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Abstract 

Iron-sulfur (FeS) cluster assembly is extensively studied in model organisms, e.g. 

Saccharomyces cerevisiae, Homo sapiens, and more recently in Trypanosoma brucei.  

However, little is known about FeS assembly in divergent anaerobic organisms such as 

Trichomonas vaginalis, which parasites in the human urogenital tract. This parasitic protist 

possesses anaerobic form of mitochondria, the hydrogenosome, in which some component of 

FeS cluster assembly machinery (ISC) has been identified, whereas the cytosolic CIA 

pathway has not been studied so far.   

 Our work deals mainly with TvIscU, a component of ISC pathway, and T. vaginalis CIA 

pathway. We suggest that both hydrogenosomal and cytosolic FeS cluster assembly pathways 

of this parasite differ from typical models. We examined possible ISC-CIA relationship. Next, 

we found homologues for several key components involved CIA machinery, namely Nbp35, 

Cfd1, Nar1, Cia1 and Cia2. However, we did not identify any homologous proteins to Tah18, 

Dre2 and Mms19. We expressed identified proteins with HA-tag and localized them by cell 

fractionation and immunofluorescence microscopy in T. vaginalis. Finally, we 

immunoprecipitated two Cfd1 paralogues, TvCfd1A and TvCfd1B to search for their 

interacting partners. The results suggest that these two paralogues interact with each other, 

however, we did not observe expected interaction with Nbp35. 
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Abstrakt 

Železo-sirné klastry jsou kofaktory celé řady významných proteinů. Pro studium syntézy 

těchto klastrů se využívají především  modelové organismy typu Saccharomyces cerevisiae, 

Homo sapiens a v poslední době také Trypanosoma brucei. U Trichomonas vaginalis, 

anaerobního prvoka, který parazituje v urogenitálním traktu lidí, však nebylo toto téma 

studováno více do hloubky. T. vaginalis patří mezi anaeroby, jejichž mitochondrie byla 

redukována  na  hydrogenosom.  V této organele již byly identifikované  některé komponenty 

ISC dráhy pro syntézu klastrů, zatímco proteiny, které se účastní CIA dráhy v cytosolu, 

nebyly u T. vaginalis doposud charakterizovány.  

Tato práce se zabývá především TvIscU, jedním z hlavních proteinů ISC dráhy, a dále 

také komponenty CIA dráhy. Oba dva typy syntézy klastrů, jak v hydrogenosomech tak i 

v cytosolu, se zásadně liší od typického modelu založeném na studiu S. cerevisce. V této práci 

jsme studovali hypotetické funkční propojení ISC-CIA systému. Dále jsme identifikovali 

homology k charakterizovaným proteinům účastnících se CIA dráhy. Konkrétně jsme 

identifikovali Nbp35, Cfd1, Nar1, Cia1  Cia2, avšak nenalezli jsme proteiny homologní pro 

Tah18, Dre2 a Mms19. Nalezené proteiny jsme v T. vaginalis exprimovali  značené Ha-tagem 

a lokalizovali je v buněčných frakcích a pomocí imunofluorescenční mikroskopie. Dále jsme 

imunoprecipitovali dva paralogy Cfd1 proteinu a analyzovali s nimi interagujicí proteiny. 

Předběžné výsledky naznačují, že tyto proteiny interagují spolu, namísto jejich obecně 

známého interakčního partnera proteinu Nbp35. 
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1 INTRODUCTION: 

Trichomonas vaginalis is an anaerobic protist, which parasites on the epithelial tissue in 

the urogenital tract of human. The trichomoniasis is sexually transmitted disease, which 

affects about 250 mils. people. T. vaginalis contains reduced mitochondria called 

hydrogenosome. This organelle produces ATP via substrate phosphorylation and more 

importantly it is involved in a production prosthetic groups containing iron and sulfur. 

Iron-sulfur (FeS) clusters are cofactors in various proteins that are truly indispensable for 

both eukaryotic and prokaryotic cells. So far only bacteria from Lactobacillus genus are 

proved to live without any iron in the cell. Eukaryotes employ several pathways for FeS 

cluster synthesis. In general, ISC pathway is situated in mitochondria, SUF machinery is in 

plastids, and rarely also the NIF pathway localizes to the cytosol or to mitochondria related 

organelles, called hydrogenosomes. All three pathways were inherited from bacterial 

endosymbionts (ISC, SUF) or gained by lateral gene transfer (NIF). In recent years, we 

learned that the distribution and function of various components of these pathways vary 

considerably.  Moreover, additional iron-sulfur assembly (CIA) pathway evolved uniquely in 

eukaryotes that mediate FeS cluster formation in the cytosol.  The CIA pathway appeared to 

be functionally dependent on the activity of ISC pathway, although the exact mechanism is 

unknown. 

Our work is focused on FeS cluster assembly in T. vaginalis. This parasite is known to 

possess ISC machinery in hydrogenosomes, whereas putative cytosolic CIA pathway has not 

been experimentally investigated so far. The aims of the thesis were to characterize 

components of CIA pathways and ISC-CIA relationship. The results revealed significant 

differences regarding composition and cell localization of CIA pathway in T. vaginalis in 

comparison with generally accepted model based on Saccharomyces cerevisiae and 

mammalian cells.  
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2 REVIEW OF LITERATURE 

 

1.2. Character and formation of Fe-S clusters 

Iron-sulfur (FeS) clusters, an inorganic prosthetic group, are indispensable cofactors of 

numerous proteins acting e.g. in electron transfer, gene regulation, environmental iron 

sensing, etc.  All these cellular processes are essential and maintain viability of every 

organism, with exception of Lactobacillus species and recently also B. burgdorferi that can 

live entirely without iron(Archibald 1983; Bruyneel, vande Woestyne, and Verstraete 1989; 

Aguirre et al. 2013) Moreover, recently it has been demonstrated that Escherichia coli can 

survive without any FeS cluster synthesis (Tanaka et al. 2016). The bacteria are able to grow 

when the 2-C-methyl-D-erythritol-4-phoshate (MEP) pathway for the synthesis of 

isoprenoids, which is dependent on two proteins containing FeS clusters, was substitute by 

recombinant mevalonate (MVA) pathway without any link to FeS proteins. Although it is 

possible to tolerate the loss of FeS proteins in bacteria, it seems rather inconceivable for 

eukaryotes with complex cell structure and complicated genome organization.    

In the nature there are both, the more common homometalic FeS clusters, and 

heterometalic Fe-S clusters, which are rare and found mainly in enzymes with more specific 

functions such as nitrogenases (Georgiadis et al. 1992). The core FeS site and the simplest 

cluster is a single iron atom (Fe) in 
2+

 or 
3+

 oxidation state, which is tetrahedrally bound by 4 

sulfur atoms with oxidation state 
-2

. The most common clusters in the nature consist of 2 to 4 

irons and the same numbers of inorganic sulfur as well as 4 sulfides originated from cysteinyl 

residues of the protein backbone ([Fe2S2(SCys4)]n, and [Fe4S4(SCys4)]n) . Unique redox 

capacity and also enzymatic capability of clusters are given by both, sulfur and iron 

properties. Metal–ligand covalent bond, spin coupling and spin resonance delocalization are 

three main characters enable cluster to be enzymatically active and transfer electrons as redox 

sites of proteins (Beinert 2000). Clusters can achieve potentials ranging from over 400 mV to 

below -600 mV, and thus serve as excellent redox cofactor (Capozzi, Ciurli, and Luchinat 

1998).  

Although iron and sulfur can assemble into the cluster spontaneously in vitro (Malkin and 

Rabinowitz 1966), sophisticated biosynthetic machineries are required for the assembly of Fe-

S clusters within cells. One of the reasons is that iron and sulfur elements required for the FeS 
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synthesis are highly toxic in soluble form within the cytoplasm (Fontecave et al. 2005).  

In general, sulfur is produced by the activity of cystein desulfurase (e.g. NifS, IscS, SufS) 

converting L-cystein to alanin. The iron atoms are supplied by an iron donor. Finally 

2electrons are provided acquired from ferrous iron and 2 more electrons come from an extra 

source e.g. protein reductases via electron carrier such as ferredoxin. Further arrangement of 

these components into cluster is coordinated via cystein residues on scaffold protein.  These 

components are further assembled into various FeS prosthetic groups. [4Fe-4S] cluster can be 

easily formed from as well as cleaved into two [2Fe-2S] core sites.  [Fe3S4(SCys3)]n cluster 

arises from cubane [Fe4S4(SCys4)]n where one iron and cysteinyl sulfur ligand were remove  

(Beinert 2000). Heterometalic and more complex clusters are specific cofactors of some 

enzymes e.g. nitrogenases, CO dehydrogenases etc. Another metals that can potentially form 

clusters as well are e.g. (e.g. Mo, Ni, Co, Cu).  

 

1.3. The main pathways of Fe-S cluster assembly emerged from 

bacteria. 

There are three types of Fe-S cluster assembly machineries originated from bacteria. 

Although they share various properties, they differ in distribution across bacteria clades, 

frequency of their use and their specific functions.  

The first pathway named NIF (nitrogen fixation) was discovered in Azobacter vineelandii 

(Jacobson et al. 1989). It was demonstrated to synthesize very complex clusters of 

nitrogenases - nitrogen fixation proteins. These clusters can be very complex (P-cluster) or 

they contain besides iron an additional metal atom e.g. Mo (Dean, Bolin, and Zheng 

1993).Importantly, the deletion of the genes in nif operon did not affect the viability of the 

cells completely (Zheng et al. 1998). As it was expected an additional system for FeS cluster 

assembly was identified in this bacterium that was named ISC (iron sulfur cluster). This 

pathway produces clusters for wide range of Fe-S proteins occurring throughout the cell 

cycle, therefore acts primarily as a housekeeping system maintaining the cellular homeostasis 

and viability (Takahashi and Nakamura 1999; Tokumoto and Takahashi 2001). This type of 

clusters synthesis was comprehensively studied in Escherichia coli, where the third type of 

Fe-S cluster assembly was discovered afterward (Patzer and Hantke 1999; Takahashi and 

Tokumoto 2002). The so-called SUF (sulfur mobilization) pathway is widely distributed 

across bacteria and archaebacteria domains. It was designated to substitute ISC pathway 

during inconvenient conditions such as Fe starvation, oxidative stress or in specific 
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environment (Nachin et al. 2001; Zheng et al. 2001; Fontecave et al. 2005). Further studies 

disclosed the relative impact of the SUF machinery in a different species of bacteria, thus 

cyanobacteria and some of archeabacteria use SUF pathway entirely or at least preferentially 

compared to ISC (Bandyopadhyay, Chandramouli, and Johnson 2008). 

Each of these systems originated in bacteria has a possible equivalent in eukaryotic cell.  

1) The ISC is present in every mitochondria or mitochondria like organelle of eukaryotes 

that evolved from from α-proteobacteria (Tachezy, Sanchez, and Muller 2001; Lill and 

Mühlenhoff 2005; Richards and Van Der Giezen 2006).  This system is indispensible indeed 

as it forms iron-sulfur clusters utilized in mitochondrial Fe-S proteins. In addition, it produces 

a component of unclear character, most likely sulfur that is exported to cytosol and then it 

served for the assembly of FeS clusters in cytoplasm. (Kispal et al. 1999). FeS assembly in the 

cytosol is catalyzed via CIA (cytosolic iron-sulfur assembly) pathway that is unique to 

eukaryotes. It supplies the cell with the FeS prosthetic groups for the essential cytosolic and 

nuclear proteins (Lill and Mühlenhoff 2005). This link between mitochondrial, cytosolic and 

nuclear Fe-S systems makes the ISC machinery essential in most eukaryotic cells. 

 2) In eukaryotes, the SUF machinery of Fe-S cluster assembly is present in plastids, the 

descendents of cyanobacteria (Takahashi and Tokumoto 2002). In addition, recent studies of 

oxymonades revealed that Monocercomonoides is living entirely without mitochondria and 

ISC pathway in this anaerobic protist is replaced by SUF machinery that is localized in the 

cytosol (Karnkowska et al. 2016). SUF machinery was previously observed also in the cytosol 

Blastocystis hominis. In this anaerobic protist, SUF machinery serves as an additional system 

to ISC and CIA pathways and it is upregulated during oxidative-stress condition (Tsaousis et 

al. 2012). As another example of diversity in distribution and utilization of FeS assembly 

pathway can be mentioned Pygsua biforma, where SUF machinery is situated to MRO 

(mitochondria related organelle) to replace the ISC, which is apparently absent in this protist 

(Stairs et al. 2014). 

3) We can find components of this NIF machinery in eukaryotes rarely. In such organism, 

the ISC pathway was replaced by the NIF system that was most probably acquired from ɛ-

proteobacteria by lateral gene transfer (LGT) (Ali et al. 2004; Gill et al. 2007). For instance, 

the human intestinal parasite Entamoeba histolytica and its free-living relative species 

Mastigamoeba balamuthii appear to lose the ISC system completely. NIF pathway is 

localized presumably to the cytoplasma in Entamoeba (Dolezal et al. 2010). In 

Mastigamoeba, the NIF system is duplicated with distinct localization in cytoplasma and 

organelles (Nývltová et al. 2013). Both E. histolytica and M. balamuthi are anaerobic protists 
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with reduced forms of mitochondria called mitosomes, and hydrogenosomes, respectively 

(Tovar, Fischer, and Clark 1999; Leon-Avila and Tovar 2004; Gill et al. 2007). Whereas 

hydrogenosome can produce ATP molecules via substrate phosphorylation, the mitosome 

does not produce ATP at all. On the other side both organelles are nearly universally involved 

in FeS cluster production (Tachezy, Sanchez, and Muller 2001). In Entamoeba, without 

functional FeS assembly pathway within mitosome, this organelle accommodates the sulfate 

activation pathway (Mi-ichi et al. 2009),  

 

1.4. Iron-sulfur cluster (ISC) assembly pathway 

ISC assembly machinery is the main system involved in generation Fe-S proteins in both 

bacteria and eukaryotes. Genes for proteins involved in bacterial ISC machinery are situated 

by ISC operon (Zheng et al. 1998; Tokumoto and Takahashi 2001). These core ISC 

participants, namely iscU, iscS, iscA, hscA, hscB and fdx, are controlled by specific isc 

repressor. In eukaryotic cell, the ISC pathway is localized exclusively in mitochondria; 

nevertheless, its components are encoded in nucleus and targeted to organelle later. Majority 

of the proteins involved in ISC pathway in eukaryotes are homologous to its counterparts in 

bacteria. However, there were evolved additional members that are essential in eukaryotes for 

FeS assembly in mitochondria or cytosol, and that are not necessary in original bacterial 

machinery. The proteins that are involved in eukaryotic iron-sulfur cluster assembly are 

depicted in more detail farther.  

Cystein desulfurase IscS (Nfs1) is the key protein providing the inorganic sulfur atom for 

de novo Fe-S cluster synthesis (Zheng et al. 1993; Kispal et al. 1999). Its substrate - L-cystein 

is converted to alanin and released sulfur atom is bound to catalytic cystein residue (C328 in 

E. coli) as a persulfide (Zheng et al. 1994; Kato et al. 2002).  

Isd11 protein, which is unique for eukaryotes, is required to stabilize the cystein 

desulfurase Nfs1 (Adam et al. 2006; Wiedemann et al. 2006). The sulfur atom in S
0
 oxidative 

state is further transfer to IscU scaffold domain. Next, S
0
 is reduced to S

2-
. The required 

electrons are supplied by ferredoxin (Nakamura, Saeki, and Takahashi 1999). Iron in the Fe
2+

 

state is imported to mitochondria through Mrs3 and Mrs4 channels (Foury and Roganti 2002; 

Mühlenhoff et al. 2015). Frataxin is a potential iron donor, however its involvement and its 

particular function has to be further elucidated (Layer et al. 2006). Moreover, frataxin might 

be involved also in iron storage (Gerber, Mühlenhoff, and Lill 2003; He et al. 2004). Which 

component, iron or sulfur, is bound first to the site of the cluster formation is still not clear. 
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IscU (Isu) interacts directly with IscS and the subsequent conformational change enables the 

formation of the [2Fe-2S] cluster de-novo (Urbina et al. 2001). The IscU scaffold domain 

acting as a homodimer assembles two [2Fe-2S] cluster per molecule (Fu et al. 1994). 

Explicitly, IscU binds [2Fe-2S] cluster per monomer while interacts with IscS. However, after 

detachment of the desulfurase, IscU is able to dimerize and subsequently form more complex 

[4Fe-4S] cluster (Adrover et al. 2015). Next, the cluster is transferred to apoprotein. IscA 

protein family and Nfu are known to assist during the formation or transfer of [4Fe-4S] 

clusters (Pelzer et al. 2000; Tong et al. 2003; Mühlenhoff et al. 2011; Sheftel et al. 2012). 

Moreover, they were believed to function in bacteria as alternative scaffold domains 

previously (Krebs et al. 2001; Tong et al. 2003; Angelini et al. 2008). Nevertheless, the ability 

of the proteins to bind [1Fe-2S] and [4Fe-4S] cluster might be rather a consequence of their 

role in Fe-S cluster transfer (Gupta et al. 2009; Navarro-Sastre et al. 2011). The occurrence of 

IscA and Nfu is not universal and indispensable and they are supposed to have various roles 

in different organisms. IscA and its yeast homologues (Isa, Iba57) are able to bind both, Fe-S 

cluster or single iron atom (Ding and Clark 2004; Mühlenhoff et al. 2011). The recent view on 

the role of A-type proteins suggest their involvement during formation 4Fe-4S cluster of 

various apoproteins in mitochondria (Mühlenhoff et al. 2011). 

Finally, the proteins of the chaperon system - mainly Hsp70, Grx5, Jac1, Mge1, and 

recently identified novel FeS factor Grx5 facilitate the transfer of the cluster to targeted 

apoprotein (Uzarska et al. 2013). 

Interestingly, some of the ISC components mentioned above could also have dual 

localization and thus fulfill additional tasks. They appear to have play different roles 

depending in which cellular compartment are localized (Mühlenhoff et al. 2004; Nakai et al. 

2004). Apart from FeS cluster biogenesis, IscS was proven to have different functions such as 

thiomodification of tRNA (Nakai et al. 2001; Mihara and Esaki 2003). In higher eukaryotes, 

the Isu proteins can also localize to cytoplasm (Tong and Rouault 2000). However, it does not 

play any role in FeS metabolism, since it differs in N-terminus (Tong and Rouault 2000). 

Therefore, possibility that mitochondrial ISC pathway can function as well in cytosol or 

nucleus was excluded (Gerber et al. 2004). On the other side, these study is inconsistent with 

further research which presents the human cytosolic ISCS and ISCU proteins to be involved 

in Fe-S assembly outside the mitochondria (Li et al. 2006). 

The compound containing sulfur (X-S), which is produced by ISC and required for 

further maturation of Fe-S clusters in the cytosol, is exported via Atm1 to the cytosol (Kispal 

et al. 1999). Most likely Erv1 and glutathione molecule assist during the X-S transport as well 
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(Sipos et al. 2002; Mesecke et al. 2005).   

 

1.6. Cytosolic Iron-sulfur cluster assembly (CIA) 

The CIA machinery is a unique and ubiquitous system for biogeneses of Fe-S proteins in 

the cytosol of eukaryotic cells (Lill and Mühlenhoff 2005). The CIA members identified thus 

far are Nbp35, Cfd1, Nar1, Cia1, Cia2, MMS19, Dre2 and Tah18 (Netz et al. 2014) 

Moreover, Grx3 and Grx4 of the glutaredoxin protein family are proposed to be involved 

and essential for function of CIA, regarding their role in iron trafficking and iron homeostasis 

((Li et al. 2009; Mühlenhoff et al. 2010).  

The main experimental work was performed and most of information about CIA was 

revealed using Saccharomyces cerevisiae as a model organism. Hence, the majority of 

following overview is based on this yeast model.  

The de-novo formation of the cluster in cytoplasm takes place on a scaffold domain 

comprising Cfd1 and Nbp35 (Vitale, Fabre, and Hurt 1996; Roy et al. 2003; Hausmann et al. 

2005). The proteins are assembled as a heterotetramer (Netz et al. 2007). Both proteins belong 

to the large protein family of P-loop NTPases performing various cellular functions (Leipe et 

al. 2002; Roy et al. 2003). N-terminus of Nbp35 contains four cystein residues that binds 

stable [4Fe-4S] cluster. Thus, Nbp35 belong among the cytosolic Fe-S proteins, and 

simultaneously it is member of Fe-S cluster production machinery (Hausmann et al. 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. CIA pathway by Netz et al. 2014 
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The function of the protein and so the entire scaffold complex is dependent on the 

presence of NADH-Dre2-Tah18 electron transfer chain that provides electrons for assembly 

of the [4Fe-4S] cluster on Nbp35 (Netz et al. 2010, 2012). In addition to this intrinsic cluster, 

Nbp35 and Cfd1 complex bind two labile [4Fe-4S] clusters via cysteins residues in CX2C 

conserved motif at the C-termini of both proteins (Netz et al. 2012). Additionally, the NTP 

binding motif is necessary for the loading of the cluster, although any ATPase or GTPase 

activity was observed neither for Nbp35 nor Cfd1 (Netz et al. 2012). The Cfd1 was first 

identified cytosolic FeS factor however it is absent in several protist lineages and in plants 

(Tsaousis et al. 2014). In these organisms, Nbp35 is acting as homodimer (Bych et al. 2008).  

Nar1 shows sequence homology with iron-only hydrogenases (Nicolet, Cavazza, and 

Fontecilla-Camps 2002). Nevertheless, it completely lacks the hydrogenase activity. Nar 1 

retains two 4Fe-4S clusters on C- and N- terminus of the protein (Balk et al. 2004). It serves 

as a link between early and late steps of CIA pathway. Nar1 directly interacts with Nbp35 and 

also with CIA targeting complex (Cia1, Cia2, Mms19) in vivo (Balk et al. 2005; Hausmann et 

al. 2005; Seki et al. 2013; Stehling et al. 2013). However, its precise role needs to be 

elucidated. Interestingly, two homologues were observed in human cells named IOP1, and 

IOP2 (Barton and Worman 1999; Song and Lee 2008). While IOP1 is essential for cytosolic 

Fe-S proteins, IOP2 may have different cellular role and it is localized in nucleus (Barton and 

Worman 1999; Song and Lee 2011).  

Nar directly interacts with the CIA targeting complex, which deliver FeS cluster to 

targeted protein. In the yeast, the complex comprises of Cia1, Cia2 and Mms19. Cia1, as a 

member of WD40-repeat protein family, most probably recognizes its partner proteins 

through the surfaces and acts as a docking site for transfer of the Fe-S cluster to targeted 

protein (Balk et al. 2005; Xu and Min 2011). Cia2, a small protein with reactive cystein 

residue, and Mms19assembly together with Cia1 and mediate the transfer of the cluster to 

targeted proteins (Weerapana et al. 2010; Gari et al. 2012; Stehling et al. 2012, 2013).  

Moreover, the proteins involved in the targeting complex are able to form different 

subcomplexes for specific targeting of the cluster to apoproteins (Paul and Lill 2015). 
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Interestingly, some CIA proteins, e.g. Nbp35 and Cia1, have a dual localization in the 

cell. In addition to cytosol, they were observed in the nucleus too (Vitale, Fabre, and Hurt 

1996; Balk et al. 2005). Therefore, it was proposed that CIA machinery could be present in 

both, cytosol and nucleus, depending on which compartment the targeted Fe-S proteins occur 

in (Hausmann et al. 2005). Recent surveys suggest the localization of the CIA machinery 

more likely to cytosol as it was shown for CIA targeting complex acting with XPD 

(xenoderma pigmentosum group) helicase which is an intrinsic nuclear protein (Vashisht et al. 

2015).  

 

1.7. The Cytosolic and Nuclear Fe-S proteins 

The importance of various Fe-S proteins in the cytosol and nucleus can be explained by 

their involvement in various aspects of DNA replication, genome stability, ribosome or tRNA 

biosynthesis and modification. Cells with defect in cluster assembly were observed to have 

DNA defects, as they are more sensitive to mutagens and DNA damage agents (Stehling et al. 

2012). As examples of essential proteins containing Fe-S cluster we could mention 

polymerases, helicases, DNA glycosylases, translation initiation factor Rli1 etc. (Oliver 

Stehling and Roland Lill 2013; Netz et al. 2014; Paul and Lill 2015). Rli1 was the first 

identified cytosolic Fe-S protein and its function appeared to be both, ISC and CIA, 

dependent (Kispal et al. 2005). In the cells depleted for rli1 was impaired formation of 

Figure 2: Function domains of the CIA proteins by Netz et al. 2014 
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ribosome (Yarunin et al. 2005). Moreover, Rli1 directly interacts with at least one translation 

initiation factor eIF3 (Dong et al. 2004; Yarunin et al. 2005). These particular outcomes 

farther depict and give more evidence about the versatility and importance of FeS proteins. 

Moreover, several components of CIA machinery themselves play additional roles within 

the nucleus. The proteins of CIA targeting complex – Cia2, Cia1 and Mms19 were observed 

to interact with enzymes participating in DNA metabolism.  As these proteins interact and 

form various complexes, comprising of selected two or all three components, they can operate 

in different location and processes. For instance, human CIA2 is present in two paralogues – 

CIA2A, CIA2B, which both play different roles. CIA2B is a member of targeting complex, 

while CIA2A is required for the maturation of integral Fe-S cluster of the iron regulatory 

protein (IRP1) and thus control iron homeostasis in the cell (Stehling et al. 2013).  

 

1.8. Iron-sulfur cluster assembly in Trichomonas vaginalis  

Trichomonas vaginalis, is sexually transmitted pathogen of humans, which parasites 

onthe host epithelial tissue in urogenital tract. Members of the Trichomonadidae family 

contain hydrogenosomes, the anaerobic form of mitochondria (Müller and Lindmark 1973). 

The energy metabolism of hydrogenosomes is dependent on substrate-level phosphorylation. 

Pyruvate or malate is converted to CO2, acetate and hydrogen with concomitant ATP 

synthesis (Hrdy et al. 2008). The function of this pathways is dependent on several FeS 

proteins, including pyruvate:ferredoxin oxidoreductase, ferredoxin, hydrogenase, NADH 

dehydrogenase. The hydrogenosomes contain the complete set of components of ISC 

pathway.  In view of the fact that the genom of Trichomonas is highly repetitive, most of 

proteins ivolved in ISC machinery are encoded by multiple gene copies (Carlton). Cystein 

desulfurase, IscS, is present in two paralogues copies, but only one copy is expressed 

(Tachezy et al. 2001, Sutak et al. 2004). iscu is the only one single-copy gene in T. vaginalis. 

However, IscA and Nfu are encoded by multiple gene copies, four and three respectively,  

that are all upregulated in iron depleted conditions (Carlton et al. 2007, Beltran et al. 2013). 

Hence, it is not known whether they assist during the assembly and transfer of the cluster or 

whether they even substitute IscU protein as alternative scaffold domains. Ferredoxin (Fdx), 

the donor of electrons for the cluster assembly is reduced by pyruvate-ferredoxin 

oxidoreductases (PFO). Fdx is present in 7 copies, which are supposed to replace each other 

as the knockout of the most abundant Fdx1 has not significant effect for the cells (Carlton et 

al. 2007, Land et al. 2004). Frataxin (Fra) and Isd1, are present in 2 copy-genes, which are 
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both expressed (Beltran et al. 2013). The chaperon system comprises of Jac1, Mge1 and 

Hsp70 (Beltran et al. 2013). These proteins are universally required to dissociate Fe-S cluster 

from IscU and further to stabilize and transfer it into apoproteins (Uzarska et al. 2013, Lill et 

al 1999, Voisine et al. 2001, Deloche and Georgopoulos 1999, Dutkiewicz et al. 2003). Ind1, 

P-loop Ntpase, is relative of Nbp35 and Cfd1 acting in the cytosol. It is present in 4 copies 

and most likely it assists in maturation of complex I in hydrogenosomes as shown previously 

for mitochondria (Sheftel et al. 2009). Additionally, hydrogenosomes possess hydrogenase 

maturases (HydE, HydG, HydF) that are necessary for formation of H-cluster in hydrogenases 

(Putz et al. 2006). 

The specific counterparts of transport machinery, which facilitate the connection between 

ISC and CIA machineries, e.g. Erv1, Atm1 and glutathion were not identified in T. vaginalis 

(Rada et al. 2011).  

The CIA components for which corresponding genes were found in T. vaginalis genome 

include - Cfd1, Nbp35, Nar1, Cia1 and Cia2 (Carlton et al. 2007). Interestingly, some core 

components of CIA pathway in Trichomonas are missing, particularly Tah18, Dre2, Grx3 and 

Grx4. However, in contradiction to indispensability of these proteins in aerobic eukaryotes, it 

seems to be a general trend in anaerobes (Tsaousis et al. 2014). 
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3 THE AIMS OF THE THESIS 

This study deals with an iron-sulfur cluster assembly in Trichomonas vaginalis. 

The main goals of the thesis were: 

1) To establish and use the gene knockout technique for TvIscU and observe its 

consequence for FeS cluster assembly in T. vaginalis 

2) To identify the proteins that are involved in putative CIA pathway of T. vaginalis 

3) To express the recombinant CIA proteins in T. vaginalis and localize them using 

subcellular fractionation and immunofluorescence microscopy. 

4) To immunoprecipitate TvCfd1A-HA and TvCfd1B-HA to find their putative 

partner proteins. 
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4 MATERIALS AND METHODS 

4.1 Cultivation of the organisms 

4.1.1 Cultivation of T. vaginalis 

An axenic culture of T. vaginalis T1 (TVT1) strain (J.H.Tai, Taiwan) was grown in 

Diamond´s medium (TYM) pH 6,2 in semianaerobic conditions at 37 °C (Diamond, L. S. 

(1957). 

 

4.1.2 Cultivation of E. coli 

For cloning was used E. coli strain TOP10 or XL-1 Blue. The bacteria were cultivated 

in LB medium at 37 °C on the shaker (220 rpm). Transformed cells were grown on LB plates 

with X-gal (30 µl of the storage solution), Ampicilin (100 µg/ml) or Kanamycin (50 µg/ml) 

depending which vector was used. For long period E. coli cells were stored in LB medium 

with 20 % glycerol in -80 °C. 

 

4.1.2.1 Cultivation media 

Medium TYM pH 6,2: 

K2HPO4 (Sigma)    0,8 g 

KH2PO4 (Sigma)    0,8 g 

ascorbic acid (Sigma)    0,2 g 

L-cystein (Sigma)    1 g 

maltose (Sigma)    5 g 

yeast extract (Oxoid)    10 g 

trypton (Oxoid)     20 g 

ammonium ferric citrate (2,28/100 ml) 1 ml 

(agar      0,5 g) 

H2O      fill to 900 ml 

inactivated horse serum (Gibco)  100 ml (added after sterilization) 

 

LB medium: 

LB medium (Sigma)  20 g 

H2O    500 ml 
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LB plates: 

LB agar    17 g 

H2O    500 ml 

 

SOC medium (pH 7): 

trypton   2 g 

yeast extract  0,5 g 

NaCl   0,058 g 

250mM KCl  1 ml 

H2O   fill to 100 ml 

20% glucose (sterile)  1,8 ml (added after sterilization) 

2M MgCl2 (sterile) 0,5 ml (added after sterilization) 

Store in -20 °C. 

 

X-gal: 

X-gal (5-bromo-4-chloro-3-indolyl--D-galaktosid) 100 mg 

N,N'-dimethyl-formamid    2 ml 

Store in -20 °C and protect it from light.  

 

Antibiotics: 

Ampicilin (Sigma)   100 mg/ml 

Geneticin (G418) (Sigma)   200 µl/ml 

Kanamycin (Sigma)   50 mg/ml 

Penicillin-Streptomycin (Sigma) 100 000 IU/ml 

 

4.2 Buffers and solutions 

10x PBS: 

NaCl   8 g 

KCl   0,2 g 

NaH2PO4 · 12H2O 1,53 g 

KH2PO4   0,2 g 

H2O   fill to 1000 ml  
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8M Urea buffer 

NaH2PO4 · H2O  13,8 g 

Tris base  1.2 g 

urea   480,5 g 

H2O   fill to 1000 ml 

Adjust the pH of the buffers. 

 

25mM DSP solution 

1 mg of DSP (dithiobis[succinimidylpropionate]) per 100 µl of DMSO 

 

4.2.1 SDS and Western blot analysis 

Coomassie Brilliant Blue solution 

Coomassie Brilliant Blue  200 mg 

ethanol    225 ml  

H2O    225 ml 

acetic acid   50 ml 

 

Blotting buffer: 

10x concentrated SDS buffer  100 ml 

methanol    200 ml 

H2O     700 ml 

 

Blocking buffer: 

dry milk (Laktino) 10 g 

Tween 20 (Sigma) 200 µl 

PBS   200 ml 

 

Ponceau S: 

Ponceau S  0,5% 

glacial acetic acid 1% 
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4.2.2 Immunofluorescence 

2x PEM buffer, pH 6,9: 

PIPES   30,2 g 

0,5M EGTA  2 ml 

1M MgSO4  100 l 

Mix the chemicals and add NaOH until the solution is transparent. Set the pH 6,9. 

H2O    fill to 500 ml 

Sterilize using autoclave. 

 

PEMBALG: 

1x PEM pufr    100 ml 

BSA     1 g 

lysin     1,8 g 

cold water fish skin gelatin (Sigma) 0,5 g 

 

Dissolve the gelatin in approximately 30 ml sterile H2O. Heat to 45°C. Cool to room 

temperature and add BSA and lysin. Fill up to 50 ml using sterile H2O and add 50 ml of 

2x PEM. Store in -20 °C. 

 

4.2.3 Antibodies 

Primary antibodies: 

anti-HA monoclonal antibody (mouse IgG), (Exbio) (1:400 western blot, 1:1000 

immunofluorescence) 

anti-ME (Malic Enzyme) polyclonal  antibody (rabbit), (Eurogentec) (1:500) 

anti-Fdx1 polyclonal antibody (rat), (provided by Patricia Johnson) (1:1000) 

 

Secondary antibodies: 

A. Western blot analysis: 

antibody against mouse conjugated with alkaline phosphatase (ICN/CAPPEL) (1:2000) 

antibody against rat conjugated with alkaline phosphatase (ICN/CAPPEL) (1:2000) 

antibody against mouse IgG conjugated with horse radish peroxidase (Novex ECL) 

(1:2000) 
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B. Immunofluorescence 

antibody against mouse IgG labeled with ALEXA FLUOR 594 (Molecular Probes) 

(1:1000) 

antibody against rabbit IgG labeled withALEXA FLUOR 488 (Molecular Probes) 

(1:1000) 

antibody against rat IgG labeled with ALEXA FLUOR 594 (Molecular Probes) 

(1:1000) 

 

4.2.4 Fractionation of T. vaginalis cells 

ST buffer, pH 7,2: 

sacharose  42,85 g 

Tris base (Sigma) 0,6 g 

KCl   18,5 mg 

H2O   fill to 500 ml 

Adjust the pH 7,2. Store in -20 °C. 

 

Protease inhibitors: 

Tosyl-lysin-chlormetylketon (TLCK) 25 mg/ml 

Leupeptin    5 mg/ml 

 

4.2.5 Immunoprecipitation 

Boiling buffer, pH 7,4: 

50mM Tris base 

1mM EDTA 

1% SDS 

 

Incubation buffer pH7,4: 

50mM Tris base 

150mM NaCl 

5mM EDTA 

1% Triton (TX100) 
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4.3 General protocols used in the thesis 

4.3.1 Transformation of T. vaginalis using the electroporation time-constant 

protocol  

For transformation of T. vaginalis by circular or linear DNA we used following protocol: 

1. all steps are done sterile 

2. start with cell culture 500 ml for approximately 6 shots 

3. spin the cells at 1250 x g, 10 min., 4 °C and weigh the pellet 

4. use 500 ml of fresh ice cold TYM 6,2 medium to 1 g of the pellet and gently 

resuspend the cells 

5. cool the 4 mm cuvettes (Bio-Rad) and G 23 needle to 4°C 

6. pass the cells once through G 23 needle  

7. pipette 300 µl of cell suspension to cuvette and add 50 µg of circular or 100 µg of 

linear DNA  

8. electroporate using the time-constant protocol: 175 ms, 350 V (GenePulser Xcell, 

Bio-Rad) 

9. transfer the cells immediately to 50 ml of fresh tempered TYM 6,2 medium with 

added Penicillin-Streptomycin (1000 IU/ml) 

10. to cells transformed by circular plasmid add G418 (200 µg/ml) after 4 hours / to 

cells transformed by linear DNA add G418 (110 µg/ml) after 6 hours  

11. let undergo the selection for max 7 days 

12. passage the cells to 15 ml culture tube with fresh TYM 6,2 medium (G418 added) 

Optionally (for T. vaginalis cells transformed by linear DNA to get clonal population) 

11. 17 hours after transfection take 25 ml of transformed cell culture (50 ml) and 

harvest by centrifugation at 1250 x g, 10 min, 4°C, simultaneously, 12,5 ml from 

the transformed culture keep in 15 ml plastic tube.  

12. removed the supernatant and gently resuspend the pellet in 50 ml of fresh 

tempered TYM 6,2 medium with agar (Pen-Strep and G418 added) 

13. invert the solution twice and plated it on 96-well plate 

14. incubate anaerobically for 5-8 days  

pick up grown colonies and transfer it to culture tube 
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4.3.2 Transformation of E. coli 

To transform E. coli we used following protocol: 

1. thaw the cells on the ice 

2. thaw the SOC medium  

3. pipette ligation reaction to bacteria and incubate for 30 min 

4. incubate in 42°C water bath for 30 sec 

5. incubate 2 min on the ice 

6. add 250 µl of SOC medium 

7. incubate at 37 °C , 220 RPM, 1 hour 

8. distribute the selection antibiotics and X-gal on the LB agar plate 

9. distribute 200-250 µl of the transformed cells on the plate 

10. incubate at 37 °C overnight 

11. store the plate at 4°C 

 

4.3.3 SDS page 

For further analysis by western blot, the protein samples were dissolved in the SDS 

sample buffer and denaturated at 100 °C for 5 min. Then the proteins were separated 

under denaturating conditions using 12% or 13,5% polyacrylamide gel with SDS. As 

standard to determine the molecular weights we used PageRuler™ Plus Prestained 

Protein Ladder (Thermo Scientific).  

 

4.3.4 Western blot analysis 

To analyze proteins samples we used following protocol: 

1. soak the SDS page gel together with 6 filter papers and nitrocellulose membrane 

of the same size  

2. stack the 3 filter papers, the nitrocellulose membrane, the gel and 3 filter papers 

on blotting machine (semi-dry blot Biometra) 

3. blot at 1,5 mA per square cm (1 h and 10 min) 

4. visualize the blotted proteins on the membrane by Ponceau S (0,5%) (1 min and 

wash shortly in H2O) 

5. incubate the membrane in the blocking buffer at the room temperature (2 h) or at 

4 °C (overnight) 
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6. incubate the membrane with primary antibody in the blocking buffer at the room 

temperature (2 h) or at 4 °C (overnight) 

7. wash the membrane 3 times (15 min) in the blocking buffer  

8. incubate the membrane with secondary antibody in the blocking buffer at room 

temperature (1-2 h) 

9. wash the membrane 2 times (15 min) in the blocking buffer and once in PBS (15 

min) 

incubate the membrane with substrate for alkaline phosphatase AP Fast BCIP/NBT 

(Sigma) or horse radish peroxidase (HRP)  Novex ECL Substrate Enhancer Kit 

(Invitrogen life technologies 

 

4.3.5 Immunofluorescence microscopy 

To prepare immunofluorescence slides we used following protocol: 

1. start with 10 ml of the culture 

2. fix the cells using 1% formaldehyde at 37 °C, 30 min 

3. spin the cells at 900 x g, 5 min, 4 °C  

4. wash the pellet in 5 ml of PEM buffer and repeat the step 3. 

5. discard the supernatant by aspiration and gently resuspend the pellet in 500 ml of  

PEM buffer by 1ml plastic pasteur pipette 

6. distribute the cells on the silanized microscope slide (approximately 150 µl per 

slide) andlet it dry 

7.  all following steps will be held in the box with wet tissues (do not let it dry) 

8. permeabilize the cells using 0,1% triton TX100 in PEM buffer, 15 min 

9. remove the excess PEM buffer with 0,1% triton TX-100 and wash in PEM buffer 

3 times for 5 min 

10. block the slides in 0,5 ml of PEMBALG buffer, 1 hour 

11. remove excess buffer and incubate in PEMBALG with primary antibody, 1,5 

hours 

12. remove excess buffer and wash in PEM buffer 3 times for 5, 10 and 15 min 

13. remove excess buffer and incubate in PEMBALG with secondary antibody in the 

dark, 1 h 

14. wash in PEM buffer 3 times for 5, 10 and 15 min  

15. remove excess liquid  
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16. use Vectashield with DAPI (4′,6-Diamidine-2′-phenylindole dihydrochloride) to 

stain the nuclei 

17. cover the slides with a cover slip 

18. after 1 min fix the cover slip with nail polish 

19. keep the slides in a dark and use for immunofluorescence microscopy 

 

4.4 Sources of the genomic data 

BLASTP program and its extension PSI-BLAST (position-specific iterative BLAST) 

from the NCBI web server (blast.ncbi.nlm.nih.gov) were used to search for T. vaginalis 

homologues of proteins that were previously identified in Saccharomyces cerevisiae. The 

genomic data of T. vaginalis are available on trichdb.org (Carlton et al. 2007).    

 

4.5 Genes and proteins used in the thesis 

The data are available on TrichDB. 

Ferredoxin 1 TVAG_003900 

TvIscU TVAG_432650 

TvCfd1A TVAG_390510 

TvCfd1B TVAG_447450 

TvNbp35A TVAG_157490 

TvNbp35B TVAG_178350 

TvCia1A TVAG_350560 

TvCia1B TVAG_441510 

TvCia2 TVAG_198590 

TvNar1 TVAG_129510 

 

4.6 Isolation of genomic DNA 

Genomic DNA of T. vaginalis T1 and its transformed strains were isolated using High 

Pure PCR Template Preparation Kit (Roche).  

 

4.7 Preparation of polyclonal rat anti-TvIscU antibody 

4.7.1 PCR amplification of tviscu 

The gene for TvIscU was amplified by PCR (polymerase chain reaction) using specific 

primers and reaction conditions. As a template, we used genomic DNA of T. vaginalis. 
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Primers for PCR amplification of tviscu are shown in the table below. Primers contain 

restriction sites (RS) for NdeI and BamHI restriction enzymes (RE) for cloning to pET42b 

vector. The gene is 459 bp long. 

 

Name RE RS Sequence (5´-3´) 

tviscu 
forward NdeI  CATATG  TGACCATATGCTCGCTGCAGTTTCCCGC 

reverse BahmHI GGATCC  TGACGGATCCTTTAGCAGCAGCCTTCTTGGC 

 

 

PCR protocol: 

DNA template   1 µl 

primer forward(10mM)  1 µl 

primer reverse (10mM)  1 µl 

dNTP (10mM)   0,5 µl 

Mg2SO4 (20 mM)  2,5 µl 

10x PFU buffer   2,5 µl 

H2O    16,5 µl 

PFU polymerase   0,5 µl 

 

Cycle: 

 3:00 95°C, 30 x [0:30 95°C, 0:30 55°C, 2:00 72°C], 7:00 72°C 

 

PCR product was analyzed by horizontal electrophoresis using 1% agarose gel. The DNA 

was visualized by SYBRSafe dye (Invitrogen). GeneRuler™ DNA Ladder Mix (Fermentas) 

was used as a standard.  

 

4.7.2 Cloning and expression of tviscu 

PCR product was purificated by high Pure PCR Product Purification Kit (Roche) and 

ligated to the pGEM-T Easy vector (Invitrogen) using manufacturer protocol. Then the 

ligation product was transformed to E. coli XL1-Blue competent cells that were subsequently 

incubated on LB plates with ampicillin (100µg/ml) and X-Gal over night at 37°C. White 

colonies were picked up and screened for the insert using PCR method with specific primers. 

Positive colonies were incubated in 5 ml of LB medium with ampicillin (100µg/ml) over 
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night at 37°C. After that the cell culture was pelleted (6000 x g, 10 min) and plasmid was 

isolated using the QIAGEN Miniprep Kit.  

Plasmid was further digested by the NdeI and BamHI restriction enzymes. Products of 

digestion were separated in 1% agarose gel. The band corresponding to tviscu was excised 

and isolated using QIAGEN Gel Extraction Kit. This insert was ligated into the pET42b 

plasmid (Novagen), adding a poly-His tag to the 3’ end of the open reading frame of the 

tviscu. The ligation product was transformed to the XL1-Blue competent cells. The cells were 

incubated on LB plates with kanamycin (50µg/ml) over night at 37 °C. Colonies were 

screened  for  the  insert using PCR with  insert-specific primers. Positive colony was picked 

and incubated in 5 ml LB with kanamycin (50 µg/ml) over night at 37 °C. The cell culture 

was pelleted and the plasmid was isolated using the QIAGEN Miniprep Kit. The correct 

insertion of tviscu into the pET42b plasmid was verified by sequencing. DNA was further 

used for transformation of E.coli and production of the recombinant protein. 

 

4.7.3 Production of recombinant protein  

The E. coli culture expressing TvIscU incubated in 2 l of LB medium on shaker at  

37 °C. When the  optical density at 600 nm reached  0.6  we  added IPTG to  final  

concentration of 250 µM and incubated the culture for 4 hours.  

 

4.7.4 Purification of recombinant proteins  

The protein purification was done under denaturing conditions in 8M urea buffers with 

different pH. To purify the recombinant His-tagged protein, we used following protocol:  

 

1. spin the cells and resuspend the pellet in 15 ml of 8M urea buffer pH 8  

2. sonicate the cells at amplitude 60, 15 sec. pulses, 5 times (sonicater Vibra Cell) 

3. spin the lysate at 17 000 x g for 20 min 

4. incubate the supernatant with 1 ml of PerfectPro NiNTA Agarose (5 Prime) for  

15min and then transfer the mixture to a column 

5. collect the flow-through 

6. wash the column two times with 4ml of 8M urea buffer pH 6.4 and collect 

flow-through  
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7. wash the column four times with 500 µl of 8M urea buffer pH 5.9 and collect each 

flow-through (D1-4) 

8. wash the column four times with 500 µl of 8M urea buffer pH 4,5 and collect each 

flow-through (E1-4) 

 

Next, we analysed the fractions using SDS-PAGE and western-blot with an anti-His 

antibody. Fractions (E3, E4) that contained the purified protein were separated using a 

preparative electrophoresis. We stained the gel in Coomasie Brilliant Blue and then washed in 

destain solution. Finally, we excised band corresponding to our protein and confirm it by 

mass spectrometry. Gel was washed in PBS buffer and homogenized. The rat was immunized 

by four doses of acrylamide gel each containing 250 µg of the protein. We separate the serum 

and used as the anti-TvIscU antibody. 

 

4.8 The knockout of fdx1 and tviscu 

For gene knockout by homologous recombination we used plasmids pFdKO and 

pTvIscUKO. We obtained the pFdKO by Dr. Sven Gould. It contains neomycin 

phosphotransferase cassette and ampicilin cassette. The neomycin phosphotransferase is 

flanked by 5´UTR and 3´UTR of fdx1. The 5´UTR fragment is cloned through NotI/KpnI and 

3´UTR fragment is cloned through BamHI/HindIII. We modified pFdKO by replacement of 

both fdx1 UTRs with tviscu 5´and 3´UTR fragments.  

 

The primers that were used for amplification of tviscu UTRs are shown. 

 

Name RE RS Sequence (5´-3´) 

tviscu 5´UTR 
forward NotI CGGCCG AGTGCGGCCGCATCATAATCTTTTTATCAG 

reverse KpnI GGTACC AGTGGTACCTCTGTTGAAATGAAATTAGGGAA 

tviscu 3´UTR 
forward BamHI GGATCC AGTGGATCCGCATTTCATGCATTGTTCTC 

reverse HindIII AAGCTT AGTAAGCTTAAAGAGGCCCAATCCATTTT 
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We transformed E.coli TOP10 by plasmid pFdKO/pTvIscUKO and selected the bacteria 

cells using Ampicilin (100µg/ml). Positive colony was picked up and incubated in 100 ml of 

LB medium. We isolated pFdKO using Wizard Plus Midipreps (Promega). The concentration 

of DNA in midipreps was measure by NanoDrop ND – 1000 Spectrophotometer.  

 

4.8.1 Digestion of pFdKO and pTvIscUKO 

For gene knockout we needed high amount of linear DNA. We digested the plasmid 

using ScaI, NotI and HindIII restriction enzymes (RE) and then we used shrimp alkaline 

phospshatase (SAP) to dephosphorylate the 5´and 3´ends of DNA (all chemicals by Thermo 

Scientific). Due to loses during digestion and DNA precipitation we started with higher 

amount of DNA that was aproximatelly 130 µl of plasmid DNA (1100 µg/ml). To digest the 

pFdKO/pTvIscUKO we used following protocol: 

 

plasmid DNA (1100 µg/ml)   130 µl 

10x FastDigest buffer   50 µl 

dH2O      310 µl 

ScaI     10 µl 

2 hour, 37°C 

 

Precipitate the DNA (25 EtOH : 1 NaOAc pH 5,4) to 50 µl and proceed with further 

digestion.  

 

DNA    50 µl 

10x Red buffer   15 µl 

SAP    6,25 µl 

dH2O    78,75 µl 

1 hour 45 min, 37°C 

 

Inactivate the SAP at 65°C, 15 min. Use the sample for further digestion. 

 

sample with DNA   150 µl 

10x Red buffer    50 µl 

H2O     280 µl 
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NotI     10 µl 

HindIII     10 µl 

overnight, 37°C 

 

Precipitate the DNA to 50 µl (2000 µg/ml) . Proceed with T. vaginalis transfection. 

 

T. vaginalis cells were transfected by the linear DNA using electroporation time-constant 

protocol (chap. 2.3.1). The transformed cells were analyzed after seventh passage using 

western blot (chap. 2.3.4) with the polyclonal rat anti-Fdx1 antibody.  

 

PCR reaction for fdx1 was used to test the knockout cells. Primers hybridize with 

complementary DNA at ORF (forward) and 3´UTR (reverse) of the gene. The fragment is 

 609 bp long. 

 

Name Sequence 

fdx1 ORF forward CAGTGGTGAAAACGATGGTG 

fdx1 3´UTR reverse CGTGCAGAATGGTTGCAT 

 

 

PCR protocol: 

Template DNA    1 μl 

primer forward (10 mM) 1 μl 

primer reverse (10 mM) 1 μl 

PCR Master Mix (Promega) 10 μl 

H2O   7 μl 

 

Cycle: 

 3:00 95°C, 30 x [0:30 95°C, 1:0 57°C, 1:00 72°C], 5:00 72°C 

 

We separated the PCR products as previously for tviscu. 
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4.9 PCR amplification of genes for CIA proteins 

Genes were amplified by PCR (polymerase chain reaction) with specific primers and 

reaction conditions. Genomic DNA of T. vaginalis was used as a template. Primers that were 

used for PCR amplification of the genes for CIA proteins are shown in table below. Primers 

contain restriction sites (RS) for NdeI and BamHI restriction enzymes (RE) for cloning to 

TagVag2 vector. Forwad primers of tvnbp35a and tvcfd1b contain modified nucleotides to 

mutate restriction sites of BamHI and NdeI, respectively. 

 

Name   RE RS Sequence (5´-3´) 

tvnbp35a forward NdeI  CATATG 
CTAGCATATGAGCTGCTCAGGAAATTGTGGCT 
CCTGTTCACATGCTGGCACA 

reverse BahmHI GGATCC GACTGGATCCTGCAGAGAGTTTCTGCTGGATCTTTTC 

tvnbp35b 
forward NdeI  CATATG CTAGCATATGTCTTGTAACGGAGATTGC 

reverse BahmHI GGATCC GACTGGATCCTTTTGATACAGCATCCATGAT 

tvcfd1a 
forward NdeI  CATATG CTAGCATATGAGCACACAGAATTTCATC 

reverse BahmHI GGATCC GACTGGATCCTTGAGCTGCTTTTTGTTGTGG 

tvcfd1b forward NdeI  CATATG 

ATACATATGAGCACGCAAAATTTCATCCTTGTCATGT 
CTGGCAAGGGAGGAGTTGGAAAGTCCACAACAGCA 
GCTAATATAGCACGTGCTTATGCTGCCAAATATGGAAAA 

reverse BahmHI GGATCC GACTGGATCCTTGTGCTACAGGTTGGGCTGG 

tvnar1 
forward NdeI  CATATG CTAGCATATGAGCGCAGACCCTGCTGCT 

reverse BahmHI GGATCC GACTGGATCCCCAAGCGAATTGATCTTTTTC 

tvcia1a 
forward NdeI  CATATG CTAGCATATGAAAGTCTCGACCATCGAT 

reverse BahmHI GGATCC GACTGGATCCTTTTGATTTTTCTATATCGAA 

tvcia1b 
forward NdeI  CATATG CTAGCATATGAAAACTGTTTTTGAGTGC 

reverse BahmHI GGATCC GACTGGATCCGTATATTGAACTGAGTTCATG 

tvcia2 
forward NdeI  CATATG CTAGCATATGGCAGCAAATCCAAATCCA 

reverse BahmHI GGATCC GACTGGATCCTTCCTCTTCATCATCACATGC 

 

UTR´s of tvnbp35b (572 bp) and tvcfd1a (616 bp) were amplified by PCR (polymerase 

chain reaction) with specific primers. Primers contain restriction sites (RS) for SacII and NdeI 

restriction enzymes (RE) for cloning to TagVag2 vector. 
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Name RE RS Sequence (5´-3´) 

tvcfd1a 5´UTR forward SacII CCGCGG ATACCGCGGATTGAAATCATAAATCTT 

tvcfd1a  reverse NdeI CATATG ACCCATATGTCACAAAATCTTAGTAAA 

tvnbp35b 5´UTR forward SacII CCGCGG ATACCGCGGTTCTGTCTAAAGCTTTAA 

tvnbp35b  reverse NdeI CATATG ACCCATATGTATGATTTTTAAGTTGTTCAG 

 

PCR protocol (chemicals New England Biolabs): 

Template DNA    1 µl  

primer forvard (10mM)  1,25 µl 

primer reverse (10mM)   1,25 µl 

5x Q5 reaction buffer   5 µl 

5x Q5 High GC enhancer  5 µl 

10 mM dNTPs    0,5 µl 

Q5 High-fidelity DNA polymerase 0,25 µl 

dH2O (PCR sterile)   10,75 µl 

 

PCR Cycle: 

 0:30 98°C, 30 x [0:10 98°C, 0:45 65°C, 1:25 72°C], 2:00 72°C 

 

4.10 Cloning and expression of the genes for CIA proteins 

We digested the PCR products and TagVag2 vector by NdeI and BamHI  or SacII and 

NdeI restriction enzymes in FastDigest Buffer (chemicals by Thermo Scientific) at 37°C for 

45 min. We precipitated the PCR products using High Pure PCR Template Purification Kit 

(Roche), separated the digested plasmid using 1% agarose gel and excised the corresponding 

band. To isolate the plasmid from the gel, we used Gel Extraction Kit (GENEAID). 

 

We cloned the PCR products to  TagVag2 vector using following protocol. 

 10x T4 DNA ligation buffer  2 μl 

 TagVag2 vector    4 μl 

 insert     13 μl 

 T4 DNA ligase    1 μl 

at 16 °C, overnight 
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E. coli TOP10 competent cells were transformed by the ligation. Plasmid isolated using 

Midiprep Kit (GENEAID) was used for T. vaginalis transfection (chap.4.3.1.).   

After approximately sixth passage, the transformed cells were further analyzed by 

western blot analysis and immunofluorescence microscopy. 

 

4.11 Cell fractionation by differential centrifugation  

1. all steps are done at 4°C 

2. start with cell culture about 250 ml in amount 

3. spin down the cells at 2500 x g, 15 min, 4°C  

4. discard the supernatant  

5. resuspend the pellet in 45 ml of PBS (non-sterile) and transfer it to 50 ml 

plastic tube. 

6. spin down at 1000 x g, 10 min, 4°C  

Figure 3: The sequence of TagVag2 expression plasmid (Hrdý et al. 2004). 
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7. resuspend the cells in 15 ml of ice cold ST buffer and spin down as in 

previous step 

8. resuspend the cells in approximately 10 – 15 ml of ice cold ST buffer per 

 250 ml of starting culture 

9. per each ml add 10 µg of Leupeptin and 50 µg TLCK 

10. sonicate on ice at amplitude 40, 1 sec. pulses, 1 minute intervals until only 

few cells remain unbroken (sonicater Vibra Cell) 

11. after each interval check the cells using microscope 

12. spin the homogenized cells at 800 x g, 10 min, 4°C  

13. transfer carefully the supernatant (do not swirl the pellet containing living 

cells, nuclei and membranes) to new plastic tube and spin down at 8900 x g, 

20 min, 4°C  

14. transfer 1 ml of supernatant (crude cytosolic fraction) to 1,5 ml tube 

15. discard rest of the supernatant by aspiration and get a pellet (large granular 

fraction enriched with hydrogenosomes) 

16. discard the contamination of lysosomes (white hem of the pellet) by 

aspiration  

17. resuspend the pellet in 1 ml of ST, transfer it to 1,5 ml tube and spin down at 

20 000 x g, 20 min, 4°C  

18. repeat the step 16. and get the pellet of hydrogenosomes (proceed with 

further experiment or store at -80°C)  

19. Spin down the crude cytosolic fraction at 20 000 x g, 30 min, 4°C 

 

4.11.1 Protein protection assay  

To reveal whether the proteins in the hydrogenosomal fraction are localized on the 

surface or whether they are inside the organelle we used the trypsin treatment. Trypsin digests 

proteins at 37°C. It cannot cross the hydrogenosomal membrane and therefore the proteins 

within the organelle remain untouched.  

For trypsin treatment, we used the following protocol: 

 

1. weigh the pellet of purified hydrogenosomes and make 4 aliquots containing 2,5 

mg of pellet, each  
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2. resuspend them in 250 ml of ST buffer (TLCK (50 µg/ml), leupeptin (10 µg/ml) 

added) 

3. add trypsin (200 µg /ml)to one of the aliquots, trypsin (200 µg /ml) and 1% Triton 

TX-100 to another aliquot and 2 aliquots keep without any treatment  

4. one of the aliquots without treatment keep on ice and the three rest incubate at 

37°C (30min) 

5. spin the samples 20 000 x g, 5 min., 4°C 

6. resuspend the pellets with SDS loading buffer 

 

4.12 Immunoprecipitation of the Cfd1A proteins 

4.12.1 Preparation of anti-HA Dynabeads using Dynabeads Antibody Coupling Kit 

(Life Technologies) 

Day 1: 

1. weigh 10 mg of Dynabeads M-270 Epoxy to 1,5 ml tube 

2. add 1 ml of C1 buffer , pipette up and down 3 times 

3. place it on the magnet for 1 min and remove the supernatant 

4. Add 24 μl of anti-HA antibody (anti-HA Mouse antibody, Exbio) to get final 

concentration 15 µg of antibody per 1 mg of dynabeads  

5. add 476 μl of C1 buffer and pipette 3 times 

6. add 500 μl of C2 and mix by pipette 

7. incubate on a roller/rotator over night at 37°C 

Day 2: 

1. place on the magnet for 1min and remove the supernatant 

2. wash in 800 μl of HB buffer  

3. wash in 800 μl of LB buffer 

4. wash in 800 μl of SB buffer 

5. add 1000 μl of SB buffer and incubate on the roller at room temperature for 

15min, then remove the supernatant 

6. resuspend in 980 μl  of SB buffer and add 20 μl of 1% sodium azid  

7. Store in 4°C until further use 
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4.12.2 Immunopreciptation protocol 

all steps are done at 4°C 

1. start with cell culture about 250 ml  

2. spin down the cells at 1200 x g, 10 min, 4°C (Hettich 32 R centrifuge) 

3. discard the supernatant and wash in PBS, repeat the step 2. 

4. discard the supernatant and  resuspend  the pellet into dense suspension of 

PBS approximately 1 – 1,5 ml, transfer it to 1,5 ml tube  

5. use the Biorad Assay to measure the proteins of whole cells 

6. dilute the suspension to final concentration of 1,5 µg/ml 

7. ad DSP to final 1mM concentration 

8. incubate on ice, 30 min 

9. spin down the sample at 1200 x g, 10 min, 4°C 

10. resuspend in 1 ml boiling buffer 

11. incubate at 80°C, 10 min 

12. spin down at 1000 x g, 10 min, at room temperature 

13. take the supernatant and dilute it 1:20  in incubation buffer supplemented 

with protease inhibitors (cOmplete mini EDTA-free, Roche Life Science) 

14. add 100 µl of dynabeads  

15. incubate over night at 4°C on rotator, speed 2-3 

16. next day – magnet it 1 min and remove the supernatant 

17. wash it with 1 ml of incubation buffer , three times  

18. ad 50 µl of SDS sample buffer (without dye) and incubate at 70°C, 10 min 

19.  proceed for Mass Spectrometry analysis 

 

Mass spectrometry analyses were performed in the Mass Spectrometry Laboratory of 

BIOCEV using label free quantificance, NanoLC/MS – Orbitrap fusion.  
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5 RESULTS 

5.1 IscU in hydrogenosomes of T. vaginalis 

To test whether hydrogenosomal ISC machinery is required for assembly of FeS clusters 

in the cytosol via CIA machinery, we selected TvIscU, an important component of ISC, as a 

target for a gene knockout. TvIscU is the only ISC component, which is coded by a single 

gene in T. vaginalis genome and thus suitable candidate for a gene deletion.    

 

5.1.1 Cellular localization of TvIscU  

First, we decided to verify expected hydrogenosomal localization of TvIscU. The 

putative TvIscU is encoded by a single gene (TVAG_432650) of 563 bp. Calculated size of 

the protein is 16,1 kDa with predicted N-terminal targeting sequence of 8 amino acids 

(MLAAVSRS/SA) (Smíd et al. 2008) For the protein localization within T. vaginalis cell, we 

prepared specific polyclonal rat anti TvIscU antibody.    

The tviscu gene was amplified by PCR and cloned to the pet42b expression vector which 

allows production of TvIscU with C-terminal poly-His tag. The protein was expressed in E. 

coli BL21 cells and then purified using a nickel column. The recombinant protein was used 

for immunization of rat.  

Subsequently, we used the antibody to detect the protein in T. vaginalis using 

immunofluorescence microscopy. We observed that TvIscU labels spherical structures that 

are typical for hydrogenosomes. Moreover, it co-localizes with malic enzyme, which is used 

as the hydrogenosomal marker protein. These results confirmed that TvIscU is present in 

hydrogenosomes.  

. 
  

 

Figure 4: Localization of TvIscU in hydrogenosomes 

TvIscU was detected by rat anti-TvIscU antibody (green). Malic enzyme was used as a 

hydrogenosomal marker that was detected by rabbit anti-malic enzyme antibody (red). The nuclei 

were stained with DAPI (blue). DIC - differential interference contrast. 
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5.1.2 Knockout of TvIscU coding gene 

The most efficient methods for functional studies of components of FeS assembly 

machinery are methods of reverse genetics. However, these methods are not amenable for T. 

vaginalis. The most promising approach is based on homologous recombination that was 

successfully used for knockout of limited number of T. vaginalis genes (Land et al. 2004, 

Bras et al. 2013). Therefore, we decided to establish this method in our laboratory and 

initially we attempted to reproduce the gene knockout for hydrogenosomal [2Fe2S] 

Ferredoxin (Fdx1).  The plasmid pFdKO for replacement of ferredoxin 1 (fdx1) 

(TVAG_003900) was kindly provided by Dr. Sven Gould (University of Düsseldorf). The 

vector contains the gene for Neomycin phosphotranferase as a selectable marker, which is 

flanked by of 5´ and 3´ untranslated regions (UTR) of fdx1. The 5´ and 3´ UTR sequences are 

each approximately 1000 bp in length. Once the sequence of the plasmid is linearized, the 

homologous recombination occurs via the untranslated regions which are identical to targeted 

genomic DNA (Figure X). 

For this reason, we digested the plasmid pFdKO by NotI and HindIII and the linear 

sequence was used for transformation of T. vaginalis via electroporation. The high amount 

(100 µg/µl) of digested pKOFdx was used per 600 mg cells in 300 µl of TYM medium. After 

electroporation, the cells were transferred to 50 ml of TYM medium and selected using 

geneticin (110 µg/ml). However, these initial experiments did not lead to selection of cells 

with fdx1 gene knockout. western blot analysis using anti-Fdx1antibody revealed expression 

of Fdx1 in all selected lines. The fdx1gene was also detected by PCR using primers 

hybridizing to ORF and 3´ untranslated region (Figure X).  

Therefore, we tried to improve the protocol for the preparation of linear DNA from the 

pFdKO plasmid. We used the additional ScaI restriction enzyme to digest the backbone of the 

circular plasmid and shrimp alkaline phosphatase (SAP) to prevent re-joining of cleaved DNA 

(Figure X).  Next we electroporated the cells in 5 parallels by DNA (100 µg/µl) and 

transferred each of them to 50 ml TYM media. According to protocol, we added geneticin 

(G418) (110 µg /ml) 6 hours after electroporation. Seventeen hours after electroporation, we 

span down the cells and resuspended them in 50 ml newly prepared TYM 6,2 medium with 

agar and G418. Next, we took 12,5 ml of each cell culture and cultivated them in 15 ml plastic 

tubes. The rest of the cells were distributed on 96-well plates and selected as clonal 

populations. The cells electroporated by circular pFdKO were used as a control for 

electroporation and cloning protocol. After 5 days of selection we obtained viable 
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transformants of the control cells in 96-well plate and in the tube. However, we observed 

living cells only in one population of cells transformed by linear pFdKO in 15 ml tube, 

labeled TvR41 and we did not observe any living cells on the 96-well plates. To test 

expression of fdx1, we analyzed the lysate of TvR41 cells via western blot using anti-Fdx1 

antibody (Figure X). No visible signal for the protein was detect, whereas Fdx1was observed 

in the control cells. Next, TvR41 strain was used for cloning on 96-well plate. We obtained 8 

viable clones of T. vaginalis with no expression of Fdx1. 

To conclude, we reproduced gene knockout for fdx1,performed previously in the 

laboratory of Patricia Johnson (Land et al. 2004) and Sven Gould (personal communication). 

Once we established the knockout technique by homologous recombination and deleted the 

gene for Fdx1, we focused on deletion of gene for TvIscU.  In the pFdKO plasmid, we 

replaced the UTRs of fdx1 by 5' and 3'UTRs of tviscu, of 1083 and 1057 bp, respectively. T. 

vaginalis cells were submitted to electroporation with linearized pIscUKO in three 

independent experiments, each in triplicates. In parallel experiments, cells were transformed 

with circular plasmid as positive controls for electroporation.  However, no viable cells were 

selected under these conditions. These results suggest that knockout of tviscu is most probably 

lethal for T. vaginalis cells. Consequently, we were unable to investigate, whether the deletion 

of tviscu affect function of the CIA machinery. 

 

  

 

Figure 5 PCR analysis of T. vaginalis cell lines 

electroporated with digested pFdKO  

DNA electrophoresis detects 609 bp long DNA fragment in 

all T. vaginalis cell lines electroporated by pFdKO that was 

digested by NotI and HindIII (TvT1 R4, TvT1 R1, TvT1 R2), 

and circular pFdKO as a control (TvT1 circular). The DNA 

fragment was amplified by PCR using specific primers 

complementary to ORF of fdx1 and 3´UTR of fdx1 gene using 

genomic DNA of transformed cell lines as a template. The 

results indicate that the fdx1 was not deleted. Therefore, we 

suggest that the plasmid, which was used to knockout the 

gene, was digested incompletely and remained partially 

circular. 
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Fdx1  

←10,7 kDa 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

5.2  

 

 

Figure 7:  Western blot analysis of TvT1 knockout lineages 

T. vaginalis R41 strain (TvT1 R41) and R41 clones (C10, C1, B7, C9, G2, E7, G6 and C4) have no 

signal for Fdx1. T. vaginalis Fdx1 knockout cells (TvC1 Fdx1KO) obtained previously by Land et al. 

(2004) was used as a negative control for Fdx1. T. vaginalis wild type cells (TvT1 wild type) and cells 

transformed by circular plasmid (TvT1 circular pFdKO) were used as positive controls for Fdx1.  

Figure 6: The model of pFdKO plasmid and scheme of homologous recombination  

The plasmid possesses an ampicilin and neomycin resistance cassete. We digest the plasmid by NotI, 

HindIII, ScaI. The homologous recombination occurs via untranslated regions (UTR), which are 

identical to genomic DNA. 
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5.3 Characterization of CIA pathway components 

Cytosolic iron-sulfur assembly pathway (CIA) comprises of 8 core components in 

Saccharomyces cerevisiae. Nbp35, Cfd1, Dre2, Tah18, Nar1, Cia1, Cia2 and Mms19 are 

proposed to be cytosolic FeS assembly factors. However, their distribution is not consistent 

among other organisms. We focused on CIA pathway in T. vaginalis  and characterized its 

CIA proteins. 

 

5.3.1 Identification of genes coding CIA proteins in the genome of T. vaginalis 

We searched for components of CIA proteins in the genomic data of T. vaginalis 

available at TrichDB. We used BLAST as a basic tool to search for protein homologues using 

proteins of CIA machinery previously described in S. cerevisiae as queries. We found 5 

putative components of CIA pathway: Nbp35, Cfd1, Cia1, Cia2, and Nar1 (Table. X). We did 

not find any homologues to Tah18, Dre2 and Mms19 as reported previously (Tsaousis et al.  

2014).  

 

 

 

Nbp35 and Cfd1 are both coded by two paralogous genes named Nbp35A and Nbp35B, 

and Cfd1A and Cfd1B. Analysis of predicted protein sequences revealed presence of the 

CPXC conserved motif, which facilitates the binding of transient labile FeS cluster at the C-

termini of the Nbp35/Cfd1 proteins. In addition, both Nbp35 paralogues possess 4 Cys 

residues at the N-termini coordinating additional [4Fe4S] cluster (Figure 9). Protein sequence 

identity of TvNbp35A/B and TvCfd1A/B to yeast orthologues is 39,865/39,865 and 

Protein Accession number Predicted molecular weight 

TvCfd1A TVAG_390510 27108 Da 

TvCfd1B TVAG_447450 27034 Da 

TvNbp35A TVAG_157490 31283 Da 

TvNbp35B TVAG_178350 31034 Da 

TvNar1 TVAG_129510 44548 Da 

TvCia1A TVAG_350560 34053 Da 

TvCia1B TVAG_441510 35473 Da 

TvCia2 TVAG_198590 18143 Da 

Figure 8: Table of CIA components identified in T. vaginalis genome 
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34,831/35,338, respectively. Similarly, we identified two paralogues of Cia1, containing 

WD40 repeat domain and named TvCia1A and TvCia1B (Figure 10), whereas a single genes 

for putative Cia2 was detected (Figure 11). Protein sequence identity of TvCia1A/B, and 

TvCia2 to yeast orthologue is 21,515/25,228, and 31,073 respectively. Finally, we were able 

to identified highly divergent Nar1 that displayed only 16,735 sequence similarity/identity to 

yeast Nar1. This protein is similar to hydrogenases of T. vaginalis however, differs in 

modified H-cluster that is required for hydrogen synthesis in hydrogenases. (Figure X). 

 

 

 

                               10        20        30        40        50        60            

                      ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cfd1     ---------------------------------------------------------MEE  

TvCfd1A TVAG_390510   ------------------------------------------------------------  

TvCfd1B TVAG_447450   ------------------------------------------------------------  

S.cerevisiae Nbp35    MTEILPHVNDEVLPAEYELNQPEPEHCPGPESDMAGKSDACGGCANKEICES--LPKGPD  

TvNbp35A TVAG_157490  ----------------------------------MSCSGNCGSCSHAGTCSSHGTPEALQ  

TvNbp35B TVAG_178350  ----------------------------------MSCNGDCANCPMKGSCSSGIVPEALK  

 

                               70        80        90       100       110       120         

                      ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cfd1     QEIGVPAASLAGIKHIILILSGKGGVGKSSVTTQTALTLCS-MGFKVGVLDIDLTGPSLP  

TvCfd1A TVAG_390510   ----------MSTQNFILVMSGKGGVGKSTTAANIARAYAAKYG-KVGLLDLDLTGPSIP  

TvCfd1B TVAG_447450   ----------MSTQNFILVMSGKGGVGKSTTAANIARAYAAKYG-KVGLLDLDLTGPSIP  

S.cerevisiae Nbp35    PDIPLITDNLSGIEHKILVLSGKGGVGKSTFAAMLSWALSADEDLQVGAMDLDICGPSLP  

TvNbp35A TVAG_157490  GALEECKTVLENVTHKILILSGKGGVGKSTLTYILTKYLAKTK--KVGVLDLDLCGPSIP  

TvNbp35B TVAG_178350  DSIRKVGEAMEPVQYKILVLSGKGGVGKSTTTYLLTRRLAADM--SVGVLDLDLCGPSMP  

 

                              130       140       150       160       170       180      

                      ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cfd1     RMFGLENESIYQGPEGWQPVKVETNSTGSLSVISLGFLLGDRGNSVIWRGPKKTSMIKQF  

TvCfd1A TVAG_390510   TLFGIQDKEIKSRNGKMVPQVVDG-----VQIISLGLMLSDPHDAVIWRGPKKSAMINQF  

TvCfd1B TVAG_447450   TLFGIKDKEIKSRNGKMVPQVVDG-----VQIVSLGLMLSDPHDAVIWRGPKKSAMINQF  

S.cerevisiae Nbp35    HMLGCIKETVHESNSGWTPVYVTDN----LATMSIQYMLPEDDSAIIWRGSKKNLLIKKF  

TvNbp35A TVAG_157490  ILFNCDVEPLLDTTFGFQPYHAAKN----INVVSIQFFLPDFDSPLVARGPKKNALVLQL  

TvNbp35B TVAG_178350  LLFEAENEKLRQTSLGISPLNVDEN----INLVSTQFFLENKDDPIIARGGVKNQMVLQL  

 

                              190       200       210       220       230       240      

                      ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cfd1     ISDVAWGELDYLLIDTPPGTSDEHISIAEELRYSKPD-GGIVVTTPQSVATADVKKEINF  

TvCfd1A TVAG_390510   FQLIEW-DCNTVIVDLPPGTSDEHLSTFDVLNRNNFSYSVIIVTTPNVLAVADVRKGINL  

TvCfd1B TVAG_447450   FQLIDW-NCNTVIVDLPPGTSDEHLSTFEILNKNGFPYSVVIVTTPNVLAVADVRKGINL  

S.cerevisiae Nbp35    LKDVDWDKLDYLVIDTPPGTSDEHISINKYMRESGID-GALVVTTPQEVALLDVRKEIDF  

TvNbp35A TVAG_157490  INQIDWSDQDFLLVDTPPGTSDEHLSVVSFMRDSEID-GAVIVTTPDEVSISDVRREIEF  

TvNbp35B TVAG_178350  LSDVDWSEAEIMLIDTPPGTSDEHLSIVSFMKDAGVT-GAVIVTTPEEVAISDVRREIRF  

 

                              250       260       270       280       290       300      

                      ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cfd1     CKKVDLKILGIIENMSGFVCPHCAECTNIF--SSGGGKRLSEQFSVPYLGNVPIDPKFVE  

TvCfd1A TVAG_390510   CLKVNAKIIGIIENFCGVVCPCCNKVSPLLGDK--AAEIMSEELQLDILAKIPFLPQ-AA  

TvCfd1B TVAG_447450   CMKVNAKIIGIIENFCGVVCPCCNQVSPLLGDK--AAEIMSEELHLDILAKIPFLPQ-AA  

S.cerevisiae Nbp35    CKKAGINILGLVENMSGFVCPNCKGESQIFKATTGGGEALCKELGIKFLGSVPLDPR---  

TvNbp35A TVAG_157490  CQKAGVKILGVVENMSQYKCPMCGKTSSIYGHEFGGAEELCKQENLDLLGRIPIDPY---  

TvNbp35B TVAG_178350  CKKSNIRVLGIIENMASYHCPHCGKDSSIYPRTNGGAEKMCQEEGVEYLGSVPIDPT---  
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                              310       320       330       340       350     

                      ....|....|....|....|....|....|....|....|....|....|.... 

S.cerevisiae Cfd1     MIENQVSSKKTLVEMYRESSLCPIFEEIMKKLRKQDTTTPVVDKHEQPQIESPK  

TvCfd1A TVAG_390510   SAADKGEKSDVILSFFNE-----VIDKIFPQQKAAQ------------------  

TvCfd1B TVAG_447450   SAADKGEKSDVILSFFNE-----VIDKIVPPAQPVAQ-----------------  

S.cerevisiae Nbp35    -IGKSCDMGESFLDNYPDSPASSAVLNVVEALRDAVGDV---------------  

TvNbp35A TVAG_157490  IVAGQFEPQKDLPEAIND-----AASVICEKIQQKLSA----------------  

TvNbp35B TVAG_178350  LVAGLVGKSHQIAPTVKE-----SIDSIVGKIMDAVSK----------------  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              10        20        30        40        50        60            

                     ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia1    MASINLIKSLKLYKEKIWSFDFSQGILATGSTDRKIKLVSVKDDD-FTLIDVLDETAHKK  

TvCia1A TVAG_350560  MKVSTIDEREGFIFDVCWHPS--GNYIAVSGADGKLKIFEQKEN---NFVEIVCKQ-RER  

TvCia1B TVAG_441510  --MKTVFECDKVVFDVDWSPD--GRYLAIVGASRELVLLKIDDEDPFNVTEVFREQ-RPN  

 

                              70        80        90       100       110       120         

                     ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia1    AIRSVAWRPHTSLLAAGSFDSTVSIWAKEESADRTFEMDLLAIIEGHENEVKGVAWSNDG  

TvCia1A TVAG_350560  AARRAQFSPDGTKIVVAGFDEHAIVYSFDPKLDGVLSEE--ATLSGQDAEIKTARWSPKA  

TvCia1B TVAG_441510  IIRRVHWSPDGKRLVTAGFDGVAVLYEFDEDKQPVLEMI--GNLYENDKELKSARWSHSG  

 

                             130       140       150       160       170       180      

                     ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia1    YYLATCSRDKSVWIWETDESGEEYECISVLQEHSQDVKHVIWHPSEALLASSSYDDTVRI  

TvCia1A TVAG_350560  DLIVTASRDKSVWVWDT----EEYDFIAVHSEHTADVKDAMFSPDGKFIVSVSFDEKVKV  

TvCia1B TVAG_441510  KYIVTCNRDKSIFVWDV----EELEYIVIHTEHKGDVKDVMFSPDDSKLVSVSFDGTVKV  

 

                             190       200       210       220       230       240      

                     ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia1    WKDYDDDWECVAVLNGHEGTVWSSDFDKTEGVFRLCSGSDDSTVRVWKYMGDDEDDQQEW  

TvCia1A TVAG_350560  WEA-KEELGSLQTFSHHQGTVWSLAFNPNNGNF--ITLGEDGKIILYKLDKGSYQIAAEL  

TvCia1B TVAG_441510  WSS-MEEYGSLQTFTHHTYTVWELAFDNENDEF--VTIGEDGKAVHYIEEDGKYIDAGEI  

 

                             250       260       270       280       290       300      

                     ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia1    VCEAILPDVHKRQVYNVAWGFNGLIASVGADGVLAVYEEVDGEWKVFAKRALCHGVYEIN  

TvCia1A TVAG_350560  QLQGDLESLYTAYYLDGQWFVGGSQTKIFV--VAEDLSKINRTIPI-------DQMGDIN  

TvCia1B TVAG_441510  QLNRPLDCLYAVTYRNGEWLISGVDHKIYI--MNDTFEEKIGEFDT-------GQLGDIN  

 

                             310       320       330   

                     ....|....|....|....|....|....|... 

S.cerevisiae Cia1    VVKWLELNGKTILATGGDDGIVNFWSLEKAA--  

TvCia1A TVAG_350560  CIA-AKPGFPNLVAVGNDDGTVSLFDIEKSK--  

TvCia1B TVAG_441510  CIK-PNPEKQNIIAVASDDGTVLLIDHELSSIY  

 

Figure 9: Alignment of Cfd1 and Nbp35 proteins  

Putative Cfd1A and Nbp35 proteins were found in Trichomonas vaginalis using 

Saccharomyces cerevisiae orthologs as queries. The conserved motif CPXC at C-

terminus of the proteins is highlighted (red boxes). Nbp35 proteins possess additional 4 

conserved cysteins at N-terminus (green boxes). 

Figure 10: Alignment of Cia1 proteins  

Putative Cia1 paralogues were found in Trichomonas vaginalis genome using 

Saccharomyces cerevisiae amino acid sequence of Cia1 as a query.  
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                             10        20        30        40        50        60            

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia2   MSEFLNENPDILEENQLPTRKEDSTKDLLLGGFSNEATLERRSLLLKIDHSLKSQVLQDI  

TvCia2 TVAG_198590  ----------------------------------------------------------MA  

T.b.brucei Cia2     ------------------------------------------------------------  

H.sapiens Mip18     ----------------------------MVGGGGVGGGL--------------------L  

 

                             70        80        90       100       110       120         

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia2   EVLDKLLSIRIPPELTSDEDSLPAESEDESVAGGGKEEEEP--DLIDAQEIYDLIAHISD  

TvCia2 TVAG_198590  ANPNPVVY-----------------GSAKYVRSTEDDLDSPEREAIDSLELYNYIRLIKD  

T.b.brucei Cia2     -----------------------------------------MTDRLTAEDVFYELSTIRD  

H.sapiens Mip18     ENANPLIYQR---------------SGERPVTAGEEDEQVP--DSIDAREIFDLIRSIND  

 

 

                            130       140       150       160       170       180      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia2   PEHP-LSLGQLSVVNLEDIEV-----------------HDSGNQNEMAEVVIKITPTITH  

TvCia2 TVAG_198590  PEHP-FSLEQLHIVSPDDIKV-----------------DDKEGR-----VNLVFTPTVPN  

T.b.brucei Cia2     PERPDCTLADLDVVAMNRCRVEYIESSADFQSLRGQGCNDSGKPSVV--VKVILQPTVPH  

H.sapiens Mip18     PEHP-LTLEELNVVEQVRVQV-----------------SDPEST-----VAVAFTPTIPH  

 

                            190       200       210       220       230       240      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisiae Cia2   CSLATLIGLGIRVRLERSLPPRF--RITILLKKGTHDSENQVNKQLNDKERVAAACENEQ  

TvCia2 TVAG_198590  CSLPAVLGLCIRERLLQVLPQRFHSKIFITVARGKHIQEDSINRQLRDKERCLAALERRN  

T.b.brucei Cia2     CSLMEFICLCVYVRLREVFSLSNNAKFDITLVDGSHVRQRELEKQVADKERLAAAMEDKA  

H.sapiens Mip18     CSMATLIGLSIKVKLLRSLPQRF--KMDVHITPGTHASEHAVNKQLADKERVAAALENTH  

 

                            250       

                    ....|....|....|.. 

S.cerevisiae Cia2   LLGVVSKMLVTCK----  

TvCia2 TVAG_198590  IRTMIDNCI-ACDDEEE  

T.b.brucei Cia2     LLQEVERHI-NCE----  

H.sapiens Mip18     LLEVVNQCLSARS----  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Alignment of Cia2 proteins  

Cia2 was identified in Trichomonas vaginalis genome using Saccharomyces cerevisiae 

Cia2 (Mip18 in Homo sapiens) as a query.  Cia2 is conserved in most eukaryotes. The 

highly conserved reactive cystein is highlighted (yellow box).  
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                             10        20        30        40        50        60            

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   -----------------------------MSALLSESDLNDFISPALACVK---------  

TvNar1 TVAG_129510  ------------------------------------MSADPAASTSFDCLH---------  

hydrogenase1        MLSIKIDGKEYQEKKGQTILQVCNKHGVYIPTLCNHPDLPPIAHCGVCVVKINGNNFVLS  

hydrogenase2        MIHLTINGQDAYVRRNTTIIEACRQLNIYVPTLCSHPDLPPIGACGVDVVKVNGSSLQRA  

 

                             70        80        90       100       110       120         

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   ------------------------------PTQVSGGKKDNVNMNGEYE----VSTEPDQ  

TvNar1 TVAG_129510  ------------------------------PVSIEERGR----------------VKADD  

hydrogenase1        CSHKIAAGMEIETGTPEIKAKALDALQNFSDVTMMPKTPEIEELYTYLKPARKVNMTPQK  

hydrogenase2        CVTYCQEGMVVETNTMDVKQQSLLNLQKFAPATMMQKTPDIEDLWNYYQPKQGLPYPPQQ  

 

 

                            130       140       150       160       170       180      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   LEKVSITLSDCLACSGCITSSEEI----LLSSQSHSV-----------------------  

TvNar1 TVAG_129510  EATFKVTLQDCLACSGCAITKDEIT---IISEQNTS------------------------  

hydrogenase1        LTSISFDPGLCIQCDRCTRACSDIQAMDAIQEDTHQIIDFDCIQCGQCANVCPTNAIYET  

hydrogenase2        NDSIQWDNTKCINCHLCIRACTNVQQIDSIDSVTHAIDD-SCIRCGHCLTVCPVAALTPF  

 

                            190       200       210       220       230       240      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   --FLKNWGKLSQQQDKFLVVSVSPQCRLSLAQYYGLTLEAADLCLMNFFQKHFQCKYMVG  

TvNar1 TVAG_129510  ----RIFEKLDEVKDYIVLVATHVVANLAAVRNWS-AAKAFSTIKQLFLSK---------  

hydrogenase1        PAIPKVIQALA--KGYIMIMQFAPSVRVTMGEMFGDEPGTICTGKIIAASRMMGFRYVFD  

hydrogenase2        PSIGRVLEALA--SDKICVLQTAPSVRVTIAEGFGHDPGTICTGKIVAAARKMGFKYVFD  

 

                            250       260       270       280       290       300      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   TEMGRIISISKTVEKIIAHKKQKENTGADRK--PLLSAVCPGFLIYTEKTKPQLAPMLLN  

TvNar1 TVAG_129510  ---GAQKVVLDTDIQLVFRRLVVKEFIENQTLSPFMISRCAGSVVYYERKTS-YADHLAQ  

hydrogenase1        IAYGADITVLEEGAELVHKIQNNE-----KL--PMFTSCCPSWVNFVERKHPELIPQLST  

hydrogenase2        INYGADQTIIEEGTEFMARLLNHEA----PL--PQFTSCCPGWVNFVETKHPEIIPNLST  

 

                            310       320       330       340       350       360      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   VKSPQQITGSLIRATFESLA-IARESFYHLSLMPCFDKKLEASRPESLDDGIDCVITPRE  

TvNar1 TVAG_129510  IKPYPQLYAMYEKKILQSTN-------YVLYIGPCYDRKLEAAR---FEEDVDAVLTIAE  

hydrogenase1        AKSPHMMSAAAIKTVFADVNNIDPSKIFLVSMMPCTAKKDEIIRTP-LQGQVDAVITARE  

hydrogenase2        AKSPHMMSGVAIKTYFAQVAGIPPEKIFTVSVMPCTAKKDEIERPQ-HKGVVDAVLTSVE  

 

 

                            370       380       390       400       410       420      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   IVTMLQ-ELNLDFKSFLTEDTSLYGRL--SPPGWDPRVHWASNLGGTCGGYAYQYVTAVQ  

TvNar1 TVAG_129510  INDHIT---------------EPTEEIPVKFPA-------DTDLNAISQKLG----QIKD  

hydrogenase1        FGQMIK-TFDIDWSTLDSDHTAAFDKMMGESSG-------GGNIFGVSGGVM----ESTM  

hydrogenase2        FVEMIKNNYQFDWDNL---PDSPYDNILSESTG-------GATIFGATGGVA----EAAL  

 

                            430       440       450       460       470       480      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   RLHPGSQMIVLEGRNSDIVEYRLLHD--DRIIAAASELSGFRNIQNLVRKLTSGSGSERK  

TvNar1 TVAG_129510  SLNSDS----IYQLI--AEIEPTLNE--EEINSLISELPSRFDLEISTNSFDGETLNKRL  

hydrogenase1        RYVSEK----LTGQT--LVSPPDFRQISEEMRSAEVQIGDR----TFKIGICGGIAAAK-  

hydrogenase2        RFCYEK----MTGLPIGQLIYSDLRGL-DGVKTATVNIAGN----NINIAVCNGVGNAH-  

 

                            490       500       510       520       530       540      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   RNITALRKRRTGPKANSREMAAATAATADPYHSDYIEVNACPGACMNGGGLLNGEQNSLK  

TvNar1 TVAG_129510  TKTLDM---------------MSSGKKVPKPAPRLAQIDFCKGGCLVGGGQIRGNSPAQR  

hydrogenase1        ----DL---------------LESGEFDD---YDFIEVMACPRGCISGGG---HPKLPIK  

hydrogenase2        ----DF---------------INSGMYKD---FHIVEVMACPGGCVGGGGQVLHSRTVLK  
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                            550       560       570       580       590       600      

                    ....|....|....|....|....|....|....|....|....|....|....|....| 

S.cerevisae Nar1p   RKQLVQTLNKRHGEELAMVD-PLTLGPKLEEAAARPLSLEYVFAPVKQAVEKDLVSVGST  

TvNar1 TVAG_129510  RALIAATQEVHTQNESTNISFPTELYNELIKFG-----YKTHYESLPQEEEKDQF----A  

hydrogenase1        R--IPERAKALYNIDGKKGEMNKLSALKNEEAAEC---YR-ILEEKNADLKNHIF---HT  

hydrogenase2        KDILQARINSLYAIDKQKIAEGKSTTNENTQLLKM---YRDFVGAPYSARVKQLF---HT  

 

                            610       620  

                    ....|....|....|....|. 

S.cerevisae Nar1p   W--------------------  

TvNar1 TVAG_129510  W--------------------  

hydrogenase1        HFSPQVAK-------------  

hydrogenase2        WYTDRSLKRTQLGYYNYHYRQ  

 

 

 

 

 

 

 

 

5.3.2  Localization of the members of CIA machinery by immunofluorescence 

microscopy 

The subcellular localization of CIA proteins were investigated using fluorescence 

microscopy. The genes coding for CIA components were subcloned to expression vector 

TagVag2 that allows their expression with hemagglutinin tag (HA) at C-terminus in T. 

vaginalis. TvCfd1A-HA, TvCfd1B-HA, TvNbp35A-HA, TvNbp35B-HA, TvNar1-HA, 

TvCia1A-HA and TvCia2-HA, appeared to be localized exclusively in the cytosol.  

Interestingly, TvCia1B-HA and TvCfd1A-HA appear to have in some experiments dual 

localization in the cytosol and hydrogenosomes, however, in other experiments, these protein 

were observed only in the cytosol (Figure 13). 

 

 

 

 

 

 

 

 

Figure 12: Alignment of Nar1 proteins found in and iron dehydrogenases. 

Alignment of putative Nar1 protein of T. vaginalis against S. cerevisiae Nar1 and T. vaginalis 

hydrogenases. Conserved cysteins are highlighted in green color. The cysteine residues coordinating 

H- cluster are indicated in blue boxes. Aminoacid residues, which are highly conserved in Nar1 

proteins are in yellow color (Nicolet, Cavazza, and Fontecilla-Camps 2002; Balk et al. 2004).  
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Figure 13: Localization of HA-tagged components of CIA machinery in T. vaginalis by 

fluorescent microscopy 

HA-tagged proteins were detected using monoclonal mouse anti-HA antibody (green). Malic enzyme 

was used as a marker for hydrogenosomes and detected using rabbit polyclonal anti-malic enzyme 

antibody (red). The nuclei were stained with DAPI (blue). DIC - differential interference contrast. 

TvCfd1A-HA and TvCia1B-HA display dual localization. Localization exclusively in the cytosol (A), 

and in the cytosol and hydrogenosomes (B) is shown. 

 



 45 

5.3.3 Localization of the members of CIA machinery in subcellular fractions 

The transformed cells that expressed the recombinant protein of interest were subjected 

to cellular fractionation and the protein localization was tested by western blotting. To test the 

protein topology within hydrogenosomes, the hydrogenosomal fractions were treated with 

trypsin to discriminate between proteins that are attached to the organellar surface and internal 

proteins. In this so-called protein protection assay, the hydrogenosomes were incubated for 30 

min at 37°C with trypsin to remove organellar surface proteins.  In controls, hydrogenosomes 

were incubated under same conditions without trypsin at 4°C, and 37°C.  

 

 

 

 

 

 

 

 

 

 

 

 

29,3 KDa 

33,5 KDa 

33,2 KDa 

36,2 KDa 

37,6 KDa  

46,7 KDa 

29,2 KDa 

20,3 KDa 

Figure 14: Identification of HA tagged CIA proteins that were expressed in T. vaginalis under 

control of STK promotor in subcellular fractions.  

Cyt, cytosol; H, hydrogenosomal fraction; H+T, hydrogenosomal fraction treated with trypsin. For 

protein protection assay, the hydrogenosomal fractions were incubated for 30 min. at 4°C or 37°C. 

TvCfd1B, TvCia1A-HA and TvNbp35B-HA is present also in inner hydrogenosomal fraction 

(H+T). The mouse anti-HA antibody was used against Ha-tagged proteins together with secondary 

alkaline phosphatase antibody.  

 

Cyt.    H      H      H+T 

         4°C  37°C   37°C 

TvCfd1A-HA 

 

TvCfd1B-HA 

TvNbp35A-HA 

 

TvNbp35B-HA 

TvCia1A-HA 

TvCia1B-HA 

 

 

 

 

TvCia2-HA 

 

TvNar1-HA 
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As expected, the majority of CIA components is localized in the cytosol. However, 

significant signal within the hydrogenosomal fractions was observed also for TvCfd1A-HA, 

TvCfd1B-HA, TvNbp35B-HA, TvCia1A-HA, and TvCia2-HA. Weak signals in the 

hydrogenosomal fractions were noticed also for TvNar1-HA and TvNbp35A-HA.TvCia1B-

HA displays very low expression and was detected only in the cell lysate and cytosol. The 

trypsin treatment removed signals for TvCfd1A-HA, Nbp35A-HA, TvCia2-HA, and TvNar1-

HA, which indicates that these proteins are partially attached to the outer hydrogenosomal 

membrane but they are not inside of hydrogenosomes. Interestingly, the protein protection 

assay revealed that part of Cfd1B-HA, Nbp35B-HA, and Cia1A-HA is present inside of the 

organelles. 

 

5.3.4 Localization of TvCfd1A-HA and TvNbp35-HA expressed under native 

promoter  

The STK promoter is known to drive strong expression of associated genes. Together 

with unexpected localization of some CIA components observed above, we suspected that 

gene expression under control of STK promoter may cause miss-localization of tagged 

proteins.  Therefore we decided to verify cell localization of selected proteins under the 

control of their native promoters. 

 Initially, we chose TvCfd1A, TvCfd1B, TvNbp35B and TvCia1A. For TvCfd1A and 

TvNbp35B genes, we were able to amplified approximately 500 bp of the sequence prior to 

ORF and cloned it to TagVag2 instead of STK promoter. Unfortunately, we failed to clone 

upstream regions of TvCfd1B and TvCia1A. Therefore, we proceeded only with TvNbp35B 

and TvCfd1A in further experiments. The T. vaginalis cells transformed with TvCfd1A-HA 

and TvNbp35B-HA under the control of native promoters (TvCfd1-HA-N, TvNbp35A-HA-

N) were analyzed by immunofluorescence microscopy and western blotting of cellular 

fractions. The fluorescence microscopy results of Nbp35B-HA-N were similar to Nbp35B-

HA. TvCfd1A-HA-N did not display dual localization, as we observed previously for 

TvCfd1A-HA. Although, the protein, labeled by anti-HA tag antibody, seems to have granular 

pattern, it did not co-localize with organellar marker .  
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Significant changes were observed using western blot analysis of subcellular fractions 

(Figure X). In the case of Cfd1A-HA-N, we noticed the presence of this protein exclusively in 

the cytosolic fraction. Nbp35B-HA-N was associated with the hydrogenosomal fraction; 

however, the signal disappeared under protein protection assay. This observation indicates 

that Nbp35B-HA is attached to the surface of hydrogenosomes yet not imported into the 

organelles when the protein is expressed under control of the native promoter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Localization of HA-tagged components of CIA machinery in T. vaginalis by 

fluorescence microscopy 

HA-tagged proteins were detected using monoclonal  mouse anti-HA antibody (green). Malic enzyme 

was used as a marker for hydrogenosomes and detected using rabbit  polyclonal anti-malic enzyme 

antibody (red). The nuclei were stained with DAPI (blue). DIC - differential interference contrast. 
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 Cyt.    H     H    H+T 

         4°C  37°C 37°C 

Cfd1A-HA-N 

 

Nbp35B-HA-N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Immunoprecipitation of TvCfd1A-HA and TvCfd1B-HA 

Cfd1 and Nbp35 are known to form heterotetrameric complex in yeast. As we detected 

two paralogues for each protein in T. vaginalis, we were interested whether all paralogues 

participate in formation of such a complex in this protist.    

Thus, we employed strains expressing TvCfd1A-HA and TvCfd1B-HA for 

immunoprecipitation of interacting partners.  We followed the co-IP protocol using 

dithibis[succinimidylpropionatel] (DSP) to crosslink the interacting proteins or proteins in the 

proximity. DSP is water-insoluble homobifunctional N-hydroxysuccimide ester which reacts 

with primary amines forming covalent amide bonds. The spacer arm length is 12 Å.  

The sample prepared by the same protocol employing parent T1 strain was used as a 

control in each experiment. Both HA-tagged strains were immunoprecipitated in duplicates 

and analyzed by mass spectrometry (The Laboratory of Mass Spectrometry in BIOCEV).  

Each sample was analyzed in three technical parallels. Complete raw data are presented 

in Supplementary Tables. Only proteins for which 2 unique peptides were identified were 

approved for further analysis. As significant partners immunoprecipitated with TvCfd1A-HA 

and TvCfd1b-HA were considered only the proteins that were either unique or enriched with 

fold change over 4 when compared with immunoprecipitated proteins in control samples 

(Table 2). Unique proteins are these that were present only in HA-tagged immunoprecipitated 

Figure 16 : Localization of TvCfd1A-HA-N and Nbp35-HA-N that were expressed in T. vaginalis 

under native promotors.  

 Subcellular fractions were isolated and analyzed by western blot. Cyt, cytosolic fraction; H, 

hydrogenosomal fraction; H+T, hydrogenosomal fraction treated with trypsine. For protein protection 

assay, the hydrogenosomal fractions were incubated for 20 min. at 4°C or 37°C.  The mouse 

monoclonal anti-HA antibody was used to visualized HA-tagged proteins together with secondary anti 

mouse antibody conjugated with alkaline phosphatase.  
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samples (log2 of intensity is shown in the Table X) and were not identified in the control. All 

identified proteins were automatically annotated based on TrichDB database and manually 

edited.       

Altogether, we identified 144 proteins enriched in the samples TvCfd1A-HA_1 and 2, 

relative to the control. Of these proteins, 30 proteins (counted with Cfd1A-HA) meet our 

criteria for interacting partner i.e. 15 protein with fold change >4, and 15 unique proteins. 

Interestingly, 22 interacting proteins are most likely cytosolic proteins, and 8 proteins were 

previously identified in hydrogenosomes. Particularly, C-tail anchored protein-8 and Hmp36 

and Tom40-2 are outer membrane proteins.  

Proteomic analysis of the TvCfd1B-HA samples revealed considerably less proteins. 

Altogether we identified 82, of these x 11 (counted with both TvCfd1B-HA and TvCfd1A) 

we considered as interacting partners.    

Importantly, as the main interaction partner we found Cfd1A. Although, TvCfd1A and B 

displayed high sequence identity that results in large number of common peptides, we 

identified unique peptides of TvCfd1A in the samples of immunoprecipitated TvCfd1B-HA.  

However regarding to similarity of these paralogues and number of identical razor peptides, 

we cannot discern the TVCfd1 proteins quantitatively. Further, we indentified 

hydrogenosomal C-tail anchored protein-8, and ATP dependent phosphofructokinase that 

were also present in TvCfd1A-HA sample. The other proteins are most likely cytosolic. 

We did not find any of the Nbp35 paralogues that were expected to be interaction partner 

proteins. To disclose whether TvCfd1A interacts with TvCfd1B without any Nbp35 protein in 

T. vaginalis, these experiments have to be thoroughly repeated and supplemented with further 

analysis. 
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6 DISCUSSION 

6.1 ISC-CIA relationship 

In model organisms such as S. cerevisiae and A. thaliana, the ISC pathway was 

repeatedly shown to be indispensable for maturation of FeS clusters in mitochondria as well 

as in the cytosol (Balk and Pilon 2011; Lill et al. 2012).  Moreover, the components of ISC 

pathway has to be localized within mitochondria to fulfill their proper roles (Gerber et al. 

2004). The link between mitochondrial ISC machinery and the cytosolic CIA pathway is 

facilitated by the proteins Atm1 and Erv1 of the inner mitochondrial membrane and 

intermembrane space respectively, along with glutathione (GSH) (Kispal et al. 1999; Mesecke 

et al. 2005; Schaedler et al. 2014). These components export sulfur containing compound of 

unclear character (X-S) to the cytosol.  Two hypothetical structures of X-S compound have 

been proposed including tetra-GSH-coordinated [2Fe2S] cluster, and GSSSG (the oxidized 

form of GSSH).  

Intriguingly, Trichomonas and other anaerobic parasites possess no protein homologous 

to Atm1 or Erv1 (Loftus et al. 2005; Rada et al. 2011). Moreover, T. vaginalis does not 

synthesize GSH. The question is, whether these components could be replaced by alternative 

export machinery or whether the ISC pathway is required for CIA machinery equally in 

anaerobic and aerobic organisms that differ in oxygen-metabolism significantly. Therefore, 

we attempt to investigate this phenomenon using T. vaginalis as a model anaerobic organism. 

In our study we attempted to establish a method of reverse genetics based on homologous 

recombination in T. vaginalis to investigate the role of hydrogenosomal ISC machinery for 

function of CIA machinery, and we partially characterized components of CIA machinery. 

We primarily searched for single copy genes coding CIA components as suitable candidates 

for gene knockout. In T. vaginalis, most of genes are present in multiple copies and only one 

component of ISC pathway, particularly IscU was found to be a single copy (Carlton et al. 

2007). On the other side the IscU protein was shown to be essential in other organisms and 

therefore the complete knockout might be lethal. However, Nfu and IscA were previously 

suggested to be potential alternatives for IscU scaffold domain in T. vaginalis (Beltrán et al. 

2013). There were identified 4 paralogues for Nfu and 3 for IscA proteins, which are all 

expressed in iron dependent manner (Carlton et al. 2007; Beltrán et al. 2013). To test whether 

T. vaginalis cells would be able to overcome the complete loss of TvIscU, we attempted to 

delete TvIscU by methods of reverse genetics. Moreover, deletion of IscU might provide 

information about the character of hydrogenosomal ISC - CIA relationship. 
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First, we confirmed the predicted hydrogenosomal localization of TvIscU. For this 

purpose, we developed specific polyclonal rat anti TvIscU antibody and using 

immunofluorescence microscopy, we demonstrated its localization within the organelles. This 

result is in agreement with previous proteomic studies, in which TvIscU has been detected in 

hydrogenosomal cellular fractions (Rada et al. 2011). 

The methods of reverse genetics are effective tools to investigate the function and 

phenotype of genes in various model organisms (Hardy et al. 2010). However, applications of 

these methods for the non-model organisms, albeit being often important human pathogens, 

are still limited. Particularly, no satisfying technique for gene manipulation has been 

established for T. vaginalis. Utilization of the method of RNA silencing by antisense RNA 

was reported a decade ago (Mundodi, Kucknoor, and Alderete 2007). However, this technique 

was not successfully reproduced by other research groups. Neither antisense oligonucleotides 

(Muñoz et al. 2012) seem to be a suitable technique for gene knockdown for this parasite, as it 

failed in further experiments in our and other laboratories (data not published). The most 

effective method appears to be a gene replacement (knockout) by homologous recombination 

(Land et al. 2004; Brás et al. 2013)This approach is based on a spontaneous homologous 

recombination of identical sequences of DNA. In the cells, the homologous recombination 

generally serves as DNA repair mechanism. Under selection pressure of suitable antibiotic, 

the cells are force to undergo recombination process in a specific position within the genome 

(Müller 1999). In our experiments, the quality of a linearized DNA that it delivered by 

electroporation to the cells appears to be crucial for this process, while contamination of 

circular plasmid might significantly decrease the chance to achieve the homologous 

recombination. The gene knockout was performed in two laboratories until these days. The 

first knockout of fdx1 did not show any phenotype (Land et al. 2004). The observation was 

explained later by presence of 7 paralogues for Ferredoxin that can substitute each other 

(Carlton et al. 2007). The report about knockout of the second gene coding for 

hydrogenosomal protein HMP23 (Brás et al. 2013), was published almost ten years later. The 

deletion of this gene led to slight change in the size of hydrogenosomes, since the deleted 

gene encodes the hydrogenosomal membrane protein. Unfortunately, the genome of T. 

vaginalis appeared to be highly repetitive with multiple gene copies for most genes, which 

significantly limits utilization of homologous recombination for functional genomics.  
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In our laboratory, we established the knockout technique using the protocol by Land et al. 

(2004). The crucial condition for successful gene replacement is complete linearization of 

DNA that is used for electroporation. Initially, we observed frequent contamination by the 

circular plasmid that led to the selection of cell without accomplished recombination of the 

gene within the genome. When we improved the protocol to get highly purified linear DNA 

for targeted gene replacement, we successfully selected T. vaginalis population with deleted 

gene for fdx1. Moreover, we cloned these populations and obtained 8 fdx1 knockout clones.  

The same protocol was used for gene deletion of tviscu. However, our repeated attempts 

to select T. vaginalis with deleted gene for TvIscU were not successful. These results suggest 

that TvIscU is essential for T. vaginalis and cannot be substitute by alternative scaffold 

proteins such as IscA, and Nfu. The paralogues for IscA and Nfu would more probably 

perform additional roles e.g. transfer of the cluster to specific apoproteins as proposed for S. 

cerevisiae (Mühlenhoff et al. 2011). We also cannot exclude the possibility that our linearized 

construct failed to replace homologous region in T. vaginalis genome upon electroporation. 

However, to limit this possibility, we repeated this experiment three times each in triplicates 

using pFDKO as positive control.  

Therefore, further experiments are desired in future with genes for IscS, Isd11 or Frataxin that 

are encoded by two genes, thus the knockout of one of the paralogues might display some 

phenotype related to FeS cluster assembly in viable cells, as was shown previously for Isa1 

paralogues in S. cerevisiae (Pelzer et al. 2000). 

 

6.2 Components of CIA machinery in T. vaginalis 

CIA pathway that provides the Fe-S cluster assembly in cytosol is unique for eukaryotic 

cells (Lill and Mühlenhoff 2005). The members of CIA are highly conserved among 

eukaryotes. Moreover, they are believed to be present already in the last eukaryotic common 

ancestor (LECA) (Tsaousis et al. 2014). We focused on CIA pathway of T. vaginalis and 

found 8 candidates for CIA components. Namely we detected two putative paralogues of 

Cfd1 (Cfd1A, Cfd1B), Nbp35 (Nbp35A, Nbp35 B), Cia1 (Cia1A, Cia1B), and single copy 

genes for Nar1 and Cia2.  

Paralogues for Cfd1 and Nbp35 are P-loop NTPases proteins that possess similar 

sequence motif CPXC for binding transient cluster (Netz et al. 2007). Moreover, Nbp35 

proteins contain also additional conserved cysteins to coordinate a stable [4Fe4S] cluster at N-

termini (Hausmann et al. 2005). It was point out that Nbp35 is ubiquitous protein, while Cfd1 
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is absent in some lineages of eukaryotes including Giardia intestinalis, a close relative of 

trichomonads (Tsaousis et al. 2014). The absence of Cfd1 could be explained by the 

observation that Nbp35 can form functional homodimer as observed in Viridiplantae (Bych et 

al. 2008). 

Two putative Cia1 proteins with WD40 repeat domain were named TvCia1A and 

TvCia1B, respectively. Further, we identified TvCia2 which contains a reactive cysteins 

residue common for other Cia2 proteins (Weerapana et al. 2010). Also, we found TvNar1 

which is a homologous to FeS protein Nar1 (Balk et al. 2004)  

 

6.2.1 Expression under control of strong promotor caused protein miss-localization 

We tested the cellular localization for all identified CIA components using fluorescent 

microscopy and subcellular fractionation. The fluorescent microscopy clearly displayed the 

localization of all CIA proteins in the cytosol apart from TvCfd1A-HA and TvCia1B-HA that 

were observed to have dual localization in some experiments.  

TvCfd1A, TvNbp35A, TvNar1 and TvCia2 were observed to be associated with surface 

of the organelles after subcellular fractionation. TvCfd1B-HA, Nbp35B-HA and Cia1A-HA 

were detected within the hydrogenosomes. It is known that expression of genes driven by 

strong STK promoter may result in unnatural amount of proteins and consequently leads to 

the protein miss-localization within the cells (Rada et al. 2015). Therefore, we suspected that 

the unusual localization of TvCfd1B, TvNbp35B and TvCia1A within the organellar fractions 

might be caused by the over-expression of the proteins. 

Indeed, when we analyzed localization of the Nbp35B-HA-N that is expressed under 

native promoter, the signal decreased and protein appeared to be associated only with 

hydrogenosomal surface. TvCfd1-HA-N completely lost organellar localization and was 

present exclusively in the cytosol. These results indicate that high protein expression that is 

under control of STK promotor  leads to the protein miss-localization within the cells. Similar 

observation was reported for expression of Fdx1 by Rada et al. (2015). The authors 

investigated the role of N-terminal presequence of Fdx1 for its targeting to hydrogenosomes. 

When the targeting presequence was deleted and ΔFdx was expressed under STK promotor, 

significant part of the protein was delivered into the organelles. However, when the same 

protein was expressed under control of native promotor, ΔFdx remains exclusively in the 

cytosol (Rada et al. 2015). Regarding these results, we recommend to use the native 

promoters for expression of recombinant proteins in Trichomonas vaginalis if possible.  
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6.2.2 Organellar localization of CIA components 

Observed association of Nbp35B-HA-N with hydrogenosomal surface is noteworthy.  

Presence of some CIA components in crude mitochondrial fractions was previously observed 

in other eukaryotes.  Namely, Nar1 and Cfd1 in S. cerevisiae appeared to be present in crude 

mitochondria fraction and membrane-enriched fractions, respectively (Roy et al. 2003; Balk 

et al. 2004). Although this phenomenon appears to be rather an artifact, two cytosolic FeS 

factors, Tah 18 and Dre2, were shown to have dual localization in both, cytosol and 

mitochondria (Vernis et al. 2009; Banci et al. 2011). According to recent studies, Dre2 is 

suggested to associate with the surface of mitochondria (Peleh et al. 2014). 

However, Nbp35 was found only in the cytosol and nucleus of S. cerevisiae (Hausmann 

et al. 2005). In contrary, in G. intestinalis two Nbp35 paralogues and Cia2 revealed dual 

localization in the cytosol and mitosomes, reduce forms of mitochondria (Pyrih et al., under 

review). Nbp35 proteins are most likely associated with the surface of mitosomes whereas 

Cia2 is present in the intermembrane space. In this work, we proposed that Nbp35 and Cia2 

may substitute the absence of Atm1 and Erv1 in G. intestinalis. Similarly, we observed 

association of Nbp35 with surface of T. vaginalis hydrogenosomes. In the case of Cia2, its 

attachment to the surface of hydrogenosomes was observed when the gene was expressed 

under control of STK; however, we did not succeed to express this protein under native 

promoter yet. Therefore, further experiments are needed to resolve Cia2 topology in T. 

vaginalis.  Collectively, our results suggest that there is significant variation in cellular 

localization and possibly functions of CIA components in eukaryotes.     

 

6.2.3 Missing CIA components in T. vaginalis 

We did not find any homologues for MMS19, Dre2 and Tah18. The patchy distribution 

of Mms19 which seems to be not essential was reported previously (Tsaousis et al. 2014). The 

absence of Dre2 and Tah18 seems to be a general trend in anaerobic protists (Pyrih et al. 

under review, Basu et al. 2013; Tsaousis et al. 2014). We suggest that the Mms19 might be 

substituted by different protein, which would be able to bind and interact with nuclear 

proteins in Trichomonas vaginalis. Otherwise, its function can be substitute by other members 
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of CIA targeting complex, particularly TvCia1A/B and TvCia2 themselves, as the CIA 

targeting complex appeared to vary in its member´s composition (Paul and Lill 2015) 

We cannot explain the loss of Dre2 and Tah18 satisfactory, yet. These proteins form a 

short electron chain in the cytosol (Zhang et al. 2008; Netz et al. 2010). Dre2 directly interacts 

with Nbp35 and donates electrons to reduce stable N-terminal [4Fe-4S] cluster (Netz et al. 

2010, 2014). It remains the matter of debate whether there exists a different electron donor to 

supply the electrons for this cluster in T. vaginalis, or whether it does not need any electron 

transfer. Interestingly, Tah18 and Dre2 are also involved in unrelated reduction of 

ribonucleotide reductase metallocofactor, so it is unclear how this cofactor is assembled in T. 

vaginalis and other anaerobes (Zhang et al. 2014). This revelation therefore leads to doubts 

about its main function as essential FeS factors.  

 

6.2.4 Cfd1 interacting partners 

Finally, we investigated interactions between Cfd1 and Nbp35 proteins that are known to 

form a scaffold domain for cluster assembly during initial steps of the CIA machinery (Netz 

et al. 2007; Stehling et al. 2008). In the species containing both, Cfd1 and Nbp35, these 

components form functional heterotetramer (Netz et al. 2012). However, T. vaginalis possess 

two gene paralogues for each protein that are all transcribed (data provided by Dr. Sven 

Gould). To investigate composition of expected Cfd1/Nbp35 complex in T. vaginalis, HA-

tagged TvCfd1A and TvCfd1B were immunoprecipitated using anti-HA dynabeads and 

analyzed by mass spectrometry.  

When TvCfd1B-HA protein was immunoprecipitated, TvCfd1A was repeatedly detected 

among interacting partners. However, in the immunoprecipitated TvCfd1A-HA samples, we 

were unable to detect unique peptides for TvCfd1B.  This non-reciprocal data could result 

from high sequence identity between TvCfd1A and TvCfd1B that cause difficulties in 

identification of unique peptides for each protein when large number of common peptide is 

present.  However, we failed to detect any TvNbp35 paralogue as expected interaction partner 

for TvCfd1. Cfd1 is often missing in various eukaryotes including members of SAR, 

Archaeplastida, and G. intestinalis (Tsaousis et al. 2014). In A. thaliana, Nbp35 protein was 

shown to form functional homomeric complex without contribution of Cfd1 (Bych et al. 

2008). However, the formation of a complex that consists of only Cfd1 subunits has not been 

observed so far. Moreover, Cfd1 subunits cannot form N-terminal [4Fe4S] cluster, thus 

function of such a complex in FeS cluster formation is doubtful. On the other side the Cfd1 
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homodimer is able to bind one [4Fe4S] via its C-terminus (Netz et al. 2012). Another possible 

explanation is that high amount of recombinant Cfd1 that was expressed under control of STK 

promotor, does not allow natural interaction with Nbp35 proteins that are present in innate 

concentrations. Therefore, other strategies need to be employed to resolve Cfd1-Nbp35 

interactions in T. vaginalis: (i) immunopreciptation of Nbp35 paralogues that are expressed 

under native promotor, (ii) simultaneous co-expression of two proteins of CIA pathway (e.g. 

Cfd1A and Nbp35B) with different tags. We expect to detect the interaction partners more 

likely once they have a similar expression level. As a control, we plan to use cells, which co-

express other CIA protein and CIA non-related protein.  

 Interestingly, the proteomic analysis of proteins co-precipitated with TvCfd1A-HA and 

TvCfd1B-HA revealed that both proteins interact with cytosolic as well as hydrogenosomal 

proteins. For example, among interacting partners of TvCfd1A-HA, we identified typical 

cytosolic enzymes, such as PPi-dependent phosphodructokinase, Alcohohol dehydrogenase, 

or malic enzymes, proteins that are present at outer hydrogenosmal membrane (C-tail 

anchored protein-8, putative Tom-40) as well as protein that reside in hydrogenosomal matrix 

(Pyruvate-ferredoxin oxidoreductase and ATP-dependent phosphofructokinase). These 

findings indicate that both recombinant proteins have dual localization in the cytosol and 

hydrogenosomes when expressed under the strong STK promoter. This is in agreement with 

observed dual localization of TvCfd1A and B using western blot analysis of subcellular 

fractions as discussed above. It is unlikely that all identified proteins are natural functional 

interacting partners. Probably they are randomly crosslinked in the close proximity with 

abundant recombinant proteins. Therefore, this method seems to be an excellent tool for 

investigation of cellular localization of the tagged proteins. Indeed, we used similar approach 

for investigations of Cia2 and Nbp35 topology in G. intestinalis, previously (Pyrih et al. under 

review).     
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7 CONCLUSIONS 

In conclusion, in this work we focused on selected components of ISC pathway and CIA 

machinery in Trichomonas vaginalis. We prepared specific antibody against TvIscU, and 

demonstrated localization of TvIscU in the hydrogenosomes. We established gene knock out 

system for T. vaginalis and attempt to delete gene for TvIscU. The results suggest that TvIscU 

is essential for the parasite. Next, we identified 8 components of CIA pathway and 

demonstrated their localization in the cytosol. Moreover, we showed that TvNbp35A is also 

associated with the hydrogenosomal surface. We established a protocol for protein 

immunoprecipitation and analysis by mass spectrometry. We propose a tentative scheme for 

FeS cluster biogenesis via ISC and CIA machineries in T. vaginalis  (FigX), which need 

further investigations to clarify several points:   

(i) Which membrane transporters and proteins are involved in the transport of X-S 

compound from hydrogenosomes to the cytosol and which proteins are involved in the 

transport of iron from the cytosol to hydrogenomes?, (ii)   Are there other hypothetical 

proteins participating in ISC or CIA machinery in T. vaginalis?, (iii) Do Cfd1 and Nbp35 

proteins form proposed complex?, (iv) Do the paralogous proteins have similar or different 

function?, (v) How does the X-S arise and what it is composed of? (vi) How is the loss of 

Dre2 and Tah18 related to anaerobiosis and how do the cells deal with electron transfer to 

stable cluster of Nbp35?   
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