their results would benefit
from using the proposed statistical model. At the time of this writing, we are not
aware of any other project that would attempt to handle the problems associated
with random effects of compilation in performance.

Acknowledgement. This work was partially supported by the Grant Agency of
the Czech Republic project GD201/05/H014 and the Czech Academy of Sciences
project 1ET400300504.

References

1. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison–Wesley, Reading, MA, USA (2001)

2. Kalibera, T., Bulej, L., Tuma, P.: Benchmark precision and random initial state.
In: Proceedings of SPECTS 2005, SCS (2005) 853–862

3. Kalibera, T., Bulej, L., Tuma, P.: Automated detection of performance regressions:
The Mono experience. In: MASCOTS, IEEE Computer Society (2005) 183–190

4. Bulej, L., Kalibera, T., Tuma, P.: Repeated results analysis for middleware regres-
sion benchmarking. Performance Evaluation 60 (2005) 345–358

5. Lo, S.L., Grisby, D., Riddoch, D., Weatherall, J., Scott, D., Richardson, T., Car-
roll, E., Evers, D., , Meerwald, C.: Free high performance orb. http://omniorb.
sourceforge.net (2006)

6. Novell, Inc.: The Mono Project. http://www.mono-project.com (2006)
7. ECMA: ECMA-335: Common Language Infrastructure (CLI). ECMA (2002)
8. Distributed Systems Research Group: Mono regression benchmarking. http://

nenya.ms.mff.cuni.cz/projects/mono (2005)
9. Free Software Foundation: The gnu compiler collection. http://gcc.gnu.org (2006)

91

10. Gu, D., Verbrugge, C., Gagnon, E.: Code layout as a source of noise in JVM
performance. In: Component And Middleware Performance Workshop, OOPSLA
2004. (2004)

11. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference.
Springer, New York, NY, USA (2004)

12. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. Wiley–Interscience,
New York, NY, USA (1991)

13. Buble, A., Bulej, L., Tuma, P.: CORBA benchmarking: A course with hidden
obstacles. In: IPDPS, IEEE Computer Society (2003) 279

14. DOC Group: TAO performance scoreboard. http://www.dre.vanderbilt.edu/stats/
performance.shtml (2006)

15. Prochazka, M., Madan, A., Vitek, J., Liu, W.: RTJBench: A Real-Time Java
Benchmarking Framework. In: Component And Middleware Performance Work-
shop, OOPSLA 2004. (2004)

16. Weisstein, E.W.: Mathworld–a wolfram web resource. http://mathworld.wolfram.
com (2006)

A Proof of Lemma 33

Let f be the probability density function of the normal distribution with mean
µ and variance σ2:

f(x; µ, σ) =
1

σ
√

2π
exp

(

− (x− µ)2

2σ2

)

, exp(z) = ez.

The density functions of X and Y |X from Lemma 33 are:

fX(x) = f(x; µX , σX), fY |X(y|x) = fY |x(y) = f(y; x, σ).

By the definition of conditional density:

fY,X(y, x) = fY |X(y|x) · fX(x).

It follows, that:

fY (y) =

∫

fY,X(y, x) dx =

∫

fY |X(y|x)fX(x)dx =

=

∫

1

σ
√

2π
exp

(

− (y − x)2

2σ2

)

· 1

σX

√
2π

exp

(

− (x− µX)2

2σ2
X

)

dx =

=

∫

1

σ
√

2π
exp

(

− (y − µX − u)2

2σ2

)

· 1

σX

√
2π

exp

(

− u2

2σ2
X

)

du =

=

∫

f(y − u; µX , σ)f(u; 0, σX)du. |u = x− µX

Lemma A1 Let f(t; µ1, σ1),f(t; µ2, σ2) be density functions of normal variates.
Then,

∫

f(τ ; µ1, σ1)f(t− τ ; µ2, σ2))dτ = f

(

t; µ1 + µ2,

√

σ2
1 + σ2

2

)

.

In other words, convolution of Gaussians is also a Gaussian (Convolution, [16]).

92

By Lemma A1:

fY (y) =

∫

f(y − u; µX , σ)f(u; 0, σX)du = f

(

y; µX ,

√

σ2 + σ2
X

)

,

and thus
Y ∼ N(µX , σ2

X + σ2). ⊓⊔

B Proof of (21) and (23)

We will show only (23), because (21) is a special case of (23), where q = 1. Let
f ,g be defined as follows:

g(l, m, n) = (b + (w + n) ·mq) · l − c,

f(l, m, n) =
S2

E

lmn
+

S2
B

lm
+

S2
V

l
.

Our objective is to find a minimum of f(l, m, n), subject to the constraint
g(l, m, n) = 0. Using Lagrange Multiplier Theorem [16], we can find l, m, n

where the minimum must be, provided that the minimum exists. The partial
derivatives are:

(

∂g

∂l
,

∂g

∂m
,
∂g

∂n

)

(l, m, n) = ((w + n) ·mq + b, (w + n) · ql, mql) ,

(

∂f

∂l
,

∂f

∂m
,
∂f

∂n

)

(l, m, n) =

(

− S2
E

l2mn
− S2

B

l2m
− S2

V

l2
,− S2

E

lm2n
− S2

B

lm2
,− S2

E

lmn2

)

.

By Lagrange Multiplier Theorem, the local extremum can only be in l, m, n, that
solve the following system of equations:

∂f

∂l
(l, m, n) + λ

∂g

∂l
(l, m, n) = 0 (24)

∂f

∂m
(l, m, n) + λ

∂g

∂m
(l, m, n) = 0 (25)

∂f

∂n
(l, m, n) + λ

∂g

∂n
(l, m, n) = 0 (26)

g(l, m, n) = 0 (27)

We can express m2 and l2 from (26), for λ > 0, q > 0:

m2 =
S2

E

λql2n2
, l2 =

S2
E

λqm2n2
. (28)

By substituting m2 from (28) into (25), we get for n > 0:

n0 = n =

√

wS2
E

S2
B

.

93

By substituting l2 from (28) into (24), we get for m > 0, w > 0:

m0 = m =

√

bS2
B

qwS2
V

.

We are not interested in the values of l and λ solving the system of equations.
Still, it remains to be shown that there really is a local minimum of f(l, m, n) in
m = m0, n = n0. This can be done directly by checking the first and the second
partial derivatives of f(m, n),

f(m, n) =
mqw + mqn + b

c
·
(

S2
E

mn
+

S2
B

m
+ S2

V

)

,

as described in Second Derivative Test [16]. The procedure is quite straightfor-
ward, but involves some labor algebra. We do not include the details here.

C Description of Used Benchmarks

All benchmarks were run on a single machine, Dell Precision 340, with a single
Pentium 4 processor, 512M RAM. The CORBA benchmarks were run on Fedora
2 operating system, the Mono benchmarks were run on Fedora 4. All benchmarks
were run with a disconnected network interface and with all unnecessary system
services shut down.

The Ping benchmark measures the response time of a simple CORBA remote
procedure call, the Marshal benchmark measures only marshaling part of the
remote call. Both benchmarks comprise of a client and a server process, both
of which are restarted in each execution. The evaluation was done with 100
CORBA/benchmark binaries, each benchmark binary was executed 25 times.
The Ping and Marshal benchmarks are described in [2] in more detail, including
the platform information.

The other benchmarks are from the Mono Regression Benchmarking Project [8].
The TCP Ping and HTTP Ping benchmarks measure response time of a single
remote procedure call using TCP and HTTP channels, both benchmarks com-
prise of two processes. The Rijndael benchmark measures the aggregated time
for encryption and decryption of a constant short text in memory. The FFT
benchmark measures the aggregated time for forward and inverse Fast Fourier
Transformation of a constant vector. There are two versions of the FFT bench-
mark: the original version allocates the memory for computation repeatedly at
the beginning of each measurement, the NA (“no allocation”) version allocates
the memory once at the benchmark process start–up. Each benchmark was run
both with the default virtual machine optimizations turned on, and with all
the implemented virtual machine optimizations turned on (OPT). The evalu-
ation was carried out with 150 binaries, each benchmark binary was executed
100 times. Detailed description of the benchmarks and platform information are
available on the web [8].

94

Chapter 8

Generic Environment for Full
Automation of Benchmarking

Tomáš Kalibera, Lubomı́r Bulej, Petr Tůma

Contributed paper at First International Workshop on
Software Quality (SOQUA 2004) [4] of Net.ObjectDays
2004 conference.

In conference proceedings,
published by tranSIT GmbH,
pages 35–41,
ISBN 3-9808628-3-6,
September 2004.

Also in Testing of Component-Based Systems and Software Qual-
ity,
published by Gesselshaft für Informatik,
Lecture Notes in Informatics P-58,
pages 125–132,
ISSN 3-88579-387-3,
December 2004.

The original version is available electronically from the pub-
lisher’s site at http://www.gi-ev.de/fileadmin/redaktion/2004
LNI/PDF/p-58.pdf.

95

http://www.gi-ev.de/fileadmin/redaktion/2004_LNI/PDF/p-58.pdf
http://www.gi-ev.de/fileadmin/redaktion/2004_LNI/PDF/p-58.pdf

Generic Environment for Full Automation of

Benchmarking

Tomáš Kalibera1, Lubomír Bulej1,2, Petr T ma1

1Distributed Systems Research Group, Department of Software Engineering

Faculty of Mathematics and Physics, Charles University

Malostranské nám. 25, 118 00 Prague, Czech Republic

phone +420-221914267, fax +420-221914323

2Institute of Computer Science, Czech Academy of Sciences

Pod Vodárenskou v ží 2, 182 07 Prague, Czech Republic

phone +420-266053831

{tomas.kalibera, lubomir.bulej, petr.tuma}@mff.cuni.cz

Abstract. Regression testing is an important part of software quality assurance.

We work to extend regression testing to include regression benchmarking, which

applies benchmarking to detect regressions in performance. Given the specific

requirements of regression benchmarking, many contemporary benchmarks are not

directly usable in regression benchmarking. To overcome this, we present a case

for designing a generic benchmarking environment that will facilitate the use of

contemporary benchmarks in regression benchmarking, analyze the requirements

and propose architecture of such an environment.

1 Introduction

The growing complexity of software and the need for distributed development has

brought an increased demand for quality control in the software development process.

As witnessed in numerous open source projects, automated regression testing of the

software under development plays an important role in the quality assurance process.

Regression testing, however, mostly covers only the correct functionality of the tested

implementation. Regression benchmarking [BKT04a, BKT04b] extends regression

testing by also covering the performance of the tested implementation.

Regression benchmarking uses benchmarks to evaluate various performance attributes of

the software under development in consecutive snapshots, and analyzes the differences

in these snapshots to detect performance regressions. The performance regressions can

have many forms, from a slow degradation of performance to various scalability issues

or inevitable decrease of performance through added functionality.

96

To provide useful results, the entire regression benchmarking process must be automatic,

so that human attention is needed only when a suspect performance regression has been

detected. The requirement of full automation means that a machine, rather than a human,

has to deal with obtaining, compiling and deploying both the software under

development and the benchmarks, executing the benchmarks on the software under

development, monitoring of the execution, and storing and analyzing the results. Most

contemporary benchmarks are not suitable for regression benchmarking simply because

they do not meet some of these requirements.

As a remedy to the above issues related to full automation, we propose a generic

benchmarking environment that supports automated deployment, execution and

monitoring of benchmarks and related software, and a repository for storing data in

common format that will serve as a data source for analysis and visualization tools.

Although some of the contemporary benchmarks will need to be modified or augmented

to support the benchmarking environment, we take care to keep the modifications small

and typically not intrusive.

In previous work [BKT04a, BKT04b] we have focused on issues of automatic data

acquisition and result analysis. The work presented in this paper complements our

previous work by elaborating on the issues of automation of the benchmarking process.

The rest of the paper is organized as follows: Section 2 analyzes the requirements for

designing a generic benchmarking environment for regression benchmarking and points

out where this extends the related work, Section 3 proposes the architecture of the

environment that meets the requirements set out in Section 2, and Section 4 concludes

the paper.

2 Design Requirements for Generic Benchmarking Environment

Our design is primarily driven by generalization of requirements for regression

benchmarking, which can be divided intro three groups: installing and configuring the

environment, executing and monitoring of benchmarks, and storing of results. We

describe these requirements in detail and contrast our approach with related work in

other projects that deal with the concept of systematic benchmarking. These projects

include the TAO distributed scoreboard [Do04a], the continuous performance metrics

for ACE+TAO+CIAO [Do04b], the Skoll continuous distributed quality assurance

[Me04], the Lockheed Martin ATL benchmarking tools [ATL04], and the NIST

benchmarking tools [Co02].

2.1 Installation and Configuration

Speaking in broad terms, we require the benchmarking environment to be platform-

independent, self-contained, extensible, scalable and easy to install.

97

For reasonable platform independence, the environment must run at least on recent

versions of the Linux, Solaris and Windows platforms. The benchmarking environment

running on these platforms must interoperate as some benchmarks take place in a

heterogeneous distributed environment. Naturally, the benchmarking environment

should be open to platform-specific extensions such as monitoring.

The benchmarking environment must be self-contained and easy to install, enough to

support automated remote installation and configuration where possible. The automated

installation must not require prior or additional installation or configuration of third-

party software that is not readily available on the installation platform. While reasonably

platform independent, neither of the related projects supports fully automated

installation.

The benchmarking environment should support a wide scale of benchmarking sites,

ranging from a small developer or research site with few computers that are only

occasionally available for benchmarking, to a dedicated benchmarking cluster with

hundreds of computers. The scale of the benchmarking site should remain invisible to

the benchmarks. Neither of the related projects supports such a scale of benchmarking

sites. The target of [Do04a, Do04b, Me04] are mostly individual computers provided by

volunteers, while [Co02] is more focused on clusters.

2.2 Executing and Monitoring

The requirements related to executing and monitoring benchmarks are concerned with

the robustness of the benchmarking environment in face of failures, which minimizes the

required amount of human attention.

Besides the obvious requirement of the benchmarking environment being resilient to

failures of any of its components, it must also cope with failures of the benchmarks and

related software it executes. Crashes and deadlocks are the most common failures that

occur during benchmarking and are easy to detect and resolve. More complicated in that

respect are benchmark-specific failures that do not cause the benchmark to crash or

deadlock. Regardless of the type of a failure, its impact should be limited to the

benchmark where the failure occurred. To our knowledge, neither of the related projects

has tackled this issue, except for [Co02], which allows setting of resource limits on

executed tasks.

A key requirement associated with regression benchmarking is that except for the

software under development, the setup of the benchmarks may not change. The

benchmarking environment should therefore support a flexible host scheduling and

assignment policy, and ideally detect changes in the setup of the benchmarks. Given the

nature of the related projects, this issue only needed attention in [Co02], which supports

host assignment with respect to task requirements.

98

2.3 Storing of Results

The last group of requirements we consider stems from the need for common data

format for storing and processing of benchmark results. Most benchmarks produce data

in a proprietary format, which prevents using a common set of tools for analysis and

visualization.

The common data format must support storing raw benchmark results in the best

possible precision, along with a detailed description of the benchmark setup. Each

measured attribute should carry an annotation identifying its source and meaning, to

allow tracing the results back to their causes. In most projects, identification of the

results is responsibility of the user of a benchmark, except for [Co02], where a free-form

description of the experiment is associated with the results. In [Do04b], the results come

in different formats from multiple benchmarks and are often pre-processed.

Along with the raw benchmark results, the data format should allow attaching secondary

information that captures the conditions such as resource utilization under which a

benchmark was run, as well as its impact on the conditions. This information helps

ensure the validity of benchmark results in presence of constraints on the conditions

under which the benchmark should run.

The benchmark results should be kept in a repository that will allow for efficient storage

and retrieval. To conserve resources during analysis, the repository should support

attaching preprocessed or partially analyzed data to the benchmark results. A result

repository is only implemented in [Co02], using a relational database to store the results.

The fixed data model limits the flexibility of the repository.

3 Architecture of the Generic Benchmarking Environment

The requirements outlined in Section 2 suggest splitting the architecture of the

benchmarking environment into well-defined components with simple and well-

specified interaction. The workflow nature of regression benchmarking, with repetitive

cycles of deployment, execution, monitoring and analysis, further suggests designing the

benchmarking environment as a task processing system. The task processing system will

run on each host of a benchmarking site and implement all the benchmarking

environment does as specific tasks.

Implementing the task processing system as a Java application and the specific tasks as

Java classes helps achieve the requirements of platform independence and extensibility

from Section 2.1.

99

3.1 Task Processing System

Running a benchmark in a heterogeneous distributed environment involves deploying,

executing and monitoring the benchmark and related software. These actions may differ

in implementation for a specific benchmark or platform, but often share common

features such as the implementation of monitoring, the description of requirements, or

the process of deployment. This allows encapsulating the common features as simple

tasks, used to construct gradually more complex tasks for the actions involved in

running the benchmark.

The task processing system will distinguish two types of tasks – jobs, which accept

input, produce corresponding output and stop, and services, which are similar to jobs,

except they keep listening for next input. Both types of tasks will consist of their

description and implementation, the description defining requirements on the host to

launch the task, the list of states of the task, the conditions for launching and terminating

the task based on the state of other tasks, and the failure detection and resolution strategy

of the task.

The task processing system will schedule the tasks and track the dependencies between

the tasks defined by the conditions for launching and terminating the tasks. Depending

on the failure detection and resolution strategy of each task, the task processing system

will monitor the tasks and handle task failures by ignoring the failed task, restarting the

failed task from a checkpoint, or restarting the failed task with a limited number of

retries, as appropriate. The task processing system will also facilitate passing of

information between the tasks.

Separating the task processing system from the specific tasks helps keep the scale of the

benchmarking site invisible to the benchmarks, in line with the requirements of

scalability from Section 2.1. The introduction of the failure detection and resolution

strategy assists in achieving the requirements of robustness from Section 2.2.

3.2 Benchmarking Tasks

Benchmarking specific tasks will take care of downloading, compiling and executing

benchmarks and related software, as well as potential conversion of the results and their

storing in the result repository.

Most of these tasks will be common to various benchmarks and platforms, and only

tailored for a specific benchmark or platform in their configuration. Checking out source

code from CVS is an example of such a task, the configuration will specify the URL of

the CVS repository and the target directory. Some tasks, however, will be tailored to a

specific benchmark and platform, to make the benchmark fit the benchmarking

environment without modification. An example of such a task is populating a database

used by a benchmark with data specific to the benchmark.

100

The existence of tasks tailored to a specific benchmark and platform helps meet the

requirements of extensibility from Section 2.1.

The benchmarking tasks will be instantiated by other tasks acting as task generators,

starting with a bootstrap task generator. The task generators will rely on a configuration

listing the benchmarks to run and the platforms to use, as well as the tasks to schedule

for a specific benchmark and platform. Examples of task generators include a generator

that instantiates tasks for downloading source code of each configured benchmark, or a

generator that instantiates tasks for analyzing and visualizing the benchmark results of

each executed benchmark.

Two prominent tasks of the benchmarking environment will be the result repository and

the resource manager, both running as services. The result repository is a service used by

all tasks that produce benchmark results to store the results. The resource manager is a

service used by all task generators that instantiate the benchmarking tasks to allocate

exclusive resources such as computers used by the benchmarking tasks. The

implementation of the services will accommodate the requirements on executing and

monitoring from Section 2.2, as well as the requirements on storing of results from

Section 2.3.

3.3 Example Configuration

Figure 1 shows a part of an example configuration of the benchmarking environment

running the RUBiS benchmark [Ce04]. Shown are the control host, the client host and

the server host as three computers running the task processing system, as well as some

tasks.

The control host is central to the configuration, running the result repository and

resource manager as two prominent services instantiated by the bootstrap task generator.

The client host runs the client emulator job of the RUBiS benchmark, responsible for

generating the service load. The job is associated with the actual client emulator process,

used without modification from the RUBiS benchmark. The server host runs the

database and container of the RUBiS benchmark as two prominent services, again

associated with the actual database and container processes from the RUBiS benchmark.

The services are used by the initialization, compilation and deployment jobs.

Figure 1 also shows states of the tasks and dependencies between the tasks, depicted by

state names in parentheses and wait conditions over arrows. Most services are in the up

state, most jobs are in the done state, except for the client emulator job, which waits for

the deployment job to reach the done state, and the deployment job, which is in the

running state. Other dependencies denote already completed waiting of jobs on services.

101

PROCESS:

MySQL

Server

TASK:

Database

(service,up)

TASK:

EJB Server

(service,up)

TASK:

Deploy Beans

(job,running)

TASK:

Fill Database

(job,done)

TASK:

Compile Beans

(job,done)

wait_for_done

wait_for_up

wait_for_up
wait_for_up

TASK:

Client Emulator

(job,prepared)

wait_for_done

wait_for_done

PROCESS:

Jonas EJB

Server

PROCESS:

Client Emulator

TASK:

Result Rep.

(service,up)

wait_for_up

TASK:

Resource Mgmt.

(service,up)

CONTROL HOST SERVER HOST

CLIENT HOST

TASK PROCESSING SYSTEM

TASK PROCESSING SYSTEM

TASK PROCESSING SYSTEM

Figure 1: Example configuration of the benchmarking environment running the RUBiS

benchmark.

4 Conclusion

The paper is a part of our work to extend regression testing to include regression

benchmarking, which applies benchmarking to detect regressions in performance. We

have illustrated that the requirement of full automation, inherent to regression

benchmarking, is difficult to meet, as it includes automation of tasks such as

downloading source code of the benchmarks and related software, compiling the source

code, or monitoring of the benchmarks and related software, all of which normally

requires human attention. Indeed, most contemporary benchmarks do not meet this

requirement, as is the case for example with ECperf [Su04], RUBiS [Ce04],

SPECjAppServer2004 [Sp04] or Trade3 [IBM04], which require manual configuration

and deployment and can deadlock without terminating.

We have pointed out the difficulties on the related work in other projects that deal with

the concept of systematic benchmarking, and proceeded by proposing a generic

benchmarking environment based on a task processing system. We have explained why

we believe that our design of the benchmarking environment will allow us to overcome

the difficulties associated with regression benchmarking.

102

The paper has been styled more as an overview of the issues associated with full

automation, inherent to regression benchmarking, than as a description of the generic

benchmarking environment. This is partly because of space considerations, partly

because the environment is still a work in progress. For more details, please refer to

http://nenya.ms.mff.cuni.cz/been.

Acknowledgements. The work was partially supported by the Grant Agency of the

Czech Republic project number 201/03/0911.

References

[ATL04] Advanced Technology Labs, Lockheed Martin Corp.: Agent and Distributed

Objects Quality of Service, http://www.atl.external.lmco.com/projects/QoS, 2004.

[BKT04a] Bulej L., Kalibera T., T ma P.: Regression Benchmarking with Simple

Middleware Benchmarks. Proceedings of IPCCC 2004, Phoenix, USA, IEEE CS,

2004.

[BKT04b] Bulej L., Kalibera T., T ma P.: Repeated Results Analysis for Middleware

Regression Benchmarking. Special Issue on Performance Modeling and Evaluation

of High-Performance Parallel and Distributed Systems, Performance Evaluation:

An International Journal, Elsevier B.V., 2004.

[Ce04] Cecchet E., Chanda A., Elnikety S., Marguerite J., Zwaenepoel W.: Performance

Comparison of Middleware Architectures for Generating Dynamic Web Content.

Proceedings of Middleware 2004, Rio de Janeiro, Brazil, ACM, 2003.

[Co02] Courson M., Mink A., Marçais G., Traverse B.: An Automated Benchmarking

Toolset. Proceedings of HPCN 2000, Amsterdam, The Netherlands, LNCS 1823,

Springer Verlag, 2000.

[Do04a] Distributed Object Computing Group: ACE+TAO Distributed Scoreboard,

http://www.dre.vanderbilt.edu/scoreboard, 2004.

[Do04b] Distributed Object Computing Group: Continuous Metrics for ACE+TAO+CIAO,

http://www.dre.vanderbilt.edu/Stats, 2004.

[IBM04] IBM Corp.: Trade3,

http://www.ibm.com/software/webservers/appserv/benchmark3.html, 2004.

[Me04] Memon A., Porter A., Yilmaz C., Nagarajan A., Schmidt D.C., Natarajan B.:

Skoll: Distributed Continuous Quality Assurance. Proceedings of ICSE 2004,

Edinburgh, Scotland, IEEE CS, 2004.

[Sp04] Standard Performance Evaluation Corporation: SPECjAppServer2004,

http://www.specbench.org/jAppServer2004, 2004.

[Su04] Sun Microsystems Inc.: ECperf Specification, http://java.sun.com/j2ee/ecperf,

2004.

103

Chapter 9

Automated Benchmarking and
Analysis Tool

Tomáš Kalibera, Jakub Lehotský, David Majda,
Branislav Repček, Michal Tomčányi, Antońın Tomeček,
Petr Tůma, Jaroslav Urban

Technical report [12] at Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University in
Prague.

Published as technical report,
no. 8,
June 2006.

The paper is available electronically from http://nenya.ms.mff.
cuni.cz/publications/Submitted 1404 BEEN.pdf.

104

http://nenya.ms.mff.cuni.cz/publications/Submitted_1404_BEEN.pdf
http://nenya.ms.mff.cuni.cz/publications/Submitted_1404_BEEN.pdf

Automated Benchmarking and Analysis Tool

Tomas Kalibera, Jakub Lehotsky, David Majda, Branislav Repcek,

Michal Tomcanyi, Antonin Tomecek, Petr Tuma, Jaroslav Urban

Distributed Systems Research Group, Department of Software Engineering

Faculty of Mathematics and Physics, Charles University

Malostranske nam. 25, 118 00 Prague, Czech Republic

phone +420-221914232, fax +420-221914323

{kalibera,been}@nenya.ms.mff.cuni.cz

Abstract—Benchmarking is an important performance eval-
uation technique that provides performance data representative
of real systems. Such data can be used to verify the results of
performance modeling and simulation, or to detect performance
changes. Automated benchmarking is an increasingly popular
approach to tracking performance changes during software
development, which gives developers a timely feedback on their
work. In contrast with the advances in modeling and simulation
tools, the tools for automated benchmarking are usually being
implemented ad–hoc for each project, wasting resources and
limiting functionality.

We present the result of project BEEN, a generic tool for
automated benchmarking in a heterogeneous distributed environ-
ment. BEEN automates all steps of a benchmark experiment from
software building and deployment through measurement and
load monitoring to the evaluation of results. The notable features
include separation of measurement from the evaluation and
ability to adaptively scale the benchmark experiment based on
the evaluation. BEEN has been designed to facilitate automated
detection of performance changes during software development
(regression benchmarking).

I. INTRODUCTION

Coupled with modeling and simulation, benchmarking is

an essential technique for performance evaluation. Based on

running model applications (benchmarks) in a real system,

benchmarking provides performance data representative of a

real system. This data is useful for detection of changes in

the system, as well as a feedback for modeling and simulation

of the system. Recently, regular automated benchmarking has

been gaining popularity as a technique for detection of changes

in performance during software development [1]–[3]. This

technique, also known as regression benchmarking [4], is

based on benchmarking of daily software versions on the same

system.

Benchmarking of a complex system, and automated bench-

marking in particular, is a complex task. Still, in con-

trast with advances in performance modeling and simulation

tools, benchmarking is being implemented ad–hoc for each

project [1]–[3], wasting resources and loosing generality.

The waste of resources includes not only re–implementing

the execution environment for every software to be evaluated.

The authors are listed in alphabetic order.

Most current benchmarks are designed to report averages or

similar statistics, discarding the raw data. When another statis-

tic, such as median or variance, or a more advanced evaluation,

such as clustering of the data, is needed, the benchmark has

to be re–implemented and run again, additionally wasting the

CPU time. Note that the CPU time can be very expensive when

large or enterprise applications are evaluated, because the

benchmarks have to be run on a real system. To address these

problems, BEEN provides an infrastructure for benchmarks

that report raw data. The infrastructure defines a benchmark–

and application–independent format of the data, implements

a repository of results that can handle the data and supports

extensions for benchmark–independent statistical evaluation of

the data. BEEN thus allows the re–use of the data for different

types of statistical evaluation.

The limited generality of current ad–hoc benchmarking

tools includes both the measurement and the evaluation of

results. The measurement in general has to cope with random

effects at various levels, such as in compilation, in benchmark

execution and in individual observations [5], [6]. The random

effects are present in real systems, have impact on performance

and cannot be filtered out [5]. As a result, in some benchmarks,

compilations, executions and observations have to be repeated.

The number of necessary repetitions at each level, however,

depends on the benchmark and the required result precision.

Current ad–hoc benchmarking tools usually support only a

predefined number of repetitions at the level of executions and

observations, possibly loosing precision due to random effects

in compilation, or wasting CPU time by suboptimal choice of

the numbers of repetitions [6].

In ad–hoc benchmarking tools, the analysis of performance

results is frequently limited in that it does not allow planning

of new measurements based on the results. This feature is

important for statistical evaluation of the results, because of

the natural variation in performance of a benchmark that is

present even when there is no change in the system. When

the variation is too large, additional measurements using the

same benchmarks are needed to filter it out. The automated

detection of changes in regression benchmarking is an example

of a benchmarking application where such an analysis is

105

important. As a generic benchmarking tool, BEEN supports

repeating compilation, execution and observations, as well

as statistical evaluation methods that are independent of the

measurement and may adaptively plan additional repetitions.

BEEN is designed to support automated regression bench-

marking, covering all its steps from automated downloading

through measurement and automated detection of changes to

visualization of results.

The project definition of BEEN has been presented in [7].

Currently, BEEN is available in a beta version, described in

this paper in more detail. The related projects are described in

Section II. The architecture of the tool is outlined in Section III

and the functionality is detailed in Sections IV and V. The

current implementation is evaluated on a distributed remote

procedure call benchmark in Section VI. The paper is con-

cluded in Section VII.

II. RELATED WORK

Among the related tools are tools for automated perfor-

mance monitoring during software development, generic tools

for automated distributed testing and generic tools for auto-

mated distributed benchmarking.

The tools for automated performance monitoring dur-

ing software development include TAO Performance Score-

board [1], A Real-Time Java Benchmarking Framework [2],

Lockheed Martin ATL Benchmarking Tools [8] and Mono

Regression Benchmarking Project [3]. These tools were all

created for use in a particular software project. [1] and [8] are

focused at CORBA, [2] is for Java applications and [3] is for

Mono/C# applications. Only [3] features automated detection

of changes. Porting the tools for use in other software projects

would require a significant additional effort.

The Skoll Project [9] started as a tool for distributed

software testing that used computing resources provided by

outside volunteers. One of many challenges of the project

is finding a minimal set of tested software configurations

that would still discover potential problems in any configura-

tion. Currently, the project also covers regression benchmark-

ing [10], focusing on finding benchmarks and configurations

that are most sensible to performance problems present in

any configuration. Such benchmarks and configurations are

first found using the computing resources provided by outside

volunteers, and then precisely evaluated on dedicated com-

puters. Within this context, BEEN is a tool for the precise

performance evaluation.

The CLIF Tool [11] is a load injection framework tar-

geted primarily at Java middleware. It covers deployment,

monitoring and storing of results. The tool is capable of a

highly configurable distributed load injection, emulating for

example clients accessing a web site. BEEN does not aspire

to provide the load injection support for general benchmarks,

but is able to run benchmarks that use [11] for load injection,

adding runtime monitoring, results repository and automated

evaluation of results. The results repository of [11] is limited

in comparison.

The NIST Automated Benchmarking Toolset [12] is a

generic tool for automated benchmarking in a grid environ-

ment. The tool uses a common format for storing results in

a relational database. It relies on the Distributed Queueing

System [13] as its execution environment and shell scripts as

its task implementation language, therefore, the support for

Windows platforms is limited. The tool is no longer being

developed and the source code is not available.

III. ARCHITECTURE

The main design goal of BEEN is to support automated

benchmarking in a distributed heterogeneous environment.

The automated benchmarking involves compilation of software

to be benchmarked, compilation of benchmarks, deployment,

running the benchmarks and collecting, evaluating and visu-

alizing the results. Many of these issues are general for any

automated execution of software in a distributed heterogeneous

environment, these are covered by the execution framework.

The benchmarking specific issues are covered by the bench-

marking framework, built on top of the execution framework.

Both frameworks can be administered and controlled from a

unified web based user environment. The BEEN architecture

is illustrated in Figure 1.

A. Execution Framework

The execution framework is designed to execute tasks

in a distributed system, supporting different host platforms

without requiring system configuration changes to the host

computers. The main components of the execution framework

are Host Runtime, Host Manager, Task Manager and Software

Repository. To allow a unified view on different hosts in the

system, each host has to run the Host Runtime, which is used

by other BEEN components to communicate with that host.

The Host Runtime is capable of running tasks locally on each

host, providing logging and monitoring facilities.

The availability of the hosts can change over time, both

intentionally when the administrator adds or removes hosts,

or as a result of a network or hardware failure. The Host

Manager maintains a list of the currently available hosts as

well as their current hardware and software configuration. The

Host Manager allows addition and removal of hosts by the

administrator and lookup of hosts based on their configuration.

The execution of tasks in the distributed environment is

coordinated by the Task Manager. The Task Manager allocates

hosts to tasks based on the tasks requirements, monitors

the running tasks and resolves task failures. The executable

code and static data of the tasks are stored in the Software

Repository.

The execution framework is designed with benchmarking in

mind. This requires that the framework is capable of running

a task exclusively on a particular host, otherwise the task

performance could be affected by concurrently running tasks.

By employing the Software Repository, the framework avoids

the dependence on a file system shared by multiple hosts,

which can also potentially distort performance of running

tasks.

106

Results
Repository

Software
Repository

Benchmark
Manager

Task
Manager

Task generation

Host 1 Host 2 Host n…

Host

Runtime

Host

Runtime

Host

Runtime

Task execution

Host
Manager

Host management

Upload/download

Results storage

E
x
e
c
u
ti
o
n

F
ra
m
e
w
o
rk

B
e
n
c
h
m
a
rk
in
g

F
ra
m
e
w
o
rk

W
e

b
 U

s
e
r

In
te

rf
a
c
e

Fig. 1. BEEN architecture.

B. Benchmarking Framework

The benchmarking framework is designed to support two

different kinds of performance analysis – a traditional evalua-

tion of performance and a repetitive evaluation of performance

for regression benchmarking. The main components of the

benchmarking framework are the Benchmark Manager and the

Results Repository.

The Benchmark Manager submits tasks needed for execu-

tion of a particular benchmark to the Task Manager. These

include tasks for compilation of the evaluated software, com-

pilation of the benchmark, execution of the benchmark and

collecting of its results. The benchmark results are stored in

the Results Repository in a raw format that contains individual

benchmark measurements. The results can be statistically

processed and visualized by the repository itself or by con-

figurable repository extensions.

C. User Interface

The distributed components of BEEN can be monitored

and controlled from a single web user interface. The interface

provides both high–level operations, such as starting a bench-

mark and viewing its results, as well as low–level operations,

such as executing a task that downloads particular software

into the Software Repository. For the system administrator,

the interface provides a detailed information on all the BEEN

components. The user interface runs independently and can be

shut down while other BEEN components are running.

IV. EXECUTION FRAMEWORK

The execution framework of BEEN provides a simple

interface for running tasks in a distributed environment, hiding

differences between various operating systems and platforms.

Platform independence is accomplished through using Java:

each task has to be wrapped within a Java class and be exe-

cutable from the Java Virtual Machine (JVM). The distribution

is implemented using Java Remote Method Invocation (RMI)

as the communication protocol. The code, static data and,

optionally, platform dependent binaries needed to run the tasks

are stored in task packages.

Depending on its mode of execution, each task is either

a job or a service. A job is a batch task created for a

particular action defined by job parameters, code and input

data. A job finishes as soon as the action it was created for

is performed. A service is an interactive task that waits for

requests from other tasks and performs actions upon those

requests. A service has to be stopped explicitly, either by other

tasks, by the environment, or by the administrator. Most of

BEEN components are themselves implemented as services:

Software Repository, Host Manager, Benchmark Manager, and

Results Repository.

The execution of a task is started by submitting a task

descriptor to the Task Manager. Based on the hardware and

software requirements described in the task descriptor and on

the current utilization of available hosts, the Task Manager

allocates a suitable host for running the task and instructs the

Host Runtime of that host to run the task. The Host Runtime

then downloads the task package from the Software Repository

and executes it with parameters specified in the task descriptor.

The hardware and software configuration requirements are

matched against a host database maintained by the Host

Manager. The database is updated automatically to match the

current state of available hosts.

Cooperating tasks can synchronize via checkpoints. By cre-

ating a checkpoint, a task declares it has reached a particular

stage of its execution, possibly attaching additional infor-

mation to the checkpoint. Predefined checkpoints indicating

that a task has started or finished are created implicitly. The

execution of a task can be suspended until another task reaches

a particular checkpoint, either by describing the condition in

the task descriptor or by waiting for the checkpoint at run

time. A simple use of checkpoints is creating a sequence

of tasks, where each task waits for its predecessor in the

sequence to finish. Each group of cooperating tasks is enclosed

in a context. An example of such a group is a compilation

context, formed by a sequence of three tasks that download

the software sources from a public versioning system, compile

the sources and upload the binaries to the Software Repository,

respectively. A task can only synchronize with tasks from the

same context. The base context where the BEEN components

are run is an exception to this rule, as any task can synchronize

on checkpoints of tasks in the base context.

A more complex example of the use of checkpoints is

execution of a client–server benchmark, consisting of a client

task and a server task. By creating a checkpoint, the server

task declares that it is ready to receive requests. The server

task attaches its serialized reference to the checkpoint. The

execution of the client task depends on the server task reaching

this checkpoint. When the client executes, it uses the serialized

reference from the checkpoint to connect to the server.

The execution framework is designed to detect and handle

failures of the running tasks. These failures can be caused

by unhandled language exceptions, which are detected in a

107

straightforward manner, or by infinite loops and deadlocks,

which can be detected when the running tasks exhibit too

high or too low processor utilization. Processor utilization

information is a part of the host utilization information,

monitored by the Host Runtime of each host and stored in

the host database of the Host Manager.

A description of the individual components of the execution

framework follows.

A. Host Runtime

Each instance of the Host Runtime represents a single host

in the execution framework. The runtime instances provide an

interface for running tasks on the associated host and monitor

the host utilization. To the running tasks, the Host Runtime

provides a control interface for synchronization through check-

points, an interface for registration and lookup of services,

and interfaces for logging and adjustment of the utilization

monitoring.

When requested to execute a task, the Host Runtime down-

loads the task package with the necessary code from the

Software Repository. To save network communication, the

Host Runtime caches the packages locally on each host. The

maintenance of the package cache is simple, because once a

package is uploaded to the Software repository, it cannot be

modified.

Each task is run in a separate JVM, with the environment

variables and command line arguments set as described in the

task descriptor. The default arguments for the JVM, the name

of the JAR archive to use and the name of the application class

to execute are included in the metadata of the task package.

Once running, the task communicates with the Host Runtime

on the same host by RMI. Although launching a new JVM for

each task brings certain overhead, it ensures reliable isolation

of the running tasks and the Host Runtime. In our experience,

errors in software under development can crash a JVM. By

running the Host Runtime in a separate JVM, we ensure that

the Host Runtime does not crash as a result of an error in a

task.

The Host Runtime allocates three different directories in

the local file system for each running task: the task directory,

the working directory and the temporary directory. The task

directory contains the extracted task package, from which the

running task can read its static data. The temporary directory

is intended for temporary files of the task. It is empty at task

startup and deleted after the task terminates. The working

directory of the task, also empty at task startup, allows the

task to leave its output for the other tasks it cooperates with,

provided both tasks are run on the same host. The directory is

deleted when the context of the cooperating tasks is removed.

A task can also use its working directory to store its state so

that it can recover when restarted after a crash. The majority

of BEEN components is designed to have this capability.

The Host Runtime is responsible for monitoring tasks and

reporting the task failures to the Task Manager, as well as

cleaning up the temporary directories of the failed tasks and

shutting down of all processes started by the failed tasks.

A task failure is detected when its JVM process exits with

an error, when its execution timeout is exceeded, or when

its processor utilization falls outside predefined limits. Both

the timeout value and the utilization limits can be set in the

task descriptor. The utilization limits are useful for detecting

deadlocks and infinite loops in exclusive tasks. When running,

an exclusive task is the only task on a host. All benchmarks

are run as exclusive tasks to avoid distortion of the reported

performance.

The host utilization is monitored by the Utilization Mon-

itor, which is a part of the Host Runtime. Two modes

of acquiring utilization information are supported: the brief

utilization mode provides an overview of the host activity,

the detailed utilization mode provides detailed utilization

information about individual operating system processes. The

brief utilization mode is used whenever the Host Runtime is

running, collecting information on processor utilization, mem-

ory usage, disk usage and network activity. The information

is periodically uploaded to the Utilization Server, which is

a part of Host Manager, and used to detect failed tasks and

failed hosts. The detailed utilization mode is used only when

requested by a running task. The information is stored locally

as a part of the task context, and used to supplement the per-

formance results. A benchmark task that requests monitoring

in the detailed utilization mode can be followed by another

task within the same context that will upload the data to the

Results Repository for further processing.

Since Java does not provide facilities to acquire the utiliza-

tion information, native libraries are provided for supported

platforms, currently Windows and Linux. The native libraries

use operating system specific calls. On unsupported platforms,

the Utilization Monitor does not support monitoring in the

detailed utilization mode, and instead of monitoring in the

brief utilization mode, it only informs the Host Manager

periodically that the particular host is alive.

The Host Runtime is designed to recover from possible

failures of the host it runs on or of the BEEN components

it communicates with. The Host Runtime maintains a log of

its state, from which it can recover when restarted after a

failure. It also intercepts all communication of the tasks with

the BEEN components and delays it when the components

cannot be reached. The running tasks are therefore resilient

against temporary failures of the Task Manager, which would

otherwise become a single point of failure for the entire

distributed execution system.

B. Task Manager

The Task Manager is responsible for scheduling, monitoring

and controlling of tasks in the distributed environment. The

scheduling decision is based on the hardware and software

requirements of the tasks and on their dependencies on

checkpoints reached by other tasks. The monitoring covers

checkpoints reached by running tasks, failures of running tasks

and failures of hosts on which the tasks are running. The

controlling includes restarting of failed tasks and stopping of

tasks on demand.

108

A task is created by submitting a task descriptor to the

Task Manager. The task descriptor can be submitted either

by another running task, such as the Benchmark Manager, or

manually through the user environment. The task descriptor

tells the Task Manager how to allocate a host to the task,

when to run the task, how to run the task and what to do if

the task fails.

The host allocation is based on software and hardware

requirements of the task, which are interpreted by the Host

Manager. The specification of the software and hardware

requirements is described in Section IV-C in more detail. The

host allocation algorithm balances the load among available

hosts and ensures that exclusive tasks are run alone on the

assigned host. As a special case of a host requirement, the

specification can refer directly to an individual host.

Unless specified otherwise, a task is scheduled for execution

immediately after its task descriptor is submitted to the Task

Manager. Sequentially submitted tasks can run in parallel.

Conditions that determine when to run a task can be specified

using checkpoints, which allow a task to either wait for a

particular checkpoint of a particular task to be reached, or

to wait for a particular value of such a checkpoint. The

task identification scheme makes it is possible to wait for

a checkpoint of a task that has not been submitted to the

Task Manager yet, thus increasing flexibility of both task

descriptor submission and task synchronization. In addition

to synchronization, the checkpoints also help the user to track

the progress of the tasks.

The package with the task code is specified by a list of its

features, such as name of the software, range of versions, sup-

ported platforms and build options. The specification is pro-

cessed by the Software Repository, which stores the packages.

Based on the packages currently available in the Software

Repository, multiple packages can match the specification in

the task descriptor. A single matching package is then chosen

at random.

The Task Manager is informed on the checkpoints of the

running tasks by the Host Runtime instances running the tasks.

This includes information about task failures, which can be

either reported explicitly, or inferred implicitly when a task

execution timeout exceeds or the host a task is running on,

or the associated instance of the Host Runtime, fail. The

task execution timeout is specified in the task descriptor. In

case of task failure, the Task Manager attempts to repeat the

failed task until the maximum number of retries specified in

the task descriptor is reached. The same host is used when

the respective host and Host Runtime are alive, another host

matching the host requirements is chosen otherwise.

In addition to starting a task, the termination of a task

can also be tied to another task reaching a checkpoint. This

feature is important for services, which can be stopped when

all cooperating tasks that use the service terminate. Examples

of services include database servers in a database benchmark

or directory services in a distributed client–server benchmark.

Finally, cooperating tasks can also be stopped by destroying

their context.

The Task Manager keeps track of important information

about running tasks, which makes it a single point of failure of

the entire system. To minimize the impact of possible failure,

the Task Manager maintains a log of its state and can recover

when restarted after a crash. Additionally, the Host Runtime is

designed to withstand a temporary failure of the Task Manager.

A temporary failure of the Task Manager therefore does not

cause the running tasks to fail.

C. Host Manager

The Host Manager is a service responsible for maintaining

the list of accessible hosts in the execution framework and

for managing the database with a hardware and software

specification of each host. The Host Manager provides means

for administration of hosts, including tools for adding and

removing hosts and support for lookup of hosts based on

their specification. The Host Manager is also responsible

for monitoring the availability and utilization of the hosts.

The host database can group hosts based on various criteria,

simplifying the host management in large networks.

The host database stores a list of hosts, as well as the spec-

ification of their hardware and software. Since Java does not

allow direct interaction with the underlying operating system

needed to detect the installed hardware and software, native

detector libraries are provided for the task. Currently, Linux

and Windows platforms are supported by native detectors that

query processor features, hard disks, disk partitions, installed

software and operating system features. Detectors can update

the information about a host in periodic intervals or on user

demand. Each configuration update adds a new entry to the

configuration history of the host. The configuration history can

later be browsed through the user interface, allowing for an

easy review of hardware and software changes and relating of

these changes to the benchmark results.

Each host in the host database is represented by a tree of

objects described by properties. The structure of the tree is

based on the way hardware and software components relate

to each other, with each child node adding more detail about

its parent node. As an example of this arrangement, an object

representing a hard drive is a parent of objects representing

partitions of that hard drive. The properties are typed and

identified by a path from the root of the tree.

The Host Manager provides two methods for querying the

host database. In the first method, the user specifies restrictions

on the hosts configuration. The second method requires the

user to implement a more general query interface for matching

the host configuration.

Restrictions provide the user with means to specify a set

of conditions, which are essentially logical expressions over

properties in conjunctive normal form. Several types of rela-

tions on properties are supported, including exact and interval

match as well as regular expression match.

As an alternative to restrictions, the implementation of a

query interface can be passed to the Host Manager using

RMI. The implementation can access the entire host database

109

and express complex queries that cannot be expressed as

restrictions.

Not all platforms support remote execution by default, and

thus the Host Manager has no means to start a Host Runtime

instance on a remote host automatically. On such platforms,

the Host Runtime can be started manually by the administrator.

The Host Manager is still designed to be extensible to support

automated starting of Host Runtime on particular platforms

with a particular remote execution system, such as Secure

Shell (SSH) on Unix or Windows.

D. Software Repository

The Software Repository is a service for storage and re-

trieval of all software run by the execution framework. It stores

the software binaries for different platforms, as well as the

static data and the sources. By using the Software Repository,

the execution framework avoids relying on a distributed file

system, which might be difficult to set up in a heterogeneous

environment. When executing benchmarks, the presence of a

distributed file system could also distort the benchmark results.

The basic storage unit in the Software Repository is a

package. A package is a ZIP archive with metadata file and

any additional files and directories. The metadata is stored

in an XML format defined by the Software Repository and

include package name, package version, type and textual

description of the package. Presence of additional metadata

depends on the particular package type. The supported package

types are:

• Source package – contains software source code, such as

source of an application to be used for benchmarking.

Additional metadata include supported compilers and

platforms.

• Binary package – contains compiled software. Additional

metadata include supported platforms and a description

of how the software was compiled.

• Task package – contains a task for the execution frame-

work in the form of Java bytecode. Additional metadata

include the default JVM arguments and the name of the

class to execute.

• Data package – contains any static data files, such as an

initial database snapshot for a database benchmark.

The operations supported by the Software Repository are

uploading a new package, downloading a package, deleting

a package and looking up a package based on its metadata.

Notably, instead of modifying a package, a new version of the

package has to be created. This restriction helps to maintain

coherency of package caches. The lookup of packages uses

lookup code provided by the client over RMI and executed by

the Software Repository. The code can analyze the package

metadata in an arbitrary way.

The Software Repository is designed for transfer of large

packages and for a fast lookup of packages. The transfer opti-

mizations include asynchronous communication and a special

interface provided for monitoring of the transfer progress. To

improve the lookup performance, package metadata are cached

at package upload and all lookup operations are processed

using the cache.

The user interface to the Software Repository allows manual

browsing and lookup of packages, viewing package metadata,

as well as package upload and deletion. The lookup provided

by the user interface is based on logical expressions over

package metadata.

V. BENCHMARKING FRAMEWORK

The benchmarking framework supports fully automated

benchmarking on top of the distributed execution framework

described in Section IV. A single benchmarking experiment

covers downloading of software sources, compilation, deploy-

ment, execution, measurement, statistical evaluation and visu-

alization of results. The benchmarking framework supports a

range of features, such as a separation of the measurement

from the evaluation or planning of additional measurements

based on evaluation, with only a minimum set of requirements

on the benchmarks.

The benchmarking environment supports two distinct pur-

poses of benchmark experiments, comparison analysis and

regression analysis. The comparison analysis determines the

impact of configuration change on the performance of the

benchmarked software, using experiments where the bench-

marked software does not change and the configuration varies

in a small set of features. Examples of comparison analysis

include determining a communication library implementation

or configuration that maximizes the performance of the bench-

mark. In contrast, the regression analysis determines the im-

pact of version change on the performance of the benchmarked

software, using experiments where the benchmarked software

changes and the configuration is the same. In the execution

framework, both types of experiments are implemented as sets

of cooperating tasks performing the necessary actions.

The benchmark experiments are subject to random effects

in compilation, execution and measurement [5]. The random

effects can have impact on performance, prompting the need

for repeating the individual steps of the experiments. A bench-

mark experiment can be designed to adaptively optimize the

numbers of compilations, executions and measurements to get

the best precision in a given time for the experiment [6], [14].

The benchmarking framework consists of the Benchmark

Manager, which is responsible for managing benchmark anal-

yses and running benchmark experiments, and of the Results

Repository, which is responsible for data storage, statistical

evaluation and visualization. Both the Benchmark Manager

and the Results Repository are designed to be extensible to

support different benchmarks.

Although emphasis is put on having only a minimum set of

requirements on the benchmarks, some parts of a benchmark

experiment are necessarily specific to a given benchmark.

These parts must be provided by the benchmark in the

form of benchmark plugins, packaged in a single benchmark

module. Examples of plugins include task packages required

for software download, benchmark compilation, execution and

for conversion of results into a common format used by the

110

Results Repository. Since many benchmarks use standardized

software repositories and compilation tools, many of the

plugins do not need to be implemented individually for each

benchmark.

The benchmarking framework is designed to allow transpar-

ent and repeatable benchmarking. By employing the logging

and monitoring facilities of the execution framework, a log of

all potentially relevant events, as well as a listing of the current

software and hardware configuration of all the involved hosts

and the system utilization information of the hosts is attached

to the benchmark results. The logs are stored in the Results

Repository for later inspection in case an inconsistency in the

results is encountered. In addition to manual inspection, the

logs are used by the framework to recreate identical conditions

when a repetition of a benchmark experiment is requested.

A detailed description of the Benchmark Manager and the

Results Repository follows.

A. Benchmark Manager

Given a description of a benchmark analysis to perform,

the Benchmark Manager is responsible for planning the cor-

responding benchmark experiments. A benchmark experiment

consists of tasks for compilation of the benchmarked software,

compilation of the benchmark itself, deployment and execution

of the benchmark, and collection and evaluation of the results.

Each of the tasks has specific requirements on the hosts it can

use, which are particular to the benchmark analysis, the bench-

marked software, and the benchmark itself. The Benchmark

Manager is responsible for gathering these requirements and

creating the tasks with maximum utilization of the available

hosts in mind.

The creation of the compilation tasks is driven by the

requirements of the platforms on which the benchmark will

execute. The compilation tasks do not require running on the

same host as the benchmark, but they must be performed on

hosts that can compile binaries for the platform on which the

benchmark will execute. Likely, there will be multiple hosts

meeting this requirement, and the decision which of them to

use should be based on the host utilization. The final decision

is therefore left upon the Task Manager, which gathers the

utilization data and selects the hosts based on the requirements

supplied with the compilation tasks. A distributed benchmark

may require a different platform for each of its parts. The

planning of compilation tasks has to support this option,

possibly also using multiple hosts for compilation. Multiple

benchmarks of the same software can reuse the software

binaries, provided that the same compile time configuration

of the benchmarked software is used.

Although similar in principle, the host allocation process for

the benchmark execution tasks is more complex. A distributed

benchmark can require allocating tasks on several hosts, each

host potentially having a unique role in the benchmark. As

an example, a client–server benchmark can require one host

in the role of the server and several hosts in the roles of

clients. The server role may require a particular web server

or component container implementation, the client hosts may

similarly require a specific communication middleware. These

many constraints on the host platforms are supplied by the

benchmark plugins and have to be accommodated together

with other requirements of the benchmarking analysis.

Finally, the host allocation for the result collection tasks

is quite simple once the hosts for the benchmark are known.

The benchmark plugins supply the information on which hosts

the benchmark produces results, these are the hosts that will

run the result collection tasks. At experiment creation time,

the Benchmark Manager also informs the Results Repository

about the results expected from the experiment. Using this

information, the Results Repository can tell when it has

received all the results and start the evaluation. Alongside the

results, the description of the experiment and the logs of all

the hosts involved in the benchmark experiment are uploaded

to the Results Repository. This makes it possible to reproduce

the experiment.

Planning a comparison analysis: When planning for a

comparison analysis, the benchmark experiment evaluates

several systems that differ in a small set of features using

the same benchmark. The benchmark and the features that

vary are selected by the user at the analysis creation time.

The analysis proceeds in two semi–automatic steps. In the

first step, the allocation of hosts that match the restrictions

given by user, the benchmark requirements, the benchmarked

software requirements, and the compilation requirements is

performed as described above, yielding a set of benchmark

experiments iterating over all the available settings for the

features that were selected to vary in the analysis. Considering

an example analysis of a web server benchmark performance

under varying amount of system memory, one experiment will

be created for each amount of system memory available among

the BEEN hosts that meet the requirements to execute the web

server in the benchmark.

In the second step of the analysis, the user is given the op-

tion of manually pruning the set of experiments and modifying

the hosts selected for each role in the experiment. The user can

also customize the benchmark using benchmark parameters,

such as specifying the length of the warmup phase or, in

the web server benchmark example, the number of web users

simulated by each client. The tunable parameters are specific

to each benchmark and specified by the benchmark plugins.

The benchmarking experiments start immediately after the

user commits the changes to the analysis. The task descriptors,

interlinked by checkpoints, are generated and submitted to the

Task Manager. In order to avoid possible distortion of results

by tasks unrelated to the analysis, exclusive tasks are used to

execute the benchmarks.

Planning a regression analysis: The regression analysis

compares the performance of newly produced software ver-

sions to the previous software versions using the same bench-

mark. The main goal of regression analysis is locating changes

from version to version that impact the observed performance.

To make regression analysis possible, the results of the bench-

mark must reflect only the changes from version to version of

the benchmarked software, there must be no other changes

111

in the benchmarked system. Even a small modification of the

benchmarked system, such as a routine security update, can

impact performance and thus distort the regression analysis.

When planning for a regression analysis, the benchmark tasks

are therefore executed on the very same hosts for each software

version. The compilation can still execute on any system that

meets the requirements.

The host allocation in regression analysis is also a two–

step semi–automatic process, similar to the host allocation in

the comparison analysis. In the first step, the user selects the

particular software and benchmark for the regression analysis

and, optionally, restricts the host allocation for each role in

the benchmark. It is advisable to restrict the allocation to

reliable hosts that will remain available over a long period

of time and will not be subject to upgrades. At the same

time, if there is only a limited number of hosts that have

the required compilers, they should not be blocked by the

exclusive benchmarking tasks to maximize throughput of the

whole system.

Based on the user selection, a benchmark experiment tem-

plate is created. The template describes a single benchmark

experiment with host allocation for benchmark execution and

hosts requirements for the other tasks making up the exper-

iment. The template, however, does not specify the version

of the benchmarked software. In the second step of the

analysis, the user can again manually modify the experiment

template. Once the user commits the template, the individual

experiments are created automatically based on the existence

of the benchmarked software versions.

The process of planning a benchmark experiment is neces-

sarily bound to the specifics of software download and com-

pilation, benchmark parameter adjustment and other details.

These differ from experiment to experiment and therefore

cannot be handled in a generic manner by the benchmarking

framework without the help of benchmark plugins. Many of

the plugins, however, can be shared by more benchmarks.

Examples of shared plugins include tasks for downloading

software from common repositories such as CVS or SVN, or

tasks for compiling software through the autoconf tool. Ideally,

software vendors would distribute other necessary plugins to

support their software in the benchmarking environment in

the form of software modules, thus saving the work of the

benchmark developers and simplifying reuse of the software in

different benchmarks. The software modules can be stored in

a centralized repository, similar to packages for various Linux

distributions. Until this ideal scenario comes to pass, however,

the software modules need to be packaged into the benchmark

modules.

B. Results Repository

The Results Repository is responsible for persistent storage

of benchmark results, logs related to the execution of bench-

marks, and for statistical evaluation and visualization of the

results. The results are stored in a benchmark–independent

format that preserves information on individual measurements,

and thus can be used for various types of evaluation, both

benchmark–independent and benchmark–specific.

The Results Repository uses two distinct data formats, a

textual format with emphasis on portability and a binary

format with emphasis on efficiency. In the textual format,

measurements from each benchmark execution are stored in

a separate text file. The text file is a Comma–Separated–

Values file representing a table with measurements in rows

and metrics in columns. Each measurement consists of the

same metrics, which are benchmark–specific. Often, there

is only one metric per measurement, namely the current

time in processor clock ticks. The textual format is highly

portable and can easily be supported by any benchmark on

any platform without dependencies on external libraries. The

format, however, is not suitable for the results evaluation,

because it is space–inefficient and does not allow random

access to individual measurements.

The binary format used by the Results Repository stores the

measurements from each benchmark execution in a separate

NetCDF file. The NetCDF format [15] supports platform–

independent storage of multidimensional arrays with one ex-

tensible dimension and allows random access to array elements

in constant time. Although the format is suitable for storing

measurements from a single benchmark execution, it is not

suitable for storing measurements from multiple benchmark

executions or even multiple benchmark binaries, because it

does not support non–rectangular arrays. Measurements from

multiple benchmark binaries of the same benchmark and

benchmarked software are needed due to random effects in

compilation [5], [14]. The benchmark results can be non–

rectangular, because different benchmark executions in the

same benchmark experiment can have different numbers of

measurements. Similarly, different benchmark binaries can be

benchmarked by different numbers of benchmark executions.

The Results Repository therefore uses a file system directory

tree to group results based on their relation to benchmark

experiments and benchmark binaries.

The Results Repository is designed to be an easy–to–

use platform for statistical evaluation and visualization of

benchmark results. To simplify the implementation of specific

statistical evaluation and visualization plugins, the Results

Repository supports plugins written in the R language. The

R language is a part of the R Project [16], a tool for statistical

computing and visualization with a number of freely available

extensions for new statistical methods. The R language itself

is freely available and supports most current platforms. The

R runtime environment can be easily linked to the JVM

and accessed via Java Native Interface (JNI). The R plugins

can thus use the Java part of the Results Repository for

communication with the benchmarking environment, such as

for planning additional measurements when the variation of

the results is too high. The NetCDF format is supported by

R, hence the plugins can also directly access the benchmark

results.

The statistical evaluation supported by the Results Reposi-

112

tory includes built–in calculation of basic statistics and plug-

gable evaluation and visualization, which can be benchmark–

specific, analysis–specific or fully generic. The individual

plugins can store their intermediate and final results in the

repository and can access results stored by other plugins. In

particular, any plugin can access the basic statistics calculated

by the built–in code. The list of plugins to use for the

evaluation of a specific benchmark analysis, as well as the

parameters of the plugins, are set at the benchmark analysis

creation time.

The built–in evaluation includes calculation of sample av-

erage, variance, median and quartiles of measurements within

each benchmark execution, and higher–level statistics for all

executions from a single benchmark binary, as well as for all

executions from a benchmarking experiment. In the regression

analysis, a benchmarking experiment corresponds to a single

software version, and thus the basic statistics include mean and

median of all measurements of each software version. Addi-

tional generic evaluation, such as calculation of confidence

intervals, analysis of variance or calculation of impact factors

of random effects [5], [14], can be implemented by generic

plugins.

The Results Repository contains one analysis–specific plu-

gin for each supported benchmark analysis type. The plugin

for the comparison analysis uses the basic statistics to create

graphs that allow visual comparison of performance of the

benchmarked systems. The plugin for the regression analysis

automatically detects mean performance changes between con-

secutive software versions using statistical methods described

in [6], [14]. The plugin generates graphs with marked perfor-

mance changes and a list of the changes. The plugin can be

set to send notification messages on newly detected changes.

The benchmark–specific plugins are intended for additional

evaluation of a benchmark analysis performed by a specific

benchmark. A benchmark–specific evaluation is required when

interrelation of different metrics measured by the benchmark

is of interest, or when the metrics are not of numeric types.

All results stored in the Results Repository are presented

to the user through the integrated BEEN user interface. The

visualization plugins can generate any images, tables and

graphs, which are then displayed by the user interface. Adding

a new plugin to the Results Repository therefore does not

require modification of the user interface implementation.

VI. EVALUATION

The ambition of BEEN is to provide a generic distributed

and multi–platform execution framework with a generic

benchmarking framework built upon it. It is designed to be

easy to install, easy to use and run automatically without user

intervention. These qualities, however, can only be evaluated

by using BEEN for a diverse set of benchmarks, platforms

and software. The implementation of BEEN is in beta stage,

currently capable of handling a comparison analysis of a

nontrivial distributed benchmark. We therefore base the eval-

uation on handling a comparison analysis with the Xampler

benchmark from the CORBA Benchmarking Project [17],

which not only shows that BEEN is indeed usable, but also

that BEEN saves coding effort when performing benchmark

experiments.

Xampler is a distributed client–server CORBA benchmark

consisting of a server process and a client process. The client

repeatedly invokes a method on the server using the CORBA

remote procedure call and measures the method invocation

time. In the evaluation, we have created benchmark module

that supports comparison analysis using the Xampler bench-

mark running on the omniORB broker [18]. The analysis of

the results has been performed using benchmark–independent

plugins that produce basic statistics and a comparison graph.

The benchmark plugins specific to the Xampler benchmark

and plugins specific to the omniORB broker had slightly over

1500 lines of code in total. Both plugins are generic and can

be used in other experiments involving the same benchmark

or broker. This represents a significant improvement over the

ad–hoc scripts used to execute the Xampler benchmark, which

do not support monitoring and analysis, cannot be used readily

in other experiments, but currently already have 2000 lines of

code.

The beta implementation of BEEN, including the Xampler

module used for the evaluation, can be downloaded from the

web [19]. Detailed step–by–step instructions to perform the

evaluation, as well as screenshots of the user interface running

the evaluation, are also available [19]. A more thorough

evaluation will be in order as the BEEN implementation

matures and is used for more benchmarks on more platforms.

VII. CONCLUSION

Benchmarking is an essential performance evaluation tech-

nique, whose importance rests in that it provides performance

data representative of a real system, which can be used either

directly to assess performance or indirectly to calibrate and

verify simulation and modeling results. Regular automated

benchmarking is particularly popular because it gives software

developers an important feedback on potential performance

problems introduced during development. Automated bench-

marking is, however, a complex process that comprises auto-

mated download, compilation, distributed deployment, mon-

itoring, results collection, storage of results, evaluation and

visualization. Ad–hoc benchmarking tools are commonly used

for these tasks, even though most of them can be automated

using a generic benchmarking tool.

BEEN is a generic benchmarking tool for automated bench-

marking in a distributed heterogeneous environment, which

supports comparison of system performance as well as regres-

sion benchmarking. The tool is designed to run any benchmark

that provides raw performance data, with a minimal support

required from the benchmark. BEEN currently focuses on the

Linux, Windows and Solaris platforms, but can also work, in

a limited mode, with other platforms that can run the Java

Virtual Machine.

When comparing system performance, the whole bench-

marking process is controlled by BEEN. This includes au-

tomated resolution of deadlocks and infinite loops in running

113

benchmarks, storing a common form of performance results

in a benchmark–independent results repository, and allowing

both benchmark–independent and benchmark–specific evalu-

ation of data. When comparing performance of consecutive

software versions in regression benchmarking, BEEN automat-

ically checks for new software versions, runs the benchmark,

performs the automated detection of changes and schedules

additional measurements as necessary to achieve the desired

result precision.

In this paper, we describe the design and core functionality

of BEEN. Although BEEN is still under development, the

current beta version allows the comparison of system perfor-

mance as shown on the example of the Xampler CORBA

benchmark and the omniORB broker. The beta version is

available on the web [19]. Future work will focus on finishing

the implementation so that more types of analysis and more

benchmarks on more platforms are readily supported.

Acknowledgment. This work was partially supported by the

Grant Agency of the Czech Republic project GD201/05/H014

and the Czech Academy of Sciences project 1ET400300504.

REFERENCES

[1] DOC Group, “TAO performance scoreboard,” http://www.dre.vanderbilt.
edu/stats/performance.shtml, 2006.

[2] M. Prochazka, A. Madan, J. Vitek, and W. Liu, “RTJBench: A Real-
Time Java Benchmarking Framework,” in Component And Middleware
Performance Workshop, OOPSLA 2004, Oct. 2004.

[3] Distributed Systems Research Group, “Mono regression benchmarking,”
http://nenya.ms.mff.cuni.cz/projects/mono, 2005.

[4] L. Bulej, T. Kalibera, and P. Tuma, “Repeated results analysis for
middleware regression benchmarking,” Performance Evaluation, vol. 60,
no. 1–4, pp. 345–358, May 2005.

[5] T. Kalibera, L. Bulej, and P. Tuma, “Benchmark precision and random
initial state,” in Proceedings of the 2005 International Symposium on
Performance Evaluation of Computer and Telecommunications Systems

(SPECTS 2005). San Diego, CA, USA: SCS, July 2005, pp. 853–862.

[6] ——, “Automated detection of performance regressions: The Mono
experience.” in MASCOTS. IEEE Computer Society, 2005, pp. 183–
190.

[7] ——, “Generic environment for full automation of benchmarking,” in
SOQUA/TECOS, ser. LNI, S. Beydeda, V. Gruhn, J. Mayer, R. Reussner,
and F. Schweiggert, Eds., vol. 58. GI, 2004, pp. 125–132.

[8] Advanced Technology Labs, Lockheed Martin Corp, “Agent and dis-
tributed objects quality of service,” http://www.atl.external.lmco.com/
projects/QoS, 2006.

[9] A. M. Memon, A. A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt,
and B. Natarajan, “Skoll: Distributed continuous quality assurance.” in
ICSE. IEEE Computer Society, 2004, pp. 459–468.

[10] C. Yilmaz, A. S. Krishna, A. M. Memon, A. A. Porter, D. C. Schmidt,
A. S. Gokhale, and B. Natarajan, “Main effects screening: a distributed
continuous quality assurance process for monitoring performance degra-
dation in evolving software systems.” in ICSE, G.-C. Roman, W. G.
Griswold, and B. Nuseibeh, Eds. ACM, 2005, pp. 293–302.

[11] B. Dillenseger and E. Cecchet, “CLIF is a Load Injection Framework,”
in Workshop on Middleware Benchmarking: Approaches, Results, Expe-
riences, OOPSLA 2003, Oct. 2003.

[12] M. Courson, A. Mink, G. Marçais, and B. Traverse, “An automated
benchmarking toolset.” in HPCN Europe, ser. Lecture Notes in Computer
Science, M. Bubak, H. Afsarmanesh, R. Williams, and L. O. Hertzberger,
Eds., vol. 1823. Springer, 2000, pp. 497–506.

[13] Supercomputer Computations Research Institute, Florida State Univer-
sity, “Distributed queueing system,” http://packages.qa.debian.org/d/dqs.
html, 1998.

[14] T. Kalibera and P. Tuma, “Precise regression benchmarking with random
effects: Improving mono benchmark results,” Accepted for European
Performance Engineering Workshop (EPEW 2006)., Mar. 2006.

[15] University Corporation for Atmospheric Research, “Network Common
Data Form (NetCDF),” http://www.unidata.ucar.edu/software/netcdf,
2006.

[16] Free Software Foundation, “The R project for statistical computing,”
http://www.r-project.org, 2006.

[17] Distributed Systems Research Group, “Comprehensive CORBA
benchmarking,” http://nenya.ms.mff.cuni.cz/projects/corba/xampler.
html, 2006.

[18] S.-L. Lo, D. Grisby, D. Riddoch, J. Weatherall, D. Scott, T. Richardson,
E. Carroll, D. Evers, , and C. Meerwald, “Free high performance orb,”
http://omniorb.sourceforge.net, 2006.

[19] BEEN Developers, “Benchmarking environment (BEEN),” http://nenya.
ms.mff.cuni.cz/been, 2006.

114

Chapter 10

Intelligent Source Dependency
Tool

Tomáš Kalibera

Contributed paper at 13th ALADIN workshop on ALADIN
applications in very high resolution [5], non-refereed.

In workshop proceedings,
published by Czech Hydrometeorological Institute,
pages 73–81,
ISBN 80-86690-13-X,
November 2003.

115



Tomáš Kalibera

Czech Hydrometeorological Institute, Na Šabatce 17, 143 06 Prague, Czech Republic

Distributed Systems Research Group, Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Prague,

Czech Republic

tomas.kalibera@chmi.cz,
tomas.kalibera@mff.cuni.cz



With the fast evolution of Aladin/Arpege source code, the complexity of actions needed to test
even simple modifications of source code becomes inadequate. However, it is possible to
automatize most of these actions based on the knowledge of dependencies in the source code.
The source dependency tool developed at CHMI automatically detects and manages
dependencies of mixed Fortran 90/C source code and handles huge applications efficiently,
being an essential part of an automatized compilation environment of Aladin/Arpege at CHMI.



Knowing well that it is easier to find and fix errors earlier during application development,
developers prefer to test relatively small modifications of code. Given this common practice, a
fast and automatized procedure or a build tool that compiles the modified sources and creates a
new application binary, becomes a necessary part of the development environment.

Although such a build tool seems to be naturally required by huge applications from the very
beginning of programming, there are surprisingly no really usable generic tools currently
available that would be suitable for large applications like Aladin/Arpege. This important lack of
an essential tool can be caused by several factors. One of them is that the requirements for such a
tool are often very specific for different applications and institutions, as they impose different

116

sets of coding conventions affecting dependencies (like whether the header files are included by
relative path name or only by filename). Another reason is perhaps that computer scientists who
design build tools use programming languages like C or Java, not Fortran. This preference
becomes a problem because of Fortran 90 specification and its concept of modules, that
introduces complex types of dependencies between source files. These dependencies have no
counterparts in C or Java applications.

Although there are no usable generic build tools for Fortran 90 code, a huge part of the problem
is solved by a well known and often inadequately rejected tool, Make [3]. Make is an expert
system that, given a list of rules and dependencies, controls the process of making a target (or
application) up to date. Make is easy to use, but developers often do not use it efficiently. When
employed for building applications, Make requires a list of dependencies between source files on
input. Trivial scripts that get dependencies of a single Fortran source files exist, but they do not
scale well for applications of size of Aladin/Arpege.

The source dependency tool developed at CHMI manages mergeable databases of source
dependencies of mixed Fortran 90/C language applications. These databases can be exported into
the form required by Make. During the development of Aladin/Arpege, it has become very
popular to link the application binary from a list of not necessarily disjunct libraries (or"patch"
libraries), replacing equally named objects by the version provided in the first library that
defines the object, in the given order of precedence. Although this is a really error prone
practice, as one does not know all internals of the patched subroutines, it is also a common
practice in Aladin/Arpege development. The dependency tool can be used to generate a list of
files that are needed to compile such a patch library, fetching information from the dependency
database.

More applications of the dependency tool include creation of a compilable subset of the
application, for example to provide a supercomputer benchmark suite. Knowing the source
dependencies may also help developers to get more insight into the code, such as finding by what
files is the given module used.

This paper follows by a general analysis of dependencies in source code in section 2
accompanied by language specific analysis for the C language in section 2.1 and for Fortran 90
language in section 2.2. An abstract model of source dependencies is proposed in section 2.3.
The tasks required for Aladin/Arpege development that can be accomplished knowing the source
dependencies are described in section 3. A short overview of the dependency tool
implementation and its integration to the versioning system interface at CHMI is provided in
section 4. The paper is concluded in section 5.

117



In the source code of applications, there are many types of dependencies. Some of them are
complicated and it does not make sense to describe them by other means than the programming
language, these can be for example dependencies of variables, where a variable contains a result
of a computation that requires values of other variables on input. Such dependencies belong to
the application logic, it is the responsibility of the application to recompute the result when the
input values change. And it is the responsibility of the compiler to check that the variables used
as inputs are defined and at least initialized.

Finally, it is the responsibility of the programmer to advice the compiler in which files the
variables are defined (including a header or indirectly using a module in Fortran). The build tool
then takes this piece of advice and does not check whether the dependency of any variables from
the referenced file really exists. A common strategy for a dependency tool is to give a superset of
dependencies, not omitting any, but possibly including some that do not really exist under the
given conditions. Actually, variable dependencies may become important also at link time, when
the linker must check that global variables are defined in some of the given object files. It is a
good practice to embody access to such variables into elements such as objects, modules or at
least functions and subroutines. Then only link time dependencies of those embodying elements
have to be analyzed.

More dependencies in source code are introduced by functions (or subroutines, procedures).
Functions can have similar types of dependencies as variables, but in case of functions, the link
time dependencies cannot be avoided (in pure object oriented languages, functions are embodied
by objects, for which the link time dependencies are then important). It is the responsibility of
the build tool to provide linker with a list of object files that include code of the used functions,
the linker only checks that the list is complete. In order to get the link time dependencies
automatically, the build tool would have to parse the source code of the whole application. There
is no piece of advice provided by programmers where the functions are defined in Fortran or C,
unlike with compile time dependencies, where headers and modules must be specified. Therefore
the link time dependency detection at the level of source files has to be incorporated deeper into
the compiler.

Another approach to this problem is to get link time dependencies by traversing already
generated object files or even to first link the binary with all possible object files, and then check
which of them were actually used. The following analysis and the CHMI implementation focus
only on compile time dependencies at the granularity of a source file.

118



It is a good practice to separate the definition (source code) of a function from the code that uses
the function, making the source code easier to read and allowing existence of libraries and reuse
of function's code. In C language, before a library (external) function is used, it must be
declared. These declarations, together with definitions of types of arguments of the function, are
usually placed in separate files (header files) which are then referenced by "#include" directive
from the C source files, both by the C file that implements the function as well as from the C file
that uses it.

A C language compiler suite consists of several parts, one of which is a C preprocessor that just
includes code of the headers into the code of source files that use it by the "#include" directive.
The C preprocessor also implements a simple macro language. The header files may use other
header files, recursively. There can be circular dependencies of header files, a header file may
include itself via a chain of any number of included header files, the indefinite recursion of the C
preprocessor must be avoided by the macro language.

The headers are identified by file names provided with the "#include"directive. The file names
either should not contain path names (this is the case of Aladin/Arpege code), or it should
preferably contain path names relative to the project directory tree. In both cases, it is quite
simple to find the header file because its name is known, however in the first case possibly all
directories of the project have to be scanned, although few of them really contain headers in
Aladin/Arpege. By a convention honored by Aladin/Arpege code, header files have suffix ".h".
During initialization the dependency tool can detect directories containing header files and then
while processing the sources it only has to look for header files in previously detected
directories.

As the C language is traditionally used for operating system development, core system libraries
are written in C and have a C interface defined in system header files. Along with its own header
files, applications need to include also system header files in order to have access to basic system
functions, such as file input/output. The dependency tool must be aware of the existence of the
system headers and must be aware that the structure and location of these headers differ greatly
for different operating systems and platforms. The dependency tool must be provided with the
list of directories that contain the system header files.



Although Fortran is a predecessor of C language, it is continuously being extended by important

119

features of the C language and modern programming languages. Fortran has its own directive for
plain text inclusion of a file, but current Fortran applications including Aladin/Arpege use a
more popular and more powerful C preprocessor. A slightly modified C preprocessor is
currently a typical part of many Fortran compiler suites. Therefore dependencies introduced by
header files described in section 2.1 apply fully to Fortran code, too.

An important improvement of the Fortran language was provided by the specification of Fortran
90, which introduced modules into the language. Modules are important language abstractions
which allow to group related functions and subroutines together with variables they use,
introducing a finer structure into the application and making it easier to read, manage and reuse.

Modules are defined in Fortran sources and are compiled by the Fortran compiler into module
information files. Multiple modules can be defined in a source file, but programmers commonly
place modules into separate files, each containing only a definition of a single module. Each
module has its name defined in the source code that is also employed by the source code that
uses the given module. During compilation of modules, for each module the compiler creates a
module information file which has the same name as the module (with some extension, like
".mod"). The name of the file the module (or modules) was defined in is not important to the
compiler, it is not reflected in the names of files generated by the compiler.

Although typically files that contain a single module definition have the same name as the
module (with ".F90" or similar extension), not all programmers follow this principle. Therefore
in general it is very hard to find a module source for the given module (a module given by
name), it is necessary to parse all source files of the project. A dependency tool can accomplish
this task during its initialization.

The Fortran compiler does not solve the problem of locating module sources. The build tool
must inform the compiler in which directories module information files are stored before a
source file that uses any modules can be compiled. It means that the build tool also has to make
sure that the module information files exist before the source file that use the corresponding
module can be compiled. This procedure becomes more complicated as modules can recursively
use other modules. The build tool must be aware that the module information file has to be
recompiled whenever the module source was modified.

The use of modules can be intermixed with the use of headers in Fortran source and the
dependency tool must be aware of that, too.

120



The compile time source dependencies common in mixed Fortran 90/C language source code,
described in the previous sections, must be handled by a dependency tool. The dependency tool
should be simple enough to be manageable, reliable and extensible, as more types of
dependencies can be introduced in the future. To achieve these goals, it is helpful to keep aside
precision. It is fine if the build tool sometimes decides to recompile some files that for some
specific technical reasons need not to be recompiled, as long as it is guaranteed that all files that
have to be recompiled for any reason are really recompiled.

The nature of compile time source file dependencies is simple, file A "uses" file B. In our
situation B would be a header or a module. The build tool requires two basic operations from the
dependency tool. For a given file A, it needs to know all files B, such that A uses B. The build
tool uses this information to make sure that the headers or modules file A uses are not modified.
In case they were modified, the build tool would have to recompile file A. Suppose that A is also
a module. Then after A is recompiled, all source files that use A have to be recompiled, too.
Therefore, the build tool requires also that the dependency tool for a given file name A returns
all files it is used by, it means names of all files X such that X uses A.

In summary, two basic operations of the dependency tool defined on a source file are
is_used_by() and uses(). These operations return only directly used files, the task of finding all
used files recursively can be accomplished by multiple invocations of these operations. It is
described in the following chapter how the built tool uses these operations in more detail,
focusing on Aladin/Arpege development requirements.

However, the underlying data model of the dependencies is rather more complicated. It was
already mentioned that some source files use platform dependent system headers which are not
part of the application source. These files are called external headers and a list of them can be
obtained by uses_external_header() operation. Moreover, the Aladin/Arpege sources are
divided into projects such as Arp, Ald, Xrd, Ta, Tf, etc. These projects use modules and headers
defined in other projects, but for each application, different combination of these projects may be
required.

The dependency tool manages dependency databases (or caches), each database contains
dependencies of a single project. When used for Aladin/Arpege, the projects are those named
above, Arp, Ald, etc. Although the dependency database could be built for each used
combination of projects from scratch, it would be inadequately time consuming. Instead, the
dependency tool is capable of merging multiple dependency databases into a single one. During
the merge operation, the dependency tool employs operations uses_external_header() and

121

uses_external_module(), so that it does not need to re­parse the source files.

The build tool then operates on a dependency database that contains only external references to
system headers and no external references to modules. In the automatized compilation
environment of Aladin/Arpege in CHMI, such a database is a result of a merge operation on
multiple dependency database for projects like Arp, Ald, Xrd, etc.



The aim of the construction of an automatized build tool is to provide developers with a fast and
reliable means for iterative development, improving the software a little bit and testing
immediately. Assuming the scale of Aladin/Arpege source code, with more than 30 megabytes
of source code and an executable file of 100 megabytes, it is necessary to recompile only the
subset of the application altered by the modifications. It means that all files that were modified
as well as all files that use them, recursively, must be recompiled.

The actual control of compilation can be accomplished by running Make. Although with the
dependency database capable of is_used_by() operation it would be simple to implement a
trivial control of compilation, Make can do much more, allowing parallel compilation,
compilation of all files that can be compiled without error, etc. Still, the dependency database is
suitable for creation of dependency information files to be imported by Make. Although there are
many freely available scripts that generate such dependency information files for a single source
file, and one such script was developed as a part of the automatized compilation environment at
CHMI, running such script sequentially for all source files is too time consuming, repeating
tasks that can be cached over and over again.



The dependency information files for Make must also describe dependencies of modules,
instructing Make to compile Fortran sources only after module information files for modules it
uses are available. The necessity of compiling modules first distinguishes Fortran from
traditional languages like C, in which the order of compilation of individual source files can be
arbitrary.



122

In the field of weather numerical forecasting, it is important to select appropriate hardware for
the computations carefully. One of the most popular and transparent ways to choose the best
platform is to provide the hardware vendors with a small benchmark application and ask them to
build hardware that would run the benchmark as fast as possible. Such a benchmark will be a
functional subset of the Aladin/Arpege source. The dependency database can help the benchmark
designer to add all necessary files (modules and headers) to the benchmark, so that it could be
compiled.

Moreover, the dependency database can be employed by a tool that would generate a build script
for the benchmark. Such a build script would compile the benchmark in the correct order,
modules before files that use them, without requiring the vendors to install full development
environment.

It is important to note that having a tool that could also handle link time dependencies would
help with the construction of the benchmarks even more. However, benchmark construction is
quite a rare task, and thus tools to support it are currently not of a highest priority.



The most important option provided by the dependency tool is to allow the user to get a small set
of compilable files that fully describe the modification (a patch). These files can be compiled
into object files and packaged into a patch library, that can be then used to re­link the application
binary, getting the same result as if the application was re­compiled and re­linked in a
conventional way.

The described method of getting an up­to­date binary is based on an assumption that there is a
system wide repository of ready to use (static) libraries containing object files for individual
projects, like Arp, Ald, Xrd, etc. Those libraries are created from well known releases, usually
cycles and bugfixes. The developers start with sources of those well known releases and modify
them. Once they are done or want to test their work, they create a patch, compile it separately,
and link it using the method described above.

The patch contains all files the developer has modified from the release version plus all files
used by them, recursively, plus all files required to compile the patch, recursively. In a more
formal way, let P be the set of patch files. The algorithm to construct it is as follows:

1. add files modified by user to P
2. for all files F from P, add transitive closure of F.is_used_by() to P

123

3. for all files F from P, add transitive closure of F.uses() to P

The patch constructed in this way compiles independently (3) and contains updates for all
possibly altered files (1),(2).



The source dependency tool described in the previous sections was implemented and is in use at
CHMI for 2 years, being a base part of the automatized compilation environment for
Aladin/Arpege at CHMI. While the compilation environment is tied with the local computing
environment and is not mature yet, the dependency tool itself is quite independent and bugs are
rarely found in it.

The dependency tool is implemented in Perl as a set of modules. Each dependency database is
stored in a single binary file, it is a serialized form of a nested Perl hash structure. The
serialization/deserialization is accomplished by CPAN [1] module Storable. The performance of
the Perl implementation is very good, while its source code is still maintainable. Building a
dependency database for 7 Aladin/Arpege projects having 34 megabytes of sources in total takes
less than 10 seconds on a COMPAQ Proliant Intel/Linux SMP server. Creating a patch including
dependency information makefiles for project Ald takes less than 3 seconds.

The dependency tool has a command line interface allowing to create a dependency database,
merge multiple dependency databases and create a patch. The patch creation can be accompanied
by generation of dependency information files for Make. The form of these files is the only local
specific feature of the tool, it is tied with the Make strategy of makefiles used at CHMI which is
not the topic of this paper. Its features include correct parallel compilation, inter­project
dependencies and compiler options specific to projects. Recursive invocation of Make is strongly
avoided, as suggested in [4].

The practical usability of the dependency tool was verified by its integration into the
configuration management tool used at CHMI called CVSTUC, an implementation of a subset of
the interface provided by TUC in Meteo France, which uses CVS [2] instead of Rational
ClearCase. The cc_depend command of CVSTUC is just a wrapper of the dependency tool patch
creation functionality.

CVSTUC keeps a cache of dependency databases of all official releases of individual
Aladin/Arpege projects in a world readable directory. At the same time, it keeps caches of
dependency databases of the CVSTUC views of each user in the user's home directory. Before

124

actually calculating the dependencies, cc_depend merges the user's cache of a dependency
database with dependency databases of the projects the user chooses to build with, no matter
whether those are the user's own projects or the official ones. The use of cached dependency
databases is fully transparent to CVSTUC users.

As a result, cc_depend executes really fast, taking several seconds to complete on the PC
described above. The speed of the execution is gained by using the right data structures, hashes
in Perl, and by reading whole databases into memory. The amount of memory required scales
with the number of source files and their inter­dependencies in the projects, but only linearly.
The tool may use tens of megabytes of memory for Aladin/Arpege. It is unlikely that the number
of source files and their inter­dependencies of Aladin/Arpege would grow faster than the amount
of memory available in cheap desktop hardware.

There was an attempt to implement the same functionality in bash scripts. The database was
stored in separate files, for each source file keeping a list of files it uses and list of files it is used
by. The scripts were hard to maintain and took minutes to run.

During the development of the dependency tool, many problems concerning lazy to no coding
conventions arose. Clearly the coding conventions shall never be designed only to make
development of a dependency tool easier, but strong coding conventions should exist to make the
code easier to understand, most of all by programmers. It will make it easier to understand by the
tools as well. One of the fundamental problems in Aladin/Arpege is the ambiguity between
projects. There are duplicate modules and headers in projects. At the design time of the
dependency tool, it was assumed that modules and headers are unique in the whole code. Later it
turned out the assumption did not hold. The current implementation doesn't handle ambiguous
modules and headers seamlessly. However, the existence of modules or headers with the same
name in more projects is highly suspicious and undesirable.

Although the situation is solved in the current implementation, it is still worth to note that all but
one of the modules in Aladin/Arpege are defined in single files named after the modules. The
existence of the single module (fullpos_types) defined in a file named differently
(fullpos_descriptors.F90) required a major implementation rewrite of the dependency tool. It
was not possible to say that the file is named incorrectly because there are no conventions
accepted that it broke. If there was a convention that modules had to be defined in separate files
named after the modules, it would be easier for the developer and the dependency tool as well to
find the source file for each module.

Some of the new types of dependencies cannot be handled by a dependency tool. These are
dependencies not defined in the sources, but rather by command line options to the compiler.
Such dependencies include inline functions in the NEC/SX Fortran compiler. With this compiler,

125

it can be specified at compile time which functions have to be inlined and the compiler requires
sources of such functions.



The Aladin/Arpege developers are often distracted from their work by technical problems they
have to solve while compiling and linking the application. During the years of development, the
task of building Aladin/Arpege projects has become complex, but it can still be automatized so
that developers can spent more time and effort doing their work.

A robust source dependency tool that can manage information on compile time dependencies
between source files and calculate transitive closures for both altered and required files is an
essential part of any automatized build tool. The dependency tool, although well tested for
Aladin/Arpege, should be general enough to work with any project written in C and Fortran 90
languages, so that it does not have to be upgraded with Aladin/Arpege itself. And finally the tool
must be fast enough to achieve high responsiveness in interactive work on traditional desktop
hardware, having the size of Aladin/Arpege project in mind.

Such a dependency tool was developed at CHMI and is used regularly, being integrated into the
automatized compilation and configuration management environment of Aladin/Arpege. The
tool is capable not only of calculating dependencies within Aladin/Arpege projects (like Arp,
Ald, Xrd), but also inter­project dependencies. The tool is written fully in Perl and is easily
portable. Open issues include rigorous handling of duplicate modules and headers.



[1] Comprehensive Perl Archive Network, http://www.cpan.org
[2] Concurrent Versioning System, http://www.cvshome.org
[3] GNU Make, http://www.gnu.org/manual/make
[4] Miller P., Recursive Make Considered Harmful, AUUGN Journal of AUUG Inc., 19(1),

pp. 14­25, http://aegis.sourceforge.net/auug97.pdf

126

Chapter 11

Distributed Component System
Based On Architecture
Description: The SOFA
Experience

Tomáš Kalibera,
Petr Tůma

Contributed paper at Fourth International Symposium on
Distributed Objects and Applications (DOA 2002) [10],
acceptance rate 25%.

In On the Move to Meaningful Internet Systems 2002: CoopIS,
DOA, and ODBASE,
published by Springer-Verlag,
LNCS 2519,
pages 981–994,
ISSN 0302-9743,
October 2002.

The original version is available electronically from the pub-
lisher’s site at
http://www.springerlink.com/link.asp?id=bjqd4eh732awvyk3.

127

http://www.springerlink.com/link.asp?id=bjqd4eh732awvyk3

Distributed Component System Based On
Architecture Description: The SOFA Experience

Tomáš Kalibera and Petr Tůma

Charles University
Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranské náměst́ı 25, 118 00 Prague 1,
Czech Republic

kalibera@nenya.ms.mff.cuni.cz petr.tuma@mff.cuni.cz

Abstract. In this paper, the authors share their experience gathered
during the design and implementation of a runtime environment for the
SOFA component system. The authors focus on the issues of mapping
the SOFA component definition language into the C++ language and the
integration of a CORBA middleware into the SOFA component system,
aiming to support transparently distributed applications in a real-life
environment. The experience highlights general problems related to the
type system of architecture description languages and middleware im-
plementations, the mapping of the type system into the implementation
language, and the support for dynamic changes of the application archi-
tecture.

Keywords. Architecture description languages, ADL, component defini-
tion languages, CDL, middleware, CORBA, language mapping, dynamic
architectures.

1 Introduction

The notion of components enjoys significant interest in the software engineering
community. Components are considered to be useful units of code sharing and
reuse, as well as useful building blocks of software architectures. While the former
view is supported by practical component systems [15, 19, 24], the latter view ap-
pears to be lagging behind. The current trend of modeling software architectures
using UML is criticized as being inadequate [8], and while the research in com-
ponent systems based on architecture description languages (ADL component
systems) cites inarguable benefits of such systems [1, 5, 13, 14, 23], the described
projects rarely get past research prototypes.

The discrepancy between the cited benefits of ADL component systems and
the lack of their practical employment leads us to believe that there are unre-
solved issues that prevent this employment. In order to investigate these issues,
we have designed and implemented a runtime environment for the SOFA ADL
component system [21] (SOFA environment).

128

Our chief goal in the design and implementation of the SOFA environment
is to support development of transparently distributed applications. The devel-
opment centers around a hierarchical description of the application architecture.
This description is gradually refined from a coarse granularity level, where com-
ponents correspond to implementation modules, to a fine granularity level, where
components correspond to implementation objects. These components are then
mapped to implementation objects using a standardized language mapping, with
the architecture description defining the interconnection of these objects into
the component application. When the application is run, its components can
be deployed onto several network hosts. The components that share a host are
interconnected through linking and run in one address space. The components
that run on different hosts are interconnected through connectors.

The SOFA environment describes the application architecture using the SOFA
component definition language [10, 21] (SOFA CDL). SOFA CDL is mapped into
C++, which is used to implement the components. The connectors are built us-
ing CORBA [18]. The SOFA environment also allows interfacing the application
with GNOME [26] to provide user interface support. The choice of GNOME as
a representative of a component framework and CORBA as a representative of
an off-the-shelf middleware allows us to evaluate how the SOFA environment
supports real-life applications in a real-life environment.1

The paper continues by a brief introduction of the SOFA component model
and SOFA CDL in Sect. 2. The description of the design and implementation
of the SOFA environment follows in Sect. 3. Our experience with the CDL to
C++ mapping and the integration of CORBA, as well as the ability of the SOFA
environment to support applications, is evaluated and generalized for a broad
class of ADL component systems in Sect. 4. Section 5 relates this paper to other
work in the field of ADL component systems. The paper is concluded in Sect. 6.

2 SOFA Component Model And SOFA CDL

The SOFA component model [21] views an application as a hierarchy of nested
software components. A component is an instance of a component template,
which consists of a component frame and a component architecture. The frame
lists all interfaces that the component requires and provides. The architecture im-
plements the operations of the provided interfaces, relying only on the operations
of the required interfaces. A frame can be implemented by several architectures.

An architecture is either composed or primitive. A composed architecture
defines a composed component as built from subcomponents by listing the frames
of the subcomponents and the ties between the interfaces of the component and
the subcomponents. A primitive architecture defines a primitive component as
implemented in an implementation language outside the scope of the component
model.
1 The SOFA ADL component system also includes a Forte IDE and a Java runtime.

These are outside the scope of this paper.

129

A tie between the interfaces of a component and its subcomponents can be
of three types. Binding denotes connecting a required interface of a subcompo-
nent to a provided interface of a subcomponent. Delegating denotes connecting
a provided interface of a component to a provided interface of its subcompo-
nent. Subsuming denotes connecting a required interface of a subcomponent to
a required interface of its component.

An example of the interface, frame and architecture definitions in SOFA
CDL is in Fig. 1. The example defines a variation of the ubiquitous “Hello
World” application that prints a greeting. The application is an instance of
a component with the ApplicationArch architecture, which implements the
ApplicationFrame frame. The Message subcomponent provides the greeting to
be displayed, the Display subcomponent provides the functionality to display
a message, the HelloWorld subcomponent uses the two other subcomponents
to display the greeting. The application defined by the example will be used in
other examples throughout the paper.

interface MessageIface { string message (); };
interface DisplayIface { void print (in string message); };

frame MessageFrame { provides: MessageIface MessageProv; };
frame DisplayFrame { provides: DisplayIface DisplayProv; };

frame HelloWorldFrame {
requires: MessageIface MessageReq; DisplayIface DisplayReq;
provides: ApplicationIface ApplicationProv;

};

architecture MessageArch implements MessageFrame primitive;
architecture DisplayArch implements DisplayFrame primitive;
architecture HelloWorldArch implements HelloWorldFrame primitive;

architecture ApplicationArch implements ApplicationFrame {
inst MessageFrame Message;
inst DisplayFrame Display;
inst HelloWorldFrame HelloWorld;
bind HelloWorld:MessageReq to Message:MessageProv;
bind HelloWorld:DisplayReq to Display:DisplayProv;
delegate ApplicationProv to HelloWorld:ApplicationProv;

};

Fig. 1. A SOFA CDL definition of an application architecture.

SOFA CDL can also specify semantics of interfaces and frames using behavior
protocols [22] and employ complex connectors [3, 4]. These are outside the scope
of this paper.

130

3 SOFA Environment

The SOFA environment defines and implements a mapping of SOFA CDL into
C++ used to map components to implementation objects, implements a de-
ployment mechanism used to deploy the components onto network hosts and to
interconnect the components, and implements the connector generator used to
produce connectors between components that run on different hosts. These three
parts of the SOFA environment are described in this section.

3.1 Mapping SOFA CDL Into C++

The CDL to C++ mapping is based on the IDL to C++ mapping of CORBA [16].
Similar to CORBA IDL, the type system of SOFA CDL is independent of the
implementation languages of components and has a standardized mapping into
these languages. Making the type system independent on the implementation
language makes it easier to generate connectors and potentially also to support
multiple implementation languages of components.

The mapping of the types that SOFA CDL shares with CORBA IDL follows
the IDL to C++ mapping. The types original to SOFA CDL, namely frames and
architectures, are mapped into the frame and architecture classes that follow the
approach used to map interfaces with attributes.

A frame class has accessor methods for the provided and required interfaces
of the frame, which are represented as protected references to the classes that
map the interfaces. An example of a generated frame class is in Fig. 2. To allow
substitution of components with the same frame but different architectures, the
frame class is a virtual base class that is inherited by architecture classes of the
architectures implementing the frame.

class HelloWorldFrame : virtual public FrameBase {
public:

// Accessor methods generated for provided and required interfaces
inline virtual ApplicationIface ptr ApplicationProv () {

return (ApplicationIface:: duplicate (pApplicationProv)); };
inline virtual void ApplicationProv (const ApplicationIface ptr value) {

pApplicationProv = ApplicationIface:: duplicate (value); };
protected:

ApplicationIface ptr pApplicationProv;
. . .

};

Fig. 2. A generated C++ mapping of HelloWorldFrame.

The implementation of an architecture class differs for composed and primi-
tive architectures. An architecture class of a composed architecture has accessor

131

methods for the subcomponents of the architecture, which are represented as
private references to the frame classes of the frames of the subcomponents. The
architecture class also contains code that allows to set up the ties between inter-
faces as defined by the bind, delegate and subsume clauses in the architecture
definition.

For performance reasons, the code does not interconnect the interfaces of
the composed component with the interfaces of its subcomponents directly. In-
stead, it allows propagating references to the provided interfaces of primitive
components along the ties of the architecture definition by the createBind-
ingsAndDelegates and createSubsumes methods. The required interfaces of
primitive components are thus tied directly to the provided interfaces, with the
composed components whose boundaries the ties cross adding no overhead to
the invocations of methods accessible through these ties.

An example of a generated composed architecture class is on Fig. 3.

class ApplicationArch :
virtual public ApplicationFrame, virtual public ArchitectureBase

{
public:

// Methods generated for setting up the ties between interfaces
virtual void createBindingsAndDelegates () {

iHelloWorld−>MessageReq (iMessage−>MessageProv ());
iHelloWorld−>DisplayReq (iDisplay−>DisplayProv ());
pApplicationProv = iHelloWorld−>ApplicationProv (); };

virtual void createSubsumes () {
iMessage−>createSubsumes ();
iDisplay−>createSubsumes ();
iHelloWorld−>createSubsumes (); };

private:
HelloWorldFrame ptr iHelloWorld;
. . .

};

Fig. 3. A generated C++ mapping of ApplicationArch.

An architecture class of a primitive architecture is a virtual base class that
the implementation of the primitive component inherits from. An example of an
implementation of a primitive component is on Fig. 4. The example uses nested
classes to implement the provided interfaces, and demonstrates how both the
provided and the required interfaces of a frame are accessed by the implemen-
tation of the primitive component.

The frame and architecture classes also inherit from base classes that define
methods for generic access to the provided and required interfaces of the frame
and the subcomponents and the ties of the architecture. These methods are
required by the deployment mechanism.

132

class HelloWorld : public virtual HelloWorldArch {
public:

// Implementation of the ApplicationIface interface
class Application : public virtual ApplicationIface {

public:
Application (HelloWorld *frame) { me = frame; };
// Displaying the greeting using the other subcomponents
virtual Short run (const StringSequence& args) {

char *message = me−>MessageReq()−>message ();
me−>DisplayReq()−>print (message);
return 0;

};
private:

HelloWorld *me;
};
// Initialization of the HelloWorldArch architecture
virtual void initialize () {

HelloWorldArch::initialize ();
ApplicationProv (new Application (this));

};
};

Fig. 4. A C++ implementation of HelloWorldArch.

3.2 Deploying Application Components

The deployment is configured by a deployment descriptor. For each frame, the
deployment descriptor specifies the architecture that the component will use
and the host where the component will run. The deployment is controlled from
a single place and expects each host to run a simple server that allows remote
instantiation of components. The initialization and interconnection methods of
the component are then invoked remotely on the component itself.

The control flow of the deployment mechanism follows the hierarchical ar-
chitecture of the application being deployed. The architecture forms a tree with
each node representing a component. Nodes representing composed components
are parents of nodes representing their subcomponents. Nodes representing prim-
itive components are leaves. The references to provided and required interfaces
are attributes of each node.

At the beginning of the deployment process, the references to provided in-
terfaces are stored in the attributes of nodes representing primitive components.
The references are then propagated toward the root of the tree along the bind
and delegate ties in one tree traversal pass, and toward the leaves of the tree
along the subsume ties in another traversal pass. The process uses the create-
BindingsAndDelegates and createSubsumes methods defined by the language
mapping of the component architectures.

133

typedef sequence<string> StringSequence;
interface ApplicationIface { short run (in StringSequence args); };
frame ApplicationFrame { provides: ApplicationIface ApplicationProv; };

Fig. 5. The application frame.

The deployment expects the application to implement a standardized frame
in Fig. 5. After the application is deployed, the run method of Application-
Iface provided by the application is invoked to launch the application.

3.3 Generating Connectors Using CORBA

Connectors are used to interconnect components that run on different network
hosts by delivering remote method invocations to the components. As the hosts
where components should run are only known at deployment time, the connectors
have to be generated and dynamically loaded at deployment time.

Although the SOFA environment does not place any principal restrictions on
the middleware used to implement connectors, we have focused on connectors
that are generated by off-the-shelf CORBA middleware. The connector generator
is flexible enough to support a number of CORBA middleware implementations.

CORBA middleware generates connectors from a CORBA IDL definition
of the interfaces that the connector delivers invocations to. An IDL compiler
accepts the CORBA IDL definition of an interface as input and generates C++
source code of the stub and skeleton parts of the connector as output. Both
parts need to be compiled, the stub part of the connector is then called by the
components that require the interface, the skeleton part of the connector then
calls the components that provide the interface.

A development environment that includes both an IDL compiler and a C++
compiler is needed to generate a connector. To avoid the need of having this
environment available at deployment time, the SOFA environment pregenerates
a set of connectors for all interfaces of an application.

For each interface, a CORBA IDL file that contains the definition of the
interface and includes the definitions of all types that the interface relies on is
generated by the SOFA environment. The file is compiled by the IDL compiler to
yield the C++ source code of the stub and skeleton parts of the connector. The
SOFA environment also generates C++ source code of the connectors that uses
the code generated by the IDL compiler and interfaces it with the components.
The C++ source code is compiled into a pregenerated connector. At deployment
time, the pregenerated connectors are dynamically linked with the components.

The SOFA environment can be configured at deployment time to use several
middleware implementations. All connectors of a single middleware implemen-
tation are managed by a single connector manager. The task of the connector
manager is to provide access to the listening loop of the middleware and to enable
creation of stub and skeleton parts of a connector in a middleware independent
manner.

134

class ConnectorManager {
public:

virtual ObjectBase ptr loadStubPart (const char *reference) = 0;
virtual char *loadSkeletonPart (ObjectBase ptr servant) = 0;
virtual void startListening () = 0;
virtual void stopListening () = 0;

};

Fig. 6. The connector manager interface.

The interface of the connector manager is in Fig. 6. The loadSkeletonPart
method creates the skeleton part of a connector, returning a stringified refer-
ence of the target interface. The loadStubPart method creates the stub part
of a connector, accepting this stringified reference. The startListening and
stopListening methods control the listening loop of the middleware.

4 Experience in Retrospective

4.1 Shareable Language Mapping

The initially most visible feature of the SOFA environment was the CDL to
C++ mapping, based on the IDL to C++ mapping of CORBA [16]. The CDL
to C++ mapping of the data and interface types, which SOFA CDL shares with
CORBA IDL, is almost as complex as the IDL to C++ mapping of these types.
In addition to the data and interface types, the CDL to C++ mapping also
supports the frame and architecture types. Considering the size of the IDL to
C++ language mapping, over 170 pages of specification at this time, the CDL
to C++ language mapping is obviously far from trivial.

The complexity of the mapping can introduce extra cost in terms of code
size and runtime overhead. In principle, the extra cost of a mapping designed
solely for use by the component code does not have to exceed the extra cost
introduced by other libraries that provide useful types in the C++ environment,
such as STL [11]. The problem particular to the CDL to C++ mapping, and
a language mapping used by any other component system that aspires to em-
ploy off-the-shelf middleware to build connectors, is that the mapping is used
both by the component system and by the middleware. A typical situation in
this case is that the mapping used by the component system is not compatible
with the mapping used by the middleware, prompting the need for deep copy-
ing at best, and deep copying and data conversion at worst, of all data passed
through the middleware. Given the performance of contemporary middleware
implementations [25], the copying and conversion might be acceptable in an ex-
plicitly distributed application that employs the middleware in a few carefully
selected points, but not in a transparently distributed application that relies
on the middleware for interconnecting its components at fine granularity levels,
where components correspond to implementation objects.

135

The problem of compatibility of the language mappings used by the compo-
nent system and the middleware implementations employed to build connectors
can be solved by sharing the mapping among the component system and the
middleware implementations. In most cases, this requires extending the language
mappings of contemporary middleware implementations.

A language mapping of a contemporary middleware implementation is typi-
cally designed to make it possible to write applications that are portable across
middleware implementations. The mapping is defined so that the application
employing the middleware can easily access the mapped types, but it does not
define how the middleware itself accesses the mapped types.

A language mapping that is to be shared among a component system and
middleware implementations has to extend the contemporary mappings by defin-
ing how the middleware itself accesses the mapped types. Such a language map-
ping makes it possible not only to write applications that are portable across
middleware implementations, but also to write middleware implementations that
can share language mappings and thus coexist in a single application without
incurring extra cost in terms of code size and runtime overhead. A step in this
direction are the ORB portability interfaces in the IDL to Java mapping of
CORBA [17].

4.2 Connectors Built Using CORBA

The separation of development and deployment phases of the application lifecy-
cle implies a need to postpone the decision on what connectors to employ from
the development time to the deployment time. This goes contrary to the typ-
ical usage of off-the-shelf middleware, where the connectors are generated and
integrated into the application at the development time.

Although it is theoretically possible to use off-the-shelf middleware to gen-
erate connectors at deployment time, such an approach runs into a number of
practical difficulties. First, it is unusual to require the development system of
the middleware to be available at deployment time. Second, the development
system of the middleware is often interactive and thus hard to integrate into the
component system.

Alternatively, a set of connectors for all interfaces of an application can be
pregenerated at the development time. Only those pregenerated connectors that
are actually employed will be used at the deployment time. Our experience
demonstrates that while feasible, this approach runs against the typical usage of
off-the-shelf middleware, where connectors for multiple interfaces are generated
from a single CORBA IDL file.

When connectors for multiple interfaces are generated from a single CORBA
IDL file, the middleware produces a monolithic module that contains the mar-
shalling code together with the mapping of all types used by the connectors.
When used to generate the connectors for one interface at a time, the middle-
ware produces modules that are largely redundant in mapping of those types
that are shared by the connectors. Even though the redundancy can be removed

136

during function level linking, the time spent generating and compiling redundant
code is prohibitive even for relatively small number of types and interfaces.

To avoid the problems of redundancy when employed in a component sys-
tem, an off-the-shelf middleware should provide features that allow for separated
generation of the marshalling code and the mapping of the types used by the
connectors. Provided that the mapping of the types could be shared among the
component system and the middleware implementations, this would allow for
generating the mapping of the types at development time, and generating the
marshalling code on demand at deployment time.

4.3 ADL Type System Not Suitable

In retrospect, the most constraining decision with respect to the usability of
the component system was basing the SOFA type system on the CORBA type
system. The type system of CORBA is tailored to suit the underlying remote
procedure call mechanism, which is acceptable because a CORBA application
uses IDL interfaces in a few carefully selected points. When carried over to SOFA,
the type system becomes much more restrictive because a SOFA application uses
CDL interfaces for interconnecting its components at fine granularity levels,
where components correspond to implementation objects.

Looking at the differences between the type system of C++, which is nor-
mally used in the environment we consider, and the type system of SOFA, we
can see that C++ relies heavily on reference and pointer types that may not
have a counterpart in the SOFA type system.

Reference and pointer types that are used to pass data by reference, whether
merely for sake of efficiency or to allow modification of the data, have a good
match in the SOFA types used to pass the same data in one of the in, out or
inout directions.

Reference and pointer types that are used to build dynamic data structures
do not have a good match in the SOFA types. Even if the dynamic data structure
happens to match the SOFA sequence or value types, the sharing semantics ap-
plied by C++ will not match the copy semantics applied by SOFA. The sharing
semantics of the reference and pointer types is difficult to mimic in a compo-
nent system that supports transparently distributed applications. When building
dynamic data structures, it is therefore better to employ high level tools such
as containers and iterators rather than low level tools such as references and
pointers.

A component system can provide containers and iterators modeled after
STL [11] or another well tested framework. These can be employed to build
dynamic data structures without having to associate a specific sharing or copy
semantics with the type, which would be difficult to implement when the type
is used both by C++ and by SOFA.

Reference and pointer types that are used to denote objects may appear to
have a good match in the SOFA object reference type. Instances of both types

137

give their holder the ability to invoke methods on an object. Implementation of a
component system that employs this similarity is possible, although not without
difficulties [3]. Reference and pointer types that are used to denote functions
represent a similar case.

4.4 Need Anticipated Dynamic Changes

From the architectural point of view, passing references that denote objects has
the effect of creating new ties between components. Together with the ability to
instantiate components, this provides a mechanism for dynamically changing the
architecture of the application. The mechanism is similar to the one normally
employed by object oriented applications to introduce dynamic changes by cre-
ating and linking objects. This similarity makes it well suited for supporting
anticipated dynamic changes of the architecture of component applications. The
flexibility and ease of use of the mechanism supersedes that of many contempo-
rary component systems with architecture description languages [5, 14].

The downside of the mechanism is that the new connections and components
are not reflected in the architecture description. This makes the architecture
description lose its relevancy to the application architecture it is to describe. This
problem exists in most component systems that employ architecture description
languages, where the architecture description is either static [5, 23], or expressed
in a way that does not lend itself to describing anticipated dynamic changes [2,
12].

Anticipated dynamic changes of the application architecture appear to be of
fundamental importance, much more so than the unanticipated dynamic changes
the software architecture research community focuses on. If the architecture de-
scription is to be used in a component system at fine granularity level, it is nec-
essary to extend the architecture description language to support such changes.
Following the approach suggested for building dynamic data structures, the dy-
namic architectures could be described as dynamic collections of components.

4.5 Legacy Components And Connectors

Integrating the component system with CORBA and GNOME gave rise to the
need of supporting legacy components, especially the components of GNOME
used to build the user interface. Besides running into problems with the type sys-
tem outlined earlier, we also encountered problems related to legacy distribution
mechanisms.

The graphical user environment of GNOME runs on top of the X Window
System [20], which relies on its own distribution mechanism. The legacy com-
ponents of GNOME use X resource identifiers as references. The distribution
mechanism of the X Window System should therefore be regarded a middleware
and X protocol connectors should be introduced to interconnect X components.
This would have the advantage of using the X protocol, which is more efficient
than the protocols of general purpose middleware. More work needs to be done
to design a mechanism for cooperation between multiple types of middleware.

138

5 Related Work

Although a number of ADL component systems exists, most share the basic
architectural concepts related to components and connectors. The component
model of SOFA is no exception, being similar to the component model of Dar-
win [13]. It also fits well into the ACME framework [9] and the xADL toolkit [7],
which provide a basis for sharing and manipulating architectural information.

What distinguishes our work on SOFA from that carried out on other compo-
nent systems is the close integration of our SOFA implementation with CORBA
and GNOME. To our knowledge, few other ADL component systems come close
to this level of implementation. The notable exceptions are the C2 [14] and
Rapide [12] projects, both exerting effort to support real-life applications in
real-life settings. Neither project, however, aims at supporting transparently
distributed applications.

With its design and implementation, the SOFA environment is also close to
component systems that are not based on formal architecture description, such
as Microsoft COM [15] or Sun EJB [24]. Besides the lack of the architecture de-
scription itself, these systems differ from the SOFA environment also by omitting
the explicit specification of interfaces required by components, which is needed
for rigorous assembly of components.

Although also lacking the formal architecture description, more similar to
the SOFA environment is the CORBA Component Model [19], which provides
a definition of components with explicit specification of provided and required
interfaces. We believe that the need for shareable language mapping, identified
in this paper, also concerns the CORBA Component Model.

Also related to our work is the development in middleware implementations,
especially in the area of reflective middleware. Reflective middleware implemen-
tations are generally more modular and thus lend themselves better to integra-
tion with a component system. Reflective middleware can also employ the formal
architecture description for its configuration [6].

6 Conclusion

We have presented the design and implementation of a runtime environment for
the SOFA component system. The implementation is integrated with GNOME
and CORBA as representatives of a contemporary component framework and a
distributed middleware.

The SOFA environment features a CDL to C++ mapping, a deployment
mechanism and a connector generator. The language mapping is easy to use, in-
troduces little overhead per se, and enables component substitution. The deploy-
ment mechanism is configurable and supports both single-host and distributed
deployment transparent to the application. The connector generator produces
connectors independent of the application and can integrate several CORBA
middleware implementations.

139

The SOFA environment meets our goals of supporting real-life applications
in real-life settings, vital to discover the limitations of ADL component systems
with respect to applications. The paper further highlights our findings in this
respect, related to the type system of architecture description languages and
middleware implementations, the mapping of the type system into the imple-
mentation language, and the support for dynamic changes of the application
architecture.

We argue that the type system of the architecture description languages needs
to be enriched to support building of dynamic data structures without having to
resort to the low level tools such as references and pointers, which do not lend
themselves well to transparent distribution.

We point out that the mapping of the type system used by contemporary off-
the-shelf middleware needs to be extended to define those features of the mapped
types that the implementations of the middleware rely upon. This allows sharing
the language mapping among the component system and the middleware imple-
mentations used to build the connectors. For efficiency reasons, the middleware
should generate the marshalling code and the mapping of the types separately.

We also emphasize that the dynamic changes of the application architecture
should be allowed through a mechanism similar to the one normally employed by
applications to introduce dynamism, such as creating and linking objects. The
architecture description languages should reflect this mechanism and provide
support for anticipated dynamic changes.

We believe that our findings are not constrained to the particular design and
implementation of the SOFA environment we have described, but can be gener-
alized to cover the broad class of component systems that employ architecture
description languages or other forms of formal architecture description.

The implementation of the SOFA environment is available for download at
http://nenya.ms.mff.cuni.cz.

Acknowledgments

The authors would like to thank Frantǐsek Plášil, Stanislav Vǐsňovský and Adam
Buble for valuable comments, and all the members of the Distributed Systems
Research Group at Charles University for their work on the SOFA project.

References

1. Allen R. J.: A Formal Approach to Software Architecture, Doctoral thesis at
Carnegie Mellon University, USA, 1997

2. Allen R. J., Douence R., Garlan D.: Specifying and Analyzing Dynamic Software
Architectures, Proceedings of FASE 1998, Portugal, 1998

3. Bálek D.: Connectors in Software Architectures, Doctoral thesis at Charles Uni-
versity, Czech Republic, http://nenya.ms.mff.cuni.cz, 2002

4. Bálek D., Plášil F.: Software Connectors and Their Role in Component Deploy-
ment, Proceedings of DAIS 2001, Poland, 2001

140

5. Bellissard L., Ben Atallah S., Boyer F., Riveill M.: Distributed Application Con-
figuration, Proceedings of ICDCS 1996, Hong Kong, 1996

6. Blair G., Blair L., Issarny V., Tůma P., Zarras A.: The Role of Software Archi-
tecture in Constraining Adaptation in Component-based Middleware Platforms,
Proceedings of Middleware 2000, USA, 2000

7. Dashofy E. M., van der Hoek A., Taylor R. N.: An Infrastructure for the Rapid
Development of XML-based Architecture Description Languages, Proceedings of
ICSE 2002, USA, 2002

8. Garlan D., Kompanek A.: Reconciling the Needs of Architectural Description with
Object-Modeling Notations, Proceedings of UML 2000, United Kingdom, 2000

9. Garlan D., Monroe R., Wile D.: ACME: An Architecture Description Interchange
Language, Proceedings of CASCON 1997, Canada, 1997

10. Hnětynka P., Mencl V.: Managing Evolution of Component Specifications using
a Federation of Repositories, Technical report 2001/2, Department of Software
Engineering, Charles University, Czech Republic, 2001

11. International Organization for Standardization: C++ Programming Language,
ISO/IEC standard 14882, 1998

12. Luckham D. C., Kenney J. J., Augustin L. M., Vera J., Bryan D., Mann W.: Spec-
ification and Analysis of System Architecture Using Rapide, IEEE Transactions
on Software Engineering 21(4), 1995

13. Magee J., Tseng A., Kramer J.: Composing Distributed Objects in CORBA, Pro-
ceedings of ISADS 1997, Germany, 1997

14. Medvidovic N., Taylor R. N., Whitehead E. J.: Formal Modeling of Software Ar-
chitectures at Multiple Levels of Abstraction, Proceedings of CSS 1996, USA, 1996

15. Microsoft: Component Object Model Specification 0.9, http://www.microsoft.com,
1995

16. Object Management Group: C++ Language Mapping Specification, formal/99-07-
41, ftp://ftp.omg.org/pub/docs/formal/99-07-41.pdf, 1999

17. Object Management Group: Java Language Mapping Specification, formal/99-07-
53, ftp://ftp.omg.org/pub/docs/formal/99-07-53.pdf, 1999

18. Object Management Group: Common Object Request Broker: Architecture and
Specification, CORBA 2.6.1, formal/02-05-08,
ftp://ftp.omg.org/pub/docs/formal/02-05-08.pdf, 2002

19. Object Management Group: CORBA Component Model Specification, ptc/01-11-
03, ftp://ftp.omg.org/pub/docs/ptc/01-11-03.pdf, 2001

20. Open Group: X Windows System, http://www.x.org, 2002
21. Plášil F., Bálek D., Janeček R.: SOFA/DCUP: Architecture for Component Trad-

ing and Dynamic Updating, Proceedings of ICCDS 1998, USA, 1998
22. Plášil F., Vǐsňovský S.: Behavior Protocols for Software Components, IEEE Trans-

actions on Software Engineering 28(9), 2002
23. Shaw M., DeLine R., Klein D. V., Ross T. L., Young D. M., Zelesnik G.: Abstrac-

tions for Software Architecture and Tools to Support Them, IEEE Transactions
on Software Engineering 21(4), 1995

24. Sun Microsystems: Enterprise JavaBeans Specification 2.0,
http://www.microsoft.com, 2002

25. Tůma P., Buble A.: Open CORBA Benchmarking, Proceedings of SPECTS 2001,
USA, 2001.

26. GNOME Documentation Project, http://developer.gnome.org/projects/gdp, 2002

141

Chapter 12

Contribution

The first contribution of the thesis is a regression benchmarking methodology,sum-
mary of
contri-
bution

which allows an automated and statistically sound detection of performance
changes, and is robust with respect to non-determinism in current computer
systems. The methodology makes it possible to monitor and fix performance
in software development cycle.

The second contribution is the implementation of a fully automated regres-
sion benchmarking suite for large open-source project Mono [70], the Mono
Regression Benchmarking Project [6]. The suite is a proof of concept of the
new regression benchmarking methodology and of the regression benchmark-
ing concept in general.

The third contribution of the thesis is a high-level design of a generic en-
vironment for fully automated benchmarking that supports regression bench-
marking. The environment makes incorporation of regression benchmarking
into software projects easier and the benchmarking experiments more trans-
parent.

12.1 Regression Benchmarking Methodology

The most important results directly related to regression benchmarkingnon-de-
termin-
ism in
perfor-
mance

methodology are the identification and solution of problems caused by non-
determinism in software compilation and execution. The impact of the non-
determinism on performance is quantified and a general statistical model,
which allows precise benchmarking in presence of non-determinism, is de-
signed and evaluated. Both the problem and its solution are applicable not
only to regression benchmarking, but also to benchmarking in general.

Based on the statistical model and on experience with Mono and CORBA
benchmarking projects, a regression benchmarking methodology is formu-

142

lated. The methodology describes all steps needed to start and perform re-
gression benchmarking of a given software system using a given benchmark.
The description of the methodology distilled from [9, 1, 2, 3], follows.

Quantification of Non-determinism in Performance

The non-determinism in compilation and execution could, on an abstract
level, be quantified and modeled by random effects or ANOVA (analysis of
variance) models [13]. These models, however, typically depend on normality
assumptions, which are not, in our experience, met by software performance
data. 1 We have therefore introduced a new simple metric, an impact factor,
which is robust to deviations from normality and is easy to comprehend. impact

factor of
random
effects

The metric is based on a statistical simulation (bootstrap).

We define the impact factor both for random effects in execution and
random effects in compilation. The impact factor is a ratio of standard devi-
ations, estimated by bootstrap. The impact factor of 1 means that there is no
impact of the random effects (non-determinism); a larger value of the impact
factor signifies an impact. A precise definition and experimental results for
different platforms and benchmarks are in [8, 9], included in Sections 4 and 7.

The main contribution of the quantification metric and the experimental
results is the evidence that the non-determinism is present in current systems
and has a significant effect on benchmark results. Consequently, not only
a benchmark, but a whole benchmark experiment consisting of compilation,
execution, and measurement, has to be considered for precise benchmarking.

Statistical Model of Benchmark
with Non-determinism

We present a new statistical model of benchmark performance that allows pre-
cise performance measurements in face of non-determinism. In this model, a
software system’s performance is considered random. The objective of bench-
marking is to estimate the (unknown) mean performance, and, as a measure
of reliability of the result, to assess the precision of the estimate.

The statistical model uses a benchmark experiment that repeats all its distri-
bution
of av-
erage
perfor-
mance

steps: the compilation (l times), the execution (m times for each compilation),
and the measured operation (n times for each execution). The result of a
benchmark experiment is the average Y ••• of all measurements Ykji (k indexes
compilations, j executions and i operations):

1The related statistical methods are listed in Section 13.

143

Y •••
def
=

1

lmn

l∑
k=1

m∑
j=1

n∑
i=1

Ykji.

Under very generic assumptions, it is possible to derive an asymptotic dis-
tribution of the average, and thus to estimate the mean performance and
precision of the estimate. The asymptotic distribution of the average is

Y ••• ≈ N

(
µY ,

σ2
E

lmn
+

σ2
B

lm
+

σ2
V

l

)
,

where µY is the mean performance of interest, and σ2
E, σ2

B, and σ2
V are un-

known variances, which can be estimated by S2
E, S2

B and S2
V :

S2
E

def
=

1

lm(n− 1)

l∑
k=1

m∑
j=1

n∑
i=1

(
Ykji − Y kj•

)2
,

S2
B

def
=

1

l(m− 1)

l∑
k=1

m∑
j=1

(
Y kj• − Y k••

)2
,

S2
V

def
=

1

l − 1

l∑
k=1

(
Y k•• − Y •••

)2
.

Knowing the asymptotic distribution, we can construct an asymptotic (1−α)bench-
mark
result
and pre-
cision

confidence interval for the mean performance µY ,

Y ••• ± u1−α
2

√
S2

E

lmn
+

S2
B

lm
+

S2
V

l
,

where u• is the quantile function of the standard normal distribution. The
probability that the mean performance µY lies within this interval is asymp-
totically (1 − α). The center of the interval Y ••• is the estimate of mean
performance µY (the benchmark result). The precision of the result can be
defined as the length of the interval, for a given α.

The model also allows determining the optimum numbers of repetitionsopti-
mizing
experi-
ments

of each experiment step (l, m and n) that ensure the best result precision
within a given time for the experiment. The optimal values of m and n are

m0 =

√√√√ b

w
· S2

B

S2
V

, n0 =

√√√√w · S2
E

S2
B

, (12.1)

where w and b are the costs of benchmark execution and compilation. The
cost is expressed as the number of operations that could be measured in the

144

time consumed by a single execution (cost w) or a single compilation (cost
b). There is no optimum value for the number of compilations l, as increasing
the number of compilations always helps to improve the result precision.

The cost of a benchmark execution w covers benchmark initialization and
warming-up. The cost of benchmark compilation b covers re-building of the
whole tested system and the benchmark application. Both costs have to
be estimated experimentally. In our experience, the cost w depends on the
platform and the benchmark, and thus does not change significantly between
consecutive versions of software. The cost b also depends on code size, which
changes during software development cycle. The estimation of these costs in
regression benchmarking is proposed later in this section.

The statistical model is described in detail and derived mathematically
in [9], included in Section 7. The background of the model and robustness
issues are discussed in [1], included in Section 6.

Detection of Changes

We present a two-sample method for detecting changes in performance re-
sults, based on our statistical model of performance with non-determinism.
By incorporating the model, the method is robust to random fluctuations
in performance caused by the non-determinism. We use a two-sample ap-
proach to detect a performance change in the first software version in which
it appears. 2

The statistical model alone already allows designing a two-sample test.
However, some of the assumptions of the model may not hold on some sys-
tems, and the numbers of repetitions may not be large enough for its asymp-
totic validity. We therefore choose a simpler comparison technique that is
more conservative and allows us to easily quantify the detected changes. Ad-
ditional experimental or heuristic methods can then base their level of trust
in the detected changes on this quantification.

We propose a comparison method that detects a change whenever the
confidence intervals for mean performance in the compared software versions
do not overlap. This method is inspired by the approximate visual test de-
scribed in [16]. When no change is detected, the quantification is zero. When
a change is detected, the quantification is the percentage of the change in av-
erages (the newer version’s average against the older version’s average). This
method is also suitable for visualization of the results, as evidenced by the
Mono regression benchmarking, described later in this section.

2A different statistical approach, potentially applicable to detecting changes in regres-
sion benchmarking, is discussed in Section 13.

145

The method for change detection is published with the statistical model
of benchmark performance in [9, 2, 1], included in Sections 7, 5 and 6.

Application to Regression Benchmarking

The statistical model described above can be easily applied to regressionbench-
mark
design

benchmarking with simple benchmarks, as identified in [3]. First, a bench-
mark must be designed to cover a complete benchmark experiment that con-
sists of a given number of compilations (l), executions (m) of each binary,
and measurements (n) in each execution. The benchmark provides raw data
for all measurements at the end of each execution.

The number of initial measurements w affected by benchmark initial-initial
steps izations (warm-up) can be estimated experimentally by several executions of

the benchmark experiments set up for very large values of n (hundreds to
hundreds of thousands, depending on the benchmark and platform). The
initial cost of benchmark compilation b should also be estimated experimen-
tally. The initial numbers of compilations, executions and measurements (l,
m and n) have to be set manually, based on the experiments and on the
formula (12.1). As a special case, the comparison of compiled binaries can
indicate that the compilation is deterministic, thus l can be set to 1. Mini-
mum limits for l, m and n should be set that will ensure reliable estimates
of the variance needed by the statistical model. These experiments have to
be performed manually before regression benchmarking of a given software
system by a given benchmark can be started. Once the initial values are set
up, the regression benchmarking is fully automated.

Each new software version is automatically downloaded, compiled l timesfor each
version creating l binaries, each binary executed m times, collecting w + n measure-

ments in each execution. Based on the results, a confidence interval for mean
performance is created. The parameter b can be adjusted to match a possible
increase in code size. Parameters m and n can be adjusted using (12.1) to
match possible changes in the impact of the non-determinism. However, in
order to keep the variance estimates reliable, the values of m and n must not
fall under the pre-set limits.

Performance changes can be detected by comparing the confidence in-evalu-
ating
results

tervals as described above. The detected changes can be linked to suspect
modifications of source files and presented to the developers. The presentation
should include results from different platforms and benchmarks, and should
also include the quantification of the changes. This information helps the
developers to assess the importance of the changes and pinpoint the modifi-
cations causing the changes. In particular, the developers can decide whether

146

a detected performance regression can be fixed, or whether it is imposed by
functionality improvements. The developers can also easily verify the impact
of changes targeted at performance.

12.2 Mono Regression Benchmarking

Project

As a proof of concept of the regression benchmarking methodology, we have
designed, set-up and are maintaining the Mono Regression Benchmarking
Project [6]. We chose the Mono [70] project for its size (over 2 million lines
of code), active development, and open-source license. The operations of the
Mono Regression Benchmarking Project are fully automated, from download-
ing daily Mono versions, through benchmarking and analysis, to visualization
of the results. The results are publicly available [6] and cover daily Mono ver-
sions since August 2004 (currently nearly 400 versions).

The Mono project founder and leader Miguel de Icaza expressed his in- connec-
tion to
Mono

terest in the Mono Regression Benchmarking Project and informed about it
in his blog [73] and in the Mono Project News [74]; his posts were cited by nu-
merous electronic sites. The official Mono project site [75] links to the Mono
Regression Benchmarking Project and informs the Mono developers that their
regression tests will be run automatically as benchmarks, with performance
results on the web the next day. In the first five months of year 2006, there
were 40,000 visits 3 to the Mono Regression Benchmarking Project’s web.
More than 10,000 of those were in April, when Miguel informed about bench-
marking using the regression tests.

We are actively updating the project to incorporate new research results.
This section gives a brief up-to-date description of the project, more infor-
mation can be found on the project web itself and in [1, 2, 9], included in
Sections 6, 5, and 7.

Benchmarks and Platforms

The project uses a diverse set of benchmarks targeted at different aspects of
the tested system. Each benchmark is run both with the default JIT (Just-
In-Time compiler) optimizations turned on, and with all JIT optimizations
turned on.

3Number of “visits” reported by the AWSTATS tool.

147

The HTTP Ping benchmark is a client/server benchmark that measuresMono
bench-
marks

the response time of a remote procedure call that uses the HTTP (SOAP)
protocol. The benchmark consists of a client process and a server process both
run on a single machine. The TCP Ping benchmark is the same except that
it uses a binary TCP protocol for remote communication. The FFT bench-
mark measures the computation time of a Fast Fourier Transform, based on
the SciMark2 benchmark [69, 68]. The benchmark is included in two versions
that differ in the memory allocation strategy, and thus differ in the impact of
non-determinism on performance during benchmark execution. The Rijndael
benchmark measures encryption and decryption time using the Rijndael algo-
rithm, implemented in the Mono cryptographic libraries. All the benchmarks
are run on Pentium 4/Linux and on Itanium/Linux platforms.

To increase the coverage of the Mono project by the benchmarks and toregres-
sion
tests

make benchmark implementation easier, we also run Mono regression tests as
benchmarks (currently about 100 tests). One execution of a regression test
is interpreted as one invocation of a benchmark operation. The repetitive
execution in one address space is achieved using the C# language reflection.
New regression tests are automatically incorporated into the operations as
soon as they appear in the Mono sources. The regression tests are run on the
Pentium 4/Linux platform.

Presentation of the Results

The automatically detected performance changes are presented in the
Changes Summary Chart and in benchmark-specific Detailed Changes
Charts [6].

The Changes Summary Chart is a table that sums up performancechanges
sum-
mary

changes in all benchmarks on all platforms. The chart includes seven lat-
est Mono versions only. The main purpose of the chart is to allow developers
to quickly check if there were any performance changes, asses the importance
(percentage) of the changes, and check which platforms and benchmarks were
affected. For each benchmark, platform and version, the chart shows whether
there was a regression (positive number of percents), an improvement (neg-
ative number of percents) or no significant change. A sample Changes Sum-
mary Chart is shown in Figure 12.1. 4 The correlated information in Changes
Summary Charts helps the developers to find causes of the detected changes.
There is a separate summary chart for the Mono benchmarks that we have
created and for the regression tests created by Mono developers.

4The sample chart only shows three daily Mono versions. The web version [6] includes
seven Mono versions.

148

2006-06-18 2006-06-17 2006-06-15
P4 IA64 P4 IA64 P4 IA64

HTTP Ping = = = = = =
HTTP Ping (opt.) = = = = = =
TCP Ping = = = = = =
TCP Ping (opt.) = = = = = =
FFT SciMark = N/A = N/A = N/A
FFT SciMark (opt.) -4.15% N/A 13.7% N/A -1.43% N/A
Rijndael = N/A = N/A = N/A
Rijndael (opt.) = N/A = N/A = N/A
FFT SciMark (no alloc.) = N/A = N/A = N/A
FFT SciMark (no alloc., opt.) = N/A -9.4% N/A = N/A

Figure 12.1: Changes Summary Chart.

One Detailed Changes Chart is created for each benchmark. It consists of detailed
changesa graph and a table of changes detected by the benchmark. By including the

full history of all Mono versions, it helps the developers to identify the long-
term performance trends. The graphs also help the developers to visually
verify performance trends local to detected performance changes, and thus
to asses the importance of the changes. A sample Detailed Changes Chart is
shown in Figure 12.2. 5 The form of the Detailed Changes Chart is explained
below.

The graph of changes shows the Mono versions on the horizontal axis, and
99% confidence intervals for mean response time on the vertical axis. The de-
tected changes are marked by bold green lines (improvements) and bold red
lines (regressions) on the web, and all detected changes are marked by bold
black lines in Figure 12.2. The table of changes lists the same changes as those
shown in the graph and links them to suspected source code modifications
(diffs). The suspected modifications are of a general form (all modifications
between respective versions) and of a restricted form (only modifications in
Mono libraries that were really used by a specific benchmark). By this link-
ing, the table helps developers in tracking down the causes of the detected
performance changes.

The results of Mono benchmarks are also presented in traditional run run-
sequence
plots

sequence plots, which are graphs with Mono versions on the horizontal axis
and measured response time on the vertical axis. For each Mono version,
a run sequence plot of a given benchmark shows all the measured operation

5The sample chart only shows daily Mono versions since January 2006. The chart for
all daily Mono versions since August 2004 is available on the web [6].

149

HTTP Ping

99
%

 C
on

fid
en

ce
 In

te
rv

al
 fo

r
T

im
e

M
ea

n
[m

s]

6.
4

6.
6

6.
8

7.
0

7.
2

Version

20
06

−
01

−
03

20
06

−
01

−
07

20
06

−
01

−
13

20
06

−
01

−
17

20
06

−
01

−
21

20
06

−
01

−
26

20
06

−
01

−
30

20
06

−
02

−
05

20
06

−
02

−
12

20
06

−
02

−
19

20
06

−
02

−
23

20
06

−
02

−
27

20
06

−
03

−
20

20
06

−
03

−
24

20
06

−
03

−
28

20
06

−
04

−
02

20
06

−
04

−
06

20
06

−
04

−
12

20
06

−
04

−
16

20
06

−
04

−
20

20
06

−
04

−
24

20
06

−
04

−
29

20
06

−
05

−
03

20
06

−
05

−
07

20
06

−
05

−
11

20
06

−
05

−
17

20
06

−
05

−
21

20
06

−
05

−
31

20
06

−
06

−
04

20
06

−
06

−
08

20
06

−
06

−
12

20
06

−
06

−
17

20
06

−
06

−
21

Newer Version Older Version Change
2006-02-04 2006-02-03 -1.63%
2006-02-12 2006-02-08 3.82%
2006-03-17 2006-02-27 -9.02%
2006-04-20 2006-04-19 -2.37%

Figure 12.2: Detailed Summary Chart for the HTTP Ping benchmark.

150

response times. The plots are automatically scaled on the vertical axis and up
to 5% of “outliers” is filtered out. The scaling and filtering aim at selecting
the smallest range that has at least 95% of all the measurements. Thanks to
this scaling, the run sequence plots are useful for visual checking of all trends
in performance, not only in the mean, but also in variance, modality (number
of clusters in the results), etc.

All of the plots are described on the web [6]. Additional plots of research
and experimental value are presented as well, targeting different methods
for change detection and quantification of the impact of non-determinism on
benchmark results. Some of these experimental plots are used and described
in [1], included in Section 6.

Verified Performance Changes

We have tracked down and experimentally verified some of the most signifi-
cant performance changes detected. The objective of the verification was to
locate the specific source code modifications that caused the changes, and
thus to show that the changes were not false alarms. To verify our results,
we have manually run benchmark experiments, where we have compared the
performance of extra Mono versions differing only in the suspected modifi-
cations. A list of verified performance changes we have found is available
in [2], included in Section 5. Our verification of a significant performance
patch in TCP performance [73] has been particularly welcome by the Mono
developers.

12.3 Regression Benchmarking Environment

Based on our experience with the Mono Regression Benchmarking Project,
we have formulated requirements and created a high level design of a generic
environment for fully automated benchmarking. Such an environment is im-
portant for a wide adoption of regression benchmarking, because the bench-
mark automation is, in our experience, a surprisingly technically challenging
and time-consuming task.

The design of the environment is published in [4, 12], included in Sec-
tions 8 and 9. The main features of the environment are: support for re-
peating different levels of a benchmark experiment (compilations, executions,
measurements), a common format of benchmark results, a results repository
supporting the common format, support for adaptive planning of benchmark
experiments based on statistical evaluation of the results, support for au-
tomated regression benchmarking, and support for all steps of a benchmark

151

experiment: download, compilation, deployment, execution, monitoring, data
collection, data storage, data analysis and visualization.

The project is being implemented by master students, under the super-
vision of the author of the thesis. The implementation is currently in early
beta stage, which is described in [12]. Up-to-date information is available on
the project web page [7].

152

Chapter 13

Related Projects and Methods

This section provides a short overview and references to projects and software
vendors that are performing, planning or advocating regression benchmark-
ing, to statistical methods that are generally related to modeling software
performance with non-determinism or to detecting changes in performance
results, and to projects that are aiming at or are related to the automated
running of benchmarks.

13.1 Regression Benchmarking Projects

Although some ad-hoc regression benchmarking projects and our research on calls
for re-
gression
bench-
marking

regression benchmarking are older, the importance of regression benchmark-
ing in software development cycle has only been accented by the important
players of the software industry in the last one or two years. In his post to
the Linux Kernel mailing list from March 2005 [33, 34], Linus Torvalds, the
initiator and coordinator of the Linux kernel development, asks for automated
daily performance benchmarking of the Linux kernel. Mark Mitchell, the re-
lease manager and developer of the GNU Compiler Collection (GCC), calls for
regular performance regression testing of GCC in his post to the GCC mail-
ing list in November 2005 [36]. In an official document from April 2004 [37],
Apple Computer advises developers to monitor software performance during
development, and check for performance changes. John Clingan, a technical
specialist at Sun Microsystems and an author of many of Sun’s press releases
in electronic media, argues for incorporation of performance benchmarking
into regression testing in his blog from March 2005 [38].

There are several regression benchmarking projects for the GNU C Com- GCC
piler (GCC) [66, 67]. The older projects, run by Suse (now Novell) and
Redhat, focus on regression benchmarking of daily GCC versions using the

153

SPEC 95 [50] and SPEC 2000 [49, 39] CPU benchmark suites. Some of the
results are available for versions since 2002. The measured metrics are bi-
nary sizes, compilation time and execution time. The results are presented
by simple off-line-generated graphs. Results for different GCC versions and
hardware platforms are not integrated into a single site.

There is a newer GCC regression benchmarking project [40, 48] at the
University of Szeged, which uses open-source benchmarks similar to the SPEC
ones and features a very flexible presentation site. The benchmarks originally
measured only the binary size, but have been extended to measure also the
compilation time and the execution time. The presentation site supports
on-line generation of graphs based on user input (GCC versions to compare,
metrics, graph type, etc.). The measurement methodology is very simple:
each benchmark is run three times and the median is taken a result.

A regression benchmarking project of the Linux kernel [35], sponsoredLinux
kernel by Intel, monitors performance changes in the kernel between consecutive

releases and release candidates. The project uses a diverse set of both open-
source and commercial benchmarks on several Intel platforms; the results are
presented in graphs and in tables with changes in percents. The methodology
of measurements and evaluation is not described. The changes are most likely
all changes, with no relation to statistical significance. Although the results
have helped to discover some performance regressions, benchmarking daily
versions would be more useful for locating source code modifications causing
the changes [34].

The TAO Performance Scoreboard [72] monitors TAO (The ACE ORB)TAO
performance twice a day, measuring throughput of remote procedure calls
using different CORBA configurations and invocation types. The results are
presented in simple graphs and as raw data in textual format. The Scoreboard
also shows the binary sizes of different TAO libraries in textual format and
shows the percentage changes of these sizes.

RTJBench [62] is a benchmarking framework for Java real-time ap-
RTJBenchplications that conform to the Real-Time Specification for Java (RTSJ).

RTJBench is regularly used for regression benchmarking of Open Virtual
Machine (OVM) [52]. The framework is an extension of the popular JU-
nit [53] framework for regression testing. RTJBench allows sequential run-
ning of benchmarks (tests) and allows configuring the memory allocation and
garbage collection strategies for each benchmark. It also covers the storage,
statistical evaluation and visualization of the results. The solution of extend-
ing JUnit has the advantage that the infrastructure built for functionality
regression testing may be re-used for regression benchmarking.

The OVM regression benchmarking focuses at the minimum, average andOVM

154

maximum latencies measured using the SPEC JVM 98 [51] benchmarks and
the latency benchmarks designed by the OVM developers. The results are
presented in pre-generated graphs, which show the history of OVM latencies
on different platforms and compare the latencies of different Java Virtual
Machine implementations supporting RTSJ. The design of the benchmarking
framework is described in [62]. The sources are not publicly available.

Regression benchmarking is used by Sun Microsystems for verifying Solaris
that the Solaris operating system patches do not cause performance regres-
sions [41]. The benchmarks are described in [41], but the results are not
publicly available.

Sun is also planning regression benchmarking of Open Office [42]. With Open
Officethe APPR [43] toolset, performance of operations such as opening a given

document, viewing a given presentation or starting the Office application can
be measured without user intervention. Currently, performance of different
builds (versions) of Open Office is compared, but the benchmarking is not
performed daily. The tool is presently used more for profiling than for auto-
mated regression benchmarking. There are no publicly available results that
would compare the builds.

Regression benchmarking is planned in the scope of the ZOPE ZOPE
project [44]. ZOPE is a large open-source web application server written
in Python. The Python runtime environment supports performance mea-
surements using platform-independent metrics (“pystones”). The planned
regression benchmarking is aimed at detecting poor performance in absolute
numbers, expressed in pystones. The performance limits would be set per
language function.

Valgrind is a set of tools for debugging and profiling Linux applications. Val-
grindThe project already uses regular regression testing, and the incorporation of

benchmarks and nightly performance regression benchmarking is planned [45].

The Globus toolkit is a large software project for GRID applications. Globus
Within the project, performance testing is considered for OGSA (Open Grid
Services Architecture) [46]. Results from some performance tests are already
available on the web [46] in raw numbers.

The existing projects related to regression benchmarking indicate a grow-
ing popularity of the methodology. However, none of the existing projects
performs an automated detection of performance changes. In addition, the
projects do not handle non-determinism in performance, and thus changes vi-
sually present in the reported graphs may be caused by random fluctuations
due to the non-determinism.

155

13.2 Statistical Methods

During our research, we have encountered several problems in the experimen-
tal performance evaluation that are similar to problems already known and
solved by the methods of mathematical statistics. These problems include de-
tection of benchmark steady state, adaptive stopping of measurements based
on variance, filtering of outliers, clustering of benchmark results, selecting
benchmark configurations to test, detecting performance changes during ap-
plication execution. Describing the statistical methods related to all of these
problems is beyond the scope of the thesis.

In this section, we therefore give references to the statistical methods
that are related to the main problems solved in the thesis: modeling non-
determinism in performance and detecting performance changes. We describe
the statistical methods informally, in the context of benchmarking and regres-
sion benchmarking, and give references to formal and detailed descriptions of
the methods.

Modeling Non-determinism

The objective of modeling the non-determinism is two-fold. First, we need
to verify that the non-determinism has an impact on performance in a given
benchmark. If the impact exists, we want to estimate the variance in perfor-
mance based on the variance estimates at different levels of the benchmark
experiment: at the level of operations, executions, and binaries. This prob-
lem is in general solved by the analysis of variance (ANOVA). In the words
of [13], the model we need is a random effects model with nested effects (atrandom

effects
model

binary level, at execution level, at operations level).

The random effects model in one way classification [13] can be used for
modeling two levels of non-determinism (e.g. non-determinism in executions
and in operations), but with an assumption of normal distribution in oper-
ation performance and in mean execution performance. The model is based
on conditional probability:

µi ∼ i.i.d. N
(
µ, σ2

µ

)
,

yij|µi ∼ indep. N
(
µi, σ

2
)
.

In the model, µ corresponds to binary (version) mean performance – the
parameter of interest, µi is the “random” mean performance in execution
i, and yij|µi is the distribution of operation j’s performance in execution i.
The model assumes that all executions have the same variance σ2. With m

156

executions and n operations in each execution, we can estimate the parameter
µ by y••:

y•• =
m∑

i=1

n∑
j=1

yij,

E (y••) = µ.

The variance of the estimate is

var (y••) =
σ2 + nσ2

µ

mn
.

The model allows constructing a precise (not only asymptotic) confidence
interval for µ:

y•• ± tm−1, α
2

√√√√(∑n
i=1 (yi• − y••)

2

m(m− 1)

)
,

where α is the confidence level and tm−1, α
2

is the α
2

quantile of the t–
distribution with m− 1 degrees of freedom.

Although such an extension is not included in [13], the model could be normal-
ityextended to also support the additional level of non-determinism, namely the

non-determinism in compilation. The model, however, relies on the normality
assumption. In our experience, benchmark results are often multi-modal, and
thus this assumption does not hold. The model we use, as described in [9],
included in Section 7, can be viewed as an asymptotic extension of this model
that is robust to non-normality, and supports three levels of non-determinism.

References to many scientific papers and books on ANOVA methods can
be found in [13].

Detecting Changes in Performance

Because of the random nature of performance due to non-determinism, a
statistical method is required for detecting performance changes. Without a
statistical method, random fluctuations would be mistaken for performance
changes. The methods that are available depend on how we choose to detect
the changes: either between two versions, or in a sequence of (consecutive)
versions.

Detecting changes between two versions can be done using two-sample two-
sample
ap-
proach

tests. The tests for equal mean or variance, both parametric and robust,
are widely known and described in most statistical handbooks (parametric
t–tests for means, robust Mann Whitney test for medians). For regression

157

benchmarking, we use a two-sample detection, because we want a change to
be detected in the first version in which it appears. Our solution is described
in Section 12.

The detection of changes in a sequence of software versions has the poten-
tial of re-using results from older versions and thus saving some benchmarking
iterations of each version. The statistical methods related to this problem are
known as statistical process control methods. A good overview of these meth-
ods is given in [18, 17].

The on-line statistical process control methods [18] aim at detecting thaton-line
process
control

a system has changed. The system is assumed to be in control initially, and is
monitored regularly. The methods attempt to detect that a system gets out
of control, as indicated by an abrupt change in the monitored output. There
is a trade-off between minimizing the probability of false alarms and minimiz-
ing the time (number of monitoring points) needed to detect changes after
they happen. These methods seem to be readily applicable to run-time mon-
itoring of system performance, aimed at detection of permanent performance
changes. The direct application to regression benchmarking, however, seems
problematic, because the methods do not allow balancing their precision by
taking multiple measurements at the monitoring points. While not impor-
tant in the current applications of the methods, such balancing is important
in regression benchmarking, where the monitoring points would correspond
to software versions.

The off-line statistical process control methods [17] allow testing whetheroff-line
process
control

a system has changed in the past, detect the number of changes, and find
the times when the changes have happened. In regression benchmarking,
these methods would allow re-fining of already-detected changes when results
from newer versions become available. The method we focus on as potentially
applicable to regression benchmarking is the method of Horvárth [19, 17]. Thechange

in mean
and/or
variance

method is based on a statistical test where the null hypothesis (H) assumes
no change against the alternative (A) of one change:

H : Y1, . . . , Yn ∼ N
(
µ, σ2

)
A : ∃m ∈ {2, . . . , n− 2} :

Y1, . . . , Ym ∼ N
(
µ1, σ

2
1

)
,

Ym+1, . . . , Yn ∼ N
(
µ2, σ

2
2

)
,(

µ1, σ
2
1

)
6=
(
µ2, σ

2
2

)
.

158

The test rejects the null hypothesis at significance level α, when

Zn · an − bn > ln

(
− 2

ln(1− α)

)
,

where

Zn = max
1≤k≤n−1

{|Z̃2
k |},

Z̃2
k = n · ln

(
1

n

n∑
i=1

(
Yi − Y n

)2
)
− k · ln

(
1

k

k∑
i=1

(
Yi − Y k

)2
)
−

−(n− k) · ln

 1

n− k

n∑
i=k+1

Yi −
1

n− k

n∑
j=k+1

2
 ,

an =
√

2lnln(n)),

bn = 2lnln(n) + lnlnln(n).

The test is asymptotic for large n (long history of measured versions). The
assumption of normality can be reduced to less restrictive assumptions [19].
In regression benchmarking, Yi would be an average of all measurements in
version i, and thus the normality would hold asymptotically by Central Limit
Theorem (CLT).

It is known that if there is a change, it is in the version k in which multiple
changes|Z̃k| is maximal. Multiple changes can then be tracked down recursively:

when a change is detected, we check also the versions before the change and
the versions after the change, separately. The obvious disadvantage of this
approach is that changes detected later in the process are in general more
likely to be false alarms, because the asymptotic test is used on fewer versions.
This approach therefore does not work well when the changes in performance
happen frequently. These conclusions correspond with our experiments with
the method, which suggest that as it is, the method cannot be used for
regression benchmarking.

13.3 Environments for Running of Bench-

marks

Any environment for automated benchmarking in a distributed heterogeneous
environment requires a robust batch execution system. Some of the bench-
marking environments implement their own execution system, some use an

159

existing one. In both cases, the current state of the art in the batch execu-
tion systems is important for designing a benchmarking environment. In this
section, we provide an overview of several different batch execution systems,
and of existing benchmarking environments.

Batch Execution Environments

Most of the current batch execution systems originated from the NetworkNQS
Queueing System (NQS) [29]. There are many different implementations of
NQS, both commercial and open-source. The latest open-source implementa-
tion is Generic NQS [30]. NQS is a system for transparent remote execution
of jobs in the UNIX operating systems. The jobs are implemented as shell
scripts and specify their requirements on system resources (CPU time, mem-
ory, or devices). Jobs are submitted to queues (possibly on remote hosts),
from which they may be routed to other queues or executed, based on their
resource requirements and resource limits of the queues. The output of jobs
is redirected to files and automatically transferred to the host from which the
jobs are submitted.

NQE (Network Queueing Environment) is a commercial version of NQS by
Silicon Graphics. It has additional features, such as events for synchronizing
execution of jobs, load balancing and a graphical user interface.

NQS, although still used, has been superseded by other execution sys-
tems. The main limitations of NQS are its dependence on UNIX, limited
security, lack of distributed scheduling, no support for distributed computing
and synchronization.

The Distributed Queueing System (DQS) [32, 31], developed at FloridaDQS
State University, is an open-source descendant of NQS. Its main new features
are distributed scheduling, support for parallel computing, and improved se-
curity. The scheduling is implemented within cells of computers: each cell
has a single master scheduler, through which all jobs (shell scripts) are sub-
mitted to the cell. The scheduling supports load balancing and execution of
jobs on systems that are not used locally from console. The system can run
distributed applications implemented using different communication libraries,
such as MPI and PVM. DQS is used for executing benchmarks by the NIST
Benchmarking Toolset, described later in this section.

DQS is UNIX dependent, does not allow defining dependencies between
jobs, and is not supported anymore. It is only available as a package for
the Debian Linux operating system [32]. More information on DQS can be
in [31], a detailed but currently rather dated comparison study of different
batch execution systems.

160

Condor [27] is an open-source distributed computing system developed Condor
at University of Wisconsin-Madison. The main objective of Condor is trans-
parent access to a network of computers provided by volunteers. An impor-
tant design goal is that the owners keep control over their computers. When
a computer with a running job is used from console, Condor can temporar-
ily suspend the job or migrate it to a different computer. From the user’s
perspective, each computation is controlled by a problem solver. A problem
solver, being itself a Condor job, solves a given problem by submitting other
jobs to Condor. There are two supplied problem solvers, one for parallel sci-
entific computing, and one for execution of inter-dependent jobs. The second
problem-solver is very close to what is needed for benchmark experiments,
which consist of inter-dependent tasks. The problem solver also supports
automatic restarting of failed jobs.

Each job is submitted to Condor through an agent. Based on require- resource
adver-
tising

ments of the job, an agent tries to find out a resource (such as a remote
computer) for running the job. The agent advertises the job requirements
at one or more match-makers, where also the resources advertise the require-
ments on jobs they are willing to serve. If a match-maker finds a match
in requirements, the advertising agent exchanges more details with the re-
source, executes the job on the resource, and mediates access of the running
job to the file system of the originating host. The Condor architecture allows
both the owners of resources and the users submitting jobs to keep control
over their systems. The requirements of jobs and resources are described as
classified advertisements in a special language, with name-value pairs and a
three-valued logic with values “true”, “false” and “undefined”. This language
is both simple and flexible for use on different computing systems.

Aside from its architecture that keeps the provided computers in control
of their owners, Condor differs from NQS in that it supports distributed
computing, execution of jobs based on their requirements, better security,
migration, check-pointing, and transparent access to file system of the host
a job is submitted from. The submitted jobs can be both UNIX shell scripts
and Java applications.

Condor fully supports Linux and partially supports the Windows plat- porta-
bilityforms. It is not very portable because of the transparent access to the file

system of the original host and migration, which require modification of the
operating system kernel. Condor can interoperate with other execution sys-
tems that support the GRAM protocol (Grid Resource Access and Manage-
ment), defined within the Globus grid project [47].

Condor solves problems not present in automation of benchmarking, such Condor
sum-
mary

as migration or the transparent access to the host from which a job was

161

submitted. Many of the concepts, however, are important for benchmark
automation and might be reused: most notably the language for resource
advertising (classified advertisements) and the problem-solver that supports
job inter-dependencies and automated restarts of failed jobs.

As comparing all the batch execution systems is out of scope of the thesis,sum-
mary we chose NQS for it is the predecessor of most of the systems, DQS for it is

used by the NIST benchmarking toolset and Condor for its unique features
and architecture. References to more systems can be found in [31].

Benchmarking Environments

In this section, we provide an overview of generic environments for auto-
mated execution of benchmarks and discuss their applicability to regression
benchmarking.

The oldest generic benchmarking environment we have found informationNIST
toolset on is the NIST benchmarking toolset [76, 77]. The toolset is aimed at

benchmarking of parallel applications in a cluster, both for analyzing the
parallel performance of the applications and for comparing the performance
of the clusters. The majority of the toolset is constructed from existing open-
source tools. All the design decisions and choices of the used tools are well
described in the project’s technical reports, available from [77].

The toolset consists of experiment design and control module, analysis and
visualization module, and data collection module.

The experiment design and control module allows creating benchmarkingexper-
iment
design

experiments. Each benchmark experiment specifies a benchmark application
to use, the number of processors, and, optionally, the compiler options, the
communication library, the communication options, the command line param-
eters, and the custom parameters. Some of the parameters can be specified
as ranges of values – the experiment module then runs a benchmark for each
combination of the parameter values (full-factorial experiment design).

The module generates UNIX shell scripts for the DQS batch execution sys-
tem. The scripts include resource requirements, instrumentation code, tasks
for collecting and uploading results, and execution of the benchmark appli-
cation itself. The experiment module automatically checks results already
available in results database, and allows the user to re-use results from exper-
iments with similar parameters. The experiment design and control module
has an interactive graphical user interface.

The analysis and visualization module is responsible for off-line statisticalresults
analysis analysis and visualization of results. The module uses existing commercial

162

applications for statistical data evaluation – Matlab or IDL, which directly
access the results stored in the results database. Both the statistical evalua-
tion and the visualization use methods specific for parallel computing, which
are in detail described in the technical reports available from [77].

The results are stored in a relational database (MySQL). The individual results
storageperformance measurements are stored in time histograms, originally used by

the Paradyn project [28]. A time histogram consists of a fixed number of
samples from logarithmically lengthening periods. As a result, the initial
“noisy” part of the benchmark is well covered, but the data are available from
the whole benchmark execution time. Time histograms are therefore useful
for long running benchmarks that have stable results after an initialization
period and produce a lot of data. The performance results are annotated
with configuration information and experiment description.

The toolset does not handle all the tasks that usually form a benchmark NIST
toolset
sum-
mary

experiment, such as software download and compilation. These tasks have to
be re-implemented by each benchmark and their inter-dependencies cannot
be handled by the toolset. The results stored in the database use a fixed
schema, and thus cannot be flexibly extended with statistics and configura-
tion information not foreseen at schema design time. The dependencies on
different existing tools, many of which were not listed in this short overview,
necessarily complicate portability and maintenance. In addition, the use of
DQS has the disadvantage of restricting to UNIX platforms and Windows
NT. The use of the toolset on Windows NT is restricted to remote execution
of tasks from a UNIX machine and requires special maintenance effort. The
toolset is not publicly available and is a discontinued project.

Clif [64] is a distributed load injection framework for Java applications, Clif
written using the Fractal component model. The main objective of the project
is the distributed load injection (load generation) for any system accessible
through protocols such as HTTP, DNS, JDBC, TCP/IP, DHCP, SIP (Ses-
sion Initiation Protocol) and LDAP. The load injection is programmed in
a specialized language with support for virtual users, conditional loops and
branches, probabilistic branches, and cooperative multi-threading. Programs
in this language (scenarios) can be created using a graphical user interface.
The scenarios are run by load injectors, which can be distributed on different
hosts. The actual deployment of the load injectors and the deployment of
probes that measure various kinds of system utilization is defined in a test
plan and carried out automatically.

The results are currently stored in CSV (Comma Separated Values) text
files, but a more robust results storage is planned. The plans for future work
also include adding data analysis modules. Clif is open-source; the sources

163

including the documentation are available from [60]. Clif currently lacks
data analysis support, has only a very simple results repository, and does
not handle all the steps of a benchmark experiment. The missing steps are
download, compilation, deployment, execution, and monitoring of the system
under test. The current version only deploys, executes, and monitors the
components for load injection and data collection.

Automatic Regression Benchmark System is an environment forEPITA
system regression benchmarking being implemented at the EPITA Research and De-

velopment Laboratory [61] in France. The design requirements are based
on [76] and our work [4], but the proposed architecture is less ambitious. The
environment uses a central database for all data, including benchmark results
and metadata. There is a common format of benchmark results (XML), which
is not directly specified, but is accessed through pre-defined programming lan-
guage API. Prior to implementing a benchmark, the benchmark developer has
to use the environment to create the benchmark metadata and generate code
for printing the benchmark results in the requested format. This approach is
argued to be less prone to programmer errors and less fragile to the changes
of the common format of results.

Each benchmark can report only a single value on output, but the bench-
marks can be nested. This mechanism should allow repeating execution of
some parts of each benchmark. The benchmark execution itself has to be
implemented fully by the benchmark author. There is no support for execu-
tion monitoring or performance measurements. After a benchmark finishes,
its results can be uploaded to the central database using tools provided by
the environment.

The environment periodically checks the repository for missing results in
any benchmark of any project, and automatically executes benchmarks to
produce the missing results. The results are accessible through a graphical
web user interface. According to [61], the environment is yet to be imple-
mented.

None of the listed project can be readily used for fully automated re-sum-
mary gression benchmarking in a heterogeneous environment, with support for re-

peating compilations and benchmark executions to face non-determinism in
performance.

164

Chapter 14

Conclusion, Evaluation and
Future Prospects

14.1 Conclusion

Aimed at automated detection of performance regressions during software
development cycle, regression benchmarking needs a reliable method of de-
tecting performance changes and a generic environment that would automate
all the benchmarking and analysis.

We have shown that software performance is subject to significant random
fluctuations due to non-determinism in compilation and benchmark execu-
tion. A reliable detection of performance changes cannot be achieved with-
out solving the problem of non-determinism. We have solved the problem by
statistical modeling of the non-determinism and have proposed a method of
detection of performance changes that uses this model.

We have implemented an automated regression benchmarking environ-
ment for a large open-source project Mono, sponsored by Novell. This envi-
ronment (Mono Regression Benchmarking Project [6]) monitors performance
changes in daily Mono versions since August 2004, automatically detects the
changes, and links them to modifications in the Mono sources. The Mono
regression benchmarking environment is used by the Mono developers for
verifying the impact of their patches to the source code.

We have designed a generic environment that would make the automated
regression benchmarking easily portable to any project, not only the Mono
project. We are supervising the implementation of the environment, carried
out by master student project. The implementation is currently in early beta
stage that allows execution of a distributed CORBA benchmark and has over
65,000 lines of code.

165

14.2 Evaluation

All of the achievements mentioned above were published as refereed papers in
proceedings from conferences, workshop or journals. The papers are included
in this thesis.

The Mono Regression Benchmarking Project is advertised on the official
Mono project web, and the Mono developers are using it in their work. There
were 40,000 accesses to the Mono Regression Benchmark Project pages from
January to May of this year. The benchmarking project is known mostly
thanks to the two announcements in electronic media by Miguel de Icaza, the
founder and leader of the Mono project [73, 74]. We believe it is a significant
validation of this work that although originally designed as a test-bed for the
statistical methods, it is directly useful for software development of a concrete
software system.

14.3 Future Work

In our research we have discovered many problems related to experimental
performance evaluation that might possibly be solved with the help of sta-
tistical methods, but a concrete application would require further research.
These problems include the detection of the duration of a benchmark warm-
up phase, classification and filtering of outliers from performance results, or
automated clustering of performance results.

The statistical model of software performance should either be extended,
or analytically proven to be robust against departures from homogeneity of
variance. The model should as well be extended to cover non-determinism in
memory allocation at execution time, because this type of non-determinism
introduces dependencies between measurements within a single benchmark
execution. Both of these extensions might save some benchmark iterations
needed for testing a single software version.

More research needs to be done in locating the modifications in sources
that cause the detected performance regressions. The possible directions are
static analysis of source code, run-time behavior monitoring, or correlating
multiple metrics and results from different benchmarks and platforms.

166

Author’s References

[1] T. Kalibera, L. Bulej, and P. Tuma, “Automated detection of perfor-
mance regressions: The Mono experience.” in MASCOTS. IEEE Com-
puter Society, 2005, pp. 183–190.

[2] T. Kalibera, L. Bulej, and P. Tuma, “Quality assurance in performance:
Evaluating Mono benchmark results.” in QoSA/SOQUA, ser. Lecture
Notes in Computer Science, R. Reussner, J. Mayer, J. A. Stafford,
S. Overhage, S. Becker, and P. J. Schroeder, Eds., vol. 3712. Springer,
2005, pp. 271–288.

[3] L. Bulej, T. Kalibera, and P. Tuma, “Repeated results analysis for mid-
dleware regression benchmarking,” Performance Evaluation, vol. 60, no.
1–4, pp. 345–358, May 2005.

[4] T. Kalibera, L. Bulej, and P. Tuma, “Generic environment for full au-
tomation of benchmarking,” in SOQUA/TECOS, ser. LNI, S. Beydeda,
V. Gruhn, J. Mayer, R. Reussner, and F. Schweiggert, Eds., vol. 58. GI,
2004, pp. 125–132.

[5] T. Kalibera, “Intelligent source dependency tool,” in Proceedings of 13th
ALADIN workshop on ALADIN applications in very high resolution.
Prague, Czech Republic: Czech Hydrometeorological Institute, 2003, pp.
73–81.

[6] Distributed Systems Research Group, “Mono regression benchmarking,”
http://nenya.ms.mff.cuni.cz/projects/mono, 2005.

[7] BEEN Developers, “Benchmarking environment (BEEN),” http://
nenya.ms.mff.cuni.cz/been, 2006.

[8] T. Kalibera, L. Bulej, and P. Tuma, “Benchmark precision and random
initial state,” in Proceedings of the 2005 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems
(SPECTS 2005). San Diego, CA, USA: SCS, July 2005, pp. 853–862.

167

http://nenya.ms.mff.cuni.cz/projects/mono
http://nenya.ms.mff.cuni.cz/been
http://nenya.ms.mff.cuni.cz/been

[9] T. Kalibera and P. Tuma, “Precise regression benchmarking with ran-
dom effects: Improving Mono benchmark results,” in Formal Methods
and Stochastic Models for Performance Evaluation, ser. Lecture Notes in
Computer Science, A. Horvath and M. Telek, Eds., vol. 4054. Springer,
June 2006, pp. 63–77.

[10] T. Kalibera and P. Tuma, “Distributed component system
based on architecture description: The SOFA experience.” in
CoopIS/DOA/ODBASE, ser. Lecture Notes in Computer Science,
R. Meersman and Z. Tari, Eds., vol. 2519. Springer, 2002, pp. 981–994.

[11] T. Kalibera, “SOFA support in C++ environments,” http://nenya.ms.
mff.cuni.cz/∼kalibera/sofacxx, 2002.

[12] T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi, A. Tome-
cek, P. Tuma, and J. Urban, “Automated benchmarking and analysis
tool,” accepted as full paper at VALUETOOLS 2006 conference, to be
included in the conference proceedings, Jun 2006.

168

http://nenya.ms.mff.cuni.cz/~kalibera/sofacxx
http://nenya.ms.mff.cuni.cz/~kalibera/sofacxx

References

[13] C. E. McCulloch and S. R. Searle, Generalized, Linear and Mixed Models.
New York, NY, USA: Wiley–Interscience, 2001.

[14] R. E. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming
Installed. Boston, MA, USA: Addison–Wesley Longman Publishing Co.,
Inc., 2000.

[15] K. Beck, Test Driven Development: By Example. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[16] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing. New York, NY, USA: Wiley–Interscience, Apr. 1991.

[17] J. Antoch, M. Hušková, and D. Jarušková, “Off-line statistical process
control,” in Multivariate Total Quality Control: Foundations and Recent
Advances, ser. Contributions to Statistics, C. Lauro, J. Antoch, V. E.
Vinzi, and G. Saporta, Eds. Heidelberg, Germany: Physica-Verlag,
2002, pp. 1–86.

[18] J. Antoch and D. Jarušková, “On-line statistical process control,” in
Multivariate Total Quality Control: Foundations and Recent Advances,
ser. Contributions to Statistics, C. Lauro, J. Antoch, V. E. Vinzi, and
G. Saporta, Eds. Heidelberg, Germany: Physica-Verlag, 2002, pp. 87–
124.

[19] L. Horvath, “The maximum likelihood method for testing changes in the
parameters of normal observations,” The Annals of Statistics, vol. 21,
no. 2, pp. 671–680, 1993.

[20] B. Boehm, “Get ready for agile methods, with care,” Computer, vol. 35,
no. 1, pp. 64–69, 2002.

169

[21] W. W. Royce, “Managing the development of large software systems:
concepts and techniques,” in ICSE ’87: Proceedings of the 9th interna-
tional conference on Software Engineering. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1987, pp. 328–338.

[22] B. W. Boehm, “A spiral model of software development and enhance-
ment,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[23] L. Layman, L. Williams, and L. Cunningham, “Exploring extreme pro-
gramming in context: An industrial case study,” in ADC ’04: Proceed-
ings of the Agile Development Conference (ADC’04). Washington, DC,
USA: IEEE Computer Society, 2004, pp. 32–41.

[24] P. Abrahamsson, “Extreme programming: First results from a controlled
case study,” euromicro, vol. 00, p. 259, 2003.

[25] L. Williams, W. Krebs, L. Layman, A. I. Anton, , and P. Abrahamsson,
“Toward a framework for evaluating extreme programming,” in Procee-
ings of the 8th Conference on Empirical Assessment in Software Engi-
neering (EASE04), May 2004, pp. 11–20.

[26] M. K. Nakayama, “Two-stage stopping procedures based on standardized
time series,” Manage. Sci., vol. 40, no. 9, pp. 1189–1206, 1994.

[27] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience.” Concurrency - Practice and Experi-
ence, vol. 17, no. 2-4, pp. 323–356, 2005.

[28] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B.
Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, “The para-
dyn parallel performance measurement tool,” Computer, vol. 28, no. 11,
pp. 37–46, 1995.

[29] B. A. Kingsbury, “The network queueing system,” http://www.gnqs.
org/oldgnqs/docs/papers/mnqs papers/original cosmic nqs paper.htm,
1992, Sterling Software.

[30] S. Herbert, “Generic NQS,” http://www.gnqs.org/, 2006.

[31] J. A. Kaplan and M. L. Nelson, “A comparison of queueing, cluster and
distributed computing systems,” NASA, Tech. Rep., 1994.

[32] D. Diedrich, “Distributed queueing system,” http://ftp.debian.org/
debian/pool/non-free/d/dqs, GNU Debian/Linux.

170

http://www.gnqs.org/oldgnqs/docs/papers/mnqs_papers/original_cosmic_nqs_paper.htm
http://www.gnqs.org/oldgnqs/docs/papers/mnqs_papers/original_cosmic_nqs_paper.htm
http://www.gnqs.org/
http://ftp.debian.org/debian/pool/non-free/d/dqs
http://ftp.debian.org/debian/pool/non-free/d/dqs

[33] I. Marson, “Daily kernel performance testing called for by Torvalds,”
http://uk.builder.com/programming/unix/0,39026612,39241978,00.
htm, Mar 2005, ZDNet UK.

[34] J. Andrews, “Linux: Benchmarking 2.6,” http://kerneltrap.org/node/
4940/print, Mar 2005.

[35] K. Chen and T. Chen, “Linux kernel performance,” http://kernel-perf.
sourceforge.net/, 2006.

[36] M. Mitchell, “Performance regression testing ?” http://gcc.gnu.org/ml/
gcc/2005-11/msg01306.html, Nov 2005.

[37] Apple Computer, Inc., “Performance overview,” http://developer.apple.
com/documentation/Performance/Conceptual/PerformanceOverview/
PerformanceOverview.pdf, Apr 2005, pp. 12–14.

[38] J. Clingan, “Performance regression testing,” http://blogs.sun.com/
roller/page/jclingan/20050330, Mar 2005, Sun Microsystems.

[39] Standard Performance Evaluation Corporation, “SPEC CPU 2000,”
http://www.spec.org/cpu2000/, 2006.

[40] University of Szeged, Dept. of Sw. Engineering, “GCC Code-Size Bench-
mark Environment (CSiBE),” http://www.inf.u-szeged.hu/csibe/, 2006.

[41] Sun Microsystems, “Overview of Solaris patch system testing and per-
formance regression testing,” http://sunsolve.sun.com/pub-cgi/show.pl?
target=patches/sys-and-perf-test, 2006.

[42] D. Keskar and M. Leibowitz, “Speeding up openoffice - profiling,
tools, approaches,” http://ooocon.kiberpipa.org/media/Presentation
profiling tools approaches, 2006, OOCon 2005.

[43] D. Keskar and M. Leibowitz, “Automated profiling and perfor-
mance regression (APPR),” http://wiki.services.openoffice.org/wiki/
APPR, 2006.

[44] T. Ziade and S. Richter, “Performance regression tool,” http:
//www.zope.org/Wikis/DevSite/Projects/ComponentArchitecture/
PerformanceRegressionTool, 2006.

[45] Valgrind, “Project suggestions: Software infrastructure,” http://
valgrind.org/help/projects.html, 2006.

171

http://uk.builder.com/programming/unix/0,39026612,39241978,00.htm
http://uk.builder.com/programming/unix/0,39026612,39241978,00.htm
http://kerneltrap.org/node/4940/print
http://kerneltrap.org/node/4940/print
http://kernel-perf.sourceforge.net/
http://kernel-perf.sourceforge.net/
http://gcc.gnu.org/ml/gcc/2005-11/msg01306.html
http://gcc.gnu.org/ml/gcc/2005-11/msg01306.html
http://developer.apple.com/documentation/Performance/Conceptual/PerformanceOverview/PerformanceOverview.pdf
http://developer.apple.com/documentation/Performance/Conceptual/PerformanceOverview/PerformanceOverview.pdf
http://developer.apple.com/documentation/Performance/Conceptual/PerformanceOverview/PerformanceOverview.pdf
http://blogs.sun.com/roller/page/jclingan/20050330
http://blogs.sun.com/roller/page/jclingan/20050330
http://www.spec.org/cpu2000/
http://www.inf.u-szeged.hu/csibe/
http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/sys-and-perf-test
http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/sys-and-perf-test
http://ooocon.kiberpipa.org/media/Presentation_profiling_tools_approaches
http://ooocon.kiberpipa.org/media/Presentation_profiling_tools_approaches
http://wiki.services.openoffice.org/wiki/APPR
http://wiki.services.openoffice.org/wiki/APPR
http://www.zope.org/Wikis/DevSite/Projects/ComponentArchitecture/PerformanceRegressionTool
http://www.zope.org/Wikis/DevSite/Projects/ComponentArchitecture/PerformanceRegressionTool
http://www.zope.org/Wikis/DevSite/Projects/ComponentArchitecture/PerformanceRegressionTool
http://valgrind.org/help/projects.html
http://valgrind.org/help/projects.html

[46] Globus Alliance, “Globus toolkit 3.0 performance test page,” http://
www-unix.globus.org/ogsa/tests/gt3 perf test.html, 2006.

[47] Globus Alliance, “Globus toolkit,” http://www.globus.org/toolkit/,
2006.

[48] A. Beszédes, R. Ferenc, T. Gergely, T. Gyimóthy, G. Lóki, and L. Vidács,
“CSiBE Benchmark: One Year Perspective and Plans,” in Proceedings
of the 2004 GCC Developers’ Summit, Jun 2004, pp. 7–15.

[49] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the
new millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

[50] Standard Performance Evaluation Corporation, “SPEC CPU 95 Bench-
marks,” http://www.spec.org/cpu95/, 2006.

[51] Standard Performance Evaluation Corporation, “SPEC JVM 98 Bench-
marks,” http://www.spec.org/jvm98/, 2006.

[52] Purdue University, Dept. of C.S., “OVM predictability and performance
benchmarking,” http://ovmj.org/bench/, 2006.

[53] K. Beck and E. Gamma, “JUnit,” http://www.junit.org, 2006.

[54] E. Cecchet and J. Marguerite, “RUBiS: rice university bidding system,”
http://rubis.objectweb.org, 2006.

[55] D. A. Wheeler, “More than a gigabuck: Estimating GNU/Linux’s size,”
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html, 2002.

[56] J. Spolsky, “The project Aardvark spec,” http://www.joelonsoftware.
com/articles/AardvarkSpec.html, 2005.

[57] J. Spolsky, “Daily builds are your friend,” http://www.joelonsoftware.
com/articles/fog0000000023.html, 2001.

[58] NASA Johnson Space Center, “Parametric cost estimating handbook:
The waterfall model,” http://www1.jsc.nasa.gov/bu2/PCEHHTML/
pceh.htm, 2006.

[59] C. Fishman, “They write the right stuff,” http://www.fastcompany.com/
online/06/writestuff.html, 1996.

[60] ObjectWeb Consortium, “The CLIF project,” http://clif.objectweb.org,
2006.

172

http://www-unix.globus.org/ogsa/tests/gt3_perf_test.html
http://www-unix.globus.org/ogsa/tests/gt3_perf_test.html
http://www.globus.org/toolkit/
http://www.spec.org/cpu95/
http://www.spec.org/jvm98/
http://ovmj.org/bench/
http://www.junit.org
http://rubis.objectweb.org
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
http://www.joelonsoftware.com/articles/AardvarkSpec.html
http://www.joelonsoftware.com/articles/AardvarkSpec.html
http://www.joelonsoftware.com/articles/fog0000000023.html
http://www.joelonsoftware.com/articles/fog0000000023.html
http://www1.jsc.nasa.gov/bu2/PCEHHTML/pceh.htm
http://www1.jsc.nasa.gov/bu2/PCEHHTML/pceh.htm
http://www.fastcompany.com/online/06/writestuff.html
http://www.fastcompany.com/online/06/writestuff.html
http://clif.objectweb.org

[61] N. Despres, “Automatic regression benchmark system,”
http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/
20050608-Seminar-Despres-Transformers-RegressionBenchmark-Report,
2005, LRDE (EPITA Research and Development Laboratory).

[62] M. Prochazka, A. Madan, J. Vitek, and W. Liu, “RTJBench: A Real-
Time Java Benchmarking Framework,” in Component And Middleware
Performance Workshop, OOPSLA 2004, Oct. 2004.

[63] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and scal-
ability of ejb applications,” in OOPSLA ’02: Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. New York, NY, USA: ACM Press, 2002,
pp. 246–261.

[64] B. Dillenseger and E. Cecchet, “CLIF is a Load Injection Framework,”
in Workshop on Middleware Benchmarking: Approaches, Results, Expe-
riences, OOPSLA 2003, Oct. 2003.

[65] ECMA, ECMA-335: Common Language Infrastructure (CLI). Geneva,
Switzerland: ECMA (European Association for Standardizing Informa-
tion and Communication Systems), Dec. 2002. [Online]. Available: http:
//www.ecma-international.org/publications/standards/Ecma-335.htm

[66] Free Software Foundation, “The GNU compiler collection,” http://gcc.
gnu.org, 2006.

[67] Free Software Foundation, “Benchmarking GCC,” http://gcc.gnu.org/
benchmarks/, 2006.

[68] C. Re and W. Vogels, “SciMark – C#,” http://rotor.cs.cornell.edu/
SciMark/, 2004.

[69] R. Pozo and B. Miller, “SciMark 2.0 benchmark,” http://math.nist.gov/
scimark2/, 2005.

[70] Novell, Inc., “The Mono Project,” http://www.mono-project.com, 2006.

[71] S.-L. Lo, D. Grisby, D. Riddoch, J. Weatherall, D. Scott, T. Richardson,
E. Carroll, D. Evers, , and C. Meerwald, “Free high performance orb,”
http://omniorb.sourceforge.net, 2006.

[72] DOC Group, “TAO performance scoreboard,” http://www.dre.
vanderbilt.edu/stats/performance.shtml, 2006.

173

http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/20050608-Seminar-Despres-Transformers-RegressionBenchmark-Report
http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/20050608-Seminar-Despres-Transformers-RegressionBenchmark-Report
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org/benchmarks/
http://gcc.gnu.org/benchmarks/
http://rotor.cs.cornell.edu/SciMark/
http://rotor.cs.cornell.edu/SciMark/
http://math.nist.gov/scimark2/
http://math.nist.gov/scimark2/
http://www.mono-project.com
http://omniorb.sourceforge.net
http://www.dre.vanderbilt.edu/stats/performance.shtml
http://www.dre.vanderbilt.edu/stats/performance.shtml

[73] M. de Icaza, “Mono news: Tracking performance,” http://tirania.org/
blog//archive/2005/Jan-19.html, Jan 2005.

[74] Novell, Inc., “Mono project news: Tracking performance in Mono,” http:
//www.mono-project.com/news/archive/2006/Apr-05.html, Apr 2006.

[75] Novell, Inc., “Mono project: Performance testing,” http://www.
mono-project.com/PerformanceTesting, 2006.

[76] M. Courson, A. Mink, G. Marçais, and B. Traverse, “An automated
benchmarking toolset.” in HPCN Europe, ser. Lecture Notes in Com-
puter Science, M. Bubak, H. Afsarmanesh, R. Williams, and L. O.
Hertzberger, Eds., vol. 1823. Springer, 2000, pp. 497–506.

[77] National Institute of Standards and Technology, “Automated bench-
marking tool,” http://www.itl.nist.gov/div895/cmr/cluster/, 2006.

[78] A. Buble, L. Bulej, and P. Tuma, “CORBA benchmarking: A course
with hidden obstacles.” in IPDPS. IEEE Computer Society, 2003, p.
279.

[79] Distributed Systems Research Group, “Middleware benchmarking
project,” http://nenya.ms.mff.cuni.cz/benchmark, 2006.

[80] Distributed Systems Research Group, “Comprehensive CORBA
benchmarking,” http://nenya.ms.mff.cuni.cz/projects/corba/xampler.
html, 2006.

[81] Distributed Systems Research Group, “Open CORBA benchmarking,”
http://nenya.ms.mff.cuni.cz/∼bench, 2006.

[82] P. Hnetynka and F. Plasil, “Dynamic reconfiguration and access to ser-
vices in hierarchical component models,” in accepted for Proceedings of
the 9th International SIGSOFT Symposium on Component-Based Soft-
ware Engineering (CBSE 2006), 2006.

[83] F. Plasil and S. Visnovsky, “Behavior protocols for software compo-
nents.” IEEE Trans. Software Eng., vol. 28, no. 11, pp. 1056–1076, 2002.

[84] F. Plasil, D. Balek, and R. Janecek, “SOFA/DCUP: Architecture for
component trading and dynamic updating,” in CDS ’98: Proceedings
of the International Conference on Configurable Distributed Systems.
Washington, DC, USA: IEEE Computer Society, 1998, p. 43.

174

http://tirania.org/blog//archive/2005/Jan-19.html
http://tirania.org/blog//archive/2005/Jan-19.html
http://www.mono-project.com/news/archive/2006/Apr-05.html
http://www.mono-project.com/news/archive/2006/Apr-05.html
http://www.mono-project.com/PerformanceTesting
http://www.mono-project.com/PerformanceTesting
http://www.itl.nist.gov/div895/cmr/cluster/
http://nenya.ms.mff.cuni.cz/benchmark
http://nenya.ms.mff.cuni.cz/projects/corba/xampler.html
http://nenya.ms.mff.cuni.cz/projects/corba/xampler.html
http://nenya.ms.mff.cuni.cz/~bench

	Introduction
	Performance in Software Development Cycle
	Continuity: Development Cycle in Broader View
	Goal of the Thesis
	Structure of the Thesis

	Regression Benchmarking
	Automated Analysis of Benchmark Results
	Locating Causes of Performance Changes
	Automated Running of Benchmarks

	Repeated Results Analysis for Middleware Regression Benchmarking
	Benchmark Precision and Random Initial State
	Quality Assurance in Performance: Evaluating Mono Benchmark Results
	Automated Detection of Performance Regressions: The Mono Experience
	Precise Regression Benchmarking with Random Effects: Improving Mono Benchmark Results
	Generic Environment for Full Automation of Benchmarking
	Automated Benchmarking and Analysis Tool
	Intelligent Source Dependency Tool
	Distributed Component System Based On Architecture Description: The SOFA Experience
	Contribution
	Regression Benchmarking Methodology
	Mono Regression Benchmarking Project
	Regression Benchmarking Environment

	Related Projects and Methods
	Regression Benchmarking Projects
	Statistical Methods
	Environments for Running of Benchmarks

	Conclusion, Evaluation and Future Prospects
	Conclusion
	Evaluation
	Future Work

	References

