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Abstract

This thesis aims to investigate the usability of Google Trends data for predicting

stock market volatility. Using daily Google data on tickers of three companies

with large market capitalization, we examine the causal relationship between

Google data and volatility proxy. We employ two common models for volatility,

Generalised Autoregressive Conditional Heteroskedasticity model (GARCH)

and Heterogeneous Autoregressive model (HAR) and we augment them by

adding Google data. We studied the performance of in-sample forecasting and

out-sample forecasting. Our results show that Google data Granger-cause stock

market volatility and is able to produce more accurate results in in-sample

forecasts then models without Google data added.
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Abstrakt

Tato práce se zaměřuje na užitečnost Google Trends dat pro předpověd’ volatil-

ity akcíı. S využit́ım denńıch dat źıskanách př́ımo od pražské Google kanceláře

nejprve zkoumáme kauzalitu mezi aproximovanou volatilitou a Google daty

tř́ı amerických společnost́ı s vysokou kapitalizaćı. Poté odhadujeme modely

GARCH a Heterogenńı autoregrese (HAR) a obohat́ıme je o Google data. Zk-

oumáme in-sample a out-sample předpovědi a porovnáváme přesnost neoboha-

cených a obohacených model̊u. Naše výsledky ukazuj́ı, že Google data Granger

zp̊usobuj́ı volatilitu akcíı, a tedy jsou vhodná pro předpověd’ pohybu akciových

trh̊u. Obohacené modely ukazuj́ı přesněǰśı in-sample předpověd’ a snižuj́ı per-

sistenci volatility.
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Chapter 1

Introduction

Internet search engines have great utility nowadays. The technological progress

of computers in recent years has allowed the storage of huge amounts of data

and search engines such as Google are storing data on search queries. Google

launched its web analytic in November 2005 and made it available to all users

in August 2006. The availability of this type of data provided new scope

for predicting indicators and researchers have already shown these data to be

useful.

Collecting data on search queries related to flu and its symptoms showed

that people in regions where there is an emerging flu epidemic search for infor-

mation about flu in relation to their health. Statistically, there is evidence of

a correlation between the spread of influenza and the rise in influenza related

search queries in the particular region. This research carried out by Ginsberg

et al. (2009) led to the launch of the ancillary web page Google Flu Trends in

2008. In comparison to the U.S. Centers for Disease Control and Prevention

(CDC), the predictions were 97% accurate and, principally, the predictions were

available notably faster than o�cial CDC influenza-related indicators. This led

to the derivation from the word forecasting of ’nowcasting’, used for types of re-

search such as the Google Flu Trend. However, due to privacy concerns, Google

ceased to share the collected data publicly although they are still available for

declared research purposes.

One of the earliest working papers proposing the use of Google search

queries related to various industries to predict current levels of economic ac-

tivity was written by Choi & Varian (2012). They demonstrated the data

collection and methodology and their application to the case of retail sales,

automotive sales, home sales and travel. They came to the conclusion that



1. Introduction 2

simple seasonal AR models and fixed-e↵ect models that include Google Trends

variables tend to outperform models without these variables.

Further research projects have emerged since then. In the field of con-

sumer preferences, Della Penna et al. (2010) constructed an index using se-

lected Google searches which resulted in a high correlation with the Index of

Consumer Sentiment from the University of Michigan and the Consumer Con-

fidence Index from the Conference Board. They also found that their search-

based index has statistically significant information for predicting growth in

personal consumption expenditure. Predicting the present is possible due to

the availability of Google data on a weekly basis, as opposed to the monthly

frequency of survey-based indices.

Other research focused on predicting unemployment in Germany was carried

out by Askitas & Zimmermann (2009). Their data were based on four groups of

keywords - ’unemployment o�ce or agency’, ’unemployment rate’, ’personnel

consultant’ and the fourth group consisted of the most popular job search

engines in Germany. Although Google records data on weekly basis, Askitas

& Zimmermann (2009) decided to use biweekly time intervals as it reduced

the noise normally produced by weekly time intervals. They showed that the

Google data from week 3 and 4 were suitable for predicting the unemployment

rate of that month.

In the field of finance, several research projects have examined the perfor-

mance of the stock market as captured by the Google search volume index.

Bank et al. (2011) managed to show how Google search volumes served as an

indicator of trading activity and stock liquidity on the German stock market.

They concluded that Google data captures the attention of uniformed investors,

resulting in reduced information asymmetry, improved liquidity and short-term

buying pressure.



Chapter 2

Literature review

After the emergence of early research using Google data, the idea of a possible

correlation between stock liquidity or stock volatility and Google search queries

related to financial markets attracted the attention of researchers.

Ramos et al. (2013) investigated the usefulness of Google data in predicting

EURO STOXX 50 index market movement. Being aware of the fact that

futures and options are traded by sophisticated investors, they focused on the

stock market, where there is a higher proportion of retail investors, who are

more likely to seek information by Google search engine. They found that an

increase in web searches is followed by an increase in stock market volatility.

The authors employed GARCH(1,1) and, similar to Dimpfl & Jank (2016),

realized volatility. In the case of the GARCH(1,1) they augmented the variance

equation by adding the Google data component and they found that Google

data lead stock market volatility.

Turan (2014) examined the performance when a google search index was

added to ten equities of the Istanbul BIST-100 index. They provided descrip-

tive statistics of kurtosis, skewness, Jarque-Bera test and causal relationship

captured by Granger causality and cross correlation function. They used weekly

Google data and calculated logarithmic returns of both Google data and stock

returns. Their main model was GARCH(1,1) with the mean equation specified

by only one autoregressive lag and uniquely BTSE-100 return as a additional

exogenous variable. The author examined augmented (nested) GARCH(1,1)

models with Google data added to a variance equation. They found that Google

data provide significant information at 60% of equities. They also found that

augmented models reduce the volatility persistence by 7%.
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Chen & Ghysels (2011) investigated the contribution of Google data to the

estimation of the volatility of Dutch AEX equities. They computed logarithmic

returns using daily stock prices and unique weekly amplified realized volatility

by summing the squared returns over 5 days. They then provided descriptive

statistics of Google data and realized volatility, which they found to be skewed,

stationary and non-normally distributed. The augmented autoregressive model

of weekly realized volatility with added logarithmic Google data was shown to

be a good fit as the Google data was significant in 13 out of 21 cases. They

did not, however, provide any information on relative improvement on the aug-

mented models in comparison to non-augmented ones.

Dimpfl & Jank (2016) were among the first researchers to investigate the

contribution of Google data to market volatility. They introduced a simple and

parsimonious model utilizing high frequency data to obtain observed realized

variance. They did not employ single stocks but rather an aggregate stock mar-

ket index arguing that it is less ambiguous for the search terms. Examining the

descriptive statistics, they also found that the volatility time series and search

data are skewed and non-normally distributed so they employed a logarithms of

both realized volatility and the Google data. Vector Autoregression (VAR(3))

revealed that lags of logarithmic realized volatility enter the logarithmic Google

regression with a significant initial lag on the 5% level, which in other words

could mean that present volatility a↵ects the future search volume index. How-

ever, the Granger causality test rejects any influence of past volatility on future

Google search data. Their employed models of AR(1), AR(3) and HAR(3)-RV

with the augmented counterparts being simply these models with log-Google

data added as a new regressor. They then investigated the prediction power

of these models and found that all of them are better in their augmented ver-

sion, with HAR(3)-RV-G giving the best performance when measured by Mean

Squared Error, Quasi-Likelihood function and Mincer-Zarnowitz R-squared.

Hamid & Heiden (2015) are among the latest researchers of Google data

and market volatility. Like Dimpfl & Jank (2016) they also investigate whether

searches are made prior to market volatility or the increase in market volatility

is driving investors to seek information. To answer this issue, a cross correla-

tion function (CCF) is employed and reveals that Google data yields a certain

predictive ability. In addition, their insight into dynamics by VAR shows a

detailed distribution of the sign of the Google data e↵ect over four lags. Fol-

lowing the benchmark model, among others, is the unusual HAR-RV model
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using weekly volatility aggregates because of the weekly character of Google

data for longer periods of time.

Vozlyublennaia (2014) were also interested in investors’ attention to finan-

cial markets. They were aware of di↵erent groups of investors and supposed

that mainly retail investors are involved in keyword searching while more so-

phisticated investors use some kind of trading platforms. They investigated the

investor attention to several stock market indexes, bonds, gold and oil. Among

other indicators, she investigated return volatility.

This thesis di↵ers from the cited sources in several ways. Firstly, we did

not investigate stock indexes, which are among the most frequently searched

financial indicators. High frequency data for stock indexes are collected by

many financial data providers and are available for free on the internet. Instead,

we examined the performance of single tickers for which high frequency data

are not easily obtainable. We also used Google daily data which is known to

be cumbersome to obtain and standardize over longer periods. The correction

methods required in order to obtain usable Google daily data are still a matter

of debate today. Last but not least, we employed a proxy for actual volatility,

which is commonly used for high frequency data and investigate its performance

when used for daily financial data.



Chapter 3

Data

3.1 Google Trends data

Google Trend is a web facility of Google Inc. providing information on keyword

interest in a specific time period and location. The x axis of a Google Trend

plot represents time and the vertical axis represents a Google Search Volume

(GSV) index. The Google Search Volume index is an output of a formula used

by Google Trends to adjust the search data in order to make comparisons be-

tween terms easier: ’...each data point is divided by the total searches of the

geography and time range it represents, to compare relative popularity. The

resulting numbers are then scaled to a range of 0 to 100.’ 1

The formula for the GSV was described by Vakrman (2014) :

RSV t,g

keyword

=
ASV

t,g

keyword

ASV

t,g

total

GSV t,g

keyword

=
RSV

t,g

keyword

MAX(RSV

t0,g
keyword

...RSV

t

T

,g

keyword

)

where ASV t,g

keyword

denotes Absolute Search Volume for a given keyword in time

t and region g.

Despite Google Trends’ power in emerging econometric studies, its interface

has certain limitations. The data can only be downloaded as .csv files for

weekly frequencies for periods longer than 90 days. Researchers working with

1https://support.google.com/trends/answer/4365533?hl=en

https://support.google.com/trends/answer/4365533?hl=en
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daily data face a problem of continuity over the entire sample period as daily

GSVs are scaled di↵erently for each three-month period.

The weekly data from Google Trends, which are computed from Saturday

to Sunday and are posted on Monday, are available for any period of time

between 2004 and 2016. On the other hand, daily data are possible only for

periods no longer than three months. However, the Google Trends interface

allows us to add up to 5 di↵erent time ranges, which are all standardized by

the same formula as it has a unique span. So to sum up, we can have daily data

ranging from January of year t to March of year t + 1. The three-month-long

span from January to March is where the years overlap so for this range, we

have two strings of values for year t and t+ 1. This overlap allows us to select

a computational method which with we can deal with the inability of Google

Trends to supply daily data for an unbounded time span.

Dimpfl & Jank (2016) used their own method such that the average search

frequency over their time range equals one. As Hamid & Heiden (2015) pointed

out, this method makes the data less applicable in practice as it ignores the nor-

malization and standardization that Google uses to compute its data. However

they came up with reasonable results.

Hamid & Heiden (2015) decided to investigate the performance of weekly

Google data employed in the heterogeneous autoregressive model. They thus

replaced the daily component by the weekly one and computed weekly-, 5-

weekly and 22-weekly volatility aggregates. We consider that this approach

violates the former HAR essence, presented by Corsi (2009), inspired by the

Heterogeneous Market Hypothesis. The original HAR model captures the dif-

ferent dynamics of the market made by investors with di↵erent reaction times,

ranging from highly frequent investors reacting in terms of days to the slowest

ones who react in terms of months. Hence the presence of weekly aggregates

in the HAR equations, as employed by Hamid & Heiden (2015) instantly shifts

these frequencies to terms of weeks, months and years, which are very long

spans of time for capturing volatility. However, they did come up with mean-

ingful results as well.

Browsing the internet, we found several approaches to scaling the 90-day

windows and merged them into one longer range of applicable Google data.

However, these approaches are fairly di↵erent from one to another and are

very cumbersome and time-consuming to implement for time ranges in terms

of years.
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3.2 Daily Google Trends Data

Fortunately, we managed to receive the daily data directly from Google Inc.2

which makes our data set immensely valuable for researching how Google is

standardizing its data and what approaches could be possibly undertaken once

for all in order to construct long term daily data range.

Our daily Google data obtained from Google Prague o�ce are filtered to

the region ’US’ and the category ’Finance’. The data does not have an even

spread from values 0 to 100 like those which are opened for download from the

Google Trends page. Google Internal data are normalised so that particular

values of the keyword ’AAPL’ on 1st January 2013 equals one. Other values of

the ’AAPL’ keyword are then indexed to this value as well as other keywords.

We consider this indexation as suitable for our research so we decided not to

manipulate the data any further.

However, one problem which we were faced to deal with is that Google

provides daily data for every day in a year so that the raw data included

1293 observations in a time range from 1st January 2013 to 16th July 2016.

NASDAQ and NYSE trade only on working days, so Yahoo! Finance is able to

supply 891 daily observations on stock. In order to investigate the dynamics

and estimate regressions, we had to choose an approach to balance the number

of observations and cut o↵ some of the Google Internal data. We decided to

utilize only those Google internal data observations which were observed during

the trading days. Hence we adjusted the Google Internal Data in the Google

Sheets application with the function VLOOKUP in order to receive 891 daily

observations for trading days only.

Despite the impossibility of obtaining more observations due to the SQL

language used to communicate with the Google Inc. database, we managed to

exploit this span of 891 observations, which is less than four years. With this

limitation, one important problem emerged.

Whereas weekly data does not su↵er from enough volatility due to the long

range it covers and the inclusion of turbulent periods, the daily Google data

and daily stock market activity can indeed su↵er from a lack of su�ciently

turbulent market movement, which then makes it di�cult to find a significant

ARCH e↵ect and derive an AR-GARCH model. To solve this problem, we

decided to undertake a pre-test of the NASDAQ and NYSE equities with mar-

ket capitalization larger then $100B. We took the daily data ranging from 1st

2Google internal data kindly provided by Petra Hanzĺıková, Google Czech Republic.
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January 2013 to 16th July 2016 which we downloaded from Yahoo! Finance.

We specified an autoregressive model of the logarithmic daily returns and ex-

amined whether the AR residuals have significant ARCH e↵ects. Only those

with a significant ARCH e↵ect are relevant to use for a GARCH model and a

GARCH model augmented by Google data.

According to our results, we decided to use for our research the mar-

ket stocks of the companies Apple Inc. (AAPL), Wells Fargo & Company

(WFC) and Exxon Mobil Corporation (XOM) with the market capitalization

of $540.90B, $245.37B and $388.94B respectively. All of them are among those

companies with the largest market capitalization, which assures high liquid-

ity so that the Google data will not su↵er from a shortage of enough queries

entered in order to compute its statistics.

3.3 Selecting adequate query

Selecting a correct keyword in order to obtain the required Google data is one

of the most contentious parts of Google Trends econometric researches. In our

case, stock market assets, two variants are applicable - we can search either for

a particular ticker name or for a full company name. Da et al. (2011) argue that

using a company name as a keyword could be problematic for two reasons. One

reason is that a company name is searched for not only by investors but also by

other individuals who are seeking information about the company apart from

its equity (e.g. products). Second, the company name could not be defined

uniquely and abbreviations could be used as frequently as the company name.

(e.g. ’Western Digital’ - ’WD’, ’Facebook’ - ’FB’ ). They argue that the stock

ticker is less ambiguous since it is always uniquely specified.

However, Vlastakis & Markellos (2012) complain that the noise produced by

keywords of company name is fairly random and believe that they are able to

obtain a broader measure of demand using the company name. Vozlyublennaia

(2014) point out that one cannot definitely be sure whether a individual who

searched for a ticker name will ultimately implement their decision on the stock

market.

Dimpfl & Jank (2016) are aware of possible misleading results when using

a ticker name as a keyword since it is highly probable that the same abbrevi-

ation also exists for something else. To ensure that they are exploiting data

related to finance, they crosschecked the correlations with other keywords via a

then separate platform, Google Correlate, which is now incorporated in Google
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Trends. We can justify this approach by writing the keyword ’XOM’, which is

a ticker for Exxon Mobil, and checking that it is mostly correlated with some

vietnamese words and the top region is Vietnam. Hamid & Heiden (2015)

fully exploited the possibilities of the continually renewing workspace of Google

Trends and extracted data only within the US region. They also crosschecked

the correlated keywords using Google Correlate.

3.4 Yahoo! Finance daily data

Yahoo! Finance is among the most frequently used free providers for financial

historical data. Daily data is listed with the market open value, highest daily

value, lowest daily value, market close value as well as market adjusted closed

value and volume included.

We download the Yahoo! Finance data of tickers AAPL, WFC and XOM

directly to the R statistical software via the package quantmod. For all further

treatments of the data, we adjust all OHLC columns for split and dividend.

Our principal stock market sample ranges from 2nd January 2013 to 15th July

2016 giving 891 observations.



Chapter 4

Methodology

4.1 Dynamics

Finding the correlation between Google data and stock volatility would be

only a partial answer to the question of whether Google data helps to improve

volatility models. It seems logical that in times of turbulent market movement,

investors are eager to seek information about the cause. This however means,

in statistical terms, that market volatility in time t includes information about

the future number of queries searched, which would not in fact have any value

for predicting future market volatility with Google data. If the latter was true,

i.e. investors are eager for information prior to their market decisions, the

Google data would carry a valuable constituent of information about future

market movement.

In order to analyze which of these hypotheses is most e↵ective, we employ

the Cross- correlation function (CCF), Vector Autoregression (VAR) model

and Granger causality test.

4.1.1 Cross-Correlation function

The Cross-Correlation function is a useful tool for studying the relationship

between two time series and determining the lags that could be exploited for

predicting one time series by the other or vice versa. The CCF plot of two

univariate time series (x
t

, y
t

) is divided into two halves, where the left side

(negative lags) represents the correlation values between lags of x and y
t

, and

the right side of the plot (positive lags) represents correlation values of lagged

y and x
t

. If, for example, lags of x
t

exceeded the dashed line which marks
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asymptotic standard error limits, we would say that the time series x
t

might

be useful for predicting the time series y
t

.

The CCF was used as a indicator of causality by Hamid & Heiden (2015).

They examined lags of realized volatility for the DJIA index and lags of the

search query ’dow jones’. The side of the plot, which represented the correlation

between realized volatility and lags of Google data, showed more correlated lags

than the other side of the plot which represented correlation between Google

data and lags of realized volatility. Hence they illustrated that past values of

Google data are correlated with the present realized volatility

We employ the CCF function for studying the correlation of lagged val-

ues between logarithmic Garman-Klass estimator and logarithmic Google daily

data of all tickers, AAPL, WFC and XOM. We emphasize that plots of CCFs

are just illustrative. More relevant results are given by statistical tables of

vector autoregression and Granger causality test.

4.1.2 Vector Autoregression

Following the notation by Tsay (2005) a Vector Autoregressive model is defined

as:

rt = �0 +
nX

j=1

�jrt�j + at

Where r
t

is a multivariate time series, �0 is a k-dimensional vector, �j is a

k⇥ k matrix and at is a sequence of uncorrelated random vectors of mean zero

and covariance matrix
P

, which is required to be positive definite.

In our analysis, we use two-dimensional vector autoregression of order 3. As

a proxy for volatility of financial assets, we employ the Garman-Klass estimator.

Hence we can rewrite the vector r
t

as r
t

= (logGK
t

logGGL
t

)0 where logGK
t

is a times series of the logarithmic Garman-Klass estimator and logGGL
t

is a

time series of the logarithmic Google data. By computing the Garman-Klass

estimator, we lose one observation so we have to adjust the sample of Google

data as well. The total number of observations for this analysis is thus 890.

The dynamics captured by the vector autoregression model were investi-
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gated by Hamid & Heiden (2015), Vozlyublennaia (2014) and Dimpfl & Jank

(2016).

Dimpfl & Jank (2016) estimated a vector autoregression model with 3 lags

of both DJIA realized volatility and Google data. They found significant au-

toregressive coe�cients of all lags in the case of realized volatility and the first

and third lag in the case of Google queries. The case which is the most interest-

ing for the purpose of prediction was the regression of realized volatility on lags

of Google data. The Google data was significant only at the first lag, although

with a meaningful coe�cient. The regression of Google data on lags of realized

volatility showed only the first lag to be significant but with an eight times

lower coe�cient than the latter dynamics, which represents a rather favorable

position for our hypothesis.

Hamid & Heiden (2015) also achieved similar results. They found that lags

1 and 4 of Google data are significant for modeling volatility. They explained

that the positive first lag and negative fourth lag are due to investors’ primary

demand for information while the long term demand for information decays

rapidly once the transaction has been done.

4.1.3 Granger Causality

The Granger causality test is employed as another spectral analysis. As intro-

duced by Granger (1969), the test consists of two subtests: Granger causality

and instantaneous causality. The first one, which Granger originally called just

causality, tells us that if we are able to better predict X with all information

of X and Y rather than just for X, then we say that Y is Granger causing X.

The latter tells us whether the prediction value of Y is better when the present

value of X is included or not.

Vozlyublennaia (2014) employed the Granger causality test on search prob-

ability and index returns and found that the causality is rather ambiguous.

However, in the case of causality between Google data and index volatility,

it seems that volatility is Granger causing searches more than in the reverse

direction. The prevailing direction of volatility Granger causing searches could

be explained by the weekly data sample, which is a rather long span of time to

reveal index fluctuations.

Dimpfl & Jank (2016) also employed the Granger causality test. They ob-

served a highly significant coe�cient when testing whether logarithmic Google

data is Granger causing logarithmic DJIA index volatility. This finding sup-
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ported the hypothesis of Lux & Marchesi (1999), that market fluctuation is

enhanced by the search for information, which is in turn a consequence of

primary market deviation.

4.2 Model

4.2.1 Heterogeneous Autoregressive model

The heterogeneous autoregressive model was proposed by Corsi (2009) as a

new model which is capable of modeling volatility in a simple parsimonious

way in contrast to models of ARCH, GARCH with a non-trivial estimation

procedure. The original approach of the HAR model consists in computing an

easily obtainable proxy from intraday high frequency data called by Andersen

et al. (2001) a realized volatility. This proxy is then employed in three averaging

formulas in order to compute the aggregates of realized volatility over three

di↵erent periods of time, commonly days, weeks and months. The model itself

is thus constituted of di↵erent time horizons of realized volatility composed to

the AR-type model so that it is able to achieve all the main empirical features

(long memory, fat-tail, self-similarity) of volatility.

This cascade model was inspired by the Heterogeneous Market Hypothesis

(Müller et al. (1997)), which states that the market is influenced by traders with

di↵erent temporal responses and behavior. Short term traders act in response

to market movement in higher frequency than long term traders, who are also

less inclined to forget historical market developments.

If the latter was true, i.e. all market agents were homogeneous, then the

price should settle to its real market value instantly, thus in the long-term it

would have a steady movement and it would not create volatility. As Corsi

(2009) pointed out, GARCH models lack the ability of capturing the fluctu-

ations in empirical volatility at all time scales. When aggregated over longer

time ranges, the GARCH models rather appears as a white noise. Hence we

expect better performance of HAR in capturing the long memory property of

empirical volatility.

However, our research is not dealing with high frequency data so that we

cannot compute realized volatility over intraday intervals and obtain daily re-

alized volatility. Instead, we employ a more e↵ective estimator of volatility for

daily data, namely the Garman-Klass estimator, which is described in section

4.2.2. We also decided to take logarithms of both Google Data and Garman-
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Klass estimator.

In order to compute the weekly and monthly aggregates of both Google

data and Garman-Klass estimator, we have to give up the first month of our

observations. After aggregating our data, we have 861 observations available

for estimating HAR. Concerning the forecasting methods, we first compute an

in-sample forecast for a full available set, i.e. 861 observations. For a out-

sample forecast, we first estimate the HAR on the set of 671 observations and

then we do one step ahead 190 rolling forecasts.

The derivation of the heterogenous autoregressive model, which we will use

in this thesis is defined as:

logGKt = ↵ + �dlogGKt�1 + �wlogGKw
t�1 + �mlogGKm

t�1+

+�dlogGGLt�1 + �wlogGGLw
t�1 + �mlogGGLm

t�1 + ✏t

where

logGKw

t�1 =
1

5

5X

i=1

logGK
t�i

logGKm

t�1 =
1

22

22X

i=1

logGK
t�i

logGGLw

t�1 =
1

5

5X

i=1

logGGL
t�i

logGGLm

t�1 =
1

22

22X

i=1

logGGL
t�i

GK is the Garman-Klass estimator, GGL is the Google daily data, ↵ is the

intercept, ✏
t

is the error term.

4.2.2 Garman-Klass estimator

As a directly observable proxy of volatility, we choose the Garman-Klass (GK)

estimator as proposed by Garman & Klass (1980). The GK estimator assumes

Brownian motion of log stock price with zero drift and no opening jumps, i.e.

the closing price in t1 equals the opening price in t. Specifically, we employ the

presented best analytic scale invariant estimator in the form of:
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GKt =
q

1
2(ln

Ht

Lt
)2 � (2ln2� 1)(ln Ct

Ct�1
)2

where C
t�1 is the closing price of previous day, H

t

is the highest price, L
t

is the lowest price and C
t

is the closing price.

The Garman-Klass estimator as a range estimator is one of the proposed

estimators by Patton (2011) as a unbiased proxy to forecasting of volatility. Our

decision to take the Garman-Klass estimator as a better proxy than squared

returns conforms to their findings. However, as they point out, it is not always

true that using a conditionally unbiased proxy will lead to the same outcome

as if the latent variable were used in all cases. In order to report a correct

forecast, only robust loss functions which are able to produce the same ranking

as if we used the true conditional variance or some conditionally unbiased

volatility proxy have to be employed. Among other loss functions with this

ability, they proposes the MSE loss function. Meddahi (2001) investigated how

the ranking of the Mincer-Zarnowitz regression is robust to possible noise in

estimated volatility proxy as well.

4.2.3 AR(p)-GARCH(1,1)

GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity,

a model introduced by Bollerslev (1986) as an extension to the ARCH model

introduced by Engle (1982), which has a less flexible lag structure.

Let a
t

be the innovation at time t. then the a
t

follows a GARCH(1,1) model

if

at = �t✏t,

�2
t = ↵0 + ↵1a

2
t�1 + �1�

2
t�1

where ✏
t

is a sequence of iid random variables with mean 0 and variance 1.

The GARCH model is known for clustering, i.e. the innovation term a
t

has

only a slowly decaying autocorrelation function, thus high volatility tends to

be followed by high in the near future and low volatility by low. In addition,

the kurtosis is greater than 3, the kurtosis of normal distribution, which means

the distribution of GARCH has fat-tails and more frequent remote observa-

tions. The real volatility reacts di↵erently to ’bad news’ with a decrease of
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prices as a consequence and ’good news’ with prices increase as a consequence.

The real volatility tends to be higher when the prices are decreasing, which

cannot be captured by the simple GARCH model estimating either movement

symmetrically.

A important di↵erence from the HAR-RV model is that despite the real-

ized volatility, the conditional variance cannot be directly observed. We use

GARCH(1,1) since it is su�cient for our purpose and higher orders are both

unnecessarily complex and di�cult to estimate.

In our research, we will employ an augmented AR(p)-GARCH(1,1) defined

as:

yt = ↵0 + ↵1yt�1 + ...+ ↵pyt�p + ✏t

�2
t = �0 + �✏2t�1 + �1�

2
t�1 + �logGGLt

Where the first equation is the autoregressive model of order p and the sec-

ond equation is the variance equation of GARCH(1,1) with logarithmic Google

data as a exogenous variable.

4.3 Descriptive statistics

4.3.1 Augmented Dickey-Fuller test

In order to correctly specify the order of the AR model, we need to verify that

our time series is stationary. The augmented Dickey Fuller test is a test for

a unit root, presented by Said & Dickey (1984). They developed a method

for testing a unit root which does not require a specification of the AR order,

unlike previous tests for a unit root. Following the notation by Tsay (2005):

x
t

= c
t

+ �x
t�1 +

p�1X

i=1

�
i

�x
t�1 + e

t
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where we test the null hypothesis H0 : � = 1 against the alternative H
a

: � < 1.

Failure to reject the null hypothesis means that our time series is non-

stationary and it needs further treatment.

4.3.2 Jarque-Bera test

The Jarque-Bera test is used to investigate whether our asset return series has

the kurtosis and skewness of a standard normal distribution. Using notation

by Tsay (2005) where r denotes return series and T denotes the number of

observations, the t-ratio of the sample skewness is:

t =
Ŝ(r)p
6/T

where null hypothesis is that S(r) = 0, which is the skewness of a standard

normal distribution. We reject the null hypothesis if |t| > Z
↵/2.

For testing kurtosis, the t-ratio is:

t =
K̂(r)� 3p

24/T

and it follows asymptotically standard normal distribution. Rejecting the

null hypothesis H0 : K(r)� 3 = 0 signifies that our return series does not have

the kurtosis of standard normal distribution.

Finally, Jarque & Bera (1987) combined these two test into one joint test

for normality:

JB =
Ŝ2(r)

6/T
+

(K̂(r)� 3)2

24/T

asymptotically distributed as a �2 with 2 degrees of freedom. H0 of normality

is rejected if the p-value is less then the significance level.
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4.3.3 Portmanteau test

For determining the order of lags in the autoregressive mean equation, we em-

ploy the Autocorrelation function (ACF) and Partial Autocorrelation function

(PACF) as described by Tsay (2005). We select the order by looking at where

the PACF cuts o↵. We do not employ any of the information criteria.

For testing autocorrelation of the residuals in time series, we use the Port-

manteau statistic as proposed by Box & Pierce (1970), where ⇢̂ are fitted resid-

uals, T is the number of observations.

Q(m) = T
mP
l=1

⇢̂2
l

where H0 : ⇢0 = ... = ⇢
m

= 0.

In particular, we employed the more powerful modification of this test

named after Ljung & Box (1978).

Q(m) = T (T + 2)
mP
l=1

⇢̂

2
l

T�l

where H0 is rejected if Q(m) > �
↵

. Studies suggest to take the value of

m as approximately ln(T ). If any of the AR(p) coe�cients turns out to be

statistically di↵erent from zero, we simplify the model. If a ACF of residuals

of a specified AR model exhibits correlation, we add more lags and refine it.

4.3.4 ARCH e↵ects

In order to model GARCH, we assume uncorrelated and dependent error terms

of the mean equation

a
t

= r
t

� µ
t

the correlation condition is met by testing the mean equation by Portman-

teau test and discussing the p-value. The squared dependence is tested by

Lagrange multiplier test.

a2
t

= ↵0 + ↵1a
2
t�1 + ...+ ↵

m

a2
t�m

+ e
t

; t = m+ 1, ..., T

then with simultaneous validity of H0 : ↵i

= 0 by F-test, it is true that:

F =
SSR0�SSR1

m
SSR1

T�2m�1

L���!
T!1

�2
m

upon rejection of the H0, we can express the a2
t

as a function of its lagged

value, hence it exhibits ARCH e↵ects.



4. Methodology 20

4.4 Forecasting

4.4.1 Mean Squared Error

As a standard widely used loss function we employ the mean squared error

(MSE) loss function. Its advantage, as described by Patton (2011) is in robust-

ness to possible noise in volatility proxy. The definition with the authors own

notation is as follows:

1
k

P
k

t=1(At

�P
t

)2

Where A
t

is a vector of actual values and P
t

is a vector of predicted values.

Both Dimpfl & Jank (2016) and Hamid & Heiden (2015) showed that all of

the augmented models lead to a significant decrease in MSE.

4.4.2 Mincer-Zarnowitz regression

Mincer & Zarnowitz (1969) proposed a regression of realised values on their pre-

dicted counterparts where parameters and test statistics can be further studied

for the performance of the prediction.

The original equation is:

A
t

⌘ P
t

+ u
t

A
t

= ↵ + �P
t

+ v
t

Where A
t

are the realized values, P
t

are the predicted values, u
t

is the forecast

error, ↵
t

is the constant and v
t

is the error term of the OLS regression.

If u
t

is uncorrelated with predicted values, the OLS regression slope �
t

equals one and the variances of forecast error and regression error are the

same, the model is e�cient. The model is unbiased If ↵ equals zero. In that

case, the variances equal to MSE.

Henceforth models with the best predictive performance are expected to

give �
t

close to unity and ↵
t

close to zero. If, for example, we underestimated

our prediction over a time period, the constant ↵
t

would be shifted to negative

numbers. If, on the other hand, we overestimated our prediction, the constant

term would be shifted to the positive numbers. Moreover, the R2 of the regres-

sion is a term of the overall performance, useful for comparing between between

non-nested models and their augmented counterparts.
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The Mincer-Zarnowitz regression is valid only under the out-sample fore-

cast. In-sample forecast, i.e. fit on a full sample, provides the same average

measure of fitted values as the average measure of actual values. Hence the

expected value is the same and if we regressed full in-sample fit on the actual

values, we would receive intercept, ↵, equal to zero and � coe�cient equal to

unity with significant p-value, which is subject to misleading interpretation.

The MZ regression was employed in research of Dimpfl & Jank (2016). They

found that all of their examined models, AR of realized volatility and HAR of

realized volatility, gave a lower R-squared than their augmented counterparts.

Hamid & Heiden (2015) run MZ regression with values of ↵
t

and �
t

added

for comparison. However, they didn’t come up with similar results. The R2

yielded lower value in the case of augmented models, as well as giving lower

�
t

coe�cient. However, the augmented models seemed to excel in shifting the

constant down towards zero, thus alleviate the overestimated prediction of non-

augmented models.

4.4.3 Volatility persistence

We define the volatility persistence of AR-GARCH(1,1) model as a sum of the

ARCH term, ↵ and the GARCH term � in the variance equation. Volatility

persistence describes the rate at which volatility recovers towards its aver-

age value. High volatility persistence with values close to unity is typical for

GARCH models. Plots of these contain the typical steep upward movement

during turbulent market activity and slow decay towards the average value af-

ter the turbulent days have passed. Although we expected the HAR model to

alleviate the volatility persistence more successfully than the GARCH model,

we could not directly observe the numerical amount as in the case of GARCH,

so we recorded volatility persistence only in the case of augmented and non-

augmented GARCH models.

Volatility persistence of GARCH models was investigated by Turan (2014).

They found that adding Google data to the variance equation of GARCH(1,1)

significantly reduces the rate of volatility persistence of the stock market.
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4.4.4 Diebold-Mariano test

As a last measure of predictive ability of models and their Google-augmented

counterparts, we employ the Diebold-Mariano (DM) test as presented by Diebold

& Mariano (2012). The concept is to test the null hypothesis to see whether

there is no di↵erence in accuracy between two di↵erent predictions. They argue

that the loss associated with a forecast is badly assessed by statistical metrics.

The motivation thus is to take the information of a particular size and sign of

the error and exploit it in the form of an arbitrary function of realization and

prediction. The notation is then as follows:

Let

✏1
t

T

t0
and ✏2

t

T

t0

be two di↵erent sets of errors from two di↵erent forecast models. Then we

would like to test the null hypothesis of

H0 : E✏1
t

T

t0
= E✏2

t

T

t0

The alternative hypothesis could be simple inequality of these two sets of

errors, however we exploited the possibility of the dm.test, contained in the

package forecast, to set the alternative hypothesis stating that the forecasting

errors from the augmented models are more accurate.



Chapter 5

Empirical results

5.1 Descriptive statistics

We started with estimating the daily data of 821 observations. As a first step,

we adjusted all the OHLC columns of Yahoo! Finance data for splits and

dividends. Next, we provided the descriptive statistics including skewness and

kurtosis of Yahoo! data closing prices and Google daily data in Table A.1.

We can see that Yahoo! Finance stocks have a skewness near to zero, which

is a skewness of normal distribution. However, the kurtosis is not equal to a

kurtosis of normal distribution, i.e. 3, so we will test the Jarque-Bera test for

normality.

The Google data have a skewness near 3 and excessive kurtosis, thus we

can say it is leptokurtic and has fatter tails similar to the characteristics of

volatility distribution. We will employ the Jarque-Bera test for normality as

well. For further research of daily data, we decided to take logarithmic price

returns and logarithmic Google data.

5.2 Vector Autoregression, Granger causality

test and Cross-correlation functions

The results of vector autoregression are summarized in Table A.2. We see that

the autoregressive terms of both logarithmic Garman-Klass estimator and log-

arithmic Google data are significant at almost all lags, which is to be expected.

The section of VAR, where the logarithmic Google data is regressed on the

lagged logarithmic Garman-Klass estimator, is useful for studying a hypothesis

which is not of our interest, i.e. that investors are making market decisions
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prior to their demand for information. However, we find that the vast majority

of coe�cients are insignificant, except in the case of the AAPL ticker, where

the first lag of the logarithmic Garman-Klass estimator is significant with a

p-value less than 0.05 only.

Looking at the last possible combination of results in VAR, i.e. regressing

the logarithmic Garman-Klass estimator on lagged values of logarithmic Google

data, we find that in all cases, the first lag (in bold type) is significant with the

p-value less then 0.001 and has a meaningful coe�cient. This thus supports

the hypothesis of our interest, that investors are demanding information via

the Google web search of the actual market movement prior to their trading

decisions.

The Granger causality test revealed similar results to the vector autore-

gression. The test is summarized in Table A.3. In all cases, Google data is

Granger-causing the Garman-Klass estimator with a p-value less than 0.001. In

financial terms, the Google data provide significant information about future

market movements, hence they are useful for predicting stock market volatility.

This result supports the findings of Dimpfl & Jank (2016). However, we did

not obtain similar results as Vozlyublennaia (2014) who used weekly Google

data. This is possibly due to the discrepancies of the weekly data utilization,

which are too stretched for the purpose of predicting volatility.

The plotting of cross-correlation functions can be seen in Figure A.4. In

the case of the ticker AAPL, these correlations are smaller than for the other

tickers. We cannot evaluate with certainty whether lags of Google data predict

the Garman-Klass estimator or vice versa. However, looking at the plot of the

CCF of the ticker WFC, we can assess that the correlation between GK and

lagged Google data is significantly higher than the correlation between lagged

GK and Google data, which are not significant. The third plot, the CCF of

the ticker XOM, shows a high significant correlation on both sides of the plot.

However, the correlation between the lags of GK and Google data (right hand

side, positive lags) is decaying more rapidly than the left hand side of the

graph. Hence overall, we can state that past values of Google data are useful

for predicting the values of the Garman-Klass estimator which is in line with

the findings of Hamid & Heiden (2015)
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5.3 AR order specification

Table A.4 provides results of tests for the estimation procedure of the au-

toregressive model. We used a Jarque-Bera test for normality, the Augmented

Dickey-Fuller test for stationarity, the Ljung-Box test for testing the serial cor-

relation of AR residuals, the ARCH e↵ects test and finally we identified the

adequate order of our AR model. Neither asset price logarithmic returns, nor

logarithmic Google queries passed the test for normality and unit root pro-

cess. This means that our data is not normally distributed and it is stationary.

Next, we plotted the autocorrelation function (ACF) and partial autocorrela-

tion function (PACF) of the logarithmic daily returns and tried to estimate the

order of the Autoregressive model by investigating the PACF. We followed the

rule of taking the AR(p) model where the p
th

lag is cut o↵, i.e. it is followed

by a significant decrease of the correlation at lag p+ 1.

After running the autoregressive model of order AR(p), we saved the residu-

als and squared residuals and plotted their autocorrelation function, which can

be seen for AAPL, XOM, WFC in Figure A.1, Figure A.3 and Figure A.2.

We see that all of the lags, except lag zero, in the plots of ACF of residuals are

well within the confident interval marked by the dashed line. The Ljung-Box

test for serial correlation of residuals of the AR model with H0 of independently

distributed residuals is not rejected for all tickers. Henceforth, we consider our

order specification as adequate.

Looking at the plots of ACF of squared residuals, we expect ARCH e↵ects

in the case of tickers XOM and WFC. The squared residuals of the AR of

ticker AAPL do not exhibit excess correlation. Confirming our thoughts, the

test showed that XOM and WFC contain ARCH e↵ects with a p-value lower

than 0.001, whereas AAPL exhibit ARCH e↵ects with a p-value only lower

than 0.05.

5.4 AR-GARCH(1,1) in-sample forecast

For an in-sample forecast, we decided to fit a joint AR-GARCH(1,1) regression

using the widely used package rugarch in R statistical software. First, we ran

a regression without the Google data included. We saved the absolute value

of returns as a proxy of actual volatility for later in-sample forecasting. The

plot of the estimated standard deviation against absolute returns can be seen

in the left bottom corners of Figure A.1, Figure A.3 and Figure A.2 for
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the AAPL, WFC and XOM tickers respectively. We can distinguish the strong

volatility persistence, characteristic of GARCH modeling.

Second, we augmented the AR-GARCH(1,1) model by adding the Google

data into the variance (GARCH) equation. We tried adding both, logarithmic

and normal Google data and decided for the one which entered the fit with a

lower p-value. The summary of the value and significance level of the coe�cient

in the variance equation can be seen in Table A.5. We see that all the Google

queries entered the fit with highly significant statistics. The plot of the standard

deviation from the augmented model against the absolute returns can be seen

in the right bottom corner in Figure A.1, Figure A.3 and Figure A.2 for

the tickers AAPL, WFC and XOM respectively.

The summary of the in-sample forecast is in Table A.5. The MSE of

augmented models is lower in all cases. Also the volatility persistence is un-

doubtedly lower in the case of augmented models. This is due to the fact that

the GARCH term was overridden by the Google term. The DM test assessed

the augmented models as having better forecasting accuracy significantly in all

cases.

5.5 AR-GARCH(1,1) out-sample forecast

For out-sample forecast, we re-estimated our models from the in-sample fit

but without the last 150 observations of our sample of 891 observations in

total. We did a one step ahead 150 rolling forecast for both augmented and

non-augmented models. We then saved the standard deviation of our 150 out-

sample forecast of both models and compare it to the absolute returns. The

results of the statistics are given in Table A.6. The Google coe�cient entered

our out-sample fit with a p-value less than 0.001 in the case of the AAPL ticker.

Other tickers have a Google coe�cient significant on 5% level.

The results of the out-sample forecast are less favorable than those of in-

sample. Although the MSE for augmented model is lower in the case of the

WFC ticker, the other two tickers have a lower mean squared error in the

case of the model without Google data. Considering the MSE, we expected

the non-augmented model to predict more accurately so we provided results

of the DM-test with the alternative hypothesis that the model without Google

data would have better forecasting performance. Values of the DM-test with

p-values denoted by stars are shown in Table A.6. According to the DM-test,
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all of the tickers, except WFC, have better out-sample predictive performance

without Google data to a significant level.

Volatility persistence is lower for augmented models in all cases and this

is due to the fact that the Google coe�cient again suppressed the GARCH

term which is now insignificant. In the case of the ticker XOM, where the

persistence is nearly zero, the Google coe�cient rendered not only the GARCH

term insignificant, but the ARCH term as well.

A summary of the Mincer-Zarnowitz regression is given in Table A.7. Al-

though we see that augmented models have a higher R-squared in two cases,

we consider that it would be misleading to interpret this as a forecasting im-

provement since the values of the � coe�cient are shifted further away from

unity. However, the augmented model in the case of the AAPL ticker gave a �

coe�cient close to unity significantly, so we could regard it as an improvement.

Overall, our out-sample statistics gave results which mostly do not support

our hypotheses. We can say that our GARCH out-sample forecasting proce-

dure is probably poorly specified for the purpose of using Google data rather

than that Google data do not have the relevant prediction power for volatility

forecasting.

5.6 HAR in-sample forecast

For the heterogeneous autoregressive model, we took the daily data from Yahoo!

Finance on Open, High, Low, Close ranging from 2013-01-02 to 2016-07-15.

We then computed the Garman-Klass estimator following the formula in the

section 4.2.2. We used the same Garman-Klass estimator to study the dynamics

captured by the vector autoregression and Granger causality. By computing

the GK estimator, we lost the first observation so we needed to adjust the

Google data as well. Due to the non-normality of our data we took logarithms

of both GK estimator and Google data similar to Dimpfl & Jank (2016) and

Turan (2014). We then computed weekly and monthly aggregates using the

formulas described in section 4.2.1. The results of the HAR non-augmented

and augmented regression can be seen in Table A.8.

Clearly in all non-augmented HAR models, the daily and weekly aggregate

are significant with a p-value less than 0.001, the monthly aggregate is signifi-

cant with a p-value less than 0.01. These results seem to confirm that the HAR

model captures the long memory of empirical volatility very well. In almost all
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cases, the value of the beta coe�cient decreases slightly from the daily aggre-

gate towards the monthly aggregate.

Moving further, we added the daily, weekly and monthly aggregates of log-

arithmic Google data into the HAR-lGK models in order to obtain the aug-

mented counterpart, HAR-lGK-lGGL. The last day value of Google data has

a significant impact on today’s volatility in all cases. The beta coe�cient of

the lagged Google daily data has a meaningful value and in the case of the

XOM ticker it is even the highest coe�cient in the whole augmented HAR

regression. The meaning of the significant negative coe�cient of the weekly

aggregated Google data regressor is arguable.

Hamid & Heiden (2015) found their monthly aggregated realized volatility

regressor significant and with a negative value as well. They hypothesized that

volatility is driven mainly by short term investor attention. Once the investors

have taken action on the market, the volatility is expected to decline in the

long-term. Theoretically, the negative coe�cient of weekly aggregated Google

data decreases the realized volatility of today, i.e. the high volatility does not

last long and recovers from the high values in terms of days. This also captures

the lower volatility persistence contained in Google data.

The summary of in-sample forecasting performance is shown in Table A.9.

Clearly, the HAR models were outperformed by their augmented counterparts.

In all cases, HAR-lGK-lGGL models indicate lower mean squared error and a

DM test with significance at 5%, with the alternative hypothesis of augmented

models giving more accurate prediction. Overall, the results of the in-sample

forecasting performance confirm our hypothesis that HAR models with added

Google data predict stock market volatility more accurately.

5.7 HAR out-sample forecast

For the investigation of HAR out-sample forecasting performance, we re-estimated

our HAR augmented and non-augmented models on the first 671 observations,

leaving the 190 observations for the one step ahead rolling forecast.

The results of the out-sample forecasting performance are summarized in

Table A.10. Similar to the in-sample forecasting performance, the mean

squared error is lower in the case of the augmented models.

The Mincer-Zarnowitz R2 yields a higher value for the augmented models.



5. Empirical results 29

Although the � coe�cient is further away from unity for the augmented model,

the shift is virtually negligible and it is significant for all cases, so we consider

the Mincer-Zarnowitz regression to be well specified and we accept the value

of R2 as relevant. Finally, the DM test could not provide significant p-values

for the null hypothesis of augmented and non-augmented models having the

same prediction accuracy. Hence we cannot decide whether we should prefer

one model over another for the purpose of HAR out-sample forecasting.



Chapter 6

Conclusion

In our thesis, we investigated the usability of Google Trends data for the pur-

pose of predicting stock market volatility. We used daily data obtained from

Yahoo finance on Open, High, Low and Close of three equities, Apple Inc.

(NASDAQ), Wells Fargo & Company (NYSE) and Exxon Mobil Corporation

(NYSE), which are among those of with the highest market capitalization. The

Google daily data on the keywords of tickers’ name from the sector ’Finance’

and region ’US’ was generously provided by the Google Prague o�ce.

We examined the descriptive statistics of our data to find it stationary and

non-normally distributed. As a proxy for the actual volatility, we employed

a daily Garman-Klass estimator. We studied the causal relationships using

vector autoregression, Granger causality and cross-correlation functions. Vec-

tor autoregression showed a significant first lag of Google when regressing a

logarithmic volatility proxy on logarithmic Google data. The Granger causal-

ity confirmed that Google data is Granger-causing volatility. Cross-correlation

functions illustrated high correlation between lags of Google data and Garman-

Klass estimator. According to these casual relationships, we hypothesize that

investors who are using Google data to obtain their market information are

seeking information before implementing their market decisions. We thus con-

clude that Google data is suitable for predicting future stock market volatility.

We then employed two common models for modeling volatility, the Gen-

eralized Autoregressive Conditional Heteroskedasticity model (GARCH) and

the Heterogeneous Autoregressive model (HAR). In the case of GARCH, we

specified the order of the autoregressive model as a first step and then we
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performed the joint AR(p)-GARCH(1,1) estimation. In the case of HAR, we

computed weekly and monthly aggregates of the Garman Klass estimator and

incorporated them into the regression. For the purpose of investigating the

performance of Google data, we augmented the GARCH(1,1) model by adding

the Google data into the variance equation. We augmented the HAR model

by incorporating the logarithmic weekly and logarithmic monthly Google data

aggregates.

We then studied the in-sample fit and out-sample forecasting performance of

these models. For this purpose, we employed the mean squared error, Mincer-

Zarnowitz regression and the Diebols-Mariano test. We found that our non-

augmented in-sample fits perform more poorly then their augmented counter-

parts. The Diebold-Mariano test recognized the augmented models of GARCH

and HAR as being more accurate on a significant level. However, we didn’t

manage to show the same predictive power in the case of the GARCH out-

sample forecast, where the Diebold-Mariano test favored the non-augmented

models and partly in the case of the HAR out-sample forecast, where the

Diebold-Mariano test yielded insignificant results. Nevertheless, we showed

that in both in-sample and out-sample forecasts, Google data successfully al-

leviates the volatility persistence.

As further research in the field of predicting volatility with Google data,

we suggest studying the Google data daily sample from the Google Prague

o�ce in order to recognize and describe the standardization method used by

Google Trends. Either by Google Trends allowing to supply daily data over

longer periods or by knowing the standardization method Google Trends is

applying, we see practical use in predicting the future risk of stock portfolios.

We suggest deriving a relevant GARCH model for the purpose of incorporating

Google data, similar to the realized GARCH model derived by Hansen et al.

(2012) for incorporating realized volatility into the GARCH model.
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Appendix A

Tables and Figures

Ticker Mean SD Skewness Kurtosis Min Max

AAPL 91.4 22.51 -0.07 -1.3 52.11 129.88
’AAPL’ 3.59 1.81 3.45 17.92 1.11 19.51

XOM 84.58 6.14 0.04 -0.47 66.94 97.78
’XOM’ 0.24 0.1 2.17 9.71 0.11 1.09

WFC 46.37 6.8 -0.62 -0.68 31.46 56.86
’WFC’ 0.11 0.03 3.42 17.59 0.05 0.39

Table A.1: Descriptive statistics for both Google Internal daily data
and Yahoo finance daily data

Summary of the descriptive statistics. Yahoo Finance! data are without marks.
Google data are with marks.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1



A. Tables and Figures II

AAPL AAPL WFC WFC XOM XOM

Regressand: log-GK log-GGL log-GK log-GGL log-GK log-GGL

logGK
t�1 0.297*** -0.0559* 0.337*** 0.024 0.264*** 0.013

logGK
t�2 0.093* 0.005 0.095* -0.007 0.156*** 0.006

logGK
t�3 0.113** -0.006 0.127*** 0.003 0.098** 0.008

logGGL
t�1 0.296*** 0.779*** 0.298*** 0.614*** 0.269*** 0.661***

logGGL
t�2 -0.166* -0.102* -0.134 -0.001 0.023 0.145***

logGGL
t�3 -0.036 0.139*** -0.074 0.134*** -0.011 0.096**

Constant -1.008*** 0.118 -0.714*** -0.520*** -0.558*** -0.092**

Table A.2: Summary of the Vector Autoreggresion

Summary of the VAR(3). logGK stands for the logarithmic Garman-Klass estimator,
logGGL stands for the logarithmic Google data. Values of � coe�cients with p-values
denoted by stars with those of our interest typed in bold.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1

AAPL AAPL WFC WFC XOM XOM

Regressand: log-GK log-GGL log-GK log-GGL log-GK log-GGL

logGK 2.2903. 0.6350 0.5913
logGGL 9.4576*** 5.7228*** 12.671***

Table A.3: Summary of the Granger Causality test

Statistics of the Granger causality test. The null hypothesis is H0: the regressor do
not Granger cause the regressand. F-tests with relevant p-values denoted by stars.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1
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Ticker J-B ADF Lj-Box (res) ARCH e↵ AR(p)

AAPL 1887.2*** -9.9578*** 9.0284 10.305* AR(4)
’AAPL’ 13750*** -6.9994***

XOM 290.75*** -9.9971*** 0.99779 99.761*** AR(4)
’XOM’ 4225.7*** -5.3317***

WFC 121.12*** -10.105*** 3.9928 109.8*** AR(2)
’WFC’ 13290*** -5.3876***

Table A.4: Summary of the tests used in the procedure of estimating
AR order of daily Yahoo data

J-B is the Jaque-Bera test, ADF is the Augmented Dickey Fuller-test, Lj-Box (res)
is the Ljnug-Box test for correlation of the AR(p) residuals, ARCH e↵ is the test for
ARCH e↵ects. AR(p) is a selected adequate order.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1

Ticker Model GGL coe↵ (103) MSE (103) persistence DM-test

AAPL AR(4)-GARCH(1,1) 0.152 0.900
AR(4)-GARCH(1,1)-lG 0.195*** 0.128 0.002 7.8379***

WFC AR(2)-GARCH(1,1) 0.060 0.932
AR(2)-GARCH(1,1)-G 0.910. 0.056 0.143 1.9376*

XOM AR(4)-GARCH(1,1) 0.064 0.967 2.937**
AR(4)-GARCH(1,1)-G 0.341*** 0.059 0.285

Table A.5: Summary of the AR-GARCH(1,1) and augmented coun-
terparts in-sample forecast

Column ’Model’ is a description of the AR-GARCH(1,1) used. lG stands for aug-
menting with logarithmic Google data in the variance equation. GGL coe↵ is a value
and significance level of the Google data coe�cient in the variance equation of the
augmented models. MSE is the Mean Squared Error, Persistence is the volatility
persistence as a sum of the ARCH and GARCH coe�cient, DM test is the value and
significance level of Diebold-Mariano test with alternative hypothesis of model with
Google data giving more accurate prediction.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1
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Ticker Model GGL coe↵ (103) MSE (103) persistence DM-test

AAPL AR(4)-GARCH(1,1) 0.0114 0.891 -2.51**
AR(4)-GARCH(1,1)-lG 0.173*** 0.014 0.043

WFC AR(2)-GARCH(1,1) 0.0654 0.860 1.0463
AR(2)-GARCH(1,1)-G 0.780* 0.0617 0.160

XOM AR(4)-GARCH(1,1) 0.0721 0.973 -1.5058.
AR(4)-GARCH(1,1)-G 0.443* 0.0935 0.008

Table A.6: Summary of the AR-GARCH(1,1) and augmented coun-
terparts out-sample forecast

Column ’Model’ is a description of the AR-GARCH(1,1) used. lG stands for aug-
menting with logarithmic Google data in the variance equation. GGL coe↵ is a value
and significance level of the Google data coe�cient in the variance equation of the
augmented models. MSE is the Mean Squared Error, Persistence is the volatility
persistence as a sum of the ARCH and GARCH coe�cient, DM test is the value
and significance level of Diebold-Mariano test with alternative hypothesis of model
without Google data giving more accurate prediction.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1
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Ticker Model MZ-R squared ↵ �

AAPL AR(4)-GARCH(1,1) 0.3786 -0.022749*** 2.098312***
AR(4)-GARCH(1,1)-lG 0.05832 -0.002675 0.901677 **

WFC AR(2)-GARCH(1,1) 0.4474 -0.017241 *** 2.241195***
AR(2)-GARCH(1,1)-G 0.7276 -0.028095*** 3.593526***

XOM AR(4)-GARCH(1,1) 0.305 -0.005170** 1.174028 ***
AR(4)-GARCH(1,1)-G 0.799 0.012247 -0.292518

Table A.7: Summary of the Mincer-Zarnowitz regression of AR-
GARCH(1,1) out-sample forecast

Summary of the Mincer-Zarnowitz regression of AR-GARCH(1,1) out-sample fore-
cast and their augmented counterparts on daily frequency. MZ-R squared is the R2

of the regression, ↵ is the value and significance level of the intercept, � is the value
and significance lavel of the coe�cient of the regressor.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1

Ticker: AAPL AAPL WFC WFC XOM XOM

Model: lGK lGK+lGGL lGK lGK+lGGL lGK lGK+lGGL

logGKd 0.348*** 0.269*** 0.382*** 0.306*** 0.319*** 0.242***
logGKw 0.200*** 0.257*** 0.237*** 0.295*** 0.330*** 0.296***
logGKm 0.198** 0.212** 0.171** 0.235** 0.221*** 0.264**
logGGLd 0.245*** 0.286*** 0.356***
logGGLw -0.200** -0.313** -0.172.
logGGLm 0.015 -0.143 -0.110
Constant -0.463*** -0.549*** -0.434*** -0.719*** -0.260** -0.290**

Table A.8: Summary of the Heterogeneous Autoregressive Model

Summary of the HAR-lGK and augmented HAR-lGK-lGGL models. logGK stands
for the logarithmic Garman-Klass estimator of relevant aggregation, logGGL stands
for the logarithmic Google data of relevant aggregation. Values of � coe�cients with
p-values denoted by stars with those of our interest typed in bold.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1
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Ticker Model MSE DM-test

AAPL HAR-lGK 0.144
HAR-lGK-lGGL 0.140 2.2893*

WFC HAR-lGK 0.122
HAR-lGK-lGGL 0.119 2.1243*

XOM HAR-lGK 0.119
HAR-lGK-lGGL 0.116 2.3207*

Table A.9: Summary of the HAR and augmented counterparts in-
sample forecast

Column ’Model’ is a description of the model used: HAR-lGK is without Google
data added, HAR-lGK-lGGL is augmented counterpart. MSE is the Mean Squared
Error, DM test is the value and significance level of the Diebold-Mariano test with
alternative hypothesis of model with Google data giving more accurate prediction.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1

Ticker Model MSE MZ R-squared ↵ � DM-test

AAPL HAR-lGK 0.126 0.1709 -0.0928 0.9477***
HAR-lGK-lGGL 0.124 0.1906 -0.09331 0.9277*** 0.36196

WFC HAR-lGK 0.120 0.1789 -0.15 0.8920***
HAR-lGK-lGGL 0.118 0.1996 -0.1709 0.8808*** 0.88905

XOM HAR-lGK 0.114 0.3729 0.1782 1.0810***
HAR-lGK-lGGL 0.110 0.3892 0.2316 1.1103*** 0.76836

Table A.10: Summary of the HAR and augmented counterparts out-
sample forecast

Column ’Model’ is a description of the model used: HAR-lGK is without Google data
added, HAR-lGK-lGGL is augmented counterpart. MSE is the Mean Squared Error,
MZ R-squared is the value of Mincer-Zarnowitz adjusted R2, DM test is the value
and significance level of the Diebold-Mariano test with the alternative hypothesis of
both models having the same predicting accuracy.

*** corresponds to p <0.001, ** p <0.01, * p <0.05, . p <0.1
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Figure A.1: AR-GARCH of the AAPL ticker

From the top left clockwise: plot of the ACF of AR residuals, plot of the ACF of
squared residuals, plot of the augmented AR-GARCH SD vs. absolute returns, plot
of the AR-GARCH vs. absolute returns.
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Figure A.2: AR-GARCH of the WFC ticker

From the top left clockwise: plot of the ACF of AR residuals, plot of the ACF of
squared residuals, plot of the augmented AR-GARCH SD vs. absolute returns, plot
of the AR-GARCH vs. absolute returns.



A. Tables and Figures IX

Figure A.3: AR-GARCH of the XOM ticker

From the top left clockwise: plot of the ACF of AR residuals, plot of the ACF of
squared residuals, plot of the augmented AR-GARCH SD vs. absolute returns, plot
of the AR-GARCH vs. absolute returns.



A. Tables and Figures X

Figure A.4: Cross-correlation functions of AAPL, WFC and XOM
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