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Chapter 1Introdu
tionDealing with de
ision problems one has to 
hoose an a
tion from a givenset of alternatives with un
ertain 
onsequen
es. For example, 
onsider ade
ision maker who wishes to allo
ate his resour
es to di�erent investmentopportunities in an \optimal way". There are several approa
hes how to
onstru
t the de
ision 
riterion under risk to 
hoose the optimal alternative.Almost all of these models are based on some measure of yield and risk.Typi
ally a measure of yield of an alternative (investment opportunity) ismaximized and a measure of risk is minimized. However, the behavior ofde
ision maker depends on his risk attitude. One of the 
lassi
al ways ofinvolving risk fa
tor in portfolio sele
tion problem is 
onsidering a utilityfun
tion when the optimal alternatives maximize expe
ted utility.If the yield and risk of an asset are measured separately, the yield is usu-ally measured by expe
ted value. On the other hand, there is no generallya

epted measure of risk. Therefore there are several di�erent mean-riskmodels for various types of risk measures: varian
e, semi-varian
e, uppersemi-deviation, Value at Risk, 
onditional Value at Risk, et
. When the
on
ept of maximizing expe
ted utility is applied, from the type of utilityfun
tion one 
an derive another risk measures: Arrow-Pratt absolute (rela-tive) risk aversion measure and risk premiums.In all portfolio optimizing models some kind of a risk parameter is in-
luded and some distribution of yields is assumed. Sin
e the risk parameterand the distribution of yields are usually not exa
tly known, one 
an analyzethe dependen
e of optimal solutions on these inputs.When no information about risk attitude of the de
ision maker is knownone 
an apply a sto
hasti
 dominan
e approa
h. In the 
ontext of the6



CHAPTER 1. INTRODUCTION 7sto
hasti
 dominan
e for portfolio sele
tion problems the eÆ
ien
y of a givenportfolio is analyzed. In this thesis we will examine a utility theory, riskmeasures and sto
hasti
 dominan
e approa
h with appli
ation to portfoliosele
tion problems.The basi
s of utility theory are 
onne
ted with von Neumann & Morgen-stern [54℄ where the existen
e of von Neumann - Morgenstern utility fun
tionis analyzed. This fun
tion u has su
h a property that a rational de
isionmaker prefers alternative X to alternative Y if and only if Eu(X) � Eu(Y ).More general axiomati
 theory of utility was presented in �Cern�y et al. [6℄,Ziemba & Vi
kson [57℄ and referen
es therein, espe
ially Herstein & Milnor[19℄ and Fishburn [12℄.There are two approa
hes to 
onstru
tion of utility fun
tions: dire
t (
ar-dinal utility fun
tion) and indire
t (ordinal utility fun
iton). An ordinal util-ity fun
tion for an individual 
onsists of a rank ordering of possible states ofa�airs for that individual. An ordinal fun
tion tells us that de
ision makerprefers X to Y, but it doesn't tell us whether X is mu
h better than Y oronly a little better. A 
ardinal utility fun
tion assigns a real-number value forea
h possible state of a�airs. The assumptions for existen
e of the 
ardinal orordinal utility fun
tion are derived in e.g. �Cern�y et al. [6℄ and Gl}u
kaufov�a& �Cern�y [16℄. In this thesis we fo
us on the 
ardinal utility fun
tion wherethe utility is assigned to the total wealth of a de
ision maker.There are several 
hara
terization of utility fun
tions. In Kopa [25℄, threeways of utility fun
tion 
lassi�
ation are presented. They are based on:Arrow-Pratt absolute (relative) risk aversion measure, \preferen
e swit
hing"and \star shape". The 
lassi
al 
hara
terization of Arrow [1℄ and Pratt [45℄deals with twi
e di�erentiable and in
reasing utility fun
tions. There is a
lose relationship between risk aversion, risk seeking or risk neutrality of aninvestor and the sign of the Arrow-Pratt absolute risk aversion measure. A
on
ave (
onvex, linear) utility fun
tions represent risk averse (risk seeking,risk neutral) de
ision maker. Another way how to express the risk attitude ofde
ision maker is represented by \risk premiums". The preferen
e swit
hing
hara
terization explores the number of swit
hing preferen
es between anytwo gambles, as initial wealth in
reases, see e.g. Pedersen & Sat
hel [41℄,Kopa [25℄. Espe
ially zero-swit
h utility fun
tions are of interest. One-swit
h utility fun
tions, where at most one preferen
e swit
hing betweenany two gambles o

urs due to 
hanges in wealth, were analyzed in Bell [4℄.Similarly to 
on
ave utility fun
tions, star-shape utility fun
tions also exhibit



CHAPTER 1. INTRODUCTION 8risk aversion at some wealth position, see Landsberger & Meilijson [35℄. The
omparison of 
on
ave and star-shaped utility fun
tions shows that 
on
avefun
tions have de
reasing marginal slope whereas star-shaped fun
tions havede
reasing average slope from the point at whi
h they are star-shaped.There is a host of areas where utility theory 
an be applied. For example,the utility fun
tion 
an be used in medi
al survival analysis. In insuran
etheory one 
an exploit utility fun
tion to estimate fair insuran
e premiumlevel. In this thesis we will apply the utility theory to a portfolio sele
tionproblem in order to analyze the optimal investment strategy of the de
isionmaker. In optimization models with utility fun
tions the expe
ted utility ofthe �nal wealth is maximized. Therefore the portfolio sele
tion problem is aproblem of sto
hasti
 programming.A

ording to R}omis
h [48℄ and referen
es therein, one may derive a sta-bility result for set of optimal solutions in the 
ase when an underlyingprobability distribution is perturbed or approximated. As a 
onsequen
eof this theory, we 
an provide a s
enario-based approximation of distributionof yields in the portfolio sele
tion problem and estimate the maximal error
aused by using approximate distribution.In 
lassi
al approa
h, utility fun
tions for one-period investment possibil-ity are 
onsidered. When a multiperiod investment possibilities are analyzedthe de
ision problem is dynami
 and it leads to dynami
 portfolio sele
tionproblem. In this 
ase, one 
an sear
h for investment strategy as a sequen
eof de
isions. In this thesis we assume dis
rete time multiperiod problemsde�ned in e.g. Dupa�
ov�a et al. [10℄. In these problems, a multidimensionalutility fun
tion is maximized. These fun
tions are shown and analyzed ine.g. Ambarish & Kallberg [2℄, Dun
an [9℄, Dupa�
ov�a et al. [10℄, Kihlstrom& Mirman [23℄ and Ri
hard [46℄.In spite of a large number of papers dealing with utility fun
tions, thetheory of utility fun
tions with appli
ation to portfolio sele
tion problem isstill a
tual and of interest due to three reasons. Firstly, the 
omputationalaspe
t of solving one-period portfolio sele
tion problems is no more limiting.Se
ondly, less 
onventional 
lasses of utility fun
tions be
ome more impor-tant. For example, a

ording to Kopa & Post [32℄, the representative setof utility fun
tions in the 
ase of �rst-order sto
hasti
 dominan
e 
onsistsof dis
ontinuous utility fun
tions. It opens an area for resear
h 
on
erningsuitable assumptions for utility fun
tions in 
ontext of portfolio sele
tionproblem. Finally, portfolio sele
tion problem with multiperiod investmentpossibilities 
an be formulated using multiperiod utility fun
tions.



CHAPTER 1. INTRODUCTION 9An alternative formulation of the portfolio sele
tion problem is repre-sented by mean-risk models. If risk is measured by varian
e, the Markowitzmodel is 
onsidered, see Markowitz [39℄. In Ogry
zak & Rusz
zy�nski [40℄,some of the other risk measures su
h as: absolute deviation, absolute semide-viation, standard semideviation, Value at Risk (VaR), 
onditional Value atRisk (CVaR) and Gini mean di�eren
e are analyzed with respe
t to relation-ship to sto
hasti
 dominan
e. All of these measures are based on some riskparameter and on 
ertain distribution of yields. Some of the 
orrespondingmean-risk models 
an be derived as a spe
ial 
ase of maximizing expe
tedutility problem. For example, if quadrati
 utility fun
tion is assumed, vari-an
e is the appropriate measure of risk. If a de
ision maker has not a utilityfun
tion 
onsistent with any of these mean-risk models, he needs to quantifyhis risk by another, more general measure of risk, so-
alled the risk premium.Risk premiums 
an be derived from any type of utility fun
tion and forany investment opportunity. The basi
 ideas of the risk premium approa
h
ome from Pratt [45℄ when the risk premium for one-period and univariategamble is 
onstru
ted. A generalization of this approa
h in order to de�nemultidimensional premium for one-period gamble was suggested in e.g. Dun-
an [9℄, Kihlstrom & Mirman [23℄ or Ri
hard [46℄. To derive risk premiumfor multiperiod risks, one 
an apply the modi�
ation of multidimensionalpremium in Ambarish & Kallberg [2℄. The 
onstru
tion of the multiperiodrisk premium based on the preferen
e indi�eren
e between a

epting a mul-tiperiod gamble and reje
ting the gamble with possibility of a

epting thegamble only in some time periods was presented in Kopa [29℄. This approa
his a generalization of Dun
an [9℄, Kihlstrom & Mirman [23℄, Ri
hard [46℄ orAmbarish & Kallberg [2℄. Another way how to 
onstru
t multiperiod riskmeasures was shown in Ei
hhorn & R}omis
h [11℄ using polyhedral risk mea-sures. This measures are de�ned as optimal values of 
ertain linear sto
hasti
programs where the arguments of the risk measure appear on the right-handside of the dynami
 
onstraints. Multiperiod extensions of CVaR are anexample for polyhedral risk measure.The portfolio sele
tion problem may be regarded as a two-step pro
edure.Firstly, an eÆ
ient set among all available portfolios is 
hosen and then therisk preferen
es of a de
ision maker to this set are applied. When no infor-mation about risk preferen
es is known, an eÆ
ien
y of a given portfolio 
anbe tested with respe
t to sto
hasti
 dominan
e rules. First-order sto
hasti
dominan
e (FSD) is one of the fundamental 
on
epts of de
ision making un-der un
ertainty, relying only on the assumption of nonsatiation, or de
ision



CHAPTER 1. INTRODUCTION 10makers preferring more to less. Assuming a 
on
avity of utility fun
tions, ase
ond-order sto
hasti
 dominan
e (SSD) approa
h 
an be employed.There are well-known, simple tests for establishing FSD and SSD rela-tionships between a pair of 
hoi
e alternatives; see, e.g. Hano
h & Levy [18℄,Levy [36℄, Levy [37℄. The third or higher degree of sto
hasti
 dominan
ewas analyzed in e.g. Levy [36℄, Whitmore [55℄ and Whitmore [56℄. Unfor-tunately, these tests have a limited use in appli
ations with more than two
hoi
e alternatives. At present, the analysis of investment portfolios is a 
aseof interest; investors generally 
an form a large number of portfolios by diver-sifying a
ross individual assets. For su
h appli
ations, there were developedspe
ial tests that analyzed whether a given portfolio is FSD eÆ
ient or SSDeÆ
ient relative to all possible portfolios. In this thesis, one of SSD eÆ
ien
ytests is introdu
ed and the FSD eÆ
ien
y test based on FSD optimality isderived.Assuming s
enario approa
h for distribution of out
omes, Kuosmanen[34℄, Post [43℄, Post [44℄ presented linear programming SSD eÆ
ien
y testsof a given portfolio. There was a histori
al development of SSD eÆ
ien
yproperty. The �rst ideas 
ome from Post [43℄. The Post test exploits a stru
-ture of the set of representative utility fun
tions when the diversi�
ation isallowed. For pairwise 
omparisons, Russel & Seo [50℄ showed that the setof two-pie
e linear utility fun
tions is representative for all 
on
ave utilityfun
tions. In 
ontext of portfolio optimization, Post [43℄ proved that theset of pie
e-wise linear utility fun
tions is representative. He presented veryfast linear programing test. The Kousmanen SSD eÆ
ien
y test is basedon so-
alled dominating sets of portfolio return pro�le employing empiri
aldistribution fun
tions and pairwise SSD 
riteria. Under the assumption ofs
enario approa
h, in this thesis, a linear programming SSD eÆ
ien
y testbased on the relationship between CVaR and a dual se
ond-order sto
hasti
dominan
e properties is derived. In 
ontrast to the Post approa
h, we fol-low Kuosmanen [34℄ and Rusz
zy�nsky & Vanderbei [51℄ in 
onsidering lessstringent de�nition of SSD eÆ
ien
y. Therefore, the Post 
riterion is only ane
essary 
ondition. From empiri
al point of view, this ne
essary 
onditionis very powerful. However, this 
riterion fail in dete
ting SSD dominatingportfolio with the same mean as a tested portfolio. It means, that the Post
riterion 
lassi�es portfolio as SSD eÆ
ient even if there exists a SSD domi-nating portfolio in the sense of Hano
h & Levy [18℄ or Levy [36℄. Comparingour test with the Kuosmanen test, our test leads to smaller linear problemthan the Kuosmanen test. Moreover, 
ontrary to both the Post and the Ku-



CHAPTER 1. INTRODUCTION 11osmanen tests, if a given portfolio is SSD ineÆ
ient, our test dete
ts a domi-nating portfolio whi
h is SSD eÆ
ient. More general sto
hasti
 problem withsto
hasti
 dominan
e 
onstraints was solved in Dent
heva & Rusz
zy�nski [8℄.However, there is no appli
ation to SSD eÆ
ien
y test in this referen
e. InRusz
zy�nski & Vanderbei [51℄ a SSD eÆ
ien
y in a mean-risk spa
e was an-alyzed. A spe
ialized parametri
 method for the entire mean-risk eÆ
ientfrontiers was developed.A 
ompli
ation in testing FSD portfolio eÆ
ien
y is that we must distin-guish between eÆ
ien
y 
riteria based on \admissibility" and \optimality".There is a subtle di�eren
e between these two 
on
epts. An alternative isFSD admissible if and only if no se
ond alternative is preferred by all non-satiable de
ision-makers. This 
on
ept is relevant for expe
ted utility theorywith non-de
reasing utility fun
tions, as well as other theories of risky 
hoi
ethat are 
onsistent with FSD, su
h as 
umulative prospe
t theory. However,when using expe
ted utility theory, admissibility is generally weaker than op-timality. An alternative is FSD optimal if and only if it is the optimal 
hoi
efor at least some non-de
reasing and non-
onstant utility fun
tion. For pair-wise 
omparison, the two 
on
epts are identi
al. However, more generally,when multiple alternatives are available, FSD admissibility is a ne
essarybut not suÆ
ient 
ondition for FSD optimality. In other words, an alterna-tive may be admissible even if it is not optimal for any non-de
reasing andnon-
onstant utility fun
tion.Bawa et al. [3℄ and Kuosmanen [34℄ propose FSD tests that apply undermore general 
onditions than a pairwise test does. The two tests di�er in asubtle way. While Bawa et al. [3℄ 
onsider all 
onvex 
ombinations of thedistribution fun
tions of a given set of alternatives, Kuosmanen [34℄ 
onsidersthe distribution fun
tion for all 
onvex 
ombinations of a given set of alter-natives. Ea
h of these two tests 
aptures an important aspe
t of portfolio
hoi
e that is not 
aptured by a pairwise FSD test. Still, both tests misssome key aspe
ts of a proper FSD portfolio optimality test and both testsgenerally give a ne
essary but not suÆ
ient 
ondition. The linear program-ming test of Bawa et al. is based on optimality, but it does not a

ount fordiversi�
ation a
ross the 
hoi
e alternatives. Even though the mixed-integerlinear programming test of Kuosmanen does a

ount for diversi�
ation, itrelies on admissibility rather than optimality.In Kopa & Post [32℄, a proper test for FSD optimality of a given portfoliorelative to all portfolios formed from a set of alternatives is derived. Thereformulation of the FSD optimality 
riterion in terms of a set of elementary



CHAPTER 1. INTRODUCTION 12representative utility fun
tions is presented. For pairwise FSD 
omparisons,Russell & Seo [50℄ showed that the set of three-pie
e linear fun
tions - wherethe �rst and the last pie
e is 
onstant - is representative for all admissibleutility fun
tions. In portfolio 
ontext, with diversi�
ation allowed, a moregeneral 
lass of pie
ewise 
onstant fun
tions is relevant. Kopa & Post [32℄developed a linear programming test for sear
hing over all representativeutility fun
tions in order to test a portfolio optimality. To identify the inputfor the linear programming problem, they suggest to use mixed-integer linearprogramming or subsampling te
hniques. In 
ontrast to Bawa et al. [3℄,they 
onsider diversi�ed portfolios in addition to the individual, undiversi�edalternatives, and in 
ontrast to Kuosmanen [34℄, they rely on optimalityrather than admissibility.Due to 
on
avity of utility fun
tions, the analysis of SSD eÆ
ien
y issimpler than FSD eÆ
ien
y. First, SSD admissibility and SSD optimality areequivalent and the de�nition of SSD eÆ
ien
y is less ambiguous than FSDeÆ
ien
y. Se
ond, SSD eÆ
ien
y 
an be tested dire
tly using linear programwhile FSD optimality linear programming test requires mixed-integer linearprogramming algorithm or subsampling te
hniques as an initial phase. Third,FSD representative set of utility fun
tions 
onsist of dis
ontinuous utilityfun
tions. This dis
ontinuity 
auses a presen
e of the mixed-integer element.The SSD eÆ
ien
y tests in Kuosmanen [34℄ and Post [43℄ are appliedin analysis of the Fama and Fren
h market portfolio relative to ben
hmarkportfolios formed on market 
apitalization and book-to-market equity ratiousing US sto
k market data. They showed that tested market portfolios wereSSD ineÆ
ient. Kuosmanen [34℄, using a mixed-integer linear program, andKopa & Post [32℄, using a linear program with subsampling initial phase,demonstrated FSD inadmissibility hen
e FSD non-optimality of the marketportfolio. It implies the fa
t that no nonsatiable investor would hold theFama and Fren
h market portfolio in the fa
e of the 
onsidered ben
hmarkportfolios i.e. small 
ap premium and the value sto
k premium.The dissertation thesis is stru
tured as follows. Chapter 2 is inspired byKopa [25℄, Kopa [26℄, Kopa [27℄, Kopa [28℄ and deals with utility fun
tionsand their appli
ation in a portfolio sele
tion problem. We will restri
t ourattention to 
lassi�
ation of utility fun
tions based on the Arrow - Prattabsolute risk aversion measure. It is assumed that the distribution of re-turns has a bounded support. The stability of expe
ted utility of optimalportfolio in dependen
e on the 
hoi
e of utility fun
tion is analyzed. Under



CHAPTER 1. INTRODUCTION 13the same assumptions, the stability of optimal investment strategy due to
hanges in Arrow - Pratt absolute risk aversion measure is dis
ussed. Therelated result was proved in Kallberg & Ziemba [22℄ for normally distributedyields of assets using Rubinstein's measure of global risk aversion instead ofabsolute risk aversion measure. Applying the theory of variational analysis,see Ro
kafellar & Wets [47℄, under assumption of hypo
onvergen
e of utilityfun
tions, the limit set of optimal portfolios is analyzed. In 
omparison withgeneral stability results in sto
hasti
 programming, see R}omis
h [48℄, we an-alyze the stability with respe
t to perturbations of utility fun
tions insteadof 
hanges in probability measures.Chapter 3 is based on Kopa [29℄. It develops 
hara
terizations of multi-period risk premium. In general, risk premiums represent a way how the riskof investment possibilities 
an be evaluated when utility fun
tion of de
isionmaker is known. The 
onstru
tion of multiperiod risk premium is based onthe preferen
e indi�eren
e between a

epting a multiperiod game and re-je
ting this game. The possibility of a

epting the game only in some timeperiods is in
luded. The results in Ambarish & Kallberg [2℄ and Chalfant& Finkelshtain [5℄ are generalized for multiperiod problem. Considering di-re
tional, partial and 
onditional multiperiod risk premiums, the 
onne
tionbetween multiperiod risk aversion and multiperiod risk premiums is proved.In 
omparison with maximizing utility 
riterion the 
on
ept of sto
hasti
dominan
e o�ers a di�erent approa
h to 
lassi�
ation of 
onsidered portfo-lios. The di�eren
es are also in notation for investment strategy and s
enariosof yields. Following the seminal works about sto
hasti
 dominan
e in 
on-text of the portfolio sele
tion problem, see Post [43℄ and Kuosmanen [34℄, wehold the usual notation for sto
hasti
 dominan
e. Therefore the notation in
hapter 4 and 
hapter 5 is not the same as in previous 
hapters.Chapter 4, inspired by Kopa [30℄ and Kopa [31℄, des
ribes SSD rules
on
erning the portfolio sele
tion problem. As it was shown in Ogry
zak &Rusz
zy�nski [40℄, CVaR 
orresponds to se
ond-order sto
hasti
 dominan
e.Using this property for dis
rete probability distributions of returns, ne
es-sary and suÆ
ient 
onditions for eÆ
ient and ineÆ
ient portfolios relative toall possible portfolios 
reated from a set of assets are derived. We suggestan algorithm based on these 
onditions for sto
hasti
 dominan
e and spe
ialproperties of CVaR for dis
rete probability distributions of returns. We de-rive a SSD portfolio eÆ
ien
y measure whi
h is 
onsistent with se
ond-ordersto
hasti
 dominan
e. Moreover, we explore the 
onvexity of this measure.We adopt these results for testing se
ond-order sto
hasti
 eÆ
ien
y of mean-



CHAPTER 1. INTRODUCTION 14VaR optimal portfolios.Finally, 
hapter 5, based on Kopa & Post [32℄ and Kopa & Post [33℄, devel-ops a test for FSD eÆ
ien
y of a given portfolio of 
hoi
e alternatives relativeto all possible portfolios. To simplify the sear
h over all utility fun
tions, wereformulate the problem in terms of pie
ewise-
onstant utility fun
tions, ageneralization of the Russell & Seo [50℄ representative utility fun
tions forpairwise FSD tests. We provide a linear programming 
riterion for imple-menting the test. To identify the input for the linear programming problem,we may use mixed-integer linear programming or subsampling te
hniques. In
ontrast to the test by Bawa et al. [3℄, our test 
onsiders diversi�ed portfo-lios in addition to the individual, undiversi�ed alternatives, and furthermore
ontrary to Kuosmanen [34℄, our analysis is based on optimality rather thanadmissibility. Both features lead to a more powerful FSD eÆ
ien
y test thanis 
urrently available. In Kopa & Post [32℄, this test is applied in analysisof Fama and Fren
h market portfolio. The di�eren
es between the Kuosma-nen FSD eÆ
ien
y test, the Bawa FSD eÆ
ien
y test and our approa
h aredemonstrated on numeri
al example.



Chapter 2Stability of optimal portfolio inportfolio sele
tion problem
2.1 PreliminariesIn this 
hapter we use utility fun
tions, so that when solving portfoliosele
tion problem, the optimal portfolio has the maximal expe
ted utility.Utility fun
tions are very useful for modeling the investor's behavior, e.g.risk aversion (or seeking). On the other hand it 
an be diÆ
ult to solve theportfolio sele
tion problem for some types of utility fun
tions. In Se
tion 2.2,we re
all an additive and multipli
ative formulation of maximizing expe
tedutility problem. The stability of optimal portfolio due to 
hanges in Arrow-Pratt risk aversion measure in Se
tion 2.3 will be analyzed and supplementedwith appli
ation of basi
 results of variational analysis in Se
tion 2.4.De�nition 2.1:A fun
tion u : I!R is 
alled utility fun
tion if u is �nite and nonde
reas-ing in the interval I � R.The basi
 analysis of utility fun
tions of Arrow [1℄ and Pratt [45℄ o�ersan intuitive way of looking at absolute and relative risk aversion 
oeÆ
ients.The Arrow-Pratt 
oeÆ
ient of absolute risk aversion, also 
alled absoluterisk averse (ARA) fun
tion, is de�ned as

15
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r(x) = �u00(x)u0(x) (2.1)for x 2 I and for an in
reasing, twi
e di�erentiable utility fun
tion u in I.We assume that investor (de
ision maker) has utility fun
tion u and initialwealth x. Let " be a gamble with distribution P . The investor is 
alled riskaverse at wealth level x if:Eu(x+ ") < u(x+ E"):It is easily seen that r(x) > 0 for every risk averse investor at wealth level x(see Ingersoll [20℄ for more details). A

ording to Pratt [45℄, a value �(x; P )satisfying u(x+ E"� �(x; P )) = Eu(x+ "); (2.2)is 
alled a risk premium. We 
onsider only the situations where Eu(x+") ex-ists and is �nite. The risk averse de
ision maker would be indi�erent betweena

epting a risk " and re
eiving the non-random amount E"��(x; P ). Let us
onsider �(x; P ) for a risk " with a small varian
e �2" . Then an approximation
an be proved (see Pratt [45℄):�(x; P ) � 12�2"r(x + E"): (2.3)A

ording to (2.3) it is 
lear that ARA fun
tion is a measure of investor'slo
al risk aversion.To examine the stability of optimal portfolio due to 
hanges in absolute riskaversion measure the following assumption will be needed:(2.i) Utility fun
tion u : I ! R is in
reasing and twi
e di�erentiable in theinterval I � R.2.2 Portfolio sele
tion problemSuppose that the investor wishes to allo
ate his wealth among assetsi = 1; :::; n and he 
hooses x = (x1; :::; xn)0 to maximize the expe
ted utility



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 17of �nal wealth. This model will be formulated as:maxEu(x0 + %0x) (2.4)subje
t to : 10x = x0xi � 0;x0 : : : the initial wealth% : : : the random ve
tor of returns per unit of wealthx : : : the investment strategyu : : : the utility fun
tion.Assuming a multipli
ative approa
h, we 
ould also formulate the problemas: maxEu(%0xx0) (2.5)subje
t to : 10x = 1xi � 0:Of 
ourse, it is assumed that expe
ted values in (2.4) and (2.5) exist.2.3 Stability of optimal portfolioKallberg & Ziemba [22℄ proved that investors with the same Rubinstein mea-sure of global risk aversion, de�ned as:rg(x0) = �x0E [u00(w)℄E [u0(w)℄where w = x0%0x, have the same optimal investment strategies, i.e. thesame optimal solutions of (2.5), under the additional assumption that %0x isnormally distributed. The Rubinstein's risk aversion measure is an exampleof measure of global risk aversion. For a deeper dis
ussion of di�eren
esbetween lo
al and global risk aversion we refer to Pratt [45℄.2.3.1 Stability of optimal expe
ted utilityKallberg & Ziemba [22℄ also empiri
ally examined the extent to whi
h in-vestors with "similar" ARA measures have "similar" optimal portfolios. Wewill formulate this result pre
isely for the 
lass of probability distributionsdes
ribed by the following assumption:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 18(2.ii) There exists an interval ha; bi � I su
h that P (x0 + %0x 2 ha; bi) = 1:for any 
hoi
e of xi � 0, i = 1; :::; n, satisfying: 10x = x0.Proposition 2.2:Let %= (%1; %2; : : : ; %n)0 be the returns on investments satisfying (2.ii).Let u1(x), u2(x) satisfy assumption (2.i) on ha; bi and let r1(x), r2(x) betheir ARA measures. Let Æ be positive. Ifjr1(x)� r2(x)j < Æ (2.6)for all x 2 ha; bi thenEu1(x0 + %0x1)� Eu1(x0 + %0x2) � [u1(b)� u1(a)℄(e2Æ(b�a) � 1);where x1, x2 are the optimal solutions of (2.4) for the utility fun
tions u1(x),u2(x), respe
tively.Proof: A

ording to (2.6) we have�Æ < u002(x)u02(x) � u001(x)u01(x) < Æfor all x 2 ha; bi. Integrating it from a to any y 2 ha; bi we obtain�Æ(y � a) < logu02(y)� log u02(a)� logu01(y) + log u01(a) < Æ(y � a):Set v1(x) = u1(x)u01(a) ; v2(x) = u2(x)u02(a) and 
ombining it with y � b we get�Æ(b� a) < log v02(y)v01(y) < Æ(b� a)or in an equivalent forme�Æ(b�a)v01(y) < v02(y) < eÆ(b�a)v01(y):After one more integration from a to any x 2 ha; bi we havee�Æ(b�a) [v1(x)� v1(a)℄ < v2(x)� v2(a) < eÆ(b�a) [v1(x)� v1(a)℄and by substitution w1(x) = v1(x)� v1(a) ;w2(x) = v2(x)� v2(a) we obtaine�Æ(b�a)w1(x) < w2(x) < eÆ(b�a)w1(x): (2.7)



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 19By the substitutions w1(x) = u1(x)�u1(a)u01(a) ;w2(x) = u2(x)�u2(a)u02(a) , it is easy to
he
k that x1, x2 are optimal solutions of (2.4) also for utility fun
tionsw1(x), w2(x). Combining (2.7) and optimality of x1, x2 we 
an estimate thedi�eren
e of expe
ted utilities between these optimal portfolios0 � E �w1(x0 + %0x1)� w1(x0 + %0x2)�< E �w2(x0 + %0x1)eÆ(b�a) � w1(x0 + %0x2)�< E �w2(x0 + %0x2)eÆ(b�a) � w1(x0 + %0x2)�< (e2Æ(b�a) � 1)Ew1(x0 + %0x2)Sin
e w1(x) is in
reasing and x0 + %0x2 � b a.s., we 
an 
on
ludeE �w1(x0 + %0x1)� w1(x0 + %0x2)� � (e2Æ(b�a) � 1)w1(b):It follows immediately thatE �w1(x0 + %0x1)� w1(x0 + %0x2)� = E �u1(x0 + %0x1)� u1(x0 + %0x2)u01(a) �w1(b) = u1(b)� u1(a)u01(a) :Substituting it into last inequality we obtainE [u1(x0 + %0x1)� u1(x0 + %0x2)℄u01(a) � u1(b)� u1(a)u01(a) (e2Æ(b�a) � 1);whi
h 
ompletes the proof. Q.E.DMore details about appli
ation of this stability result 
an be found inKopa [25℄. The above proposition gives information about the stability ofoptimal expe
ted utility. However, Proposition 2.2 yields no informationabout the stability of optimal investment strategy. We will look more 
loselyat this problem.



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 202.3.2 Stability of optimal investment strategyBy Lagrange's method, we obtain the ne
essary 
onditions for the optimalsolution of (2.4):�Eu(x0 + %0x)�xi � �+ �i = 0; i = 1; 2; ::; n (2.8)�ixi = 0; �i � 0; i = 1; 2; ::; n (2.9)10x = x0; xi � 0; i = 1; 2; ::; n:From now on we make the assumptions:(2.iii) %= (%1; %2; : : : ; %n)0 are the returns on investments satisfying (2.ii),(2.iv) u(x), u1(x); u2(x); : : : satisfy (2.i) and r(x), r1(x); r2(x); : : : are theirARA measures,(2.v) limk!1 rk(x) = r(x) 8x 2 ha; bi;(2.vi) u00(x); u00k(x), k = 1; 2; ::: are 
ontinuous and negative in interval ha; bi.Set X = fx = (x1; x2; :::; xn) : 10x = x0; xi � 0; i = 1; 2; ::; ngXk = argmaxx2X Euk(x0 + %0x)X� = argmaxx2X Eu(x0 + %0x):In this notation, Xk denote the set of optimal solutions of (2.4) using uk(x)and let us denote by xk the element of Xk. Similarly, we will denote by x�the element of the set of optimal solutions of (2.4) using u(x).Corollary 2.3:Let assumptions (2.iii) - (2.v) hold. Thenlimk!1Eu(x0 + %0xk)� Eu(x0 + %0x�) = 0;limk!1Eul(x0 + %0xk)� Eul(x0 + %0x�) = 0; l = 1; 2; :::;where xk 2 Xk and x� 2 X�.



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 21Proof:Use (2.v) and Proposition 2.2 with Æ ! 0: 2Proposition 2.4:Let assumptions (2.iii) - (2.vi) hold. Then from any sequen
e x1;x2; :::,where xk 2 Xk, k = 1; 2:::, a subsequen
e xk1 ;xk2; ::: 
an be extra
ted su
hthat %0xkn kn!1�! %0x� a:s: and x� 2 X �:Proof:To simplify notation, set�f(x)�x = ��f(x)�x1 ; �f(x)�x2 ; :::; �f(x)�xn � : (2.10)By Taylor's formula, we have:�Eu(x0 + %0xk) = �Eu(x0 + %0x�)� A +B (2.11)where A = �Eu(x0 + %0x�)�x (xk � x�) (2.12)B = 12E(xk � x�)0���2u(x0 + %0x�)�2x �x=x (xk � x�) (2.13)and x = �x� + (1� �)xk; � 2 (0 ; 1).Sin
e x� is an optimal solution of (2.4), applying (2.8)-(2.9) we obtainA = (�:1� �)(xk � x�) = ��xk � 0: (2.14)By assumption (2.vi), � > 0 exists su
h thatB = 12E(xk � x�)0%(�u00(x0 + %0x))%0(xk � x�) � �2E �%0(xk � x�)�2(2.15)Combining Corollary 2.3 with (2.11),(2.14) and (2.15) we obtainEu(x0 + %0x�)� Eu(x0 + %0xk) � �xk + �2E �%0(xk � x�)�2 k!1�! 0;



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 22Thus E �%0(xk � x�)�2 k!1�! 0;whi
h 
ompletes the proof. 2Sin
e the limit of any Cau
hy sequen
e is equal to the limit of any its
onvergent subsequen
e the following Corollary follows from Proposition 2.4.Corollary 2.5:Let assumptions (2.iii) - (2.vi) hold. Assume that x1;x2; ::: where xk 2Xk, k = 1; 2:::, is a Cau
hy sequen
e. Then%0xk k!1�! %0x� a:s: and x� 2 X �:SetY = fy 2 Rn : 10y = 0; y 6= 0g;P = f% : 9Æ > 0 : P (% = 0) � 1� Æ; P (%0y = 0) � 1� Æ; 8y 2 Y g:Proposition 2.4 and Corollary 2.5 present the qualitative stability of totalyields (%0x) of optimal portfolio. To examine the stability of investmentstrategies of optimal portfolios, we assume that:(2.vii) P (% = 0) < 1:Let Y % = fy 2 Y : P (%0y = 0) = 1g for % 62 P= ; for % 2 P:Proposition 2.6:Let assumptions (2.iii) - (2.vii) hold. Let % 2 P. Then(i) portfolio sele
tion problem (2.4) has a unique solution when using u(x); uk(x),k = 1; 2; :::(ii) from the sequen
e x1;x2; :::, where xk 2 Xk, k = 1; 2:::, a Cau
hysubsequen
e xl1 ;xl2 ; ::: 
an be extra
ted su
h thatxln ln!1�! x� and x� 2 X �:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 23Proof:(i) Assume that xk 2 Xk and xk 2 Xk. ThenEuk(x0 + %0xk)� Euk(x0 + %0xk) = 0: (2.16)By assumption (2.vi), � > 0 exists su
h that�u00k(x0 + %0x) � �; 8x 2 X:As in the proof of Proposition 2.4, by Taylor's formula, we obtain0 = Euk(x0 + %0xk)� Euk(x0 + %0xk) � �xk + �2E �%0(xk � xk)�2 :Sin
e �xk � 0 and � > 0 we haveE �%0(xk � xk)�2 = 0:Hen
e %0(xk � xk) = 0 a:s:Sin
e % 2 P, we obtain: xk = xk:In the same manner we 
an see that portfolio sele
tion problem (2.4) has aunique solution using u(x).(ii) Proposition 2.4 shows that from any sequen
e x1;x2; :::, where xk 2 Xk;k = 1; 2:::, a subsequen
e xk1;xk2 ; ::: 
an be extra
ted su
h that%0xkn kn!1�! %0x� a:s: and x� 2 X �:Let xl1 ;xl2; ::: be a Cau
hy subsequen
e of the sequen
e xk1;xk2 ; :::. Then%0xln ln!1�! %0x� a:s: (2.17)Let x = limln!1xlnthen %0xln ln!1�! %0x a:s:Combining it with (2.17) we have %0(x�x�) = 0 a.s. Sin
e % 2 P, we obtain:x = x�; and the proof is 
omplete. 2



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 24Proposition 2.7:Let assumptions (2.iii) - (2.vii) hold. Let X� be a singleton. Then fromthe sequen
e x1;x2; :::, where xk 2 Xk, k = 1; 2:::, a Cau
hy subsequen
exl1 ;xl2; ::: 
an be extra
ted su
h thatxln ln!1�! x� and x� 2 X �:Proof:Proposition 2.4 shows that from any sequen
e x1;x2; :::, where xk 2 Xk;k = 1; 2:::, a subsequen
e xk1;xk2 ; ::: 
an be extra
ted su
h that%0xkn kn!1�! %0x� a:s: and x� 2 X �:Let xl1 ;xl2; ::: be a Cau
hy subsequen
e of the sequen
e xk1;xk2 ; :::. Then%0xln ln!1�! %0x� a:s: (2.18)Let x = limln!1xlnthen %0xln ln!1�! %0x a:s:Combining it with (2.18) we have %0x = %0x� a.s. Hen
e x 2 X�. Sin
e X�is a singleton, we obtain: x = x�; and the proof is 
omplete. 2We re
all the de�nition of the Hausdorf distan
e between two sets, A andB:dh(A;B) = maxfmaxa2A d(a; B);maxb2B d(b; A)g where d(p;Q) = minq2Q d(p; q)and d(p; q) is the Eu
lidean distan
e from p to q. To prove the main sta-bility result the following lemma des
ribing the stru
ture of sets of optimalsolutions will be needed.Lemma 2.8:Assume that x� 2 X�, xk 2 Xk, k = 1; 2:::, are �xed.Let Z k = fz 2 Rn : z = xk + y; y 2 Y %g; k = 1; 2; :::,Z� = fz 2 Rn : z = x� + y; y 2 Y % g:Then Xk = ZkTX; k = 1; 2; ::: and X� = Z�TX:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 25Proof:Let x 2 ZkTX. If Y % 6= ; then there exists y 2 Y % su
h that x =xk + y. Sin
e %0y = 0 a.s., we obtain %0x = %0xk a.s. Thus Euk(x0 + %0x) =Euk(x0 + %0xk). Sin
e x 2 X, the last equality yields x 2 Xk. ThereforeXk � ZkTX.Let x 2 Xk. Then a

ording to the proof of Proposition 2.6 (ii), we have%0(x� xk) = 0 a:s:Sin
e x = xk+(x�xk) and (x�xk) 2 Y %, we obtain x 2 Zk. By assumption,x 2 X hen
e x 2 ZkTX. Therefore Xk � ZkTX. In the same manner itis easy to 
he
k that X� = Z�TX; and the proof is 
omplete. 2Theorem 2.9:Let assumptions (2.iii) - (2.vii) hold. Thenlim supk!1 dh(Xk; X�) = 0:Proof:Proposition 2.4 shows that from any sequen
e x1;x2; :::, where xk 2 Xk;k = 1; 2:::, a subsequen
e xk1;xk2 ; ::: 
an be extra
ted su
h thatxkn kn!1�! %0x� a:s: and x� 2 X �:Sin
e X is 
ompa
t set, there exists a Cau
hy subsequen
e xl1 ;xl2; ::: of thesequen
e xk1 ;xk2; :::. Letx = limln!1xln then %0xln ln!1�! %0x a:s:Proposition 2.4 now implies %0xln ln!1�! %0x� a:s: Combining these limits weobtain: %0x = %0x� a:s: Therefore x 2 X�: We have just proved thatlim supk!1 maxxk2Xk d(xk; X�) = 0:Applying Proposition 2.4 for any subsequen
e of x1;x2; :::, where xk 2 Xk, itremains to prove that for any x� 2 X � a sequen
e x1;x2; :::, where xk 2 Xk,



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 26k = 1; 2:::, exists su
h that at least one Cau
hy subsequen
e of this sequen
e
onverges to x�: We will 
onstru
t su
h sequen
e.Choose x� 2 X �. Consider a sequen
e x1;x2; ::: where xk 2 Xk, k = 1; 2:::,and a Cau
hy subsequen
e xl1 ;xl2 ; :::. Setx� = limln!1xlnIf x� = x� then the 
onstru
tion follows immediately. In the opposite 
ase,by the lemma above, there exists y� 2 Y % su
h that x� = x� + y�. Let usanalyze two 
ases:(i) If x�i > 0; 8i 2 f1; 2; ::; ng then de�ne xk = xk + y�; k = 1; 2; :::.Sin
e xln ln!1�! x�, we obtain xln ln!1�! x�: Sin
e x� is a positive ve
tor, thereexists n0 su
h that: xln 2 X; 8n � n0. Finally, Lemma 2.8 implies xk 2 Zk.Hen
e x1;x2; ::: is the sequen
e we wanted to �nd.(ii) Let I = fi 2 f1; 2; ::; ng : x�i = 0; yi < 0 g. De�ne xk = xk + yk;k = 1; 2; ::: where yk = y�(1��k). It is 
lear that yk 2 Y % and xk 2 Z k ;8k 2 N . Let �k = maxi2I xki + y�iy�ithen �ln ! 0. Thus xln ln!1�! x�: Sin
e y�i < 0; 8i 2 I it is easy to 
he
k thatthis 
hoi
e of �k guarantees that xki � 0; 8i 2 I. If x�i = 0 and y�i = 0 then itfollows immediately that xki � 0 . If x�i > 0 we apply the similar argumentsto the 
ase (i). Hen
e there exists n0 su
h that: xln 2 X ln; 8n � n0. Thusx1;x2; ::: is the sequen
e we wanted to �nd, and the proof is 
omplete. 2Sin
e Hausdorf distan
e is always non-negative0 = lim supk!1 dh(Xk; X�) = lim infk!1 dh(Xk; X�)whi
h together with Theorem 2.9 implies the following result.Corollary 2.10:Let assumptions (2.iii) - (2.vii) hold. Thenlimk!1dh(Xk; X�) = 0:



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 27To derive these stability results, we assumed twi
e di�erentiability ofutility fun
tions (2.iv) and 
onvergen
e of ARA measures (2.v). If we dropthe assumption of di�erentiability, i.e. the assumption of existen
e of ARAmeasures, we 
an follow Ro
kafellar & Wets [47℄ and apply assumption ofhypo
onvergen
e of expe
ted utility fun
tions.Comparing these two approa
hes, when assuming 
onvergen
e of ARAmeasures, the full information about utility fun
tions of the de
ision makeris not needed. This advantage 
an be used in the situation when we have fullinformation about ARAmeasure of de
ision maker, but the portfolio sele
tionproblem 
an not be solved, be
ause it is impossible to express analyti
allythe exa
t form of utility fun
tion. In this 
ase we 
an use approximationby another suitable utility fun
tion. The stability results in Proposition 2.7,Theorem 2.9 or Corollary 2.10 
an be useful for examination of quality ofthe approximation. The following example will demonstrate this situationwhere ARA measure of de
ision maker 
an be estimated in various ways, forexample, from risk premium using (2.3).Example 2.11:Consider a de
ision maker with unknown utility fun
tion. Let x0 = 1, % =(1; 3)0 and % = (1; 0)0 with equal probabilities. Assume K time instantswhere K 2 N is large enough. In ea
h moment k we estimate his ARAmeasure from the available data till this moment. We obtain the sequen
eof ARA measures: rk(x) = e� 1kx2 :Sin
e rk(x) k!1�! 1 the limit utility fun
tion is: u(x) = �e�x. Sin
e the exa
tform of utility fun
tions 
orresponding to estimated ARA measures 
an notbe derived, we 
an use the limit utility fun
tion. Thus we 
an solve theproblem: max�12e�(1+x1+3x2) � 12e�(1+x1)subje
t to : x1 + x2 = 1xi � 0; i = 1; 2and the optimal solution of this problem is x�1 = 1� log(2)3 ; x�2 = log(2)3 . In spiteof the fa
t that the optimal solutions of portfolio sele
tion problems 
orre-sponding to estimated ARA measures are not known, applying Proposition
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hy sequen
e of these optimal solutions 
onverges to (x�1; x�2).Thus (x�1; x�2) 
an be regarded as an approximation of optimal solution of theoriginal portfolio sele
tion problem.Assuming hypo
onvergen
e of expe
ted utility fun
tions, we 
an obtaina stability result for larger 
lass of utility fun
tions than the 
lass given by(2.iv). On the other hand, to verify this assumption, the full informationabout utility fun
tions is needed whi
h 
an be unrea
hable as demonstratedin Example 2.11. Typi
ally, a veri�
ation of assumptions (2.iv) and (2.v) isless demanding than a veri�
ation of the assumption of hypo
onvergen
e.2.4 Variational analysis approa
hFirstly, we re
all the basi
 terms of variational analysis. In this approa
h,we 
onsider expe
ted utility as a fun
tion of investment strategy i.e.f(x) = �Eu(x0 + %0x):De�nition 2.12:(i) The fun
tion f : Rn ! R is lower semi
ontinuous (ls
) at x iflim infx!x f(x) � f(x)and lower semi
ontinuous on Rn if this holds for every x 2 Rn. Thefun
tion f : Rn ! R is upper semi
ontinuous (us
) at x if �f is ls
at x and upper semi
ontinuous on Rn if �f is lower semi
ontinuous onRn.(ii) For f : Rn ! R, the epigraph of f is the setepif = f(x; a) 2 Rn �Rja � f(x)g:(iii) For f : Rn ! R, the level set of f is the setlev�f = fx 2 Rnjf(x) � �g:The epigraph 
onsists of all the points of Rn+1 lying on or above thegraph of f . For � �nite, the level sets 
orrespond to the "horizontal 
rossse
tion" of the epigraph. A

ording to Ro
kafellar & Wets [47℄, Th. 1.6 thefollowing properties of a fun
tion f are equivalent:
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ontinuous on Rn;(b) epif is 
losed in Rn+1;(
) lev�f is a 
losed set in Rn for all �.The basi
 tool for epi
onvergen
e approa
h is de�nition of a limit of asequen
e of sets fCkgk2N and eventually level-bounded sequen
e using thefollowing notation of index sets:N1 = fN � NjNnN is �nitegN ℄1 = fN � NjN is in�nitegwhere N represents the set of natural numbers. Sin
e N ℄1 
onsists of allsubsequen
es of N it is easily seen that N1 � N ℄1.De�nition 2.13:(i) For a sequen
e fCkgk2N of subsets of Rn, the outer limit is the set :lim supk!1 Ck = fx j 9N 2 N ℄1; 9xk 2 Ck; k 2 N with xk N�! xg:while the inner limit of fCkgk2N is the set:lim infk!1 Ck = fx j 9N 2 N1; 9xk 2 Ck; k 2 N with xk N�! xg:The limit of the sequen
e fCkgk2N exists, if the outer and inner limitsets are equal: limk!1Ck := lim supk!1 Ck = lim infk!1 Ck:(ii) For any sequen
e ffkgk2N of fun
tions on Rn, the lower epi-limit(e� lim infk fk) is the fun
tion having as its epigraph the outer limit ofthe sequen
e of sets epi fk:epi(e� lim infkfk) = lim supk(epi(fk)):The upper epi-limit (e � lim supk fk) is the fun
tion having as its epi-graph the inner limit of the sequen
e of sets epi fk:epi(e� lim supkfk) = lim infk(epi(fk)):



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 30When upper and inner limit 
oin
ide, the epi-limit (e� limk fk) is saidto exist: e� limk fk = e� lim infk fk = e� lim supk fk. In this event thefun
tions fk are said to epi-
onverge to f (fk e�! f ).(iii) A sequen
e ffkgk2N of fun
tions on Rn is eventually level-bounded if forea
h � 2 R the sequen
e of level sets (lev�fk) is eventually bounded,i.e. for some index set N 2 N1 the set Sk2N lev�fk is bounded.Dire
tly from the de�nition of epi-limit and from the de�nition of thelimit of sets (epigraphs) we 
an see that: e� lim infk fk � e� lim supk fk andfk e�! f , epifk �! epif . Applying Ro
kafellar & Wets [47℄, Th. 7.33 inthe 
ontext of the portfolio sele
tion problem we 
an 
on
lude the followingstability result.Theorem 2.14:Let fk(x) = �Euk(x0 + %0x) and f(x) = �Eu(x0 + %0x). Suppose thatthe sequen
e ffkgk2N is eventually level-bounded, and fk e�! f with fk ls
.Then(i) lim supkXk � X�(ii) Euk(x0 + %0xk) �! Eu(x0 + %0x�) for any xk 2 Xk and x� 2 X�.Reformulating the assumptions of Theorem 2.14 in terms of utility fun
-tions we obtain the following result.Corollary 2.15:Suppose the interval I is bounded. Let u : I �! R and uk : I �! R,k = 1; 2; : : : , be us
 utility fun
tions with �uk e�! �u. Let % satis�esassumption (2.ii). Then(i) lim supkXk � X�(ii) Euk(x0 + %0xk) �! Eu(x0 + %0x�) for any xk 2 Xk and x� 2 X�.
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e the union of domains of u, uk, k = 1; 2; : : : is bounded and the sup-port of % is bounded the union of all level sets of expe
ted utility fun
tions(Sk2N lev�[�Euk(x0 + %0x)℄) is bounded for any 
hoi
e of � 2 R, i.e. thesequen
e f�Euk(x0 + %0x)gk2N is eventually level-bounded.To show that �uk e�! �u implies �Euk(x0+%0x) e�! �Eu(x0+%0x) weapply Ro
kafellar & Wets [47℄, Th. 7.2. dealing with suÆ
ient and ne
essary
ondition of epi
onvergen
e: fk e�! f if and only if at ea
h point x bothfollowing statements hold true:(a) lim infk fk(xk) � f(x) for every sequen
e xk �! x(b) lim supk fk(xk) � f(x) for some sequen
e xk �! x.Using Fatou's lemma and assumption �uk e�! �u, espe
ially (a), we obtain:lim infk ZRn �uk(x0 + %0xk)dP (%) � ZRn lim infk � uk(x0 + %0xk)dP (%)� ZRn �u(x0 + %0x)dP (%)for every sequen
e xk �! x whi
h proves (a) with fk(xk) = �Euk(x0+%0xk)and f(x) = �Eu(x0+%0x). In the same manner, for some sequen
e xk �! xwe have:lim supk ZRn �uk(x0 + %0xk)dP (%) � ZRn lim supk � uk(x0 + %0xk)dP (%)� ZRn �u(x0 + %0x)dP (%);i.e. (b) holds true and the proof of epi
onvergen
e of sequen
e f�Euk(x0 +%0x)gk2N is 
omplete.Finally, lower semi
ontinuity of�Euk(x0+%0x), k = 1; 2; :::; and�Eu(x0+%0x) will be derived. From the assumption of upper semi
ontinuity of u anduk, k = 1; 2; ::: and Fatou's lemma we 
on
lude:lim infl ZRn �uk(x0 + %0xl)dP (%) � ZRn lim infl � uk(x0 + %0xl)dP (%)� ZRn �uk(x0 + %0x)dP (%); k = 1; 2:::



CHAPTER 2. STABILITY IN PORTFOLIO OPTIMIZATION 32lim infl ZRn �u(x0 + %0xl)dP (%) � ZRn lim infl � u(x0 + %0xl)dP (%)� ZRn �u(x0 + %0x)dP (%)for every sequen
e xl �! x whi
h 
ompletes the proof. 2Sin
e x0 is a given parameter, % has a bounded support and the feasibleset of investment strategies is 
ompa
t, assumption of boundedness of intervalI represents no addition restri
tion.



Chapter 3Multivariate and multiperiodrisk premiums
3.1 PreliminariesIn Chapter 2, the univariate risk premium was 
onsidered as an amountwhi
h is a risk averse investor willing to pay to eliminate the risk in a fairgamble. The 
lassi
al Arrow-Pratt approa
h assumes 
ertain (non-random)level of initial wealth. The generalization of this notion to random initialwealth was introdu
ed in Ross [49℄ where a stronger measure of risk aversionwas presented. Another extension of the Arrow-Pratt results for the 
ase ofrandom initial wealth was suggested in Kihlstrom & Romer & Williams [24℄.In Se
tion 3.2 and 3.3 of this 
hapter, we summarize the results of Am-barish & Kallberg [2℄, Chalfant & Finkelshtain [5℄, Dun
an [9℄ and Kihlstrom& Mirman [23℄ with respe
t to the 
hara
terization of risk premiums for mul-tivariate (multiattribute) risk. In Se
tion 3.4, we develop a multiperiod riskpremium. For this 
onstru
tion of risk premium in multiperiod problem, thebasi
 relationship to multivariate risk aversion is proved. Finally, in se
tion3.5, several generalizations of multiperiod risk premium notion are suggestedwhen some of 
onsidered assumptions are relaxed.3.2 Multivariate risk premiumSuppose a de
ision maker with utility fun
tion u(w) and with initialwealth w = (w1; w2; :::; wn)0. We 
an interpret w as a ve
tor of n 
ommodi-33



CHAPTER 3. RISK PREMIUMS 34ties. Assume that u(w) is 
ontinuous and in
reasing in all variables. In thisse
tion, we follow Dun
an [9℄ in assuming that w is non-random. By anal-ogy to one-dimensional 
ase, the multivariate risk premium � is given by theequation: u(w + Exx� �) = Exu(w + x)for a given multidimensional risk x. The ve
tor � is a fun
tion of initialwealth and probability distribution of multidimensional risk. The uniquenessof risk premium in univariate 
ase was proved in Pratt [45℄. It is 
lear thatif n > 1 than � is not unique and using asymptoti
 
hara
terization, we 
an
on
lude that � lies in an n-dimensional hyperplane. We refer to Dun
an[9℄ for more details. As in the univariate 
ase, we de�ne the risk aversion atlevel w su
h that: u(w + Exx) > Exu(w + x)for any given gamble x. The interpretation is that the utility of having 
ertainquantities w + Exx is preferred to the expe
ted utility of having un
ertainquantities w + x. It is easy to show that if u is 
on
ave than there existsa nonnegative risk premium for any gamble and 
onsequently u ful�lls the
ondition of risk aversion (see Dun
an [9℄).3.3 Multivariate risk premium with randominitial wealthThe generalization of Dun
an [9℄ for random initial wealth was introdu
edin Ambarish & Kallberg [2℄. Similarly to the 
ase of non-random initialwealth we are interested in determining a multivariate risk premium � su
hthat the de
ision maker is indi�erent between two random variables: (w��)and (w + x). Observe that, while the un
ertainty in x 
an be eliminated(insured) by �, there is no insuran
e against the risk in w, be
ause the�nal wealth will be a random ve
tor in both 
ases. We follow Ambarish &Kallberg [2℄ in de�ning the multivariate risk premium byEwu(w + Exx� �) = Ew;xu(w + x): (3.1)In this notion, multivariate risk premium is a fun
tion of probability distribu-tion of a gamble x and probability distribution of initial wealth w. However



CHAPTER 3. RISK PREMIUMS 35it does not depend on the realization of w. This is a disadvantage of this ap-proa
h. It was demonstrated that also in the 
ase of a random initial wealth� lies in an n-dimensional hyperplane in asymptoti
 
hara
terization. SeeAmbarish & Kallberg [2℄ for more details. By analogy to univariate and mul-tivariate 
ase with non-random initial wealth, the 
ondition of multivariaterisk aversion 
an be given by the formula:Ewu(w + Exx) > Ew;xu(w + x): (3.2)However, 
ontrary to the univariate 
ase, 
on
avity of utility fun
tion doesnot guarantee a risk aversion. The multivariate risk aversion given by (3.2)depends on the gamble, as we 
an see in the following example. Thereforethe risk aversion de�ned by (3.2) has to be 
alled a multivariate risk aversionat wealth level w with respe
t to gamble x.Example 3.1:Let u(w) = log(w1+w2) and (w1; w2; x1; x2) = (12 ; 0; 1;�12) or (1; 12 ;�1; 12)with equal probabilities. Consider u(w) = log(w1 + w2). It is 
lear thatExx1 = Exx2 = 0 andEw;xu(w + x) = Ew;x log(w1 + w2 + x1 + x2)= 12 log�12 + 0 + 1� 12�+ 12 log�1 + 12 � 1 + 12�= 0Ewu (w + Exx) = Ew log(w1 + w2) = 12 log�12 + 0�+ 12 log�1 + 12�= 12 log�34� < 0:Thus Ew;xu(w + x) > Ewu (w + Exx) :It is easy to 
he
k that u is 
on
ave and in
reasing in w1 and also in w2. We
an see that the 
orrelation between w and x 
an 
ause the fa
t that the 
on-dition of risk aversion (3.2) does not hold even if u is 
on
ave and in
reasingin ea
h variable. Moreover, we will see that 
onsidering the same utility fun
-tion and initial wealth, the 
ondition (3.2) is ful�lled for another gamble x. If



CHAPTER 3. RISK PREMIUMS 36u(w) = log(w1 + w2) and (w1; w2; x1; x2) = (12 ; 0; 12 ; 34) or (1; 12 ;�12 ;�34) withthe same probabilities thenEw;xu(w + x) = Ew;x log(w1 + w2 + x1 + x2)= 12 log�12 + 0 + 12 + 34� + 12 log�1 + 12 � 12 � 34�= 12 log� 716�Ewu (w + Exx) = Ew log(w1 + w2) = 12 log�12 + 0�+ 12 log�1 + 12�= 12 log�34� > 12 log� 716�hen
e Ew;xu(w + x) < Ewu (w + Exx) :One parti
ular set of risk premiums was 
onsidered in Ambarish & Kall-berg [2℄: let b�i be de�ned to be the risk premium in the i-th dire
tion i.e., asolution of (3.1) with the property that 
omponents of � satisfy�j = 0 j 6= i= b�i j = i:Let us 
ompute dire
tional risk premiums b�1, b�2 for the �rst setting inExample 1 where Exx = 0:Ew;xu(w + x) = Ewu(w� �); � = (b�1; 0)00 = 12 log�12 � b�1� + 12 log�32�b�1 = �16Ew;xu(w + x) = Ewu(w� �); � = (0; b�2)00 = 12 log�12�+ 12 log�32 � b�2�b�2 = �12
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an see that 
on
avity of u does not guarantee the risk averse attitude(with respe
t to all gambles) and nonnegativity of dire
tional risk premiumsas it did in the univariate 
ase. However, it is easy to see that if u is in
reasingin ea
h variable then there is a relationship 
orresponding to the univariate
ase: the 
ondition (3.2) of risk aversion at wealth level w with respe
t togamble x is equivalent to nonnegativity of all dire
tional risk premiums.The main disadvantage of this approa
h is the fa
t that w is not allowedto be a fun
tion of �. Therefore this notion is not very useful in multiperiodmodels and we suggest another way, how to de�ne multiperiod risk premium.3.4 Multiperiod risk premiumLet u(w) be an in
reasing utility fun
tion. In this se
tion, we interpret thearguments ofw as the random amounts of 
ash (single 
ommodity) measuredat times 1; : : : ; n. It is the ve
tor of initial wealth in ea
h period. We willdenote by x the random ve
tor of all 
hanges in wealth ve
tor w at times1; : : : ; n; i.e., xi is a random investment possibility (gamble) at time i. Wewould like to de�ne i-th element of multiperiod risk premium � su
h thata de
ision maker is indi�erent between a

epting the gamble xi and paying�i � Exxi in i-th time period. If the probability distribution of w is knownand we do not want �i to depend on realization of w then we 
an applythe approa
h mentioned in Se
tion 3.3. However, it is not very realisti
assumption. In our framework, the i-th element of multiperiod risk premiumdepends on the initial wealth at time i and on the probabilisti
 distributionof x. The initial wealth wi depends on wi�1 and on the de
ision of investorat time i� 1, whether he a

epted gamble xi�1 or paid �i�1 �Exxi�1. Thisde
ision is not known usually, be
ause the investor is indi�erent betweenthese two possibilities. Thus, we assume that w is a fun
tion of x and �.Without loss of generality from now on, we will follow Ambarish & Kall-berg [2℄, Dun
an [9℄ and Pratt [45℄ in assuming that Exx = 0.Finally, we assume that a history of de
isions does not depend on xand all possible histories of de
isions are des
ribed by the following de
isions
enarios where an investor has only two possibilities in ea
h time period: toa

ept the gamble or to pay risk premium.
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h a

ept x1 h a

ept x2 h : : : a

ept xn�1pay �n�1pay �2 h : : : a

ept xn�1pay �n�1pay �1 h a

ept x2 h : : : ...pay �2 h : : : a

ept xn�1pay �n�1Note that an information about the de
ision in the last period is not rele-vant be
ause it 
an not in
uen
e the initial wealth ve
tor w. Thus there arem = 2n�1 s
enarios. Let S denotes the set of all s
enarios. Let s 2 S. If thede
ision maker a

epts a gamble in i-th time period then let ksi = 1, other-wise ksi = 0. The s
enario s is represented by ve
tor Ks = (ks1; ks2; : : : ; ksn�1)
onsisting of binary elements. Ea
h s
enario uniquely des
ribes the de
isionsof investor in all time periods e.g. the s
enario with ksi = 1; i = 1; 2; :::; n� 1
orresponds to the investor who a

epts a fair gamble in ea
h time period.With this notation, the initial wealth in j-th time period along s
enario s
an be written in the form:wsj(�1; : : : ;�j�1) = w1 + j�1Xi=1 [ksixi � (1� ksi )�i℄: (3.3)Therefore w = ws with unknown probability ps for s 2 S where ws dependson x, hen
e ws is a random ve
tor. Observe that we 
onsider multiperiodrisk premium as a pri
e of insuran
e against all risks. It is not allowed toseparate risks in one time period and to 
ompute the amount of multiperiodrisk premium (insuran
e) only for some of them. For example if we re
eive$1 in the se
ond period from external resour
es and we 
an lose $2 withprobability 0.5 in the se
ond period gamble then the 
onsidered investmentpossibility is to re
eive $1 or to pay $1, i.e. x2 = 1 or x2 = �1 with equalprobabilities.In a formal way, we would like to de�ne multiperiod risk premium by thesystem of equations:Exu(ws + x) = Exu (ws ��) 8s 2 S: (3.4)We assume that all expe
ted values exist for all s
enarios. Re
all that ws isa fun
tion of � and x (see (3.3)). However, this system of 2n�1 equations



CHAPTER 3. RISK PREMIUMS 39and n variables does not usually have a solution unless n � 2. Therefore wesuggest another approa
h. Given x, letf s(�) = jExu(ws + x)� Exu (ws ��) jfor non-random w1. It is 
lear that � minimizes f s(�) if and only if � is asolution of the 
orresponding equation in (3.4) for s
enario s. Hen
e, we areinterested to �nd � whi
h minimizes f s(�) jointly for all s 2 S as mu
h aspossible. This is a multi-
riteria programming problem and we apply the goalprogramming approa
h. We are looking for a ve
tor (�) whi
h minimizes themaximal value of f s(�) over all s
enarios, i.e. is a solution of the problem:min� maxs2S f s(�);whi
h 
an be written in the equivalent form:min� d (3.5)s:t: f s(�) � d 8s 2 S:Summarizing, the multiperiod risk premium is de�ned as a solution of theproblem: min� d (3.6)s:t: � d � Exu(ws + x) � Exu (ws ��) � d 8s 2 S;where the elements of ws are given by (3.3).It is easily seen that if an optimal solution d� = 0 then the multiperiodrisk premium is a solution of (3.4), else this system of equations has nosolution.We de�ne the multiperiod risk aversion in the similar way as it was inthe univariate and multivariate 
ase using the s
enario approa
h, i.e. thede
ision maker is multiperiod risk averse at wealth level w with respe
t togamble x if Exu(ws + x) < Exu (ws) 8s 2 S: (3.7)We follow Ambarish & Kallberg [2℄ in applying the idea of dire
tional riskpremiums. They represent an amount that an investor 
an pay only in one



CHAPTER 3. RISK PREMIUMS 40time period to insure against all risks. We de�ne i-th dire
tional multiperiodrisk premium b�i as a solution of the following problem:min� d (3.8)s:t: � d � Exu(ws + x) � Exu (ws ��) � d 8s 2 S�j = 0 j 6= iwhere the elements of ws are given by (3.3).Finally, we will prove a relationship between dire
tional multiperiod riskpremiums and multiperiod risk aversion. The 
orresponding property holdsboth for the multivariate 
ase and the univariate 
ase.Theorem 3.2:If the de
ision maker is multiperiod risk averse at wealth level w withrespe
t to gamble x then all dire
tional multiperiod risk premiums are positive.Proof:Choose i 2 f1; 2; : : : ; ng. Let wsj be de�ned by (3.3) and �s;i be a solutionof equation: Exu(ws + x) = Exu (ws ��) under 
onditions: �j = 0 for allj 6= i. Assumption of risk aversion at wealth level w with respe
t to gamblex (given by (3.7)) is equivalent to positivity of �s;ii for all s 2 S, be
ause uis in
reasing in ea
h variable. Let�i = mins2S �s;ii :Using (3.3) and assumption that u is in
reasing in ea
h variable, it is easy toshow that f s(�) = jExu(ws + x) � Exu (ws ��) j is a de
reasing fun
tionin variable �i on (�1;�i) for all s 2 S under 
onditions: �j = 0 for allj 6= i. Therefore b�i � �i > 0. 23.5 Generalizations of multiperiod risk pre-miumFirst, we will assume that there 
an be some legislative restri
tions (or otherreasons) su
h that there is no insuran
e possibility in some time periods



CHAPTER 3. RISK PREMIUMS 41or an investor is not interested in the insuran
e possibility in these timeperiods. Let A be the set of 
onsidered time periods and m be the number of
onsidered time periods in multiperiod risk premium 
onstru
tion. If i 2 Athen let yi = ��i else yi = xi. We will denote by SA the subset of Swhi
h 
onsist of the s
enarios with the property that if i 2 f1; 2; : : : ; ng n Athen ksi = 1. With this notation, similarly to (3.6), we de�ne the partialmultiperiod risk premium �A = f�igi2A as an m-dimensional ve
tor whi
hsolves the problem: min�A d (3.9)s:t: � d � Exu(ws + x) � Exu (ws + y) � d 8s 2 SAwsj = w1 + j�1Xi=1 [ksixi + (1� ksi )yi℄ j = 2; 3; : : : ; nyi = ��i i 2 Ayi = xi i 62 AWe will illustrate the 
omputation of multiperiod risk premium, dire
-tional multiperiod risk premium and partial multiperiod risk premium in thefollowing example.Example 3.3:Consider u(w1; w2; w3) = log(w1+w2+w3). Let x1; x2; x3 be an indepen-dent random variables: xi = �12 with equal probabilities, i = 1; 2; 3. Finally,set w1 = 2.First, we evaluate the multiperiod risk premium given by (3.6). Anys
enario s is determined by ve
tor K = (ks1; ks2) e.g. if K = (1; 0) then aninvestor will a

ept the �rst gamble and he will pay �2 in the se
ond periodto insure against x2. It is 
lear that S 
onsists of four s
enarios: s1 � (1; 1),s2 � (1; 0), s3 � (0; 1) and s4 � (0; 0). It is easy to 
he
k that:f 1(�) = jExu(w1 + x1; w1 + x1 + x2; w1 + x1 + x2 + x3)�Exu(w1 � �1; w1 + x1 � �2; w1 + x1 + x2 � �3)j= ����18 log(1088640)� 14 log �(152 � �1 � �2 � �3)(132 � �1 � �2 � �3)(112 � �1 � �2 � �3)(92 � �1 � �2 � �3)�����



CHAPTER 3. RISK PREMIUMS 42f 2(�) = jExu(w1 + x1; w1 + x1 + x2; w1 + x1 � �2 + x3)�Exu(w1 � �1; w1 + x1 � �2; w1 + x1 � �2 � �3)j= ����18 log �(172 � �2)(152 � �2)(152 � �2)(132 � �2)(112 � �2)(92 � �2)(92 � �2)(72 � �2)��12 log [(7� �1 � 2�2 � �3)(5� �1 � 2�2 � �3)℄����f 3(�) = jExu(w1 + x1; w1 � �1 + x2; w1 � �1 + x2 + x3)�Exu(w1 � �1; w1 � �1 � �2; w1 � �1 + x2 � �3)j= ����18 log [(8� 2�1)(7� 2�1)(6� 2�1)(5� 2�1)(7� 2�1)(6� 2�1)(5� 2�1)(4� 2�1)℄�12 log �(132 � 3�1 � �2 � �3)(112 � 3�1 � �2 � �3)�����f 4(�) = jExu(w1 + x1; w1 � �1 + x2; w1 � �1 � �2 + x3)�Exu(w1 � �1; w1 � �1 � �2; w1 � �1 � �2 � �3)j= ����18 log �(152 � 2�1 � �2)(132 � 2�1 � �2)(132 � 2�1 � �2)(112 � 2�1 � �2)(132 � 2�1 � �2)(112 � 2�1 � �2)(112 � 2�1 � �2)(92 � 2�1 � �2)� � log(6� 3�1 � 2�2 � �3)jand the multiperiod risk premium (optimal solution of (3.5)) is:� = (1:252; 1:27;�2:319) and d� = 6:10�4:Let us 
ompute the dire
tional multiperiod risk premiums given by (3.8).The �rst dire
tional multiperiod risk premium is an optimal solution of the



CHAPTER 3. RISK PREMIUMS 43problem: min�1 ds:t: jExu(w1 + x1; ws2 + x2; ws3 + x3) � Exu (w1 � �1; ws2; ws3) j � d 8s 2 Sws2 = w1 + ks1x1 � (1� ks1�1)ws3 = w1 + ks1x1 � (1� ks1�1) + ks2x2where the last two 
onditions are 
on
luded from (3.3). Hen
e b�1 = 0:1367and d� = 0:0124. By analogy, solving the following problem, we obtain these
ond dire
tional multiperiod risk premium.min�2 ds:t: jExu(w1 + x1; ws2 + x2; ws3 + x3) � Exu (w1; ws2 � �2; ws3) j � d 8s 2 Sws2 = w1 + ks1x1ws3 = w1 + ks1x1 + ks2x2 � (1� ks2�2):Thus b�2 = 0:1368 and d� = 0:0124. In the same manner we 
an see thatthe third dire
tional multiperiod risk premium 
an be evaluated from theproblem: min�3 ds:t: jExu(w1 + x1; ws2 + x2; ws3 + x3) � Exu (w1; ws2; ws3 � �3) j � d 8s 2 Sws2 = w1 + ks1x1ws3 = w1 + ks1x1 + ks2x2:Therefore b�3 = 0:1368 and d� = 0:0124. We 
an see that all the dire
tionalmultiperiod risk premiums are approximately equal.Finally, let us 
ompute the partial multiperiod risk premium. We as-sume that the insuran
e possibility does not exist in the se
ond period, i.e.A = f1; 3g. Thus y = (��1; x2;��3). Sin
e only two s
enarios are pos-sible in this situation (SA = fK1; K2g where K1 = (1; 1) and K2 = (0; 1)),applying (3.9), we obtain the partial multiperiod risk premium as a solutionof the following system of two equations:Exu(w1 + x1; w1 + x1 + x2; w1 + x1 + x2 + x3)�Exu (w1 � �1; w1 + x1 + x2; w1 + x1 + x2 � �3) = 0Exu(w1 + x1; w1 � �1 + x2; w1 � �1 + x2 + x3)�Exu (w1 � �1; w1 � �1 + x2; w1 � �1 + x2 � �3) = 0



CHAPTER 3. RISK PREMIUMS 44Thus �1 = 1:638 and �3 = �1:5.Another generalization of the multiperiod approa
h is based on the as-sumption that w1 is a random variable. Suppose that the s
enarios Ks andtheir unknown probabilities ps do not depend on w1. We follow Ambarish &Kallberg [2℄ in adopting the possibility of non-zero 
orrelation between w1and x. By analogy to the univarite 
ase with random initial wealth devel-oped in Kihlstrom & Romer & Williams [24℄ and Ross [49℄, we de�ne themultiperiod risk premium for random w1 as a solution of the problem:min� d (3.10)s:t: � d � Ex;w1u(ws + x) � Ex;w1u (ws ��) � d 8s 2 Swhere the elements of ws are given by (3.3). We 
an see that the only di�er-en
e between (3.10) and (3.6) is in 
onsidering expe
ted value with respe
tto both random variables: x and w1. If we apply expe
ted value with respe
tto x and w1 instead of expe
ted value only with respe
t to x then we 
analso de�ne dire
tional and partial multiperiod risk premiums for random w1.Finally we will modify the assumption of independen
e between historyof de
isions and x. There 
an exist investment possibilities, whi
h 
an havenon-random yields in some time periods and the distribution of yields 
andepend on the history of realization of x. As an example of su
h investmentpossibility a bond 
an be 
onsidered. If the bond default 
omes in t-th timeperiod then xi = 0 a.s. for all i > t. In this 
ase, there is no risk in i-th timeperiod. Therefore the value of risk premium in i-th time period has to beequal to zero.In general, we assume that if xi is non-random then i-th element of multi-period risk premium is equal to zero. A 
onditional multiperiod risk premiume� represents the pri
e of insuran
e against all risks with an additional 
on-dition: if the realization of x is su
h that the investment possibility in i-thtime period is not risky, then no insuran
e is available in this time period (i.e.e�i = 0). If xi = Exi a.s. then let yi = 0 else yi = e�i. With this notation,we de�ne the 
onditional multiperiod risk premium e� as a solution of the



CHAPTER 3. RISK PREMIUMS 45problem: mine� d�d � Exu(ws + x) � Exu (ws � y) � d 8s 2 Swsj = w1 + j�1Xi=1 [ksixi � (1� ksi )yi℄ j = 2; 3; : : : ; nyi = e�i if P (xi = Exi) < 1yi = 0 if P (xi = Exi) = 1:By analogy to non-
onditional approa
h, we 
an 
onsider also dire
tional
onditional multiperiod risk premiums.



Chapter 4Se
ond-order sto
hasti
dominan
e and eÆ
ientportfolios
4.1 PreliminariesThe portfolio sele
tion problem may be regarded as a two-step pro
edure.Firstly, an eÆ
ient set among all available portfolios is 
hosen and then therisk preferen
es of de
ision maker to this set are applied. This 
hapter dealswith the �rst step. Se
tion 4.2 re
alls the basi
 ideas and results of sto
hasti
dominan
e approa
h for pairwise 
omparisons. A given portfolio is eÆ
ientin the 
onsidered set of assets if there exists no other 
onvex 
ombination ofthe assets whi
h stri
tly dominates the portfolio.As was demonstrated in Chapter 2 and Chapter 3, the risk preferen
esof de
ision maker 
an be des
ribed by a von Neumann-Morgenstern utilityfun
tion or risk premium. Applying value-at-risk (VaR) or 
onditional value-at-risk (CVaR) is another way how to express the risk attitude of de
isionmakers. If the yields or losses of assets in the portfolio are des
ribed bydis
rete probabilisti
 distributions then CVaR 
an be 
omputed as a solutionof linear programming problem. This property will be used in the sequel.In se
tion 4.3, following Ogry
zak & Rusz
zy�nski [40℄, we re
all the basi
properties of CVaR in 
ontext of sto
hasti
 dominan
e. The relationshipbetween risk premium and CVaR is shown. Finally, CVaR for the 
ase ofdis
rete probability distribution is analyzed. These results are employed in46
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tion 4.4 where a ne
essary and suÆ
ient 
ondition for SSD portfolio eÆ-
ien
y is derived and 
ompared with 
onditions in Post [43℄ and Kuosmanen[34℄. Also a ne
essary 
ondition based on CVaR is presented. This ne
essary
ondition 
an dete
t SSD portfolio ineÆ
ien
y espe
ially when assets returnsare highly 
orrelated.Summarizing 
onditions from se
tion 4.4 we formulate linear program-ming algorithm for testing SSD eÆ
ien
y of a given portfolio in se
tion 4.5.If a tested portfolio is SSD ineÆ
ient then this test always identi�es a dom-inating SSD eÆ
ient portfolio.Following the idea of Post [43℄, in se
tion 4.6, we introdu
ed a measureof portfolio ineÆ
ien
y. However, this measure is based on CVaR and usessolution of linear program in ne
essary and suÆ
ient 
ondition for SSD ef-�
ien
y presented in se
tion 4.4. We prove the 
onsisten
y of this measurewith SSD relation and we analyze its 
onvexity. Finally, we illustrate theseresults on a simple numeri
al example.We apply the derived results to test SSD eÆ
ien
y of mean-VaR optimalportfolios in numeri
al appli
ation presented in se
tion 4.7. We 
omputeSSD portfolio ineÆ
ien
y measures of all tested portfolios.4.2 Sto
hasti
 dominan
eFor two random variables X1 and X2 with respe
tive 
umulative proba-bility distributions fun
tions F1(x), F2(x) we say that X1 dominates X2 by�rst degree sto
hasti
 dominan
e: X1 �FSD X2 ifEF1u(x)� EF2u(x) � 0for every utility fun
tion u, i.e. for every 
ontinuous nonde
reasing fun
tionu, su
h that these expe
ted values exist. Let us denote by U1 the set of allsu
h fun
tions. We say that X1 dominates X2 by se
ond degree sto
hasti
dominan
e: X1 �SSD X2 ifEF1u(x)� EF2u(x) � 0for every u 2 U2 where U2 � U1 denotes the set of all 
on
ave utility fun
-tions su
h that these expe
ted values exist. The 
orresponding stri
t domi-nan
e relations �FSD and �SSD are de�ned in the usual way: X1 �FSD X2(X1 �SSD X2) if and only if X1 �FSD X2 (X1 �SSD X2) and X2 �FSD X1
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ording to Russel & Seo [50℄, u 2 U2 may be representedby simple utility fun
tions in the following sense:EF1u(x)� EF2u(x) � 0 8u 2 U2 () EF1u(x)� EF2u(x) � 0 8u 2 Vwhere V = fu�(x) : � 2 Rg and u�(x) = minfx� �; 0g.For the development of the third or higher degree of sto
hasti
 dominan
esee Levy [36℄, Whitmore [55℄ and Whitmore [56℄. SetF (2)i (t) = Z t�1 Fi(x)dx i = 1; 2:The following ne
essary and suÆ
ient 
onditions for sto
hasti
 dominan
ewere proved in Hano
h & Levy [18℄.Lemma 4.1:Let F1(x) and F2(x) be 
umulative distribution fun
tions ofX1 andX2. Then� X1 �FSD X2 , F1(x) � F2(x) 8x 2 R� X1 �SSD X2 , F (2)1 (t) � F (2)2 (t) 8t 2 R� X1 �FSD X2 , F1(x) � F2(x) 8x 2 R where at least one stri
tinequality holds� X1 �SSD X2 , F (2)1 (t) � F (2)2 (t) 8t 2 R with at least one stri
tinequality.Lemma 4.1 
an be used as an alternative de�nition of sto
hasti
 domi-nan
e.Consider now the quantile model of sto
hasti
 dominan
e Ogry
zak &Rusz
zy�nski [40℄. The �rst quantile fun
tion F (�1)X 
orresponding to a realrandom variable X is de�ned as the left 
ontinuous inverse of its 
umulativeprobability distribution fun
tion FX :F (�1)X (v) = minfu : FX(u) � vg: (4.1)The following result follows dire
tly from Lemma 4.1.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 49Lemma 4.2:X1 �FSD X2 , F (�1)1 (p) � F (�1)2 (p) 8p 2 (0; 1i:The se
ond quantile fun
tion F (�2)X is de�ned asF (�2)X (p) = Z p�1 F (�1)X (t)dt for 0 < p � 1= 0 for p = 0= +1 otherwise:The fun
tion F (�2)X is 
onvex and it is well de�ned for any random variableX satisfying the 
ondition E jXj < 1. For the proof of the following ba-si
 properties of the se
ond quantile fun
tion and more details about dualsto
hasti
 dominan
e see Ogry
zak & Rusz
zy�nski [40℄.Theorem 4.3:For every random variable X with E jXj <1 we have:(i) F (�2)X (p) = sup� f�p� E max(� �X; 0)g(ii) X1 �SSD X2 , F (�2)1 (p)p � F (�2)2 (p)p 8p 2 h0; 1i:4.3 VaR and CVaRLet Y be a random loss variable 
orresponding to the yield des
ribed byrandom variable X, i.e. Y = �X. We assume that E jY j < 1. For a �xedlevel �, the value-at-risk VaR is de�ned as the �-quantile of the 
umulativedistribution fun
tion FY : VaR�(Y ) = F (�1)Y (�): (4.2)We follow P
ug [42℄ in de�ning 
onditional value-at-risk CVaR as the solutionof the optimization problemCVaR�(Y ) = mina2R fa+ 11� �E [Y � a℄+g (4.3)



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 50where [x℄+ = max(x; 0). This problem has always a solution and one ofminimizers is VaR�(Y ). See P
ug [42℄ for proof and more details. It wasshown in Uryasev & Ro
kafellar [53℄ that the CVaR 
an be also de�ned asthe 
onditional expe
tation of Y, given that Y > VaR�(Y ), i.e.CVaR�(Y ) = E (Y jY > VaR�(Y )): (4.4)If we use �Y and 1� � instead of X and p in Theorem 4.3, respe
tivelywe 
an dire
tly see from the de�nition of CVaR that:F (�2)X (p)p = sup� f� � 1pE max(� �X; 0)g= � inf� f�� + 1pE max(� �X; 0)g= � infa fa+ 11� �E max(Y � a; 0)g= �CVaR�(Y ):Therefore Theorem 4.3 leads to the following result.Lemma 4.4:Let Yi = �Xi and E jXi j <1 for i = 1; 2. ThenX1 �SSD X2 , CVaR�(Y1) � CVaR�(Y2) 8� 2 h0; 1i:A well known property of CVaR� is its 
onvexity in the following sense.Lemma 4.5:Set � 2 h0; 1i. ThenCVaR�(�Y1 + (1� �)Y2) � �CVaR�(Y1) + (1� �)CVaR�(Y2) (4.5)where Y1, Y2 are arbitrary random variables.Proof:The proof follows from 
onvexity of y ! [y � a℄+.
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enario approa
hIn this subse
tion we limit our attention to s
enario approa
h, i.e. we will as-sume that Y is a dis
rete random variable whi
h takes values yt; t = 1; :::; Twith equal probabilities. Then (4.3) 
an be rewritten as a linear program-ming problem. Moreover CVaR�(Y ) 
an be 
al
ulated using the followingformula: CVaR�(Y ) = 1T Xyt>VaR�(Y ) yt (4.6)and the assumptions of Theorem 4.3 and Lemma 4.4 are ful�lled. For moredetails we refer to P
ug [42℄.Following Ro
kafellar & Uryasev [53℄ and P
ug [42℄, applying s
enarioapproa
h in (4.3), CVaR 
an be obtained by solving the following linearprogram: CVaR�(Y ) = mina;wt a+ 1(1� �)T TXt=1 wt (4.7)s:t: wt � yt � awt � 0:Let y[k℄ be the k-th smallest element among y1; y2; :::; yT , i.e.y[1℄ � y[2℄ � : : : � y[T ℄. In 
ontext of sto
hasti
 dominan
e a des
ription ofCVaR�(Y ) as a fun
tion of � will be useful.Lemma 4.6:If � 2 
 kT ; k+1T � and � 6= 1 thenCVaR�(Y ) = y[k+1℄ + 1(1� �)T TXi=k+1(y[i℄ � y[k+1℄) (4.8)for k = 0,1,...,T -1 and CVaR1(Y ) = y[T ℄:



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 52Proof:Consider a random variable Y whi
h takes values yt; t = 1; :::; T withprobabilities p1; p2; :::; pT . For a 
hosen � de�ne j� su
h that� 2 *j��1Xj=1 pj; j�Xj=1 pj! :Then the following formula was proved in Ro
kafellar & Uryasev [53℄:CVaR�(Y ) = 11� � " j�Xj=1 pj � �! y[j�℄ + TXj=j�+1 pjy[j℄# :Sin
e pt = 1=T , t = 1; :::; T we set: j� = k + 1 and the lemma follows.Combining Lemma 4.4 with Lemma 4.6 we obtain the ne
essary and suf-�
ient 
ondition of the se
ond-order sto
hasti
 dominan
e. This 
onditions
an be more easily veri�ed than 
onditions in Lemma 4.1, Theorem 4.3 orLemma 4.4.Theorem 4.7:Let Y1 = �X1 and Y2 = �X2 be dis
rete random variables whi
h take valuesyt1 and yt2, t = 1; :::; T , respe
tively, with equal probabilities. ThenX1 �SSD X2 , CVaR�(Y1) � CVaR�(Y2) 8� 2 f0; 1T ; 2T ; : : : ; T � 1T g:Proof:Let �k = k=T , k = 0; 1; :::; T � 2. Lemma 4.1 implies:CVaR�1(Yi) = CVaR�2(Yi); i = 1; 2 for all �1; �2 2 �T � 1T ; 1� :Thus it suÆ
es to show that ifCVaR�k(Y1) � CVaR�k(Y2) (4.9)and CVaR�k+1(Y1) � CVaR�k+1(Y2) (4.10)



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 53then CVaR�(Y1) � CVaR�(Y2) for all � 2 h�k; �k+1i. To obtain a 
ontra-di
tion, suppose that (4.9) and (4.10) holds and there exists e� 2 h�k; �k+1isu
h that CVaRe�(Y1) > CVaRe�(Y2). From 
ontinuity of CVaR in � thereexists �1 2 h�k; �k+1i and �2 2 h�k; �k+1i, �1 6= �2 su
h thatCVaR�1(Y1) = CVaR�1(Y2) (4.11)CVaR�2(Y1) = CVaR�2(Y2): (4.12)Substituting (4.8) into (4.11) and (4.12) we 
on
lude that �1 = �2, 
ontraryto �1 6= �2 and the proof is 
omplete.4.3.2 Relationship between risk premium, VaR andCVaRIn Chapter 2, absolute (relative) risk aversion measure and univariate riskpremium as the examples of measures of risk were 
onsidered. In these mea-sures, the risk attitude of de
ision maker is expressed using utility fun
tions.The value-at-risk and the 
onditional value-at-risk are risk measures of an-other type, where the de
ision maker's risk attitude is expressed by level�. We will show that for a suitable 
hoi
e of utility fun
tion and for anyabsolutely 
ontinuous random variable X, risk premium is equal to 
onvex
ombination of CVaR and VaR.Theorem 4.8:Let X be an absolutely 
ontinuous random variable and E (X) = 0: LetY = �X. If u(z) = min(z + F (�1)Y (�); w); � 2 h0; 1) (4.13)then �(w; PX) = (1� �)CVaR�(Y ) + �VaR�(Y ):Proof:From (2.2) and (4.13) we have:E min(w � Y + F (�1)Y (�); w) = min(w + F (�1)Y (�)� �(w; PX); w)E min(�Y + F (�1)Y (�); 0) = min(F (�1)Y (�)� �(w; PX); 0):
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e Y has a smooth distribution fun
tion E min(�Y + F (�1)Y (�); 0) is neg-ative. Hen
e�(w; PX) = F (�1)Y (�)� E min(�Y + F (�1)Y (�); 0)= F (�1)Y (�) + E max(Y � F (�1)Y (�); 0)= E max(Y; F (�1)Y (�))and it is easy to see thatE max(Y; F (�1)Y (�)) = P(Y > F (�1)Y (�))E (Y jY > F (�1)Y (�))+P(Y � F (�1)Y (�))F (�1)Y (�):Combining it with (4.1),(4.2) and (4.4) the proof is 
omplete.In the 
ase that E (X) 6= 0 we 
an 
onsider initial wealth w0 = w+ E (X),the gamble X 0 = X � E (X) and Theorem 4.8 
an be formulated for w0 andX 0 instead of w and X, respe
tively.The utility fun
tion u(z) given by (4.13) is a linear transformation of arepresentative utility fun
tion in the sense of Russel & Seo [50℄. All wealthlevels higher than w give the same utility and utility of losses is modi�ed bythe risk term represented by VaR�(Y ) = F (�1)Y (�).4.4 SSD portfolio eÆ
ien
y 
riteriaConsider a random ve
tor r = (r1; r2; :::; rN)0 of yields of N assets and Tequiprobable s
enarios. The yields of the assets for the various s
enarios aregiven by X = 0BBB� x1x2...xT 1CCCAwhere xt = (xt1; xt2; : : : ; xtN) is the t-th row of matrix X. Without loss ofgenerality we 
an assume that the 
olumns of X are linearly independent. Inaddition to the individual 
hoi
e alternatives, the de
ision maker may also
ombine the alternatives into a portfolio. We will use � = (�1; �2; :::; �N)0for a ve
tor of portfolio weights and the portfolio possibilities are given by� = f� 2 RN j10� = 1; �n � 0; n = 1; 2; : : : ; Ng:



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 55The tested portfolio is denoted by � = (�1; �2; :::; �N )0: In �nan
e data, theyields of assets are usually signi�
antly 
orrelated. A spe
ial interesting 
aseof X whi
h may o

ur for strongly 
orrelated yields of assets is de�ned asfollows.De�nition 4.9:MatrixX is 
alled portfolio-monotone if there exists permutation � : f1; 2; :::; Tg !f1; 2; :::; Tg su
h that xt� = (X� )[�(t)℄ for all � 2 �, t = 1; 2; :::; T .Lemma 4.10:If X is portfolio-monotone matrix of s
enarios thenCVaR� (�r0[�� 1 + (1� �)� 2℄) = �CVaR�(�r0� 1) + (1� �)CVaR�(�r0� 2)for any � 1; � 2 2 � and for any �; � 2 h0; 1i.Proof:If X is portfolio-monotone then �X is portfolio-monotone and the proof fol-lows dire
tly from Lemma 4.1. �Following Rusz
zy�nski & Vanderbei [51℄ and Kuosmanen [34℄ we will de-�ne SSD eÆ
ien
y of a given portfolio � .De�nition 4.11:A given portfolio � 2 � is SSD ineÆ
ient if and only if there exists portfolio� 2 � su
h that r0� �SSD r0� . Otherwise, portfolio � is SSD eÆ
ient.This de�nition 
lassi�es portfolio as SSD eÆ
ient if and only if no otherportfolio is better for all risk averse and risk neutral de
ision makers. In Post[43℄, more stringent de�nition of SSD eÆ
ien
y was introdu
ed.De�nition 4.12:A given portfolio � 2 � is SSD stri
t ineÆ
ient if and only if there existsportfolio � 2 � satisfying the following inequalityEu(r0�) > Eu(r0� )



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 56for all u 2 U s2 where U s2 2 U2 is the set of all stri
tly 
on
ave utility fun
tions.Otherwise, portfolio � is SSD stri
t eÆ
ient.Comparing the Post de�nition (De�nition 4.12) with our de�nition (Def-inition 4.11), these de�nitions 
oin
ide from empiri
al point of view as wasargued in Post [43℄. However, one 
an 
onstru
t an example where a portfoliois 
lassi�ed as SSD eÆ
ient only for the Post de�nition, i.e. it is SSD stri
teÆ
ient but SSD ineÆ
ient. Hen
e the Post linear programming test in thefollowing proposition gives a ne
essary 
ondition for SSD eÆ
ien
y.Proposition 4.13:Let �� = min�;�t � (4.14)s:t: TXt=1 �t(xt� � xtn) + T� � 0 n = 1; 2; :::; N�t � �t+1 � 0 t = 1; 2; :::; T � 1�t � 0 t = 1; 2; :::; T � 1�T = 1:If portfolio � is SSD eÆ
ient then �� = 0.If some ties in elements ofX� o

ur, then the 
onstraints 
an be modi�ed.See Post [43℄ for more details. Anyway, this 
riterion failed in 
omparingportfolios with identi
al means. It does not dete
t the presen
e of SSDdominating portfolio if mean of its yields equals to mean of X� . It is 
ausedby di�eren
es in de�nitions. From now on, we will deal with SSD eÆ
ien
yin the sense of De�nition 4.11. Following Kuosmanen [34℄ we 
an improvethe Post 
riterion in order to obtain a ne
essary and suÆ
ient 
ondition forSSD eÆ
ien
y. It depends on \ties" in X� . We say that k-way tie o

urs ifk elements of X� are equal.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 57Proposition 4.14:Let ��� = minW;�;S+;S� TXj=1 TXi=1 (s+ij + s�ij) (4.15)s:t: X� = WX�s+ij � s�ij = wij � 12 i; j = 1; 2; :::; Ts+ij; s�ij; wij � 0 i; j = 1; 2; :::; TTXj=1 wij = 1 i = 1; 2; :::; TTXi=1 wij = 1 j = 1; 2; :::; T� 2 �where S+ = fs+ijgTi;j=1, S� = fs�ijgTi;j=1 andW = fwijgTi;j=1. Let �k denote thenumber of k-way ties in X� . Then portfolio � is SSD eÆ
ient if and only if��� = T 22 � TXk=1 k�k ^ �� = 0where �� is given by (4.14).These 
riteria are based on appli
ations of Lemma 4.1. We will derivesuÆ
ient and ne
essary 
onditions for SSD eÆ
ien
y of � based on quantilemodel of se
ond order sto
hasti
 dominan
e, in parti
ular the relationshipbetween CVaR and SSD will be employed. This new test will use smallerlinear program than problem (4.15). We start with ne
essary 
ondition usingthe following theorem. To simplify the notation, set � = �0; 1T ; 2T ; : : : ; T�1T 	 :



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 58Theorem 4.15:Let �k = k=T; k = 0; 1; : : : ; T � 1. Letd� = max�n T�1Xk=0 NXn=1 �n [CVaR�k(�r0� )� CVaR�k(�rn)℄ (4.16)s:t: NXn=1 �n [CVaR�k(�r0� )� CVaR�k(�rn)℄ � 0; k = 0; 1; : : : ; T � 1� 2 �If d� > 0 then � is SSD ineÆ
ient. Optimal solution �� of (4.16) is an SSDeÆ
ient portfolio su
h that r0�� �SSD r0� .Proof:If d� > 0 then there is feasible solution � of problem (4.16) satisfyingNXn=1 �n [CVaR�k(�r0� )� CVaR�k(�rn)℄ � 0; 8�k 2 �where at least one stri
t inequality holds. For this � we haveNXn=1 �nCVaR�k(�rn) � CVaR�k(�r0� ); 8�k 2 �with at least one stri
t inequality. From Lemma 4.5 we obtainCVaR�k(�r0�) � NXn=1 �nCVaR�k(�rn) 8�k 2 �:Hen
e CVaR�k(�r0�) � CVaR�k(�r0� ) 8�k 2 �with at least one stri
t inequality. Applying Theorem 4.7 we 
an 
on
ludethat r0� �SSD r0� . Sin
e the last inequality is stri
t for at least one �k 2 �,r0� �SSD r0� and a

ording to De�nition 4.11, � is SSD ineÆ
ient. TheSSD eÆ
ien
y of optimal solution �� follows dire
tly from the formulationof obje
tive fun
tion in (4.16), whi
h 
ompletes the proof. �



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 59Problem (4.16) is a linear program with N variables and N + T + 1
onstraints. Sin
e, in SSD portfolio eÆ
ien
y testing, N is usually mu
h moresmaller than T , in 
omparison with test suggested in Post [43℄ (Proposition4.13), problem (4.16) is smaller. Moreover, 
ontrary to (4.14), if (4.16) showsSSD ineÆ
ien
y it also identi�es the dominating SSD eÆ
ient portfolio. Thepower of ne
essary 
ondition in Theorem 4.15 depends on 
orrelation betweenrandom variables rn, n = 1; 2; :::; N . In �nan
e data, the yields of assets areoften strongly 
orrelated. In this 
ase, a

ording to Lemma 4.1. the 
onvexitygap of CVaR, i.e. the di�eren
e between RHS and LHS in (4.5) is not verylarge. Thus the 
ondition in Theorem 4.15 
an identify the 
orrespondingSSD eÆ
ient dominating portfolio very fast. Moreover, a

ording to Lemma4.1, if X is portfolio-monotone then Theorem 4.15 presents ne
essary andsuÆ
ient 
ondition for SSD eÆ
ien
y.In general, Theorem 4.15 presents only ne
essary 
ondition for SSD ef-�
ien
y of � and portfolio � 
an be SSD ineÆ
ient even if (4.16) has nofeasible solution or d� = 0 . If d� = 0 then two possibilities may o

ur:(1) Problem (4.16) has a unique solution �� = � . If this is the 
ase then �is SSD eÆ
ient.(2) Problem (4.16) has an optimal solution �� 6= � . In this 
ase, � is SSDineÆ
ient and r0�� �SSD r0� . Moreover, �� is an SSD eÆ
ient portfolio.The situation when d� = 0, �� 6= � and � is SSD eÆ
ient would implyX�� = X�whi
h 
ontradi
ts the assumption of linearly independent 
olumns of X.If problem (4.16) has no feasible solution then we 
an employ the followingne
essary and suÆ
ient 
ondition for SSD eÆ
ien
y. This result was obtainedthanks to a personal 
onsultation with Petr Chovane
.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 60Theorem 4.16:Let �k = k=T; k = 0; 1; : : : ; T � 1. LetD�(� ) = maxDk;�n;bk T�1Xk=0 Dk (4.17)s:t: CVaR�k(�r0� )� bk � 11� �k E max(�r0�� bk; 0) � Dk; k = 0; 1; : : : ; T � 1Dk � 0; k = 0; 1; : : : ; T � 1� 2 �If D�(� ) > 0 then � is SSD ineÆ
ient and r0�� �SSD r0� . Otherwise,D�(� ) = 0 and � is SSD eÆ
ient.Proof:Let ��,b�k, k = 0; 1; : : : ; T � 1 be an optimal solution of (4.17). If D�(� ) > 0then b�k + 11� �k E max(�r0�� � b�k; 0) � CVaR�k(�r0� ) 8�k 2 � (4.18)where at least one inequality holds stri
t. Sin
e from the de�nition of CVaRwe haveCVaR�k(�r0��) = minbk �bk + 11� �k E max(�r0�� � bk; 0)�we 
on
lude from (4.18) thatCVaR�k(�r0��) � CVaR�k(�r0� )with at least one stri
t inequality. By analogy to the proof of Theorem 4.15,it is easily seen that � is SSD ineÆ
ient and r0�� �SSD r0� .If D�(� ) = 0 then problem (4.17) has unique optimal solution: �� = � ,be
ause the presen
e of another optimal solution 
ontradi
ts the assumptionof linearly independent 
olumns of X. Thus there is no stri
tly dominatingportfolio and hen
e � is SSD eÆ
ient, similarly as for (4.16). Sin
e � isalways a feasible solution of (4.17), D� 
an not be negative and the proof is
omplete. �
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onstraints and N + 2T variables. In-spired by (4.7) and following P
ug [42℄, Ro
kafellar & Uryasev [53℄, it 
anbe rewritten as a linear programming problem with 2T (T + 1) + N + 1
onstraints and T (T + 2) +N variables:D�(� ) = maxDk;�n;bk;wtk TXk=1 Dk (4.19)s:t: CVaR k�1T (�r0� )� bk � 1(1� k�1T )T TXt=1 wtk � Dk; k = 1; : : : ; Twtk � �xt�� bk; t; k = 1; : : : ; Twtk � 0; t; k = 1; : : : ; TDk � 0; k = 1; : : : ; T� 2 �Using (4.19) instead of (4.17) in Theorem 4.16 we obtain a linear pro-gramming 
riterion for SSD eÆ
ien
y.This suÆ
ient and ne
essary 
ondition requires solution of a smaller linearprogram than it is in the Kuosmanen test (see Theorem 4.13). Moreover, itidenti�es SSD eÆ
ient dominating portfolio. In 
omparison with ne
essary
onditions in Proposition 4.13 and Theorem 4.15, the number of variables isapproximately equal to square of T .4.5 Algorithm for testing SSD portfolio eÆ-
ien
yEmploying results derived in Se
tion 4.4 we have an algorithm for testingSSD portfolio eÆ
ien
y of portfolio � in the set of assets. In the �rst step,we 
he
k some spe
ial 
onvex 
ombinations. In the next steps, we use ne
-essary 
onditions derived in Theorem 4.15 and Proposition 4.13. Finally, weuse test in Theorem 4.16. The steps are sorted from the easiest to the mostdemanding in 
omputational perspe
tive. If the SSD eÆ
ien
y or SSD inef-�
ien
y is dete
ted in Step 1, Step 2 or Step 4 then we obtain a dominatingSSD eÆ
ient portfolio as a by-produ
t.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 62Step 1 : If rn �SSD r0� for some n 2 f1; 2; : : : ; Ng or 1N PNn=1 rn �SSD r0�then go to Step 5.Step 2 : Solve (4.16). If d� > 0 then go to Step 5. If d� = 0 and (4.16)has an unique optimal solution then go to Step 6. If d� = 0 and (4.16) hasmultiple optimal solution then go to Step 5.Step 3 : Solve (4.14). If �� > 0 then go to Step 5.Step 4 : Solve (4.17) or (4.19). If D� > 0 then go to Step 5 else go toStep 6.Step 5 : Stop the algorithm, portfolio � is SSD ineÆ
ient.Step 6 : Stop the algorithm, � is SSD eÆ
ient.4.6 SSD portfolio ineÆ
ien
y measureInspired by Post [43℄ and Kopa & Post [32℄, D�(� ) from (4.17) or (4.19) 
anbe 
onsidered as a measure of ineÆ
ien
y of portfolio � , be
ause it expressesthe distan
e between a given tested portfolio and its dominating SSD eÆ
ientportfolio. To be able to 
ompare SSD ineÆ
ien
y of two portfolios we needto 
onsider su
h a measure, whi
h is \
onsistent" with SSD relation. InOgry
zak & Rusz
zy�nski [40℄, a 
onsisten
y of risk measure with SSD relationin mean-risk models was analyzed. By analogy, we de�ne the 
onsisten
y ofa measure of SSD portfolio ineÆ
ien
y with SSD relation.De�nition 4.17:Let � be a measure of SSD portfolio ineÆ
ien
y. We say that � is 
onsistentwith SSD if and only ifr0� 1 �SSD r0� 2 ) �(� 2) � �(� 1)for any � 1; � 2 2 �.The property of 
onsisten
y guarantees that if a given portfolio is worsethan the other one for every risk averse or risk neutral investor then it has
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ien
y. Let ��(� ) 2 � be a set of optimal solutions�� of (4.17) or (4.19).Theorem 4.18:(i) The measure of SSD portfolio ineÆ
ien
y D� given by (4.17) or (4.19)is 
onsistent with SSD.(ii) If r0� 1 �SSD r0� 2 and both � 1, � 2 are SSD ineÆ
ient thenD�(� 2) = D�(� 1) + TXk=1 hCVaR k�1T (�r0� 2)� CVaR k�1T (�r0� 1)i :(iii) If r0� 1 �SSD r0� 2 thenD�(� 2) � D�(� 1) + TXk=1 hCVaR k�1T (�r0� 2)� CVaR k�1T (�r0� 1)i :Proof:Applying Theorem 4.7, if r0� 1 �SSD r0� 2 thenTXk=1 hCVaR k�1T (�r0� 2)� CVaR k�1T (�r0� 1)i � 0:Hen
e it suÆ
es to prove (ii) and (iii).Let r0� 1 be SSD ineÆ
ient. It is easily seen that (4.17) 
an be rewrittenin the following way:D�(� ) = max�n T�1Xk=0 CVaR kT (�r0� )� CVaR kT (�r0�) (4.20)s:t: CVaR kT (�r0� )� CVaR kT (�r0�) � 0; k = 0; 1; : : : ; T � 1� 2 �:Let ��(� 1) 2 ��(� 1), ��(� 2) 2 ��(� 2). Using Theorem 4.7 and r0� 1 �SSDr0� 2, CVaR kT (�r0� 2)� CVaR kT (�r0� 1) � 0 k = 0; 1; : : : ; T � 1:
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e the sum of these di�eren
es does not depend on the 
hoi
e of ��(� 1),the dominating portfolio ��(� 1) is also an optimal solution of (4.17) whenderiving D�(� 2), i.e. ��(� 1) 2 ��(� 2) . Hen
eD�(� 2) = T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0��(� 2))= T�1Xk=0 hCVaR kT (�r0� 2)� CVaR kT (�r0� 1)i+ T�1Xk=0 hCVaR kT (�r0� 1)� CVaR kT (�r0��(� 1))i= D�(� 1) + T�1Xk=0 hCVaR kT (�r0� 2)� CVaR kT (�r0� 1)iwhi
h 
ompletes the proof of (ii).Let r0� 1 be SSD eÆ
ient. From Theorem 4.16, we have D�(� 1) = 0:A

ording to (4.20),D�(� 2) = max�n T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0�)s:t: CVaR kT (�r0� 2)� CVaR kT (�r0�) � 0; k = 0; 1; : : : ; T � 1� 2 �:Sin
e r0� 1 �SSD r0� 2, portfolio � 1 is a feasible solution of (4.20). Hen
eD�(� 2) � T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0� 1)and 
ombining it with (ii), the proof is 
omplete. �Sin
e SSD relation is not 
omplete, i.e. there exist in
omparable pairs ofportfolios, the stri
t inequality of values of any portfolio ineÆ
ien
y measure
an not imply SSD relation. Also for the measure D� some pair of portfolios� 1; � 2 
an be found su
h that D�(� 2) � D�(� 1) and r0� 1 �SSD r0� 2. In thefollowing theorem, a 
onvexity property of portfolio ineÆ
ien
y measure D�is analyzed.



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 65Theorem 4.19:Let � 1, � 2, � 3 2 �.(i) If r0� 1 �SSD r0� 2 thenD�(�� 1 + (1� �)� 2) � �D�(� 1) + (1� �)D�(� 2)for any � 2 h0; 1i.(ii) If r0� 1 �SSD r0� 2 and r0� 1 �SSD r0� 3 then r0� 1 �SSD r0(�� 2+(1��)� 3)and D�(�� 2 + (1� �)� 3) � �D�(� 2) + (1� �)D�(� 3)for any � 2 h0; 1i.Proof:(i) Applying Lemma 4.1 for equiprobable s
enario approa
h, we obtainr0� 1 �SSD r0� 2 ) r0� 1 �SSD r0 (�� 1 + (1� �)� 2) �SSD r0� 2for any � 2 h0; 1i. By analogy to the proof of previous theorem, if��(� 1) 2 ��(� 1) then ��(� 1) 2 ��(� 2) and ��(� 1) 2 ��(�� 1 + (1 � �)� 2).Hen
eD�(�� 1 + (1� �)� 2) = T�1Xk=0 CVaR kT (�r0[�� 1 + (1� �)� 2℄)� CVaR kT (�r0��(� 1))D�(� 1) = T�1Xk=0 CVaR kT (�r0� 1)� CVaR kT (�r0��(� 1))D�(� 2) = T�1Xk=0 CVaR kT (�r0� 2)� CVaR kT (�r0��(� 1))



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 66Combining it with 
onvexity of CVaR (see Lemma 4.5), we obtainD�(�� 1 + (1� �)� 2) = T�1Xk=0 CVaR kT (�r0[�� 1 + (1� �)� 2℄)� CVaR kT (�r0��(� 1))� � T�1Xk=0 CVaR kT (�r0� 1) + (1� �) T�1Xk=0 CVaR kT (�r0� 2)�� T�1Xk=0 CVaR kT (�r0��(� 1))� (1� �)CVaR kT (�r0��(� 1))� �D�(� 1) + (1� �)D�(� 2):(ii) Applying Lemma 4.1 for s
enario approa
h, we obtain:r0� �SSD r0�, TXt=1 (xt� � xt�) � 0 8t = 1; 2; :::; T: (4.21)Hen
e TXt=1 (xt� 1 � xt� 2) � 0 8t = 1; 2; :::; TTXt=1 (xt� 1 � xt� 3) � 0 8t = 1; 2; :::; Tand thereforeTXt=1 (xt� 1 � �xt� 2 � (1� �)xt� 3) � 0 8t = 1; 2; :::; Tfor any � 2 h0; 1i. Thus, a

ording to Lemma 4.1,r0� 1 �SSD r0(�� 2 + (1� �)� 3) for any � 2 h0; 1i:Similarly to the proof of previous theorem, if ��(� 1) 2 ��(� 1) then ��(� 1) 2��(� 2), ��(� 1) 2 ��(� 3) and ��(� 1) 2 ��(�� 2+(1��)� 3) for any � 2 h0; 1iand the rest of the proof follows by analogy to (i). �



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 67Let I(� ) be a set of all portfolios whose yields are SSD dominated byyield of � , i.e. I(� ) = f� 2 �jr0� �SSD r0�g:Theorem 4.19 shows that I(� ) is 
onvex and D� is 
onvex on I(� ) for any� 2 �. Both these properties are 
onsequen
es of 
onvexity of CVaR. Thefollowing example illustrates these results and we stress the fa
t that the setof SSD eÆ
ient portfolios is not 
onvex.Example 4.20:Consider three assets with three s
enarios:X = 0� 0 �1 01 0 02 7 5 1A :It is easy to 
he
k that �1 = (1; 0; 0)0, �2 = (0; 1; 0)0 and �3 = (0; 0; 1)0are SSD eÆ
ient. Let � 1 = �3, � 2 = (12 ; 12 ; 0)0 and let � 3 = (13 ; 23 ; 0)0 .Then X� 2 = (�12 ; 12 ; 92) and a

ording to (4.21), r0� 1 �SSD r0� 2. Hen
e theset of SSD eÆ
ient portfolios is not 
onvex. Similarly, r0� 1 �SSD r0� 3 andr0� 1 �SSD r0� 1. Applying Theorem 4.19, a set of 
onvex 
ombinations of � 1,� 2, � 3 is a subset of I(� 1). We will show that I(� 1) 
onsists only of 
onvex
ombinations of � 1, � 2 and � 3, i.e.I(� 1) = f� 2 �j� = �1� 1 + �2� 2 + �3� 3; �i � 0; i = 1; 2; 3; 3Xi=1 �i = 1gSubstituting into (4.21) we 
an see that only portfolios � 2 � satisfying thefollowing system of inequalities 
an be in
luded in I(� 1):��2 � 0�1 � �2 � 03�1 + 6�2 + 5(1� �1 � �2) � 5The gra�
al solution of this system is illustrated on the following �gure andwe 
an see that the set of portfolios whi
h yields are SSD dominated by yieldof portfolio � 1 is equal to the set of all 
onvex 
ombinations of portfolios � 1,� 2, � 3. Points A, B and C 
orrespond to portfolios � 2, � 3, � 1, respe
tively.
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Figure 4.1: The set I(� 1) of portfolios whose yields are SSD dominated byyield of portfolio � 1 = (0; 0; 1):As was shown in Theorem 4.19 (ii), SSD portfolio ineÆ
ien
y measureD� is 
onvex on I(� 1). The following �gure shows the graph of D� on I(� 1).Sin
e � 1 is SSD eÆ
ient, D�(� 1) = 0 and D�(� ) > 0 for all � 2 I(� 1)nf� 1g.It is easy to 
he
k that X is portfolio-monotone with identi
al permutation.Hen
e, a

ording to Lemma 4.10, (4.19) 
an be 
onsidered as a parametri
linear problem where the parameters CVaR k�1T (�r0� ); k = 1; 2; :::; T are onlyin the right hand side of the 
onstraints. The duality theory in parametri
linear programming implies linearity of D�(� ) on I(� 1), be
ause I(� 1) isa subset of the area of stability for ��(� 1), i.e. ��(� 1) 2 ��(� ) for all� 2 I(� 1). See Grygarov�a [17℄ for more details about parametri
 linearprogramming.
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Figure 4.2: The graph of D� on I(� 1).4.7 Numeri
al appli
ation: SSD eÆ
ien
y ofmean-VaR optimal portfoliosA

ording to Lemma 4.2 and (4.2) we 
an see that a portfolio with minimalVaR is FSD eÆ
ient. When sear
hing for portfolio with minimal VaR under
ondition of a minimal level of expe
ted yield this property may disappear.We de�ne mean-VaR optimal portfolio �VaR(�) 2 � as a portfolio withminimal VaR and a pres
ribed minimal level of expe
ted yield �, i.e. �VaR(�)is an optimal solution of the problem:min� VaR�(�r0�)s:t: 1T TXt=1 xt� � �� 2 �:Inspired by Gaivoronski & P
ug [14℄ we rewrite this problem as the



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 70mixed-integer linear program:minÆ;�;�t Æ (4.22)s:t: � xt� � Æ +M� t; t = 1; : : : ; TTXt=1 � t = b(1� �)T 
1T TXt=1 xt� � �� 2 �� t 2 f0; 1g; t = 1; : : : ; T;where M is a suÆ
iently large 
onstant:M � maxi;j yij �mini;j yijand bz
 denotes the largest integer number whi
h does not ex
eed z. Param-eter � represents a pres
ribed minimal level of expe
ted yield of the portfolio.We shall examine SSD eÆ
ien
y of these mean-VaR optimal portfolios usingTheorem 4.16 and (4.19).The data were obtained from http://�nan
e.yahoo.
om and 
onsisted of530 observations (07.1.1995{28.1.2005) of weakly yields of �ve U.S. sto
ks:IBM(International Business Ma
hines), UTX (United Te
hnologies), MMM (3MCompany), JNJ (Johnson and Johnson) and CAT (Caterpillar In
).We move a window through the data with bandwith 210 and step 20.Thus we have 17 partial data sets. The number of observations in a partialdata set 
orresponds to 4 years history. To tra
k at least partly the behaviorof the optimal mean-VaR portfolios in dependen
e on the parameter � {the minimal required expe
ted yield of the portfolio { we 
hoose 5 levels ofparameter � for ea
h partial data set. Thus we have to solve (4.22) 85 times.Let �lj denote the expe
ted yield of j-th asset for l-th data set. Set�l = minj �lj; �l = maxj �lj; l = 1; 2; : : : ; 17:We set the levels of parameter � using the following formulas:



CHAPTER 4. SSD PORTFOLIO EFFICIENCY 71�l1 = �l l = 1; 2; : : : ; 17;�l2 = �l + 0:5(� l � � l) l = 1; 2; : : : ; 17;�l3 = �l + 0:6(� l � � l) l = 1; 2; : : : ; 17;�l4 = �l + 0:7(� l � � l) l = 1; 2; : : : ; 17;�l5 = �l + 0:8(� l � � l) l = 1; 2; : : : ; 17:Problem (4.22) has 210 integer variables (210 s
enarios), 6 other vari-ables and 218 
onstraints. The 
omputations were done in GAMS solverCoinCb
 and CPLEX. Using 2 GHz 
omputer with 512 MB RAM, solvingof problem (4.22) took at most 30 se
onds for ea
h data set and we ob-tained 65 di�erent mean-VaR optimal portfolios. Then we tested the SSDeÆ
ien
y of these portfolios applying (4.19). Sin
e we 
onsider 210 s
enariosthese linear programs have more than 40000 variables and 
onstraints. The
omputation took approximately 10 minutes. Applying 
riterion for testingSSD eÆ
ien
y suggested in Kuosmanen [34℄, we solved linear program withmore than 40000 
onstraints and 130000 variables (see Proposition 4.14).Using the same 
omputer as in the 
ase of our test, the 
omputation tookapproximately 40 minutes. We 
an see the results in Table 4.1 where \E"denotes SSD eÆ
ient portfolios and \I" SSD ineÆ
ient ones. From this tablewe 
an see that only 25 of 85 (29 %) mean-VaR optimal portfolios are SSDeÆ
ient. Espe
ially for small required minimal expe
ted yield of portfolio( �l1; �l2; �l3; �l4 ) mean-VaR optimal portfolios are SSD ineÆ
ient in 78 %
ases. If the following portfolio sele
tion problem with u 2 U2max� Eu(r0�) (4.23)s:t: � 2 �has unique solution then SSD ineÆ
ient portfolio 
annot be an optimal solu-tion of this problem. Thus mean-VaR optimal portfolios are not very suitablefor risk averse investors.If we 
ompare time period before and after September 11, 2001, we have43 % SSD eÆ
ient portfolios before the date and only 18 % after the date.This is 
aused by greater 
u
tuation of yields and losses after this date be-
ause VaR method does not take into a

ount the magnitude of large losses.Finally, we 
an see that mean-VaR optimal portfolios with high level ofrequired minimal expe
ted yield ( �l5 ) are more often SSD eÆ
ient thanthe others. This 
an be explained by the fa
t that investor a

epts higherrisk in this 
ase, i.e. the requirement of minimal risk measured by VaR has
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ted yieldTime period �l1 �l2 �l3 �l4 �l507. 01. 1995 { 31. 12. 1998 E E I I I27. 05. 1995 { 21. 05. 1999 I I I I E14. 10. 1995 { 08. 10. 1999 E I I I E02. 03. 1996 { 25. 02. 2000 I E E E E20. 07. 1996 { 14. 07. 2000 E I E E E07. 12. 1996 { 01. 12. 2000 I I I I E19. 04. 1997 { 20. 04. 2001 I E I E E06. 09. 1997 { 07. 09. 2001 I I I I I17. 01. 1998 { 18. 01. 2002 I E E E I06. 06. 1998 { 07. 06. 2002 I I I I E24. 10. 1998 { 25. 10. 2002 I I I I I13. 03. 1999 { 07. 03. 2003 I I I I E31. 07. 1999 { 25. 07. 2003 I I I I E18. 12. 1999 { 12. 12. 2003 I I I E E06. 05. 2000 { 23. 04. 2004 I I I I I23. 09. 2000 { 10. 09 .2004 I I I I I10. 02. 2001 { 28. 01. 2005 I I I I ITotal numberof SSD eÆ
ient portfolios 3 4 3 5 10Table 4.1: SSD eÆ
ien
y of mean-VaR optimal portfoliosless important impa
t than in the 
ase of smaller required minimal expe
tedyield. In Table 4.2, we show the values of SSD portfolio ineÆ
ien
y measureD� for all tested portfolios.
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Minimal expe
ted yieldTime period �l1 �l2 �l3 �l4 �l507. 01. 1995 { 31. 12. 1998 0 0 5.5927 27.7726 15.830427. 05. 1995 { 21. 05. 1999 6.8648 6.8648 17.6124 3.4762 014. 10. 1995 { 08. 10. 1999 0 7.2607 3.5876 6.2085 002. 03. 1996 { 25. 02. 2000 7.0251 0 0 0 020. 07. 1996 { 14. 07. 2000 0 10.7063 0 0 007. 12. 1996 { 01. 12. 2000 4.068 25.493 28.4394 1.9612 019. 04. 1997 { 20. 04. 2001 4.0144 0 5.4213 0 006. 09. 1997 { 07. 09. 2001 5.1081 5.1081 5.1081 15.0719 24.618917. 01. 1998 { 18. 01. 2002 14.6595 0 0 0 22.99506. 06. 1998 { 07. 06. 2002 4.9033 4.9033 4.9033 42.2749 024. 10. 1998 { 25. 10. 2002 58.7302 59.2872 35.3060 37.9927 22.787513. 03. 1999 { 07. 03. 2003 13.4106 13.4106 13.4106 13.4106 031. 07. 1999 { 25. 07. 2003 10.9355 10.9355 10.9355 10.9355 018. 12. 1999 { 12. 12. 2003 12.0750 12.0750 11.2118 0 006. 05. 2000 { 23. 04. 2004 40.7849 40.7849 48.8619 49.8263 16.272423. 09. 2000 { 10. 09 .2004 41.9353 41.9353 45.302 45.302 43.541110. 02. 2001 { 28. 01. 2005 25.8776 61.6235 57.9779 32.1731 6.1322Table 4.2: SSD portfolio ineÆ
ien
y measure D�.



Chapter 5A portfolio eÆ
ien
y test basedon the �rst-order sto
hasti
dominan
e optimality
5.1 PreliminariesIn Chapter 4, we analyzed portfolio eÆ
ien
y with respe
t to the se
ond-order sto
hasti
 dominan
e. This 
on
ept is based on the assumption thatde
ision maker is risk averse. Sin
e market portfolios turned out to be SSDineÆ
ient (see e.g. Post [43℄) the presen
e of non-risk averse de
ision makershas to be involved. A 
ompli
ation in testing FSD portfolio eÆ
ien
y isthat we must distinguish between eÆ
ien
y 
riteria based on \admissibility"and \optimality". There is a subtle di�eren
e between these two 
on
epts.A

ording to Kopa & Post [32℄, an alternative is FSD admissible if and onlyif no other alternative is preferred by all nonsatiable de
ision-makers. AFSD admissibility test was presented in Kuosmanen [34℄. Following an FSDoptimality idea in Bawa et al. [3℄, an alternative is FSD optimal if andonly if it is an optimal 
hoi
e for at least some in
reasing utility fun
tion.For pairwise 
omparisons, the two 
on
epts are identi
al. However, moregenerally, when multiple alternatives are available, FSD admissibility is ane
essary but not suÆ
ient 
ondition for FSD optimality.Se
tion 5.2 presents basi
 assumptions and de�nitions. In se
tion 5.3,we reformulate the FSD optimality 
riterion in terms of pie
ewise-
onstantrepresentative utility fun
tions. Se
tion 5.4 develops a linear programming74
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hing over all su
h fun
tions in order to test FSD portfolio opti-mality and suggests several approa
hes to identifying the input to this test.To obtain a ne
essary and suÆ
ient 
ondition for FSD optimality we employmixed-integer linear problems. Se
tion 5.5 presents a mixed-integer linearprogramming algorithm for testing FSD optimality. Se
tion 5.6 uses a nu-meri
al example to illustrate our test and 
ompare it with two existing testspresented in Bawa et al. [3℄ and Kuosmanen [34℄.5.2 FSD optimality versus FSD admissibilityWe hold the notation from Chapter 4. The evaluated portfolio, denoted by� 2 �, is assumed to be risky. Testing optimality for a riskless portfolio istrivial, be
ause we then only need to 
he
k if there exists some portfolio thata
hieves a higher minimum return than the riskless rate. If no su
h portfolioexists, the riskless alternative is the optimal solution for extreme risk avertersand hen
e FSD optimal. Letm = mint;n xtn; m = maxt;n xtn and k(� ) = minft : (X� )[t℄ > (X� )[1℄g:Sin
e a positive linear transformation of an utility fun
tion does not
hange the set of optimal solutions of (4.23), without loss of generality, wemay fo
us on the following set of standardized utility fun
tions:U1(� ) = fu 2 U1 : u(m) = 0; u((X� )[t℄)� u((X� )[k(� )℄) = 1g: (5.1)Note that the standardization depends on the evaluated portfolio andhen
e will di�er for evaluating di�erent portfolios. Furthermore, the stan-dardization requires utility to be stri
tly in
reasing at least somewhere in theinterior of the range for the evaluated portfolio. This requirement is natural,be
ause, testing optimality relative to all u 2 U1 is trivial. Spe
i�
ally, everyportfolio � 2 � is an optimal solution for u0 = I(x � (X� )[1℄). Thus U1(� )is the largest subset of U1 for whi
h testing optimality is non-trivial.De�nition 5.1:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of(4.23) for at least some utility fun
tion u 2 U1(� ), i.e., there exists u 2 U1(� )
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h that TXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.A

ording to Kuosmanen [34℄, we re
all FSD admissibility de�nitionbased on existen
e of an alternative whi
h is better than a given portfo-lio for all de
ision makers. FSD admissibility is a ne
essary 
ondition forFSD optimality.De�nition 5.2:Portfolio � 2 � is FSD admissible if and only if there exists no � 2 � su
hthat (X�)[t℄ � (X� )[t℄ for all t = 1; 2; :::; T with strong inequality for at leastsome t.The following ne
essary and suÆ
ient 
ondition for FSD admissibilityusing mixed-integer linear programming was derived in Kuosmanen [34℄.Theorem 5.3:Let � 2 � and � be the set of permutation matri
es, i.e.� = ([Pij℄T�T : Pij 2 f0; 1g; TXi=1 Pij = TXj=1 Pij = 1; i; j = 1; 2; :::; T)Consider �1(� ) = max�;P 10(X��X� ) (5.2)s:t: NXi=1 xti�i � TXj=1 Ptj NXi=1 xji �i t = 1; 2; :::; TP 2 �� 2 �:Portfolio � is FSD admissible if and only if �1(� ) = 0.
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tionsThis se
tion reformulates the optimality 
riterion in terms of a set of ele-mentary representative utility fun
tions. For pairwise FSD 
omparisons, theset of three-pie
e linear utility fun
tions is representative for all admissibleutility fun
tions, see Russel & Seo [50℄ for more details. In our portfolio 
on-text, with diversi�
ation allowed, a more general 
lass of pie
ewise 
onstantutility fun
tions is relevant:R1(� ) = fu 2 U1ju(y) = TXt = 1 atI(y � (X� )[t℄); a 2 A(� )g (5.3)A(� ) = fa 2 RT+ : TXt = k(� ) at = 1; (X� )[t℄ = (X� )[s℄ ^ (5.4)t < s) as = 0 t; s = 1; 2; : : : ; Tgwhere I(y � y0) = 1 for y � y0= 0 otherwise:Theorem 5.4:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of(4.23) for at least some utility fun
tion u 2 R1(� ), i.e., there exists u 2 R1(� )su
h that TXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.Proof:The suÆ
ient 
ondition follows dire
tly from R1(� ) � U1(� ). To establishthe ne
essary 
ondition, suppose that � is optimal for u(y) 2 U1(� ) and letuR(y) = TXt = 1 atI(y � (X� )[t℄);



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 78with a1 = u(X� )[1℄, at = 0, t = 2; : : : ; k(� )� 1 andat = u(X� )[t℄ � u(X� )[t�1℄; t = k(� ); : : : ; T:By 
onstru
tion, uR(y) 2 R1(� ). Furthermore, uR(y) � u(y), 8y 2 hm;miand uR(y) = u(y), for y = (X� )[1℄; (X� )[2℄; : : : ; (X� )[T ℄. Therefore,TXt=1 uR(xt� )� TXt=1 uR(xt�) � TXt=1 u(xt� )� TXt=1 u(xt�) 8� 2 �:Sin
e � is optimal for u(y) 2 U1(� ), the RHS is nonnegative for all � 2 � ,and hen
e � is also optimal for uR(y) 2 R1(� ), whi
h 
ompletes the proof. �The proof makes use of the fa
t that for a given portfolio � any utilityfun
tion 
an be transformed into a pie
ewise 
onstant fun
tion with in
re-ments only at xt� , t = 1; : : : ; T . This transformation doesn't a�e
t theexpe
ted utility for the evaluated portfolio but it may lower the expe
tedutility of other portfolios. Sin
e the obje
tive is to analyze if the evaluatedportfolio is optimal for some utility fun
tion, only the representative utilityfun
tions need to be 
he
ked; all other utility fun
tions are known to put theevaluated portfolio in a worse perspe
tive than some representative utilityfun
tion.To illustrate the representation theorem, 
onsider the 
ubi
 utility fun
-tion u(y) = 10+y�0:1y2+0:05y3 and a portfolio with returns (X� )[1℄ = �5,(X� )[2℄ = 1 and (X� )[3℄ = 6. Figure 1 shows a version of this fun
tion thatis transformed su
h that it belongs to U1(� ): u0(y) = 2:6+0:04y�0:004y2+0:002y3 (the solid line). Sin
e the latter fun
tion is obtained after a posi-tive linear transformation, it yields the same results as the former fun
tion.The dashed line gives the pie
ewise-
onstant fun
tion uR(y) = 2:087I(y ��5) + 0:546I(y � 1) + 0:454I(y � 6). This fun
tion is 
onstru
ted su
h thatit yields exa
tly the same utility levels for the evaluated portfolio as u0(y)does. Furthermore, the utility levels for all other portfolios are smaller thanor equal to those for u0(y). Thus, if the evaluated portfolio is optimal foru0(y), then it is also optimal for uR(y). A similar analysis applies for everyadmissible utility fun
tion u(y) 2 U1(� ).
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Figure 5.1: Representative utility fun
tion. The �gure shows the originalutility fun
tion u0 and the asso
iated representative utility fun
tion u1.Apart from repla
ing U1(� ) with R1(� ), we may also repla
e � with aredu
ed portfolio set that 
onsiders only portfolios with a higher minimumthan the evaluated portfolio:�� = �� 2 � : (X� )[1℄ � (X�)[1℄	 :Using the representative utility fun
tions and the redu
ed portfolio set,we 
an 
onstru
t the following FSD ineÆ
ien
y measure for any �0 � ��:�(� ;�0) = 1T minu2R1(� )max�2�0 TXt=1 �u(xt�)� u(xt� )� : (5.5)Repla
ing � with �� redu
es the parameter spa
e and it 
auses no harm,be
ause max�2� TXt=1 �u(xt�)� u(xt� )� = max�2�� TXt=1 �u(xt�)� u(xt� )�
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iently large a1 and we minimize the maximumof expe
ted utility di�eren
es. If the evaluated portfolio has the maximalminimum then we 
an dire
tly 
on
lude that �(� ;��) = 0, i.e., the evaluatedportfolio is FSD optimal (see the following Corollary).Corollary 5.5:(i) Portfolio � is FSD optimal if and only if �(� ;��) = 0. Otherwise,�(� ;��) > 0.(ii) If �0 � �� then �(� ;�0) � �(� ;��).The next se
tion will show that �(� ;��) 
an be 
omputed by solving alinear programming problem.5.4 Mathemati
al programming formulationThere exist well-known, simple algorithms for establishing FSD-dominan
erelationships between a pair of 
hoi
e alternatives; see, e.g., Levy [37℄. Bawaet al. [3℄ derive a linear programming algorithm for FSD optimality relativeto a dis
rete set of alternatives. Kuosmanen's [34℄ test for FSD admissibilityin the portfolio 
ontext is 
omputationally more demanding, be
ause weneed to a

ount for 
hanges to the ranking of the portfolio returns as theportfolio weights 
hange, a task that requires integer programming. A similar
ompli
ation arises for testing FSD optimality in a portfolio 
ontext. Thisse
tion develops a linear programming test for testing portfolio optimality.However, the input to the linear programming test may require an initialphase of mixed integer linear programming (MILP) or subsampling.Before presenting the algorithm, we stress that in some 
ases, simplene
essary or suÆ
ient 
onditions will suÆ
e to 
lassify the evaluated portfolioas eÆ
ient or ineÆ
ient. For example, a pairwise dominan
e relationship oran ineÆ
ien
y 
lassi�
ation by the Bawa et al. or the Kuosmanen tests suÆ
eto 
on
lude that the portfolio is FSD nonoptimal. Similarly, if the evaluatedportfolio is 
lassi�ed as eÆ
ient a

ording to a mean-varian
e test or a SSDtest, we 
an 
on
lude that the portfolio is FSD optimal.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 81Let hs(�; � ) = TXt=1 I(xt� � (X� )[s℄); s = 1; : : : ; T (5.6)h(�; � ) = (h1(�; � ); : : : ; hT (�; � )) (5.7)H(� ) = fh 2 f0; : : : ; TgT : h = h(�; � ); � 2 ��g: (5.8)Sin
e hs(�; � ) 
an take at most T + 1 values (0; 1; : : : ; T ) for any s =1; : : : ; T , the set H(� ) has a �nite number of elements. For small-s
aleappli
ations, identifying all elements is a fairly trivial task. However, forlarge-s
ale appli
ations, the task is more 
hallenging and 
an be
ome 
om-putationally demanding. Some 
omputational strategies to identifying theelements of H(� ) are dis
ussed below. Interestingly, given H(� ), the teststatisti
 �(� ;��) 
an be 
omputed using simple linear programming. To seethis, 
onsider the following 
hain of equalities:�(� ;��) = 1T minu2R1(� )max�2�� TXt=1 �u(xt�)� u(xt� )�= 1T mina2A(� )max�2�� TXt=1 TXs=1 as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� )max�2�� TXt=1 TXs=k(� ) as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� )max�2�� TXs=k(� ) as TXt=1 I(xt� � (X� )[s℄)� TXt=1 I(xt� � (X� )[s℄)!= 1T mina2A(� )max�2�� TXs=k(� ) as(hs(�; � )� hs(� ; � ))= 1T mina2A(� );Æ8<:Æ : TXs=k(� ) as(hs � hs(� ; � )) � Æ 8h 2 H(� )9=; :The RHS of the �nal equality involves the minimization of a linear obje
-tive under a �nite number of linear 
onstraints. Thus, testing FSD optimalityrequires solving a simple linear programming problem and Corollary 5.5(i)implies the following suÆ
ient and ne
essary 
ondition for FSD optimality.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 82Theorem 5.6:Let H0 � H(� ). Let Æ�(H0) = mina2A(� ) Æ (5.9)s:t: TXs=k(�) as(hs � hs(� ; � )) � Æ 8h 2 H0: (5.10)Portfolio � is FSD optimal if and only if Æ�(H(� )) = 0. If Æ�(H0) > 0 forsome H0 � H(� ) then � is FSD nonoptimal.Note that �(� ;��) = Æ�=T . Sin
e a 2 A(� ) and h 2 f0; : : : ; TgT for allh 2 H(� ), using Corollary 5.5(i), we have 0 � �(� ;��) � 1. A remainingproblem is identifying elements of the set H(� ). We may adopt severalstrategies for this task. The next se
tion provides a mixed-integer linearprogramming (MILP) algorithm that identi�es a set of 
andidate ve
torseH(� ) � H(� ), and 
he
ks if h 2 H(� ) for every 
andidate h 2 eH(� ).A drawba
k of this approa
h is that the number of 
andidates in
reasesexponentially with the number of s
enarios (T ). Hen
e, for large numbers ofs
enarios, this strategy may be
ome 
omputationally prohibitive. Some sortof approximation may then be required, e.g. based on Corollary 5.5(ii).For example, we may form a representative sample of elements h 2 H(� )by using a sample �s 2 �� and 
onstru
ting the asso
iated values for h(�; � ).A

ording to Corollary 5.5(ii), this will lead to a ne
essary 
ondition for FSDoptimality. There exist various te
hniques for performing this task, rangingfrom a regular grid to Monte Carlo methods and Quasi-Monte Carlo methods(see, e.g., Ja
kel [21℄, and Glasserman [15℄). Using regular grid in Kopa &Post [32℄, FSD optimality of US sto
k market portfolio relative to ben
hmarkportfolios formed on market 
apitalization and book-to-market equity ratiowas analyzed.While the MILP algorithm starts from a large set of 
andidate ve
torsand 
he
ks feasibility for every 
andidate, sampling from the portfolio spa
eavoids sear
hing over infeasible 
andidates. Of 
ourse, the limitation of thisstrategy is that the 
riti
al sample size needed to obtain an a

urate approxi-mation in
reases exponentially as the number of individual 
hoi
e alternatives(N) in
reases. Still, this approa
h 
an yield an a

urate approximation inan eÆ
ient manner if N is low. This is true espe
ially when the 
orrelation
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hoi
e alternatives is high and hen
e small 
hangesin the portfolio weights do not lead to large 
hanges in the values of h(�; � ).5.5 Mixed-integer Programming Algorithm forTesting FSD OptimalityThis se
tion provides a MILP algorithm for identifying the elements of H(� )and suggests some stopping rules for testing FSD optimality of portfolios.STEP 1: Perform a FSD admissibility testTest FSD admissibility of � , for example using the MILP test from Theorem5.3. If � is FSD inadmissible then stop the algorithm; � is FSD non-optimal.STEP 2: Identify 
andidates for H(� )For all j = k(� ); :::; T solve the following MILP problem:max hj + 1T 2 PTt = k(� ) ht (5.11)s:t: (vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ;t = k(� ); : : : ; Tht = PTs = 1 vs;t t = k(� ); : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = k(� ); : : : ; T� 2 ��Denote (h�jt ; ��jt ; v�js;t) the optimal solution of this problem. Let �1 2 ��be a set of pairwise di�erent ��j (all redundan
y is ex
luded). Sethmaxt = maxj h�jtH1 = fh(�; � ) : � 2 �1g:STEP 3: Stopping rulesConsider h(� ; � ) as de�ned by (5.6)-(5.7). If there exists t 2 fk(� ); : : : ; Tgsu
h that hmaxt � ht(� ; � ) then stop the algorithm; � is FSD optimal. Oth-



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 84erwise, solve problem (5.9)-(5.10) for H0 = H1. If Æ�(H1) > 0 then stop thealgorithm; � is FSD non-optimal.STEP 4: Redu
e the 
andidate set using a dominan
e ruleLet Ht = f0; 1; : : : ; hmaxt g. Denote by H the 
artesian produ
t of sets H t,i.e. H = NTk(� )H t. It is 
lear that H(� ) � H. LeteH = 8<:h 2 Hjht � �hj(� ; � ) + (1� �) TXj = k(� ) �jh�jt ; 8t 2 fk(� ); : : : ; Tg;8h�j 2 H1; 0 � � � 1; TXj = k(� ) �j = 1; �j � 0; 8j 2 fk(� ); : : : ; Tg 9=; :Set p = 1.STEP 5: Che
k feasibility of the remaining 
andidatesIf H n eH is empty, i.e. all possible h 2 H have been 
onsidered, then stopthe algorithm; portfolio � is FSD optimal. Otherwise, 
hoose h 2 H n eH andadd it to eH. If there exists a feasible solution of the system:(vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ; (5.12)t = t1; : : : ; Tht = PTs = 1 vs;t t = t1; : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = t1; : : : ; T� 2 ��put p = p + 1, Hp = Hp�1 [ h and go to the next step. Otherwise, repeatthis step.STEP 6: Test optimality using the feasible 
andidatesSolve problem (5.9)-(5.10) for H0 = Hp. If Æ�(Hp) > 0 then stop the algo-rithm; � is FSD non-optimal. Otherwise, go to Step 5.
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al exampleA numeri
al example 
an illustrate our test and the di�eren
e with the Bawaet al. test and the Kuosmanen test. We fo
us on an example with �ves
enarios (T = 5), be
ause FSD optimality is equivalent to FSD admissibilityfor (T � 4). To show this, let T = 4 and let � be FSD admissible. Sin
ea dominated h(�; � ) 
an not 
hange the solution of (5.9)-(5.10) 
onsider allpossible h(�; � ) whi
h are not dominated by ea
h other:h1(�; � ) = (4; 2; 2; 2)h2(�; � ) = (4; 3; 3; 0)h3(�; � ) = (4; 4; 2; 0)h4(�; � ) = (4; 4; 1; 1):Entering these 
andidates in the linear programming test in Theorem 5.6, we
an see that � is the optimal portfolio for a representative utility fun
tionwith a2 = a3 = a4 = 1=3, and hen
e � is FSD optimal.Table 5.1 shows the returns to three alternatives (X1, X2, X3) and thetested portfolioZ = 0:16X1+0:21X2+0:63X3 in the �ve s
enarios (1; 2; 3; 4; 5).t X1 X2 X3 Z1 -1 6 -4 -1.422 -2 5.90 2 2.183 3.50 2.20 3 2.914 8.70 2 5 4.965 10 7 7.50 7.80Mean 3.84 4.62 2.70 3.29St. dev. 5.46 2.34 4.30 3.42Table 5.1: S
enarios and des
riptive statisti
s for three alternatives and thetested portfolioBy 
omparing the means and standard deviations, we 
an immediately seethat no individual alternative (X1, X2 or X3) FSD dominates Z. However,this does not mean that Z is an eÆ
ient portfolio. Therefore, it is interestingto employ the three eÆ
ien
y tests.



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 86To implement the Kuosmanen test, we need to solve the following LPproblem for ea
h of the 5! = 120 permutations of Z, say yj = (y1j ; y2j ; y3j ; y4j ; y5j ),j = 1; 2; : : : ; 120, or an equivalent mixed-integer linear problem:	j = max�1;�2;�3 15 5Xt=1 (�1xt1 + �2xt2 + �3xt3 � ytj)s:t: �1xt1 + �2xt2 + �3xt3 � ytj t = 1; 2; 3; 4; 5�1 + �2 + �3 = 1�1; �2; �3 � 0We �nd 	j = 0 for every j = 1; 2; : : : ; 120, and hen
e Z is in the FSDadmissible set (not FSD dominated by any 
onvex 
ombination of X1, X2and X3).To implement the Bawa et al. test, we need to establish if some 
onvex
ombination of the CDFs of X1, X2 and X3 dominates the CDF of Z (seeBawa et al. [3℄). Table 5.2 shows the CDFs of the three alternatives (�X1 ;�X2 , �X3) and the CDF of Z (�Z). Note that these CDFs need to beevaluated only at the observed return levels: fzjg19j=1.To test FSD optimality a

ording to Bawa et al. [3℄ , we need to solvethe following LP problem:� = max�1;�2;�3 19Xj=1(�Z(zj)� �1�X1(zj)� �2�X2(zj)� �3�X3(zj))s:t: �1�X1(zj) + �2�X2(zj) + �3�X3(zj) � �Z(zj) j = 1; : : : ; 19�1 + �2 + �3 = 1�1; �2; �3 � 0:Solving this problem, we �nd � = 0, and hen
e Z is 
lassi�ed as eÆ
ient;not every nonsatiable de
ision-maker will prefer X1 or X2 or X3 to Z. Basedon the positive out
omes of the two tests, we may be tempted to 
on
ludethat Z is the optimal portfolio for some in
reasing utility fun
tion, i.e. FSDoptimal. Perhaps surprisingly, this 
on
lusion is wrong. The appli
ation ofour MILP algorithm in se
tion 5.5 will demonstrate this.Sin
e we have already tested FSD admissibility, we start with the se
-ond step: "Identify 
andidates for H(� )". For j = 2; 3; 4; 5, we solve (5.11)



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 87j zj �X1 �X2 �X3 �Z1 -4 0 0 1=5 02 -2 1=5 0 1=5 03 -1.42 1=5 0 1=5 1=54 -1 2=5 0 1=5 1=55 2 2=5 1=5 2=5 1=56 2.18 2=5 1=5 2=5 2=57 2.2 2=5 2=5 2=5 2=58 2.91 2=5 2=5 2=5 3=59 3 2=5 2=5 3=5 3=510 3.5 3=5 2=5 3=5 3=511 4.962 3=5 2=5 3=5 4=512 5 3=5 2=5 4=5 4=513 5.9 3=5 3=5 4=5 4=514 6 3=5 4=5 4=5 4=515 7 3=5 1 4=5 4=516 7.5 3=5 1 1 4=517 7.795 3=5 1 1 118 8.7 4=5 1 1 119 10 1 1 1 1Table 5.2: Cumulative distribution fun
tions of the three individual alterna-tives (X1; X2; X3) and the tested portfolio Z for all observed return levels.where k(� ) = 2, T = 5, m = �4, m = 10 and X� = Z. Table 5.3shows the optimal h(�; � ) and optimal �. From Table 5.3, we 
an seethat hmax = (5; 5; 4; 3; 2). In the third step we apply the stopping rules.Sin
e h(� ; � ) = (5; 4; 3; 2; 1), hmaxt > ht(� ; � ) for all t = k(� ); :::; T , hen
ethe suÆ
ient 
ondition of FSD optimality is not ful�lled. Table 5.3 shows:�1 = f(0:1483; 0:8517; 0); (0:1187; 0:8813; 0); (0:9266; 0:0734; 0)g. LetH1(� ) be the set of 
orresponding values of h�, i.e., H1(� ) = f(5; 5; 4; 2; 0);(5; 5; 3; 3; 0); (5; 3; 3; 2; 2)g. Sin
e �(� ;�1) = 0, the ne
essary 
ondition ofFSD optimality is not ful�lled either. Thus we pro
eed with fourth step.Sin
e hi(�; � ) � hj(�; � ) for all i < j, we 
an easily identify all 
andidateswhi
h satisfy the following 
onditions:(i) are non-dominated by any 
onvex 
ombination of all h 2 H1(� )Sh(� ; � )



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 88t h�1 h�2 h�3 h�4 h�5 ��1 ��2 ��32 5 5 4 2 0 0.1483 0.8517 03 5 5 4 2 0 0.1483 0.8517 04 5 5 3 3 0 0.1187 0.8813 05 5 3 3 2 2 0.9266 0.0734 0Table 5.3: The initial 
andidates H1(� ) and the asso
iated �1(� ) obtainedin Step 2 of our algorithm.(ii) are smaller than h(� ; � ) in at least one element (be
ause � is FSDadmissible)(iii) are feasible for (5.11), i.e., the sum of elements of a 
andidate does notex
eed the sum of elements of appropriate h 2 H1(� ) and a 
andidatedoes not ex
eed hmax in any element.The relevant 
andidates are:h1
 = (5; 5; 4; 1; 1)h2
 = (5; 5; 2; 2; 2)h3
 = (5; 5; 2; 2; 1)h4
 = (5; 5; 2; 1; 1)h5
 = (5; 5; 1; 1; 1)h6
 = (5; 4; 4; 1; 1)h7
 = (5; 4; 2; 2; 2)h8
 = (5; 3; 3; 3; 1):For these 8 
andidates, we employ the last two steps of our algorithm. Step5 tests feasibility of a 
andidate using (5.12). If the 
andidate is infeasiblethen we 
hoose the next one. If the 
andidate is feasible then we add it toH1(� ) and we re
ompute �(� ; H1(� )). Let us start with h1
 = (5; 5; 4; 1; 1).This 
andidate is feasible as it 
orresponds to � = (0:265; 0:735; 0). Addingthis 
andidate, we 
onsider �2 = �1 [ (0:265; 0:735; 0) and H2(� ) = H1(� )[(5; 5; 4; 1; 1). Applying Theorem 5.6, we solve the following linear problem:



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 89min Æs.t. a2 +a3 �a5 � Æa2 +a4 �a5 � Æ�a2 +a5 � Æa2 +a3 �a4 � Æa2 +a3 +a4 +a5 = 1Sin
e the optimal obje
tive value of this problem Æ� = 1=9,�(� ;�2) = Æ�=5 = 1=45 > 0and hen
e portfolio � is FSD non-optimal, whi
h 
ompletes the algorithm.Thus, in this example, Z is 
lassi�ed as eÆ
ient a

ording to the Bawa et al.and the Kuosmanen tests. Yet, it 
an be demonstrated to be not optimal forany in
reasing utility fun
tion.We may repeat this exer
ise for more portfolios � 2 �\f0; 0:01; : : : ; 1g3,i.e., when using a grid with step size 0:01 for the portfolio weights. Figure 5.2illustrates the 
omparison between FSD admissibility and FSD optimality.The Kuosmanen test re
ognizes that many diversi�ed portfolios are FSDdominated by other diversi�ed portfolio, most notably those that assign ahigh weight to X3. In this example, only 22 % of the 
onsidered portfoliosare FSD admissible (the union of the grey and bla
k dots). The FSD optimalset is even smaller than the admissible set. The set of grey dots, in
luding Z,is now ex
luded, leaving only the bla
k dots. The redu
tion in the eÆ
ientset to 16 % of all 
onsidered portfolios ( a 26 % redu
tion) is possible be
ausethe optimality test a
knowledges that an alternative may not be optimal forall investors even if no single other alternative is preferred by all. Note thatthe eÆ
ient regions are not 
onvex, witness for example the small isolatedoptimal area near � = (0; 0:7; 0:3):A similar analysis 
an be done for FSD eÆ
ien
y a

ording to Bawa etal. [3℄. Figure 5.3 shows that 93 % of all portfolios is 
lassi�ed as eÆ
ient.Only 17 % of these portfolios are FSD optimal.The eÆ
ient set is substantially larger than ours, be
ause the Bawa eÆ-
ien
y test does not a

ount for diversi�
ation. Interestingly, only a few ofineÆ
ient portfolios a

ording to the Bawa et al. test are FSD inadmissible.This suggest that one may use the Bawa et al. test as a 
omplementary tool
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Figure 5.2: The FSD optimal set is represented by the bla
k dots. The FSDadmissible set is the union of the bla
k dots and the grey dots.to the FSD admissibility test. Still, portfolio Z proves that the FSD optimalset is even smaller than the interse
tion of these two FSD eÆ
ien
y sets, i.e.,a portfolio may be FSD non-optimal even if both of these tests 
lassify it aseÆ
ient. Figure 5.4 shows all su
h portfolios in our example. The redu
tionof the eÆ
ient set (set of grey dots) is still quite large (8 % ).



CHAPTER 5. FSD PORTFOLIO EFFICIENCY 91

Figure 5.3: The FSD optimal set is represented by the bla
k dots. The Bawaet al. eÆ
ient set is the union of the bla
k dots and the grey dots.

Figure 5.4: The FSD optimal set is represented by the bla
k dots. Theinterse
tion of the Bawa et al. eÆ
ient and the Kuosmanen eÆ
ient set isthe union of the bla
k dots and the grey dots.



Chapter 6Summary and open problemsIn this thesis, utility fun
tions in 
ontext of portfolio sele
tion problems wereanalyzed. In pra
ti
al studies, the perfe
t information about de
ision maker'sutility fun
tion is usually not known. Therefore, we 
onsidered three the fol-lowing situations.Firstly, we assumed that an approximate information about utility fun
-tion of a de
ision maker was known. Under assumption of twi
e di�eren-tiability of a utility fun
tion, we analyzed the stability of optimal solutionsand optimal obje
tive values of portfolio sele
tion problem with respe
t to
hanges in Arrow { Pratt absolute risk aversion measure. Applying the the-ory of variational analysis, under assumption of hypo
onvergen
e of utilityfun
tions, the limit set of optimal portfolios was analyzed. In 
omparisonwith general stability results in sto
hasti
 programming, we analyzed thestability with respe
t to perturbations of utility fun
tions instead of 
hangesin probability measures. These results allow us to apply approximate utilityfun
tions in solving portfolio sele
tion problem and to judge the quality ofthese approximations.We introdu
ed a multiperiod risk premium as a measure of multiperiodrisks. By analogy to 
lassi
al univariate and multidimensional risk premi-ums, we analyzed its properties.Se
ondly, we only assumed risk aversion of de
ision maker. We applied a
on
ept of the se
ond-order sto
hasti
 dominan
e and we were interested to
lassify a portfolio as SSD eÆ
ient or SSD ineÆ
ient. We said that portfoliohad been SSD eÆ
ient if there was no better portfolio for all risk averse and92



CHAPTER 6. SUMMARY AND OPEN PROBLEMS 93risk neutral investors. Employing quantile model of the se
ond-order sto
has-ti
 dominan
e, we derived a linear programming algorithm for testing SSDeÆ
ien
y of a given portfolio. This algorithm 
onsisted of ne
essary 
ondi-tions and a ne
essary and suÆ
ient 
ondition based on relationship betweenCVaR and SSD. It was faster than the Kuosmanen test and 
ontrary to thePost 
riterion, it always dete
ted the presen
e of SSD dominating portfoliowhi
h was SSD eÆ
ient. We introdu
ed a SSD portfolio ineÆ
ien
y measurewhi
h was 
onsistent with SSD relation. It means that if an alternative wasworse than the other alternative for all risk averse and risk neutral investorsthen it had a higher value of this measure. We also explored the 
onvexityproperty of this measure.Finally, we dropped all the assumptions about de
ision maker's risk atti-tude. We employed the �rst-order sto
hasti
 dominan
e approa
h. We dis-
ussed the di�eren
es between FSD admissibility and FSD optimality whenany diversi�
ation a
ross the assets was allowed. We derived a ne
essaryand suÆ
ient 
ondition for FSD optimality via introdu
ing the representa-tive 
lass of utility fun
tions in the 
ase of FSD with diversi�
ation. Wesuggested a mixed-integer linear programming algorithm and some subsam-pling te
hniques.Dealing with sto
hasti
 dominan
e 
riteria in the 
ontext of portfolioeÆ
ien
y, there are still some open problems. In this thesis, we assumedthat the probability distribution of yields is known. However, we usuallyonly approximate the unknown true probability distribution. Therefore astability of SSD eÆ
ien
y tests and the FSD optimality test with respe
t toperturbations in underlying probability measures are of interest. Anotheropen area is 
onne
ted with 
onvexity of the set of eÆ
ient portfolios. It isknown, that the set of SSD eÆ
ient portfolios is not 
onvex. Of 
ourse, the setof FSD admissible or FSD optimal portfolios is not 
onvex either. Thereforea new sto
hasti
 dominan
e relation whi
h will guarantee 
onvexity of theset of eÆ
ient portfolios 
an be another point of future resear
h.
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