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Chapter 1IntrodutionDealing with deision problems one has to hoose an ation from a givenset of alternatives with unertain onsequenes. For example, onsider adeision maker who wishes to alloate his resoures to di�erent investmentopportunities in an \optimal way". There are several approahes how toonstrut the deision riterion under risk to hoose the optimal alternative.Almost all of these models are based on some measure of yield and risk.Typially a measure of yield of an alternative (investment opportunity) ismaximized and a measure of risk is minimized. However, the behavior ofdeision maker depends on his risk attitude. One of the lassial ways ofinvolving risk fator in portfolio seletion problem is onsidering a utilityfuntion when the optimal alternatives maximize expeted utility.If the yield and risk of an asset are measured separately, the yield is usu-ally measured by expeted value. On the other hand, there is no generallyaepted measure of risk. Therefore there are several di�erent mean-riskmodels for various types of risk measures: variane, semi-variane, uppersemi-deviation, Value at Risk, onditional Value at Risk, et. When theonept of maximizing expeted utility is applied, from the type of utilityfuntion one an derive another risk measures: Arrow-Pratt absolute (rela-tive) risk aversion measure and risk premiums.In all portfolio optimizing models some kind of a risk parameter is in-luded and some distribution of yields is assumed. Sine the risk parameterand the distribution of yields are usually not exatly known, one an analyzethe dependene of optimal solutions on these inputs.When no information about risk attitude of the deision maker is knownone an apply a stohasti dominane approah. In the ontext of the6



CHAPTER 1. INTRODUCTION 7stohasti dominane for portfolio seletion problems the eÆieny of a givenportfolio is analyzed. In this thesis we will examine a utility theory, riskmeasures and stohasti dominane approah with appliation to portfolioseletion problems.The basis of utility theory are onneted with von Neumann & Morgen-stern [54℄ where the existene of von Neumann - Morgenstern utility funtionis analyzed. This funtion u has suh a property that a rational deisionmaker prefers alternative X to alternative Y if and only if Eu(X) � Eu(Y ).More general axiomati theory of utility was presented in �Cern�y et al. [6℄,Ziemba & Vikson [57℄ and referenes therein, espeially Herstein & Milnor[19℄ and Fishburn [12℄.There are two approahes to onstrution of utility funtions: diret (ar-dinal utility funtion) and indiret (ordinal utility funiton). An ordinal util-ity funtion for an individual onsists of a rank ordering of possible states ofa�airs for that individual. An ordinal funtion tells us that deision makerprefers X to Y, but it doesn't tell us whether X is muh better than Y oronly a little better. A ardinal utility funtion assigns a real-number value foreah possible state of a�airs. The assumptions for existene of the ardinal orordinal utility funtion are derived in e.g. �Cern�y et al. [6℄ and Gl}ukaufov�a& �Cern�y [16℄. In this thesis we fous on the ardinal utility funtion wherethe utility is assigned to the total wealth of a deision maker.There are several haraterization of utility funtions. In Kopa [25℄, threeways of utility funtion lassi�ation are presented. They are based on:Arrow-Pratt absolute (relative) risk aversion measure, \preferene swithing"and \star shape". The lassial haraterization of Arrow [1℄ and Pratt [45℄deals with twie di�erentiable and inreasing utility funtions. There is alose relationship between risk aversion, risk seeking or risk neutrality of aninvestor and the sign of the Arrow-Pratt absolute risk aversion measure. Aonave (onvex, linear) utility funtions represent risk averse (risk seeking,risk neutral) deision maker. Another way how to express the risk attitude ofdeision maker is represented by \risk premiums". The preferene swithingharaterization explores the number of swithing preferenes between anytwo gambles, as initial wealth inreases, see e.g. Pedersen & Sathel [41℄,Kopa [25℄. Espeially zero-swith utility funtions are of interest. One-swith utility funtions, where at most one preferene swithing betweenany two gambles ours due to hanges in wealth, were analyzed in Bell [4℄.Similarly to onave utility funtions, star-shape utility funtions also exhibit



CHAPTER 1. INTRODUCTION 8risk aversion at some wealth position, see Landsberger & Meilijson [35℄. Theomparison of onave and star-shaped utility funtions shows that onavefuntions have dereasing marginal slope whereas star-shaped funtions havedereasing average slope from the point at whih they are star-shaped.There is a host of areas where utility theory an be applied. For example,the utility funtion an be used in medial survival analysis. In insuranetheory one an exploit utility funtion to estimate fair insurane premiumlevel. In this thesis we will apply the utility theory to a portfolio seletionproblem in order to analyze the optimal investment strategy of the deisionmaker. In optimization models with utility funtions the expeted utility ofthe �nal wealth is maximized. Therefore the portfolio seletion problem is aproblem of stohasti programming.Aording to R}omish [48℄ and referenes therein, one may derive a sta-bility result for set of optimal solutions in the ase when an underlyingprobability distribution is perturbed or approximated. As a onsequeneof this theory, we an provide a senario-based approximation of distributionof yields in the portfolio seletion problem and estimate the maximal erroraused by using approximate distribution.In lassial approah, utility funtions for one-period investment possibil-ity are onsidered. When a multiperiod investment possibilities are analyzedthe deision problem is dynami and it leads to dynami portfolio seletionproblem. In this ase, one an searh for investment strategy as a sequeneof deisions. In this thesis we assume disrete time multiperiod problemsde�ned in e.g. Dupa�ov�a et al. [10℄. In these problems, a multidimensionalutility funtion is maximized. These funtions are shown and analyzed ine.g. Ambarish & Kallberg [2℄, Dunan [9℄, Dupa�ov�a et al. [10℄, Kihlstrom& Mirman [23℄ and Rihard [46℄.In spite of a large number of papers dealing with utility funtions, thetheory of utility funtions with appliation to portfolio seletion problem isstill atual and of interest due to three reasons. Firstly, the omputationalaspet of solving one-period portfolio seletion problems is no more limiting.Seondly, less onventional lasses of utility funtions beome more impor-tant. For example, aording to Kopa & Post [32℄, the representative setof utility funtions in the ase of �rst-order stohasti dominane onsistsof disontinuous utility funtions. It opens an area for researh onerningsuitable assumptions for utility funtions in ontext of portfolio seletionproblem. Finally, portfolio seletion problem with multiperiod investmentpossibilities an be formulated using multiperiod utility funtions.



CHAPTER 1. INTRODUCTION 9An alternative formulation of the portfolio seletion problem is repre-sented by mean-risk models. If risk is measured by variane, the Markowitzmodel is onsidered, see Markowitz [39℄. In Ogryzak & Ruszzy�nski [40℄,some of the other risk measures suh as: absolute deviation, absolute semide-viation, standard semideviation, Value at Risk (VaR), onditional Value atRisk (CVaR) and Gini mean di�erene are analyzed with respet to relation-ship to stohasti dominane. All of these measures are based on some riskparameter and on ertain distribution of yields. Some of the orrespondingmean-risk models an be derived as a speial ase of maximizing expetedutility problem. For example, if quadrati utility funtion is assumed, vari-ane is the appropriate measure of risk. If a deision maker has not a utilityfuntion onsistent with any of these mean-risk models, he needs to quantifyhis risk by another, more general measure of risk, so-alled the risk premium.Risk premiums an be derived from any type of utility funtion and forany investment opportunity. The basi ideas of the risk premium approahome from Pratt [45℄ when the risk premium for one-period and univariategamble is onstruted. A generalization of this approah in order to de�nemultidimensional premium for one-period gamble was suggested in e.g. Dun-an [9℄, Kihlstrom & Mirman [23℄ or Rihard [46℄. To derive risk premiumfor multiperiod risks, one an apply the modi�ation of multidimensionalpremium in Ambarish & Kallberg [2℄. The onstrution of the multiperiodrisk premium based on the preferene indi�erene between aepting a mul-tiperiod gamble and rejeting the gamble with possibility of aepting thegamble only in some time periods was presented in Kopa [29℄. This approahis a generalization of Dunan [9℄, Kihlstrom & Mirman [23℄, Rihard [46℄ orAmbarish & Kallberg [2℄. Another way how to onstrut multiperiod riskmeasures was shown in Eihhorn & R}omish [11℄ using polyhedral risk mea-sures. This measures are de�ned as optimal values of ertain linear stohastiprograms where the arguments of the risk measure appear on the right-handside of the dynami onstraints. Multiperiod extensions of CVaR are anexample for polyhedral risk measure.The portfolio seletion problem may be regarded as a two-step proedure.Firstly, an eÆient set among all available portfolios is hosen and then therisk preferenes of a deision maker to this set are applied. When no infor-mation about risk preferenes is known, an eÆieny of a given portfolio anbe tested with respet to stohasti dominane rules. First-order stohastidominane (FSD) is one of the fundamental onepts of deision making un-der unertainty, relying only on the assumption of nonsatiation, or deision



CHAPTER 1. INTRODUCTION 10makers preferring more to less. Assuming a onavity of utility funtions, aseond-order stohasti dominane (SSD) approah an be employed.There are well-known, simple tests for establishing FSD and SSD rela-tionships between a pair of hoie alternatives; see, e.g. Hanoh & Levy [18℄,Levy [36℄, Levy [37℄. The third or higher degree of stohasti dominanewas analyzed in e.g. Levy [36℄, Whitmore [55℄ and Whitmore [56℄. Unfor-tunately, these tests have a limited use in appliations with more than twohoie alternatives. At present, the analysis of investment portfolios is a aseof interest; investors generally an form a large number of portfolios by diver-sifying aross individual assets. For suh appliations, there were developedspeial tests that analyzed whether a given portfolio is FSD eÆient or SSDeÆient relative to all possible portfolios. In this thesis, one of SSD eÆienytests is introdued and the FSD eÆieny test based on FSD optimality isderived.Assuming senario approah for distribution of outomes, Kuosmanen[34℄, Post [43℄, Post [44℄ presented linear programming SSD eÆieny testsof a given portfolio. There was a historial development of SSD eÆienyproperty. The �rst ideas ome from Post [43℄. The Post test exploits a stru-ture of the set of representative utility funtions when the diversi�ation isallowed. For pairwise omparisons, Russel & Seo [50℄ showed that the setof two-piee linear utility funtions is representative for all onave utilityfuntions. In ontext of portfolio optimization, Post [43℄ proved that theset of piee-wise linear utility funtions is representative. He presented veryfast linear programing test. The Kousmanen SSD eÆieny test is basedon so-alled dominating sets of portfolio return pro�le employing empirialdistribution funtions and pairwise SSD riteria. Under the assumption ofsenario approah, in this thesis, a linear programming SSD eÆieny testbased on the relationship between CVaR and a dual seond-order stohastidominane properties is derived. In ontrast to the Post approah, we fol-low Kuosmanen [34℄ and Ruszzy�nsky & Vanderbei [51℄ in onsidering lessstringent de�nition of SSD eÆieny. Therefore, the Post riterion is only aneessary ondition. From empirial point of view, this neessary onditionis very powerful. However, this riterion fail in deteting SSD dominatingportfolio with the same mean as a tested portfolio. It means, that the Postriterion lassi�es portfolio as SSD eÆient even if there exists a SSD domi-nating portfolio in the sense of Hanoh & Levy [18℄ or Levy [36℄. Comparingour test with the Kuosmanen test, our test leads to smaller linear problemthan the Kuosmanen test. Moreover, ontrary to both the Post and the Ku-



CHAPTER 1. INTRODUCTION 11osmanen tests, if a given portfolio is SSD ineÆient, our test detets a domi-nating portfolio whih is SSD eÆient. More general stohasti problem withstohasti dominane onstraints was solved in Dentheva & Ruszzy�nski [8℄.However, there is no appliation to SSD eÆieny test in this referene. InRuszzy�nski & Vanderbei [51℄ a SSD eÆieny in a mean-risk spae was an-alyzed. A speialized parametri method for the entire mean-risk eÆientfrontiers was developed.A ompliation in testing FSD portfolio eÆieny is that we must distin-guish between eÆieny riteria based on \admissibility" and \optimality".There is a subtle di�erene between these two onepts. An alternative isFSD admissible if and only if no seond alternative is preferred by all non-satiable deision-makers. This onept is relevant for expeted utility theorywith non-dereasing utility funtions, as well as other theories of risky hoiethat are onsistent with FSD, suh as umulative prospet theory. However,when using expeted utility theory, admissibility is generally weaker than op-timality. An alternative is FSD optimal if and only if it is the optimal hoiefor at least some non-dereasing and non-onstant utility funtion. For pair-wise omparison, the two onepts are idential. However, more generally,when multiple alternatives are available, FSD admissibility is a neessarybut not suÆient ondition for FSD optimality. In other words, an alterna-tive may be admissible even if it is not optimal for any non-dereasing andnon-onstant utility funtion.Bawa et al. [3℄ and Kuosmanen [34℄ propose FSD tests that apply undermore general onditions than a pairwise test does. The two tests di�er in asubtle way. While Bawa et al. [3℄ onsider all onvex ombinations of thedistribution funtions of a given set of alternatives, Kuosmanen [34℄ onsidersthe distribution funtion for all onvex ombinations of a given set of alter-natives. Eah of these two tests aptures an important aspet of portfoliohoie that is not aptured by a pairwise FSD test. Still, both tests misssome key aspets of a proper FSD portfolio optimality test and both testsgenerally give a neessary but not suÆient ondition. The linear program-ming test of Bawa et al. is based on optimality, but it does not aount fordiversi�ation aross the hoie alternatives. Even though the mixed-integerlinear programming test of Kuosmanen does aount for diversi�ation, itrelies on admissibility rather than optimality.In Kopa & Post [32℄, a proper test for FSD optimality of a given portfoliorelative to all portfolios formed from a set of alternatives is derived. Thereformulation of the FSD optimality riterion in terms of a set of elementary



CHAPTER 1. INTRODUCTION 12representative utility funtions is presented. For pairwise FSD omparisons,Russell & Seo [50℄ showed that the set of three-piee linear funtions - wherethe �rst and the last piee is onstant - is representative for all admissibleutility funtions. In portfolio ontext, with diversi�ation allowed, a moregeneral lass of pieewise onstant funtions is relevant. Kopa & Post [32℄developed a linear programming test for searhing over all representativeutility funtions in order to test a portfolio optimality. To identify the inputfor the linear programming problem, they suggest to use mixed-integer linearprogramming or subsampling tehniques. In ontrast to Bawa et al. [3℄,they onsider diversi�ed portfolios in addition to the individual, undiversi�edalternatives, and in ontrast to Kuosmanen [34℄, they rely on optimalityrather than admissibility.Due to onavity of utility funtions, the analysis of SSD eÆieny issimpler than FSD eÆieny. First, SSD admissibility and SSD optimality areequivalent and the de�nition of SSD eÆieny is less ambiguous than FSDeÆieny. Seond, SSD eÆieny an be tested diretly using linear programwhile FSD optimality linear programming test requires mixed-integer linearprogramming algorithm or subsampling tehniques as an initial phase. Third,FSD representative set of utility funtions onsist of disontinuous utilityfuntions. This disontinuity auses a presene of the mixed-integer element.The SSD eÆieny tests in Kuosmanen [34℄ and Post [43℄ are appliedin analysis of the Fama and Frenh market portfolio relative to benhmarkportfolios formed on market apitalization and book-to-market equity ratiousing US stok market data. They showed that tested market portfolios wereSSD ineÆient. Kuosmanen [34℄, using a mixed-integer linear program, andKopa & Post [32℄, using a linear program with subsampling initial phase,demonstrated FSD inadmissibility hene FSD non-optimality of the marketportfolio. It implies the fat that no nonsatiable investor would hold theFama and Frenh market portfolio in the fae of the onsidered benhmarkportfolios i.e. small ap premium and the value stok premium.The dissertation thesis is strutured as follows. Chapter 2 is inspired byKopa [25℄, Kopa [26℄, Kopa [27℄, Kopa [28℄ and deals with utility funtionsand their appliation in a portfolio seletion problem. We will restrit ourattention to lassi�ation of utility funtions based on the Arrow - Prattabsolute risk aversion measure. It is assumed that the distribution of re-turns has a bounded support. The stability of expeted utility of optimalportfolio in dependene on the hoie of utility funtion is analyzed. Under



CHAPTER 1. INTRODUCTION 13the same assumptions, the stability of optimal investment strategy due tohanges in Arrow - Pratt absolute risk aversion measure is disussed. Therelated result was proved in Kallberg & Ziemba [22℄ for normally distributedyields of assets using Rubinstein's measure of global risk aversion instead ofabsolute risk aversion measure. Applying the theory of variational analysis,see Rokafellar & Wets [47℄, under assumption of hypoonvergene of utilityfuntions, the limit set of optimal portfolios is analyzed. In omparison withgeneral stability results in stohasti programming, see R}omish [48℄, we an-alyze the stability with respet to perturbations of utility funtions insteadof hanges in probability measures.Chapter 3 is based on Kopa [29℄. It develops haraterizations of multi-period risk premium. In general, risk premiums represent a way how the riskof investment possibilities an be evaluated when utility funtion of deisionmaker is known. The onstrution of multiperiod risk premium is based onthe preferene indi�erene between aepting a multiperiod game and re-jeting this game. The possibility of aepting the game only in some timeperiods is inluded. The results in Ambarish & Kallberg [2℄ and Chalfant& Finkelshtain [5℄ are generalized for multiperiod problem. Considering di-retional, partial and onditional multiperiod risk premiums, the onnetionbetween multiperiod risk aversion and multiperiod risk premiums is proved.In omparison with maximizing utility riterion the onept of stohastidominane o�ers a di�erent approah to lassi�ation of onsidered portfo-lios. The di�erenes are also in notation for investment strategy and senariosof yields. Following the seminal works about stohasti dominane in on-text of the portfolio seletion problem, see Post [43℄ and Kuosmanen [34℄, wehold the usual notation for stohasti dominane. Therefore the notation inhapter 4 and hapter 5 is not the same as in previous hapters.Chapter 4, inspired by Kopa [30℄ and Kopa [31℄, desribes SSD rulesonerning the portfolio seletion problem. As it was shown in Ogryzak &Ruszzy�nski [40℄, CVaR orresponds to seond-order stohasti dominane.Using this property for disrete probability distributions of returns, nees-sary and suÆient onditions for eÆient and ineÆient portfolios relative toall possible portfolios reated from a set of assets are derived. We suggestan algorithm based on these onditions for stohasti dominane and speialproperties of CVaR for disrete probability distributions of returns. We de-rive a SSD portfolio eÆieny measure whih is onsistent with seond-orderstohasti dominane. Moreover, we explore the onvexity of this measure.We adopt these results for testing seond-order stohasti eÆieny of mean-



CHAPTER 1. INTRODUCTION 14VaR optimal portfolios.Finally, hapter 5, based on Kopa & Post [32℄ and Kopa & Post [33℄, devel-ops a test for FSD eÆieny of a given portfolio of hoie alternatives relativeto all possible portfolios. To simplify the searh over all utility funtions, wereformulate the problem in terms of pieewise-onstant utility funtions, ageneralization of the Russell & Seo [50℄ representative utility funtions forpairwise FSD tests. We provide a linear programming riterion for imple-menting the test. To identify the input for the linear programming problem,we may use mixed-integer linear programming or subsampling tehniques. Inontrast to the test by Bawa et al. [3℄, our test onsiders diversi�ed portfo-lios in addition to the individual, undiversi�ed alternatives, and furthermoreontrary to Kuosmanen [34℄, our analysis is based on optimality rather thanadmissibility. Both features lead to a more powerful FSD eÆieny test thanis urrently available. In Kopa & Post [32℄, this test is applied in analysisof Fama and Frenh market portfolio. The di�erenes between the Kuosma-nen FSD eÆieny test, the Bawa FSD eÆieny test and our approah aredemonstrated on numerial example.



Chapter 2Stability of optimal portfolio inportfolio seletion problem
2.1 PreliminariesIn this hapter we use utility funtions, so that when solving portfolioseletion problem, the optimal portfolio has the maximal expeted utility.Utility funtions are very useful for modeling the investor's behavior, e.g.risk aversion (or seeking). On the other hand it an be diÆult to solve theportfolio seletion problem for some types of utility funtions. In Setion 2.2,we reall an additive and multipliative formulation of maximizing expetedutility problem. The stability of optimal portfolio due to hanges in Arrow-Pratt risk aversion measure in Setion 2.3 will be analyzed and supplementedwith appliation of basi results of variational analysis in Setion 2.4.De�nition 2.1:A funtion u : I!R is alled utility funtion if u is �nite and nondereas-ing in the interval I � R.The basi analysis of utility funtions of Arrow [1℄ and Pratt [45℄ o�ersan intuitive way of looking at absolute and relative risk aversion oeÆients.The Arrow-Pratt oeÆient of absolute risk aversion, also alled absoluterisk averse (ARA) funtion, is de�ned as

15



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 16
r(x) = �u00(x)u0(x) (2.1)for x 2 I and for an inreasing, twie di�erentiable utility funtion u in I.We assume that investor (deision maker) has utility funtion u and initialwealth x. Let " be a gamble with distribution P . The investor is alled riskaverse at wealth level x if:Eu(x+ ") < u(x+ E"):It is easily seen that r(x) > 0 for every risk averse investor at wealth level x(see Ingersoll [20℄ for more details). Aording to Pratt [45℄, a value �(x; P )satisfying u(x+ E"� �(x; P )) = Eu(x+ "); (2.2)is alled a risk premium. We onsider only the situations where Eu(x+") ex-ists and is �nite. The risk averse deision maker would be indi�erent betweenaepting a risk " and reeiving the non-random amount E"��(x; P ). Let usonsider �(x; P ) for a risk " with a small variane �2" . Then an approximationan be proved (see Pratt [45℄):�(x; P ) � 12�2"r(x + E"): (2.3)Aording to (2.3) it is lear that ARA funtion is a measure of investor'sloal risk aversion.To examine the stability of optimal portfolio due to hanges in absolute riskaversion measure the following assumption will be needed:(2.i) Utility funtion u : I ! R is inreasing and twie di�erentiable in theinterval I � R.2.2 Portfolio seletion problemSuppose that the investor wishes to alloate his wealth among assetsi = 1; :::; n and he hooses x = (x1; :::; xn)0 to maximize the expeted utility



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 17of �nal wealth. This model will be formulated as:maxEu(x0 + %0x) (2.4)subjet to : 10x = x0xi � 0;x0 : : : the initial wealth% : : : the random vetor of returns per unit of wealthx : : : the investment strategyu : : : the utility funtion.Assuming a multipliative approah, we ould also formulate the problemas: maxEu(%0xx0) (2.5)subjet to : 10x = 1xi � 0:Of ourse, it is assumed that expeted values in (2.4) and (2.5) exist.2.3 Stability of optimal portfolioKallberg & Ziemba [22℄ proved that investors with the same Rubinstein mea-sure of global risk aversion, de�ned as:rg(x0) = �x0E [u00(w)℄E [u0(w)℄where w = x0%0x, have the same optimal investment strategies, i.e. thesame optimal solutions of (2.5), under the additional assumption that %0x isnormally distributed. The Rubinstein's risk aversion measure is an exampleof measure of global risk aversion. For a deeper disussion of di�erenesbetween loal and global risk aversion we refer to Pratt [45℄.2.3.1 Stability of optimal expeted utilityKallberg & Ziemba [22℄ also empirially examined the extent to whih in-vestors with "similar" ARA measures have "similar" optimal portfolios. Wewill formulate this result preisely for the lass of probability distributionsdesribed by the following assumption:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 18(2.ii) There exists an interval ha; bi � I suh that P (x0 + %0x 2 ha; bi) = 1:for any hoie of xi � 0, i = 1; :::; n, satisfying: 10x = x0.Proposition 2.2:Let %= (%1; %2; : : : ; %n)0 be the returns on investments satisfying (2.ii).Let u1(x), u2(x) satisfy assumption (2.i) on ha; bi and let r1(x), r2(x) betheir ARA measures. Let Æ be positive. Ifjr1(x)� r2(x)j < Æ (2.6)for all x 2 ha; bi thenEu1(x0 + %0x1)� Eu1(x0 + %0x2) � [u1(b)� u1(a)℄(e2Æ(b�a) � 1);where x1, x2 are the optimal solutions of (2.4) for the utility funtions u1(x),u2(x), respetively.Proof: Aording to (2.6) we have�Æ < u002(x)u02(x) � u001(x)u01(x) < Æfor all x 2 ha; bi. Integrating it from a to any y 2 ha; bi we obtain�Æ(y � a) < logu02(y)� log u02(a)� logu01(y) + log u01(a) < Æ(y � a):Set v1(x) = u1(x)u01(a) ; v2(x) = u2(x)u02(a) and ombining it with y � b we get�Æ(b� a) < log v02(y)v01(y) < Æ(b� a)or in an equivalent forme�Æ(b�a)v01(y) < v02(y) < eÆ(b�a)v01(y):After one more integration from a to any x 2 ha; bi we havee�Æ(b�a) [v1(x)� v1(a)℄ < v2(x)� v2(a) < eÆ(b�a) [v1(x)� v1(a)℄and by substitution w1(x) = v1(x)� v1(a) ;w2(x) = v2(x)� v2(a) we obtaine�Æ(b�a)w1(x) < w2(x) < eÆ(b�a)w1(x): (2.7)



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 19By the substitutions w1(x) = u1(x)�u1(a)u01(a) ;w2(x) = u2(x)�u2(a)u02(a) , it is easy tohek that x1, x2 are optimal solutions of (2.4) also for utility funtionsw1(x), w2(x). Combining (2.7) and optimality of x1, x2 we an estimate thedi�erene of expeted utilities between these optimal portfolios0 � E �w1(x0 + %0x1)� w1(x0 + %0x2)�< E �w2(x0 + %0x1)eÆ(b�a) � w1(x0 + %0x2)�< E �w2(x0 + %0x2)eÆ(b�a) � w1(x0 + %0x2)�< (e2Æ(b�a) � 1)Ew1(x0 + %0x2)Sine w1(x) is inreasing and x0 + %0x2 � b a.s., we an onludeE �w1(x0 + %0x1)� w1(x0 + %0x2)� � (e2Æ(b�a) � 1)w1(b):It follows immediately thatE �w1(x0 + %0x1)� w1(x0 + %0x2)� = E �u1(x0 + %0x1)� u1(x0 + %0x2)u01(a) �w1(b) = u1(b)� u1(a)u01(a) :Substituting it into last inequality we obtainE [u1(x0 + %0x1)� u1(x0 + %0x2)℄u01(a) � u1(b)� u1(a)u01(a) (e2Æ(b�a) � 1);whih ompletes the proof. Q.E.DMore details about appliation of this stability result an be found inKopa [25℄. The above proposition gives information about the stability ofoptimal expeted utility. However, Proposition 2.2 yields no informationabout the stability of optimal investment strategy. We will look more loselyat this problem.



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 202.3.2 Stability of optimal investment strategyBy Lagrange's method, we obtain the neessary onditions for the optimalsolution of (2.4):�Eu(x0 + %0x)�xi � �+ �i = 0; i = 1; 2; ::; n (2.8)�ixi = 0; �i � 0; i = 1; 2; ::; n (2.9)10x = x0; xi � 0; i = 1; 2; ::; n:From now on we make the assumptions:(2.iii) %= (%1; %2; : : : ; %n)0 are the returns on investments satisfying (2.ii),(2.iv) u(x), u1(x); u2(x); : : : satisfy (2.i) and r(x), r1(x); r2(x); : : : are theirARA measures,(2.v) limk!1 rk(x) = r(x) 8x 2 ha; bi;(2.vi) u00(x); u00k(x), k = 1; 2; ::: are ontinuous and negative in interval ha; bi.Set X = fx = (x1; x2; :::; xn) : 10x = x0; xi � 0; i = 1; 2; ::; ngXk = argmaxx2X Euk(x0 + %0x)X� = argmaxx2X Eu(x0 + %0x):In this notation, Xk denote the set of optimal solutions of (2.4) using uk(x)and let us denote by xk the element of Xk. Similarly, we will denote by x�the element of the set of optimal solutions of (2.4) using u(x).Corollary 2.3:Let assumptions (2.iii) - (2.v) hold. Thenlimk!1Eu(x0 + %0xk)� Eu(x0 + %0x�) = 0;limk!1Eul(x0 + %0xk)� Eul(x0 + %0x�) = 0; l = 1; 2; :::;where xk 2 Xk and x� 2 X�.



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 21Proof:Use (2.v) and Proposition 2.2 with Æ ! 0: 2Proposition 2.4:Let assumptions (2.iii) - (2.vi) hold. Then from any sequene x1;x2; :::,where xk 2 Xk, k = 1; 2:::, a subsequene xk1 ;xk2; ::: an be extrated suhthat %0xkn kn!1�! %0x� a:s: and x� 2 X �:Proof:To simplify notation, set�f(x)�x = ��f(x)�x1 ; �f(x)�x2 ; :::; �f(x)�xn � : (2.10)By Taylor's formula, we have:�Eu(x0 + %0xk) = �Eu(x0 + %0x�)� A +B (2.11)where A = �Eu(x0 + %0x�)�x (xk � x�) (2.12)B = 12E(xk � x�)0���2u(x0 + %0x�)�2x �x=x (xk � x�) (2.13)and x = �x� + (1� �)xk; � 2 (0 ; 1).Sine x� is an optimal solution of (2.4), applying (2.8)-(2.9) we obtainA = (�:1� �)(xk � x�) = ��xk � 0: (2.14)By assumption (2.vi), � > 0 exists suh thatB = 12E(xk � x�)0%(�u00(x0 + %0x))%0(xk � x�) � �2E �%0(xk � x�)�2(2.15)Combining Corollary 2.3 with (2.11),(2.14) and (2.15) we obtainEu(x0 + %0x�)� Eu(x0 + %0xk) � �xk + �2E �%0(xk � x�)�2 k!1�! 0;



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 22Thus E �%0(xk � x�)�2 k!1�! 0;whih ompletes the proof. 2Sine the limit of any Cauhy sequene is equal to the limit of any itsonvergent subsequene the following Corollary follows from Proposition 2.4.Corollary 2.5:Let assumptions (2.iii) - (2.vi) hold. Assume that x1;x2; ::: where xk 2Xk, k = 1; 2:::, is a Cauhy sequene. Then%0xk k!1�! %0x� a:s: and x� 2 X �:SetY = fy 2 Rn : 10y = 0; y 6= 0g;P = f% : 9Æ > 0 : P (% = 0) � 1� Æ; P (%0y = 0) � 1� Æ; 8y 2 Y g:Proposition 2.4 and Corollary 2.5 present the qualitative stability of totalyields (%0x) of optimal portfolio. To examine the stability of investmentstrategies of optimal portfolios, we assume that:(2.vii) P (% = 0) < 1:Let Y % = fy 2 Y : P (%0y = 0) = 1g for % 62 P= ; for % 2 P:Proposition 2.6:Let assumptions (2.iii) - (2.vii) hold. Let % 2 P. Then(i) portfolio seletion problem (2.4) has a unique solution when using u(x); uk(x),k = 1; 2; :::(ii) from the sequene x1;x2; :::, where xk 2 Xk, k = 1; 2:::, a Cauhysubsequene xl1 ;xl2 ; ::: an be extrated suh thatxln ln!1�! x� and x� 2 X �:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 23Proof:(i) Assume that xk 2 Xk and xk 2 Xk. ThenEuk(x0 + %0xk)� Euk(x0 + %0xk) = 0: (2.16)By assumption (2.vi), � > 0 exists suh that�u00k(x0 + %0x) � �; 8x 2 X:As in the proof of Proposition 2.4, by Taylor's formula, we obtain0 = Euk(x0 + %0xk)� Euk(x0 + %0xk) � �xk + �2E �%0(xk � xk)�2 :Sine �xk � 0 and � > 0 we haveE �%0(xk � xk)�2 = 0:Hene %0(xk � xk) = 0 a:s:Sine % 2 P, we obtain: xk = xk:In the same manner we an see that portfolio seletion problem (2.4) has aunique solution using u(x).(ii) Proposition 2.4 shows that from any sequene x1;x2; :::, where xk 2 Xk;k = 1; 2:::, a subsequene xk1;xk2 ; ::: an be extrated suh that%0xkn kn!1�! %0x� a:s: and x� 2 X �:Let xl1 ;xl2; ::: be a Cauhy subsequene of the sequene xk1;xk2 ; :::. Then%0xln ln!1�! %0x� a:s: (2.17)Let x = limln!1xlnthen %0xln ln!1�! %0x a:s:Combining it with (2.17) we have %0(x�x�) = 0 a.s. Sine % 2 P, we obtain:x = x�; and the proof is omplete. 2



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 24Proposition 2.7:Let assumptions (2.iii) - (2.vii) hold. Let X� be a singleton. Then fromthe sequene x1;x2; :::, where xk 2 Xk, k = 1; 2:::, a Cauhy subsequenexl1 ;xl2; ::: an be extrated suh thatxln ln!1�! x� and x� 2 X �:Proof:Proposition 2.4 shows that from any sequene x1;x2; :::, where xk 2 Xk;k = 1; 2:::, a subsequene xk1;xk2 ; ::: an be extrated suh that%0xkn kn!1�! %0x� a:s: and x� 2 X �:Let xl1 ;xl2; ::: be a Cauhy subsequene of the sequene xk1;xk2 ; :::. Then%0xln ln!1�! %0x� a:s: (2.18)Let x = limln!1xlnthen %0xln ln!1�! %0x a:s:Combining it with (2.18) we have %0x = %0x� a.s. Hene x 2 X�. Sine X�is a singleton, we obtain: x = x�; and the proof is omplete. 2We reall the de�nition of the Hausdorf distane between two sets, A andB:dh(A;B) = maxfmaxa2A d(a; B);maxb2B d(b; A)g where d(p;Q) = minq2Q d(p; q)and d(p; q) is the Eulidean distane from p to q. To prove the main sta-bility result the following lemma desribing the struture of sets of optimalsolutions will be needed.Lemma 2.8:Assume that x� 2 X�, xk 2 Xk, k = 1; 2:::, are �xed.Let Z k = fz 2 Rn : z = xk + y; y 2 Y %g; k = 1; 2; :::,Z� = fz 2 Rn : z = x� + y; y 2 Y % g:Then Xk = ZkTX; k = 1; 2; ::: and X� = Z�TX:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 25Proof:Let x 2 ZkTX. If Y % 6= ; then there exists y 2 Y % suh that x =xk + y. Sine %0y = 0 a.s., we obtain %0x = %0xk a.s. Thus Euk(x0 + %0x) =Euk(x0 + %0xk). Sine x 2 X, the last equality yields x 2 Xk. ThereforeXk � ZkTX.Let x 2 Xk. Then aording to the proof of Proposition 2.6 (ii), we have%0(x� xk) = 0 a:s:Sine x = xk+(x�xk) and (x�xk) 2 Y %, we obtain x 2 Zk. By assumption,x 2 X hene x 2 ZkTX. Therefore Xk � ZkTX. In the same manner itis easy to hek that X� = Z�TX; and the proof is omplete. 2Theorem 2.9:Let assumptions (2.iii) - (2.vii) hold. Thenlim supk!1 dh(Xk; X�) = 0:Proof:Proposition 2.4 shows that from any sequene x1;x2; :::, where xk 2 Xk;k = 1; 2:::, a subsequene xk1;xk2 ; ::: an be extrated suh thatxkn kn!1�! %0x� a:s: and x� 2 X �:Sine X is ompat set, there exists a Cauhy subsequene xl1 ;xl2; ::: of thesequene xk1 ;xk2; :::. Letx = limln!1xln then %0xln ln!1�! %0x a:s:Proposition 2.4 now implies %0xln ln!1�! %0x� a:s: Combining these limits weobtain: %0x = %0x� a:s: Therefore x 2 X�: We have just proved thatlim supk!1 maxxk2Xk d(xk; X�) = 0:Applying Proposition 2.4 for any subsequene of x1;x2; :::, where xk 2 Xk, itremains to prove that for any x� 2 X � a sequene x1;x2; :::, where xk 2 Xk,



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 26k = 1; 2:::, exists suh that at least one Cauhy subsequene of this sequeneonverges to x�: We will onstrut suh sequene.Choose x� 2 X �. Consider a sequene x1;x2; ::: where xk 2 Xk, k = 1; 2:::,and a Cauhy subsequene xl1 ;xl2 ; :::. Setx� = limln!1xlnIf x� = x� then the onstrution follows immediately. In the opposite ase,by the lemma above, there exists y� 2 Y % suh that x� = x� + y�. Let usanalyze two ases:(i) If x�i > 0; 8i 2 f1; 2; ::; ng then de�ne xk = xk + y�; k = 1; 2; :::.Sine xln ln!1�! x�, we obtain xln ln!1�! x�: Sine x� is a positive vetor, thereexists n0 suh that: xln 2 X; 8n � n0. Finally, Lemma 2.8 implies xk 2 Zk.Hene x1;x2; ::: is the sequene we wanted to �nd.(ii) Let I = fi 2 f1; 2; ::; ng : x�i = 0; yi < 0 g. De�ne xk = xk + yk;k = 1; 2; ::: where yk = y�(1��k). It is lear that yk 2 Y % and xk 2 Z k ;8k 2 N . Let �k = maxi2I xki + y�iy�ithen �ln ! 0. Thus xln ln!1�! x�: Sine y�i < 0; 8i 2 I it is easy to hek thatthis hoie of �k guarantees that xki � 0; 8i 2 I. If x�i = 0 and y�i = 0 then itfollows immediately that xki � 0 . If x�i > 0 we apply the similar argumentsto the ase (i). Hene there exists n0 suh that: xln 2 X ln; 8n � n0. Thusx1;x2; ::: is the sequene we wanted to �nd, and the proof is omplete. 2Sine Hausdorf distane is always non-negative0 = lim supk!1 dh(Xk; X�) = lim infk!1 dh(Xk; X�)whih together with Theorem 2.9 implies the following result.Corollary 2.10:Let assumptions (2.iii) - (2.vii) hold. Thenlimk!1dh(Xk; X�) = 0:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 27To derive these stability results, we assumed twie di�erentiability ofutility funtions (2.iv) and onvergene of ARA measures (2.v). If we dropthe assumption of di�erentiability, i.e. the assumption of existene of ARAmeasures, we an follow Rokafellar & Wets [47℄ and apply assumption ofhypoonvergene of expeted utility funtions.Comparing these two approahes, when assuming onvergene of ARAmeasures, the full information about utility funtions of the deision makeris not needed. This advantage an be used in the situation when we have fullinformation about ARAmeasure of deision maker, but the portfolio seletionproblem an not be solved, beause it is impossible to express analytiallythe exat form of utility funtion. In this ase we an use approximationby another suitable utility funtion. The stability results in Proposition 2.7,Theorem 2.9 or Corollary 2.10 an be useful for examination of quality ofthe approximation. The following example will demonstrate this situationwhere ARA measure of deision maker an be estimated in various ways, forexample, from risk premium using (2.3).Example 2.11:Consider a deision maker with unknown utility funtion. Let x0 = 1, % =(1; 3)0 and % = (1; 0)0 with equal probabilities. Assume K time instantswhere K 2 N is large enough. In eah moment k we estimate his ARAmeasure from the available data till this moment. We obtain the sequeneof ARA measures: rk(x) = e� 1kx2 :Sine rk(x) k!1�! 1 the limit utility funtion is: u(x) = �e�x. Sine the exatform of utility funtions orresponding to estimated ARA measures an notbe derived, we an use the limit utility funtion. Thus we an solve theproblem: max�12e�(1+x1+3x2) � 12e�(1+x1)subjet to : x1 + x2 = 1xi � 0; i = 1; 2and the optimal solution of this problem is x�1 = 1� log(2)3 ; x�2 = log(2)3 . In spiteof the fat that the optimal solutions of portfolio seletion problems orre-sponding to estimated ARA measures are not known, applying Proposition



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 282.7, every Cauhy sequene of these optimal solutions onverges to (x�1; x�2).Thus (x�1; x�2) an be regarded as an approximation of optimal solution of theoriginal portfolio seletion problem.Assuming hypoonvergene of expeted utility funtions, we an obtaina stability result for larger lass of utility funtions than the lass given by(2.iv). On the other hand, to verify this assumption, the full informationabout utility funtions is needed whih an be unreahable as demonstratedin Example 2.11. Typially, a veri�ation of assumptions (2.iv) and (2.v) isless demanding than a veri�ation of the assumption of hypoonvergene.2.4 Variational analysis approahFirstly, we reall the basi terms of variational analysis. In this approah,we onsider expeted utility as a funtion of investment strategy i.e.f(x) = �Eu(x0 + %0x):De�nition 2.12:(i) The funtion f : Rn ! R is lower semiontinuous (ls) at x iflim infx!x f(x) � f(x)and lower semiontinuous on Rn if this holds for every x 2 Rn. Thefuntion f : Rn ! R is upper semiontinuous (us) at x if �f is lsat x and upper semiontinuous on Rn if �f is lower semiontinuous onRn.(ii) For f : Rn ! R, the epigraph of f is the setepif = f(x; a) 2 Rn �Rja � f(x)g:(iii) For f : Rn ! R, the level set of f is the setlev�f = fx 2 Rnjf(x) � �g:The epigraph onsists of all the points of Rn+1 lying on or above thegraph of f . For � �nite, the level sets orrespond to the "horizontal rosssetion" of the epigraph. Aording to Rokafellar & Wets [47℄, Th. 1.6 thefollowing properties of a funtion f are equivalent:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 29(a) f is lower semiontinuous on Rn;(b) epif is losed in Rn+1;() lev�f is a losed set in Rn for all �.The basi tool for epionvergene approah is de�nition of a limit of asequene of sets fCkgk2N and eventually level-bounded sequene using thefollowing notation of index sets:N1 = fN � NjNnN is �nitegN ℄1 = fN � NjN is in�nitegwhere N represents the set of natural numbers. Sine N ℄1 onsists of allsubsequenes of N it is easily seen that N1 � N ℄1.De�nition 2.13:(i) For a sequene fCkgk2N of subsets of Rn, the outer limit is the set :lim supk!1 Ck = fx j 9N 2 N ℄1; 9xk 2 Ck; k 2 N with xk N�! xg:while the inner limit of fCkgk2N is the set:lim infk!1 Ck = fx j 9N 2 N1; 9xk 2 Ck; k 2 N with xk N�! xg:The limit of the sequene fCkgk2N exists, if the outer and inner limitsets are equal: limk!1Ck := lim supk!1 Ck = lim infk!1 Ck:(ii) For any sequene ffkgk2N of funtions on Rn, the lower epi-limit(e� lim infk fk) is the funtion having as its epigraph the outer limit ofthe sequene of sets epi fk:epi(e� lim infkfk) = lim supk(epi(fk)):The upper epi-limit (e � lim supk fk) is the funtion having as its epi-graph the inner limit of the sequene of sets epi fk:epi(e� lim supkfk) = lim infk(epi(fk)):



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 30When upper and inner limit oinide, the epi-limit (e� limk fk) is saidto exist: e� limk fk = e� lim infk fk = e� lim supk fk. In this event thefuntions fk are said to epi-onverge to f (fk e�! f ).(iii) A sequene ffkgk2N of funtions on Rn is eventually level-bounded if foreah � 2 R the sequene of level sets (lev�fk) is eventually bounded,i.e. for some index set N 2 N1 the set Sk2N lev�fk is bounded.Diretly from the de�nition of epi-limit and from the de�nition of thelimit of sets (epigraphs) we an see that: e� lim infk fk � e� lim supk fk andfk e�! f , epifk �! epif . Applying Rokafellar & Wets [47℄, Th. 7.33 inthe ontext of the portfolio seletion problem we an onlude the followingstability result.Theorem 2.14:Let fk(x) = �Euk(x0 + %0x) and f(x) = �Eu(x0 + %0x). Suppose thatthe sequene ffkgk2N is eventually level-bounded, and fk e�! f with fk ls.Then(i) lim supkXk � X�(ii) Euk(x0 + %0xk) �! Eu(x0 + %0x�) for any xk 2 Xk and x� 2 X�.Reformulating the assumptions of Theorem 2.14 in terms of utility fun-tions we obtain the following result.Corollary 2.15:Suppose the interval I is bounded. Let u : I �! R and uk : I �! R,k = 1; 2; : : : , be us utility funtions with �uk e�! �u. Let % satis�esassumption (2.ii). Then(i) lim supkXk � X�(ii) Euk(x0 + %0xk) �! Eu(x0 + %0x�) for any xk 2 Xk and x� 2 X�.



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 31Proof:Sine the union of domains of u, uk, k = 1; 2; : : : is bounded and the sup-port of % is bounded the union of all level sets of expeted utility funtions(Sk2N lev�[�Euk(x0 + %0x)℄) is bounded for any hoie of � 2 R, i.e. thesequene f�Euk(x0 + %0x)gk2N is eventually level-bounded.To show that �uk e�! �u implies �Euk(x0+%0x) e�! �Eu(x0+%0x) weapply Rokafellar & Wets [47℄, Th. 7.2. dealing with suÆient and neessaryondition of epionvergene: fk e�! f if and only if at eah point x bothfollowing statements hold true:(a) lim infk fk(xk) � f(x) for every sequene xk �! x(b) lim supk fk(xk) � f(x) for some sequene xk �! x.Using Fatou's lemma and assumption �uk e�! �u, espeially (a), we obtain:lim infk ZRn �uk(x0 + %0xk)dP (%) � ZRn lim infk � uk(x0 + %0xk)dP (%)� ZRn �u(x0 + %0x)dP (%)for every sequene xk �! x whih proves (a) with fk(xk) = �Euk(x0+%0xk)and f(x) = �Eu(x0+%0x). In the same manner, for some sequene xk �! xwe have:lim supk ZRn �uk(x0 + %0xk)dP (%) � ZRn lim supk � uk(x0 + %0xk)dP (%)� ZRn �u(x0 + %0x)dP (%);i.e. (b) holds true and the proof of epionvergene of sequene f�Euk(x0 +%0x)gk2N is omplete.Finally, lower semiontinuity of�Euk(x0+%0x), k = 1; 2; :::; and�Eu(x0+%0x) will be derived. From the assumption of upper semiontinuity of u anduk, k = 1; 2; ::: and Fatou's lemma we onlude:lim infl ZRn �uk(x0 + %0xl)dP (%) � ZRn lim infl � uk(x0 + %0xl)dP (%)� ZRn �uk(x0 + %0x)dP (%); k = 1; 2:::



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 32lim infl ZRn �u(x0 + %0xl)dP (%) � ZRn lim infl � u(x0 + %0xl)dP (%)� ZRn �u(x0 + %0x)dP (%)for every sequene xl �! x whih ompletes the proof. 2Sine x0 is a given parameter, % has a bounded support and the feasibleset of investment strategies is ompat, assumption of boundedness of intervalI represents no addition restrition.



Chapter 3Multivariate and multiperiodrisk premiums
3.1 PreliminariesIn Chapter 2, the univariate risk premium was onsidered as an amountwhih is a risk averse investor willing to pay to eliminate the risk in a fairgamble. The lassial Arrow-Pratt approah assumes ertain (non-random)level of initial wealth. The generalization of this notion to random initialwealth was introdued in Ross [49℄ where a stronger measure of risk aversionwas presented. Another extension of the Arrow-Pratt results for the ase ofrandom initial wealth was suggested in Kihlstrom & Romer & Williams [24℄.In Setion 3.2 and 3.3 of this hapter, we summarize the results of Am-barish & Kallberg [2℄, Chalfant & Finkelshtain [5℄, Dunan [9℄ and Kihlstrom& Mirman [23℄ with respet to the haraterization of risk premiums for mul-tivariate (multiattribute) risk. In Setion 3.4, we develop a multiperiod riskpremium. For this onstrution of risk premium in multiperiod problem, thebasi relationship to multivariate risk aversion is proved. Finally, in setion3.5, several generalizations of multiperiod risk premium notion are suggestedwhen some of onsidered assumptions are relaxed.3.2 Multivariate risk premiumSuppose a deision maker with utility funtion u(w) and with initialwealth w = (w1; w2; :::; wn)0. We an interpret w as a vetor of n ommodi-33



CHAPTER 3. RISK PREMIUMS 34ties. Assume that u(w) is ontinuous and inreasing in all variables. In thissetion, we follow Dunan [9℄ in assuming that w is non-random. By anal-ogy to one-dimensional ase, the multivariate risk premium � is given by theequation: u(w + Exx� �) = Exu(w + x)for a given multidimensional risk x. The vetor � is a funtion of initialwealth and probability distribution of multidimensional risk. The uniquenessof risk premium in univariate ase was proved in Pratt [45℄. It is lear thatif n > 1 than � is not unique and using asymptoti haraterization, we anonlude that � lies in an n-dimensional hyperplane. We refer to Dunan[9℄ for more details. As in the univariate ase, we de�ne the risk aversion atlevel w suh that: u(w + Exx) > Exu(w + x)for any given gamble x. The interpretation is that the utility of having ertainquantities w + Exx is preferred to the expeted utility of having unertainquantities w + x. It is easy to show that if u is onave than there existsa nonnegative risk premium for any gamble and onsequently u ful�lls theondition of risk aversion (see Dunan [9℄).3.3 Multivariate risk premium with randominitial wealthThe generalization of Dunan [9℄ for random initial wealth was introduedin Ambarish & Kallberg [2℄. Similarly to the ase of non-random initialwealth we are interested in determining a multivariate risk premium � suhthat the deision maker is indi�erent between two random variables: (w��)and (w + x). Observe that, while the unertainty in x an be eliminated(insured) by �, there is no insurane against the risk in w, beause the�nal wealth will be a random vetor in both ases. We follow Ambarish &Kallberg [2℄ in de�ning the multivariate risk premium byEwu(w + Exx� �) = Ew;xu(w + x): (3.1)In this notion, multivariate risk premium is a funtion of probability distribu-tion of a gamble x and probability distribution of initial wealth w. However



CHAPTER 3. RISK PREMIUMS 35it does not depend on the realization of w. This is a disadvantage of this ap-proah. It was demonstrated that also in the ase of a random initial wealth� lies in an n-dimensional hyperplane in asymptoti haraterization. SeeAmbarish & Kallberg [2℄ for more details. By analogy to univariate and mul-tivariate ase with non-random initial wealth, the ondition of multivariaterisk aversion an be given by the formula:Ewu(w + Exx) > Ew;xu(w + x): (3.2)However, ontrary to the univariate ase, onavity of utility funtion doesnot guarantee a risk aversion. The multivariate risk aversion given by (3.2)depends on the gamble, as we an see in the following example. Thereforethe risk aversion de�ned by (3.2) has to be alled a multivariate risk aversionat wealth level w with respet to gamble x.Example 3.1:Let u(w) = log(w1+w2) and (w1; w2; x1; x2) = (12 ; 0; 1;�12) or (1; 12 ;�1; 12)with equal probabilities. Consider u(w) = log(w1 + w2). It is lear thatExx1 = Exx2 = 0 andEw;xu(w + x) = Ew;x log(w1 + w2 + x1 + x2)= 12 log�12 + 0 + 1� 12�+ 12 log�1 + 12 � 1 + 12�= 0Ewu (w + Exx) = Ew log(w1 + w2) = 12 log�12 + 0�+ 12 log�1 + 12�= 12 log�34� < 0:Thus Ew;xu(w + x) > Ewu (w + Exx) :It is easy to hek that u is onave and inreasing in w1 and also in w2. Wean see that the orrelation between w and x an ause the fat that the on-dition of risk aversion (3.2) does not hold even if u is onave and inreasingin eah variable. Moreover, we will see that onsidering the same utility fun-tion and initial wealth, the ondition (3.2) is ful�lled for another gamble x. If



CHAPTER 3. RISK PREMIUMS 36u(w) = log(w1 + w2) and (w1; w2; x1; x2) = (12 ; 0; 12 ; 34) or (1; 12 ;�12 ;�34) withthe same probabilities thenEw;xu(w + x) = Ew;x log(w1 + w2 + x1 + x2)= 12 log�12 + 0 + 12 + 34� + 12 log�1 + 12 � 12 � 34�= 12 log� 716�Ewu (w + Exx) = Ew log(w1 + w2) = 12 log�12 + 0�+ 12 log�1 + 12�= 12 log�34� > 12 log� 716�hene Ew;xu(w + x) < Ewu (w + Exx) :One partiular set of risk premiums was onsidered in Ambarish & Kall-berg [2℄: let b�i be de�ned to be the risk premium in the i-th diretion i.e., asolution of (3.1) with the property that omponents of � satisfy�j = 0 j 6= i= b�i j = i:Let us ompute diretional risk premiums b�1, b�2 for the �rst setting inExample 1 where Exx = 0:Ew;xu(w + x) = Ewu(w� �); � = (b�1; 0)00 = 12 log�12 � b�1� + 12 log�32�b�1 = �16Ew;xu(w + x) = Ewu(w� �); � = (0; b�2)00 = 12 log�12�+ 12 log�32 � b�2�b�2 = �12



CHAPTER 3. RISK PREMIUMS 37We an see that onavity of u does not guarantee the risk averse attitude(with respet to all gambles) and nonnegativity of diretional risk premiumsas it did in the univariate ase. However, it is easy to see that if u is inreasingin eah variable then there is a relationship orresponding to the univariatease: the ondition (3.2) of risk aversion at wealth level w with respet togamble x is equivalent to nonnegativity of all diretional risk premiums.The main disadvantage of this approah is the fat that w is not allowedto be a funtion of �. Therefore this notion is not very useful in multiperiodmodels and we suggest another way, how to de�ne multiperiod risk premium.3.4 Multiperiod risk premiumLet u(w) be an inreasing utility funtion. In this setion, we interpret thearguments ofw as the random amounts of ash (single ommodity) measuredat times 1; : : : ; n. It is the vetor of initial wealth in eah period. We willdenote by x the random vetor of all hanges in wealth vetor w at times1; : : : ; n; i.e., xi is a random investment possibility (gamble) at time i. Wewould like to de�ne i-th element of multiperiod risk premium � suh thata deision maker is indi�erent between aepting the gamble xi and paying�i � Exxi in i-th time period. If the probability distribution of w is knownand we do not want �i to depend on realization of w then we an applythe approah mentioned in Setion 3.3. However, it is not very realistiassumption. In our framework, the i-th element of multiperiod risk premiumdepends on the initial wealth at time i and on the probabilisti distributionof x. The initial wealth wi depends on wi�1 and on the deision of investorat time i� 1, whether he aepted gamble xi�1 or paid �i�1 �Exxi�1. Thisdeision is not known usually, beause the investor is indi�erent betweenthese two possibilities. Thus, we assume that w is a funtion of x and �.Without loss of generality from now on, we will follow Ambarish & Kall-berg [2℄, Dunan [9℄ and Pratt [45℄ in assuming that Exx = 0.Finally, we assume that a history of deisions does not depend on xand all possible histories of deisions are desribed by the following deisionsenarios where an investor has only two possibilities in eah time period: toaept the gamble or to pay risk premium.



CHAPTER 3. RISK PREMIUMS 38
h aept x1 h aept x2 h : : : aept xn�1pay �n�1pay �2 h : : : aept xn�1pay �n�1pay �1 h aept x2 h : : : ...pay �2 h : : : aept xn�1pay �n�1Note that an information about the deision in the last period is not rele-vant beause it an not inuene the initial wealth vetor w. Thus there arem = 2n�1 senarios. Let S denotes the set of all senarios. Let s 2 S. If thedeision maker aepts a gamble in i-th time period then let ksi = 1, other-wise ksi = 0. The senario s is represented by vetor Ks = (ks1; ks2; : : : ; ksn�1)onsisting of binary elements. Eah senario uniquely desribes the deisionsof investor in all time periods e.g. the senario with ksi = 1; i = 1; 2; :::; n� 1orresponds to the investor who aepts a fair gamble in eah time period.With this notation, the initial wealth in j-th time period along senario san be written in the form:wsj(�1; : : : ;�j�1) = w1 + j�1Xi=1 [ksixi � (1� ksi )�i℄: (3.3)Therefore w = ws with unknown probability ps for s 2 S where ws dependson x, hene ws is a random vetor. Observe that we onsider multiperiodrisk premium as a prie of insurane against all risks. It is not allowed toseparate risks in one time period and to ompute the amount of multiperiodrisk premium (insurane) only for some of them. For example if we reeive$1 in the seond period from external resoures and we an lose $2 withprobability 0.5 in the seond period gamble then the onsidered investmentpossibility is to reeive $1 or to pay $1, i.e. x2 = 1 or x2 = �1 with equalprobabilities.In a formal way, we would like to de�ne multiperiod risk premium by thesystem of equations:Exu(ws + x) = Exu (ws ��) 8s 2 S: (3.4)We assume that all expeted values exist for all senarios. Reall that ws isa funtion of � and x (see (3.3)). However, this system of 2n�1 equations



CHAPTER 3. RISK PREMIUMS 39and n variables does not usually have a solution unless n � 2. Therefore wesuggest another approah. Given x, letf s(�) = jExu(ws + x)� Exu (ws ��) jfor non-random w1. It is lear that � minimizes f s(�) if and only if � is asolution of the orresponding equation in (3.4) for senario s. Hene, we areinterested to �nd � whih minimizes f s(�) jointly for all s 2 S as muh aspossible. This is a multi-riteria programming problem and we apply the goalprogramming approah. We are looking for a vetor (�) whih minimizes themaximal value of f s(�) over all senarios, i.e. is a solution of the problem:min� maxs2S f s(�);whih an be written in the equivalent form:min� d (3.5)s:t: f s(�) � d 8s 2 S:Summarizing, the multiperiod risk premium is de�ned as a solution of theproblem: min� d (3.6)s:t: � d � Exu(ws + x) � Exu (ws ��) � d 8s 2 S;where the elements of ws are given by (3.3).It is easily seen that if an optimal solution d� = 0 then the multiperiodrisk premium is a solution of (3.4), else this system of equations has nosolution.We de�ne the multiperiod risk aversion in the similar way as it was inthe univariate and multivariate ase using the senario approah, i.e. thedeision maker is multiperiod risk averse at wealth level w with respet togamble x if Exu(ws + x) < Exu (ws) 8s 2 S: (3.7)We follow Ambarish & Kallberg [2℄ in applying the idea of diretional riskpremiums. They represent an amount that an investor an pay only in one



CHAPTER 3. RISK PREMIUMS 40time period to insure against all risks. We de�ne i-th diretional multiperiodrisk premium b�i as a solution of the following problem:min� d (3.8)s:t: � d � Exu(ws + x) � Exu (ws ��) � d 8s 2 S�j = 0 j 6= iwhere the elements of ws are given by (3.3).Finally, we will prove a relationship between diretional multiperiod riskpremiums and multiperiod risk aversion. The orresponding property holdsboth for the multivariate ase and the univariate ase.Theorem 3.2:If the deision maker is multiperiod risk averse at wealth level w withrespet to gamble x then all diretional multiperiod risk premiums are positive.Proof:Choose i 2 f1; 2; : : : ; ng. Let wsj be de�ned by (3.3) and �s;i be a solutionof equation: Exu(ws + x) = Exu (ws ��) under onditions: �j = 0 for allj 6= i. Assumption of risk aversion at wealth level w with respet to gamblex (given by (3.7)) is equivalent to positivity of �s;ii for all s 2 S, beause uis inreasing in eah variable. Let�i = mins2S �s;ii :Using (3.3) and assumption that u is inreasing in eah variable, it is easy toshow that f s(�) = jExu(ws + x) � Exu (ws ��) j is a dereasing funtionin variable �i on (�1;�i) for all s 2 S under onditions: �j = 0 for allj 6= i. Therefore b�i � �i > 0. 23.5 Generalizations of multiperiod risk pre-miumFirst, we will assume that there an be some legislative restritions (or otherreasons) suh that there is no insurane possibility in some time periods



CHAPTER 3. RISK PREMIUMS 41or an investor is not interested in the insurane possibility in these timeperiods. Let A be the set of onsidered time periods and m be the number ofonsidered time periods in multiperiod risk premium onstrution. If i 2 Athen let yi = ��i else yi = xi. We will denote by SA the subset of Swhih onsist of the senarios with the property that if i 2 f1; 2; : : : ; ng n Athen ksi = 1. With this notation, similarly to (3.6), we de�ne the partialmultiperiod risk premium �A = f�igi2A as an m-dimensional vetor whihsolves the problem: min�A d (3.9)s:t: � d � Exu(ws + x) � Exu (ws + y) � d 8s 2 SAwsj = w1 + j�1Xi=1 [ksixi + (1� ksi )yi℄ j = 2; 3; : : : ; nyi = ��i i 2 Ayi = xi i 62 AWe will illustrate the omputation of multiperiod risk premium, dire-tional multiperiod risk premium and partial multiperiod risk premium in thefollowing example.Example 3.3:Consider u(w1; w2; w3) = log(w1+w2+w3). Let x1; x2; x3 be an indepen-dent random variables: xi = �12 with equal probabilities, i = 1; 2; 3. Finally,set w1 = 2.First, we evaluate the multiperiod risk premium given by (3.6). Anysenario s is determined by vetor K = (ks1; ks2) e.g. if K = (1; 0) then aninvestor will aept the �rst gamble and he will pay �2 in the seond periodto insure against x2. It is lear that S onsists of four senarios: s1 � (1; 1),s2 � (1; 0), s3 � (0; 1) and s4 � (0; 0). It is easy to hek that:f 1(�) = jExu(w1 + x1; w1 + x1 + x2; w1 + x1 + x2 + x3)�Exu(w1 � �1; w1 + x1 � �2; w1 + x1 + x2 � �3)j= ����18 log(1088640)� 14 log �(152 � �1 � �2 � �3)(132 � �1 � �2 � �3)(112 � �1 � �2 � �3)(92 � �1 � �2 � �3)�����



CHAPTER 3. RISK PREMIUMS 42f 2(�) = jExu(w1 + x1; w1 + x1 + x2; w1 + x1 � �2 + x3)�Exu(w1 � �1; w1 + x1 � �2; w1 + x1 � �2 � �3)j= ����18 log �(172 � �2)(152 � �2)(152 � �2)(132 � �2)(112 � �2)(92 � �2)(92 � �2)(72 � �2)��12 log [(7� �1 � 2�2 � �3)(5� �1 � 2�2 � �3)℄����f 3(�) = jExu(w1 + x1; w1 � �1 + x2; w1 � �1 + x2 + x3)�Exu(w1 � �1; w1 � �1 � �2; w1 � �1 + x2 � �3)j= ����18 log [(8� 2�1)(7� 2�1)(6� 2�1)(5� 2�1)(7� 2�1)(6� 2�1)(5� 2�1)(4� 2�1)℄�12 log �(132 � 3�1 � �2 � �3)(112 � 3�1 � �2 � �3)�����f 4(�) = jExu(w1 + x1; w1 � �1 + x2; w1 � �1 � �2 + x3)�Exu(w1 � �1; w1 � �1 � �2; w1 � �1 � �2 � �3)j= ����18 log �(152 � 2�1 � �2)(132 � 2�1 � �2)(132 � 2�1 � �2)(112 � 2�1 � �2)(132 � 2�1 � �2)(112 � 2�1 � �2)(112 � 2�1 � �2)(92 � 2�1 � �2)� � log(6� 3�1 � 2�2 � �3)jand the multiperiod risk premium (optimal solution of (3.5)) is:� = (1:252; 1:27;�2:319) and d� = 6:10�4:Let us ompute the diretional multiperiod risk premiums given by (3.8).The �rst diretional multiperiod risk premium is an optimal solution of the



CHAPTER 3. RISK PREMIUMS 43problem: min�1 ds:t: jExu(w1 + x1; ws2 + x2; ws3 + x3) � Exu (w1 � �1; ws2; ws3) j � d 8s 2 Sws2 = w1 + ks1x1 � (1� ks1�1)ws3 = w1 + ks1x1 � (1� ks1�1) + ks2x2where the last two onditions are onluded from (3.3). Hene b�1 = 0:1367and d� = 0:0124. By analogy, solving the following problem, we obtain theseond diretional multiperiod risk premium.min�2 ds:t: jExu(w1 + x1; ws2 + x2; ws3 + x3) � Exu (w1; ws2 � �2; ws3) j � d 8s 2 Sws2 = w1 + ks1x1ws3 = w1 + ks1x1 + ks2x2 � (1� ks2�2):Thus b�2 = 0:1368 and d� = 0:0124. In the same manner we an see thatthe third diretional multiperiod risk premium an be evaluated from theproblem: min�3 ds:t: jExu(w1 + x1; ws2 + x2; ws3 + x3) � Exu (w1; ws2; ws3 � �3) j � d 8s 2 Sws2 = w1 + ks1x1ws3 = w1 + ks1x1 + ks2x2:Therefore b�3 = 0:1368 and d� = 0:0124. We an see that all the diretionalmultiperiod risk premiums are approximately equal.Finally, let us ompute the partial multiperiod risk premium. We as-sume that the insurane possibility does not exist in the seond period, i.e.A = f1; 3g. Thus y = (��1; x2;��3). Sine only two senarios are pos-sible in this situation (SA = fK1; K2g where K1 = (1; 1) and K2 = (0; 1)),applying (3.9), we obtain the partial multiperiod risk premium as a solutionof the following system of two equations:Exu(w1 + x1; w1 + x1 + x2; w1 + x1 + x2 + x3)�Exu (w1 � �1; w1 + x1 + x2; w1 + x1 + x2 � �3) = 0Exu(w1 + x1; w1 � �1 + x2; w1 � �1 + x2 + x3)�Exu (w1 � �1; w1 � �1 + x2; w1 � �1 + x2 � �3) = 0



CHAPTER 3. RISK PREMIUMS 44Thus �1 = 1:638 and �3 = �1:5.Another generalization of the multiperiod approah is based on the as-sumption that w1 is a random variable. Suppose that the senarios Ks andtheir unknown probabilities ps do not depend on w1. We follow Ambarish &Kallberg [2℄ in adopting the possibility of non-zero orrelation between w1and x. By analogy to the univarite ase with random initial wealth devel-oped in Kihlstrom & Romer & Williams [24℄ and Ross [49℄, we de�ne themultiperiod risk premium for random w1 as a solution of the problem:min� d (3.10)s:t: � d � Ex;w1u(ws + x) � Ex;w1u (ws ��) � d 8s 2 Swhere the elements of ws are given by (3.3). We an see that the only di�er-ene between (3.10) and (3.6) is in onsidering expeted value with respetto both random variables: x and w1. If we apply expeted value with respetto x and w1 instead of expeted value only with respet to x then we analso de�ne diretional and partial multiperiod risk premiums for random w1.Finally we will modify the assumption of independene between historyof deisions and x. There an exist investment possibilities, whih an havenon-random yields in some time periods and the distribution of yields andepend on the history of realization of x. As an example of suh investmentpossibility a bond an be onsidered. If the bond default omes in t-th timeperiod then xi = 0 a.s. for all i > t. In this ase, there is no risk in i-th timeperiod. Therefore the value of risk premium in i-th time period has to beequal to zero.In general, we assume that if xi is non-random then i-th element of multi-period risk premium is equal to zero. A onditional multiperiod risk premiume� represents the prie of insurane against all risks with an additional on-dition: if the realization of x is suh that the investment possibility in i-thtime period is not risky, then no insurane is available in this time period (i.e.e�i = 0). If xi = Exi a.s. then let yi = 0 else yi = e�i. With this notation,we de�ne the onditional multiperiod risk premium e� as a solution of the



CHAPTER 3. RISK PREMIUMS 45problem: mine� d�d � Exu(ws + x) � Exu (ws � y) � d 8s 2 Swsj = w1 + j�1Xi=1 [ksixi � (1� ksi )yi℄ j = 2; 3; : : : ; nyi = e�i if P (xi = Exi) < 1yi = 0 if P (xi = Exi) = 1:By analogy to non-onditional approah, we an onsider also diretionalonditional multiperiod risk premiums.



Chapter 4Seond-order stohastidominane and eÆientportfolios
4.1 PreliminariesThe portfolio seletion problem may be regarded as a two-step proedure.Firstly, an eÆient set among all available portfolios is hosen and then therisk preferenes of deision maker to this set are applied. This hapter dealswith the �rst step. Setion 4.2 realls the basi ideas and results of stohastidominane approah for pairwise omparisons. A given portfolio is eÆientin the onsidered set of assets if there exists no other onvex ombination ofthe assets whih stritly dominates the portfolio.As was demonstrated in Chapter 2 and Chapter 3, the risk preferenesof deision maker an be desribed by a von Neumann-Morgenstern utilityfuntion or risk premium. Applying value-at-risk (VaR) or onditional value-at-risk (CVaR) is another way how to express the risk attitude of deisionmakers. If the yields or losses of assets in the portfolio are desribed bydisrete probabilisti distributions then CVaR an be omputed as a solutionof linear programming problem. This property will be used in the sequel.In setion 4.3, following Ogryzak & Ruszzy�nski [40℄, we reall the basiproperties of CVaR in ontext of stohasti dominane. The relationshipbetween risk premium and CVaR is shown. Finally, CVaR for the ase ofdisrete probability distribution is analyzed. These results are employed in46



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 47setion 4.4 where a neessary and suÆient ondition for SSD portfolio eÆ-ieny is derived and ompared with onditions in Post [43℄ and Kuosmanen[34℄. Also a neessary ondition based on CVaR is presented. This neessaryondition an detet SSD portfolio ineÆieny espeially when assets returnsare highly orrelated.Summarizing onditions from setion 4.4 we formulate linear program-ming algorithm for testing SSD eÆieny of a given portfolio in setion 4.5.If a tested portfolio is SSD ineÆient then this test always identi�es a dom-inating SSD eÆient portfolio.Following the idea of Post [43℄, in setion 4.6, we introdued a measureof portfolio ineÆieny. However, this measure is based on CVaR and usessolution of linear program in neessary and suÆient ondition for SSD ef-�ieny presented in setion 4.4. We prove the onsisteny of this measurewith SSD relation and we analyze its onvexity. Finally, we illustrate theseresults on a simple numerial example.We apply the derived results to test SSD eÆieny of mean-VaR optimalportfolios in numerial appliation presented in setion 4.7. We omputeSSD portfolio ineÆieny measures of all tested portfolios.4.2 Stohasti dominaneFor two random variables X1 and X2 with respetive umulative proba-bility distributions funtions F1(x), F2(x) we say that X1 dominates X2 by�rst degree stohasti dominane: X1 �FSD X2 ifEF1u(x)� EF2u(x) � 0for every utility funtion u, i.e. for every ontinuous nondereasing funtionu, suh that these expeted values exist. Let us denote by U1 the set of allsuh funtions. We say that X1 dominates X2 by seond degree stohastidominane: X1 �SSD X2 ifEF1u(x)� EF2u(x) � 0for every u 2 U2 where U2 � U1 denotes the set of all onave utility fun-tions suh that these expeted values exist. The orresponding strit domi-nane relations �FSD and �SSD are de�ned in the usual way: X1 �FSD X2(X1 �SSD X2) if and only if X1 �FSD X2 (X1 �SSD X2) and X2 �FSD X1



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 48(X2 �SSD X1). Aording to Russel & Seo [50℄, u 2 U2 may be representedby simple utility funtions in the following sense:EF1u(x)� EF2u(x) � 0 8u 2 U2 () EF1u(x)� EF2u(x) � 0 8u 2 Vwhere V = fu�(x) : � 2 Rg and u�(x) = minfx� �; 0g.For the development of the third or higher degree of stohasti dominanesee Levy [36℄, Whitmore [55℄ and Whitmore [56℄. SetF (2)i (t) = Z t�1 Fi(x)dx i = 1; 2:The following neessary and suÆient onditions for stohasti dominanewere proved in Hanoh & Levy [18℄.Lemma 4.1:Let F1(x) and F2(x) be umulative distribution funtions ofX1 andX2. Then� X1 �FSD X2 , F1(x) � F2(x) 8x 2 R� X1 �SSD X2 , F (2)1 (t) � F (2)2 (t) 8t 2 R� X1 �FSD X2 , F1(x) � F2(x) 8x 2 R where at least one stritinequality holds� X1 �SSD X2 , F (2)1 (t) � F (2)2 (t) 8t 2 R with at least one stritinequality.Lemma 4.1 an be used as an alternative de�nition of stohasti domi-nane.Consider now the quantile model of stohasti dominane Ogryzak &Ruszzy�nski [40℄. The �rst quantile funtion F (�1)X orresponding to a realrandom variable X is de�ned as the left ontinuous inverse of its umulativeprobability distribution funtion FX :F (�1)X (v) = minfu : FX(u) � vg: (4.1)The following result follows diretly from Lemma 4.1.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 49Lemma 4.2:X1 �FSD X2 , F (�1)1 (p) � F (�1)2 (p) 8p 2 (0; 1i:The seond quantile funtion F (�2)X is de�ned asF (�2)X (p) = Z p�1 F (�1)X (t)dt for 0 < p � 1= 0 for p = 0= +1 otherwise:The funtion F (�2)X is onvex and it is well de�ned for any random variableX satisfying the ondition E jXj < 1. For the proof of the following ba-si properties of the seond quantile funtion and more details about dualstohasti dominane see Ogryzak & Ruszzy�nski [40℄.Theorem 4.3:For every random variable X with E jXj <1 we have:(i) F (�2)X (p) = sup� f�p� E max(� �X; 0)g(ii) X1 �SSD X2 , F (�2)1 (p)p � F (�2)2 (p)p 8p 2 h0; 1i:4.3 VaR and CVaRLet Y be a random loss variable orresponding to the yield desribed byrandom variable X, i.e. Y = �X. We assume that E jY j < 1. For a �xedlevel �, the value-at-risk VaR is de�ned as the �-quantile of the umulativedistribution funtion FY : VaR�(Y ) = F (�1)Y (�): (4.2)We follow Pug [42℄ in de�ning onditional value-at-risk CVaR as the solutionof the optimization problemCVaR�(Y ) = mina2R fa+ 11� �E [Y � a℄+g (4.3)



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 50where [x℄+ = max(x; 0). This problem has always a solution and one ofminimizers is VaR�(Y ). See Pug [42℄ for proof and more details. It wasshown in Uryasev & Rokafellar [53℄ that the CVaR an be also de�ned asthe onditional expetation of Y, given that Y > VaR�(Y ), i.e.CVaR�(Y ) = E (Y jY > VaR�(Y )): (4.4)If we use �Y and 1� � instead of X and p in Theorem 4.3, respetivelywe an diretly see from the de�nition of CVaR that:F (�2)X (p)p = sup� f� � 1pE max(� �X; 0)g= � inf� f�� + 1pE max(� �X; 0)g= � infa fa+ 11� �E max(Y � a; 0)g= �CVaR�(Y ):Therefore Theorem 4.3 leads to the following result.Lemma 4.4:Let Yi = �Xi and E jXi j <1 for i = 1; 2. ThenX1 �SSD X2 , CVaR�(Y1) � CVaR�(Y2) 8� 2 h0; 1i:A well known property of CVaR� is its onvexity in the following sense.Lemma 4.5:Set � 2 h0; 1i. ThenCVaR�(�Y1 + (1� �)Y2) � �CVaR�(Y1) + (1� �)CVaR�(Y2) (4.5)where Y1, Y2 are arbitrary random variables.Proof:The proof follows from onvexity of y ! [y � a℄+.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 514.3.1 CVaR for senario approahIn this subsetion we limit our attention to senario approah, i.e. we will as-sume that Y is a disrete random variable whih takes values yt; t = 1; :::; Twith equal probabilities. Then (4.3) an be rewritten as a linear program-ming problem. Moreover CVaR�(Y ) an be alulated using the followingformula: CVaR�(Y ) = 1T Xyt>VaR�(Y ) yt (4.6)and the assumptions of Theorem 4.3 and Lemma 4.4 are ful�lled. For moredetails we refer to Pug [42℄.Following Rokafellar & Uryasev [53℄ and Pug [42℄, applying senarioapproah in (4.3), CVaR an be obtained by solving the following linearprogram: CVaR�(Y ) = mina;wt a+ 1(1� �)T TXt=1 wt (4.7)s:t: wt � yt � awt � 0:Let y[k℄ be the k-th smallest element among y1; y2; :::; yT , i.e.y[1℄ � y[2℄ � : : : � y[T ℄. In ontext of stohasti dominane a desription ofCVaR�(Y ) as a funtion of � will be useful.Lemma 4.6:If � 2 
 kT ; k+1T � and � 6= 1 thenCVaR�(Y ) = y[k+1℄ + 1(1� �)T TXi=k+1(y[i℄ � y[k+1℄) (4.8)for k = 0,1,...,T -1 and CVaR1(Y ) = y[T ℄:



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 52Proof:Consider a random variable Y whih takes values yt; t = 1; :::; T withprobabilities p1; p2; :::; pT . For a hosen � de�ne j� suh that� 2 *j��1Xj=1 pj; j�Xj=1 pj! :Then the following formula was proved in Rokafellar & Uryasev [53℄:CVaR�(Y ) = 11� � " j�Xj=1 pj � �! y[j�℄ + TXj=j�+1 pjy[j℄# :Sine pt = 1=T , t = 1; :::; T we set: j� = k + 1 and the lemma follows.Combining Lemma 4.4 with Lemma 4.6 we obtain the neessary and suf-�ient ondition of the seond-order stohasti dominane. This onditionsan be more easily veri�ed than onditions in Lemma 4.1, Theorem 4.3 orLemma 4.4.Theorem 4.7:Let Y1 = �X1 and Y2 = �X2 be disrete random variables whih take valuesyt1 and yt2, t = 1; :::; T , respetively, with equal probabilities. ThenX1 �SSD X2 , CVaR�(Y1) � CVaR�(Y2) 8� 2 f0; 1T ; 2T ; : : : ; T � 1T g:Proof:Let �k = k=T , k = 0; 1; :::; T � 2. Lemma 4.1 implies:CVaR�1(Yi) = CVaR�2(Yi); i = 1; 2 for all �1; �2 2 �T � 1T ; 1� :Thus it suÆes to show that ifCVaR�k(Y1) � CVaR�k(Y2) (4.9)and CVaR�k+1(Y1) � CVaR�k+1(Y2) (4.10)



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 53then CVaR�(Y1) � CVaR�(Y2) for all � 2 h�k; �k+1i. To obtain a ontra-dition, suppose that (4.9) and (4.10) holds and there exists e� 2 h�k; �k+1isuh that CVaRe�(Y1) > CVaRe�(Y2). From ontinuity of CVaR in � thereexists �1 2 h�k; �k+1i and �2 2 h�k; �k+1i, �1 6= �2 suh thatCVaR�1(Y1) = CVaR�1(Y2) (4.11)CVaR�2(Y1) = CVaR�2(Y2): (4.12)Substituting (4.8) into (4.11) and (4.12) we onlude that �1 = �2, ontraryto �1 6= �2 and the proof is omplete.4.3.2 Relationship between risk premium, VaR andCVaRIn Chapter 2, absolute (relative) risk aversion measure and univariate riskpremium as the examples of measures of risk were onsidered. In these mea-sures, the risk attitude of deision maker is expressed using utility funtions.The value-at-risk and the onditional value-at-risk are risk measures of an-other type, where the deision maker's risk attitude is expressed by level�. We will show that for a suitable hoie of utility funtion and for anyabsolutely ontinuous random variable X, risk premium is equal to onvexombination of CVaR and VaR.Theorem 4.8:Let X be an absolutely ontinuous random variable and E (X) = 0: LetY = �X. If u(z) = min(z + F (�1)Y (�); w); � 2 h0; 1) (4.13)then �(w; PX) = (1� �)CVaR�(Y ) + �VaR�(Y ):Proof:From (2.2) and (4.13) we have:E min(w � Y + F (�1)Y (�); w) = min(w + F (�1)Y (�)� �(w; PX); w)E min(�Y + F (�1)Y (�); 0) = min(F (�1)Y (�)� �(w; PX); 0):



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 54Sine Y has a smooth distribution funtion E min(�Y + F (�1)Y (�); 0) is neg-ative. Hene�(w; PX) = F (�1)Y (�)� E min(�Y + F (�1)Y (�); 0)= F (�1)Y (�) + E max(Y � F (�1)Y (�); 0)= E max(Y; F (�1)Y (�))and it is easy to see thatE max(Y; F (�1)Y (�)) = P(Y > F (�1)Y (�))E (Y jY > F (�1)Y (�))+P(Y � F (�1)Y (�))F (�1)Y (�):Combining it with (4.1),(4.2) and (4.4) the proof is omplete.In the ase that E (X) 6= 0 we an onsider initial wealth w0 = w+ E (X),the gamble X 0 = X � E (X) and Theorem 4.8 an be formulated for w0 andX 0 instead of w and X, respetively.The utility funtion u(z) given by (4.13) is a linear transformation of arepresentative utility funtion in the sense of Russel & Seo [50℄. All wealthlevels higher than w give the same utility and utility of losses is modi�ed bythe risk term represented by VaR�(Y ) = F (�1)Y (�).4.4 SSD portfolio eÆieny riteriaConsider a random vetor r = (r1; r2; :::; rN)0 of yields of N assets and Tequiprobable senarios. The yields of the assets for the various senarios aregiven by X = 0BBB� x1x2...xT 1CCCAwhere xt = (xt1; xt2; : : : ; xtN) is the t-th row of matrix X. Without loss ofgenerality we an assume that the olumns of X are linearly independent. Inaddition to the individual hoie alternatives, the deision maker may alsoombine the alternatives into a portfolio. We will use � = (�1; �2; :::; �N)0for a vetor of portfolio weights and the portfolio possibilities are given by� = f� 2 RN j10� = 1; �n � 0; n = 1; 2; : : : ; Ng:



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 55The tested portfolio is denoted by � = (�1; �2; :::; �N )0: In �nane data, theyields of assets are usually signi�antly orrelated. A speial interesting aseof X whih may our for strongly orrelated yields of assets is de�ned asfollows.De�nition 4.9:MatrixX is alled portfolio-monotone if there exists permutation � : f1; 2; :::; Tg !f1; 2; :::; Tg suh that xt� = (X� )[�(t)℄ for all � 2 �, t = 1; 2; :::; T .Lemma 4.10:If X is portfolio-monotone matrix of senarios thenCVaR� (�r0[�� 1 + (1� �)� 2℄) = �CVaR�(�r0� 1) + (1� �)CVaR�(�r0� 2)for any � 1; � 2 2 � and for any �; � 2 h0; 1i.Proof:If X is portfolio-monotone then �X is portfolio-monotone and the proof fol-lows diretly from Lemma 4.1. �Following Ruszzy�nski & Vanderbei [51℄ and Kuosmanen [34℄ we will de-�ne SSD eÆieny of a given portfolio � .De�nition 4.11:A given portfolio � 2 � is SSD ineÆient if and only if there exists portfolio� 2 � suh that r0� �SSD r0� . Otherwise, portfolio � is SSD eÆient.This de�nition lassi�es portfolio as SSD eÆient if and only if no otherportfolio is better for all risk averse and risk neutral deision makers. In Post[43℄, more stringent de�nition of SSD eÆieny was introdued.De�nition 4.12:A given portfolio � 2 � is SSD strit ineÆient if and only if there existsportfolio � 2 � satisfying the following inequalityEu(r0�) > Eu(r0� )



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 56for all u 2 U s2 where U s2 2 U2 is the set of all stritly onave utility funtions.Otherwise, portfolio � is SSD strit eÆient.Comparing the Post de�nition (De�nition 4.12) with our de�nition (Def-inition 4.11), these de�nitions oinide from empirial point of view as wasargued in Post [43℄. However, one an onstrut an example where a portfoliois lassi�ed as SSD eÆient only for the Post de�nition, i.e. it is SSD striteÆient but SSD ineÆient. Hene the Post linear programming test in thefollowing proposition gives a neessary ondition for SSD eÆieny.Proposition 4.13:Let �� = min�;�t � (4.14)s:t: TXt=1 �t(xt� � xtn) + T� � 0 n = 1; 2; :::; N�t � �t+1 � 0 t = 1; 2; :::; T � 1�t � 0 t = 1; 2; :::; T � 1�T = 1:If portfolio � is SSD eÆient then �� = 0.If some ties in elements ofX� our, then the onstraints an be modi�ed.See Post [43℄ for more details. Anyway, this riterion failed in omparingportfolios with idential means. It does not detet the presene of SSDdominating portfolio if mean of its yields equals to mean of X� . It is ausedby di�erenes in de�nitions. From now on, we will deal with SSD eÆienyin the sense of De�nition 4.11. Following Kuosmanen [34℄ we an improvethe Post riterion in order to obtain a neessary and suÆient ondition forSSD eÆieny. It depends on \ties" in X� . We say that k-way tie ours ifk elements of X� are equal.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 57Proposition 4.14:Let ��� = minW;�;S+;S� TXj=1 TXi=1 (s+ij + s�ij) (4.15)s:t: X� = WX�s+ij � s�ij = wij � 12 i; j = 1; 2; :::; Ts+ij; s�ij; wij � 0 i; j = 1; 2; :::; TTXj=1 wij = 1 i = 1; 2; :::; TTXi=1 wij = 1 j = 1; 2; :::; T� 2 �where S+ = fs+ijgTi;j=1, S� = fs�ijgTi;j=1 andW = fwijgTi;j=1. Let �k denote thenumber of k-way ties in X� . Then portfolio � is SSD eÆient if and only if��� = T 22 � TXk=1 k�k ^ �� = 0where �� is given by (4.14).These riteria are based on appliations of Lemma 4.1. We will derivesuÆient and neessary onditions for SSD eÆieny of � based on quantilemodel of seond order stohasti dominane, in partiular the relationshipbetween CVaR and SSD will be employed. This new test will use smallerlinear program than problem (4.15). We start with neessary ondition usingthe following theorem. To simplify the notation, set � = �0; 1T ; 2T ; : : : ; T�1T 	 :



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 58Theorem 4.15:Let �k = k=T; k = 0; 1; : : : ; T � 1. Letd� = max�n T�1Xk=0 NXn=1 �n [CVaR�k(�r0� )� CVaR�k(�rn)℄ (4.16)s:t: NXn=1 �n [CVaR�k(�r0� )� CVaR�k(�rn)℄ � 0; k = 0; 1; : : : ; T � 1� 2 �If d� > 0 then � is SSD ineÆient. Optimal solution �� of (4.16) is an SSDeÆient portfolio suh that r0�� �SSD r0� .Proof:If d� > 0 then there is feasible solution � of problem (4.16) satisfyingNXn=1 �n [CVaR�k(�r0� )� CVaR�k(�rn)℄ � 0; 8�k 2 �where at least one strit inequality holds. For this � we haveNXn=1 �nCVaR�k(�rn) � CVaR�k(�r0� ); 8�k 2 �with at least one strit inequality. From Lemma 4.5 we obtainCVaR�k(�r0�) � NXn=1 �nCVaR�k(�rn) 8�k 2 �:Hene CVaR�k(�r0�) � CVaR�k(�r0� ) 8�k 2 �with at least one strit inequality. Applying Theorem 4.7 we an onludethat r0� �SSD r0� . Sine the last inequality is strit for at least one �k 2 �,r0� �SSD r0� and aording to De�nition 4.11, � is SSD ineÆient. TheSSD eÆieny of optimal solution �� follows diretly from the formulationof objetive funtion in (4.16), whih ompletes the proof. �



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 59Problem (4.16) is a linear program with N variables and N + T + 1onstraints. Sine, in SSD portfolio eÆieny testing, N is usually muh moresmaller than T , in omparison with test suggested in Post [43℄ (Proposition4.13), problem (4.16) is smaller. Moreover, ontrary to (4.14), if (4.16) showsSSD ineÆieny it also identi�es the dominating SSD eÆient portfolio. Thepower of neessary ondition in Theorem 4.15 depends on orrelation betweenrandom variables rn, n = 1; 2; :::; N . In �nane data, the yields of assets areoften strongly orrelated. In this ase, aording to Lemma 4.1. the onvexitygap of CVaR, i.e. the di�erene between RHS and LHS in (4.5) is not verylarge. Thus the ondition in Theorem 4.15 an identify the orrespondingSSD eÆient dominating portfolio very fast. Moreover, aording to Lemma4.1, if X is portfolio-monotone then Theorem 4.15 presents neessary andsuÆient ondition for SSD eÆieny.In general, Theorem 4.15 presents only neessary ondition for SSD ef-�ieny of � and portfolio � an be SSD ineÆient even if (4.16) has nofeasible solution or d� = 0 . If d� = 0 then two possibilities may our:(1) Problem (4.16) has a unique solution �� = � . If this is the ase then �is SSD eÆient.(2) Problem (4.16) has an optimal solution �� 6= � . In this ase, � is SSDineÆient and r0�� �SSD r0� . Moreover, �� is an SSD eÆient portfolio.The situation when d� = 0, �� 6= � and � is SSD eÆient would implyX�� = X�whih ontradits the assumption of linearly independent olumns of X.If problem (4.16) has no feasible solution then we an employ the followingneessary and suÆient ondition for SSD eÆieny. This result was obtainedthanks to a personal onsultation with Petr Chovane.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 60Theorem 4.16:Let �k = k=T; k = 0; 1; : : : ; T � 1. LetD�(� ) = maxDk;�n;bk T�1Xk=0 Dk (4.17)s:t: CVaR�k(�r0� )� bk � 11� �k E max(�r0�� bk; 0) � Dk; k = 0; 1; : : : ; T � 1Dk � 0; k = 0; 1; : : : ; T � 1� 2 �If D�(� ) > 0 then � is SSD ineÆient and r0�� �SSD r0� . Otherwise,D�(� ) = 0 and � is SSD eÆient.Proof:Let ��,b�k, k = 0; 1; : : : ; T � 1 be an optimal solution of (4.17). If D�(� ) > 0then b�k + 11� �k E max(�r0�� � b�k; 0) � CVaR�k(�r0� ) 8�k 2 � (4.18)where at least one inequality holds strit. Sine from the de�nition of CVaRwe haveCVaR�k(�r0��) = minbk �bk + 11� �k E max(�r0�� � bk; 0)�we onlude from (4.18) thatCVaR�k(�r0��) � CVaR�k(�r0� )with at least one strit inequality. By analogy to the proof of Theorem 4.15,it is easily seen that � is SSD ineÆient and r0�� �SSD r0� .If D�(� ) = 0 then problem (4.17) has unique optimal solution: �� = � ,beause the presene of another optimal solution ontradits the assumptionof linearly independent olumns of X. Thus there is no stritly dominatingportfolio and hene � is SSD eÆient, similarly as for (4.16). Sine � isalways a feasible solution of (4.17), D� an not be negative and the proof isomplete. �



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 61Problem (4.17) has N + 2T + 1 onstraints and N + 2T variables. In-spired by (4.7) and following Pug [42℄, Rokafellar & Uryasev [53℄, it anbe rewritten as a linear programming problem with 2T (T + 1) + N + 1onstraints and T (T + 2) +N variables:D�(� ) = maxDk;�n;bk;wtk TXk=1 Dk (4.19)s:t: CVaR k�1T (�r0� )� bk � 1(1� k�1T )T TXt=1 wtk � Dk; k = 1; : : : ; Twtk � �xt�� bk; t; k = 1; : : : ; Twtk � 0; t; k = 1; : : : ; TDk � 0; k = 1; : : : ; T� 2 �Using (4.19) instead of (4.17) in Theorem 4.16 we obtain a linear pro-gramming riterion for SSD eÆieny.This suÆient and neessary ondition requires solution of a smaller linearprogram than it is in the Kuosmanen test (see Theorem 4.13). Moreover, itidenti�es SSD eÆient dominating portfolio. In omparison with neessaryonditions in Proposition 4.13 and Theorem 4.15, the number of variables isapproximately equal to square of T .4.5 Algorithm for testing SSD portfolio eÆ-ienyEmploying results derived in Setion 4.4 we have an algorithm for testingSSD portfolio eÆieny of portfolio � in the set of assets. In the �rst step,we hek some speial onvex ombinations. In the next steps, we use ne-essary onditions derived in Theorem 4.15 and Proposition 4.13. Finally, weuse test in Theorem 4.16. The steps are sorted from the easiest to the mostdemanding in omputational perspetive. If the SSD eÆieny or SSD inef-�ieny is deteted in Step 1, Step 2 or Step 4 then we obtain a dominatingSSD eÆient portfolio as a by-produt.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 62Step 1 : If rn �SSD r0� for some n 2 f1; 2; : : : ; Ng or 1N PNn=1 rn �SSD r0�then go to Step 5.Step 2 : Solve (4.16). If d� > 0 then go to Step 5. If d� = 0 and (4.16)has an unique optimal solution then go to Step 6. If d� = 0 and (4.16) hasmultiple optimal solution then go to Step 5.Step 3 : Solve (4.14). If �� > 0 then go to Step 5.Step 4 : Solve (4.17) or (4.19). If D� > 0 then go to Step 5 else go toStep 6.Step 5 : Stop the algorithm, portfolio � is SSD ineÆient.Step 6 : Stop the algorithm, � is SSD eÆient.4.6 SSD portfolio ineÆieny measureInspired by Post [43℄ and Kopa & Post [32℄, D�(� ) from (4.17) or (4.19) anbe onsidered as a measure of ineÆieny of portfolio � , beause it expressesthe distane between a given tested portfolio and its dominating SSD eÆientportfolio. To be able to ompare SSD ineÆieny of two portfolios we needto onsider suh a measure, whih is \onsistent" with SSD relation. InOgryzak & Ruszzy�nski [40℄, a onsisteny of risk measure with SSD relationin mean-risk models was analyzed. By analogy, we de�ne the onsisteny ofa measure of SSD portfolio ineÆieny with SSD relation.De�nition 4.17:Let � be a measure of SSD portfolio ineÆieny. We say that � is onsistentwith SSD if and only ifr0� 1 �SSD r0� 2 ) �(� 2) � �(� 1)for any � 1; � 2 2 �.The property of onsisteny guarantees that if a given portfolio is worsethan the other one for every risk averse or risk neutral investor then it has



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 63larger measure of ineÆieny. Let ��(� ) 2 � be a set of optimal solutions�� of (4.17) or (4.19).Theorem 4.18:(i) The measure of SSD portfolio ineÆieny D� given by (4.17) or (4.19)is onsistent with SSD.(ii) If r0� 1 �SSD r0� 2 and both � 1, � 2 are SSD ineÆient thenD�(� 2) = D�(� 1) + TXk=1 hCVaR k�1T (�r0� 2)� CVaR k�1T (�r0� 1)i :(iii) If r0� 1 �SSD r0� 2 thenD�(� 2) � D�(� 1) + TXk=1 hCVaR k�1T (�r0� 2)� CVaR k�1T (�r0� 1)i :Proof:Applying Theorem 4.7, if r0� 1 �SSD r0� 2 thenTXk=1 hCVaR k�1T (�r0� 2)� CVaR k�1T (�r0� 1)i � 0:Hene it suÆes to prove (ii) and (iii).Let r0� 1 be SSD ineÆient. It is easily seen that (4.17) an be rewrittenin the following way:D�(� ) = max�n T�1Xk=0 CVaR kT (�r0� )� CVaR kT (�r0�) (4.20)s:t: CVaR kT (�r0� )� CVaR kT (�r0�) � 0; k = 0; 1; : : : ; T � 1� 2 �:Let ��(� 1) 2 ��(� 1), ��(� 2) 2 ��(� 2). Using Theorem 4.7 and r0� 1 �SSDr0� 2, CVaR kT (�r0� 2)� CVaR kT (�r0� 1) � 0 k = 0; 1; : : : ; T � 1:



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 64Sine the sum of these di�erenes does not depend on the hoie of ��(� 1),the dominating portfolio ��(� 1) is also an optimal solution of (4.17) whenderiving D�(� 2), i.e. ��(� 1) 2 ��(� 2) . HeneD�(� 2) = T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0��(� 2))= T�1Xk=0 hCVaR kT (�r0� 2)� CVaR kT (�r0� 1)i+ T�1Xk=0 hCVaR kT (�r0� 1)� CVaR kT (�r0��(� 1))i= D�(� 1) + T�1Xk=0 hCVaR kT (�r0� 2)� CVaR kT (�r0� 1)iwhih ompletes the proof of (ii).Let r0� 1 be SSD eÆient. From Theorem 4.16, we have D�(� 1) = 0:Aording to (4.20),D�(� 2) = max�n T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0�)s:t: CVaR kT (�r0� 2)� CVaR kT (�r0�) � 0; k = 0; 1; : : : ; T � 1� 2 �:Sine r0� 1 �SSD r0� 2, portfolio � 1 is a feasible solution of (4.20). HeneD�(� 2) � T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0� 1)and ombining it with (ii), the proof is omplete. �Sine SSD relation is not omplete, i.e. there exist inomparable pairs ofportfolios, the strit inequality of values of any portfolio ineÆieny measurean not imply SSD relation. Also for the measure D� some pair of portfolios� 1; � 2 an be found suh that D�(� 2) � D�(� 1) and r0� 1 �SSD r0� 2. In thefollowing theorem, a onvexity property of portfolio ineÆieny measure D�is analyzed.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 65Theorem 4.19:Let � 1, � 2, � 3 2 �.(i) If r0� 1 �SSD r0� 2 thenD�(�� 1 + (1� �)� 2) � �D�(� 1) + (1� �)D�(� 2)for any � 2 h0; 1i.(ii) If r0� 1 �SSD r0� 2 and r0� 1 �SSD r0� 3 then r0� 1 �SSD r0(�� 2+(1��)� 3)and D�(�� 2 + (1� �)� 3) � �D�(� 2) + (1� �)D�(� 3)for any � 2 h0; 1i.Proof:(i) Applying Lemma 4.1 for equiprobable senario approah, we obtainr0� 1 �SSD r0� 2 ) r0� 1 �SSD r0 (�� 1 + (1� �)� 2) �SSD r0� 2for any � 2 h0; 1i. By analogy to the proof of previous theorem, if��(� 1) 2 ��(� 1) then ��(� 1) 2 ��(� 2) and ��(� 1) 2 ��(�� 1 + (1 � �)� 2).HeneD�(�� 1 + (1� �)� 2) = T�1Xk=0 CVaR kT (�r0[�� 1 + (1� �)� 2℄)� CVaR kT (�r0��(� 1))D�(� 1) = T�1Xk=0 CVaR kT (�r0� 1)� CVaR kT (�r0��(� 1))D�(� 2) = T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0��(� 1))



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 66Combining it with onvexity of CVaR (see Lemma 4.5), we obtainD�(�� 1 + (1� �)� 2) = T�1Xk=0 CVaR kT (�r0[�� 1 + (1� �)� 2℄)� CVaR kT (�r0��(� 1))� � T�1Xk=0 CVaR kT (�r0� 1) + (1� �) T�1Xk=0 CVaR kT (�r0� 2)�� T�1Xk=0 CVaR kT (�r0��(� 1))� (1� �)CVaR kT (�r0��(� 1))� �D�(� 1) + (1� �)D�(� 2):(ii) Applying Lemma 4.1 for senario approah, we obtain:r0� �SSD r0�, TXt=1 (xt� � xt�) � 0 8t = 1; 2; :::; T: (4.21)Hene TXt=1 (xt� 1 � xt� 2) � 0 8t = 1; 2; :::; TTXt=1 (xt� 1 � xt� 3) � 0 8t = 1; 2; :::; Tand thereforeTXt=1 (xt� 1 � �xt� 2 � (1� �)xt� 3) � 0 8t = 1; 2; :::; Tfor any � 2 h0; 1i. Thus, aording to Lemma 4.1,r0� 1 �SSD r0(�� 2 + (1� �)� 3) for any � 2 h0; 1i:Similarly to the proof of previous theorem, if ��(� 1) 2 ��(� 1) then ��(� 1) 2��(� 2), ��(� 1) 2 ��(� 3) and ��(� 1) 2 ��(�� 2+(1��)� 3) for any � 2 h0; 1iand the rest of the proof follows by analogy to (i). �



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 67Let I(� ) be a set of all portfolios whose yields are SSD dominated byyield of � , i.e. I(� ) = f� 2 �jr0� �SSD r0�g:Theorem 4.19 shows that I(� ) is onvex and D� is onvex on I(� ) for any� 2 �. Both these properties are onsequenes of onvexity of CVaR. Thefollowing example illustrates these results and we stress the fat that the setof SSD eÆient portfolios is not onvex.Example 4.20:Consider three assets with three senarios:X = 0� 0 �1 01 0 02 7 5 1A :It is easy to hek that �1 = (1; 0; 0)0, �2 = (0; 1; 0)0 and �3 = (0; 0; 1)0are SSD eÆient. Let � 1 = �3, � 2 = (12 ; 12 ; 0)0 and let � 3 = (13 ; 23 ; 0)0 .Then X� 2 = (�12 ; 12 ; 92) and aording to (4.21), r0� 1 �SSD r0� 2. Hene theset of SSD eÆient portfolios is not onvex. Similarly, r0� 1 �SSD r0� 3 andr0� 1 �SSD r0� 1. Applying Theorem 4.19, a set of onvex ombinations of � 1,� 2, � 3 is a subset of I(� 1). We will show that I(� 1) onsists only of onvexombinations of � 1, � 2 and � 3, i.e.I(� 1) = f� 2 �j� = �1� 1 + �2� 2 + �3� 3; �i � 0; i = 1; 2; 3; 3Xi=1 �i = 1gSubstituting into (4.21) we an see that only portfolios � 2 � satisfying thefollowing system of inequalities an be inluded in I(� 1):��2 � 0�1 � �2 � 03�1 + 6�2 + 5(1� �1 � �2) � 5The gra�al solution of this system is illustrated on the following �gure andwe an see that the set of portfolios whih yields are SSD dominated by yieldof portfolio � 1 is equal to the set of all onvex ombinations of portfolios � 1,� 2, � 3. Points A, B and C orrespond to portfolios � 2, � 3, � 1, respetively.
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Figure 4.1: The set I(� 1) of portfolios whose yields are SSD dominated byyield of portfolio � 1 = (0; 0; 1):As was shown in Theorem 4.19 (ii), SSD portfolio ineÆieny measureD� is onvex on I(� 1). The following �gure shows the graph of D� on I(� 1).Sine � 1 is SSD eÆient, D�(� 1) = 0 and D�(� ) > 0 for all � 2 I(� 1)nf� 1g.It is easy to hek that X is portfolio-monotone with idential permutation.Hene, aording to Lemma 4.10, (4.19) an be onsidered as a parametrilinear problem where the parameters CVaR k�1T (�r0� ); k = 1; 2; :::; T are onlyin the right hand side of the onstraints. The duality theory in parametrilinear programming implies linearity of D�(� ) on I(� 1), beause I(� 1) isa subset of the area of stability for ��(� 1), i.e. ��(� 1) 2 ��(� ) for all� 2 I(� 1). See Grygarov�a [17℄ for more details about parametri linearprogramming.
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Figure 4.2: The graph of D� on I(� 1).4.7 Numerial appliation: SSD eÆieny ofmean-VaR optimal portfoliosAording to Lemma 4.2 and (4.2) we an see that a portfolio with minimalVaR is FSD eÆient. When searhing for portfolio with minimal VaR underondition of a minimal level of expeted yield this property may disappear.We de�ne mean-VaR optimal portfolio �VaR(�) 2 � as a portfolio withminimal VaR and a presribed minimal level of expeted yield �, i.e. �VaR(�)is an optimal solution of the problem:min� VaR�(�r0�)s:t: 1T TXt=1 xt� � �� 2 �:Inspired by Gaivoronski & Pug [14℄ we rewrite this problem as the



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 70mixed-integer linear program:minÆ;�;�t Æ (4.22)s:t: � xt� � Æ +M� t; t = 1; : : : ; TTXt=1 � t = b(1� �)T 1T TXt=1 xt� � �� 2 �� t 2 f0; 1g; t = 1; : : : ; T;where M is a suÆiently large onstant:M � maxi;j yij �mini;j yijand bz denotes the largest integer number whih does not exeed z. Param-eter � represents a presribed minimal level of expeted yield of the portfolio.We shall examine SSD eÆieny of these mean-VaR optimal portfolios usingTheorem 4.16 and (4.19).The data were obtained from http://�nane.yahoo.om and onsisted of530 observations (07.1.1995{28.1.2005) of weakly yields of �ve U.S. stoks:IBM(International Business Mahines), UTX (United Tehnologies), MMM (3MCompany), JNJ (Johnson and Johnson) and CAT (Caterpillar In).We move a window through the data with bandwith 210 and step 20.Thus we have 17 partial data sets. The number of observations in a partialdata set orresponds to 4 years history. To trak at least partly the behaviorof the optimal mean-VaR portfolios in dependene on the parameter � {the minimal required expeted yield of the portfolio { we hoose 5 levels ofparameter � for eah partial data set. Thus we have to solve (4.22) 85 times.Let �lj denote the expeted yield of j-th asset for l-th data set. Set�l = minj �lj; �l = maxj �lj; l = 1; 2; : : : ; 17:We set the levels of parameter � using the following formulas:



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 71�l1 = �l l = 1; 2; : : : ; 17;�l2 = �l + 0:5(� l � � l) l = 1; 2; : : : ; 17;�l3 = �l + 0:6(� l � � l) l = 1; 2; : : : ; 17;�l4 = �l + 0:7(� l � � l) l = 1; 2; : : : ; 17;�l5 = �l + 0:8(� l � � l) l = 1; 2; : : : ; 17:Problem (4.22) has 210 integer variables (210 senarios), 6 other vari-ables and 218 onstraints. The omputations were done in GAMS solverCoinCb and CPLEX. Using 2 GHz omputer with 512 MB RAM, solvingof problem (4.22) took at most 30 seonds for eah data set and we ob-tained 65 di�erent mean-VaR optimal portfolios. Then we tested the SSDeÆieny of these portfolios applying (4.19). Sine we onsider 210 senariosthese linear programs have more than 40000 variables and onstraints. Theomputation took approximately 10 minutes. Applying riterion for testingSSD eÆieny suggested in Kuosmanen [34℄, we solved linear program withmore than 40000 onstraints and 130000 variables (see Proposition 4.14).Using the same omputer as in the ase of our test, the omputation tookapproximately 40 minutes. We an see the results in Table 4.1 where \E"denotes SSD eÆient portfolios and \I" SSD ineÆient ones. From this tablewe an see that only 25 of 85 (29 %) mean-VaR optimal portfolios are SSDeÆient. Espeially for small required minimal expeted yield of portfolio( �l1; �l2; �l3; �l4 ) mean-VaR optimal portfolios are SSD ineÆient in 78 %ases. If the following portfolio seletion problem with u 2 U2max� Eu(r0�) (4.23)s:t: � 2 �has unique solution then SSD ineÆient portfolio annot be an optimal solu-tion of this problem. Thus mean-VaR optimal portfolios are not very suitablefor risk averse investors.If we ompare time period before and after September 11, 2001, we have43 % SSD eÆient portfolios before the date and only 18 % after the date.This is aused by greater utuation of yields and losses after this date be-ause VaR method does not take into aount the magnitude of large losses.Finally, we an see that mean-VaR optimal portfolios with high level ofrequired minimal expeted yield ( �l5 ) are more often SSD eÆient thanthe others. This an be explained by the fat that investor aepts higherrisk in this ase, i.e. the requirement of minimal risk measured by VaR has



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 72Minimal expeted yieldTime period �l1 �l2 �l3 �l4 �l507. 01. 1995 { 31. 12. 1998 E E I I I27. 05. 1995 { 21. 05. 1999 I I I I E14. 10. 1995 { 08. 10. 1999 E I I I E02. 03. 1996 { 25. 02. 2000 I E E E E20. 07. 1996 { 14. 07. 2000 E I E E E07. 12. 1996 { 01. 12. 2000 I I I I E19. 04. 1997 { 20. 04. 2001 I E I E E06. 09. 1997 { 07. 09. 2001 I I I I I17. 01. 1998 { 18. 01. 2002 I E E E I06. 06. 1998 { 07. 06. 2002 I I I I E24. 10. 1998 { 25. 10. 2002 I I I I I13. 03. 1999 { 07. 03. 2003 I I I I E31. 07. 1999 { 25. 07. 2003 I I I I E18. 12. 1999 { 12. 12. 2003 I I I E E06. 05. 2000 { 23. 04. 2004 I I I I I23. 09. 2000 { 10. 09 .2004 I I I I I10. 02. 2001 { 28. 01. 2005 I I I I ITotal numberof SSD eÆient portfolios 3 4 3 5 10Table 4.1: SSD eÆieny of mean-VaR optimal portfoliosless important impat than in the ase of smaller required minimal expetedyield. In Table 4.2, we show the values of SSD portfolio ineÆieny measureD� for all tested portfolios.
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Minimal expeted yieldTime period �l1 �l2 �l3 �l4 �l507. 01. 1995 { 31. 12. 1998 0 0 5.5927 27.7726 15.830427. 05. 1995 { 21. 05. 1999 6.8648 6.8648 17.6124 3.4762 014. 10. 1995 { 08. 10. 1999 0 7.2607 3.5876 6.2085 002. 03. 1996 { 25. 02. 2000 7.0251 0 0 0 020. 07. 1996 { 14. 07. 2000 0 10.7063 0 0 007. 12. 1996 { 01. 12. 2000 4.068 25.493 28.4394 1.9612 019. 04. 1997 { 20. 04. 2001 4.0144 0 5.4213 0 006. 09. 1997 { 07. 09. 2001 5.1081 5.1081 5.1081 15.0719 24.618917. 01. 1998 { 18. 01. 2002 14.6595 0 0 0 22.99506. 06. 1998 { 07. 06. 2002 4.9033 4.9033 4.9033 42.2749 024. 10. 1998 { 25. 10. 2002 58.7302 59.2872 35.3060 37.9927 22.787513. 03. 1999 { 07. 03. 2003 13.4106 13.4106 13.4106 13.4106 031. 07. 1999 { 25. 07. 2003 10.9355 10.9355 10.9355 10.9355 018. 12. 1999 { 12. 12. 2003 12.0750 12.0750 11.2118 0 006. 05. 2000 { 23. 04. 2004 40.7849 40.7849 48.8619 49.8263 16.272423. 09. 2000 { 10. 09 .2004 41.9353 41.9353 45.302 45.302 43.541110. 02. 2001 { 28. 01. 2005 25.8776 61.6235 57.9779 32.1731 6.1322Table 4.2: SSD portfolio ineÆieny measure D�.



Chapter 5A portfolio eÆieny test basedon the �rst-order stohastidominane optimality
5.1 PreliminariesIn Chapter 4, we analyzed portfolio eÆieny with respet to the seond-order stohasti dominane. This onept is based on the assumption thatdeision maker is risk averse. Sine market portfolios turned out to be SSDineÆient (see e.g. Post [43℄) the presene of non-risk averse deision makershas to be involved. A ompliation in testing FSD portfolio eÆieny isthat we must distinguish between eÆieny riteria based on \admissibility"and \optimality". There is a subtle di�erene between these two onepts.Aording to Kopa & Post [32℄, an alternative is FSD admissible if and onlyif no other alternative is preferred by all nonsatiable deision-makers. AFSD admissibility test was presented in Kuosmanen [34℄. Following an FSDoptimality idea in Bawa et al. [3℄, an alternative is FSD optimal if andonly if it is an optimal hoie for at least some inreasing utility funtion.For pairwise omparisons, the two onepts are idential. However, moregenerally, when multiple alternatives are available, FSD admissibility is aneessary but not suÆient ondition for FSD optimality.Setion 5.2 presents basi assumptions and de�nitions. In setion 5.3,we reformulate the FSD optimality riterion in terms of pieewise-onstantrepresentative utility funtions. Setion 5.4 develops a linear programming74



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 75test for searhing over all suh funtions in order to test FSD portfolio opti-mality and suggests several approahes to identifying the input to this test.To obtain a neessary and suÆient ondition for FSD optimality we employmixed-integer linear problems. Setion 5.5 presents a mixed-integer linearprogramming algorithm for testing FSD optimality. Setion 5.6 uses a nu-merial example to illustrate our test and ompare it with two existing testspresented in Bawa et al. [3℄ and Kuosmanen [34℄.5.2 FSD optimality versus FSD admissibilityWe hold the notation from Chapter 4. The evaluated portfolio, denoted by� 2 �, is assumed to be risky. Testing optimality for a riskless portfolio istrivial, beause we then only need to hek if there exists some portfolio thatahieves a higher minimum return than the riskless rate. If no suh portfolioexists, the riskless alternative is the optimal solution for extreme risk avertersand hene FSD optimal. Letm = mint;n xtn; m = maxt;n xtn and k(� ) = minft : (X� )[t℄ > (X� )[1℄g:Sine a positive linear transformation of an utility funtion does nothange the set of optimal solutions of (4.23), without loss of generality, wemay fous on the following set of standardized utility funtions:U1(� ) = fu 2 U1 : u(m) = 0; u((X� )[t℄)� u((X� )[k(� )℄) = 1g: (5.1)Note that the standardization depends on the evaluated portfolio andhene will di�er for evaluating di�erent portfolios. Furthermore, the stan-dardization requires utility to be stritly inreasing at least somewhere in theinterior of the range for the evaluated portfolio. This requirement is natural,beause, testing optimality relative to all u 2 U1 is trivial. Spei�ally, everyportfolio � 2 � is an optimal solution for u0 = I(x � (X� )[1℄). Thus U1(� )is the largest subset of U1 for whih testing optimality is non-trivial.De�nition 5.1:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of(4.23) for at least some utility funtion u 2 U1(� ), i.e., there exists u 2 U1(� )



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 76suh that TXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.Aording to Kuosmanen [34℄, we reall FSD admissibility de�nitionbased on existene of an alternative whih is better than a given portfo-lio for all deision makers. FSD admissibility is a neessary ondition forFSD optimality.De�nition 5.2:Portfolio � 2 � is FSD admissible if and only if there exists no � 2 � suhthat (X�)[t℄ � (X� )[t℄ for all t = 1; 2; :::; T with strong inequality for at leastsome t.The following neessary and suÆient ondition for FSD admissibilityusing mixed-integer linear programming was derived in Kuosmanen [34℄.Theorem 5.3:Let � 2 � and � be the set of permutation matries, i.e.� = ([Pij℄T�T : Pij 2 f0; 1g; TXi=1 Pij = TXj=1 Pij = 1; i; j = 1; 2; :::; T)Consider �1(� ) = max�;P 10(X��X� ) (5.2)s:t: NXi=1 xti�i � TXj=1 Ptj NXi=1 xji �i t = 1; 2; :::; TP 2 �� 2 �:Portfolio � is FSD admissible if and only if �1(� ) = 0.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 775.3 Representative utility funtionsThis setion reformulates the optimality riterion in terms of a set of ele-mentary representative utility funtions. For pairwise FSD omparisons, theset of three-piee linear utility funtions is representative for all admissibleutility funtions, see Russel & Seo [50℄ for more details. In our portfolio on-text, with diversi�ation allowed, a more general lass of pieewise onstantutility funtions is relevant:R1(� ) = fu 2 U1ju(y) = TXt = 1 atI(y � (X� )[t℄); a 2 A(� )g (5.3)A(� ) = fa 2 RT+ : TXt = k(� ) at = 1; (X� )[t℄ = (X� )[s℄ ^ (5.4)t < s) as = 0 t; s = 1; 2; : : : ; Tgwhere I(y � y0) = 1 for y � y0= 0 otherwise:Theorem 5.4:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of(4.23) for at least some utility funtion u 2 R1(� ), i.e., there exists u 2 R1(� )suh that TXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.Proof:The suÆient ondition follows diretly from R1(� ) � U1(� ). To establishthe neessary ondition, suppose that � is optimal for u(y) 2 U1(� ) and letuR(y) = TXt = 1 atI(y � (X� )[t℄);



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 78with a1 = u(X� )[1℄, at = 0, t = 2; : : : ; k(� )� 1 andat = u(X� )[t℄ � u(X� )[t�1℄; t = k(� ); : : : ; T:By onstrution, uR(y) 2 R1(� ). Furthermore, uR(y) � u(y), 8y 2 hm;miand uR(y) = u(y), for y = (X� )[1℄; (X� )[2℄; : : : ; (X� )[T ℄. Therefore,TXt=1 uR(xt� )� TXt=1 uR(xt�) � TXt=1 u(xt� )� TXt=1 u(xt�) 8� 2 �:Sine � is optimal for u(y) 2 U1(� ), the RHS is nonnegative for all � 2 � ,and hene � is also optimal for uR(y) 2 R1(� ), whih ompletes the proof. �The proof makes use of the fat that for a given portfolio � any utilityfuntion an be transformed into a pieewise onstant funtion with inre-ments only at xt� , t = 1; : : : ; T . This transformation doesn't a�et theexpeted utility for the evaluated portfolio but it may lower the expetedutility of other portfolios. Sine the objetive is to analyze if the evaluatedportfolio is optimal for some utility funtion, only the representative utilityfuntions need to be heked; all other utility funtions are known to put theevaluated portfolio in a worse perspetive than some representative utilityfuntion.To illustrate the representation theorem, onsider the ubi utility fun-tion u(y) = 10+y�0:1y2+0:05y3 and a portfolio with returns (X� )[1℄ = �5,(X� )[2℄ = 1 and (X� )[3℄ = 6. Figure 1 shows a version of this funtion thatis transformed suh that it belongs to U1(� ): u0(y) = 2:6+0:04y�0:004y2+0:002y3 (the solid line). Sine the latter funtion is obtained after a posi-tive linear transformation, it yields the same results as the former funtion.The dashed line gives the pieewise-onstant funtion uR(y) = 2:087I(y ��5) + 0:546I(y � 1) + 0:454I(y � 6). This funtion is onstruted suh thatit yields exatly the same utility levels for the evaluated portfolio as u0(y)does. Furthermore, the utility levels for all other portfolios are smaller thanor equal to those for u0(y). Thus, if the evaluated portfolio is optimal foru0(y), then it is also optimal for uR(y). A similar analysis applies for everyadmissible utility funtion u(y) 2 U1(� ).
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Figure 5.1: Representative utility funtion. The �gure shows the originalutility funtion u0 and the assoiated representative utility funtion u1.Apart from replaing U1(� ) with R1(� ), we may also replae � with aredued portfolio set that onsiders only portfolios with a higher minimumthan the evaluated portfolio:�� = �� 2 � : (X� )[1℄ � (X�)[1℄	 :Using the representative utility funtions and the redued portfolio set,we an onstrut the following FSD ineÆieny measure for any �0 � ��:�(� ;�0) = 1T minu2R1(� )max�2�0 TXt=1 �u(xt�)� u(xt� )� : (5.5)Replaing � with �� redues the parameter spae and it auses no harm,beause max�2� TXt=1 �u(xt�)� u(xt� )� = max�2�� TXt=1 �u(xt�)� u(xt� )�



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 80for all u 2 R1(� ) with suÆiently large a1 and we minimize the maximumof expeted utility di�erenes. If the evaluated portfolio has the maximalminimum then we an diretly onlude that �(� ;��) = 0, i.e., the evaluatedportfolio is FSD optimal (see the following Corollary).Corollary 5.5:(i) Portfolio � is FSD optimal if and only if �(� ;��) = 0. Otherwise,�(� ;��) > 0.(ii) If �0 � �� then �(� ;�0) � �(� ;��).The next setion will show that �(� ;��) an be omputed by solving alinear programming problem.5.4 Mathematial programming formulationThere exist well-known, simple algorithms for establishing FSD-dominanerelationships between a pair of hoie alternatives; see, e.g., Levy [37℄. Bawaet al. [3℄ derive a linear programming algorithm for FSD optimality relativeto a disrete set of alternatives. Kuosmanen's [34℄ test for FSD admissibilityin the portfolio ontext is omputationally more demanding, beause weneed to aount for hanges to the ranking of the portfolio returns as theportfolio weights hange, a task that requires integer programming. A similarompliation arises for testing FSD optimality in a portfolio ontext. Thissetion develops a linear programming test for testing portfolio optimality.However, the input to the linear programming test may require an initialphase of mixed integer linear programming (MILP) or subsampling.Before presenting the algorithm, we stress that in some ases, simpleneessary or suÆient onditions will suÆe to lassify the evaluated portfolioas eÆient or ineÆient. For example, a pairwise dominane relationship oran ineÆieny lassi�ation by the Bawa et al. or the Kuosmanen tests suÆeto onlude that the portfolio is FSD nonoptimal. Similarly, if the evaluatedportfolio is lassi�ed as eÆient aording to a mean-variane test or a SSDtest, we an onlude that the portfolio is FSD optimal.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 81Let hs(�; � ) = TXt=1 I(xt� � (X� )[s℄); s = 1; : : : ; T (5.6)h(�; � ) = (h1(�; � ); : : : ; hT (�; � )) (5.7)H(� ) = fh 2 f0; : : : ; TgT : h = h(�; � ); � 2 ��g: (5.8)Sine hs(�; � ) an take at most T + 1 values (0; 1; : : : ; T ) for any s =1; : : : ; T , the set H(� ) has a �nite number of elements. For small-saleappliations, identifying all elements is a fairly trivial task. However, forlarge-sale appliations, the task is more hallenging and an beome om-putationally demanding. Some omputational strategies to identifying theelements of H(� ) are disussed below. Interestingly, given H(� ), the teststatisti �(� ;��) an be omputed using simple linear programming. To seethis, onsider the following hain of equalities:�(� ;��) = 1T minu2R1(� )max�2�� TXt=1 �u(xt�)� u(xt� )�= 1T mina2A(� )max�2�� TXt=1 TXs=1 as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� )max�2�� TXt=1 TXs=k(� ) as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� )max�2�� TXs=k(� ) as TXt=1 I(xt� � (X� )[s℄)� TXt=1 I(xt� � (X� )[s℄)!= 1T mina2A(� )max�2�� TXs=k(� ) as(hs(�; � )� hs(� ; � ))= 1T mina2A(� );Æ8<:Æ : TXs=k(� ) as(hs � hs(� ; � )) � Æ 8h 2 H(� )9=; :The RHS of the �nal equality involves the minimization of a linear obje-tive under a �nite number of linear onstraints. Thus, testing FSD optimalityrequires solving a simple linear programming problem and Corollary 5.5(i)implies the following suÆient and neessary ondition for FSD optimality.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 82Theorem 5.6:Let H0 � H(� ). Let Æ�(H0) = mina2A(� ) Æ (5.9)s:t: TXs=k(�) as(hs � hs(� ; � )) � Æ 8h 2 H0: (5.10)Portfolio � is FSD optimal if and only if Æ�(H(� )) = 0. If Æ�(H0) > 0 forsome H0 � H(� ) then � is FSD nonoptimal.Note that �(� ;��) = Æ�=T . Sine a 2 A(� ) and h 2 f0; : : : ; TgT for allh 2 H(� ), using Corollary 5.5(i), we have 0 � �(� ;��) � 1. A remainingproblem is identifying elements of the set H(� ). We may adopt severalstrategies for this task. The next setion provides a mixed-integer linearprogramming (MILP) algorithm that identi�es a set of andidate vetorseH(� ) � H(� ), and heks if h 2 H(� ) for every andidate h 2 eH(� ).A drawbak of this approah is that the number of andidates inreasesexponentially with the number of senarios (T ). Hene, for large numbers ofsenarios, this strategy may beome omputationally prohibitive. Some sortof approximation may then be required, e.g. based on Corollary 5.5(ii).For example, we may form a representative sample of elements h 2 H(� )by using a sample �s 2 �� and onstruting the assoiated values for h(�; � ).Aording to Corollary 5.5(ii), this will lead to a neessary ondition for FSDoptimality. There exist various tehniques for performing this task, rangingfrom a regular grid to Monte Carlo methods and Quasi-Monte Carlo methods(see, e.g., Jakel [21℄, and Glasserman [15℄). Using regular grid in Kopa &Post [32℄, FSD optimality of US stok market portfolio relative to benhmarkportfolios formed on market apitalization and book-to-market equity ratiowas analyzed.While the MILP algorithm starts from a large set of andidate vetorsand heks feasibility for every andidate, sampling from the portfolio spaeavoids searhing over infeasible andidates. Of ourse, the limitation of thisstrategy is that the ritial sample size needed to obtain an aurate approxi-mation inreases exponentially as the number of individual hoie alternatives(N) inreases. Still, this approah an yield an aurate approximation inan eÆient manner if N is low. This is true espeially when the orrelation



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 83between the individual hoie alternatives is high and hene small hangesin the portfolio weights do not lead to large hanges in the values of h(�; � ).5.5 Mixed-integer Programming Algorithm forTesting FSD OptimalityThis setion provides a MILP algorithm for identifying the elements of H(� )and suggests some stopping rules for testing FSD optimality of portfolios.STEP 1: Perform a FSD admissibility testTest FSD admissibility of � , for example using the MILP test from Theorem5.3. If � is FSD inadmissible then stop the algorithm; � is FSD non-optimal.STEP 2: Identify andidates for H(� )For all j = k(� ); :::; T solve the following MILP problem:max hj + 1T 2 PTt = k(� ) ht (5.11)s:t: (vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ;t = k(� ); : : : ; Tht = PTs = 1 vs;t t = k(� ); : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = k(� ); : : : ; T� 2 ��Denote (h�jt ; ��jt ; v�js;t) the optimal solution of this problem. Let �1 2 ��be a set of pairwise di�erent ��j (all redundany is exluded). Sethmaxt = maxj h�jtH1 = fh(�; � ) : � 2 �1g:STEP 3: Stopping rulesConsider h(� ; � ) as de�ned by (5.6)-(5.7). If there exists t 2 fk(� ); : : : ; Tgsuh that hmaxt � ht(� ; � ) then stop the algorithm; � is FSD optimal. Oth-



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 84erwise, solve problem (5.9)-(5.10) for H0 = H1. If Æ�(H1) > 0 then stop thealgorithm; � is FSD non-optimal.STEP 4: Redue the andidate set using a dominane ruleLet Ht = f0; 1; : : : ; hmaxt g. Denote by H the artesian produt of sets H t,i.e. H = NTk(� )H t. It is lear that H(� ) � H. LeteH = 8<:h 2 Hjht � �hj(� ; � ) + (1� �) TXj = k(� ) �jh�jt ; 8t 2 fk(� ); : : : ; Tg;8h�j 2 H1; 0 � � � 1; TXj = k(� ) �j = 1; �j � 0; 8j 2 fk(� ); : : : ; Tg 9=; :Set p = 1.STEP 5: Chek feasibility of the remaining andidatesIf H n eH is empty, i.e. all possible h 2 H have been onsidered, then stopthe algorithm; portfolio � is FSD optimal. Otherwise, hoose h 2 H n eH andadd it to eH. If there exists a feasible solution of the system:(vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ; (5.12)t = t1; : : : ; Tht = PTs = 1 vs;t t = t1; : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = t1; : : : ; T� 2 ��put p = p + 1, Hp = Hp�1 [ h and go to the next step. Otherwise, repeatthis step.STEP 6: Test optimality using the feasible andidatesSolve problem (5.9)-(5.10) for H0 = Hp. If Æ�(Hp) > 0 then stop the algo-rithm; � is FSD non-optimal. Otherwise, go to Step 5.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 855.6 Numerial exampleA numerial example an illustrate our test and the di�erene with the Bawaet al. test and the Kuosmanen test. We fous on an example with �vesenarios (T = 5), beause FSD optimality is equivalent to FSD admissibilityfor (T � 4). To show this, let T = 4 and let � be FSD admissible. Sinea dominated h(�; � ) an not hange the solution of (5.9)-(5.10) onsider allpossible h(�; � ) whih are not dominated by eah other:h1(�; � ) = (4; 2; 2; 2)h2(�; � ) = (4; 3; 3; 0)h3(�; � ) = (4; 4; 2; 0)h4(�; � ) = (4; 4; 1; 1):Entering these andidates in the linear programming test in Theorem 5.6, wean see that � is the optimal portfolio for a representative utility funtionwith a2 = a3 = a4 = 1=3, and hene � is FSD optimal.Table 5.1 shows the returns to three alternatives (X1, X2, X3) and thetested portfolioZ = 0:16X1+0:21X2+0:63X3 in the �ve senarios (1; 2; 3; 4; 5).t X1 X2 X3 Z1 -1 6 -4 -1.422 -2 5.90 2 2.183 3.50 2.20 3 2.914 8.70 2 5 4.965 10 7 7.50 7.80Mean 3.84 4.62 2.70 3.29St. dev. 5.46 2.34 4.30 3.42Table 5.1: Senarios and desriptive statistis for three alternatives and thetested portfolioBy omparing the means and standard deviations, we an immediately seethat no individual alternative (X1, X2 or X3) FSD dominates Z. However,this does not mean that Z is an eÆient portfolio. Therefore, it is interestingto employ the three eÆieny tests.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 86To implement the Kuosmanen test, we need to solve the following LPproblem for eah of the 5! = 120 permutations of Z, say yj = (y1j ; y2j ; y3j ; y4j ; y5j ),j = 1; 2; : : : ; 120, or an equivalent mixed-integer linear problem:	j = max�1;�2;�3 15 5Xt=1 (�1xt1 + �2xt2 + �3xt3 � ytj)s:t: �1xt1 + �2xt2 + �3xt3 � ytj t = 1; 2; 3; 4; 5�1 + �2 + �3 = 1�1; �2; �3 � 0We �nd 	j = 0 for every j = 1; 2; : : : ; 120, and hene Z is in the FSDadmissible set (not FSD dominated by any onvex ombination of X1, X2and X3).To implement the Bawa et al. test, we need to establish if some onvexombination of the CDFs of X1, X2 and X3 dominates the CDF of Z (seeBawa et al. [3℄). Table 5.2 shows the CDFs of the three alternatives (�X1 ;�X2 , �X3) and the CDF of Z (�Z). Note that these CDFs need to beevaluated only at the observed return levels: fzjg19j=1.To test FSD optimality aording to Bawa et al. [3℄ , we need to solvethe following LP problem:� = max�1;�2;�3 19Xj=1(�Z(zj)� �1�X1(zj)� �2�X2(zj)� �3�X3(zj))s:t: �1�X1(zj) + �2�X2(zj) + �3�X3(zj) � �Z(zj) j = 1; : : : ; 19�1 + �2 + �3 = 1�1; �2; �3 � 0:Solving this problem, we �nd � = 0, and hene Z is lassi�ed as eÆient;not every nonsatiable deision-maker will prefer X1 or X2 or X3 to Z. Basedon the positive outomes of the two tests, we may be tempted to onludethat Z is the optimal portfolio for some inreasing utility funtion, i.e. FSDoptimal. Perhaps surprisingly, this onlusion is wrong. The appliation ofour MILP algorithm in setion 5.5 will demonstrate this.Sine we have already tested FSD admissibility, we start with the se-ond step: "Identify andidates for H(� )". For j = 2; 3; 4; 5, we solve (5.11)



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 87j zj �X1 �X2 �X3 �Z1 -4 0 0 1=5 02 -2 1=5 0 1=5 03 -1.42 1=5 0 1=5 1=54 -1 2=5 0 1=5 1=55 2 2=5 1=5 2=5 1=56 2.18 2=5 1=5 2=5 2=57 2.2 2=5 2=5 2=5 2=58 2.91 2=5 2=5 2=5 3=59 3 2=5 2=5 3=5 3=510 3.5 3=5 2=5 3=5 3=511 4.962 3=5 2=5 3=5 4=512 5 3=5 2=5 4=5 4=513 5.9 3=5 3=5 4=5 4=514 6 3=5 4=5 4=5 4=515 7 3=5 1 4=5 4=516 7.5 3=5 1 1 4=517 7.795 3=5 1 1 118 8.7 4=5 1 1 119 10 1 1 1 1Table 5.2: Cumulative distribution funtions of the three individual alterna-tives (X1; X2; X3) and the tested portfolio Z for all observed return levels.where k(� ) = 2, T = 5, m = �4, m = 10 and X� = Z. Table 5.3shows the optimal h(�; � ) and optimal �. From Table 5.3, we an seethat hmax = (5; 5; 4; 3; 2). In the third step we apply the stopping rules.Sine h(� ; � ) = (5; 4; 3; 2; 1), hmaxt > ht(� ; � ) for all t = k(� ); :::; T , henethe suÆient ondition of FSD optimality is not ful�lled. Table 5.3 shows:�1 = f(0:1483; 0:8517; 0); (0:1187; 0:8813; 0); (0:9266; 0:0734; 0)g. LetH1(� ) be the set of orresponding values of h�, i.e., H1(� ) = f(5; 5; 4; 2; 0);(5; 5; 3; 3; 0); (5; 3; 3; 2; 2)g. Sine �(� ;�1) = 0, the neessary ondition ofFSD optimality is not ful�lled either. Thus we proeed with fourth step.Sine hi(�; � ) � hj(�; � ) for all i < j, we an easily identify all andidateswhih satisfy the following onditions:(i) are non-dominated by any onvex ombination of all h 2 H1(� )Sh(� ; � )



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 88t h�1 h�2 h�3 h�4 h�5 ��1 ��2 ��32 5 5 4 2 0 0.1483 0.8517 03 5 5 4 2 0 0.1483 0.8517 04 5 5 3 3 0 0.1187 0.8813 05 5 3 3 2 2 0.9266 0.0734 0Table 5.3: The initial andidates H1(� ) and the assoiated �1(� ) obtainedin Step 2 of our algorithm.(ii) are smaller than h(� ; � ) in at least one element (beause � is FSDadmissible)(iii) are feasible for (5.11), i.e., the sum of elements of a andidate does notexeed the sum of elements of appropriate h 2 H1(� ) and a andidatedoes not exeed hmax in any element.The relevant andidates are:h1 = (5; 5; 4; 1; 1)h2 = (5; 5; 2; 2; 2)h3 = (5; 5; 2; 2; 1)h4 = (5; 5; 2; 1; 1)h5 = (5; 5; 1; 1; 1)h6 = (5; 4; 4; 1; 1)h7 = (5; 4; 2; 2; 2)h8 = (5; 3; 3; 3; 1):For these 8 andidates, we employ the last two steps of our algorithm. Step5 tests feasibility of a andidate using (5.12). If the andidate is infeasiblethen we hoose the next one. If the andidate is feasible then we add it toH1(� ) and we reompute �(� ; H1(� )). Let us start with h1 = (5; 5; 4; 1; 1).This andidate is feasible as it orresponds to � = (0:265; 0:735; 0). Addingthis andidate, we onsider �2 = �1 [ (0:265; 0:735; 0) and H2(� ) = H1(� )[(5; 5; 4; 1; 1). Applying Theorem 5.6, we solve the following linear problem:



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 89min Æs.t. a2 +a3 �a5 � Æa2 +a4 �a5 � Æ�a2 +a5 � Æa2 +a3 �a4 � Æa2 +a3 +a4 +a5 = 1Sine the optimal objetive value of this problem Æ� = 1=9,�(� ;�2) = Æ�=5 = 1=45 > 0and hene portfolio � is FSD non-optimal, whih ompletes the algorithm.Thus, in this example, Z is lassi�ed as eÆient aording to the Bawa et al.and the Kuosmanen tests. Yet, it an be demonstrated to be not optimal forany inreasing utility funtion.We may repeat this exerise for more portfolios � 2 �\f0; 0:01; : : : ; 1g3,i.e., when using a grid with step size 0:01 for the portfolio weights. Figure 5.2illustrates the omparison between FSD admissibility and FSD optimality.The Kuosmanen test reognizes that many diversi�ed portfolios are FSDdominated by other diversi�ed portfolio, most notably those that assign ahigh weight to X3. In this example, only 22 % of the onsidered portfoliosare FSD admissible (the union of the grey and blak dots). The FSD optimalset is even smaller than the admissible set. The set of grey dots, inluding Z,is now exluded, leaving only the blak dots. The redution in the eÆientset to 16 % of all onsidered portfolios ( a 26 % redution) is possible beausethe optimality test aknowledges that an alternative may not be optimal forall investors even if no single other alternative is preferred by all. Note thatthe eÆient regions are not onvex, witness for example the small isolatedoptimal area near � = (0; 0:7; 0:3):A similar analysis an be done for FSD eÆieny aording to Bawa etal. [3℄. Figure 5.3 shows that 93 % of all portfolios is lassi�ed as eÆient.Only 17 % of these portfolios are FSD optimal.The eÆient set is substantially larger than ours, beause the Bawa eÆ-ieny test does not aount for diversi�ation. Interestingly, only a few ofineÆient portfolios aording to the Bawa et al. test are FSD inadmissible.This suggest that one may use the Bawa et al. test as a omplementary tool
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Figure 5.2: The FSD optimal set is represented by the blak dots. The FSDadmissible set is the union of the blak dots and the grey dots.to the FSD admissibility test. Still, portfolio Z proves that the FSD optimalset is even smaller than the intersetion of these two FSD eÆieny sets, i.e.,a portfolio may be FSD non-optimal even if both of these tests lassify it aseÆient. Figure 5.4 shows all suh portfolios in our example. The redutionof the eÆient set (set of grey dots) is still quite large (8 % ).
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Figure 5.3: The FSD optimal set is represented by the blak dots. The Bawaet al. eÆient set is the union of the blak dots and the grey dots.

Figure 5.4: The FSD optimal set is represented by the blak dots. Theintersetion of the Bawa et al. eÆient and the Kuosmanen eÆient set isthe union of the blak dots and the grey dots.



Chapter 6Summary and open problemsIn this thesis, utility funtions in ontext of portfolio seletion problems wereanalyzed. In pratial studies, the perfet information about deision maker'sutility funtion is usually not known. Therefore, we onsidered three the fol-lowing situations.Firstly, we assumed that an approximate information about utility fun-tion of a deision maker was known. Under assumption of twie di�eren-tiability of a utility funtion, we analyzed the stability of optimal solutionsand optimal objetive values of portfolio seletion problem with respet tohanges in Arrow { Pratt absolute risk aversion measure. Applying the the-ory of variational analysis, under assumption of hypoonvergene of utilityfuntions, the limit set of optimal portfolios was analyzed. In omparisonwith general stability results in stohasti programming, we analyzed thestability with respet to perturbations of utility funtions instead of hangesin probability measures. These results allow us to apply approximate utilityfuntions in solving portfolio seletion problem and to judge the quality ofthese approximations.We introdued a multiperiod risk premium as a measure of multiperiodrisks. By analogy to lassial univariate and multidimensional risk premi-ums, we analyzed its properties.Seondly, we only assumed risk aversion of deision maker. We applied aonept of the seond-order stohasti dominane and we were interested tolassify a portfolio as SSD eÆient or SSD ineÆient. We said that portfoliohad been SSD eÆient if there was no better portfolio for all risk averse and92



CHAPTER 6. SUMMARY AND OPEN PROBLEMS 93risk neutral investors. Employing quantile model of the seond-order stohas-ti dominane, we derived a linear programming algorithm for testing SSDeÆieny of a given portfolio. This algorithm onsisted of neessary ondi-tions and a neessary and suÆient ondition based on relationship betweenCVaR and SSD. It was faster than the Kuosmanen test and ontrary to thePost riterion, it always deteted the presene of SSD dominating portfoliowhih was SSD eÆient. We introdued a SSD portfolio ineÆieny measurewhih was onsistent with SSD relation. It means that if an alternative wasworse than the other alternative for all risk averse and risk neutral investorsthen it had a higher value of this measure. We also explored the onvexityproperty of this measure.Finally, we dropped all the assumptions about deision maker's risk atti-tude. We employed the �rst-order stohasti dominane approah. We dis-ussed the di�erenes between FSD admissibility and FSD optimality whenany diversi�ation aross the assets was allowed. We derived a neessaryand suÆient ondition for FSD optimality via introduing the representa-tive lass of utility funtions in the ase of FSD with diversi�ation. Wesuggested a mixed-integer linear programming algorithm and some subsam-pling tehniques.Dealing with stohasti dominane riteria in the ontext of portfolioeÆieny, there are still some open problems. In this thesis, we assumedthat the probability distribution of yields is known. However, we usuallyonly approximate the unknown true probability distribution. Therefore astability of SSD eÆieny tests and the FSD optimality test with respet toperturbations in underlying probability measures are of interest. Anotheropen area is onneted with onvexity of the set of eÆient portfolios. It isknown, that the set of SSD eÆient portfolios is not onvex. Of ourse, the setof FSD admissible or FSD optimal portfolios is not onvex either. Thereforea new stohasti dominane relation whih will guarantee onvexity of theset of eÆient portfolios an be another point of future researh.
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