
Review report on the PhD thesis "Performance in Software Development Cycle:
Regression Benchmarking" by Tomas Kalibera at Charles University in Prague

Dr. L. Keckhout - Ghent University, Belgium

The subject of this PhD thesis is regression benchmarking. The goal of regression benchmarking
is to complement regression testing by enabling the automatic detection of performance changes
during (lie software development cycle. The idea is to benchmark the software that is being
developed on a daily basis so that performance 'errors' (unexpected performance degradations)
are identified as early as possible in the design cycle.

The thesis claims ro make three contributions to the area of regression benchmarking. First, the
thesis proposes a method based on statistics to identify performance changes in the presence of
non-determinism, i.e., the regression benchmarking system should not yield false alarms because
of random fluctuations due to non-determinism. Second, the thesis proposes a hilly automated
regression benchmarking environment for a large open-source project, namely Mono. This
environment consists of various software tools for downloading the latest version of the
software, compile it, evaluate it using a number of benchmarks, collect and analyse the results
and publish the results online. Third, the thesis also presents a generic environment that could
serve as an aid for building regression benchmarking within other software development projects.

I believe this thesis makes two important achievements. The first major achievement is the
building of a solid theoretical underpinning tor regression benchmarking that allows for making
statistically valid conclusions in the presence of lion-determinism. Non-determinism is a
complex issue to deal with in performance analysis, and this thesis proposes an approach for
addressing it. The second major achievement in this thesis is to show that regression
benchmarking can be used in practice during the software development cycle. The regression
benchmarking infrastructure built tor Mono serves as a prooi of concept. As such, this thesis is
an interesting mixture of fundamental research on regression benchmarking along with a great
deal of hard engineering work. T believe that this is a major contribution to the state-of-the-art in
regression benchmarking. As such, T recommend that the PhD degree be granted.

This is the set of general comments/questions that 1 have that could be posed during the PhD
defense.

• I low fast docs regression benchmarking need to be? Or, how slow may it be without
becoming impractical? Should it be done in the order of minutes, hours, overnight?
Can regression benchmarking be applied while developers are still working on the code?
The latter could be important, for large software projects that are being developed by
various development groups located on ditferent locutions around the world.

• Is it important to apply regression benchmarking on multiple platforms? Or is applying
regression benchmarking on a single platform enough? My intuition says it should be
clone on multiple platforms. In some cases performance improvements or degradations
can be a result of particular interactions between the application, the compiler and the
processor system. Performance improvements or degradations as a result of such
interactions may manifest themselves on a particular platform, but may disappear on
other platforms. Can you comment on that?

• A somewhat related question. What do you consider a performance 'error? For
example, by changing the layout of a data structure your application may at the sudden
run 20% slower or faster. Is that considered a performance error? Note this may be a
result of a particular cache configuration on the machine on which the regression
benchmarking is done. On another platform, the performance degradation or
improvement may not appear.



When evaluating a regression benchmarking environment, one needs to know when a
false alarm occurs. I low do you detect that a performance change is a false alarm? Does
this require manual inspection of the code? I low did you handle the detection of false
alarms during your thesis work?
The thesis focuses on regression benchmarking for long-running applications. This
means that a warmup period needs to be determined after which the regression
benchmarking starts its measurements. I lowevcr, in some cases startup time is also very
important. I 'or example, startup time for a virtual machine is an important issue. T guess
regression benchmarking can also be applied to evaluating application startup time.
Can you give a more detailed explanation on what the issues are with warmup. Where
does warmup come from? Is it due to warming cache state, TLB state, memory stale,
etc? What's the time period we're talking about here. Cache and TI.R warming is done
in the order of millions of instructions (a few hundred millions at most). Warming
memory probably takes longer especially tor commercial applications such as databases
with very large working set sixes. Are we talking about seconds or minutes or tens of
minutes?
When using regression benchmarking in practice, 1 believe another issue is to evolve the
benchmarking itself. The reason is that as new features are being added to the software
under development, these features need to be evaluated in terms of performance. As a
result, there is a need to constantly innovate the benchmarks that are run during
regression benchmarking. Can you comment on that? Along the same line, do you
believe that the benchmarks thai you use are representative for real applications for
identifying performance errors in the Mono environment? If the benchmarks do not
stress the potential performance errors, the performance errors may not become visible
during regression benchmarking.
It would be instructive if you would have a case study showing that regression
benchmarking effectively points where in the source code you have observed a
performance error and how you can actually solve that performance error.
Can you elaborate on the various sources of non-determinism in today's computer
systems? The thesis only mentions two sources of non-determinism, namely memory
allocation and compilation. T believe other sources are interrupts, system calls,
microarchitecfure effects (different memory allocation may affect TT.B behavior) and
non-constant memory and network latency effects (see also the paper by Alamelcleen
and Wood as discussed later). Another form of non-determinism I believe is
temperature regulation in most ot today's microprocessors. Temperature regulation may
scale down the clock frequency (and voltage level) when the chip is heating up.
Obviously, this adds to the total execution time of the application.
Can you describe the relation between your work and the work being pointed out below?
— There exists a large body of work on using hardware performance counters for

better understanding program behavior. See for example — jus t to name a tew — the
VTune tool developed by Intel, the vertical profiling work done by 1 lauswirth,
Sweeney ct a!, (published at VM'04, OOPSLAX)4 and OOPSLA'05), approaches for
linking hardware performance counter measurements to the source code (see the
work done by Georges e!al. at OOPSI,A'04), etc.

— There exists a large hotly of work on visuahxing program behavior as well. Several
big computer companies such as IBM, I IP and others have various tools for gaining
msighl through performance visualization. This is especially valuable for analysing
large scale systems.

— Non-determinism in the context of architectural simulation was discussed by Alaa R.
Alamcldccn and David A. Wood in their IIPCA'03 paper. That paper also discusses
how non-dctcrmmism can be handled using statistics. Can you provide a detailed
comparison between your work and Alanieldcen and Wood's work?

At the top of page 11, performance profiling is discussed. Do you refer to profiling
through instrumentation or through hardware performance counters? Profiling using



hardware performance counters does not incur overhead in contrast to what is being
described in this paragraph. The author seems to focus on performance profiling
through instrumentation.
Page 14 states that the regression tests could be written by the source code developers. I
think that testers are required for evaluating the code that are not part of the source code
development team. The tester should be unaware of the source code in order to set up
unbiased tests.

Page 21 states that "the compiler uses intentional randomization". Can you elaborate a
little more on that? What is it? Why is that?
Page 35 explains what a complex benchmark is supposed to do. The example that is

being used there is a simplified version of TPC-W in that "it collects the duration of
individual operations rather than a single value of throughout". I would think of the
individual operations being the simple benchmarks, and the combinations of all these
simple benchmarks to form a complex benchmark. Ts that correct? If yes, what's the
difference then between a simple benchmark and a complex benchmark?
Pages 23 and 24 state that "non-deterministically failing benchmarks should be
restarted". A benchmark failing now and then, shouldn't this be considered as an error
in functionality? Isn't this a case that should be covered by regression testing rather than
regression benchmarking?

Lieven Eeckhout
July 12, 2006
Ghent University, Belgium


