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Abstract 

 

The frequent cause of failure of prostate carcinoma radiotherapy and chemotherapy is 

the emergence of resistance and a progress into the essentially incurable metastatic form of 

disease. Although the mechanisms of the radioresistance and chemoresistance are still not well 

understood, recent studies indicate that transcription factor Snail, a key mediator of the 

epithelial-mesenchymal transition and subsequent metastasis formation, plays a critical role in 

the development of the chemoresistance and radioresistance in the tumor cells. As the activation 

of the optimal DNA damage response pathway is the determining factor for the cell survival 

after chemotherapy and radiotherapy, we hypothesized the role of Snail in the transcription 

regulation of these processes. In this study, we first analyzed the relationship between Snail and 

ATM kinase, as the ATM was recently reported to regulate stability of Snail by its 

phosphorylation. Although, we observed a modest effect of ATM inhibition on Snail levels 

after cancer cells exposure to ionizing radiation, we did not fully reproduced the recently 

published findings. Furthermore, we evaluated the role of Snail in transcription regulation of 

cyclin-dependent kinase inhibitor p21waf1/cip1. Our data point towards the suppressive role of 

Snail in p21waf1/cip1 regulation, independent on the status of tumor suppressor p53. Finally, we 

attempted to identify the novel Snail transcriptional target genes, specifically those involved in 

the DNA damage response. Based on presence of putative Snail DNA binding elements 

(E-boxes) in their promoter regions, we selected two factors known to function in DNA damage 

response and cell cycle regulation - hSSB1 and CCNB3 - as potential transcription targets of 

Snail. However, manipulating Snail levels by ectopic overexpression or knock-down by RNA 

interference had no effect on mRNA levels of these two selected genes. 
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Abstrakt 

 

Častou příčinou selhání léčby karcinomu prostaty je rezistence vůči radioterapii 

a chemoterapii s následným rozvojem metastatické, a v podstatě neléčitelné, formy 

onemocnění. Ačkoli mechanismy rozvoje radiorezistence nebyly doposud zcela objasněny, 

některé studie ukazují, že transkripční faktor Snail, klíčový mediátor epiteliálně-mezen-

chymální tranzice i následné tvorby metastáz, má zásadní roli v rozvoji chemorezistence 

a radiorezistence nádorových buněk. Protože aktivace optimální odpovědi na poškození DNA 

je určujícím faktorem pro přežití buněk vystavených chemoterapii či ionizujícímu záření, 

předpokládali jsme roli Snail právě v těchto procesech. V této práci jsme se nejdříve zabývali 

analýzou vztahu mezi Snail a kinázou ATM. Přestože nedávné studie naznačují, že ATM může 

regulovat stabilitu Snail skrze jeho fosforylaci, a taktéž my jsme pozorovali mírný vliv inhibice 

ATM na hladiny Snail u nádorových buněk vystavených ionizujícímu záření, na základě 

souhrnných výsledků ze všech námi provedených experimentů nelze tuto regulaci jednoznačně 

potvrdit. V dalším kroku jsme hodnotili roli Snail v regulaci transkripce cyklin-dependentní 

kinázy p21waf1/cip1. Výsledná data poukazují na to, že v regulaci transkripce p21waf1/cip1 má Snail 

supresivní účinek, kterýžto není závislý na funkčním stavu nádorového supresoru p53. Nakonec 

jsme se pokusili identifikovat nové transkripční cíle Snail, které by se zároveň podílely na 

regulaci odpovědi na poškození DNA. Na základě přítomnosti DNA-vazebných sekvencí pro 

Snail (E-boxů) na promotorech vybraných genů jsme určilili dva faktory účastnící se odpovědi 

na poškození DNA a regulace buněčného cyklu, hSSB1 a CCNB3, jako potenciální transkripční 

cíle Snail. Avšak, manipulace s hladinou Snail, zvýšením či snížením jeho exprese, neovlivnila 

hladinu mRNA těchto dvou vybraných genů.  
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1. Introduction 

 

The major cause of cancer-related mortality is development of metastasis (Gupta and 

Massagué, 2006). In tumors of epithelial origin - carcinomas, the initial step of the invasion-

metastasis cascade includes activation of the epithelial-mesenchymal transition (EMT). One of 

the main mediators of EMT is a zing-finger family transcription factor Snail (Moody et al., 

2005). It was shown that Snail binds to a specific consensus sequence (5´-CANNTG-3´) in the 

promoter of the epithelial cell-to-cell contact factor E-cadherin and works as a repressor of its 

transcription (Cano et al., 2000). E-cadherin repression is an important step in the tumor 

progression since its downregulation leads to the acquisition of mesenchymal properties 

including increased motility and invasiveness, resulting in cancer cell dissemination to the 

distant organs of the body (Frixen et al., 1991). Moreover, Snail was shown to be overexpressed 

in the variety types of carcinomas (Blanco et al., 2002; Rosivatz et al., 2002; Sugimachi et al., 

2003), especially in patients undergoing anti-cancer chemotherapy and/or radiotherapy and its 

increased expression has been associated with the worse prognosis (Muenst et al., 2013; Shin 

et al., 2012). The role of Snail in EMT as well as its role in acquired chemoresistance and 

radioresistance is well-studied (Hoshino et al., 2009; Kurrey et al., 2009; Kyjacova et al., 2015), 

however, the functional link between Snail and DNA damage response (DDR) is not known in 

detail. 

 DDR represents a complex regulatory mechanism that enables cells to execute 

biological responses to DNA damage caused by various genotoxic insults. Besides DNA repair 

pathways, the DDR is believed to serve as the biological barrier that prevents early stages of 

tumorigenesis (Kastan, 2008; Nuciforo et al., 2007). Moreover, several studies suggest the role 

of factors involved primarily in DDR signaling in the development of chemoresistance and 

radioresistance in various tumor types (reviewed by Kastan and Bartek, 2004). 

These findings indicate the mutual link among DDR and EMT, however, the molecular 

mechanisms of this linkage are still obscure. Our goal was to decipher the mutual relationship 

between the activation of DDR machinery by genotoxic insults (IR) and Snail expression as 

well as to specify the role of Snail in the regulation of DDR-induced cell cycle arrest and the 

expression of DDR effectors and cell cycle regulators involved in DDR.  
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2. Overview of literature 

 

2.1. Prostate cancer 

 

2.1.1. Prostate physiology 

 

Prostate gland is one of the accessory glands of the male reproductive system. It is 

unpaired, located below the bladder and surrounds the urethra (Figure 1). Healthy prostate of 

adult male is small, about a size of a walnut. Its main role is to produce secretions that are mixed 

with sperm during ejaculation and that increase the chance of fertilization and sperm survival.  

The product of the prostate, which makes up about a half of the seminal fluid volume, 

is thin and milky, contains various glycoproteins, alkaline compounds and small molecules such 

as prostaglandins and polyamines. Moreover, the fluid is rich in hydrolytic enzymes, notably 

fibrinolysin. The sugars secreted by the prostate serve as the nutrition for the sperms as they 

pass into the female body to fertilize the ovum. Enzymes break down proteins in the semen 

after the ejaculation in order to free sperm cells from the viscous semen. The alkaline chemicals 

in prostatic secretions neutralize the acidic vaginal secretions for the purpose of the 

enhancement of the survival of sperms in the female body (Mescher and Junqueira, 2013). 

The prostate consists of the two main types of tissue. First of them is epithelial exocrine 

glandular tissue that makes up most of the prostate, as it is specialized for the secretion of the 

components of the semen. The other one is the fibromuscular tissue, composed of the mixture 

of the smooth muscle tissue and the dense irregular connective tissue. Its function is to provide 

the strength to the tissue and to expel the fluids (Mescher and Junqueira, 2013). 

Prostate gland can be divided into 3 zones – peripheral, central and transition zone. The 

peripheral zone is the area of the prostate that is notably in the dorsal part closest to the rectum. 

It is the largest zone of the prostate gland and the majority of prostate tumors (approximately 

75%) are found in this zone – that is why the prostate cancer (PCa) is accessible for the rectal 

examination – per rectum. The transition zone is located in the middle of the prostate, between 

the peripheral and central zones. It surrounds the urethra as it passes through the prostate. This 

zone makes up about 20% of the prostate gland until the age of 40. As men reach the ripe age, 

the transition zone gradually enlarges - until it becomes the largest area of the prostate. This is 

called benign prostatic hyperplasia. When the transition zone enlarges, it pushes the peripheral 

zone of the prostate towards the rectum, and this phenomenon can be easily felt during the rectal 
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examination. Central zone is in the front of the transition zone. It is the part of the prostate that 

is the farthest from the rectum (McNeal, 1981).  

A clinically important product of the prostate is the prostate-specific antigen (PSA), 

a 34-kDa serine protease, whose function is to liquefy the coagulated semen. Therefore, the 

highest concentration of PSA can be found in the semen and only a small amount of it is released 

into the bloodstream. But if the structure of cells or glandules is damaged, PSA may be released 

into the blood at a higher amounts. The occurrence of this can point to pathological processes 

in the prostate, such as the inflammation or even cancer. Because of its easy detection in the 

blood and its relatively high significance, the PSA testing was introduced as a screening tool 

for early prostate cancer detection into the clinical practice since the 1994 (Catalona et al., 

1994). 
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Figure 1. The image above shows the 

prostate gland and the nearby organs in 

the male reproductive tract. The image 

below shows 3 prostate zones and 

depicts how the prostate surrounds the 

urethra. (http://www.cancer.ca/en) 
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2.1.2. Prostate cancer 

 

The term „cancer“ means a condition, when normal cells lose their ability to regulate 

cell growth and they are not able to undergo a cell death. It leads to the accumulation of extra 

cells that often form a mass of tissue called tumor. Tumors are divided into two categories, 

benign and malignant. Benign tumors are usually not life-threatening, since they do not invade 

a tissue around them and cannot expand to the other parts of the body. These tumors can be 

removed from the body without the chance of their re-growth. Contrary to this, malignant 

tumors can spread to the other parts of the body and invade nearby tissues and organs. These 

tumors are often life-threatening and it is not so easy to remove them permanently and 

completely, because they are usually not well demarcated and will regrow back in many cases. 

PCa is one of the most prevalent malignancy in males (Plata Bello and Concepcion 

Masip, 2014) with the incidence higher than that of all the other solid tumors (Figure 2). Every 

year, nearly 1 million of new cases is being diagnosed worldwide, of which a one-third are fatal 

(Ferlay et al., 2010a). The incidence rates of PCa fluctuate worldwide, depending on the 

geographic region and race, which is partly due to the prevalence of PSA testing and with the 

digital rectal examination performance in men of a certain age groups. The highest rates of new 

cases are estimated in the Western countries, such as in the USA (namely Afroamerican 

population), in the Northern and Western European countries (Ferlay et al., 2010b) and in 

Australia/New Zealand. In comparison with the incidence, the mortality rates vary much less. 

According to the data available for 2007 in the Czech Republic, the estimated incidence is 

100.2/100.000 and the mortality of 25.1/100.000 (Dusek et al., 2010).  

Nowadays, more than 70% of PCa cases are diagnosed by the occurrence of the elevated 

PSA levels and approximately 10 years earlier than before the PSA was introduced into the 

standard clinical practice (Schröder et al., 2012). The widespread implementation of PSA 

testing allows for the early start of the effective treatment. These two factors contribute to the 

relatively low rate of the mortality, when compared to the incidence of this type of cancer. 
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Figure 2. Worldwide prostate cancer incidence and mortality. The estimated age-standardized rates 

(world) per 100.000. Data are available from Globocan2012. While the incidence rates are much higher 

in developed countries, the associated mortality rates are relatively low. However, in developing 

countries, even though the incidence rates appear to be low, the associated mortality rates are almost 

similar to the incidence rates, indicating a high rate of fatality due to the prostate cancer in these countries 

(http://www.globocan.iarc.fr/Pages/fact_sheets_cancer.aspx). 
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PCa incidence increases with age. It is predominant in men above 40, with about 60% 

of cases diagnosed in men older than 65 years (Figure 3). The growth of early PCa is supported 

by 5α-dihydrotestosterone (5α-DHT) - the derivate of an androgen testosterone, produced by 

the Leydig cells in the testis. Thus, this type of cancer may arise in each man with the active 

production of sex hormones. The epidemiological studies done in the populations who had 

migrated to another continent suggest that the lifestyle and the environment also determine the 

prostate cancer risk (Lee et al., 2007). Risk factors include the alcohol consumption, smoking, 

eating animal fat, obesity, low physical activity, drug medication, low vitamin intake (e.g. 

vitamin D and E) and high mineral intake (zinc, calcium, selenium), and finally low sexual 

activity (Giovannucci et al., 2007; Hebert et al., 1998; Huncharek et al., 2010; Lawson et al., 

2007; Rota et al., 2012; Schwartz, 2013). 

Another major risk factor for PCa is a genetic predisposition. This term covers family 

history and race. Some studies have shown that the preponderance of PCa incidence as well as 

the mortality from PCa is much higher among black men than in Caucasian men (Virnig et al., 

2009). Moreover, it has been observed that PCa has a high probability of heritability (Alberti, 

2010). For example, the first degree relatives of PCa patients were at double the risk of 

developing PCa as the normal population (Goldgar et al., 1994). Several genes have been 

identified as they increase the likelihood of PCa incidence (Simard et al., 2003). 

 

 

Figure 3. Diagnosis of new cases of prostate cancer. Based on data between years 2008 – 2012, US 

population. All races are included. The prostate cancer is most frequently diagnosed among men aged 

65-74. The median age of the diagnosis is 66 years (http://www.seer.cancer.gov/statfacts/). 

 

http://www.seer.cancer.gov/
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2.1.3. Prostate cancer treatment strategies 

 

PCa is mostly asymptomatic tumor with a slow growth rate. A very low mortality rate 

relative to the incidence of PCa appears to be due to a high rate of over-diagnosis and 

overtreatment. The disease progression varies among individuals, allowing for stratified 

approaches towards the definitive treatment (reviewed by (Chen and Zhao, 2013)). Although 

about a two-third of PCas are slow-growing, there are still present some cases with the 

aggressive phenotype. The choice of treatment depends largely on several factors, like the stage 

of the progression, the initial PSA level, patient’s age and co-morbidities. 

In case of older asymptomatic men or in patients with other medical conditions, the most 

useful treatment is watchful waiting and the active surveillance. Both treatment options include 

closely monitoring a patient’s condition without giving any treatment unless there are changes 

in test results, or until signs or symptoms appear or change. 

Surgery is suggested primarily for high-risk, localized PCa (Lawrentschuk et al., 2010) 

and it is applied as a part of the multimodality approaches rather than as a monotherapy. The 

most commonly performed types of the surgery in PCa are: radical prostatectomy (RP), which 

include removal of the prostate together with surrounding tissue and seminal vesicles and pelvic 

lymphadenectomy (PLND), where lymph nodes in the pelvis are removed to detect potential 

lymph node metastases. PLDN is usually performed during RP for high risk prostate cancer 

(Koupparis and Gleave, 2010). Surgery has been shown to reduce the risk of death, metastases 

and local tumor progression in 10-year period (Bill-Axelson et al., 2005). However, there are 

some side effects that discourage this type of PCa treatment. Possible problems after PCa 

surgery include impotence, leakage of urine from the bladder or stool from the rectum, inguinal 

hernia or penis shortening (Ratcliff et al., 2013). 

After RP, radiation therapy is considered as the second major therapeutic modality for 

high-risk locally advanced PCa. The widely used radiotherapy strategies for PCa are external 

radiotherapy and brachytherapy. External radiotherapy uses a machine outside the body to 

apply radiation toward the tumor. The gradual increase in the dose of radiation, up to 78 Gy 

with daily fractions of 2 Grays (Gy) represent standard protocol for men with localized PCa 

(Kuban et al., 2008). External radiotherapy is effective to patients without distant metastases. 

For patients with local but more advanced disease, brachytherapy has been shown to be a better 

treatment strategy (Law and McLaren, 2010). Low-dose rate brachytherapy (LDRB) involves 

the permanent placement of the radioactive seeds guided by ultrasound with half-life of 60 days 

into the patient’s body near the tumor. In comparison, high-dose rate brachytherapy (HDRB) 
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means a temporary insertion of applicators into the prostate. This ensures a high dose of 

radiation to prostate gland, but the minimized dose to nearby organs (Law and McLaren, 2010). 

The negative side effect of radiotherapy is erectile dysfunction, which may develop 

progressively in the eldery population (Karlsdóttir et al., 2008). Moreover, radiation treatment 

increases the risk of bladder and/or gastrointestinal cancer (Stokkevåg et al., 2015). 

Another common treatment option for PCa is hormone therapy that is initiated by 

reducing the concentration of circulation androgens. Testosterone, which is produced mainly in 

the testes, and its more potent metabolite dihydrotestosterone are androgens that bind and 

activate the androgen receptor - androgen-activated transcription factor and a member of the 

steroid receptor subfamily of the nuclear receptors (Freeman et al., 2001). Hormone therapy 

targets the androgen receptor, because androgen-androgen receptor signaling is required for 

growth and survival of hormone-sensitive prostate cancer cells (see below). Hormonal therapy 

reduces the androgen concentration through surgical or medical castration or by administering 

anti-androgens (Labrie et al., 1982). Among side effects of hormonal therapy belongs impaired 

sexual function, loss of desire for sex, weakened bones, etc (Ahmadi and Daneshmand, 2013). 

Chemotherapy as a cancer treatment that uses drugs to stop the growth of cancer cells 

is not considered as a very effective way to battle PCa. Nevertheless, chemotherapy is used for 

patients with hormone refractory PCa, as it brings improvements in pain and quality of life as 

well as decreases in PSA level (Picard et al., 2012). 

Although cancer treatment has important impacts on quality of life (White et al., 2013), 

the overall quality of life for PCa patients has improved from 1999 to 2011 (Glass et al., 2013). 

Current treatment options for PCa include surgery in combination with hormonal and radiation 

therapies, nevertheless, the optimal treatment choice is based on many factors, including initial 

PSA level and clinical stage of disease, together with baseline urinary function, comorbidities, 

and patient age. 
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2.1.4. Prostate cancer cell lines as experimental model 

 

Prostate cancer is very heterogeneous disease and its biological, molecular and 

hormonal characteristics are immensely complex. This, together with tendency of PCa cells to 

metastasize to various organs, provides the basis for the introduction of many different PCa cell 

lines as experimental models of PCa. Table 1. contain the list of the major human prostate 

cancer and immortalized cell lines.  

 

Cell line  Source  
PC-93    AD primary prostate cancer  

PC-3   Lumbar metastasis  

DU-145  Central nervous system metastasis  

TSU-Pr1c  Cervical lymph node metastasis in Japanese male 

LNCaP  Lymph node metastasis in Caucasian male  

LNCaP-FGCd  Clonal derivative of LNCaP  

LNCaP-LN-3   Metastatic subline of LNCaP cells derived by orthotopic implantation 

LNCaP-C4  Metastatic subline of LNCaP derived after coinoculation of LNCaP and 

fibroblasts 

LNCaP-C4B  Metastatic subline derived from LNCaP-C4 after reinoculation into 

castrated mice 

MDA PCa 2a   AI bone metastasis from African-American male 

MDA PCa 2b   AI bone metastasis from African-American male 

ALVA-101   Bone metastasis  

ALVA-31e   Well-differentiated adenocarcinoma 

ALVA-41e   Bone metastasis  

22Rv1  Derived from CWR22R an androgen-dependent prostate cancer 

xenograft line  

ARCaP   Derived from ascitic fluid from a patient with metastatic disease 

PPC-1e   Poorly differentiated adenocarcinoma 

LAPC3 Derived from xenograft established from specimen obtained via 

transurethral resection of the prostate 

LAPC4   Derived from xenograft established from a lymph node metastasis 

P69SV40T  Immortalized cell line derived by transfection of adult prostate epithelial 

cells with the SV40 large T antigen gene 

RWPE-2  Immortalized cell line initially derived by transfection of adult 

(Caucasian) prostatic epithelial cells with human papillomavirus 18, then 

made tumorigenic by infection with v-K-ras  

CA-HPV-10  Immortalized cell line derived by human papilloma virus 18 transfection 

of prostatic epithelia cells from a high-grade adenocarcinoma 

PZ-HPV-7  Immortalized cell line derived by human papilloma virus 18 transfection 

of normal prostatic peripheral zone epithelial cells 
 

Table 1. List of established human prostate cancer and normal immortalized cell lines (taken from 

(Russell and Kingsley, 2003)). 



21 
 

As mentioned above, 5α-DHT, the derivate of androgen testosterone, is required for 

development of PCa. Prostatic cells whose growth requires the presence of 5α-DHT are termed 

androgen dependent (AD). Androgen-sensitive (AS) are those PCa cells, which do not require 

androgens for their growth, but they can respond to it. The necessity of androgen presence is 

the reason for using hormonal therapy, especially for patients whose tumors are not operable 

(Rambeaud, 1999). Unfortunately, after period of remission the disease regresses almost 

invariably. Moreover, these new tumor cells become often androgen-independent (AI), which 

may be caused by changes in the androgen receptor, mostly by mutation (Wang and Uchida, 

1997). 

In this thesis, 3 types of prostate cancer cell lines were used – DU145, PC-3 and LNCaP. 

These lines have been chosen because of their different status in p53 gene expression (see 

below). 

DU145 cell line has been derived from a human PCa metastasis to the brain. DU145, as 

well as PC-3, are AI (although express AR mRNA) (Alimirah et al., 2006) and do not express 

PSA and testosterone-5-α-reductase enzyme, which is responsible for production of 5α-DHT 

from testosterone. DU145 cells also synthesize detectable amounts of p53 protein that is, 

however, mutated in DNA binding domain and has an extended half-life (Isaacs et al., 1991). 

In addition, this line shows mutation in gene coding for inhibitor of cyclin dependent kinases, 

p16INK4a (p16) (Gaddipati et al., 1997). Karyotypic analysis has shown these cells to be 

aneuploid with a chromosome number of 64. DU145 cells have a moderate tumorigenic 

potential and exhibit characteristics of poorly-differentiated adenocarcinoma (Stone et al., 

1978). 

PC-3 cell line has been established in 1979 from bone metastasis of PCa in 62 year-old 

Caucasian male. These cells do not express PSA and lack testosterone-5-α-reductase and 

androgen receptors, which means that they are AI (Kaighn et al., 1979). PC-3 has been shown 

to contain mutation in p53 gene, namely they exhibit only one allele of chromosome 17p where 

is p53 located, which cause PC-3 appear to be p53 negative (using western blotting analysis) 

(Isaacs et al., 1991). Karyotypic analysis demonstrates an aneuploid human karyotype, 

comprising of 62 chromosomes. Further studies also revealed many features common to 

neoplastic cells of epithelial origin including numerous microvilli, junctional complexes, 

annulate lamellae and abnormal nuclei, nucleoli and mitochondria. PC-3 human PCa cell lines 

have high tumorigenic potential and produce poorly differentiated adenocarcinoma if 

inoculated into nude mice (Kaighn et al., 1979).  
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LNCaP cell line was derived in 1977 from left supraclavicular lymph node metastasis 

of PCa in 50-year-old Caucasian male. For a long time LNCaP cells were the only human PCa 

cell line that demonstrates androgen sensitivity. Cells also express PSA. LNCaP cells are 

aneuploid and they have a full complement of human chromosomes (Horoszewicz et al., 1980). 

Status of p53 in these cells is normal (non-mutated). They have a low metastatic potential and 

several laboratories observed LNCaP cells to be poorly tumorigenic in athymic mice unless 

coinoculated with tissue-specific stromal or mesenchymal cells (Gleave et al., 1992). 
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2.2. DNA damage signaling 

 

2.2.1. DNA damage 

 

Mechanisms that contribute to the preservation and transmission of genetic information 

across generations became the main subject of research since the discovery of DNA structure 

more than 60 years ago. It is clear that the protection of the DNA against damage is essential 

for the survival of all life forms on the Earth. Genetic information encoded by DNA is 

permanently exposed to various genotoxic insults, as well as the DNA structure is often 

disturbed during normal physiological processes. It, has been estimated that every cell could 

experience up to 105 spontaneous DNA lesions per day (Hoeijmakers, 2009). This included, 

inter alia, DNA breaks caused by reactive oxygen species (ROS) produced during normal 

cellular metabolism. Among exogenous sources of DNA damage belong physical and 

chemical agents. Ultraviolet (UV) light from sunlight, which can also induce up to 105 

lesions per cell per day, and ionizing radiation (IR), generally used in cancer therapy, are 

examples of physical genotoxic insults (Hoeijmakers, 2009). The best known sources of 

chemical damage are drugs used in chemotherapy that can cause a huge spectrum of DNA 

lesion (alkylation, DNA-DNA and DNA-protein cross-links, single and double-strand 

breaks, etc.) The most common exogenous source of chemically induced DNA damage is 

cigarette smoking that causes an oxidative damage in lung and other tissues (Asami et al., 

1997). 

Among the variety of types of DNA damage, the most deleterious are the DNA 

double-strand breaks (DSBs). Permanent DSBs develop when the two complementary strands 

of DNA double-helix are disrupted to such an extent that does not allow their further association 

and subsequent reparation. The newly arisen DNA ends, if not adequately repaired by 

non-homologous end joining (NHEJ), microhomology-mediated end joining (MMEJ) or 

homologous recombination (HR) are prone to invade other sites in the genome for incorrect 

recombination. In this case, DSBs can represent cause of cell death. If inaccurately repaired, 

DSBs may act as potential source of mutations that can support cell survival and even cancer 

development (Hsu et al., 2007; Moshous et al., 2003). DSBs are generated mainly by IR, 

chemotherapeutic agents or endogenously by the ROS (Zhang et al., 2009). However, in some 

cases, DSBs are generated and retroactively removed in a programmed manner during V(D)J 

recombination (Hendrickson et al., 1991), when the variety of antigen-binding receptors of 

https://en.wikipedia.org/wiki/Non-homologous_end_joining
https://en.wikipedia.org/wiki/Microhomology-mediated_end_joining
https://en.wikipedia.org/wiki/Homologous_recombination
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lymphocytes is created, or during meiosis, when parts of homologous chromosomes are 

mutually exchanged. 

 

2.2.2. DNA damage response and repair 

 

All living organisms are permanently exposed to DNA-damaging agents that induce 

various types of DNA damage. This includes base modification, DNA intrastrand, interstrand 

or DNA-protein crosslinks, single-strand breaks (SSBs) and DSBs. As cells need to adequately 

respond to each type of the genotoxic stress and to recognize all kinds of DNA damage, they 

have evolved mechanisms, which we collectively call DNA damage response (DDR). The main 

role of the DDR pathways is to stop cell-cycle progression and stimulate proper DNA repair of 

the damaged genome.  

The cell cycle of proliferating cells is based on the repeating alternation of G1 (growth 

phase), S (DNA replication) and G2 (preparation for mitosis) phases, followed by mitosis 

(division of the nucleus) and cytokinesis (cellular division). Transition among the different 

phases of the cell cycle is managed by cyclin-dependent kinases (Cdk) and their interaction 

with various cyclins – such as Cdk2/cyclin-E complex in G1/S or Cdk1/cyclin-B complex in 

G2/M transition (Cerqueira et al., 2009). However, in case when the cell detects some defect 

through the cell cycle progression, the entering into the next phase is not allowed - Cdks are not 

activated or they are inhibited by Cdk-inhibitors and the cell cycle is arrested. This process is 

called as a checkpoint control and it is one of the most important parts of the DDR (Cerqueira 

et al., 2009).  

The fast checkpoint induction after DNA damage is provided by a transmission of the 

signal through phosphorylation of multiple substrates by Ataxia telangiectasia 

Rad3-related/Ataxia telangiectasia mutated (ATR/ATM) and Checkpoint kinase 1/Checkpoint 

kinase 2 (Chk1/Chk2) kinases affecting the protein stability and/or activity of their target 

substrates. First Mre11-Rad50-Nbs1 (MRN) complex detects and binds to the exposed ends of 

the damaged DNA. Afterwards, the MRN complex recruits and activates the ATM kinase 

through its autophosphorylation at serine 1981 (Lee and Paull, 2005). Once activated, ATM 

phosphorylates a large number of its downstream targets (Matsuoka et al., 2007) that may 

further initiate the cell-cycle arrest, DNA repair, or apoptosis – the type of response depends 

on the extent and duration of DNA damage. Several of these targets, including p53 or Chk2 

function as tumor suppressors in vivo, and their phosphorylation after the DNA damage event 

is critical. In general, phosphorylation of Chk2 at threonine 68 by ATM leads to its activation 
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and transmission of the checkpoint signal. The best-known example of checkpoint maintenance 

is the contribution of the tumor suppressor p53 and its transcriptional target p21waf1/cip1 (p21) to 

cell cycle arrest. When p53 is activated through its phosphorylation at serine 15 by ATM/ATR, 

it binds to the promoters of multiple target genes and modulates their transcription (Fiscella et 

al., 1993). One of these genes is the cyclin-dependent kinase inhibitor p21 (El-Deiry et al., 

1994), which inhibits the cyclin-E/cdk2 and cyclin-A/cdk2 complexes, and prevents G1/S 

transition. ATM-Chk2-p53-p21 cascade (Figure 4) then forms one of the key elements that 

regulates the cellular DDR, and defends the cell from the malignant transformation. Increasing 

autophosphorylation of ATM, phosphorylation of Chk2 and the overall activation of many other 

DDR proteins was observed in the early-stage tumors, suggesting the role of DDR as a barrier 

to the malignant progression of tumors (Bartkova et al., 2005; Gorgoulis et al., 2005).  

 

Figure 4. DDR pathways. ATM and ATR kinases respond to DNA damage by the phosphorylation and 

activation of the serine/threonine checkpoint kinases Chk1 and Chk2. These checkpoint kinases are 

transducers of the DNA damage signal and both phosphorylate a number of substrates involved in the 

DDR. The G1 arrest, evolving after DSB induction, is modulated primarily by the ATM-Chk2-p53-p21 

pathway (Ashwell and Zabludoff, 2008 – adjusted). 
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2.2.3. Cell senescence 

 

Nearly all of normal mammalian somatic cells possess only a limited capacity of their 

replicative life in vitro. After the proliferative phase, the non-proliferative phase termed cellular 

senescence, arises. This phenomenon was first observed more than 50 years ago, when Hayflick 

and Moorhead showed that normal human fibroblasts did not proliferate indefinitely in vitro 

(Hayflick and Moorhead, 1961).  

The cellular senescence is described as an essentially irreversible growth arrest. That 

can occur naturally by the telomere dysfunction, as the telomeres, the regions of repetitive 

nucleotide sequences at each end of the chromatid, are covered by proteins inhibiting various 

DNA repair machineries (Gorgoulis et al., 2005). Second, senescence may be caused also by 

mutation of oncogenes (Lee et al., 1999; Serrano et al., 1996) or it arises in the response to 

anti-cancer genotoxic therapies, as they are source of unrepaired DNA damage (Michishita et 

al., 1999). However, besides above mentioned stimuli for the senescent development, also other 

mechanisms were described (see Figure 5).  

Figure 5. Senescence-inducing agents (Collado and Serrano, 2006 - adjusted). 

 

The master regulators of senescence are p53 and protein retinoblastoma (Rb) together 

with their downstream targets p21 and p16, whose activation is essential and sufficient to induce 

senescence (McConnell et al., 1998). DDR caused by DNA damage engages primarily in the 

p53-p21 pathway, which causes the arrest of the cell cycle in G1 phase. Persistent DDR 

signaling then initiates the permanent senescence growth arrest (Fumagalli et al., 2014). 



27 
 

Senescent cells do not proliferate, but are still metabolically active and show widespread 

changes in the gene expression and cellular morphology. Senescent cells exhibit enlarged shape 

with flattened morphology and possess various nuclear abnormalities (multinucleation, 

polyploidy, etc.) (Dell’Orco and Whittle, 1994). Senescent cells also secrete numerous 

cytokines, chemokines, growth factors and proteases with autocrine and paracrine activities 

termed collectively called the senescence-associated secretory phenotype (SASP). SASP can 

be either beneficial or deleterious, depending on the physiological context and cytokines 

produced (for example, induction of inflammation or epithelial-to-mesenchymal transition 

(Ansieau et al., 2008)). A commonly used marker for senescent cells is based on histochemical 

staining for senescence-associated β-galactosidase activity (SA-β-gal) (Dimri et al., 1995), 

whose overexpression is derived from the expansion of lysosomes (Lee et al., 2006a). 

 

Figure 6. Senescence-associated β-galactosidase activity in senescent cells. Left – control, non-treated 

DU145 PCa cells; right – DU145 cells treated 5 times with 50 µM BrdU to induce senescence. SA-β-gal 

staining was used to indicate senescent cells (blue). Typical senescent phenotype is shown. 

 

Most cancer cells differ from normal cells by the acquisition of immortality, meaning 

they do not have a finite replicative life span (Edington et al., 1995). The permanence of the 

proliferation arrest in senescent cells suggests that this mechanism serves as a barrier against 

cancer development (Sager, 1991). Nevertheless, the molecular changes, for example the 

inactivation of certain tumor suppressor genes (p53 or Rb), can lead to the re-entering to the 

cell cycle and eventually, to the proliferation with defective genome. It was estimated that the 

functional p53 is lost in more than a half of human cancers, thus becoming one of the most 

frequently mutated genes in the cancers (Brosh and Rotter, 2010). This forms a basis of the 

cancer progression. 
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2.3. Cancer metastasis and epithelial-to-mesenchymal transition 

 

The most dangerous phase of the malignant tumor progression is the formation of 

metastases that causes about 90% of cancer death (Weigelt et al., 2005). Dissemination of the 

tumor cells to distant sites is a multistep process, whose proper mechanism remains poorly 

understood. In general, the metastatic process is divided into five distinct steps: local invasion, 

intravasation, transport through the circulatory system, extravasation and colonization (for 

a review, see (Shibue and Weinberg, 2011)). The local invasion is the first key step, when 

epithelial tumor cells lose their cell-to-cell contacts, become motile and leave the site of the 

primary tumor to invade nearby tissues. Then, during intravasation, tumor cells invade across 

the endothelial lamina and penetrate the walls of blood vessels and/or lymph nodes to enter the 

systemic circulation. In the course of circulation, only a small number of tumor cells survive 

the anchorage-independent growth conditions. During the extravasation, surviving cells may 

attach the vascular lumen at the distant sites of the body and infiltrate into the distant organs. 

Finally, during colonization, usually only a small fraction of neoplastic cells survive in the new 

stromal environment and establish micrometastasis with the proliferative potential (Shibue and 

Weinberg, 2011). 

It is believed that the invasion, as the initial step of a metastasis, has a critical role in 

this process. Previous studies have shown that the developmental program termed 

epithelial-mesenchymal transition (EMT) plays a key role in promoting the metastasis in 

epithelium-derived carcinomas (Lee et al., 2006b; Xue et al., 2003). This suggests that 

understanding EMT and consequently metastasis is crucial for the future development of the 

novel strategies for the cancer treatment.  

Epithelial cells are tightly linked together via several types of cellular junctions, 

including adherent junctions, tight junctions and desmosomes forming the layer which interacts 

with the basement membrane to maintain apical-basal polarity. While epithelial cells are 

polarized and carry out tissue specific functions, mesenchymal cells mostly play just 

a supporting role in the tissue and embed themselves inside the extracellular matrix. EMT is 

a process when epithelial cells undergo the morphological and molecular changes to acquire 

the mesenchymal-like properties. Transformation from epithelial to mesenchymal phenotype 

therefore leads to the enhanced migratory potential, resistance to apoptosis and invasiveness 

(Tiwari et al., 2012). The basic molecular mechanism of EMT is repression of adhesion 

molecules typical for the epithelium and subsequent acquisition of the mesenchymal markers. 
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The most common epithelial marker is the epithelial cadherin (E-cadherin) (Fleming et al., 

2000). Among other epithelial markers belong also claudins, cytokeratin, occludins, laminin-1, 

desmoplakin, mucin 1, etc. The mesenchymal markers are fibronectin, vitronectin, vimentin, 

N-cadherin, FSP1, etc. (see Figure 7) After the cells go through the EMT process, they are able 

to differentiate into other cell types or revert back to the epithelial cells through a reverse 

process called mesenchymal-epithelial transition (MET) (Davies, 1996). 

 

 

Figure 7. The cycle of events during which the epithelial cells are transformed into the mesenchymal 

cells and vice versa. The different stages during EMT (epithelial–mesenchymal transition) and the 

reverse process MET (mesenchymal–epithelial transition) are regulated by the effectors of EMT and 

MET, which influence each other. Important events during the progression of EMT and MET, including 

the regulation of the tight junctions and the adherent junctions, are indicated. E-cadherin (Epithelial 

cadherin), ECM (Extracellular matrix), FGFR (Fibroblast-growth-factor receptor-2), FSP 

(Fibroblast-specific protein-1), MFs (Microfilaments) (Adopted from (Thiery and Sleeman, 2006)). 

 

The EMT was first described in 1995 as “epithelial-mesenchymal transformation” using 

a model of chick primitive streak formation, when EMT program was observed to allow 

stationary epithelial cells to gain the ability to migrate and invade during the developmental 
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morphogenesis to form one of the three embryonic layers, the mesoderm (for a review, see 

(Hay, 1995)). After some time the term “transformation” has been replaced by “transition”. 

Nowadays, EMTs are divided into three types with very different developmental 

consequences. The first type of EMT is very important in embryonic and organ development in 

most metazoans. For example, this process is involved in the formation of three-layered embryo 

by gastrulation (see above), or it also initiates placenta formation and organogenesis. 

Furthermore, EMT relates with wound healing, tissue regeneration and organ fibrosis, which 

represents the second type of EMT. Within fibrosis, the EMT associates with the inflammation, 

in the extreme cases continuing to organ destruction. Recently increasing number of studies 

strongly suggest that EMT program initiation is involved in the carcinoma progression and 

metastasis (for reviews, see (Huber et al., 2005; Hugo et al., 2007; Tsai and Yang, 2013)). Thus, 

various carcinoma cells are believed to undergo the last type of EMT, which shares many 

morphological and molecular features similar to those of the developmental EMT. These cells 

then lose their epithelial characteristics and may invade other tissues and organs. This is a basis 

of the metastasis, life-threatening manifestation of the cancer progression. 
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2.4. Transcription factor Snail 

 

2.4.1. Structure and function 

 

 Snail, a member of the Snail superfamily of zinc-finger transcription factors, was 

first described in Drosophila melanogaster in 1984 (Grau et al., 1984). Snail was shown to be 

essential for the formation of the mesoderm during the embryo gastrulation. Later on, Snail 

homologues have been found in many species from invertebrate to vertebrate, including humans 

(Paznekas et al., 1999). In vertebrates, three Snail family members have been identified: SNAI1 

(Snail), SNAI2 (Slug), and SNAI3 (Smuc). 

 All Snail family members serve often as transcriptional repressors, characterized 

by a common protein organization (Figure 8). They share a highly conserved C-terminal 

domain, which contains four to six zinc fingers of the C2H2 type. The zinc fingers mediate the 

sequence-specific interactions with DNA by binding to the consensus binding sites in its target 

gene promoters. This motif represents a subset of the E-box that contains the consensus 

sequence 5´-CANNTG-3´. The C-terminus is responsible for the repressor activity of the Snail. 

The N-terminal of the Snail family members is less conserved. However, all the vertebrate 

members contain the evolutionary conserved SNAG (for Snail/Gfi) domain, which is required 

for Snail interaction with several transcriptional corepressor complexes (Figure 8). The central 

part of Snail comprises of a nuclear export sequence (NES), controlling the subcellular 

localization of Snail, and a serine-rich domain (SRD), modulating the Snail protein stabilization 

(Franco et al., 2010). The central region of the protein is also responsible for Snail activity, as 

it contains most sites for the post-translation modification. 

Snail expression and activity can be regulated by various factors at the transcription as 

well as post-translation level. Localization of Snail in the cytosol potentiates its ubiquitination 

and its subsequent proteasomal degradation, while the accumulation of Snail in the nucleus 

promotes its transcriptional function. The main regulator of Snail subcellular localization is 

glycogen synthase kinase-3β (GSK-3β), which phosphorylates Snail and thus promotes its 

export from the nucleus and the degradation in the cytosol (Zhou et al., 2004). Moreover, the 

various signals from the tumor microenvironment, including soluble growth factors and 

cytokines, may regulate Snail subcellular localization and activity, especially through its 

phosphorylation (Peinado et al., 2003; Wu et al., 2009). 
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Figure 8. Snail contains an N-terminal SNAG domain and C-terminal zinc finger domains (ZF). The 

N-terminal SNAG domain interacts with several co-repressors and epigenetic remodeling complexes, 

and the C-terminal zinc finger domains are responsible for DNA binding. The serine-rich domain (SRD) 

and nuclear export sequence (NES) control Snail protein stability and subcellular localization. 

Phosphorylation sites are indicated as triangles (Adopted from (Wang et al., 2013)). 

 

Snail has a crucial role in mesoderm formation. As its deficiency in mouse embryos 

leads to the defective formation of mesoderm (Carver et al., 2001) and elevated Snail levels 

were observed in metastatic lesions in various types of tumors (Henderson et al., 2015; Jin et 

al., 2010; Yang et al., 2007), Snail is characterized as a master regulator of EMT.  

 

2.4.2. Role of Snail in epithelial-mesenchymal transition 

 

EMT can be induced by multiple factors, such as growth factors – transforming growth 

factor β (TGF-β), epidermal growth factor (EGF); and transcription factors Snail, Twist1/2, 

Slug, etc. (Ciruna and Rossant, 2001; Lu et al., 2003; Peinado et al., 2003). Earlier studies have 

shown that the adherent junction proteins (like E-cadherin and occludins), intermediate 

filaments (like cytokeratins) and desmosomes (like desmoplakins) are repressed in the epithelial 

cells during EMT. This is accompanied by the synthesis of mesenchymal markers such as 

vimentin or N-cadherin and gaining the flattened phenotype. Afterwards, the cells detach from 

the basement membrane and become more migratory (reviewed by (Boyer et al., 2000)).  

As mentioned above, transcription factor Snail can mediate EMT through the 

down-regulation of the cell adhesion molecules and the tight junction proteins by binding to 
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E-box sequence located in the promoter region of its target genes. A hallmark of EMT, caused 

by the Snail overexpression, is the reduction of transcription of cell-to-cell adhesion molecule 

E-cadherin (Cano et al., 2000). E-cadherin is an important keeper of the epithelial phenotype, 

whose decrease is systematically observed at the sites of EMT during the development and even 

during cancer dissemination (Batlle et al., 2000). Snail expression also leads to the repression 

of several epithelial and tight junction genes that encode cytokeratin 18, mucin 1 (Guaita et al., 

2002), claudins, occludins (Ikenouchi et al., 2003) or zona occludin-1 (Ohkubo and Ozawa, 

2004), i.e. proteins that promote the EMT. In addition, Snail can mediate an increase in the 

expression of some mesenchymal markers like vimentin, fibronectin, matrix metalloproteinases 

(MMPs) and RhoA (Zhang et al., 2005) and can also induce other E-cadherin repressors such 

as Zeb-1 and Zeb-2 (Takkunen et al., 2006). 

On the other hand, as the EMT is triggered by the stimuli from its surroundings, many 

secreted soluble factors such as transforming growth factor-β (TGF-β), epidermal growth factor 

(EGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), vascular endothelial 

growth factor-A (VEGF-A), tumor necrosis factor-α (TNF-α) or Wnt ligands/pathway can 

regulate Snail expression, stabilization and activity to promote EMT. This means that, for 

example, TGF-β – a multifunctional cytokine and the overall regulator of EMT, can up-regulate 

Snail and promotes its nuclear localization and Snail then mediates the escape from the tumor 

suppressive effects of TGF-β in the late stages (Franco et al., 2010). 

As a critical regulator of multiple signaling pathways leading to EMT, the Snail 

expression is closely associated with the cancer metastasis. The involvement of Snail in tumor 

progression is supported by its expression in invasive carcinoma cell lines (Cano et al., 2000) 

and by the graded expression of Snail in biopsies from patients with various types of carcinoma 

– breast cancer (Blanco et al., 2002), gastric cancer (Rosivatz et al., 2002) or hepatocellular 

cancer (Sugimachi et al., 2003). When comparing to the normal tissue, Snail expression was 

also observed to increase in the localized and further in the metastatic PCa (Dhanasekaran et 

al., 2001). Moreover, the knock-down of Snail significantly inhibits tumor growth and 

metastasis by increasing tumor-infiltrating lymphocytes and the systemic immune responses 

(Kudo-Saito et al., 2009). Together with the fact that Snail is associated with the tumor 

recurrence and the resistance to chemotherapy and radiotherapy (Kyjacova et al., 2015), Snail 

seems to be an effective target for preventing the cancer metastases. 
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2.4.3. Role of Snail in DNA damage  

 

Although a lot is known about the role of Snail in EMT and the connection between 

Snail expression and metastases becomes a frequent subject of the research, we do not know 

much about the role of Snail in the DNA damage response.  

ROS represent DNA damaging agents produced spontaneously during the normal 

cellular metabolism. Besides, ROS are also released in the tumor tissue, which positively 

correlates with the clinical stage in the small cell lung cancer and squamous cell carcinoma 

patients (Zieba et al., 2000). Furthermore, it has been reported that antioxidant manganese 

superoxide dismutase enzyme levels are lower, but nuclear oxidative damage products are 

higher in metastatic tissue of PCa, compared to the primary tissue (Oberley et al., 2000). This 

suggests that the increase in ROS levels due to the repression of the antioxidants may contribute 

to the DNA damage and development of PCa. EMT was also observed to associate with the 

increased ROS and Snail and abrogation of ROS may inhibit EMT (Radisky et al., 2005). 

Another study also shows that PCa cell line model ARCaP established by overexpressing Snail 

displayed increased ROS in vitro and in vivo in mouse (Barnett et al., 2011). Finally, ROS has 

been shown to induce the Snail expression in breast cancer cells and conversely Snail can 

upregulate ROS and therefore induce EMT (Barnett et al., 2011).  

The essential study, describing a relationship between DDR and Snail expression, shows 

that ATM, the main regulator of response to DSBs, can phosphorylate Snail on serine 100 and 

therefore mediate its stabilization (Sun et al., 2012). It was proposed that Snail phosphorylation 

by ATM leads to its resistance to GSK-3β-mediated degradation in cytosol and accumulation 

of Snail in the nucleus. Thus, ATM-mediated Snail stabilization in response to IR is essential 

to regulate cellular radiosensitivity (Boohaker et al., 2013).  

Despite the well-characterized role in EMT and cancer metastasis, it is less clear whether 

and how Snail might be involved in DDR pathways and checkpoint control maintenance. 
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3. Aims of the study  

 

Widely used anti-cancer drugs, together with radiation treatment, are the best-known 

sources of the DNA damage. Recently have been published several studies dealing with the 

relationship between the genotoxic cancer treatment and the increasing induction of metastasis 

(Camphausen et al., 2001; Su et al., 2012; Volk-Draper et al., 2014). The EMT is considered as 

the founding stone of cancer metastasis and the transcription factor Snail is believed to be one 

of the main mediators of EMT specific for human cancer. Moreover, it has been shown that 

Snail has a role also in the processes of radioresistance and chemoresistance of surviving cancer 

cells.  

In the light of these data, we wanted to test whether there is an interaction between DNA 

damage response and expression of Snail in PCa. Therefore, for the purposes to study this 

mechanism, we have identified three specific aims to be examined in this thesis. 

 

1. Testing role of ATM in regulation of Snail stabilization in response to DNA damage 

 

2. Deciphering the role of Snail in the expression of Cdk inhibitor p21waf1/cip1 

 

3. Identifying novel Snail transcriptional targets involved in DDR 
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4. Material and methods  

 

4.1. Chemicals and other material  

 

Chemicals, etc.  

 

Manufacturer, Country  

10 mM dNTPs (deoxynucleotide triphosphates)  Fermentas International Inc., USA  

2-Buthanol  Penta, CR  

Acetic acid  Penta, CR  

Acrylamide/Bis  Serva Electrophoresis GmbH, Germany  

APS (ammonium persulfate)  Sigma-Aldrich, USA  

Aqua pro injectione  B. Braun, Germany  

Bromphenol Blue  Lachema, CR  

Trisodium citrate dihydrate  Sigma-Aldrich, USA  

DAPI, 4',6-diamidino-2-phenylindole  Sigma-Aldrich, USA  

Dithiothreitol (DTT) Sigma-Aldrich, USA  

DMEM (Dulbecco’s Modified Eagle’s Medium)  IMG ASCR, v.v.i., CR  

DMSO (Dimethylsulphoxide)  Sigma-Aldrich, USA  

Double-distilled sterile H2O  IMG ASCR, v.v.i., CR  

EDTA (Ethylenediaminetetraacetic acid) IMG ASCR, v.v.i., CR  

Ethanol  Penta, CR  

Fetal Bovine Serum (FBS) 

Formaldehyde  

FuGENE® 6 Transfection reagent 

Life Technologies, USA  

Sigma-Aldrich, USA 

Roche Applied Science, Germany 

Glycerol  

KU55933 ATM kinase inhibitor 

Sigma-Aldrich, USA  

Calbiochem, Switzerland 

Lipofectamine™ RNAiMAX  Invitrogen, USA  

Medical X-ray film Blue  AGFA HealthCare, Belgium  

Methanol  Penta, CR  

β-Mercaptoethanol (2-Mercaptoethanol)  Sigma-Aldrich, USA  

Na2HPO4 (Sodium phosphate anhydrous)  Sigma-Aldrich, USA  

NaN3 (Sodium azide)  

Negative control siRNA 

Koch-Light Laboratories Ldt. UK 

Applied Biosystems, USA 
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Nonfat dry milk  Novako, CR  

PageRuler prestained protein ladder # 26616  Fermentas International Inc., USA 

PBS (Phosphate buffered saline)  

PonceauS 

IMG ASCR, v.v.i.; CR  

Fluka, Switzerland 

Pure Nitrocellulose Blotting Membrane  Pall Corporation, USA  

RNase Inhibitor  

RPMI (Roswell Park Memorial Institute) 

Fermentas International Inc., USA  

IMG ASCR, v.v.i.; CR 

SDS (Sodium dodecyl sulfate)  

Snail siRNA 

Serva Electrophoresis GmbH, Germany  

Applied Biosystems, USA 

SYBR Select Master mix  Life technologies, USA  

TaqMan reverse transcription reagent  Life technologies, USA  

TEMED (N,N,N’,N’-tetramethylethylendiamine)  Fluka, Switzerland  

Trypsin/EDTA (Ethylenediaminetetraacetic acid)  IMG ASCR, v.v.i.; CR  

Tween-20  Sigma-Aldrich, USA  

Triton X-100 (polyethylene glycol 

tertoctylphenyl ether)  

Fluka, Switzerland  

Tris (Trishydroxymethylaminomethane)  Serva Electrophoresis GmbH, Germany  

TGS buffer 10 x (192 mM glycine, 25 mM Tris, 

0.1% (w/v) SDS, pH 8.3)  

Bio Rad, USA  

TG buffer 10 x (192 mM glycine, 25 mM Tris,  

pH 8.3)  

VECTASHIELD HardSet Mounting  

Bio Rad, USA  

 

Vector Laboratories, USA 

X-gal (5-Bromo-4-Chloro-3-Indolyl beta-D-

galactopyranoside, 98%)  

Sigma-Aldrich, USA  

 

4.1.1. Kits and pre-designed systems  

 

Pre-designed system, Country  

 

ECL Western Blotting System, Amersham, USA  

BCA Protein Assay, Thermo Scientific, USA  

Rneasy Mini Kit, Quiagen Sciences, Germantown, MD, USA  

High Capacity cDNA Reverse Transcription kit, Foster city, CA, Applied Biosystems, USA  
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4.1.2. Instruments 

 

Manufacturer, Country  

 

7300 Real-Time ABI Prism PCR System; Applied Biosystems, Foster City, CA, USA  

Analytical weights AE 240; Mettler, USA  

Modulus™ Microplate Multimode reader; Turner Biosystems, USA  

Mini PROTEAN® 3 Cell wet tank system; Bio Rad, USA  

BioSafety Cabinet Bio-II-A Telstar, Spain  

Bürker counting chamber; Laboroptik, Germany  

Centrifuge 5415R; Eppendorf, Germany  

Centrifuge 5424; Eppendorf, Germany  

Centrifuge NF400; Nüve Inc.,Turkey  

CO2 Incubator FORMA Series II Water Jacket; Thermo Fisher Scientific Inc., USA  

Leica DM6000 fluorescent microscope; Leica microsystems, Zeiss, Germany 

Leica DM IL, inverted contrasting microscope; Leica Microsystems, Zeiss, Germany 

Microplate photometer Multiskan® EX; Thermo Fisher Scientific Inc., Waltham, USA  

Minicentrifuge Z 100; Hermle LaborTechnik GmbH, Germany  

NanoDrop® ND-1000 Spectrophotometer; Thermo Fisher Scientific Inc., USA  

PIPETMANs Neo® Set; Gilson Inc., Middleton, USA  

SDS-PAGE Apparatus Mini-PROTEAN Tetra Cell; Bio Rad, USA  

Soniprep 150 ultrasonic disintegrator; MSE, London, UK 

T-200 X-ray instrument; Wolf-Medizintechnik, St. Gangloff, Germany 

Thermomixer comfort; Eppendorf, Germany  

Vortex Lab dancer; VWR, Germany  

Water bath BM402; Nüve Inc., Turke  
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4.1.3. Antibodies 

 

Primary antibodies Manufacturer, Country  

 

rabbit monoclonal anti-Snail Cell Signaling, ♯3879, Biotech, Praha, CR 

mouse monoclonal anti-p21 Santa Cruz, sc-56335, Heidelberg, Germany  

mouse monoclonal anti-γ-tubulin gift from Pavel Draber, IMG, CR 

rabbit polyclonal anti-phosphorylated  Cell Signaling, ♯2661, Biotech, Praha, CR 

threonine 68 Chk2 (Chk2pT68)   

mouse monoclonal anti-Chk2 Millipore, 05-649, MA, USA 

rabbit polyclonal anti-phosphorylated  Cell Signaling, ♯9284, Biotech, Praha, CR 

serine 15 p53 (p53pS15)   

mouse monoclonal anti-p53 Santa Cruz, sc-126, Heidelberg, Germany 

mouse monoclonal anti-GAPDH GeneTEX, GTX30666, USA 

mouse monoclonal E-cadherin Santa Cruz, sc-8426, Heidelberg, Germany 

rabbit polyclonal anti-p16INK4a Santa Cruz, sc-759, Heidelberg, Germany 

mouse monoclonal anti-pRb 554136, BD Pharmingen, Heidelberg, Germany 

 

 

Secondary antibodies Manufacturer, Country 

 

horseradish peroxidase-conjugated goat anti-mouse  Bio-Rad, Hercules, CA, USA 

horseradish peroxidase-conjugated goat anti-rabbit   Bio-Rad, Hercules, CA, USA 

 

anti-mouse IgG antibody Alexa 488 Carlsbad, CA, USA 

anti-rabbit IgG antibody Alexa 568 Carlsbad, CA, USA 
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4.2. Methods 

 

4.2.1. Cell lines and growth conditions: 

 

Thawing cells 

 

Cells in cryovials, previously stored in liquid nitrogen, were warmed by placing the tube 

directly from the liquid nitrogen container into a 37°C water bath with moderate shaking. As 

soon as the last ice crystal was melted, the cells were immediately diluted into pre-warmed 

DMEM medium and centrifuged at 400 x g for 5 minutes. Supernatant was removed and cells 

were resuspended in fresh DMEM.  

 

Cell culture 

 

All manipulations with the cells were performed in the sterile atmosphere of laminar 

flow box (BioSafety Cabinet Bio-II-A Telstar, Spain). Used equipment was sterile, autoclaved 

or disposable.  

Human PCa cell lines DU145, PC-3, LNCaP, human breast carcinoma cell line MCF-7, 

human embryonic kidney cell line HEK293 and human colorectal carcinoma cell lines HCT116 

p53
+/+

 and HCT116 p53
-/-

 were obtained from American Type Culture Collection (ATCC, 

Manassas, VA, USA) and cultured in appropriate medium - Roswell Park Memorial Institute 

(RPMI) (in case of LNCaP) or Dulbecco’s modified Eagle’s medium (DMEM) (all remaining 

lines) supplemented with 10% fetal bovine serum (FBS) and antibiotics penicillin (100 U/ml) 

and streptomycin (100 ng/ml). Cells were grown at 37°C under 5% CO2 atmosphere and 95% 

humidity. Cells were replated according to their growth rate, usually when reached about 90% 

confluence. 

 

Counting cells 

 

Bürker counting chamber was used for estimating cell counts, accordingly to the 

mammalian cell culture protocol (Freshney and Freshney, 2005).  
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4.2.2. Treating cells 

 

To induce DNA damage, cells were irradiated with single dose (2, 5 or 10 Gy) or 

multiple doses (2 Gy) applied daily using T-200 X-ray instrument (Wolf-Medizintechnik, 

St. Gangloff, Germany). Alternatively, DNA damage was induced by genotoxic drugs 

camptothecin (CPT; 2 µM for 2 or 3 hours; Sigma, C9911; (Avemann et al., 1988) or 

neocarzinostatin (NCS; 1:5000; Sigma, N9162; (Ishida et al., 1965)). KU55933 (10 µM, 

Calbiochem, #118500; (Hickson et al., 2004) was used 1 h before other treatments to inhibit 

ATM kinase.  

 

4.2.3. SDS-PAGE and Western blotting analysis 

 

Cells were washed with PBS, lysed in Laemmli SDS sample lysis buffer (2% SDS, 50 

mM Tris-Cl, pH 6.8, 10% glycerol in double distilled H2O) and sonicated for 3 x 15 seconds at 

3 microns of amplitude with 15 seconds cooling intervals on Soniprep 150 (MSE, London, UK). 

Concentration of proteins was estimated by the bicinchoninic acid assay (BCA) (Pierce 

Biotechnology Inc., Rockford, USA) accordingly to the manufacturer’s protocol. 100 mM DTT 

and 0.01% bromphenol blue was added to lysates, which were then denaturated at 96°C for 1 

minute before separation by SDS-PAGE (12 and 14% acrylamide gels were used). The same 

protein amount (20 - 40 μg) was loaded into each well. Proteins were electrotransferred onto 

a nitrocellulose membrane (Amershamᵀᴹ Hybond ECL, GE Healthcare Life Sciences) using 

wet transfer and detected by specific antibodies combined with horseradish peroxidase-

conjugated secondary antibodies (goat anti-rabbit, goat anti-mouse, Bio-Rad, Hercules, CA, 

USA). Peroxidase activity was detected by ECL (Pierce Biotechnology Inc.). GAPDH or 

γ-tubulin was used as a marker of equal loading. 

Efficiency of protein transfer was checked via staining the total proteins on the 

membrane using PonceauS (Fluka, Switzerland) The membrane was washed in PBS and 

blocked in 5% non-fat milk at the room temperature (RT) for 1 hour. Membrane was then 

incubated overnight at 4°C with primary antibody diluted in PBS/Tween-20 with 1% non-fat 

milk. After incubation the membrane was washed three times for 5 minutes in PBS/Tween-20, 

incubated with the appropriate HRP-conjugated secondary antibody diluted in PBS/Tween-20 

with 2.5% non-fat milk for 1 h and then again washed three times in PBS/Tween-20 for at least 

5 minutes each wash. 
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Components for 10 ml separating SDS-PAGE gel  

Acrylamide percentage 12% 14% 

H2O distilled 3.2 ml 2.2 ml 

Acrylamide/Bis 30%  4 ml 5 ml 

SDS electrophoresis buffer 1 * 2.7 ml 2.7 ml 

Ammonium persulfate (APS) 10% 100 µl 100 μl 

TEMED 10 µl 10 μl 

 

Components for 5 ml stacking SDS-PAGE gel  

Acrylamide percentage 5% 

H2O distilled 2.975 ml 

Acrylamide / Bis 30%  1.25 ml 

SDS electrophoresis buffer 2 ** 0.72 ml 

Ammonium persulfate (APS) 10% 50 µl 

TEMED 5 µl 

*SDS electrophoresis buffer 1 (1.5 mM Tris, 0.4% SDS, pH 8.8)  

**SDS electrophoresis Buffer 2 (0.5 mM Tris, 0.4% SDS, pH 6.8) 

 

4.2.4. Indirect immunofluorescence 

 

Cells grown on sterile glass coverslips were washed with PBS and fixed by 4% 

formaldehyde for 15 minutes at RT and permeabilized by 0.1% Triton X-100 for 15 min at RT. 

To block unspecific signals cells were incubated in 10% FBS for 30 minutes. 

For immunofluorescence staining, fixed cells were incubated with primary antibodies 

diluted in PBS for 1 hour at RT under humidity controlled conditions and then extensively 

washed with PBS. The incubation with secondary antibodies was performed for 1 hour at RT 

in PBS. Nuclei were counterstained with 4',6-diamidino-2-phenylindole staining (DAPI; 

Sigma, St. Louis, MO, USA) followed by mounting in Mowiol (Sigma, St. Louis, MO, USA) 

or Vectashield HardSet Mounting Medium containing DAPI (Vector Laboratories, Burlingame, 

CA, USA). Images were captured by fluorescent microscope Leica DM6000 (Leica 

Microsystems, Zeiss, Germany) equipped with monochrome digital camera DFC350 FX and 

Leica LAS AF Lite software. 
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4.2.5. Quantitative real time RT-PCR (qRT-PCR) 

 

Cells were washed with PBS and lysed in RLT lysis buffer (RNeasy Mini Kit, Quiagen 

Sciences, Germantown, MD, USA). Total RNA samples were isolated using RNeasy Mini Kit 

(Qiagen Sciences, Germantown, MD, USA) according to the manufacturer’s instructions. 200 

ng of isolated RNA was transcribed into cDNA with random hexamer primers using 

High-Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster city, CA, USA). 

qRT-PCR was performed in ABI Prism 7300 (Applied Biosystems, Foster City, CA, USA) 

using SYBR Select Master Mix containing SYBR GreenE dye (Applied Biosystems, Foster 

City, CA, USA). Each sample was measured as technical triplicate. The relative quantity of 

cDNA was estimated by ΔΔCt method (Livak and Schmittgen, 2001). Data from PCR array 

were normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and verified with 

the following set of primers (Sigma, St. Louis, MO, USA): 

 

 Forward primer (5´→ 3´) Reverse primer (5´→ 3´) 

Snail TGCCCTCAAGATGCACATCCGA GGGACAGGAGAAGGGCTTCTC 

p21 TCACTGTCTTGTACCCTTGTGC GGCGTTTGGAGTGGTAGAAA 

SSBP1 TCTGTCTGGGACGATGTTG GTTTGGCTCACTGAAGTTAGG 

CDH1 TGAAGGTGACAGAGCCTCTGGAT TGGGTGAATTCGGGCTTGTT 

GAPDH GTCGGAGTCAACGGATTTGG AAAAGCAGCCCTGGTGACC 

 

4.2.6. siRNA interference-mediated gene knock-down 

 

Cells were seeded 1 day before transfection to be approximately 60-80% confluent at 

the time of transfection. Transfection was performed according to manufacturer’s instructions 

using Lipofectamine™ RNAiMAX (Invitrogen, Carlsbad, CA, USA). The sequence of the 

Snail siRNA (siSN, siSnail) was 5-GAA UGU CCC UGC UCC ACA Att. Non-targeting siRNA 

sequences (siNC) were used as a negative control siRNA. All siRNAs were purchased from 

Applied Biosystems (Foster City, CA, USA). 48 hours post transfection, cells were irradiated 

or treated as indicated. 
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4.2.7. Cell transfection for gene ectopic expression  

 

Cell lines were transfected at 60-80% confluence with 0.5 µg/ml pEGFP-C2 plasmid 

(Addgene, USA) expressing Snail fused with GFP using FuGENE® 6 Transfection reagent 

(Roche Applied Science, Germany) according to the manufacturer’s protocol. After at least 

24 h, the number of cells expressing the GFP was checked by fluorescent microscopy. 
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5. Results 

 

5.1. Testing the role of ATM in regulation of Snail stabilization in response 

to DNA damage 

 

It was observed that Snail is involved in the induction of non-adherent growth, EMT 

and resistance to anoikis in response to fractionated irradiation (fIR) in PCa cell lines. 

(Kyjacova et al., 2015). This phenomenon was also described in other cancer cell lines 

(colorectal cancer (Hoshino et al., 2009), non-small cell lung carcinoma (Shintani et al., 2011), 

etc.) after different genotoxic insults (mostly chemotherapy treatment). To reveal a mechanistic 

link between genotoxic stress and above mentioned phenomena, we tested whether ATM 

kinase, activated by DNA damage, can directly phosphorylate and thus stabilize Snail (Figure 

9), as was described recently (Sun et al., 2012). Using breast cancer cell lines MDM-MB-231 

and MCF-7 Sun et al. showed that the presence of chemical inhibitor of ATM kinase KU55933 

prevented Snail proteasomal degradation after either after IR or chemical stress (camptothecin, 

CPT, a topoisomerase I poison) (for CPT, see Figure 9). Moreover, they analyzed human 

invasive breast cancer tissues and found that protein level of Snail positively correlates with the 

level of activated ATM kinase, indicating a role of ATM in Snail regulation (Sun et al., 2012).  

 

Figure 9. ATM regulates Snail stabilization in 

response to DNA damage. MCF-7 cells (A) or 

MDA-MB-231 cells (B) were pretreated with 

KU55933 (10 mM) for 1 h followed by CPT 

(2 mM) treatment for 2 or 3 h. Total cell lysates 

were collected and Snail, pS1981-ATM and 

β-actin were immunoblotted (Sun et al., 2012). 
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As radiotherapy is a common treatment for PCa and Snail is implicated in acquired 

resistance to both radiotherapy and chemotherapy (Kurrey et al., 2009), we decided to 

investigate the role of ATM in Snail stabilization after one dose of IR (10 Gy). We pretreated 

metastasis-derived PCa cell line DU145 and breast cancer cell line MCF-7 by ATM inhibitor 

KU55933 for 1 hour before IR and harvested the cells after 3 and 24 hours, respectively. Then 

we analyzed protein levels of Snail, Chk2 kinase phosphorylated at threonine 68 (Chk2pT68), 

Chk2 (Chk2 total) and GAPDH (loading control) by western blotting.  

Since Chk2 is a direct substrate of ATM kinase and its phosphorylated form is one of 

the main markers of activated DDR pathway (Falck et al., 2001), we expected a significant 

decrease of Chk2pT68 protein levels in response to KU55933 treatment, notably after DNA 

damage induction.  

 

Figure 10. Effect of ATM inhibition on Snail stabilization after DNA damage induced by IR. Levels of 

Snail, Chk2 phosphorylated on threonine 68 (Chk2pT68), Chk2 total and GAPDH (loading control) in 

DU145 and MCF-7 cells after 1 h-pretreatment with KU55933 (10 μM) followed by irradiation (10 Gy) 

for 3 or 24 h. Represents pictures of 2 independent experiments are shown. 

 

As shown in Figure 10, Chk2pT68 levels increased in KU55933-nontreated irradiated 

cells, which confirm the DNA damage induction. The level of Chk2pT68 was apparently 

reduced in KU55933-treated cells, indicating a proper function of ATM inhibitor. With regard 

to Snail protein level, we observed an obvious decrease of its level after the addition of 

KU55933 to subsequently irradiated DU145 cells indicating the role of ATM kinase in Snail 

stabilization upon IR in this PCa cell line. On the other hand, in case of MCF-7 breast 

adenocarcinoma cells Snail was degraded during inhibition of ATM only in control samples 

and samples harvested 3 h after IR. Furthermore, the Snail protein levels cells seemed rather to 

decline 24 hours after irradiation independently of ATM.  
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To achieve more conclusive results, we decided to follow exactly the same conditions 

mentioned in the study of Sun et al., using (besides DU145) MCF-7 cells and CPT as 

a genotoxic agent. Cells were again pretreated for 1 hour with ATM inhibitor KU55933 and 

followed by CPT treatment for 2 or 3 hours. Total cells lysates were then prepared and analyzed 

for Snail, Chk2pT68, Chk2 total and GAPDH (loading control) by western blotting. As shown 

in Figure 11, CPT treatment caused high increase in the Snail level in both cell lines. The 

activity of ATM in KU55933-treated cells was reduced as indicated by diminished level of 

Chk2pT68. Provided ATM regulates Snail stabilization and Snail accumulation in the nucleus, 

there should be no up-regulation in the levels of Snail in KU55933-treated cells after CPT 

treatment. Nevertheless, increased degradation of Snail was observed after combined treatment 

with CPT and KU55933 inhibitor in DU145 only at one time-point (2 h). On the other hand in 

MCF-7 cells, the effect of ATM inhibition on Snail destabilization was detected in control cells 

and, in small extent, in samples treated with CPT for 3 h. Despite we observed ATM-mediated 

Snail stabilization in DU145 and MCF-7 cells undergoing IR, the resulting decrease of Snail 

level after ATM inhibition was not as clear as we expected, especially after treatment with CPT. 

However, to make final conclusion, more experiments are needed. 

 

Figure 11. Effect of ATM downregulation on Snail stabilization after DNA gamage induced by CPT. 

Immunoblotting detection of Snail and Chk2 phosphorylated on threonine 68 (Chk2pT68) and Chk2 

total protein (Chk2 total). GAPDH was used as a loading control. DU145 and MCF-7 cells were treated 

with ATM inhibitor KU55933 (10 μM; 1 h) followed by CPT (2 μM) treatment (2 or 3 h). Proper 

function of inhibitor is demonstrated by decreased level of Chk2pT68. Representative images of three 

independent experiments are shown.  
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5.2. Deciphering the role of Snail in expression of Cdk inhibitor p21waf1/cip1  

 

After DNA damage, multiple components of DDR machinery are activated in the cell, 

resulting in cell cycle arrest and DNA repair. An important part of DDR and subsequent 

regulation of the cell cycle is an activation of cell cycle checkpoint via ATM-p53-p21 pathway. 

The tumor suppressor p53 is directly phosphorylated by ATM kinase at serine 15 (Canman et 

al., 1998), which leads to its stabilization, tetramerisation and transcription activation. 

Cyclin-dependent kinase inhibitor p21 is one of the most important transcriptional targets of 

p53 involved in cell cycle regulation (Figure 4; (El-Deiry et al., 1994). p21 binds to and inhibits 

predominantly cyclin-A/Cdk2 and cyclin-E/Cdk2 complexes both orchestrating the progression 

through the cell cycle, resulting in the cell cycle arrest mainly in G1 phase (Stewart et al., 1999).  

Although ATM/p53-mediated expression of p21 is the dominant pathway induced as 

a consequence of DNA double strand breaks, it was shown that p21 can be activated also by 

p53-independent pathways (Michieli et al., 1994) and several other mechanisms of p21 

induction after genotoxic stress were identified in p53-negative background (Gartenhaus et al., 

1996; Loignon et al., 1997). Importantly, it was shown that transcription factor Snail may 

negatively affect the expression of p21 in the human osteosarcoma MG63 cells (Takahashi et 

al., 2004).  

As noted above, Snail binds to the 5´-CANNTG-3´ consensus motifs (E-boxes) in the 

promoters of its targets genes (Batlle et al., 2000; Pavletich and Pabo, 1991) and thus regulates 

its transcription. It was reported that knock-down of Snail by RNA interference downregulates 

p21 in MG63 cell line with mutated p53 (Takahashi et al., 2004) (Masuda et al., 1987), which 

is mediated via DNA binding of Snail to its consensus sequences present in p21 gene promoter 

(Kurrey et al., 2009). Moreover, ectopic expression of Snail in MDCK cells bearing wild-type 

p53 (Chen et al., 2006) resulted in overexpression of p21 (Vega et al., 2004). These facts led us 

to investigate the role of Snail in regulation of p21 during the genotoxic stress induced by IR.  

For this purpose, we took advantage of the isogenic colorectal carcinoma cell line 

HCT116 p53 wild-type (p53+/+) and null (p53-/-) (Sur et al., 2009), which we irradiated and 

monitored from 0.5 to 48 hours (Figure 12). We noticed that Snail protein level at unperturbed 

conditions is significantly higher in p53-/- HCT116 compared to p53+/+ cells. After the IR the 

level of Snail was peaking at hour 3 in p53+/+ cells and then slowly declined until it reached 

control level as soon as 48 hours after IR. In contrast, the Snail level in p53-/- HCT116 cells 

remained unchanged until 3 h time-point after IR, and then had rather decreasing tendency in 
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comparison with non-irradiated sample. Compared to non-irradiated cells, p21 protein level 

gradually increased in irradiated cells after IR exposure in p53 wild type cells, however, we 

detected p21 only at 48 h time-point after IR in p53 null cells indicating low starting levels of 

this protein in the absence of its conventional transcriptional inducer p53. Together, Snail and 

21 levels appeared to change in opposite direction, especially in p53 wild type cells. Chk2pT68 

was used as the indicator of DDR activation with the peak in induction at 3 hours after IR. 

Interestingly, the protein level of Chk2pT68 decreased transiently in both cell lines from the 

hour 6 to 48, with the largest decrease at hour 24, irrespective of p53 status, indicating 

oscillating course of DDR in HCT116 cells (Geva-Zatorsky et al., 2006). In p53 wild type cells, 

serine 15 phosphorylation of p53 possessed similar trend as Chk2pT68.  

 

Figure 12. Correlation between Snail and p21 levels in irradiated HCT116 cells. Immunoblotting 

detection of Snail, p21, Chk2 phosphorylated on threonine 68 (Chk2pT68) and p53 phosphorylated at 

serine 15 (p53pS15). γ-tubulin was used as a loading control.
 
HCT116 p53 wild-type (HCT116 p53

+/+
) 

and HCT116 p53 negative (HCT116 p53
-/-

) were irradiated (2 Gy) and harvested 0.5, 1, 3, 6, 24 and 

48 h after IR exposure. (L. Kyjacova (unpublished data)) 

 

To decipher whether Snail has a direct role in p21 regulation in response to IR, we 

decided to down-regulate Snail levels by siRNA interference in the same cell lines. As 

evaluated with real time qRT-PCR, siRNA knock-down of Snail resulted in a decrease of Snail 

mRNA level in both p53+/+ and p53-/- cell lines (Figure 13a). Importantly, knock-down of Snail 

resulted in increase of p21 mRNA level in both cell types independently of p53 status. However, 

a clear difference between HCT116 p53+/+ and p53-/- cells was observed at the level of p21 

mRNA, strictly under DNA damage conditions. The increase of p21 mRNA in HCT116 p53+/+ 
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compared to HCT116 p53-/-, both after IR exposure, indicating p53-dependent induction of p21 

overcharging the suppressive effect of Snail.  

 

Figure 13. Knock down of Snail results in increased p21 mRNA levels in both HCT116 p53-/- and 

HCT116 p53+/+ cells. Snail (a) and p21 (b) mRNA levels were determined by real-time qRT-PCR. 

GAPDH was used as a reference gene. HCT116 p53-/- and HCT116 p53+/+ cells were transfected twice 

(with an interval of 48 h) with Snail siRNA (siSnail) or non-targeting siRNA sequences (siNC) as 

a negative control. Cells were irradiated with 2 doses of 2 Gy 48 h after first transfection and harvested 

24 h after the last IR dose. Representative data from 2 independent experiments are shown. Data 

represent mean ± S.D. 

 

We next transfected both HCT116 p53+/+ and p53-/- cells with pEGFP-Snail expression 

vector to overexpress Snail. Both cell types were then irradiated with two doses of 2 Gy. p21 

and Snail protein levels were evaluated using indirect immunofluorescence detection. As shown 

in Figure 14, Snail (red signal) was present in the cells that did not express p21 (blue signal) 

and vice versa. This effect was again independent on p53 status of HCT116 cells. The increase 

of Snail positive cells in HCT116 p53-/- line correlated with the decrease of p21 positive cells, 

indicating again the suppressive role of Snail on p21.  
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Figure 14. Ectopic expression of Snail negatively correlates with the level of p21 protein independently 

of p53 status in HCT116 colorectal cancer cell lines. Immunofluorescence detection of p21 and Snail 

proteins in HCT116 p53
+/+ 

(a) and HCT116 p53
-/-

 (b) transfected with either pEGFP-empty or 

pEGFP-Snail, irradiated (2 x 2 Gy) or not and harvested 24 h after the last IR exposure. DAPI was used 

to detect cell nuclei (gray). (L. Kyjacova (unpubleshed data)) 
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As described above, PCa cell line DU145 contains mutation in p53 DNA-binding 

domain, while PC-3 line is p53 null. LNCaP PCa cells possess, in contrast, wild-type p53 gene 

(Carroll et al., 1993). Thus, we next utilized these three cell lines to analyze the role of Snail in 

p21 expression in various p53 background. To monitor the potential regulation of p21 by Snail 

in these cells under the stress condition (IR), we first downregulated Snail protein level by 

siRNA-mediated knock-down. To reach effective knock-down of Snail, we have had to perform 

the transfection of siRNA in two consecutive steps. Figure 15 shows a visible decrease of Snail 

protein levels in Snail siRNA-treated cells, both in irradiated and non-irradiated samples. 

Indeed, we observed an increase of p21 in cells with Snail knock-down in p53-mutated 

(DU145) and p53-negative (PC-3) cells both in control and irradiated samples. In LNCaP cells, 

the induction of p21 following irradiation was significantly higher than in DU145 and PC3 

cells, indicating prevailing suppressive role of Snail in cells with aberrant function of p53. 

 

 

   

Figure 15. Effect of Snail knock down on fractionated irradiation-mediated p21 induction in PCa cell 

lines with different p53 status. Immunoblotting detection of Snail and p21 in DU145, PC-3 and LNCaP 

cells. Cells were transfected twice (with an interval of 48 h between each siRNA transfection) with Snail 

siRNA (siSnail) or non-targeting siRNA sequences (siNC) used as a negative control. Cells were 

irradiated with two doses of 2 Gy (interval of 24 h). Cells were harvested 24 h after the last dose of IR. 

Representative data from 3 independent experiments are shown. γ-tubulin (tubulin) was used as 

a loading control. 
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In the next experimental set, mRNA levels of Snail and p21 were detected by real time 

qRT-PCR after the fIR exposure in all three PCa cell lines in the presence or absence Snail 

(siSnail), as indicated in Figure 16. Despite using a double transfection of siRNA, we were able 

to reduce Snail mRNA to desirable levels only in DU145 and LNCaP, but not in PC-3 cells 

(Figure 16a). Nevertheless, the knock-down of Snail in DU145 cells resulted in significantly 

increased expression of p21 (Figure 16b). Again, the induction of p21 in LNCaP cells after 

irradiation was substantially higher than in DU145 and PC3 cells and was not negatively 

affected by Snail RNA interference, which is in agreement with the data on the protein level 

(see Figure 15).  

Altogether, our data indicate that in case of PCa cells Snail acts as a repressor of p21, 

and this regulatory role is more pronounced in cells with abrogated function of p53. 

  

 

Figure 16 The effect of Snail knock down on stress-induced transcription of p21 in PCa with different 

p53 status. Snail (a) and p21 (b) mRNA levels were determined by real time qRT-PCR. GAPDH was 

used as a reference gene. DU145, PC-3 and LNCaP cells were transfected twice (an interval of 48 h) 

with Snail siRNA (siSnail) or non-targeting siRNA sequences (siNC) as a negative control. Cells were 

irradiated or not with 2 doses of 2 Gy (interval of 24 h) 48 h after first transfection and harvested 24 h 

after last IR dose. Representative data from 4 independent experiments are shown. Data represent mean 

± S.D. *p<0.05. 
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5.3. Identifying novel transcriptional targets of Snail 

 

Since Snail is well recognized EMT driver in cancer (Cano et al., 2000; Guaita et al., 

2002), many EMT-associated genes were identified as its direct transcriptional targets (Cano et 

al., 2000; Ikenouchi et al., 2003; Takkunen et al., 2006). However, Snail plays a role in many 

other processes such as apoptosis, DDR or cell cycle regulation (Hu et al., 2008; Kajita et al., 

2004; Vega et al., 2004) and the majority of Snail targets have not been identified yet. 

Therefore, we wished to uncover some more genes that may be regulated by the transcription 

factor Snail in response to DNA damage. 

Importantly, Kurrey et al. performed high-throughput chromatin immunoprecipitation 

and promoter array analysis (ChIP-on-chip) using epithelial ovarian cancer cell line developed 

to overexpress Snail (A4) (Bapat et al., 2005) and identified 614 genes containing E-boxes 

representing potential targets for the Snail binding (Kurrey et al., 2009). We used this gene set 

to try to identify genes involved in DNA repair or cell cycle regulation and regulated by Snail 

in cells exposed to DNA damaging agents. 

In our laboratory, the whole genome gene expression analysis of surviving 

subpopulations of DU145 irradiated with ten daily doses of 2 Gy was performed. Exposure to 

fIR in these cells led to the formation of 2 radiation-surviving cell populations – adherent cells 

with senescence features and non-adherent anoikis-resistant cells with the ability to restore 

proliferation and adherent growth. Since fIR induced Snail and EMT in PCa cells (Kyjacova et 

al., 2015), it could be suggested that there is a mechanistic link between EMT and DDR 

machinery (Boohaker et al., 2013,Zhou et al., 2013,Zhang et al., 2014). Moreover, Snail has 

been implicated in radioresistance-associated EMT (Escrivà et al., 2008), which is consistent 

with our data showing the higher levels of Snail in fIR-surviving anoikis resistant non-adherent 

population. 

As the formation and survival of anoikis-resistant non-adherent subpopulation of 

DU145 and PC-3 cells was dependent on Snail, which level was significantly elevated 

compared to control cells (Kyjacova et al., 2015), we compared both datasets to find genes that 

can be regulated by Snail. Identified genes found in both datasets - cyclin B3 (CCNB3) and 

single strand DNA binding protein 1 (SSBP1, hSSB1), were selected for further analysis to test 

their regulation by Snail after DNA damage induction (see Figure 17). 
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CCNB3 is involved in the cell cycle progression, specifically, in transition from G2 

phase to mitosis through its association with Cdk2. But, if not properly degraded, it can lead to 

the cell cycle arrest in G1 and G2 (Tschöp et al., 2006).  

hSSB1 is a single-strand binding DNA protein that is essential for efficient repair of 

DNA double-strand breaks (DSBs). Cells deficient in hSSB1 displayed increased 

radiosensitivity and defective checkpoint activation, probably through defective amplifying of 

ATM-dependent signaling (Richard et al., 2008). Furthermore, it was previously observed that 

hSSB1 can protect p53 and its main downstream target p21 from ubiquitin-mediated 

degradation (Xu et al., 2011, 2013), resulting in hSSB1 regulation of the cell cycle progression 

and DNA damage checkpoint. 

 
Figure 17. Snail putative target gene set identified via chip-on-chip (Kurrey et al., 2009) shown as data 

set no. 2, was compared to genes repressed (p<0.05) in DU145 fIR-surviving non-adherent population 

(see (Kyjacova et al., 2015)) and unpublished data) and selected for involvement in the cell cycle 

regulation, p53 signaling pathway, base excision repair, nucleotide excision repair, mismatch repair, 

homologous recombination and non-homologous end-joining (data set no. 1). Genes present in both 

datasets are marked in red. 

 

To assess the role of Snail in the transcription control of SSB1 and CCNB3, we designed 

two different experiments. First, we performed siRNA-mediated knock down of Snail in DU145 

cells, which were irradiated or not with 2 doses of 2 Gy to induce DNA damage. Levels of 

Snail, hSSB1 and CCNB3 mRNAs were then determined by real time qRT-PCR (Figure 10a). 

The effectiveness of siRNA-mediated Snail knock-down was confirmed by measurement the 

level of Snail mRNA (Figure 18a). Although the level of Snail was decreased, the mRNA levels 

of hSSB1 and CCNB3 were not influenced both by IR and by Snail knock down (Figure 17a) 

indicating that their expression is stable and not affected by this type of genotoxic stress. 

To underscore these findings, we used alternative approach to ectopically overexpress 

Snail and test its effect on both genes in cells exposed to genotoxic stress. To this purpose, we 

transfected MCF-7 and HEK293 cells (easily transfected compared to poorly transfectable PCa 

cell lines) with pEGFP-Snail (Snail) expression and control pEGFP-empty (empty) vector. 
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Transfected cells were then treated with the anti-cancer radiomimetic drug neocarzinostatin 

(NCS). mRNA levels of Snail, hSSB1 and CCNB3 were again determined by real time 

qRT-PCR. As seen in Figure 18b and 18c, overexpression of Snail had no effect on CCNB3 

and hSSB1 mRNA levels both in control and irradiated samples.  

 
Figure 18. The effect of Snail knock down on mRNA levels of hSSB1 and CCNB3. mRNA levels of 

Snail, hSSB1 and CCNB3 were determined by real-time qRT-PCR in DU145 exposed to fIR (2 doses 

of 2 Gy at 24 h interval), and MCF-7 and HEK293 cells treated with radiomimetic drug 

neocarzinostatine (NCS). GAPDH was used as a reference gene. DU145 cells (a) were transfected twice 

(an interval of 48 h) with Snail siRNA (siSnail) or non-targeting siRNA sequences (siNC) as a negative 

control and then irradiated or not with 2 doses of 2 Gy 48 h after first transfection and analyzed 24 h 

after the last IR dose. MCF-7 (b) and HEK293 (c) cells were transfected with pEGFP-empty (empty) as 

a negative control or pEGFP-Snail (Snail) vectors, treated or not with neocarzinostatin (NCS, 100ng/ml) 

and harvested 24 h after treatment. Data were obtained from 2 independent experiments. Data represent 

mean ± S.D.  

 

Taken together, our findings indicate that Snail does not mediate the transcription of the 

hSSB1 and of the CCNB3 mRNA in DU145, MCF-7 and HEK293 in both unperturbed 

conditions and after genotoxic stress. 
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6. Discussion 

 

6.1. The role of ATM in stabilization of Snail  

 

ATM kinase is a central protein orchestrating the DDR (reviewed by (Shiloh, 2003)). 

ATM activation upon DNA damage lead to the phosphorylation of hundreds of its target 

substrates (Matsuoka et al., 2007), which are involved in the regulation of DNA repair, cell 

cycle, transcription, etc. (reviewed by Medema and Macůrek, 2012). ATM kinase preferentially 

phosphorylates its substrates on serine or threonine residues that precede glutamine residues, 

so-called SQ/TQ motifs (Kim et al., 1999).  

Unlike other transcription factors, activation and stability of Snail is also driven by 

posttranslational modifications including phosphorylation. For example, it was demonstrated 

that GSK-3β-mediated Snail phosphorylation targets Snail to the cytosol for its proteasomal 

degradation (Zhou et al., 2004). Importantly, Sun and coworkers (Sun et al., 2012) showed that 

ATM is hyper-activated in breast tumors with lymph-node metastasis and that this 

hyper-activation correlates with the elevated expression of Snail. Hereafter they found that 

ATM phosphorylates Snail at serine 100, matching the SQ/TQ consensus motif, the only 

potential ATM phosphorylation site in the Snail protein sequence (Kastan and Lim, 2000) 

 They also anticipated that ATM-mediated Snail phosphorylation prevent its 

GSK-3β-mediated degradation (Sun et al., 2012), as serine 100 is, at the same time, target site 

for the phosphorylation via GSK-3β (Zhou et al., 2004). Furthermore, it was shown by the same 

group that this posttranslational modification of Snail regulates tumor cell radiosensitivity and 

invasion after IR in breast cancer cell lines (Boohaker et al., 2013). As Snail is upregulated in 

PCa cell lines undergoing anti-cancer genotoxic therapies (Kyjacova et al., 2015; Liu et al., 

2015) we decided to investigate whether this effect is also dependent on ATM.  

For this purpose, PCa cell line DU145 and breast cancer cell line MCF-7 (used as 

a positive control), were treated with ATM inhibitor KU55933 and subjected to IR or CPT 

treatment to induce DNA damage. Although the ATM inhibition led to the decreased Snail 

levels in both irradiated cancer cells, the resulting decline of Snail levels, particularly in MCF-7 

cells, was not as marked as we expected, compared to the results published by Sun et al. (Sun 

et al., 2012). Therefore, our next experiments were designed to repeat exactly the same 

conditions used in the study of Sun et al. (see Figure 9; (Sun et al., 2012)) with MCF-7 (and 

DU145) cells treated with CPT. Despite the effective inhibition of ATM proved by decreased 
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phosphorylation of its target Chk2, the ATM-mediated Snail stabilization has not been clearly 

demonstrated, since the Snail reduction is not apparent in all samples treated with ATM 

inhibitor and CPT. The same results were achieved in several independent experiments. 

Although the reason for such discrepancy is unknown, one should take into account the 

accumulating differences in cell lines of the same origin due to the long term propagation in 

laboratories. Moreover, Snail was previously shown to be stabilized also via phosphorylation 

by p21-activated kinase 1 (Pak1) (Yang et al., 2005), which is rapidly stimulated by IR and also 

plays a role in the DDR (Falck et al., 2001). Thus the inhibition of ATM itself may not be 

sufficient to influence the stability of Snail and simultaneous inhibition of both kinases (Pak1 

and ATM) may be needed.  

To definitely confirm or refuse the role of ATM in the Snail stabilization, it is necessary 

to conduct further experiments, preferably using MCF-7 cells obtained from another source. 

I would also propose to inhibit the protein translation and degradation machineries with specific 

inhibitors, and then monitor the effect of ATM on Snail stability. Alternatively, I would repeat 

previous experiments using the ATM RNA interference as an alternative to the chemical 

inhibition of ATM.  

 

6.2. Snail dependent regulation of p21 waf1/cip1 expression in DU145 cells 

 

One of the main factors participating in diverse cellular responses to DNA damage is 

a transcription factor p53. Besides its other functions, activation of p53 may trigger cell cycle 

arrest through the induction of expression of the Cdk inhibitor p21 (El-Deiry et al., 1994). The 

p53 gene is one of the most frequently mutated genes in human cancer (reviewed in Brosh and 

Rotter, 2010; Hollstein et al., 1991), nevertheless p21 was shown to be induced even in 

p53-negative/inactive cancer cells (Loignon et al., 1997). As the p21 gene promoter contains 

the Snail-binding consensus motif (E-box) (Kurrey et al., 2009), we addressed the question 

whether p21 could be transcriptionally regulated via Snail under conditions of the dysfunctional 

p53. 

Using siRNA-mediated gene knock-down of Snail, we demonstrated that Snail level 

negatively affects both p21 mRNA and protein levels in DU145 PCa cells (carrying single point 

mutation in DNA binding domain of p53) (Isaacs et al., 1991) contrary to LNCaP cells (which 

are p53 wild-type). This cell-type difference can be explained just by the p53 status, as the 
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extensive activation of p21 via p53-p21 pathway can mask the suppressive role of Snail on the 

p21 transcription. 

To test this we took the advantage of isogenic HCT116 cell lines that we have in variants 

with wild type and knocked-out p53 gene (Baker et al., 1989). As we showed, Snail knock down 

caused induction of p21 in both HCT116 p53+/+ and p53-/- cell lines exposed to IR, indicating 

that the status of p53 is not the main denominator of the presence/absence of Snail suppressive 

effect on p21, especially in the context of HCT116 cell line. Thus the lack of p21 induction 

after knock down of Snail in LNCaP cell line can be due to other reasons than the masking 

effect of p53. For example, one possibility is that Snail does not function as the repressor of 

p21 in LNCaP cells. Another explanation could be that p21 is not primarily induced by p53 in 

some cell lines after exposure to genotoxic stress. These findings are consistent with the work 

of Takahashi et al., who observed the inhibition of the p21 expression by Snail in MG63 

osteosarcoma cell line (Takahashi et al., 2004), which has been previously shown to contain 

mutation in the p53 gene (Masuda et al., 1987). Moreover, Takahashi and coworkers showed 

that Snail ectopic expression in MG63 cells suppressed E2A-mediated p21 expression, because 

E2A compete with Snail for the same E-boxes (Takahashi et al., 2004). E2A transcription factor 

belongs to the basic helix-loop-helix family of proteins and play an important role in the cell 

cycle progression by regulating transcription of the p21 gene (Prabhu et al., 1997). E2A was 

also shown to be required for full p21 induction upon p53 activation by both genotoxic and 

non-genotoxic conditions in multiple cancer cell types expressing wild type p53. Interestingly, 

E2A seems to act downstream of p53 binding to the p21 enhancers (Andrysik et al., 2013). This 

may suggest the impact of the malfunctional p53 on E2A activity. As Snail and E2A 

transcription factors were examined to compete with each other for the same binding sequence, 

but display the opposite role in the p21 transcription (Takahashi et al., 2004), we assume that 

altered E2A action, caused by p53 depletion/mutation, may lead to changes in Snail binding to 

p21 regulatory region. Thus, the Snail repressive effect on p21 can prevail in p53 

negative/inactive background and in this way influence the effect of DDR on cell cycle 

progression. On the other hand, in MDCK (derived from the kidney tissue of an adult female 

cocker spaniel) cells, Snail was previously shown to induce G0/G1 arrest through the increased 

expression of p21 (Vega et al., 2004), indicating that Snail can act as transcriptional activator 

of p21 - in dependence on the cell type context.  

As Snail was shown to inhibit expression of the p21 induced by E2A (Takahashi et al., 

2004), we would like to investigate in future experiments, if Snail reduces p21 levels in DU145 

cells in the same E2A outcompeting manner. To determine this, we can, for example, transfect 
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DU145 cells with the expression plasmid for E2A and Snail and then examine p21 mRNA and 

protein levels by real time qRT-PCR and immunofluorescence/immunoblotting, respectively. 

Moreover, we should explore the relationship between p53 status and E2A activity, especially 

because E2A expression is considerably high in DU145 and PC-3 PCa cell lines (Patel and 

Chaudhary, 2012), while in LNCaP cells E2A expression is low to negligible (Asirvatham et 

al., 2007). We can then consider the E2A expression to substitute p53-mediated p21 induction 

in DU145 and PC-3 cells, which can be subsequently affected by Snail. 

 

6.3. Identifying novel transcriptional targets of Snail 

 

As mentioned above, Snail transcription activity relies on binding to E-boxes of its 

target genes in order to regulate their transcription (Batlle et al., 2000; Cano et al., 2000). It is 

well known that Snail is able to induce a complete EMT and it is regulator of plethora factors 

involved in the basement membrane and extracellular matrix degradation (Zhang et al., 2005). 

However, its role in the regulation of factors involved in DDR is not clear. Therefore, we 

compared the whole genome gene expression data of surviving (radioresistant) subpopulations 

of irradiated DU145 cells, especially significantly repressed genes in non-adherent fraction 

where the level of Snail was reported high comparing with control cells, (see (Kyjacova et al., 

2015)) with genes known to comprise E-boxes on their promoters (Kurrey et al., 2009). In this 

set of hundreds genes, we identified two genes - hSSB1 and CCNB3 - known to participate in 

DNA damage response and cell cycle regulation as candidates for Snail-dependent regulation. 

hSSB1 belongs to the single-stranded DNA binding protein family and is essential for 

efficient repair of DNA DSBs by the homologous recombination pathway. hSSB1 is rapidly 

recruited to the sites of DSBs, interacting with MRN complex (Richard et al., 2011) and this 

way promotes the ATM activation. Moreover, hSSB1 was shown to protect p53 from 

degradation and modulate its transcriptional activity (Xu et al., 2013). The similar stabilizing 

effect of hSSB1 was also observed for p21 (Xu et al., 2011). These data suggest a key role of 

hSSB1 in DDR. 

As the hSSB1 promoter contains the Snail-binding motif, we tested whether Snail has 

a role in its expression after DNA damage. Knock down of Snail did not significantly affect 

mRNA levels of hSSB1 in DU145 cells, even after IR treatment. Overexpression of Snail and 

treatment with NCS in MCF-7 and HEK293 cells did not cause marked changes in hSSB1 

mRNA levels, as well. Although these results suggest that there is a no relationship between 
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Snail and hSSB1expression, it is not clear, why the expression of hSSB1 was not influenced by 

DNA damage, as reported by Richard et al. (Richard et al., 2008). Richard et al., showed that 

hSSB1 localizes to damaged nuclear foci that have been formed within 30 min of DNA damage 

and persists up to 8 hours (Richard et al., 2011). This point to the possibility that 24 hours 

time-point after IR exposure and NCS treatment used by us could be beyond the window of 

measurable hSSB1 mRNA changes in dependence on Snail, but not definitely means that there 

is no actual relationship between the two. To answer this question, earlier time-points after IR 

need to be evaluated.  

As the activation of DDR, among others, leads to the cell-cycle arrest and the DDR 

effectors can directly target the cell-cycle control machinery, cyclins are/can be also considered 

components of DDR machinery. The representatives of B-type of cyclins that control transition 

from the G2 phase of cell cycle to mitosis include also CCNB3 (Satyanarayana and Kaldis, 

2009). 

According to our knowledge, the role of DNA damage on CCNB3 expression has not 

been investigated yet. To test the role of Snail in transcriptional control of CCNB3, we reduced 

Snail levels in DU145 using siRNA-mediated gene knock down and subjected cells to IR 

exposure. Alternatively, MCF-7 and HEK293 cells were transfected with pEGFP-Snail 

expression vector to overexpress Snail and were treated with NCS to induce DNA damage. 

Although the whole genome gene expression analysis performed in our laboratory (data not 

shown) recorded changed expression of CCNB3 in DU145 fIR-surviving non-adherent cells 

overexpressing Snail, we did not seen changes in CCNB3 mRNA levels induced by treatment 

with DNA damaging agents. Moreover, no correlation between the Snail levels modulation and 

the expression of CCNB3 gene was observed. To conclude, our findings indicate that despite 

cyclin B3 promoter contains putative Snail-binding sequence, Snail is not involved in 

transcriptional control of CCNB3 gene in DU145, MCF-7 and HEK293 cells. 
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7. Summary 

 

Optimal DDR is critical for the maintenance of genetic stability and is important in 

developing radioresistance of cancer cells. However, the role of DDR in tumor progression and 

metastasis is less understood. Here, we examined and demonstrated the interplay between the 

transcription factor Snail and DDR. The results of the experimental part of this thesis indicate 

the following: 

 

1. The stabilization effect of the main DDR effector kinase ATM was not clearly 

demonstrated, as the ATM inhibition did not caused apparent and reproducible decrease 

of Snail in DU145 PCa cell line and MCF-7 breast cancer cell line undergoing CPT 

treatment. 

 

2. Snail can act as the repressor of Cdk inhibitor p21waf1/cip1. Its repressor effect is 

unmasked in cancer cell lines with abrogated function of p53.  

 

3. The role of Snail in the transcription regulation of DDR associated factors hSSB1 and 

CCNB3, containing putative Snail binding sites (E-boxes) in their promoters, was not 

confirmed.  
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