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Chapter 1

Introduction

Dealing with decision problems one has to choose an action from a given
set of alternatives with uncertain consequences. For example, consider a
decision maker who wishes to allocate his resources to different investment
opportunities in an “optimal way”. There are several approaches how to
construct the decision criterion under risk to choose the optimal alternative.
Almost all of these models are based on some measure of yield and risk.
Typically a measure of yield of an alternative (investment opportunity) is
maximized and a measure of risk is minimized. However, the behavior of
decision maker depends on his risk attitude. One of the classical ways of
involving risk factor in portfolio selection problem is considering a utility
function when the optimal alternatives maximize expected utility.

If the yield and risk of an asset are measured separately, the yield is usu-
ally measured by expected value. On the other hand, there is no generally
accepted measure of risk. Therefore there are several different mean-risk
models for various types of risk measures: variance, semi-variance, upper
semi-deviation, Value at Risk, conditional Value at Risk, etc. When the
concept of maximizing expected utility is applied, from the type of utility
function one can derive another risk measures: Arrow-Pratt absolute (rela-
tive) risk aversion measure and risk premiums.

In all portfolio optimizing models some kind of a risk parameter is in-
cluded and some distribution of yields is assumed. Since the risk parameter
and the distribution of yields are usually not exactly known, one can analyze
the dependence of optimal solutions on these inputs.

When no information about risk attitude of the decision maker is known
one can apply a stochastic dominance approach. In the context of the
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stochastic dominance for portfolio selection problems the efficiency of a given
portfolio is analyzed. In this thesis we will examine a utility theory, risk
measures and stochastic dominance approach with application to portfolio
selection problems.

The basics of utility theory are connected with von Neumann & Morgen-
stern [54] where the existence of von Neumann - Morgenstern utility function
is analyzed. This function u has such a property that a rational decision
maker prefers alternative X to alternative Y if and only if Fu(X) > Eu(Y).
More general axiomatic theory of utility was presented in Cerny et al. 6],
Ziemba & Vickson [57] and references therein, especially Herstein & Milnor
[19] and Fishburn [12].

There are two approaches to construction of utility functions: direct (car-
dinal utility function) and indirect (ordinal utility funciton). An ordinal util-
ity function for an individual consists of a rank ordering of possible states of
affairs for that individual. An ordinal function tells us that decision maker
prefers X to Y, but it doesn’t tell us whether X is much better than Y or
only a little better. A cardinal utility function assigns a real-number value for
each possible state of affairs. The assumptions for existence of the cardinal or
ordinal utility function are derived in e.g. Cerny et al. [6] and Gliickaufové
& Cerny [16]. In this thesis we focus on the cardinal utility function where
the utility is assigned to the total wealth of a decision maker.

There are several characterization of utility functions. In Kopa [25], three
ways of utility function classification are presented. They are based on:
Arrow-Pratt absolute (relative) risk aversion measure, “preference switching”
and “star shape”. The classical characterization of Arrow [1] and Pratt [45]
deals with twice differentiable and increasing utility functions. There is a
close relationship between risk aversion, risk seeking or risk neutrality of an
investor and the sign of the Arrow-Pratt absolute risk aversion measure. A
concave (convex, linear) utility functions represent risk averse (risk seeking,
risk neutral) decision maker. Another way how to express the risk attitude of
decision maker is represented by “risk premiums”. The preference switching
characterization explores the number of switching preferences between any
two gambles, as initial wealth increases, see e.g. Pedersen & Satchel [41],
Kopa [25]. Especially zero-switch utility functions are of interest. One-
switch utility functions, where at most one preference switching between
any two gambles occurs due to changes in wealth, were analyzed in Bell [4].
Similarly to concave utility functions, star-shape utility functions also exhibit



CHAPTER 1. INTRODUCTION 8

risk aversion at some wealth position, see Landsberger & Meilijson [35]. The
comparison of concave and star-shaped utility functions shows that concave
functions have decreasing marginal slope whereas star-shaped functions have
decreasing average slope from the point at which they are star-shaped.

There is a host of areas where utility theory can be applied. For example,
the utility function can be used in medical survival analysis. In insurance
theory one can exploit utility function to estimate fair insurance premium
level. In this thesis we will apply the utility theory to a portfolio selection
problem in order to analyze the optimal investment strategy of the decision
maker. In optimization models with utility functions the expected utility of
the final wealth is maximized. Therefore the portfolio selection problem is a
problem of stochastic programming.

According to Rémisch [48] and references therein, one may derive a sta-
bility result for set of optimal solutions in the case when an underlying
probability distribution is perturbed or approximated. As a consequence
of this theory, we can provide a scenario-based approximation of distribution
of yields in the portfolio selection problem and estimate the maximal error
caused by using approximate distribution.

In classical approach, utility functions for one-period investment possibil-
ity are considered. When a multiperiod investment possibilities are analyzed
the decision problem is dynamic and it leads to dynamic portfolio selection
problem. In this case, one can search for investment strategy as a sequence
of decisions. In this thesis we assume discrete time multiperiod problems
defined in e.g. Dupacovd et al. [10]. In these problems, a multidimensional
utility function is maximized. These functions are shown and analyzed in
e.g. Ambarish & Kallberg [2], Duncan [9], Dupacova et al. [10], Kihlstrom
& Mirman [23] and Richard [46].

In spite of a large number of papers dealing with utility functions, the
theory of utility functions with application to portfolio selection problem is
still actual and of interest due to three reasons. Firstly, the computational
aspect of solving one-period portfolio selection problems is no more limiting.
Secondly, less conventional classes of utility functions become more impor-
tant. For example, according to Kopa & Post [32], the representative set
of utility functions in the case of first-order stochastic dominance consists
of discontinuous utility functions. It opens an area for research concerning
suitable assumptions for utility functions in context of portfolio selection
problem. Finally, portfolio selection problem with multiperiod investment
possibilities can be formulated using multiperiod utility functions.
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An alternative formulation of the portfolio selection problem is repre-
sented by mean-risk models. If risk is measured by variance, the Markowitz
model is considered, see Markowitz [39]. In Ogryczak & Ruszczynski [40],
some of the other risk measures such as: absolute deviation, absolute semide-
viation, standard semideviation, Value at Risk (VaR), conditional Value at
Risk (CVaR) and Gini mean difference are analyzed with respect to relation-
ship to stochastic dominance. All of these measures are based on some risk
parameter and on certain distribution of yields. Some of the corresponding
mean-risk models can be derived as a special case of maximizing expected
utility problem. For example, if quadratic utility function is assumed, vari-
ance is the appropriate measure of risk. If a decision maker has not a utility
function consistent with any of these mean-risk models, he needs to quantify
his risk by another, more general measure of risk, so-called the risk premium.

Risk premiums can be derived from any type of utility function and for
any investment opportunity. The basic ideas of the risk premium approach
come from Pratt [45] when the risk premium for one-period and univariate
gamble is constructed. A generalization of this approach in order to define
multidimensional premium for one-period gamble was suggested in e.g. Dun-
can [9], Kihlstrom & Mirman [23] or Richard [46]. To derive risk premium
for multiperiod risks, one can apply the modification of multidimensional
premium in Ambarish & Kallberg [2]. The construction of the multiperiod
risk premium based on the preference indifference between accepting a mul-
tiperiod gamble and rejecting the gamble with possibility of accepting the
gamble only in some time periods was presented in Kopa [29]. This approach
is a generalization of Duncan [9], Kihlstrom & Mirman [23], Richard [46] or
Ambarish & Kallberg [2]. Another way how to construct multiperiod risk
measures was shown in Eichhorn & Rémisch [11] using polyhedral risk mea-
sures. This measures are defined as optimal values of certain linear stochastic
programs where the arguments of the risk measure appear on the right-hand
side of the dynamic constraints. Multiperiod extensions of CVaR are an
example for polyhedral risk measure.

The portfolio selection problem may be regarded as a two-step procedure.
Firstly, an efficient set among all available portfolios is chosen and then the
risk preferences of a decision maker to this set are applied. When no infor-
mation about risk preferences is known, an efficiency of a given portfolio can
be tested with respect to stochastic dominance rules. First-order stochastic
dominance (FSD) is one of the fundamental concepts of decision making un-
der uncertainty, relying only on the assumption of nonsatiation, or decision
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makers preferring more to less. Assuming a concavity of utility functions, a
second-order stochastic dominance (SSD) approach can be employed.

There are well-known, simple tests for establishing FSD and SSD rela-
tionships between a pair of choice alternatives; see, e.g. Hanoch & Levy [18],
Levy [36], Levy [37]. The third or higher degree of stochastic dominance
was analyzed in e.g. Levy [36], Whitmore [55] and Whitmore [56]. Unfor-
tunately, these tests have a limited use in applications with more than two
choice alternatives. At present, the analysis of investment portfolios is a case
of interest; investors generally can form a large number of portfolios by diver-
sifying across individual assets. For such applications, there were developed
special tests that analyzed whether a given portfolio is FSD efficient or SSD
efficient relative to all possible portfolios. In this thesis, one of SSD efficiency
tests is introduced and the FSD efficiency test based on FSD optimality is
derived.

Assuming scenario approach for distribution of outcomes, Kuosmanen
[34], Post [43], Post [44] presented linear programming SSD efficiency tests
of a given portfolio. There was a historical development of SSD efficiency
property. The first ideas come from Post [43]. The Post test exploits a struc-
ture of the set of representative utility functions when the diversification is
allowed. For pairwise comparisons, Russel & Seo [50] showed that the set
of two-piece linear utility functions is representative for all concave utility
functions. In context of portfolio optimization, Post [43] proved that the
set of piece-wise linear utility functions is representative. He presented very
fast linear programing test. The Kousmanen SSD efficiency test is based
on so-called dominating sets of portfolio return profile employing empirical
distribution functions and pairwise SSD criteria. Under the assumption of
scenario approach, in this thesis, a linear programming SSD efficiency test
based on the relationship between CVaR and a dual second-order stochastic
dominance properties is derived. In contrast to the Post approach, we fol-
low Kuosmanen [34] and Ruszczynisky & Vanderbei [51] in considering less
stringent definition of SSD efficiency. Therefore, the Post criterion is only a
necessary condition. From empirical point of view, this necessary condition
is very powerful. However, this criterion fail in detecting SSD dominating
portfolio with the same mean as a tested portfolio. It means, that the Post
criterion classifies portfolio as SSD efficient even if there exists a SSD domi-
nating portfolio in the sense of Hanoch & Levy [18] or Levy [36]. Comparing
our test with the Kuosmanen test, our test leads to smaller linear problem
than the Kuosmanen test. Moreover, contrary to both the Post and the Ku-
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osmanen tests, if a given portfolio is SSD inefficient, our test detects a domi-
nating portfolio which is SSD efficient. More general stochastic problem with
stochastic dominance constraints was solved in Dentcheva & Ruszczynski [8].
However, there is no application to SSD efficiency test in this reference. In
Ruszcezynski & Vanderbei [51] a SSD efficiency in a mean-risk space was an-
alyzed. A specialized parametric method for the entire mean-risk efficient
frontiers was developed.

A complication in testing FSD portfolio efficiency is that we must distin-
guish between efficiency criteria based on “admissibility” and “optimality”.
There is a subtle difference between these two concepts. An alternative is
FSD admissible if and only if no second alternative is preferred by all non-
satiable decision-makers. This concept is relevant for expected utility theory
with non-decreasing utility functions, as well as other theories of risky choice
that are consistent with FSD, such as cumulative prospect theory. However,
when using expected utility theory, admissibility is generally weaker than op-
timality. An alternative is FSD optimal if and only if it is the optimal choice
for at least some non-decreasing and non-constant utility function. For pair-
wise comparison, the two concepts are identical. However, more generally,
when multiple alternatives are available, FSD admissibility is a necessary
but not sufficient condition for FSD optimality. In other words, an alterna-
tive may be admissible even if it is not optimal for any non-decreasing and
non-constant utility function.

Bawa et al. [3] and Kuosmanen [34] propose FSD tests that apply under
more general conditions than a pairwise test does. The two tests differ in a
subtle way. While Bawa et al. [3] consider all convex combinations of the
distribution functions of a given set of alternatives, Kuosmanen [34] considers
the distribution function for all convex combinations of a given set of alter-
natives. Each of these two tests captures an important aspect of portfolio
choice that is not captured by a pairwise FSD test. Still, both tests miss
some key aspects of a proper FSD portfolio optimality test and both tests
generally give a necessary but not sufficient condition. The linear program-
ming test of Bawa et al. is based on optimality, but it does not account for
diversification across the choice alternatives. Even though the mixed-integer
linear programming test of Kuosmanen does account for diversification, it
relies on admissibility rather than optimality.

In Kopa & Post [32], a proper test for FSD optimality of a given portfolio
relative to all portfolios formed from a set of alternatives is derived. The
reformulation of the FSD optimality criterion in terms of a set of elementary
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representative utility functions is presented. For pairwise FSD comparisons,
Russell & Seo [50] showed that the set of three-piece linear functions - where
the first and the last piece is constant - is representative for all admissible
utility functions. In portfolio context, with diversification allowed, a more
general class of piecewise constant functions is relevant. Kopa & Post [32]
developed a linear programming test for searching over all representative
utility functions in order to test a portfolio optimality. To identify the input
for the linear programming problem, they suggest to use mixed-integer linear
programming or subsampling techniques. In contrast to Bawa et al. [3],
they consider diversified portfolios in addition to the individual, undiversified
alternatives, and in contrast to Kuosmanen [34], they rely on optimality
rather than admissibility.

Due to concavity of utility functions, the analysis of SSD efficiency is
simpler than FSD efficiency. First, SSD admissibility and SSD optimality are
equivalent and the definition of SSD efficiency is less ambiguous than FSD
efficiency. Second, SSD efficiency can be tested directly using linear program
while FSD optimality linear programming test requires mixed-integer linear
programming algorithm or subsampling techniques as an initial phase. Third,
FSD representative set of utility functions consist of discontinuous utility
functions. This discontinuity causes a presence of the mixed-integer element.

The SSD efficiency tests in Kuosmanen [34] and Post [43] are applied
in analysis of the Fama and French market portfolio relative to benchmark
portfolios formed on market capitalization and book-to-market equity ratio
using US stock market data. They showed that tested market portfolios were
SSD inefficient. Kuosmanen [34], using a mixed-integer linear program, and
Kopa & Post [32], using a linear program with subsampling initial phase,
demonstrated FSD inadmissibility hence FSD non-optimality of the market
portfolio. It implies the fact that no nonsatiable investor would hold the
Fama and French market portfolio in the face of the considered benchmark
portfolios i.e. small cap premium and the value stock premium.

The dissertation thesis is structured as follows. Chapter 2 is inspired by
Kopa [25], Kopa [26], Kopa [27], Kopa [28] and deals with utility functions
and their application in a portfolio selection problem. We will restrict our
attention to classification of utility functions based on the Arrow - Pratt
absolute risk aversion measure. It is assumed that the distribution of re-
turns has a bounded support. The stability of expected utility of optimal
portfolio in dependence on the choice of utility function is analyzed. Under
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the same assumptions, the stability of optimal investment strategy due to
changes in Arrow - Pratt absolute risk aversion measure is discussed. The
related result was proved in Kallberg & Ziemba [22] for normally distributed
yields of assets using Rubinstein’s measure of global risk aversion instead of
absolute risk aversion measure. Applying the theory of variational analysis,
see Rockafellar & Wets [47], under assumption of hypoconvergence of utility
functions, the limit set of optimal portfolios is analyzed. In comparison with
general stability results in stochastic programming, see R6misch [48], we an-
alyze the stability with respect to perturbations of utility functions instead
of changes in probability measures.

Chapter 3 is based on Kopa [29]. It develops characterizations of multi-
period risk premium. In general, risk premiums represent a way how the risk
of investment possibilities can be evaluated when utility function of decision
maker is known. The construction of multiperiod risk premium is based on
the preference indifference between accepting a multiperiod game and re-
jecting this game. The possibility of accepting the game only in some time
periods is included. The results in Ambarish & Kallberg [2] and Chalfant
& Finkelshtain [5] are generalized for multiperiod problem. Considering di-
rectional, partial and conditional multiperiod risk premiums, the connection
between multiperiod risk aversion and multiperiod risk premiums is proved.

In comparison with maximizing utility criterion the concept of stochastic
dominance offers a different approach to classification of considered portfo-
lios. The differences are also in notation for investment strategy and scenarios
of yields. Following the seminal works about stochastic dominance in con-
text of the portfolio selection problem, see Post [43] and Kuosmanen [34], we
hold the usual notation for stochastic dominance. Therefore the notation in
chapter 4 and chapter 5 is not the same as in previous chapters.

Chapter 4, inspired by Kopa [30] and Kopa [31], describes SSD rules
concerning the portfolio selection problem. As it was shown in Ogryczak &
Ruszezynski [40], CVaR corresponds to second-order stochastic dominance.
Using this property for discrete probability distributions of returns, neces-
sary and sufficient conditions for efficient and inefficient portfolios relative to
all possible portfolios created from a set of assets are derived. We suggest
an algorithm based on these conditions for stochastic dominance and special
properties of CVaR for discrete probability distributions of returns. We de-
rive a SSD portfolio efficiency measure which is consistent with second-order
stochastic dominance. Moreover, we explore the convexity of this measure.
We adopt these results for testing second-order stochastic efficiency of mean-
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VaR optimal portfolios.

Finally, chapter 5, based on Kopa & Post [32] and Kopa & Post [33], devel-
ops a test for FSD efficiency of a given portfolio of choice alternatives relative
to all possible portfolios. To simplify the search over all utility functions, we
reformulate the problem in terms of piecewise-constant utility functions, a
generalization of the Russell & Seo [50] representative utility functions for
pairwise FSD tests. We provide a linear programming criterion for imple-
menting the test. To identify the input for the linear programming problem,
we may use mixed-integer linear programming or subsampling techniques. In
contrast to the test by Bawa et al. [3], our test considers diversified portfo-
lios in addition to the individual, undiversified alternatives, and furthermore
contrary to Kuosmanen [34], our analysis is based on optimality rather than
admissibility. Both features lead to a more powerful FSD efficiency test than
is currently available. In Kopa & Post [32], this test is applied in analysis
of Fama and French market portfolio. The differences between the Kuosma-
nen FSD efficiency test, the Bawa FSD efficiency test and our approach are
demonstrated on numerical example.



Chapter 2

Stability of optimal portfolio in
portfolio selection problem

2.1 Preliminaries

In this chapter we use utility functions, so that when solving portfolio
selection problem, the optimal portfolio has the maximal expected utility.
Utility functions are very useful for modeling the investor’s behavior, e.g.
risk aversion (or seeking). On the other hand it can be difficult to solve the
portfolio selection problem for some types of utility functions. In Section 2.2,
we recall an additive and multiplicative formulation of maximizing expected
utility problem. The stability of optimal portfolio due to changes in Arrow-
Pratt risk aversion measure in Section 2.3 will be analyzed and supplemented
with application of basic results of variational analysis in Section 2.4.

Definition 2.1:

A function u:I— Ris called utility function if u is finite and nondecreas-
ing in the interval I C R.

The basic analysis of utility functions of Arrow [1] and Pratt [45] offers
an intuitive way of looking at absolute and relative risk aversion coefficients.
The Arrow-Pratt coefficient of absolute risk aversion, also called absolute
risk averse (ARA) function, is defined as

15
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U” (:L.)
u'(2)

r(z) = — (2.1)

for x € I and for an increasing, twice differentiable utility function u in I.

We assume that investor (decision maker) has utility function u and initial
wealth x. Let ¢ be a gamble with distribution P. The investor is called risk
averse at wealth level z if:

Eu(x +¢) < u(x + E¢).

It is easily seen that r(x) > 0 for every risk averse investor at wealth level
(see Ingersoll [20] for more details). According to Pratt [45], a value 7(z, P)
satisfying

u(z + Fe —w(x, P)) = Fu(z + ¢), (2.2)

is called a risk premium. We consider only the situations where Eu(z+¢) ex-
ists and is finite. The risk averse decision maker would be indifferent between
accepting a risk £ and receiving the non-random amount Eec —n(x, P). Let us
consider m(z, P) for a risk ¢ with a small variance 6. Then an approximation
can be proved (see Pratt [45]):

1
7(x, P) ~ 5037“(:5 + E¢). (2.3)

According to (2.3) it is clear that ARA function is a measure of investor’s
local risk aversion.

To examine the stability of optimal portfolio due to changes in absolute risk
aversion measure the following assumption will be needed:

(2.i) Utility function u:I — R is increasing and twice differentiable in the
interval I C R.

2.2 Portfolio selection problem

Suppose that the investor wishes to allocate his wealth among assets
i=1,...,n and he chooses x = (1, ..., x,)" to maximize the expected utility
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of final wealth. This model will be formulated as:

max Fu(zg + @'x) (2.4)
subject to: 1'x = =z
r; > 0,
2o ... the initial wealth
@ ... the random vector of returns per unit of wealth
X ... the investment strategy
u ... the utility function.

Assuming a multiplicative approach, we could also formulate the problem
as:

max Eu(0'xz) (2.5)
subject to: 1'x =1

Of course, it is assumed that expected values in (2.4) and (2.5) exist.

2.3 Stability of optimal portfolio

Kallberg & Ziemba [22] proved that investors with the same Rubinstein mea-
sure of global risk aversion, defined as:

2o B [u" (w)]
Eu'(w)]
where w = z7@'x, have the same optimal investment strategies, i.e. the
same optimal solutions of (2.5), under the additional assumption that @'x is
normally distributed. The Rubinstein’s risk aversion measure is an example

of measure of global risk aversion. For a deeper discussion of differences
between local and global risk aversion we refer to Pratt [45].

re(T0) =

2.3.1 Stability of optimal expected utility

Kallberg & Ziemba [22] also empirically examined the extent to which in-
vestors with ”similar” ARA measures have ”similar” optimal portfolios. We
will formulate this result precisely for the class of probability distributions
described by the following assumption:
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(2.ii) There exists an interval (a,b) C I such that P(xy + o'x € (a,b)) = 1.
for any choice of z; > 0, i = 1, ..., n, satisfying: 1'x = x.

Proposition 2.2:

Let o= (01, 02,...,0n)" be the returns on investments satisfying (2.ii).
Let ui(x), us(x) satisfy assumption (2.i) on (a,b) and let ri(x), ro(x) be
their ARA measures. Let § be positive. If

r1(z) —ra(x)] <6 (2.6)
for all € (a,b) then
Buy (g + @x") = Bu (v + %) < [ (b) = ()] = 1),

where x', x? are the optimal solutions of (2.4) for the utility functions u,(z),
us(z), respectively.

Proof: According to (2.6) we have

for all x € (a,b). Integrating it from a to any y € (a, b) we obtain

—0(y —a) <logus(y) —logus(a) —logu) (y) +logu(a) <d(y — a).

uy(a)

Set vy (x) = Zi—(l) ; ve(z) = “z(l) and combining it with y < b we get

—5(b - a) < log ng% <5(b—a)

or in an equivalent form
e "yl (y) < vh(y) < Vi (y).

After one more integration from a to any x € (a,b) we have

—d(b—a) [

e v1(z) — vi(a)] < va(2) — va(a) < OV [y (x) — vy (a)]

and by substitution w;(z) = vi(x) — vi(a) ; we(x) = ve(x) — va(a) we obtain

e "Dy (2) < wy(z) < O Dwy (z). (2.7)
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By the substitutions w;(z) = %(;L)IW);U)Q(ZL') = %(a“f@, it is easy to
1 2

check that x', x? are optimal solutions of (2.4) also for utility functions
wy(x), we(z). Combining (2.7) and optimality of x*, x? we can estimate the
difference of expected utilities between these optimal portfolios

0 < E [wi(zo + 0'x") — wi (0 + 0'x7)]

b—a)

< E [wy(zo + @'x")e’™ — w)(zy + 0'x?)]

b—a)

< E [wy(wg + 0%’ — w (39 + 'x7)]

< (09 _ 1) Bw, (o + 0'x?)

Since w;(z) is increasing and zy + @'x* < b a.s., we can conclude
E [wi(zo + @'x") — wi (w9 + @'x%)] < (€2 — 1w, (b).

It follows immediately that

E [wi(zo + @'x") —wi(zg+ 0x*)] = E
wi(b) =

Substituting it into last inequality we obtain

uy (19 + 0'x") — uy (20 + 0'x%)] < uy(b) — uy(a) (625(1;41) _

ui(a) - ui(a)

which completes the proof. Q.E.D

gl

More details about application of this stability result can be found in
Kopa [25]. The above proposition gives information about the stability of
optimal expected utility. However, Proposition 2.2 yields no information
about the stability of optimal investment strategy. We will look more closely
at this problem.
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2.3.2 Stability of optimal investment strategy

By Lagrange’s method, we obtain the necessary conditions for the optimal
solution of (2.4):

OEu(zg + 0'x)

A4 o= 0, i=1,2..n 2.8

o U (2.8)
Nix; = 0; Ni > ) 1 ) Ay ey (29)
]-,X = To, I 2 3 1= ) Ly ey

From now on we make the assumptions:

(2.iii) o= (o1, 092,...,0,)" are the returns on investments satisfying (2.ii),

(2.1v) u(x), ui(x),us(x),. .. satisty (2.i) and r(z), ri(z),ro(z),... are their
ARA measures,

(2.v) limy oo ri(z) = r(x) Vo € (a,b),

(2.vi) u"(x),u}(x), k =1,2,... are continuous and negative in interval (a, b).

Set
X = {x=(z,29,...,2,) : I'x =2, 2, >0, i=1,2,..,n}
Xk = argma)?chk(xo+Q'x)
XE
X* = argma)?ch(xo+Q'x).
XE

In this notation, X* denote the set of optimal solutions of (2.4) using uy(x)
and let us denote by x* the element of X*. Similarly, we will denote by x*
the element of the set of optimal solutions of (2.4) using u(x).

Corollary 2.3:
Let assumptions (2.iii) - (2.v) hold. Then
klim Eu(zg + 0'x") — Bu(x + @'x*) = 0,
—00

lim Buy(zg + @'x*) — Bu(zg + ox*) = 0, 1=1,2,...,
k—o0

where x¥ € X* and x* € X*.
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Proof:

Use (2.v) and Proposition 2.2 with § — 0. O

Proposition 2.4:

Let assumptions (2.iii) - (2.vi) hold. Then from any sequence x',x?, ...,

where x*¥ € X* k =1,2..., a subsequence x*',x*2, ... can be extracted such
that .

o'xkn M2 o'x*  as.  and x* e X*.
Proof:

To simplify notation, set

i o om, " on. ) .
By Taylor’s formula, we have:
—Bu(zo + @'x*) = —FBu(zo + ¢'x*) — A+ B (2.11)
where
_ OFEu(xzo + 0'x*) , .
A = o (x" —x") (2.12)
1 #\/ 62’&(1'0 + Q’X*) *
B = §E(x'C - x") <— P >x§ (xF —x*) (2.13)

and X = ax* + (1 — a)x*, a € (0, 1).
Since x* is an optimal solution of (2.4), applying (2.8)-(2.9) we obtain

A=(A1-n)(x" —x*) =-nx">0. (2.14)
By assumption (2.vi), £ > 0 exists such that
1
B =SB —x)o(~"(r + @)e(x —x) > SE[d(x —x)) (215

Combining Corollary 2.3 with (2.11),(2.14) and (2.15) we obtain

Bu(zo + @'x") — Eu(wy + @'x") > nx* + gE [0'(x" — x")]* =% o,
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Thus
2 k—oo

Eld(xF —x")] =30,
which completes the proof. O

Since the limit of any Cauchy sequence is equal to the limit of any its
convergent subsequence the following Corollary follows from Proposition 2.4.

Corollary 2.5:

Let assumptions (2.iii) - (2.vi) hold. Assume that x!, x?, ... where x* €
X* k=1,2..., is a Cauchy sequence. Then

k—
o'xF =% o'x* as. and x* e X*.

YV = {yeR": 1'y=0, y#0},
P = {o:30>0:Plpo=0)<1-0, Ply=0)<1-90, Vye Y}

Proposition 2.4 and Corollary 2.5 present the qualitative stability of total
yields (@'x) of optimal portfolio. To examine the stability of investment
strategies of optimal portfolios, we assume that:

(2.vii) P(e=10) < 1.
Let

Yo = {yeY: Pldy=0)=1} for o¢P
=0 for o€ P.

Proposition 2.6:
Let assumptions (2.iii) - (2.vii) hold. Let g € P. Then

(i) portfolio selection problem (2.4) has a unique solution when using u(z), uy(x),
k=12, ..

(i) from the sequence x!,x2,..., where x* € X* k = 1,2..., a Cauchy
subsequence x'', x2, ... can be extracted such that

ln—o0
xi" " x* and x* e X*.
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Proof:
(i) Assume that x* € X* and X* € X*. Then

Bug(zo + @'x*) — Bug(zo + @'X*) = 0. (2.16)
By assumption (2.vi), £ > 0 exists such that
—uy(zo + 0'x) > &, Vx € X.

As in the proof of Proposition 2.4, by Taylor’s formula, we obtain
0 = Bug(wo + @'x*) — Buy(zo + 0'%") > nx* + gE [0 (X" - xk)]Z.

Since nx* > 0 and & > 0 we have
Ed& —x"]" =0

Hence
X —x") =0 as.

Since g € P, we obtain: X* = x*.

In the same manner we can see that portfolio selection problem (2.4) has a
unique solution using u(z).

(ii) roposmon 2.4 shows that from any sequence x!, x?, ..., where x¥ €¢ X¥,
k= . a subsequence x*1,x*2 .. can be extracted such that
o'xFn 7% o't as. and x* e X*.

Let x'',x"2, ... be a Cauchy subsequence of the sequence x*1, x*2, ... Then

o'xl" "2 o'x* as. (2.17)
Let

X = lim x™
lp—00

then

Ilnln 0

o'x" 5 oX as.

Combining it with (2.17) we have @'(X—x*) = 0 a.s. Since g € P, we obtain:
X = x*, and the proof is complete. O



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 24

Proposition 2.7:

Let assumptions (2.iii) - (2.vii) hold. Let X* be a singleton. Then from

the sequence x',x2, ..., where x* € X*, k = 1,2..., a Cauchy subsequence
x!t, x"2, ... can be extracted such that
xin "7 and x* e X*.
Proof:
Proposition 2.4 shows that from any sequence x',x?, ..., where x¥ € X%,
k =1,2..., a subsequence x*1,x*2, ... can be extracted such that
o'xFn 7% o't as. and x* e X*.

Let x't, x2, ... be a Cauchy subsequence of the sequence x*1, x*2, ... Then

o'x 2 o'xt as. (2.18)
Let

X = lim x'
lp—00
then
1 In ln— 1—

o'x" "% X  as.

Combining it with (2.18) we have g'x = go'x* a.s. Hence X € X*. Since X*
is a singleton, we obtain: X = x*, and the proof is complete. O

We recall the definition of the Hausdorf distance between two sets, A and
B:

dn(4, B) = max{maxd(a, B), maxd(b, A)}  where d(p, @) =mind(p, q)

and d(p,q) is the Euclidean distance from p to ¢. To prove the main sta-
bility result the following lemma describing the structure of sets of optimal
solutions will be needed.

Lemma 2.8:

Assume that x* € X*, x¥ € X* k=1,2..., are fixed.
Let Z’“:{zER”:z:X’“+y;yE?Q}, k=1,2,..,
Z7*={z€R":z=x" +y,y€?g}.
Then X*=Z7FNX, k=1,2,..and X* = Z*N X.
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Proof:

Let x € Z¥(X. If Yo # 0 then there exists y € Y such that x =
x* +y. Since o'y = 0 a.s., we obtain @'x = @'x* a.s. Thus Fuy(x + @'x) =
Fuy(zo + 0'x*). Since x € X, the last equality yields x € X*. Therefore
XD ZFOX.
Let x € X*. Then according to the proof of Proposition 2.6 (ii), we have

d(x—x") =0 as.

Since x = x*+(x—x") and (x—x*) € Y p, we obtain x € Z*. By assumption,
x € X hence x € ZF( X. Therefore X* C Z¥( X. In the same manner it
is easy to check that X* = Z*(] X, and the proof is complete. O
Theorem 2.9:

Let assumptions (2.iii) - (2.vii) hold. Then

lim sup dy (X*, X*) = 0.

k—00

Proof:

Proposition 2.4 shows that from any sequence x!, x?, ..., where x* ¢ X%,
k =1,2..., a subsequence x*1,x*2, ... can be extracted such that
kn
xfn 8 olx*as.  and x* e X
Since X is compact set, there exists a Cauchy subsequence x'',x", ... of the
sequence x*1, x*2 ... Let

_ . In—00 __
X = lim x* then o'x" =% ¢'x as.
lp—o0

n

Proposition 2.4 now implies g'x' g0 o'x*a.s. Combining these limits we
obtain: o'x = o'x* a.s. Therefore X € X*. We have just proved that

lim sup max d(x*, X*) = 0.
k—oo xFeXFk

Applying Proposition 2.4 for any subsequence of x', x?, ..., where x* € X*, it
remains to prove that for any x* € X* a sequence x!,x?, ..., where x* € X%,
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k =1,2..., exists such that at least one Cauchy subsequence of this sequence
converges to x*. We will construct such sequence.
Choose X* € X*. Consider a sequence x',x?,... where x¥ € X* £k =1,2...,

and a Cauchy subsequence x't,x2, ... Set
x* = lim x™
lp—00

If X* = x* then the construction follows immediately. In the opposite case,
by the lemma above, there exists y* € Y g such that X* = x* + y*. Let us
analyze two cases:

(i) Ifzr >0, Vie{1,2,..,n} then define x* = x* +y* k=1,2,....
Since xln "% x*, we obtain X' 2% %+ Since X* is a positive vector, there
exists ng such that: X' € X,Vn > ny. Finally, Lemma 2.8 implies X* € Z*.

Hence X', X2, ... is the sequence we wanted to find.

(ii) Let T = {i € {1,2,..,n} : T} = 0,y; < 0 }. Define X* = x* 4+ gy,
k= 1,2,.. where y* = y*(1—qy). It is clear that y* € YV and X" € Z*,
Vk € N. Let

zk 4+ yr
Qp = max ————
i€l Y

then a;, — 0. Thus X 2% %*. Since y; < 0,Vi € I it is easy to check that
this choice of ay guarantees that 78 > 0, Vi € I. If 7 = 0 and y; = 0 then it
follows immediately that ¥ > 0 . If Zf > 0 we apply the similar arguments

to the case (i). Hence there exists ng such that: X'» € X', Vn > ny. Thus
x'. %2, ... is the sequence we wanted to find, and the proof is complete. O

Since Hausdorf distance is always non-negative

0 = limsup d,(X*, X*) = lim inf dj, (X%, X*)
— 00

k—oo

which together with Theorem 2.9 implies the following result.

Corollary 2.10:

Let assumptions (2.iii) - (2.vii) hold. Then
lim d,(X*, X*) = 0.
k—oc
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To derive these stability results, we assumed twice differentiability of
utility functions (2.iv) and convergence of ARA measures (2.v). If we drop
the assumption of differentiability, i.e. the assumption of existence of ARA
measures, we can follow Rockafellar & Wets [47] and apply assumption of
hypoconvergence of expected utility functions.

Comparing these two approaches, when assuming convergence of ARA
measures, the full information about utility functions of the decision maker
is not needed. This advantage can be used in the situation when we have full
information about ARA measure of decision maker, but the portfolio selection
problem can not be solved, because it is impossible to express analytically
the exact form of utility function. In this case we can use approximation
by another suitable utility function. The stability results in Proposition 2.7,
Theorem 2.9 or Corollary 2.10 can be useful for examination of quality of
the approximation. The following example will demonstrate this situation
where ARA measure of decision maker can be estimated in various ways, for
example, from risk premium using (2.3).

Example 2.11:

Consider a decision maker with unknown utility function. Let xy = 1, g =
(1,3) and @ = (1,0)" with equal probabilities. Assume K time instants
where K € N is large enough. In each moment k& we estimate his ARA
measure from the available data till this moment. We obtain the sequence

of ARA measures: 1

re(z) = e ¥°
Since ry(x) 2% 1 the limit utility function is: u(z) = —e~*. Since the exact
form of utility functions corresponding to estimated ARA measures can not
be derived, we can use the limit utility function. Thus we can solve the

problem:

max _167(1‘}'2‘11‘}'312) 16*(14*2?1)
2 2
subject to: x; +xy = 1
z, > 0, =12

and the optimal solution of this problem is 2 = 1— 1°g3(2), 5= 10g3(2). In spite

of the fact that the optimal solutions of portfolio selection problems corre-
sponding to estimated ARA measures are not known, applying Proposition




CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 28

2.7, every Cauchy sequence of these optimal solutions converges to (z7, x3).
Thus (7, x3) can be regarded as an approximation of optimal solution of the
original portfolio selection problem.

Assuming hypoconvergence of expected utility functions, we can obtain
a stability result for larger class of utility functions than the class given by
(2.iv). On the other hand, to verify this assumption, the full information
about utility functions is needed which can be unreachable as demonstrated
in Example 2.11. Typically, a verification of assumptions (2.iv) and (2.v) is
less demanding than a verification of the assumption of hypoconvergence.

2.4 Variational analysis approach

Firstly, we recall the basic terms of variational analysis. In this approach,
we consider expected utility as a function of investment strategy i.e.

f(x) = —Fu(zy + 0'x).

Definition 2.12:
(i) The function f: R™ — R is lower semicontinuous (lsc) at X if
liminf f(x) > f(%)
X—X
and lower semicontinuous on R"™ if this holds for every x € R™. The
function f : R™ — R is upper semicontinuous (usc) at X if —f is Isc
at X and upper semicontinuous on R" if — f is lower semicontinuous on
R™.
(ii) For f: R"™ — R, the epigraph of f is the set
epif = {(z,a) € R" X Rla > f(x)}.
(iii) For f: R™ — R, the level set of f is the set
levf ={x € R"|f(x) < a}.

The epigraph consists of all the points of R"*! lying on or above the
graph of f. For « finite, the level sets correspond to the "horizontal cross
section” of the epigraph. According to Rockafellar & Wets [47], Th. 1.6 the

following properties of a function f are equivalent:
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(a) f is lower semicontinuous on R";
(b) epif is closed in R™*!;
(c) levyf is a closed set in R™ for all .

The basic tool for epiconvergence approach is definition of a limit of a
sequence of sets {C*},cn and eventually level-bounded sequence using the
following notation of index sets:

No = {N CN|N\N is finite}
N, = {N CN|N is infinite}

where N represents the set of natural numbers. Since Nf_ consists of all
subsequences of A it is easily seen that Ny, C N .

Definition 2.13:

(i) For a sequence {C*}icar of subsets of R™, the outer limit is the set :

limsupC* = {z|3N € NL, Fz* € C* k e N with & 5 2}

k—oo

while the inner limit of {C*}ien is the set:
likrninfC’k = {2|3N € Ny, Iz" € C*, ke N with z* N x}.
— 00

The limit of the sequence {C*},cn exists, if the outer and inner limit
sets are equal:

lim C* := limsup C* = lim inf C*.
k—oo k—s 00 k—oo

ii) For any sequence kfkeN of functions on R", the lower epi-limit
( ) q € ) p
e — lim 1nfk k is the function having as its epi raph the outer limit of
g g
the sequence of sets epi ?ki

epi(e — liminfy f) = lim supy (epi(fx))-

The upper epi-limit (e — limsup,, fi) is the function having as its epi-
graph the inner limit of the sequence of sets epi f:

epi(e — lim supy, fx) = lim infg (epi( fx)).
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When upper and inner limit coincide, the epi-limit (e — limy, fy) is said
to exist: e —limy, fy = e —liminfy fy = e —lim supy, fx. In this event the
functions f;, are said to epi-converge to f (fr — f ).

(iii) A sequence {fi}ren of functions on R" is eventually level-bounded if for
each a € R the sequence of level sets (lev,fx) is eventually bounded,
i.e. for some index set N € N4 the set UkeNlevafk is bounded.

Directly from the definition of epi-limit and from the definition of the
limit of sets (epigraphs) we can see that: e —liminfy f; < e —limsup, fx and
fv = f < epify — epif. Applying Rockafellar & Wets [47], Th. 7.33 in
the context of the portfolio selection problem we can conclude the following
stability result.

Theorem 2.14:

Let fi(x) = —Eug(zo + 0'x) and f(x) = —FEu(zy + @'x). Suppose that
the sequence {f}ren is eventually level-bounded, and f, —— f with f Isc.
Then

(i) limsup, X* c X~
(ii) Eug(wo + 0'x*) — Eu(xg + @'x*) for any xF € X* and x* € X*.
Reformulating the assumptions of Theorem 2.14 in terms of utility func-
tions we obtain the following result.
Corollary 2.15:

Suppose the interval I is bounded. Let v : I — R and u; : I — R,
k = 1,2,..., be usc utility functions with —u;, — —u. Let p satisfies
assumption (2.ii). Then

(i) limsup, X* c X*

(ii) Eug(wo + 0'x*) — Eu(xg + @'x*) for any xF € X* and x* € X*.
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Proof:

Since the union of domains of u, ug, K = 1,2,... is bounded and the sup-
port of g is bounded the union of all level sets of expected utility functions
(Upen leval=Eug(xo + @'x)]) is bounded for any choice of @ € R, i.e. the
sequence {—Fuy(xo + 0'x) }ren is eventually level-bounded.

To show that —uy, —— —u implies —Euy(zo+ 0'x) —— —Eu(xg+ @'x) we
apply Rockafellar & Wets [47], Th. 7.2. dealing with sufficient and necessary
condition of epiconvergence: f, — f if and only if at each point x both
following statements hold true:

(a) liminfy, fr(x*) > f(x) for every sequence x* — x
(b) limsup, fr(x*) < f(x) for some sequence x* — x.

Using Fatou’s lemma and assumption —u; — —u, especially (a), we obtain:
lim infk/ —ug(zo + @'x")dP(g) > / lim infy — ug(zo + 0'x*)dP(0)

> [ (e + ex)dPl)

for every sequence x* — x which proves (a) with fi(x*) = — Euy (2o + 0'x*)
and f(x) = —Eu(zo+@'x). In the same manner, for some sequence x* — x
we have:

lim supk/ —up(xo + @'x")dP(g) < / lim sup, — uy(wo + @'x*)dP(p)
< [ —utm+ @xir(e)

i.e. (b) holds true and the proof of epiconvergence of sequence {—Fuy(zo +
0'x) }ren is complete.

Finally, lower semicontinuity of — Eug(xo+0'x), k = 1,2, ..., and —Eu(zo+
0'x) will be derived. From the assumption of upper semicontinuity of u and
ug, k= 1,2, ... and Fatou’s lemma we conclude:

lim infl/ —ug(zo + 0'x")dP(0) > / lim inf, — (w9 + @'x")dP(g)

> / —u(zo + @'x)dP(@), k=1,2..
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lim infl/ —u(zy + @'x")dP(0) > / liminf; — u(zy + @'x")dP (o)

> [ ulso+ @x)dPe)
for every sequence x' — x which completes the proof. O
Since xq is a given parameter, g has a bounded support and the feasible

set of investment strategies is compact, assumption of boundedness of interval
I represents no addition restriction.



Chapter 3

Multivariate and multiperiod
risk premiums

3.1 Preliminaries

In Chapter 2, the univariate risk premium was considered as an amount
which is a risk averse investor willing to pay to eliminate the risk in a fair
gamble. The classical Arrow-Pratt approach assumes certain (non-random)
level of initial wealth. The generalization of this notion to random initial
wealth was introduced in Ross [49] where a stronger measure of risk aversion
was presented. Another extension of the Arrow-Pratt results for the case of
random initial wealth was suggested in Kihlstrom & Romer & Williams [24].

In Section 3.2 and 3.3 of this chapter, we summarize the results of Am-
barish & Kallberg [2], Chalfant & Finkelshtain [5], Duncan [9] and Kihlstrom
& Mirman [23] with respect to the characterization of risk premiums for mul-
tivariate (multiattribute) risk. In Section 3.4, we develop a multiperiod risk
premium. For this construction of risk premium in multiperiod problem, the
basic relationship to multivariate risk aversion is proved. Finally, in section
3.5, several generalizations of multiperiod risk premium notion are suggested
when some of considered assumptions are relaxed.

3.2 Multivariate risk premium

Suppose a decision maker with utility function u(w) and with initial
wealth w = (wy, we, ..., w,)". We can interpret w as a vector of n commodi-

33
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ties. Assume that u(w) is continuous and increasing in all variables. In this
section, we follow Duncan [9] in assuming that w is non-random. By anal-
ogy to one-dimensional case, the multivariate risk premium 7 is given by the
equation:

u(w + Exx — ) = Exu(w + x)

for a given multidimensional risk x. The vector 7 is a function of initial
wealth and probability distribution of multidimensional risk. The uniqueness
of risk premium in univariate case was proved in Pratt [45]. It is clear that
if n > 1 than 7 is not unique and using asymptotic characterization, we can
conclude that 7 lies in an n-dimensional hyperplane. We refer to Duncan
[9] for more details. As in the univariate case, we define the risk aversion at
level w such that:

w(w + Exx) > Exu(w + x)

for any given gamble x. The interpretation is that the utility of having certain
quantities w + Fyx is preferred to the expected utility of having uncertain
quantities w + x. It is easy to show that if u is concave than there exists
a nonnegative risk premium for any gamble and consequently w fulfills the
condition of risk aversion (see Duncan [9]).

3.3 Multivariate risk premium with random
initial wealth

The generalization of Duncan [9] for random initial wealth was introduced
in Ambarish & Kallberg [2]. Similarly to the case of non-random initial
wealth we are interested in determining a multivariate risk premium 7r such
that the decision maker is indifferent between two random variables: (w —r)
and (w + x). Observe that, while the uncertainty in x can be eliminated
(insured) by =, there is no insurance against the risk in w, because the
final wealth will be a random vector in both cases. We follow Ambarish &
Kallberg [2] in defining the multivariate risk premium by

Ewu(w + Exx — ) = Ey xu(w + x). (3.1)

In this notion, multivariate risk premium is a function of probability distribu-
tion of a gamble x and probability distribution of initial wealth w. However



CHAPTER 3. RISK PREMIUMS 35

it does not depend on the realization of w. This is a disadvantage of this ap-
proach. It was demonstrated that also in the case of a random initial wealth
7 lies in an n-dimensional hyperplane in asymptotic characterization. See
Ambarish & Kallberg [2] for more details. By analogy to univariate and mul-
tivariate case with non-random initial wealth, the condition of multivariate
risk aversion can be given by the formula:

Eyu(w + Exx) > Ey xu(w + x). (3.2)

However, contrary to the univariate case, concavity of utility function does
not guarantee a risk aversion. The multivariate risk aversion given by (3.2)
depends on the gamble, as we can see in the following example. Therefore
the risk aversion defined by (3.2) has to be called a multivariate risk aversion
at wealth level w with respect to gamble x.

Example 3.1:

Let u(w) = log(w;+w,) and (wy, wa, 1, 22) = (5,0,1,—3) or (1, 3, -1, 3)
with equal probabilities. Consider u(w) = log(w; + wy). It is clear that
Eyxy = Exxzo = 0 and

FEwxu(w+x) = FEyxlog(w; +wy+ x1 + x9)
11 1+0+1 L —I—ll 1—|—1 1—|—1
= —log| = — = —lo - — —
2 %8\ 3 2) T3 08 2 2
=0

1 1 1 1
Egu(w+ Exx) = Fylog(w; + wy) = = log (— + 0) + —log (1 + —)

2 2 2 2
1 3
= -1 — :
5 og<4><0

Ewxu(w +x) > Eyu (W + Exx) .

Thus

It is easy to check that u is concave and increasing in w; and also in wy. We
can see that the correlation between w and x can cause the fact that the con-
dition of risk aversion (3.2) does not hold even if u is concave and increasing
in each variable. Moreover, we will see that considering the same utility func-
tion and initial wealth, the condition (3.2) is fulfilled for another gamble x. If



CHAPTER 3. RISK PREMIUMS 36

u(w) = log(w; + we) and (wy, we, x1, x9) = (%,O, %, %) or (1, %, —
the same probabilities then

Eyxu(w+x) = Eyxlog(w; +wy + 21 + 22)
Log (Lho+ti3) s liog(14t L3
= —log| = —+ - —log{1+=—=—-
2 %8\ 3 9 "y) 3% 9 92 14

L (T
- 2%\ 16

1 1 1
Egu(w+ Exx) = FEylog(w; + wy) = 3 log (5 + 0) + 3 log (1 + —)

L3y oL (T
2 %% \1) 7 2%\ 16

Ewxu(W +x) < Equ (W + Exx).

hence

One particular set of risk premiums was considered in Ambarish & Kall-
berg [2]: let 7; be defined to be the risk premium in the i-th direction i.e., a
solution of (3.1) with the property that components of 7 satisfy

o= 0  j#i

Let us compute directional risk premiums 7, 7, for the first setting in
Example 1 where Fyx = 0:

FEwxu(w+x) = FEyu(w-—m); == (m,0)

1 1 1 3
0 = §log<§—ﬂ1>+§log<§>

N 1
™ = —6
FEwxu(w+x) = Egu(w—m); m=(0,7)
1 1 1 ~
0 = 3 log <§> + 3 log <— — 7r2>
N 1
D —5
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We can see that concavity of u does not guarantee the risk averse attitude
(with respect to all gambles) and nonnegativity of directional risk premiums
as it did in the univariate case. However, it is easy to see that if u is increasing
in each variable then there is a relationship corresponding to the univariate
case: the condition (3.2) of risk aversion at wealth level w with respect to
gamble x is equivalent to nonnegativity of all directional risk premiums.

The main disadvantage of this approach is the fact that w is not allowed
to be a function of 7. Therefore this notion is not very useful in multiperiod
models and we suggest another way, how to define multiperiod risk premium.

3.4 Multiperiod risk premium

Let u(w) be an increasing utility function. In this section, we interpret the
arguments of w as the random amounts of cash (single commodity) measured

at times 1,...,n. It is the vector of initial wealth in each period. We will
denote by x the random vector of all changes in wealth vector w at times
1,...,n, ie. z; is a random investment possibility (gamble) at time i. We

would like to define i-th element of multiperiod risk premium IT such that
a decision maker is indifferent between accepting the gamble z; and paying
IT, — Exx; in i-th time period. If the probability distribution of w is known
and we do not want II; to depend on realization of w then we can apply
the approach mentioned in Section 3.3. However, it is not very realistic
assumption. In our framework, the i-th element of multiperiod risk premium
depends on the initial wealth at time ¢ and on the probabilistic distribution
of x. The initial wealth w; depends on w;_; and on the decision of investor
at time 7 — 1, whether he accepted gamble z; | or paid II; | — Exz; . This
decision is not known usually, because the investor is indifferent between
these two possibilities. Thus, we assume that w is a function of x and IT.

Without loss of generality from now on, we will follow Ambarish & Kall-
berg [2], Duncan [9] and Pratt [45] in assuming that Fyx = 0.

Finally, we assume that a history of decisions does not depend on x
and all possible histories of decisions are described by the following decision
scenarios where an investor has only two possibilities in each time period: to
accept the gamble or to pay risk premium.
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accept -
accept o ( ... Pt Hn—t

II,,—
accept x; ( payt el
pay IIy ( ... ACCEPY: Tn—1
< pay anl
accept Ty ( :
pay I < accept x, 1
ay II
pay Iz { pay T,

Note that an information about the decision in the last period is not rele-
vant because it can not influence the initial wealth vector w. Thus there are
m = 2"~! scenarios. Let S denotes the set of all scenarios. Let s € S. If the
decision maker accepts a gamble in i-th time period then let k] = 1, other-
wise kf = 0. The scenario s is represented by vector K* = (k{, k3,...  ki_,)
consisting of binary elements. Each scenario uniquely describes the decisions
of investor in all time periods e.g. the scenario with £ =1,7=1,2,...,n—1
corresponds to the investor who accepts a fair gamble in each time period.
With this notation, the initial wealth in j-th time period along scenario s
can be written in the form:

wiIly, .. Toy) = wi 4+ Y [kfxy — (1= k)IL). (3.3)

Therefore w = w* with unknown probability p* for s € S where w* depends
on x, hence w*® is a random vector. Observe that we consider multiperiod
risk premium as a price of insurance against all risks. It is not allowed to
separate risks in one time period and to compute the amount of multiperiod
risk premium (insurance) only for some of them. For example if we receive
$1 in the second period from external resources and we can lose $2 with
probability 0.5 in the second period gamble then the considered investment
possibility is to receive $1 or to pay $1, i.e. 29 = 1 or 29 = —1 with equal
probabilities.

In a formal way, we would like to define multiperiod risk premium by the
system of equations:

Exu(w® +x) = Exu (w® — IT) Vs e S. (3.4)

We assume that all expected values exist for all scenarios. Recall that w* is
a function of IT and x (see (3.3)). However, this system of 2"~! equations
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and n variables does not usually have a solution unless n < 2. Therefore we
suggest another approach. Given x, let

f*(I0) = [Exu(w’® + %) = Exu (w® — II) |

for non-random wy. It is clear that IT minimizes f*(IT) if and only if IT is a
solution of the corresponding equation in (3.4) for scenario s. Hence, we are
interested to find IT which minimizes f*(II) jointly for all s € S as much as
possible. This is a multi-criteria programming problem and we apply the goal
programming approach. We are looking for a vector (IT) which minimizes the
maximal value of f*(II) over all scenarios, i.e. is a solution of the problem:

. -
rrll_llnrgleagf( ),

which can be written in the equivalent form:

min d 3.5
i 5)

st.  f(II) < d Vs € S.

Summarizing, the multiperiod risk premium is defined as a solution of the
problem:

min d (3.6)
IT
st. —d<FEyxu(w’+x) — FEuau(w'—II)<d VseS,

where the elements of w* are given by (3.3).

It is easily seen that if an optimal solution d* = 0 then the multiperiod
risk premium is a solution of (3.4), else this system of equations has no
solution.

We define the multiperiod risk aversion in the similar way as it was in
the univariate and multivariate case using the scenario approach, i.e. the
decision maker is multiperiod risk averse at wealth level w with respect to
gamble x if

Exu(w® +x) < Exu(w®) VseS. (3.7)

We follow Ambarish & Kallberg [2] in applying the idea of directional risk
premiums. They represent an amount that an investor can pay only in one
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time period to insure against all risks. We define i-th directional multiperiod
risk premium II; as a solution of the following problem:

min d (3.8)
I1

st. —d< Eyu(w’+x) — Eyu(w'—II)<d VseS
M = 0 j#i

where the elements of w* are given by (3.3).

Finally, we will prove a relationship between directional multiperiod risk
premiums and multiperiod risk aversion. The corresponding property holds
both for the multivariate case and the univariate case.

Theorem 3.2:

If the decision maker is multiperiod risk averse at wealth level w with
respect to gamble x then all directional multiperiod risk premiums are positive.

Proof:

Choose i € {1,2,...,n}. Let w; be defined by (3.3) and IT*" be a solution
of equation: Fyu(w®+ x) = Exu (w® — II) under conditions: II; = 0 for all
j # i. Assumption of risk aversion at wealth level w with respect to gamble
x (given by (3.7)) is equivalent to positivity of II?" for all s € S, because u
is increasing in each variable. Let

II; = min II]".

Using (3.3) and assumption that u is increasing in each variable, it is easy to
show that f*(II) = |Exu(w® + x) — Exu (w® — IT) | is a decreasing function
in variable II; on (—oc,II;) for all s € S under conditions: II; = 0 for all
j # 1. Therefore ﬁl >TI; > 0. O

3.5 Generalizations of multiperiod risk pre-
mium

First, we will assume that there can be some legislative restrictions (or other
reasons) such that there is no insurance possibility in some time periods
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or an investor is not interested in the insurance possibility in these time
periods. Let A be the set of considered time periods and m be the number of
considered time periods in multiperiod risk premium construction. If i € A
then let y;, = —II; else y; = x;. We will denote by S, the subset of S
which consist of the scenarios with the property that if i € {1,2,... ,n}\ A
then k7 = 1. With this notation, similarly to (3.6), we define the partial
multiperiod risk premium TI? = {II;};c4 as an m-dimensional vector which
solves the problem:

min  d (3.9)
I1
st. —d<Ewuww +x) — Eyu(w +y)<d VseS,

j—1
w;. = w1+2[kfxi+(1—kf)yi] J=2,3,...,n
i=1

yi = x 1¢A

We will illustrate the computation of multiperiod risk premium, direc-
tional multiperiod risk premium and partial multiperiod risk premium in the
following example.

Example 3.3:

Consider u(wy, wy, w3) = log(wy +we +w3). Let x1, 29, z3 be an indepen-
dent random variables: x; = :I:% with equal probabilities, 7 = 1,2, 3. Finally,
set wy = 2.

First, we evaluate the multiperiod risk premium given by (3.6). Any
scenario s is determined by vector K = (kf,k3) e.g. if K = (1,0) then an
investor will accept the first gamble and he will pay Il in the second period
to insure against xo. It is clear that S consists of four scenarios: s; ~ (1, 1),
so ~ (1,0), s3 ~ (0,1) and s4 ~ (0,0). It is easy to check that:

fl(l_.[) = \Exu(wl + T, W + T +I2,w1 +1‘1 + To +1‘3)
—EX’LL(’LU1 — Hl,wl + T — Hg,wl + 21+ 29 — Hg)‘

1 1 15
= g 10g(1088640) — Z IOg (? — H1 — HQ — H3)

13 11 9
(?—H1—Hg—Hg)(?—Hl—Hg—Hg)(§—H1—H2—H3)H
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fZ(H) = |Exu(w, + &1, w; + 21 + g, w1 + 1 — Iy + x3)
—Exu(w; — Iy, wy + 21 — Ho, wy + 2y — Iy — II3))]
1 17 15 15 13 11
= [gtoe |5 - M - M - T - M -
9 9 7
— — I, (= —=TIy) (= —1I
Q1) -1 (L - 1)

1
—5 IOg [(7 - H1 - 2H2 - H3)(5 - H1 - 2H2 - H3)]

f3(]._.[) = \Exu(wl + T1, W1 — H1 + To, W1 — H1 + To + 1‘3)
—Eu(wy; — Iy, wy — Iy — Ty, wy — Iy + 29 — II3))|

= S log[(8 — 2T1,)(7 — 20T,)(6 — 20T,)(5 — 211,)(7 — 211y)
(6— 211,)(5 — 211,) (4 — 211,

1 13 11
—5 log |:(? — 3H1 — HQ — Hg)(? — 3H1 — H2 — Hg):|

f4(H) = |Exu(w, + z1, w; — I} + 29, wy — I} — TIy + x3)
—Exu(wy; — Iy, wy — Iy — g, wy — [Ty — Iy — I13)|
1 15 13 13
11 13 11
(? — 211, — Hg)(7 — 211, — ]._.[2)(? — 211y — II,)

11 9
(? - 2H1 - Hg)(§ - 2H1 - Hg) - 10g(6 - 3H1 - 2H2 - H3)|

and the multiperiod risk premium (optimal solution of (3.5)) is:

M = (1.252,1.27,-2.319) and d* =6.10"".

Let us compute the directional multiperiod risk premiums given by (3.8).
The first directional multiperiod risk premium is an optimal solution of the
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problem:
min d
I
s.t. |Exu(wy + 21, ws + 29, w3 +23) — Eyxu(wy, — I, wy,w3)| <d Vs€S

wy = wy+ kizy — (1 — kJTL)
’U)?s) = wyi+ kfl‘l - (1 — kal) + k;xg
where the last two conditions are concluded from (3.3). Hence I, = 0.1367

and d* = 0.0124. By analogy, solving the following problem, we obtain the
second directional multiperiod risk premium.

min d
1Ty
s.t. | Exu(wy + z1, wy + o, ws + x3) — Eyu(wy,wy — Iy, w;)| <d VseS
wy, = wy+kiTy

w; = wy + kiry + kyxe — (1 — k3T1y).

Thus ﬁ2 = 0.1368 and d* = 0.0124. In the same manner we can see that
the third directional multiperiod risk premium can be evaluated from the
problem:

min d
113
s.t. |Exu(wy + 21, w3 + 29, w3 + x3) — Eyxu(wy, wy,w; —I3)| <d Vse€ S
wy; = wy+ ki
wy = wy + kjxy + kjzg.

Therefore ﬁ3 = 0.1368 and d* = 0.0124. We can see that all the directional
multiperiod risk premiums are approximately equal.

Finally, let us compute the partial multiperiod risk premium. We as-
sume that the insurance possibility does not exist in the second period, i.e.
A = {1,3}. Thus y = (—IIy, x9, —1II3). Since only two scenarios are pos-
sible in this situation (Sx = {K', K%} where K' = (1,1) and K? = (0,1)),
applying (3.9), we obtain the partial multiperiod risk premium as a solution
of the following system of two equations:

Exu(wy + z1,wy + 21 + o, wy + 11 + 29 + 23) —
Exu(wy; — I, wy + 21 + 29, wy + 21 + 29 — 1I3) = 0

Exu(wy 4+ z1,wy — Iy + x9, wy — Iy + 29 + 23) —
Exu(wy — T, wy — Ty + 29, wy — Iy + 29 — T13) = 0
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Thus II; = 1.638 and I3 = —1.5.

Another generalization of the multiperiod approach is based on the as-
sumption that w; is a random variable. Suppose that the scenarios K* and
their unknown probabilities p* do not depend on w;. We follow Ambarish &
Kallberg [2] in adopting the possibility of non-zero correlation between w;
and x. By analogy to the univarite case with random initial wealth devel-
oped in Kihlstrom & Romer & Williams [24] and Ross [49], we define the
multiperiod risk premium for random w, as a solution of the problem:

min d (3.10)
I1

st.  —d< Expu(w'+x) — Exyu(w’'—II)<d VseS

where the elements of w® are given by (3.3). We can see that the only differ-
ence between (3.10) and (3.6) is in considering expected value with respect
to both random variables: x and w;. If we apply expected value with respect
to x and w; instead of expected value only with respect to x then we can
also define directional and partial multiperiod risk premiums for random w;.

Finally we will modify the assumption of independence between history
of decisions and x. There can exist investment possibilities, which can have
non-random yields in some time periods and the distribution of yields can
depend on the history of realization of x. As an example of such investment
possibility a bond can be considered. If the bond default comes in ¢-th time
period then x; = 0 a.s. for all 7 > ¢. In this case, there is no risk in i-th time
period. Therefore the value of risk premium in i-th time period has to be
equal to zero.

In general, we assume that if z; is non-random then i-th element of multi-
period risk premium is equal to zero. A conditional multiperiod risk premium
IT represents the price of insurance against all risks with an additional con-
dition: if the realization of x is such that the investment possibility in i-th
time period is not risky, then no insurance is available in this time period (i.e.
ﬁi = 0). If x; = Fz; a.s. then let y; = 0 else y; = ﬁl With this notation,
we define the conditional multiperiod risk premium II as a solution of the
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problem:

min
I1
—d < Exyu(w® + x)

S
W

Yi
Yi

d

Exu(w®—y)<d VseS
j—1

w1+2[kfxi—(1—kf)yi] Jj=2,3,...,n
i=1

By analogy to non-conditional approach, we can consider also directional
conditional multiperiod risk premiums.



Chapter 4

Second-order stochastic
dominance and efficient
portfolios

4.1 Preliminaries

The portfolio selection problem may be regarded as a two-step procedure.
Firstly, an efficient set among all available portfolios is chosen and then the
risk preferences of decision maker to this set are applied. This chapter deals
with the first step. Section 4.2 recalls the basic ideas and results of stochastic
dominance approach for pairwise comparisons. A given portfolio is efficient
in the considered set of assets if there exists no other convex combination of
the assets which strictly dominates the portfolio.

As was demonstrated in Chapter 2 and Chapter 3, the risk preferences
of decision maker can be described by a von Neumann-Morgenstern utility
function or risk premium. Applying value-at-risk (VaR) or conditional value-
at-risk (CVaR) is another way how to express the risk attitude of decision
makers. If the yields or losses of assets in the portfolio are described by
discrete probabilistic distributions then CVaR can be computed as a solution
of linear programming problem. This property will be used in the sequel.

In section 4.3, following Ogryczak & Ruszczynski [40], we recall the basic
properties of CVaR in context of stochastic dominance. The relationship
between risk premium and CVaR is shown. Finally, CVaR for the case of
discrete probability distribution is analyzed. These results are employed in

46
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section 4.4 where a necessary and sufficient condition for SSD portfolio effi-
ciency is derived and compared with conditions in Post [43] and Kuosmanen
[34]. Also a necessary condition based on CVaR is presented. This necessary
condition can detect SSD portfolio inefficiency especially when assets returns
are highly correlated.

Summarizing conditions from section 4.4 we formulate linear program-
ming algorithm for testing SSD efficiency of a given portfolio in section 4.5.
If a tested portfolio is SSD inefficient then this test always identifies a dom-
inating SSD efficient portfolio.

Following the idea of Post [43], in section 4.6, we introduced a measure
of portfolio inefficiency. However, this measure is based on CVaR and uses
solution of linear program in necessary and sufficient condition for SSD ef-
ficiency presented in section 4.4. We prove the consistency of this measure
with SSD relation and we analyze its convexity. Finally, we illustrate these
results on a simple numerical example.

We apply the derived results to test SSD efficiency of mean-VaR optimal
portfolios in numerical application presented in section 4.7. We compute
SSD portfolio inefficiency measures of all tested portfolios.

4.2 Stochastic dominance

For two random variables X; and X, with respective cumulative proba-
bility distributions functions Fi(x), Fy(x) we say that Xy dominates X, by
first degree stochastic dominance: X1 = psp Xo if

Ep u(z) — Epu(z) >0

for every utility function u, i.e. for every continuous nondecreasing function
u, such that these expected values exist. Let us denote by U; the set of all
such functions. We say that X; dominates Xy by second degree stochastic
dominance: Xy =ggp Xo if

Ep u(z) — Epu(z) >0

for every u € Uy where Uy C U; denotes the set of all concave utility func-
tions such that these expected values exist. The corresponding strict domi-

nance relations >pgp and >ggp are defined in the usual way: X; =rsp Xo
(X1 »ssp Xo) if and only if X; =psp Xy (X1 =ssp X2) and Xy #rep Xy
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(X2 #ssp X1). According to Russel & Seo [50], u € U, may be represented
by simple utility functions in the following sense:

Epu(z) —Epu(z) >0 VYuelU, <= Epu(zx)—Epu(z)>0 VueV

where V' = {u,(z) : n € R} and u,(z) = min{z — 7, 0}.
For the development of the third or higher degree of stochastic dominance
see Levy [36], Whitmore [55] and Whitmore [56]. Set

The following necessary and sufficient conditions for stochastic dominance
were proved in Hanoch & Levy [18].
Lemma 4.1:

Let Fy(z) and F5(z) be cumulative distribution functions of X; and X5. Then
o X, ~FSD X, & Fl(l') SFQ(!E) Vr e R
e X\ =ssp Xo & FAW)<FP() VteR

e Xi =psp Xo & Fi(x) < Fy(r) VaeR where at least one strict
inequality holds

e X| »s55p Xo & F1(2) (t) < FQ(Q)(t) Vt € R with at least one strict
inequality.

Lemma 4.1 can be used as an alternative definition of stochastic domi-
nance.

Consider now the quantile model of stochastic dominance Ogryczak &
Ruszezynski [40]. The first quantile function F)({l) corresponding to a real
random variable X is defined as the left continuous inverse of its cumulative
probability distribution function Fx:

FUY () = minfu : Fx(u) > v}, (4.1)

The following result follows directly from Lemma 4.1.
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Lemma 4.2:

Xirpsp Xo & FU V@) <FE V@) vpe(o1).

The second quantile function F)((_Q) is defined as

p
F(p) = / FCV()dt for 0<p<1

= 0 for p=0

= 4o otherwise.
The function F)((_Q) is convex and it is well defined for any random variable
X satisfying the condition E|X| < oc. For the proof of the following ba-

sic properties of the second quantile function and more details about dual
stochastic dominance see Ogryczak & Ruszezynski [40].

Theorem 4.3:

For every random variable X with E|X| < oo we have:

(i)
FP(p) = sup{vp — Emax(v — X, 0)}

X1 =ssp Xo & > 2

4.3 VaR and CVaR

Let Y be a random loss variable corresponding to the yield described by
random variable X, i.e. Y = —X. We assume that EY| < co. For a fixed
level «, the value-at-risk VaR is defined as the a-quantile of the cumulative
distribution function Fy- :

VaRo(Y) = FL ) (a). (4.2)

We follow Pflug [42] in defining conditional value-at-risk CVaR as the solution
of the optimization problem

CVaR,(Y) = min{a + ﬁ]E[Y —a]™} (4.3)

a€R
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where [z]T = max(x,0). This problem has always a solution and one of
minimizers is VaR,(Y). See Pflug [42] for proof and more details. It was
shown in Uryasev & Rockafellar [53] that the CVaR can be also defined as
the conditional expectation of Y, given that Y > VaR,(Y), i.e.

CVaR,(Y) = E(Y]Y > VaRo(Y)). (4.4)

If we use —Y and 1 — « instead of X and p in Theorem 4.3, respectively
we can directly see from the definition of CVaR that:

—2
Fy 2 (p)
p

= sgp{u - %]Emax(l/ - X,0)}
= - irl}f{—u + %Emax(u - X,0)}
= — igf{a + ﬁ]Emax(Y —a,0)}
= —CVaR,(Y).
Therefore Theorem 4.3 leads to the following result.
Lemma 4.4:
Let V; = —X; and E|X;| < oo for i = 1,2. Then
X1 =ssp Xo & CVaR, (Y1) < CVaR,(Ys) Va e (0,1).

A well known property of CVaR,, is its convexity in the following sense.
Lemma 4.5:
Set A € (0,1). Then

CVaR,(A\Y7 + (1 — N)Y3) < ACVaR,(Y7) + (1 — A)CVaR,(Y3) (4.5)

where Y7, Y5 are arbitrary random variables.

Proof:

The proof follows from convexity of y — [y — a]*.
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4.3.1 CVaR for scenario approach

In this subsection we limit our attention to scenario approach, i.e. we will as-
sume that Y is a discrete random variable which takes values y',t = 1,...,T
with equal probabilities. Then (4.3) can be rewritten as a linear program-
ming problem. Moreover CVaR,(Y) can be calculated using the following
formula:

CVaR,(Y) =

o (4.6)

yt>VaR, (V)

Tl

and the assumptions of Theorem 4.3 and Lemma 4.4 are fulfilled. For more
details we refer to Pflug [42].

Following Rockafellar & Uryasev [53] and Pflug [42], applying scenario
approach in (4.3), CVaR can be obtained by solving the following linear
program:

1
CVaR,(Y) = min a+ wy (4.7)
awe (1—-a)T t:zl
st. wy 2> y—a
Wy Z 0.

Let y*! be the k-th smallest element among y', 42, ..., y7, i.e.
yll <yl <. <yl In context of stochastic dominance a description of
CVaR,(Y) as a function of a will be useful.

Lemma 4.6:
+1

If e <§,k—> and « # 1 then

T
1 SN
CV&R@(Y) = y[k+1} + m Z (ym — y“””) (48)
1=k+1

for k = 0,1,...,7-1 and CVaR,(Y) = y!"\.
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Proof:

Consider a random variable Y which takes values y',t = 1,...,T with
probabilities py, po, ..., pr. For a chosen « define j, such that

Ja—1 Ja
(RS ij, ;-
j:l ] 1

Then the following formula was proved in Rockafellar & Uryasev [53]:

1 Jo | T ‘
CV&RQ(Y) = m [(Zp] — O[) y[]a} + Z p]y[ﬂ] .
j=1

J=Ja+1

Since py = 1/T,t = 1,...,T we set: j, =k + 1 and the lemma follows.

Combining Lemma 4.4 with Lemma 4.6 we obtain the necessary and suf-
ficient condition of the second-order stochastic dominance. This conditions
can be more easily verified than conditions in Lemma 4.1, Theorem 4.3 or
Lemma 4.4.

Theorem 4.7:
Let Y, = — X, and Y5 = — X, be discrete random variables which take values
yt and yi, t = 1,...,T, respectively, with equal probabilities. Then

1 2 T-1
X, ~ssD X, & CV&RQ(Yi) < CV&RQ(YQ) Vo € {U, ?, T’ .. ,T}

Proof:
Let ap = k/T, k = 0,1,...,T — 2. Lemma 4.1 implies:

T—-1
CVaR/;I (Y;) = CV&RQQ(Y;’), 1= 1, 2 for all /81,/82 € <T, 1> .

Thus it suffices to show that if
CVaR,, (Y1) < CVaR,, (Y2) (4.9)
and

CVaR,,,, (Y1) < CVaR,,,, (Y2) (4.10)
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then CVaR,(Y7) < CVaR,(Y3) for all @ € (g, ax.1). To obtain a contra-
diction, suppose that (4.9) and (4.10) holds and there exists @ € (o, 1)
such that CVaRz(Y1) > CVaR;(Y3). From continuity of CVaR in « there
exists a! € (g, ag11) and o? € {ay, ap11), @' # o? such that

CVaR,:(Y;) = CVaR, (Y3) (4.11)

CVaR,: (Y1) = CVaR,:(Y3). (4.12)
Substituting (4.8) into (4.11) and (4.12) we conclude that a! = a?, contrary
to a! # a? and the proof is complete.

4.3.2 Relationship between risk premium, VaR and
CVaR

In Chapter 2, absolute (relative) risk aversion measure and univariate risk
premium as the examples of measures of risk were considered. In these mea-
sures, the risk attitude of decision maker is expressed using utility functions.
The value-at-risk and the conditional value-at-risk are risk measures of an-
other type, where the decision maker’s risk attitude is expressed by level
a. We will show that for a suitable choice of utility function and for any
absolutely continuous random variable X, risk premium is equal to convex

combination of CVaR and VaR.
Theorem 4.8:

Let X be an absolutely continuous random variable and E(X) = 0. Let
Y=-XIf

u(z) = min(z + Fl(fl)(a), w), ae€(0,1) (4.13)
then
m(w, Px) = (1 — a)CVaR,(Y) + aVaR,(Y).

Proof:
From (2.2) and (4.13) we have:
Emin(w —Y + FC Y (a),w) = min(w+ FC V() — 7(w, Py), w)
Emin(-Y + FV(a),0) = min(Fy " (a) - r(w, Px),0).
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Since Y has a smooth distribution function Emin(—Y + F)(/_l)(a), 0) is neg-
ative. Hence

m(w, Px) = F)(/_l)(a) — Emin(—-Y + F)(/_l)(a), 0)
FEY(a) + Emax(Y — FC Y (a),0)
= Emax(V, FSV(a))
and it is easy to see that
Emax(Y,F\ V(@) = P(Y > BV (@)EY Y > BV (@)
+P(Y < By () I ().
Combining it with (4.1),(4.2) and (4.4) the proof is complete.

In the case that E(X) # 0 we can consider initial wealth v’ = w + E(X),
the gamble X' = X — E(X) and Theorem 4.8 can be formulated for v’ and
X' instead of w and X, respectively.

The utility function u(z) given by (4.13) is a linear transformation of a
representative utility function in the sense of Russel & Seo [50]. All wealth
levels higher than w give the same utility and utility of losses is modified by
the risk term represented by VaR,(Y) = Fl(fl)(a).

4.4 SSD portfolio efficiency criteria

Consider a random vector r = (ry,ry,...,ry)" of yields of N assets and T
equiprobable scenarios. The yields of the assets for the various scenarios are
given by

x
2
X = .
T
where x' = (2},2%,... 2% ) is the t-th row of matrix X. Without loss of

generality we can assume that the columns of X are linearly independent. In
addition to the individual choice alternatives, the decision maker may also
combine the alternatives into a portfolio. We will use A = (A, Mg, ..., Ax)’
for a vector of portfolio weights and the portfolio possibilities are given by

A={XeR¥I'A =1, \, >0, n =1,2,...,N}.
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The tested portfolio is denoted by 7 = (71, 72, ..., 7n)". In finance data, the
yields of assets are usually significantly correlated. A special interesting case

of X which may occur for strongly correlated yields of assets is defined as
follows.

Definition 4.9:

Matrix X is called portfolio-monotone if there exists permutation IT : {1,2, ..., T} —
{1,2,...,T} such that x'7 = (X7)"Wl forall 7 € A, t =1,2,...,T.

Lemma 4.10:

If X is portfolio-monotone matrix of scenarios then

CVaR, (—r'[nT1 + (1 — n)73]) = nCVaRy(—1'7) + (1 — n)CVaRy(—1'75)

for any 71,79 € A and for any n, a € (0,1).

Proof:

If X is portfolio-monotone then —X is portfolio-monotone and the proof fol-
lows directly from Lemma 4.1. O

Following Ruszczynski & Vanderbei [51] and Kuosmanen [34] we will de-
fine SSD efficiency of a given portfolio 7.
Definition 4.11:

A given portfolio 7 € A is SSD inefficient if and only if there exists portfolio
A € A such that t'A =ggp r'7. Otherwise, portfolio 7 is SSD efficient.

This definition classifies portfolio as SSD efficient if and only if no other
portfolio is better for all risk averse and risk neutral decision makers. In Post
[43], more stringent definition of SSD efficiency was introduced.

Definition 4.12:

A given portfolio 7 € A is SSD strict inefficient if and only if there exists
portfolio A € A satisfying the following inequality

FEu(r'A) > Eu(r'r)
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for all u € U; where U; € U, is the set of all strictly concave utility functions.
Otherwise, portfolio 7 is SSD strict efficient.

Comparing the Post definition (Definition 4.12) with our definition (Def-
inition 4.11), these definitions coincide from empirical point of view as was
argued in Post [43]. However, one can construct an example where a portfolio
is classified as SSD efficient only for the Post definition, i.e. it is SSD strict
efficient but SSD inefficient. Hence the Post linear programming test in the
following proposition gives a necessary condition for SSD efficiency.

Proposition 4.13:
Let

6" = min6 (4.14)
0,5t

\
(@)
N

Il
—
\‘[\')
=

T
s.t. Z By(x'r —al) +T6
=1

B — By = t=1,2,...T -1
By > t=1,2,..,T—-1
fr =

If portfolio 7 is SSD efficient then 6* = 0.

If some ties in elements of X7 occur, then the constraints can be modified.
See Post [43] for more details. Anyway, this criterion failed in comparing
portfolios with identical means. It does not detect the presence of SSD
dominating portfolio if mean of its yields equals to mean of X 7. It is caused
by differences in definitions. From now on, we will deal with SSD efficiency
in the sense of Definition 4.11. Following Kuosmanen [34] we can improve
the Post criterion in order to obtain a necessary and sufficient condition for
SSD efficiency. It depends on “ties” in X7. We say that k-way tie occurs if
k elements of X7 are equal.
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Proposition 4.14:
Let

6** :Wirqulils ZZS + 55 (4.15)

7j=1 =1
s.t. XA = WXt
sp— 8, = wij—5  4,j=1,2..T
sl‘;,s”,ww > 0 4,5=12..T

I
—_
~

I
—_
\_[\')
~

E U)i]‘
i=1

wy =1 j=12..T
i=1
A e A

where ST = {si},_,, S = {s;;}] ;=1 and W = {wy;}],_,. Let ¢ denote the
number of k-way ties in X7. Then portfolio 7 is SSD efficient if and only if

2 <
wz?—;mkszo

where 0* is given by (4.14).

These criteria are based on applications of Lemma 4.1. We will derive
sufficient and necessary conditions for SSD efficiency of 7 based on quantile
model of second order stochastic dominance, in particular the relationship
between CVaR and SSD will be employed. This new test will use smaller
linear program than problem (4.15). We start with necessary condition using
the following theorem. To simplify the notation, set ' = {O, T T, cee %} .
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Theorem 4.15:
Let ap = k/T, k=0,1,..., T —1. Let

T-1 N

= II&E;X Z Z An [CvaRak (—I"T) - CvaROék (_T")]

k=0 n=1
N
s.t. Z An [CVaR,, (—=r'T) — CVaR,, (-r,)] > 0, k=0,1,...
n=1
AeEA

If d* > 0 then 7 is SSD inefficient. Optimal solution A* of (4.16) is an SSD
efficient portfolio such that r'A* =ggp r'T.

Proof:
If d* > 0 then there is feasible solution A of problem (4.16) satisfying

N
Z)\n [CVaR,, (—r'7) — CVaR,, (—7,)] >0, Vo, €T

n=1

where at least one strict inequality holds. For this A we have

N
Z)\HCVaRak(—rn) < CVaR,, (-r'7), Vo, €T

n=1

with at least one strict inequality. From Lemma 4.5 we obtain

N
CVaRq, (—1'A) <) A,CVaRy, (—r,)  Voy €T,

n=1

Hence
CVaR,, (-r'A) < CVaR,, (-r'r) Vaz €T

with at least one strict inequality. Applying Theorem 4.7 we can conclude
that r'A >ggp r'T. Since the last inequality is strict for at least one oy € T,
'\ #gsp 't and according to Definition 4.11, 7 is SSD inefficient. The
SSD efficiency of optimal solution A* follows directly from the formulation
of objective function in (4.16), which completes the proof. [
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Problem (4.16) is a linear program with N variables and N + T + 1
constraints. Since, in SSD portfolio efficiency testing, /N is usually much more
smaller than 7, in comparison with test suggested in Post [43] (Proposition
4.13), problem (4.16) is smaller. Moreover, contrary to (4.14), if (4.16) shows
SSD inefficiency it also identifies the dominating SSD efficient portfolio. The
power of necessary condition in Theorem 4.15 depends on correlation between
random variables r,,, n = 1,2, ..., N. In finance data, the yields of assets are
often strongly correlated. In this case, according to Lemma 4.1. the convexity
gap of CVaR, i.e. the difference between RHS and LHS in (4.5) is not very
large. Thus the condition in Theorem 4.15 can identify the corresponding
SSD efficient dominating portfolio very fast. Moreover, according to Lemma
4.1, if X is portfolio-monotone then Theorem 4.15 presents necessary and
sufficient condition for SSD efficiency.

In general, Theorem 4.15 presents only necessary condition for SSD ef-
ficiency of 7 and portfolio 7 can be SSD inefficient even if (4.16) has no
feasible solution or d* = 0 . If d* = 0 then two possibilities may occur:

(1) Problem (4.16) has a unique solution A* = 7. If this is the case then T
is SSD efficient.

(2) Problem (4.16) has an optimal solution A* # 7. In this case, 7 is SSD
inefficient and r'A* =gg5p r'7. Moreover, A* is an SSD efficient portfolio.

The situation when d* = 0, A* # 7 and 7 is SSD efficient would imply
XX =Xr

which contradicts the assumption of linearly independent columns of X.

If problem (4.16) has no feasible solution then we can employ the following
necessary and sufficient condition for SSD efficiency. This result was obtained
thanks to a personal consultation with Petr Chovanec.
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Theorem 4.16:
Let ap = k/T, k=0,1,..., T —1. Let

D*(r)= max » Dy (4.17)

s.t. CVaRyg, (—r'7T) — b —

Emax(—r')\—bk,(]) Dk, k:(),l, ,T—l

>
Dy > 0, k=01,..,T—1
A€

l—ak

If D*(r) > 0 then 7 is SSD inefficient and r'A* >g5p r'7. Otherwise,
D*(T) =0 and 7 is SSD efficient.
Proof:

Let A*,by, k=0,1,...,7 — 1 be an optimal solution of (4.17). If D*(T) > 0
then

1
by + : Emax(—r'A* — b},0) < CVaR,, (—r'7) Vo, €T (4.18)
where at least one inequality holds strict. Since from the definition of CVaR

we have

CVaR,, (—1'\") = rr;in {bk + Emax(—r'\* — by, O)}
k

1-— Qe
we conclude from (4.18) that
CVaR,, (—1'A") < CVaR,, (—r'T)

with at least one strict inequality. By analogy to the proof of Theorem 4.15,
it is easily seen that 7 is SSD inefficient and r'A* =g5p r'7.

If D*(7) = 0 then problem (4.17) has unique optimal solution: A" = 7,
because the presence of another optimal solution contradicts the assumption
of linearly independent columns of X. Thus there is no strictly dominating
portfolio and hence 7 is SSD efficient, similarly as for (4.16). Since 7 is
always a feasible solution of (4.17), D* can not be negative and the proof is
complete. 0
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Problem (4.17) has N + 27 + 1 constraints and N + 27" variables. In-
spired by (4.7) and following Pflug [42], Rockafellar & Uryasev [53], it can
be rewritten as a linear programming problem with 27°(T + 1) + N + 1
constraints and T'(T + 2) + N variables:

D*(t) = Dkﬁ:})}:,wk;Dk (4.19)
s.t. CV&R%(—I‘IT) — by, — @ ;w,tc > Dy, k=1,...,T
w, > —x'A—b,, tk=1,...,
w;, > 0, tk=1,...,T
Dy > 0, k=1,....T
A € A

Using (4.19) instead of (4.17) in Theorem 4.16 we obtain a linear pro-
gramming criterion for SSD efficiency.

This sufficient and necessary condition requires solution of a smaller linear
program than it is in the Kuosmanen test (see Theorem 4.13). Moreover, it
identifies SSD efficient dominating portfolio. In comparison with necessary
conditions in Proposition 4.13 and Theorem 4.15, the number of variables is
approximately equal to square of T

4.5 Algorithm for testing SSD portfolio effi-
ciency

Employing results derived in Section 4.4 we have an algorithm for testing
SSD portfolio efficiency of portfolio 7 in the set of assets. In the first step,
we check some special convex combinations. In the next steps, we use nec-
essary conditions derived in Theorem 4.15 and Proposition 4.13. Finally, we
use test in Theorem 4.16. The steps are sorted from the easiest to the most
demanding in computational perspective. If the SSD efficiency or SSD inef-
ficiency is detected in Step 1, Step 2 or Step 4 then we obtain a dominating
SSD efficient portfolio as a by-product.
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Step 1: 1fr,, >=gsp r'T forsomen € {1,2,... ,N} or %25:1 Tn =ssp I'T
then go to Step 5.

Step 2: Solve (4.16). If d* > 0 then go to Step 5. If d* = 0 and (4.16)
has an unique optimal solution then go to Step 6. If d* = 0 and (4.16) has
multiple optimal solution then go to Step 5.

Step 3: Solve (4.14). If #* > 0 then go to Step 5.

Step 4: Solve (4.17) or (4.19). If D* > 0 then go to Step 5 else go to
Step 6.

Step 5: Stop the algorithm, portfolio 7 is SSD inefficient.

Step 6: Stop the algorithm, 7 is SSD efficient.

4.6 SSD portfolio inefficiency measure

Inspired by Post [43] and Kopa & Post [32], D*(7) from (4.17) or (4.19) can
be considered as a measure of inefficiency of portfolio 7, because it expresses
the distance between a given tested portfolio and its dominating SSD efficient
portfolio. To be able to compare SSD inefficiency of two portfolios we need
to consider such a measure, which is “consistent” with SSD relation. In
Ogryczak & Ruszezynski [40], a consistency of risk measure with SSD relation
in mean-risk models was analyzed. By analogy, we define the consistency of
a measure of SSD portfolio inefficiency with SSD relation.

Definition 4.17:

Let & be a measure of SSD portfolio inefficiency. We say that £ is consistent
with SSD if and only if

r'Ty =ssp X'y = (1) > E(T1)
for any 71,79 € A.

The property of consistency guarantees that if a given portfolio is worse
than the other one for every risk averse or risk neutral investor then it has
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larger measure of inefficiency. Let A*(7) € A be a set of optimal solutions
A" of (4.17) or (4.19).
Theorem 4.18:

(i) The measure of SSD portfolio inefficiency D* given by (4.17) or (4.19)
is consistent with SSD.

(i) If r'ry »gsp r'T9 and both 71, 75 are SSD inefficient then

]~

D*(13) = D*(1y) + [CvaRk_;l(—rng) - CVaR%(—r'Tl)] .

m

1

(iii) If v'my =ggp r'7y then

B

D*(73) > D*(11) + {CV&R%(—I"TQ) — CVaR%(—r'TI)} :

T

1

Proof:

Applying Theorem 4.7, if ' =g5p r'T5 then

T
3 [CVaRk {(~1'T3) = CVaRwi (—x'r1)| > 0.

k=1

Hence it suffices to prove (ii) and (iii).
Let r'7; be SSD inefficient. It is easily seen that (4.17) can be rewritten
in the following way:

T-1

D*(7) = max > CVaRy (—1'7) — CVaRg (—1'X) (4.20)

s.t. CVaR%(—r'T) —CVaR%(—r')\) > k=0,1,...,T—1
S

0
A A.
Let X'(71) € A*(71), X'(72) € A*(72). Using Theorem 4.7 and r'7; =ssp
I"TQ,

CVaR%(—r"rg) — CVaR%(—r"rl) >0 k=0,1,...,T—1.
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Since the sum of these differences does not depend on the choice of A*(7),
the dominating portfolio A*(7) is also an optimal solution of (4.17) when
deriving D*(73), i.e. A*(71) € A*(72) . Hence

-1
D*(1y) = CVaR%(—r'TQ) - CVaR%(—r')\*(TQ))
k=0
71
- [CV&R%(-I‘ITQ) — CVaR%(—r'Tl)}
k=0
T-1
+ Z {CV&R%(—IJTl) — CVaR%(—r')\*(Tl))}
k=0

S

-1

= D*(1y) + [CVaR%(—r’TQ) — CVaR%(—r"rl)]

=~
Il
o

which completes the proof of (ii).
Let r'r; be SSD efficient. From Theorem 4.16, we have D*(7,) = 0.
According to (4.20),

T-1

D*(7y) = rrizixz CVaR (—1'7y) — CVaRy (—1'A)
k=0

s.t. CVaR%(—r'TQ) — CVaR%(—r')\) > 0, k=0,1,...,T—-1
A € A

Since r'Ty =gsp r'T9, portfolio 7, is a feasible solution of (4.20). Hence

T-1

D*(73) > Z CVaR%(—r'TQ) — CVaR%(—r'Tl)
k=0
and combining it with (ii), the proof is complete.  [J

Since SSD relation is not complete, i.e. there exist incomparable pairs of
portfolios, the strict inequality of values of any portfolio inefficiency measure
can not imply SSD relation. Also for the measure D* some pair of portfolios
71, T2 can be found such that D*(73) > D*(7) and r'7; #gsp r'To. In the
following theorem, a convexity property of portfolio inefficiency measure D*
is analyzed.
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Theorem 4.19:

Let 71, 79, T3 € A.
(i) If r'ry »ssp r'T9 then
D*(nry+ (1 =n)72) <nD*(1) + (1 — n)D*(73)
for any n € (0, 1).

(ii) Ifr'ry =ssp r'To and r'7y »gsp r'T3 then v'm =g5p v'(nTo+(1—n)T3)
and
D*(nTa + (1 —n)713) <nD*(12) + (1 —n)D*(73)

for any n € (0, 1).
Proof:
(i) Applying Lemma 4.1 for equiprobable scenario approach, we obtain
r'T mssp r'Ty = v’y Zggp ¥ (T + (1 —10)T2) Zggp r'Ty
for any n € (0,1). By analogy to the proof of previous theorem, if

A*(11) € A*(11) then X*(71) € A*(79) and A*(71) € A*(nT1 + (1 — n)T9).
Hence

D*(nri+ (1 —n)1e) = 2 CVaR ¢ (—r'InT1 + (1 —n)73]) — CVaR%(—r')\*(Tl))

T-1
D*(r1) = Y CVaRg(-r'ri) - CVaRy (—r'X*(71))
k=0

T-1
D*(1y) = ZCV&R%(—r"rQ) — CVaRg (—r'X* (7))
k=0
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Combining it with convexity of CVaR (see Lemma 4.5), we obtain

-1
D*(nri+ (1 —n)12) = CVaR (—r'Inm1+ (1 —n)7a]) — CV&R%(—I‘IA*(TQ)
k=0
T-1 71
< np CVaRy (—r'r1)+ (1 —1n) Z CVaR « (—r'Ty
k=0 k=0

T-1

— Z CVaR%(—r')\*(Tl)) —(1- n)CVaR%(—r')\*(Tl))

< nD(r) + (1— m)D*(ra).

(ii) Applying Lemma 4.1 for scenario approach, we obtain:

T
T mssp TAS Y (X —xA) >0 vi=1,2..T (4.21)

t=1

Hence

and therefore

T
Sy -ty — (1—)x'rs) >0 Vi=1,2,..,T

=1
for any n € (0,1). Thus, according to Lemma 4.1,
v'ry =ssp r'(nTe + (1 —n)73) for any n € (0, 1).

Similarly to the proof of previous theorem, if X*(71) € A*(71) then X" (1) €
A*(73), X (71) € A*(13) and X*(71) € A*(nT2+ (1 —n)73) for any n € (0,1)
and the rest of the proof follows by analogy to (i). O
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Let I(7) be a set of all portfolios whose yields are SSD dominated by
yield of 7, i.e.
I(T) = {)\ S A‘I‘IT >~SSD I‘I)\}.

Theorem 4.19 shows that I(7) is convex and D* is convex on I(7) for any
7 € A. Both these properties are consequences of convexity of CVaR. The
following example illustrates these results and we stress the fact that the set
of SSD efficient portfolios is not convex.

Example 4.20:
Consider three assets with three scenarios:

0 -1 0

X = 1 0 0

2 7 5
It is easy to check that Ay = (1,0,0), A (0,1,0)" and A3 = (0,0,1)
are SSD efficient. Let 71 = A3, 79 = ,0)" and let 73 = (%,%,0)’ .
Then X7, = (—%, %, %) and according to (4.21), r'Ty >gsp r'Ty. Hence the
set of SSD efficient portfolios is not convex. Similarly, r'7; =ggp r'T3 and
r'T, =ssp r'T1. Applying Theorem 4.19, a set of convex combinations of 7,
Ty, T3 is a subset of I(71). We will show that I(7;) consists only of convex

combinations of 71, 79 and 73, i.e.

N

3

DN | =
N = ||

3
I(Tl) = {A € A|)\ =MmTi +7727-2 +773T37 Ni Z 0; 1= 1:273: an - 1}
i=1

Substituting into (4.21) we can see that only portfolios A € A satisfying the
following system of inequalities can be included in I(7):

X < 0
A=A <
BAM 4+ 6M+5(1 =X — X)) <

The grafical solution of this system is illustrated on the following figure and
we can see that the set of portfolios which yields are SSD dominated by yield
of portfolio 7 is equal to the set of all convex combinations of portfolios 7,
T9, T3. Points A, B and C correspond to portfolios 75, 73, 71, respectively.
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Figure 4.1: The set I(71) of portfolios whose yields are SSD dominated by
yield of portfolio 7y = (0,0, 1).

As was shown in Theorem 4.19 (ii), SSD portfolio inefficiency measure
D* is convex on I(71). The following figure shows the graph of D* on I(7).
Since 7 is SSD efficient, D*(7) = 0 and D*(7) > 0 for all 7 € I(71)\{71}.
It is easy to check that X is portfolio-monotone with identical permutation.
Hence, according to Lemma 4.10, (4.19) can be considered as a parametric
linear problem where the parameters CVaR% (—r'T),k=1,2,...,T are only
in the right hand side of the constraints. The duality theory in parametric
linear programming implies linearity of D*(7) on I(7;), because I(7;) is
a subset of the area of stability for A*(7), i.e. A*(71) € A*(r) for all
T € I(71). See Grygarova [17] for more details about parametric linear
programming.
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Figure 4.2: The graph of D* on I(7).

4.7 Numerical application: SSD efficiency of
mean-VaR optimal portfolios

According to Lemma 4.2 and (4.2) we can see that a portfolio with minimal
VaR is FSD efficient. When searching for portfolio with minimal VaR under
condition of a minimal level of expected yield this property may disappear.

We define mean-VaR optimal portfolio A\¥** (1) € A as a portfolio with
minimal VaR and a prescribed minimal level of expected yield s, i.e. XV*% (1)
is an optimal solution of the problem:

min VaR,(—1'A)

t=1

A€EA

Inspired by Gaivoronski & Pflug [14] we rewrite this problem as the
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mixed-integer linear program:
min 0 (4.22)
,A,¢!
st. —x'A < 64+ M, t=1,....,T

¢ = -

1 T
=2 XA >
t=1
A e A
¢t e {0,1}, t=1,...,T,

where M is a sufficiently large constant:
M > nggxyj — rl;{;nyj

and | z| denotes the largest integer number which does not exceed z. Param-
eter p represents a prescribed minimal level of expected yield of the portfolio.
We shall examine SSD efficiency of these mean-VaR optimal portfolios using
Theorem 4.16 and (4.19).

The data were obtained from http://finance.yahoo.com and consisted of
530 observations (07.1.1995-28.1.2005) of weakly yields of five U.S. stocks:IBM
(International Business Machines), UTX (United Technologies), MMM (3M
Company), JNJ (Johnson and Johnson) and CAT (Caterpillar Inc).

We move a window through the data with bandwith 210 and step 20.
Thus we have 17 partial data sets. The number of observations in a partial
data set corresponds to 4 years history. To track at least partly the behavior
of the optimal mean-VaR portfolios in dependence on the parameter pu —
the minimal required expected yield of the portfolio — we choose 5 levels of
parameter p for each partial data set. Thus we have to solve (4.22) 85 times.

Let Z/Jl- denote the expected yield of j-th asset for [-th data set. Set
V! = min v/, 7' =maxvl, 1=1,2...,17.

i i

We set the levels of parameter p using the following formulas:
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o= v 1=1,2,...,17,
wo o= V4050 —v) 1=1,2,...,17,
W= V406 —v) 1=1,2,...,17,
deo= vy o0r@—u) 1=1,2,...,17,
gy = vV408(@ —vh) 1=1,2,...,17.

Problem (4.22) has 210 integer variables (210 scenarios), 6 other vari-
ables and 218 constraints. The computations were done in GAMS solver
CoinCbce and CPLEX. Using 2 GHz computer with 512 MB RAM, solving
of problem (4.22) took at most 30 seconds for each data set and we ob-
tained 65 different mean-VaR optimal portfolios. Then we tested the SSD
efficiency of these portfolios applying (4.19). Since we consider 210 scenarios
these linear programs have more than 40000 variables and constraints. The
computation took approximately 10 minutes. Applying criterion for testing
SSD efficiency suggested in Kuosmanen [34], we solved linear program with
more than 40000 constraints and 130000 variables (see Proposition 4.14).
Using the same computer as in the case of our test, the computation took
approximately 40 minutes. We can see the results in Table 4.1 where “E”
denotes SSD efficient portfolios and “I” SSD inefficient ones. From this table
we can see that only 25 of 85 (29 %) mean-VaR optimal portfolios are SSD
efficient. Especially for small required minimal expected yield of portfolio
(b, pb, i, 1 ) mean-VaR optimal portfolios are SSD inefficient in 78 %
cases. If the following portfolio selection problem with u € U,

max FEu(r'X) (4.23)
st. AeA

has unique solution then SSD inefficient portfolio cannot be an optimal solu-
tion of this problem. Thus mean-VaR optimal portfolios are not very suitable
for risk averse investors.

If we compare time period before and after September 11, 2001, we have
43 % SSD efficient portfolios before the date and only 18 % after the date.
This is caused by greater fluctuation of yields and losses after this date be-
cause VaR method does not take into account the magnitude of large losses.

Finally, we can see that mean-VaR optimal portfolios with high level of
required minimal expected yield ( uf ) are more often SSD efficient than
the others. This can be explained by the fact that investor accepts higher
risk in this case, i.e. the requirement of minimal risk measured by VaR has



CHAPTER 4. SSD PORTFOLIO EFFICIENCY
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Table 4.1: SSD efficiency of mean-VaR optimal portfolios
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less important impact than in the case of smaller required minimal expected
yield. In Table 4.2, we show the values of SSD portfolio inefficiency measure

D* for all tested portfolios.
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Minimal expected yield
Time period T 145 15 T 15
07. 01. 1995 — 31. 12. 1998 0 0 5.5927 | 27.7726 | 15.8304
27. 05. 1995 — 21. 05. 1999 | 6.8648 | 6.8648 | 17.6124 | 3.4762 0
14. 10. 1995 — 08. 10. 1999 0 7.2607 | 3.5876 | 6.2085 0
02. 03. 1996 — 25. 02. 2000 | 7.0251 0 0 0 0
20. 07. 1996 — 14. 07. 2000 0 10.7063 0 0 0
07. 12. 1996 — 01. 12. 2000 | 4.068 | 25.493 | 28.4394 | 1.9612 0
19. 04. 1997 — 20. 04. 2001 | 4.0144 0 5.4213 0 0
06. 09. 1997 — 07. 09. 2001 | 5.1081 | 5.1081 | 5.1081 | 15.0719 | 24.6189
17. 01. 1998 — 18. 01. 2002 | 14.6595 0 0 0 22.995
06. 06. 1998 — 07. 06. 2002 | 4.9033 | 4.9033 | 4.9033 | 42.2749 0
24. 10. 1998 — 25. 10. 2002 | 58.7302 | 59.2872 | 35.3060 | 37.9927 | 22.7875
13. 03. 1999 - 07. 03. 2003 | 13.4106 | 13.4106 | 13.4106 | 13.4106 0
31. 07. 1999 - 25. 07. 2003 | 10.9355 | 10.9355 | 10.9355 | 10.9355 0
18. 12. 1999 — 12. 12. 2003 | 12.0750 | 12.0750 | 11.2118 0 0
06. 05. 2000 — 23. 04. 2004 | 40.7849 | 40.7849 | 48.8619 | 49.8263 | 16.2724
23. 09. 2000 — 10. 09 .2004 | 41.9353 | 41.9353 | 45.302 | 45.302 | 43.5411
10. 02. 2001 — 28. 01. 2005 | 25.8776 | 61.6235 | 57.9779 | 32.1731 | 6.1322
Table 4.2: SSD portfolio inefficiency measure D*.




Chapter 5

A portfolio efficiency test based
on the first-order stochastic
dominance optimality

5.1 Preliminaries

In Chapter 4, we analyzed portfolio efficiency with respect to the second-
order stochastic dominance. This concept is based on the assumption that
decision maker is risk averse. Since market portfolios turned out to be SSD
inefficient (see e.g. Post [43]) the presence of non-risk averse decision makers
has to be involved. A complication in testing FSD portfolio efficiency is
that we must distinguish between efficiency criteria based on “admissibility”
and “optimality”. There is a subtle difference between these two concepts.
According to Kopa & Post [32], an alternative is FSD admissible if and only
if no other alternative is preferred by all nonsatiable decision-makers. A
FSD admissibility test was presented in Kuosmanen [34]. Following an FSD
optimality idea in Bawa et al. [3], an alternative is FSD optimal if and
only if it is an optimal choice for at least some increasing utility function.
For pairwise comparisons, the two concepts are identical. However, more
generally, when multiple alternatives are available, FSD admissibility is a
necessary but not sufficient condition for FSD optimality.

Section 5.2 presents basic assumptions and definitions. In section 5.3,
we reformulate the FSD optimality criterion in terms of piecewise-constant
representative utility functions. Section 5.4 develops a linear programming

74
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test for searching over all such functions in order to test FSD portfolio opti-
mality and suggests several approaches to identifying the input to this test.
To obtain a necessary and sufficient condition for F'SD optimality we employ
mixed-integer linear problems. Section 5.5 presents a mixed-integer linear
programming algorithm for testing FSD optimality. Section 5.6 uses a nu-
merical example to illustrate our test and compare it with two existing tests
presented in Bawa et al. [3] and Kuosmanen [34].

5.2 FSD optimality versus FSD admissibility

We hold the notation from Chapter 4. The evaluated portfolio, denoted by
T € A, is assumed to be risky. Testing optimality for a riskless portfolio is
trivial, because we then only need to check if there exists some portfolio that
achieves a higher minimum return than the riskless rate. If no such portfolio
exists, the riskless alternative is the optimal solution for extreme risk averters
and hence FSD optimal. Let

m = r?inxfl, m= 1(rt1a><:gvf1 and k(r) = min{t : (X)) > (X7)1},
n n
Since a positive linear transformation of an utility function does not
change the set of optimal solutions of (4.23), without loss of generality, we
may focus on the following set of standardized utility functions:

Ui(t) = {ueU :u(lm)=0; u((XT)M) — u((X‘r)[k(T)}) =1}. (5.1)

Note that the standardization depends on the evaluated portfolio and
hence will differ for evaluating different portfolios. Furthermore, the stan-
dardization requires utility to be strictly increasing at least somewhere in the
interior of the range for the evaluated portfolio. This requirement is natural,
because, testing optimality relative to all u € U, is trivial. Specifically, every
portfolio A € A is an optimal solution for ug = I(x > (X7)1). Thus U, (1)
is the largest subset of U; for which testing optimality is non-trivial.

Definition 5.1:

Portfolio 7 € A is FSD optimal if and only if it is the optimal solution of
(4.23) for at least some utility function u € Uy(7), i.e., there exists u € U;(T)
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such that

Zu(xtr) — Zu(xt)\) >0 VA eA.

t=1 t=1

Otherwise, 7 is FSD non-optimal.

According to Kuosmanen [34], we recall FSD admissibility definition
based on existence of an alternative which is better than a given portfo-
lio for all decision makers. FSD admissibility is a necessary condition for
FSD optimality.

Definition 5.2:

Portfolio 7 € A is FSD admissible if and only if there exists no A € A such
that (XX) > (X7)¥ for all t = 1,2, ..., T with strong inequality for at least
some .

The following necessary and sufficient condition for FSD admissibility
using mixed-integer linear programming was derived in Kuosmanen [34].

Theorem 5.3:

Let 7 € A and II be the set of permutation matrices, i.e.

T T
1= {[]Dij]TXT : Pzg € {0,1},2]31] = ZR] = 1, Z,j = 1,2,...,T}
i=1 j=1

Consider

AP

N T N
1=1 j=1 i=1

Pell
AcA.

0 (r) = max1'(XA— XT1) (5.2)

Portfolio 7 is FSD admissible if and only if #'(7) = 0.
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5.3 Representative utility functions

This section reformulates the optimality criterion in terms of a set of ele-
mentary representative utility functions. For pairwise FSD comparisons, the
set of three-piece linear utility functions is representative for all admissible
utility functions, see Russel & Seo [50] for more details. In our portfolio con-
text, with diversification allowed, a more general class of piecewise constant
utility functions is relevant:

Ri(t) = {ueUluly) = Z al(y > (X)), ac A(T)} (5.3)
Alr) = {aeRL: ; a = 1, (X =(x7)l A (5.4)
L= k(r)

t<s=a;=0 t,s=1,2,...,T}
where

Iy >yy) = 1 for y >y
= 0 otherwise.

Theorem 5.4:

Portfolio 7 € A is FSD optimal if and only if it is the optimal solution of
(4.23) for at least some utility function u € R;(7), i.e., there exists u € Ry (1)

such that
T T

Zu(xtr) — Zu(xt)\) >0 VA eA.

t=1 t=1

Otherwise, 7 is FSD non-optimal.

Proof:

The sufficient condition follows directly from Ry(7) C U;(7). To establish
the necessary condition, suppose that 7 is optimal for u(y) € U;(7) and let

ur(y) = > ald(y > (X7)1),
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with a; = u(X7)", 0, =0, =2,... ,k(T) — 1 and
a = u( X)W —w(XT)Y t = k(r),... T

By construction, ug(y) € Ri(7). Furthermore, ugr(y) < u(y), Yy € (m,m)
and up(y) = u(y), for y = (X)), (X7)2, ... (X7)T]. Therefore,

ZUR(XtT) — ZUR(Xt)\) > Zu(xtr) — Zu(xt)\) VA e A

t=1 t=1

Since 7 is optimal for u(y) € U;(7), the RHS is nonnegative for all A € A |
and hence 7 is also optimal for ug(y) € R (7), which completes the proof. [J

The proof makes use of the fact that for a given portfolio 7 any utility
function can be transformed into a piecewise constant function with incre-
ments only at x'7, t = 1,...,T. This transformation doesn’t affect the
expected utility for the evaluated portfolio but it may lower the expected
utility of other portfolios. Since the objective is to analyze if the evaluated
portfolio is optimal for some utility function, only the representative utility
functions need to be checked; all other utility functions are known to put the
evaluated portfolio in a worse perspective than some representative utility
function.

To illustrate the representation theorem, consider the cubic utility func-
tion u(y) = 104y —0.1y>4-0.05y° and a portfolio with returns (X7)! = —5,
(X7) =1 and (X7)B = 6. Figure 1 shows a version of this function that
is transformed such that it belongs to U, (7): ug(y) = 2.6+ 0.04y — 0.004y> +
0.002y* (the solid line). Since the latter function is obtained after a posi-
tive linear transformation, it yields the same results as the former function.
The dashed line gives the piecewise-constant function ug(y) = 2.0871(y >
—5) 4 0.5461(y > 1) + 0.4541(y > 6). This function is constructed such that
it yields exactly the same utility levels for the evaluated portfolio as wug(y)
does. Furthermore, the utility levels for all other portfolios are smaller than
or equal to those for ug(y). Thus, if the evaluated portfolio is optimal for
ug(y), then it is also optimal for ug(y). A similar analysis applies for every
admissible utility function u(y) € U (7).
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Figure 5.1: Representative utility function. The figure shows the original
utility function uy and the associated representative utility function wu,.

Apart from replacing U; (1) with R;(7), we may also replace A with a
reduced portfolio set that considers only portfolios with a higher minimum
than the evaluated portfolio:

={xeA: (X< (xnM}.

Using the representative utility functions and the reduced portfolio set,
we can construct the following FSD inefficiency measure for any Ay C A*:
1 T
£(T,Ao) = = min max » (u(x'A) —u(x'r)). (5.5)

T ueRi(T) XeAo )

Replacing A with A* reduces the parameter space and it causes no harm,
because

S

T

tyy t _ tyy t
max 2 x'A) — u(x'r)) max 2 (u(x'A) — u(x'r))
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for all u € Ry (1) with sufficiently large a; and we minimize the maximum
of expected utility differences. If the evaluated portfolio has the maximal
minimum then we can directly conclude that £(7, A*) = 0, i.e., the evaluated
portfolio is FSD optimal (see the following Corollary).

Corollary 5.5:

(i) Portfolio 7 is FSD optimal if and only if £(7,A*) = 0. Otherwise,
E(r,A*) > 0.

(ii) If Ag € A* then &(7, Ag) < &(T,AY).

The next section will show that (7, A*) can be computed by solving a
linear programming problem.

5.4 Mathematical programming formulation

There exist well-known, simple algorithms for establishing FSD-dominance
relationships between a pair of choice alternatives; see, e.g., Levy [37]. Bawa
et al. [3] derive a linear programming algorithm for FSD optimality relative
to a discrete set of alternatives. Kuosmanen’s [34] test for FSD admissibility
in the portfolio context is computationally more demanding, because we
need to account for changes to the ranking of the portfolio returns as the
portfolio weights change, a task that requires integer programming. A similar
complication arises for testing FSD optimality in a portfolio context. This
section develops a linear programming test for testing portfolio optimality.
However, the input to the linear programming test may require an initial
phase of mixed integer linear programming (MILP) or subsampling.

Before presenting the algorithm, we stress that in some cases, simple
necessary or sufficient conditions will suffice to classify the evaluated portfolio
as efficient or inefficient. For example, a pairwise dominance relationship or
an inefficiency classification by the Bawa et al. or the Kuosmanen tests suffice
to conclude that the portfolio is FSD nonoptimal. Similarly, if the evaluated
portfolio is classified as efficient according to a mean-variance test or a SSD
test, we can conclude that the portfolio is FSD optimal.
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Let
ho(A,T) = il(xtxz(xr)[s}), s=1,...,T (5.6)
hOu7) = (A7), ho(A 7)) (5.7)

H(t) = {he{0,...,T}":h=h(A,7), A€ A} (5.8)

Since hg(A, 7) can take at most 7'+ 1 values (0,1,...,7) for any s =
1,...,T, the set H(7) has a finite number of elements. For small-scale
applications, identifying all elements is a fairly trivial task. However, for
large-scale applications, the task is more challenging and can become com-
putationally demanding. Some computational strategies to identifying the
elements of H(7) are discussed below. Interestingly, given H(7), the test
statistic £(7, A*) can be computed using simple linear programming. To see
this, consider the following chain of equalities:

A* 1 : 2 t t
§(r. A7) = 7 min max 3 (u(x'A) — u(x'r))

=1 s=k(T)
1 T T T
- — mi i\ > [s]y _ b > [s]
areri‘l(r‘}_)g\réa}\x as (Z[(X)\_(XT) ) ZI(XT (X))
s=k(T) t=1 t=1
1 T
= .o max as(hs(X, T) — hs(T, 7))
s=k(T)
1 T
= F,n 5 szk(:ﬂ as(hs — hy(T,7)) <6 Vhe H(r)

The RHS of the final equality involves the minimization of a linear objec-
tive under a finite number of linear constraints. Thus, testing FSD optimality
requires solving a simple linear programming problem and Corollary 5.5(i)
implies the following sufficient and necessary condition for FSD optimality.
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Theorem 5.6:
Let Hy C H(T). Let

§*(Hg) = min 8 .
(Ho) Jnin (5.9)

T
st. Y aghy—hy(r,7)) < 6 VheH,. (5.10)

Portfolio 7 is FSD optimal if and only if 6*(H (7)) = 0. If 6*(H,) > 0 for
some Hy C H(7) then 7 is FSD nonoptimal.

Note that (7, A*) = §*/T. Since a € A(7) and h € {0,...,T}7T for all
h € H(7), using Corollary 5.5(i), we have 0 < {(7,A*) < 1. A remaining
problem is identifying elements of the set H(7). We may adopt several
strategies for this task. The next section provides a mixed-integer linear
programming (MILP) algorithm that identifies a set of candidate vectors
H(t) D H(r), and checks if h € H(7) for every candidate h € H(r).
A drawback of this approach is that the number of candidates increases
exponentially with the number of scenarios (7). Hence, for large numbers of
scenarios, this strategy may become computationally prohibitive. Some sort
of approximation may then be required, e.g. based on Corollary 5.5(ii).

For example, we may form a representative sample of elements h € H (1)
by using a sample Ay € A* and constructing the associated values for h(X, 7).
According to Corollary 5.5(ii), this will lead to a necessary condition for FSD
optimality. There exist various techniques for performing this task, ranging
from a regular grid to Monte Carlo methods and Quasi-Monte Carlo methods
(see, e.g., Jackel [21], and Glasserman [15]). Using regular grid in Kopa &
Post [32], FSD optimality of US stock market portfolio relative to benchmark
portfolios formed on market capitalization and book-to-market equity ratio
was analyzed.

While the MILP algorithm starts from a large set of candidate vectors
and checks feasibility for every candidate, sampling from the portfolio space
avoids searching over infeasible candidates. Of course, the limitation of this
strategy is that the critical sample size needed to obtain an accurate approxi-
mation increases exponentially as the number of individual choice alternatives
(N) increases. Still, this approach can yield an accurate approximation in
an efficient manner if N is low. This is true especially when the correlation
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between the individual choice alternatives is high and hence small changes
in the portfolio weights do not lead to large changes in the values of h(\, 7).

5.5 Mixed-integer Programming Algorithm for
Testing FSD Optimality

This section provides a MILP algorithm for identifying the elements of H(7)
and suggests some stopping rules for testing FSD optimality of portfolios.
STEP 1: Perform a FSD admissibility test

Test FSD admissibility of 7, for example using the MILP test from Theorem
5.3. If 7 is FSD inadmissible then stop the algorithm; 7 is FSD non-optimal.
STEP 2: Identify candidates for H(T)

For all j = k(7),...,T solve the following MILP problem:

max hi+ 7 30 = iy I
st. (vy—Dm-m) < xA-X)<v,(m-m) s =1,...,T;
t = k(r),...,T
he = Y4 Vs t = k(r),...,T
vey € {0,1} s = 1,...,T;
t = k(r),...,T
A € A

Denote (h;‘j,)\:j,v:f;) the optimal solution of this problem. Let A; € A*
be a set of pairwise different A* (all redundancy is excluded). Set

hj"** = maxh;’
i

H1 = {h(A,T) A€ Al}
STEP 3: Stopping rules

Consider h(7, ) as defined by (5.6)-(5.7). If there exists t € {k(7),... ,T}
such that A" < hy(7, ) then stop the algorithm; 7 is FSD optimal. Oth-

(5.11)
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erwise, solve problem (5.9)-(5.10) for Hy = H,. If §*(H;) > 0 then stop the
algorithm; 7 is FSD non-optimal.

STEP 4: Reduce the candidate set using a dominance rule
Let Et = {0,1,...,h{"**}. Denote by H the cartesian product of sets H,,
ie. H = ®{(7) H,. It is clear that H(7) C H. Let

T
H = {heHh <&hr.m)+(1-8 > b, Ve {k(r),.... T},

j = k()
T
Vh*]EHl, Ugfgl, Z n; = 1, ’17]'20, \V/jE{k(T),,T}
i = k(r)

Set p=1.

STEP 5: Check feasibility of the remaining candidates

If H\ H is empty, i.e. all possible h € H have been considered, then stop
the algorithm; portfolio 7 is FSD optimal. Otherwise, choose h € H\ H and
add it to H. If there exists a feasible solution of the system:

(v, —)(M-—m) < xX*A- (X <v,(M-—m) s =1,...,T;
t = t,...,T
he = S0 v t =t,...,T
vey € {0,1} s = 1,...,T;
t = tl,...,T
A e N

put p=p+1, H, = H,_; Uh and go to the next step. Otherwise, repeat
this step.

STEP 6: Test optimality using the feasible candidates

Solve problem (5.9)-(5.10) for Hy = H,. If 6*(H,) > 0 then stop the algo-
rithm; 7 is FSD non-optimal. Otherwise, go to Step 5.

(5.12)
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5.6 Numerical example

A numerical example can illustrate our test and the difference with the Bawa
et al. test and the Kuosmanen test. We focus on an example with five
scenarios (T = 5), because FSD optimality is equivalent to FSD admissibility
for (T < 4). To show this, let ' = 4 and let 7 be FSD admissible. Since
a dominated h(A, 7) can not change the solution of (5.9)-(5.10) consider all
possible h(X, 7) which are not dominated by each other:

h'(\, 1) = (4,2,2,2)
h’(\,7) = (4,3,3,0)
h*(\, 1) = (4,4,2,0)
h'(\, 1) = (4,4,1,1).

Entering these candidates in the linear programming test in Theorem 5.6, we
can see that 7 is the optimal portfolio for a representative utility function
with ay = a3 = a4 = 1/3, and hence 7 is FSD optimal.

Table 5.1 shows the returns to three alternatives (X;, Xy, X3) and the
tested portfolio Z = 0.16 X;+0.21X,40.63 X3 in the five scenarios (1,2, 3,4, 5).

X1 | Xo| X3 A
-1 6 -4 | -1.42
-2 15.90 2| 2.18

3.50 | 2.20 31 291
8.70 2 5| 4.96
) 10 7750 7.80
Mean | 3.84 | 4.62 | 2.70 | 3.29
St. dev. || 5.46 | 2.34 | 4.30 | 3.42

= Q| DN = o+

Table 5.1: Scenarios and descriptive statistics for three alternatives and the
tested portfolio

By comparing the means and standard deviations, we can immediately see
that no individual alternative (X;, Xy or X3) FSD dominates Z. However,
this does not mean that 7 is an efficient portfolio. Therefore, it is interesting
to employ the three efficiency tests.
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To implement the Kuosmanen test, we need to solve the following LLP
problem for each of the 5! = 120 permutations of Z, say y; = (v}, 45, v}, vy}, v3),

j=1,2,...,120, or an equivalent mixed-integer linear problem:
13
t t t t

t=1
s.t. All'tl + )\Q.Té + )\31‘3 y]t t = ]_, 2, 3, 4, )
M+A+A =1
)‘17 )‘27 )‘3 0

v

We find ¥; = 0 for every j = 1,2,...,120, and hence Z is in the FSD
admissible set (not FSD dominated by any convex combination of X, X,
and X3).

To implement the Bawa et al. test, we need to establish if some convex
combination of the CDFs of X;, X3 and X3 dominates the CDF of Z (see
Bawa et al. [3]). Table 5.2 shows the CDFs of the three alternatives (®y,,
dy,, ®x,) and the CDF of Z (®z). Note that these CDFs need to be
evaluated only at the observed return levels: {z;};2,.

To test FSD optimality according to Bawa et al. [3] , we need to solve
the following LP problem:

19
n= max » (Pz(z;) — M Px, (2;) — N2Px,(2j) — AsPx;,(25))

s.t. Al(I)Xl(Z]) +)\2q)X2(Zj)+)\3q)X3(Zj) S q)Z(Z]) j = 1, ,19
)\1 + )\2 + )\3 ==
)\17)\27)\3 Z 0.

Solving this problem, we find n = 0, and hence Z is classified as efficient;
not every nonsatiable decision-maker will prefer X; or X5 or X3 to Z. Based
on the positive outcomes of the two tests, we may be tempted to conclude
that Z is the optimal portfolio for some increasing utility function, i.e. FSD
optimal. Perhaps surprisingly, this conclusion is wrong. The application of
our MILP algorithm in section 5.5 will demonstrate this.

Since we have already tested FSD admissibility, we start with the sec-
ond step: "Identify candidates for H(7)”. For j = 2,3,4,5, we solve (5.11)



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 87

25 (I)X1 q)XQ (I)X3 (I)Z
4 o0 o0 [1/5]0
2 [1/5] 0 [1/5] 0
142 1/5] 0 [1/5[1/5
1 [[2/5] 0 [1/5]1/5
2/5 | 1/5 | 2/5 | 1/5
218 |[ 2/5 | 1/5 | 2/5 | 2/5
22 | 2/5 | 2/5 | 2/5 | 2/5
201 | 2/5] 2/5 | 2/5 | 3/5
3 |[2/5|2/5]3/5]3/5
10| 35 || 3/5]2/5]|3/5]3/5
1114.962 [ 3/5 | 2/5 | 3/5 | 4/5
121 5 [[3/5]2/5]| 4/5 |4/5
13| 59 ([ 3/5]3/5]| 4/5 | 4/5
14| 6 | 3/5]4/5]|4/5]4/5
5] 7 | 3/5] 1 |4/5]4/5

O| 00| ~I| O U x| W| DN —|~.
(]

16| 75 [[3/5] 1 | 1 [4/5
1717795 [3/5] 1 | 1 | I
18] 87 |[4/5] 1 | 1 | 1
9] 10 | 1 | 1] 1|1

Table 5.2: Cumulative distribution functions of the three individual alterna-
tives (X1, Xs, X3) and the tested portfolio Z for all observed return levels.

where k(1) = 2, T =5 m = —4, m = 10 and X7 = Z. Table 5.3
shows the optimal h(X,7) and optimal A. From Table 5.3, we can see
that h™** = (5,5,4,3,2). In the third step we apply the stopping rules.
Since h(r,7) = (5,4,3,2,1), h*® > hy(7,7) for all t = k(7),...,T, hence
the sufficient condition of FSD optimality is not fulfilled. Table 5.3 shows:
Ay = {(0.1483,0.8517,0), (0.1187,0.8813,0), (0.9266,0.0734,0)}. Let
H,(7) be the set of corresponding values of h*, i.e., H;(1) = {(5,5,4,2,0),
(5,5,3,3,0), (5,3,3,2,2)}. Since &(7,A;) = 0, the necessary condition of
FSD optimality is not fulfilled either. Thus we proceed with fourth step.
Since h; (A, 7) > hj(X, ) for all i < j, we can easily identify all candidates
which satisfy the following conditions:

(i) are non-dominated by any convex combination of allh € H,(7)Jh(r,T)
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t T h [ hy |l Ry (R N N AL
25 [ 542001483 |08517| 0
305 5|4 2]0]01483 08517 0
4] 5[5 [3 300118708813 0
505 3|3 2] 2] 0926600734 0

Table 5.3: The initial candidates H;(7) and the associated A;(7) obtained
in Step 2 of our algorithm.

(ii) are smaller than h(7,7) in at least one element (because 7 is FSD
admissible)

(iii) are feasible for (5.11), i.e., the sum of elements of a candidate does not
exceed the sum of elements of appropriate h € H;(7) and a candidate
does not exceed h™* in any element.

The relevant candidates are:

h, = (55,4,1,1)
h? = (5,5,2,2,2)
h! = (55,2,2,1)
h = (5,52,1,1)
h? = (551,1,1)
WS = (5,4,4,1,1)
h! = (5,4,2,2,2)
h® = (53,3,3,1)

For these 8 candidates, we employ the last two steps of our algorithm. Step
5 tests feasibility of a candidate using (5.12). If the candidate is infeasible
then we choose the next one. If the candidate is feasible then we add it to
H,(7) and we recompute (7, H;(7)). Let us start with h! = (5,5,4,1,1).
This candidate is feasible as it corresponds to A = (0.265,0.735,0). Adding
this candidate, we consider Ay = A; U (0.265,0.735,0) and Hy(T) = Hy(T)U
(5,5,4,1,1). Applying Theorem 5.6, we solve the following linear problem:
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min §
s.t. as +as —ax
as +a4 —as
—Q9 +as

as +az —ay4
as +as +ag +as

IIRVANI VAN VANRVAN
= oo o

Since the optimal objective value of this problem §* = 1/9,
E(r,Ay) =6"/5=1/45>0

and hence portfolio 7 is FSD non-optimal, which completes the algorithm.
Thus, in this example, 7 is classified as efficient according to the Bawa et al.
and the Kuosmanen tests. Yet, it can be demonstrated to be not optimal for
any increasing utility function.

We may repeat this exercise for more portfolios 7 € An{0,0.01,...,1}3,
i.e., when using a grid with step size 0.01 for the portfolio weights. Figure 5.2
illustrates the comparison between FSD admissibility and FSD optimality.
The Kuosmanen test recognizes that many diversified portfolios are FSD
dominated by other diversified portfolio, most notably those that assign a
high weight to X3. In this example, only 22 % of the considered portfolios
are FSD admissible (the union of the grey and black dots). The FSD optimal
set is even smaller than the admissible set. The set of grey dots, including 7,
is now excluded, leaving only the black dots. The reduction in the efficient
set to 16 % of all considered portfolios ('a 26 % reduction) is possible because
the optimality test acknowledges that an alternative may not be optimal for
all investors even if no single other alternative is preferred by all. Note that
the efficient regions are not convex, witness for example the small isolated
optimal area near A = (0,0.7,0.3).

A similar analysis can be done for FSD efficiency according to Bawa et
al. [3]. Figure 5.3 shows that 93 % of all portfolios is classified as efficient.
Only 17 % of these portfolios are FSD optimal.

The efficient set is substantially larger than ours, because the Bawa effi-
ciency test does not account for diversification. Interestingly, only a few of
inefficient portfolios according to the Bawa et al. test are FSD inadmissible.
This suggest that one may use the Bawa et al. test as a complementary tool
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Figure 5.2: The FSD optimal set is represented by the black dots. The FSD
admissible set is the union of the black dots and the grey dots.

to the F'SD admissibility test. Still, portfolio Z proves that the FSD optimal
set is even smaller than the intersection of these two FSD efficiency sets, i.e.,
a portfolio may be FSD non-optimal even if both of these tests classify it as
efficient. Figure 5.4 shows all such portfolios in our example. The reduction
of the efficient set (set of grey dots) is still quite large (8 % ).
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Figure 5.3: The FSD optimal set is represented by the black dots. The Bawa
et al. efficient set is the union of the black dots and the grey dots.
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Figure 5.4: The FSD optimal set is represented by the black dots. The
intersection of the Bawa et al. efficient and the Kuosmanen efficient set is
the union of the black dots and the grey dots.



Chapter 6

Summary and open problems

In this thesis, utility functions in context of portfolio selection problems were
analyzed. In practical studies, the perfect information about decision maker’s
utility function is usually not known. Therefore, we considered three the fol-
lowing situations.

Firstly, we assumed that an approximate information about utility func-
tion of a decision maker was known. Under assumption of twice differen-
tiability of a utility function, we analyzed the stability of optimal solutions
and optimal objective values of portfolio selection problem with respect to
changes in Arrow — Pratt absolute risk aversion measure. Applying the the-
ory of variational analysis, under assumption of hypoconvergence of utility
functions, the limit set of optimal portfolios was analyzed. In comparison
with general stability results in stochastic programming, we analyzed the
stability with respect to perturbations of utility functions instead of changes
in probability measures. These results allow us to apply approximate utility
functions in solving portfolio selection problem and to judge the quality of
these approximations.

We introduced a multiperiod risk premium as a measure of multiperiod
risks. By analogy to classical univariate and multidimensional risk premi-
ums, we analyzed its properties.

Secondly, we only assumed risk aversion of decision maker. We applied a
concept of the second-order stochastic dominance and we were interested to
classify a portfolio as SSD efficient or SSD inefficient. We said that portfolio
had been SSD efficient if there was no better portfolio for all risk averse and

92
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risk neutral investors. Employing quantile model of the second-order stochas-
tic dominance, we derived a linear programming algorithm for testing SSD
efficiency of a given portfolio. This algorithm consisted of necessary condi-
tions and a necessary and sufficient condition based on relationship between
CVaR and SSD. It was faster than the Kuosmanen test and contrary to the
Post criterion, it always detected the presence of SSD dominating portfolio
which was SSD efficient. We introduced a SSD portfolio inefficiency measure
which was consistent with SSD relation. It means that if an alternative was
worse than the other alternative for all risk averse and risk neutral investors
then it had a higher value of this measure. We also explored the convexity
property of this measure.

Finally, we dropped all the assumptions about decision maker’s risk atti-
tude. We employed the first-order stochastic dominance approach. We dis-
cussed the differences between FSD admissibility and FSD optimality when
any diversification across the assets was allowed. We derived a necessary
and sufficient condition for FSD optimality via introducing the representa-
tive class of utility functions in the case of FSD with diversification. We
suggested a mixed-integer linear programming algorithm and some subsam-
pling techniques.

Dealing with stochastic dominance criteria in the context of portfolio
efficiency, there are still some open problems. In this thesis, we assumed
that the probability distribution of yields is known. However, we usually
only approximate the unknown true probability distribution. Therefore a
stability of SSD efficiency tests and the FSD optimality test with respect to
perturbations in underlying probability measures are of interest. Another
open area is connected with convexity of the set of efficient portfolios. It is
known, that the set of SSD efficient portfolios is not convex. Of course, the set
of FSD admissible or FSD optimal portfolios is not convex either. Therefore
a new stochastic dominance relation which will guarantee convexity of the
set of efficient portfolios can be another point of future research.
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