
BACHELOR THESIS

Petr Vacek

Multilevel methods and adaptivity

Department of Numerical Mathematics

Supervisor of the bachelor thesis: prof. Ing. Zdeněk Strakoš, DrSc.

Study programme: Mathematics

Study branch: General Mathematics

Prague 2016

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Multilevel methods and adaptivity

Author: Petr Vacek

Department: Department of Numerical Mathematics

Supervisor: prof. Ing. Zdeněk Strakoš, DrSc., Department of Numerical Mathe-
matics

Abstract: After introduction of the model problem we derive its weak formulation,
show the existence and the uniqueness of the solution, and present the Galerkin
finite element method. Then we briefly describe some of the stationary iterative
methods and their smoothing property. We present the most common multigrid
schemes, i.e. two-grid correction scheme, V-cycle scheme, and the full multigrid
algorithm. Then we perform numerical experiment showing the differences be-
tween the use of the direct and iterative coarsest grid solver in V-cycle scheme
and experiment considering a perturbation of the correction vector simulating a
fault of a computational device.

Keywords: numerical PDE, finite element method, multilevel methods, multigrid

ii

I would like to thank my supervisor prof. Ing. Zdeněk Strakoš, DrSc. for his many
helpful comments and suggestions. I am grateful to Mgr. Jan Papež and RNDr.
Jaroslav Hron, PhD. for helping me overcome many difficulties that occurred
during the implementation of the experiments and writhing this thesis. Most of
all, I would like to thank my family for their lasting support. Without their love,
care, and encouragement this thesis would not have been written.

iii

Contents

Introduction 2

1 Model problem and its discretization 3
1.1 Function spaces . 3
1.2 Model problem . 5

1.2.1 Physical experiments modeled by Poisson equation 5
1.2.2 Weak formulation . 5
1.2.3 Existence and uniqueness of the solution 7

1.3 Galerkin method . 9
1.3.1 Finite element method . 11

2 Multigrid methods 14
2.1 Stationary iterative methods . 14

2.1.1 Derivation of stationary iterative methods 14
2.1.2 Convergence of stationary iterative methods 15
2.1.3 Smoothing property of stationary iterative methods 16

2.2 Multigrid shemes . 21
2.2.1 Two-grid correction scheme 21
2.2.2 The V-cycle scheme . 22
2.2.3 The µ-cycle scheme . 23
2.2.4 The full multigrid algorithm 24

3 Numerical experiments 26
3.1 Definition of problems . 26
3.2 Experiment 1 – Discretization error 28
3.3 Experiment 2 – V-cycle scheme with iterative coarsest grid solver 29
3.4 Experiment 3 – V-cycle with fault coarsest grid correction 30

Conclusion 34

Bibliography 35

1

Introduction

Many real-world problems in various scientific areas are modeled by the par-
tial differential equations (PDEs). Numerical solution of linear PDEs typically
consists of two stages. After the discretization of the continuous problem, for
example using the finite element method, the resulting system of linear algebraic
equations is solved. A moderately sized linear algebraic system can be solved by
direct methods; for large systems the (preconditioned) iterative methods become
competitive and with increasing size they represent the only viable alternative.
Moreover, iterative methods enable saving the computational work by stopping
whenever the algebraic error drops to the level at which it does not significantly
affect the whole error; see e.g., [16].

Multilevel methods and, more specifically, multigrid methods are well–known
for being one of the fastest iterative methods for solving the systems of linear
algebraic equations resulting from the discretization of PDEs. In the case of
elliptic PDEs, they can reach an optimal or nearly-optimal efficiency, i.e. the
computational work is asymptotically proportional to the number of unknowns;
see e.g. [1]. Multigrid methods are based on reducing “high- frequency” error
components and “low frequency” error components using different strategies. The
“high- frequency” error components are eliminated by applying a stationary it-
erative method, whereas the “low frequency” error component vanish due to the
coarse grid correction. The coarse grid correction consist of a direct solve of the
system with the matrix associated to the coarsest grid. In the current literature
on multigrid convergence, it is assumed that this solve is performed exactly.

The extremely large problems, which contain 1011 or more unknowns, are
solved on high performance computing systems. With increasing size of the sys-
tems, the probability of failure of one or more system devices may not be non-
negligible; see, e.g., [10]. Therefore fail-safe performance is becoming a major
concern in numerical computing.

The goals of the thesis are to present an brief overview of the theoretical basis
of the finite element discretization and multigrid methods, and to perform exper-
iments considering an inexact solve at coarse grid correction and a perturbation
of the correction vector simulating a fault of a computational device.

Thesis is organized as follows. In the first chapter we introduce the model
problem, derive its weak formulation, show the existence and the uniqueness
of the solution, and present the Galerkin finite element method. After briefly
describing the stationary iterative methods and their smoothing property, we
present the most common multigrid schemes in Chapter 2. Chapter 3 provides
the results of numerical experiments. In Experiment 1 we focus on the behavior
of the discretization error for higher-order finite element approximations. The
differences between the use of the direct and iterative coarsest grid solver, are
studied in Experiment 2. In Experiment 3 we simulate the fault leading to the
situation where one or a small number of components of the coarse grid correction
are corrupted. Thesis ends with concluding remarks.

2

1. Model problem and its
discretization

In this chapter we first introduce the model problem, derive its weak formulation,
and discuss existence and uniqueness of the solution. Then we present the finite
elements method, which we use to transform the model problem to the system of
linear algebraic equations.

The text of the chapter is based on [6, Chapters 1–4], [12, Chapters 2–3], and
[15, Chapter 1].

1.1 Function spaces

In order to formulate the model problem and especially to derive the weak solution
we will need the following function spaces.

For an open set Ω ⊂ Rd (d = 1, 2, 3) and k ∈ N, Ck(Ω) denotes the space of all
functions continuous in Ω for which any derivative up to the order k is continuous
in Ω as well; i.e., Dαu ∈ C(Ω) for any multiindex α = (α1, . . . , αd), αi ∈ N∪{0},
|α| :=

∑d
i=1 αi = k. The space Ck(Ω) consists of functions u belonging to Ck(Ω)

such that for any multiindex α with |α| ≤ k the function Dαu admits a continuous
extension to Ω; C∞(Ω) := ∩∞k=1C

k(Ω) and similarly for C∞(Ω). Finally, D(Ω)
contains functions from C∞(Ω) with the compact support in Ω.

Lebesgue spaces

For 1 ≤ p ≤ ∞, the Lebesgue spaces Lp(Ω) with the norms ‖ · ‖Lp(Ω) are defined
in the following manner. For 1 ≤ p <∞,

Lp(Ω) := {u : Ω→ R;u is measurable and ‖u‖Lp(Ω) :=

(∫
Ω

|u|p
)1/p

<∞};

for p =∞,

L∞(Ω) := {u : Ω→ R;u is measurable and ‖u‖L∞(Ω) <∞},

where ‖ ·‖L∞(Ω) is the proper generalization of the maximum norm to measurable
functions. The technical difference is that the values of a function on a set of
measure zero don’t affect the value of the ‖·‖L∞(Ω) norm, i.e., (with |Υ|d denoting
the d-dimensional Lebesgue measure of Υ ⊂ Ω)

‖u‖L∞(Ω) := inf
{Υ⊂Ω;|Υ|d=0}

sup
{x∈Ω\Υ}

{|u(x)| <∞},

see, e.g. [12, Chapter 2].

Sobolev spaces

The Sobolev spaces W 1,p(Ω) with norms ‖ · ‖W 1,p , where 1 ≤ p ≤ ∞, consist of
those functions u ∈ Lp(Ω) for which all first weak derivatives belong to Lp(Ω);

3

i.e., for all i = 1, . . . , d there are fi ∈ Lp(Ω) such that∫
Ω

u
∂ϕ

∂xi
= −

∫
Ω

fiϕ for all ϕ ∈ D(Ω).

We usually write ∂u/∂xi instead of fi and ∇u instead of (f1, . . . , fd).
a In this

formalism
W 1,p(Ω) := {u ∈ Lp(Ω);∇u ∈ Lp(Ω)d}

with the norm for 1 ≤ p <∞

‖u‖W 1,p :=
(
‖u‖pLp(Ω) +‖∇u‖pLp(Ω)

) 1
p

=

‖u‖pLp(Ω) +

∥∥∥∥∥∥∥∥
 d∑

i=1

(
∂u

∂xi

)2
 1

2

∥∥∥∥∥∥∥∥
p

Lp(Ω)


1
p

and for p =∞
‖u‖W 1,∞ := ‖u‖L∞(Ω) + ‖∇u‖L∞(Ω).

We denote Hk(Ω) := W k,2(Ω). The spaces H1(Ω) and L2(Ω) are the Hilbert
spaces (see, e.g., [12, Section 2.1]) with the respective inner products

(u, v)L2(Ω) :=

∫
Ω

uv, (u, v)H1(Ω) :=

∫
Ω

(uv +∇u · ∇v) .

Therefore we can write

‖u‖L2(Ω) = (u, u)
1/2

L2(Ω), ‖u‖H1(Ω) = (u, u)
1/2

H1(Ω).

Let Ω ⊂ Rd, (d = 1, 2, 3) be open, bounded, connected set. We say that
Ω is a set with Lipschitz boundary, and then write ∂Ω is Lipschitz, if there is
` ∈ N and the numbers α1 > 0 and α2 > 0, such that, the boundary is described
by ` mutually overlapping Lipschitz maps %1, . . . , %`, such that, for each map
% ∈ {%1, . . . , %`}, upon appropriately reorienting the coordinate axis, the sets

{x ∈ Rd; max
i=1,...,d−1

|xi| ≤ α1, %(x1, . . . , xd−1) < xd ≤ %(x1, . . . , xd−1) + α2}

are subsets of Ω and the sets

{x ∈ Rd; max
i=1,...,d−1

|xi| ≤ α1, %(x1, . . . , xd−1)− α2 < xd ≤ %(x1, . . . , xd−1)}

are contained in Rd \ Ω; see [12, Chapter 2].
If ∂Ω is Lipschitz, then there exists a linear bounded operator γ : H1(Ω) →

L2(∂Ω), (see, e.g., [12, Sections 2.1–2.2]) called the trace operator, that generalizes
the concept of restriction of a C(Ω)-function to the boundary to functions from
H1(Ω). The boundedness of γ implies that

there exists Ctr > 0 : ‖v‖L2(∂Ω) :=
∥∥γ(v)

∥∥
L2(∂Ω)

≤ Ctr‖v‖H1(Ω) ∀v ∈ H
1(Ω).

(1.1)

a We use the following notation in agreement with [12]. Vectors with components corre-
sponding to the individual dimensions in Rd are row vectors. On the contrary, algebraic vectors
associated with the discrete algebraic formulations of various problems using matrix represen-
tations are column vectors.

4

1.2 Model problem

Let Ω be a bounded domain in ⊂ Rd, (d = 1, 2, 3). Domain is a connected open
set. Assuming that ∂Ω is Lipschitz and consist of two mutually disjoint parts ∂ΩD

and ∂ΩN we consider the following problem: Given f : Ω → R, g : ∂ΩD → R,
h : ∂ΩN → R and K = (Kij)

d
i,j=1 : Ω→ Rd×d, find u : Ω→ R satisfying

−∇ ·
(
(∇u)K

)
= f in Ω, (1.2)

u = g on ∂ΩD, (1.3)

∂u

∂η
= h on ∂ΩN . (1.4)

Let n be an outer normal vector defined at (almost) all points of the boundary
∂Ω, i.e., n = (n1, . . . , nd) : ∂Ω→ Rd. The symbol ∂u/∂η stands for the derivative
with respect to the co-normal vector η : ΩN → Rd, defined as η := nKT , which
meas that

∂u

∂η
= ∇u · η = (∇u)ηT = (∇u)KnT = (∇u)K · n, (1.5)

where zT denotes the transposition of the matrix (vector) z.

1.2.1 Physical experiments modeled by Poisson equation

For the tenzor K equal to the identity, i.e. K = I, the equation (1.2) is called the
Poisson equation and has several physical interpretations. In this text we will
describe the modeling of the steady state temperature distribution. For another
examples see [6, Section 1.1.1].

Steady-state temperature distribution

Let us consider a physical body in shape Ω. Function f stands for the heat sources
and/or sinks in the body Ω. If f(x) > 0 for some x ∈ Ω, then heat energy is
being added at that point at a rate f(x) (in appropriate units). If f(x) < 0, the
energy is being removed at x. Solution u describes the steady-state temperature
distribution in Ω.

In this context, Dirichlet boundary condition (1.3) indicates that the temper-
ature of the physical body is held fixed at the boundary, specifically, that the
temperature at x ∈ ∂Ω is held fixed at g(x).

Neumann boundary condition (1.4) indicates that the heat flux across the
boundary is of prescribed value h. The heat flux is the flow of the heat energy,
in units of energy per time per length.

1.2.2 Weak formulation

To derive the weak formulation of our model problem (1.2)–(1.4) and to prove the
existence and the uniqueness of its solution we will need following assumptions:

I) f ∈ L2(Ω)

II) K = (Kij)
d
i,j=1 is a symmetric tensor, i.e., Kij = Kji, i, j = 1, . . . , d

5

III) K is a uniformly positive tensor, i.e., there exist constant cK > 0 such that

cK‖z‖2 ≤ zTK(x)z, ∀x ∈ Ω,∀z ∈ Rd

IV) Kij ∈ L∞(Ω) for all i, j = 1, . . . , d

V) g ∈ L2(∂ΩD) and h ∈ L2(∂ΩN)

VI) There exists function uD ∈ H1(Ω) such that γ(uD) = g.

Now we multiply the equation (1.2) by an arbitrary

v ∈ H1
0 := {v ∈ H1(Ω); γ(v) = 0 on ∂ΩD}

and integrate over Ω

−
∫

Ω

∇ ·
(
(∇u)K

)
v =

∫
Ω

fv.

Using the Green’s identity (see, e.g., [6, Section 2.1.2]), one arrives at∫
Ω

(∇u)K · ∇v −
∫
∂Ω

(
(∇u)K · n

)
v =

∫
Ω

fv.

Considering the condition γ(v) = 0 on ∂ΩD and using the formula (1.5), we
conclude that ∫

Ω

(∇u)K · ∇v =

∫
∂ΩN

hv +

∫
Ω

fv for all v ∈ H1
0. (1.6)

After defining the bilinear form

a(u, v) :=
(
(∇u)K,∇v

)
Ω

:=

∫
Ω

(∇u)K · ∇v,

and the linear functional

`(v) := (h, v)∂ΩN
+ (f, v)Ω :=

∫
∂ΩN

hv +

∫
Ω

fv

the equation (1.6) can be restated in compact form

a(u, v) = `(v) for all v ∈ H1
0.

If we denote

H1
D := {v ∈ H1(Ω); γ(v) = g on ∂ΩD} = H1

0 + uD,

we can write down the weak formulation of the model problem (1.2)–(1.4):

Find u ∈ H1
D : a(u, v) = `(v) for all v ∈ H1

0. (1.7)

Function u satisfying (1.7) is called the weak solution of the problem (1.2)–(1.4).

6

1.2.3 Existence and uniqueness of the solution

Before trying to solve any mathematical equation, it is essential to ask whether
its solution exists and, if so, whether the solution is unique. Our aim in this
section is to summarize the well-known results for the weak formulation (1.7).

First we consider the case where the Dirichlet boundary condition (1.3) is
prescribed on non-trivial part of the boundary ∂Ω, i.e.

∫
∂ΩD
6= 0. The weak

formulation (1.7) is equivalent to

Find w ∈ H1
0 : a(w, v) = ˆ̀(v) := `(v)− a(uD, v) for all v ∈ H1

0, (1.8)

with u = w + uD. To prove the existence and uniqueness of the solution w of
(1.8) (respectively u of (1.7)) we will use Lax–Milgram theorem. The proof of
this theorem is based on the Riesz representation theorem and can be found, e.g.,
in [5, Section 6.2.1.].

Theorem 1.1 (Lax–Milgram theorem). Suppose that V is a Hilbert space and
a(·, ·) is a bilinear form on V that is bounded and V -elliptic, i.e., there exist α > 0
and β > 0 such that∣∣a(u, v)

∣∣ ≤ β‖u‖V ‖v‖V for all u, v ∈ V,
a(v, v) ≥ α‖v‖2

V for all v ∈ V.

Then, given an ` ∈ V ∗, where V ∗ denotes the dual space of V , there exists a
unique w ∈ V such that

a(w, v) = `(v) for all v ∈ V.

Moreover, w depends continuously on `;

‖w‖V ≤
1

α
‖`‖V ∗ . (1.9)

In our case we have V := H1
0. The boundedness of a(·, ·) results from the

following estimate:

|a(u, v)| =
∣∣∣∣∫

Ω

(∇u)K · ∇v
∣∣∣∣

≤
∫

Ω

|(∇u)K · ∇v|

≤ max
i,j=1,...,d

∥∥Ki,j

∥∥
L∞(Ω)

‖∇u‖L2(Ω)‖∇v‖L2(Ω) (by the Hölder inequality)

≤ max
i,j=1,...,d

∥∥Ki,j

∥∥
L∞(Ω)

‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ H1
0.

(1.10)

To prove that a(·, ·) is H1
0-elliptic we need the Poincaré inequality (see, e.g., [6,

p. 46]): Let Ω be a domain with Lipschitz boundary, then there exists a positive
constant CΩ, depending only on Ω, such that∫

Ω

∇v · ∇v ≥ CΩ‖v‖H1(Ω) for all v ∈ H1
0(Ω). (1.11)

7

Now let v ∈ H1
0, then

a(v, v) =

∫
Ω

(∇v)K · ∇v

≥ cK

∫
Ω

∇v · ∇v (we used that K is uniformly positive)

≥ cKCΩ‖v‖2
H1(Ω) (by the Poicaré inequality (1.11)).

(1.12)

Since a(·, ·) is a H1
0-elliptic symmetric bilinear form it is also an inner product on

H1
0. This inner product is called the energy inner product and it can be shown

that H1
0 equipted with a(·, ·)is a Hilbert space; see, e.g., [6, p. 43]. Thus the

energy inner product introduces the energy norm:

‖v‖a :=
√
a(v, v) for all v ∈ H1

0,

which is topologically equivalent with the norm ‖·‖H1(Ω).

The fact that ˆ̀ is linear bounded functional, i.e., it belongs to the dual space
of H1

0(Ω), follows from the inequality, for v ∈ H1
0,

|ˆ̀(v)| =

∣∣∣∣∣−
∫

Ω

(∇uD)K · ∇v +

∫
∂ΩN

hv +

∫
Ω

fv

∣∣∣∣∣
≤
∫

Ω

∣∣(∇uD)K · ∇v
∣∣+

∫
∂ΩN

|hv|+
∫

Ω

|fv|

≤ max
i,j=1,...,d

∥∥Ki,j

∥∥
L∞(Ω)

‖∇uD‖L2(Ω)‖∇v‖L2(Ω) +‖h‖L2(∂ΩN)‖v‖L2(∂ΩN)

+‖f‖L2(Ω)‖v‖L2(Ω)

≤
(

max
i,j=1,...,d

∥∥Ki,j

∥∥
L∞(Ω)

‖∇uD‖L2(Ω) +‖h‖L2(∂ΩN)Ctr +‖f‖L2(Ω)

)
‖v‖H1(Ω) .

We used the estimate (1.10), the Hölder inequality, and the trace inequality (1.1).
As the assumptions of the Lax-Milgram theorem are verified, it yields the

existence and uniqueness of the solution w of (1.8) (respectively u of (1.7)).
From (1.9),

‖w‖H1(Ω) ≤
1

α
‖ˆ̀‖(H1(Ω))∗ .

Note that the assumption of the Lax-Milgram theorem are fulfilled for any
finite-dimensional subspace Vh ⊂ H1

0, therefore the problem:

Find wh ∈ Vh : a(wh, vh) = ˆ̀(vh) for all vh ∈ Vh (1.13)

has also the unique solution wh. We will use this fact in the derivation of Galerkin
method.

Previous results were derived for the weak formulation of our model problem
(1.2)-(1.4) with Dirichlet or mixed boundary conditions. Let us now consider the
model problem with pure Neumann boundary condition, i.e.,

−∇ ·
(
(∇u)K

)
= f in Ω,

∂u

∂η
= h on ∂Ω.

(1.14)

8

Let u be the solution of (1.14), then using the divergence theorem (see, e.g., [6,
Section 2.1.1]) we obtain the compatibility condition:∫

Ω

f = −
∫

Ω

∇ ·
(
(∇u)K

)
= −

∫
∂Ω

(∇u)K · n = −
∫
∂Ω

∂u

∂η
= −

∫
∂Ω

h.

We see that the problem (1.14) has a solution only if the compatibility condition
holds.

It can be easily verified that if u satisfies (1.14), then for any constant C ∈ R
u+ C also satisfies (1.14).

Removing this ambiguity e.g. by requiring
∫

Ω
u = 0 we can again use the

Lax-Milgram theorem to prove the existence and the uniqueness of the solution
u; see, e.g., [6, p.47-48].

1.3 Galerkin method

In this section we present discretization of the model problem by the Galerkin
method. The resulting problem can be equivalently formulated as a system of
linear algebraic equations. In Section 1.3.1 the finite element method is intro-
duced.

Let Vh be a finite dimensional subspace of H1
0. The Galerkin approximate

solution of (1.8) is defined as the solution wh of the problem

Find wh ∈ Vh : a(wh, vh) = ˆ̀(vh) for all vh ∈ Vh. (1.15)

Let N ∈ N be the dimension of Vh and {ϕ1, . . . , ϕN} its basis, i.e., any vh ∈ Vh
can be written as vh =

∑N
i=1 αiϕi, where αi ∈ R, i = 1, . . . , N . From the linearity

of a(·, ·) and ˆ`(·) the problem (1.15) is equivalent to

Find wh ∈ Vh : a(wh, ϕi) = ˆ̀(ϕi) for all i = 1, . . . , N. (1.16)

Moreover considering wh =
∑N

j=1 ζjϕj for some coefficients ζj ∈ R, j = 1, . . . , N
we have

N∑
j=1

ζja(ϕj, ϕi) = ˆ̀(ϕi) for all i = 1, . . . , N.

Writing these equations in matrix-vector notation, we can reformulate (1.15) as

Find xh ∈ RN : Ahxh = bh, (1.17)

where

Ah = (ai,j)
N
i,j=1, ai,j =

∫
Ω

(∇ϕj)K · ∇ϕi

bh =

 ξ1
...
ξN

 , ξi =

∫
∂ΩN

hϕi +

∫
Ω

fϕi −
∫

Ω

(∇uD)K · ∇ϕi

xh =

 ζ1
...
ζN

 , wh =
n∑
i=1

ζjϕj.

9

The matrix Ah is called the stiffness matrix and it is symmetric and positive-
definite. With no risk of confusion we will drop the index h where appropriate.
The symmetry of A results from the symmetry of the bilinear form a(·, ·). To
show positive-definiteness of A, let y = (y1 . . . , yN)T ∈ RN , y 6= 0, and consider a
function v =

∑N
i=1 yiϕi. The following estimate

yTAy =
N∑
i=1

N∑
j=1

yiyja(ϕi, ϕj) = a

 N∑
i=1

yiϕi,

N∑
j=1

yjϕj


= a(v, v) = ‖v‖2

a > 0,

(1.18)

holds for every y 6= 0 and therefore A is positive-definite. The relation (1.18) also
justifies the definition of the algebraic energy norm on RN

‖y‖2
A := yTAy = a(v, v) = ‖v‖2

a,

for every y ∈ RN and v =
∑N

i=1 yiϕi.
Now we will look on the relationship between the solution w of the weak

formulation (1.8) and the solution wh of (1.15). Subtracting (1.15) from (1.8) we
get the Galerkin orthogonality

a(w − wh, vh) = 0 for all vh ∈ Vh, (1.19)

i.e., the discretization error w−wh is orthogonal to the subspace Vh with respect
to the energy inner product. This also means that wh is the best approximation
(in the energy norm) to w in the space Vh, i.e.,

‖w − wh‖a = min
vh∈Vh

‖w − vh‖a.

We will use the Galerkin orthogonality to derive the estimate on the discretization
error w−wh in H1(Ω)-norm. Since vh−wh ∈ Vh the Galerkin orthogonality gives

a(w − wh, vh − wh) = 0 for all vh ∈ Vh.

Therefore,

a(w − wh, w − wh) = a(w − wh, w − vh + vh − wh)
= a(w − wh, w − vh) + a(w − wh, vh − wh)
= a(w − wh, w − vh)

holds for every vh ∈ Vh. Using the fact that a(·, ·) is H1
0-elliptic and bounded

with positive constants α, β (see Section 1.2.3.) we get:

‖w − wh‖2
H1(Ω) ≤

1

α
a(w − wh, w − wh)

=
1

α
a(w − wh, w − vh)

≤ β

α
‖w − wh‖H1(Ω)‖w − vh‖H1(Ω),

for every vh ∈ Vh. Dividing both sides by ‖w − wh‖H1(Ω) gives the result known
as Cea lemma (see, e.g., [12, pp. 65–66]):

‖w − wh‖H1(Ω) ≤
β

α
‖w − vh‖H1(Ω) for all vh ∈ Vh. (1.20)

10

1.3.1 Finite element method

In this subsection we introduce the finite element method, which is a Galerkin
method with specific construction of the finite-dimensional subspace Vh ⊂ H1

0.
In the finite element method the Galerkin solution is searched in the subspace
consisting of piecewise polynomial functions.

Piecewise polynomial functions defined on a triangular mesh

To the ease of presentation, suppose now that Ω is a polygonal domain in R2. The
finite element method can be generalized to the case of non-polygonal domain in
R2 or to three dimensional problems; see, e.g., [6, 2].

To define a piecewise polynomial over a domain Ω, the domain must be par-
titioned into subdomains. The collection of subdomains is referred to as a mesh.
In this thesis we consider so called conforming triangulation, i.e. the partition
Th of domain Ω into triangles such that the intersection of any two triangles is
a common vertex or a common edge. Figure 1.1a shows a conforming triangula-
tion of a square. Another approaches using the partition of Ω into rectangles or
quadrilaterals can be found, e.g., in [6, Section 4.5].

By hK we denote the diameter of a triangle K ∈ Th. The mesh size h is
defined as the maximum of these diameters, i.e.

h := max
K∈Th

hK = max
K∈Th

diam(K).

The space of piecewise polynomial functions of maximum degree p ∈ N is
defined as

Vh,p := {v ∈ C(Ω); v|K ∈ P p(K) ∀K ∈ Th and v = 0 on ∂Ω},

where P p(K) denotes the space of polynomial functions of maximum degree p on
the triangle K. There holds Vh,p ⊂ H1

0, the proof can be found, e.g., in [6, p. 71].

Basis functions of Vh,1
As an example, we present a basis of the space Vh,1 of piecewise linear functions.
Discussion concerning the cases with higher polynomial degree can be found, e.g.,
in [6, Chapter 4].

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(a) Conforming triangulation of a square

1

0

-1-1

0

0

0.5

1

1

(b) Basis function of Vh,1

Figure 1.1: Example of a triangulation and a basis function.

11

Considering a triangulation Th we denote by z1, . . . , zN the free vertices of the
triangulation. Vertex z is said to be free, if z /∈ ∂ΩD. Let ϕi ∈ Vh,1 be a function
corresponding to a free vertex zi of the triangulation Th such that

ϕi(zj) =

{
1, i = j,

0, i 6= j.
(1.21)

Functions ϕi, i = 1, . . . , N are uniquely defined by the condition (1.21) and
together form a basis of the space Vh,1; see, e.g., [6, Section 4.1]. Figure 1.1b
illustrates the basis function ϕi.

Recalling the definition of the stiffness matrix A,

A = (ai,j)
N
i,j=1, ai,j =

∫
Ω

(∇ϕj)K · ∇ϕi,

we conclude that thanks to the small support of basis functions ϕi, the entries
ai,j are zero for the most of choices of i and j. To be precise ai,j 6= 0 only if i = j
or if zi and zj are vertices of the same element K of the triangulation Th.

Convergence of the finite element method

Our aim in this paragraph is to state a priori estimates on the discretization
error u− uh in H1 and L2 norms. The estimates depend on the mesh size h and
the regularity of the exact solution u of (1.7). It moreover contains unspecified
multiplication factors.

In the following theorem we assume that we are given a nondegenerate family
of triangulations with mesh size h decreasing to zero. We say that a family {Th}
is nondegenerate if there exists a constant ρ > 0 such that

diam BK

hK
≥ ρ for all K ∈ Th and all Th ∈ {Th},

where BK is the largest ball contained in K.

Theorem 1.2 ([6, Theorem 5.3.]). Suppose {Th} is a nondegenerate family of
triangulation of a polygonal domain Ω ⊂ R2 with constant ρ > 0, and suppose
that u ∈ Hp+1(Ω). Then there exists a constant C depending on Ω and the value of
ρ such that for any Th ∈ {Th} the corresponding piecewise polynomial interpolant
uI ∈ Vh,p of u satisfies

‖u− uI‖H1(Ω) ≤ C hp|u|Hp+1(Ω)

and
‖u− uI‖L2(Ω) ≤ C hp+1|u|Hp+1(Ω)

Here |u|Hp+1(Ω)) is the seminorm

|u|2Hp+1(Ω) =
∑

i+j=p+1

∫
Ω

∣∣∣∣∣ ∂p+1u

∂xi∂yj

∣∣∣∣∣
2

.

12

For the simplicity of exposition we further consider the problem (1.2)-(1.4)
with the homogeneous Dirichlet boundary condition, i.e., with g = 0. Note that
since g = 0 and consequently uD = 0, the weak formulations (1.7) and (1.8)
are identical. Let u be the solution of the weak formulation (1.7), the inequality
(1.20) has in this case the form

‖u− uh‖H1(Ω) ≤
β

α
‖u− vh‖H1(Ω) for all vh ∈ Vh,p.

Supposing that all the assumptions of Theorem 1.2 are fulfilled, it yields

‖u− uh‖H1(Ω) ≤
β

α
C hp|u|Hp+1(Ω). (1.22)

Same results can be derived for the case of inhomogeneous Dirichlet boundary
condition; see, e.g., [6, Section 5.3]. For the sake of completeness we present the
estimate in the L2-norm, which holds under the same assumptions as the previous
estimate (1.22) see, e.g., [6, Section 5.4]

‖u− uh‖L2(Ω) ≤
β

α
C̃ hp+1|u|Hp+1(Ω), (1.23)

for some constant C̃.

13

2. Multigrid methods

In this chapter we present multigrid methods for solving the systems of linear
algebraic equations resulting from the discretization of model problem (1.2)–(1.4).
For the simplicity of exposition we further consider K = κI, where κ : Ω→ R is a
real function such that the tensor K fulfills the assumptions II)-IV) formulated in
Section 1.2.2. After we briefly describe some of the stationary iterative methods
that are used in multigrid algorithms we present the multigrid concept and the
most common schemes.

2.1 Stationary iterative methods

Let us start with a brief look at the classical stationary iterative methods, fol-
lowing [7, 11]; see also [3, 4, 6] and references therein.

2.1.1 Derivation of stationary iterative methods

Consider a system of linear algebraic equations Ax = b, where A is a regular
matrix and b is a given right side vector. Let x(0) be an initial guess for the solution
of Ax = b. If we could compute the error e(0) := A−1b−x(0), then we could correct
our approximation and find the solution x = x(0) + e(0). Unfortunately, the error
e(0) is not available (without solving a linear system that is as difficult as the
original problem), but we can compute the residual r(0) := b− Ax(0).

As Ae(0) = A(A−1b − x(0)) = f − Ax(0) = r(0), the error e(0) satisfies the
residual equation Ae(0) = r(0). Suppose that M is a matrix such that M−1A
approximates in some way the identity and that linear systems with matrix M
are “easy” to solve. Multiplying the residual equation Ae(0) = r(0) by M−1 from
right give us e(0) ≈ M−1r(0). Therefore, after solving “easy” equation for z(0):
Mz(0) = r(0), we can compute new hopefully improved approximation

x(1) := x(0) + z(0) = x(0) +M−1r(0).

This process could be repeated, giving the stationary iterative method

x(k) := x(k−1) + z(k−1) = x(k−1) +M−1r(k−1), k = 1, 2, . . . , (2.1)

where r(k−1) := b − Ax(k−1). An actual implementation of (2.1) might use the
following algorithm formulated, e.g., in [7, Section 12.2.2].

Simple iteration

1. Given an initial guess x(0), compute r(0) = b− Ax(0).

2. Solve Mz(0) = r(0) for z(0).

3. For k = 1, 2, . . .

◦ Set x(k) = x(k−1) + z(k−1).

14

◦ Compute r(k) = b− Ax(k).

◦ Solve Mz(k) = r(k) for z(k).

The matrix M is called the preconditioner. Consider the decomposition of A in
the form A = D+L+U , where D is the diagonal of A, L is the strict lower and
U is the strict upper triangle of A , and let ω, ω̃ ∈ R. The previous algorithm
goes by different names, according to the choice of M :

M = D Jacobi method, (2.2)

M = ω−1D damped Jacobi method, (2.3)

M = D + L Gauss–Seidel method, (2.4)

M = ω̃−1D + L successive overrelaxation (SOR) method. (2.5)

Another way how to derive these methods is to use the matrix splitting. If we
write matrix A in the form A = M −N then, supposing that M is invertible, we
can rewrite Ax = b as

Mx = Nx+ b,

or equivalently
x = M−1Nx+M−1b.

Using the fixed point iteration, see, e.g., [7, Section 4.5], we obtain:

x(k) = M−1Nx(k−1) +M−1b. (2.6)

To see that (2.6) is equivalent to (2.1), note that M−1N = I − M−1A and
substituting into (2.6),

x(k) = (I −M−1A)x(k−1) +M−1b

= x(k−1) +M−1(b− Ax(k−1))

= x(k−1) + z(k−1).

(2.7)

We have discussed only few of the stationary iterative methods. More details
and interesting numerical experiments can be found, e.g., in [3, Chapter 2].

2.1.2 Convergence of stationary iterative methods

Let e(k) := A−1b−x(k) denote the error in the approximation x(k). It follows from
(2.7) that

e(k) = e(k−1) −M−1Ae(k−1)

= (I −M−1A)e(k−1)

= (I −M−1A)ke(0). (2.8)

Taking norms on both side of (2.8) and using the Cauchy–Schwarz inequality, we
find that

‖e(k)‖ ≤ ‖(I −M−1A)k‖ · ‖e(0)‖, (2.9)

where ‖ · ‖ can be any vector norm and we take the matrix norm to be the one
induced by the vector norm: ‖B‖ := max‖y‖=1‖By‖.

15

Apart from trivial cases, even in exact arithmetic these methods do not ter-
minate with the exact solution of given problem. Therefore it is fully justified
to analyze their convergence behavior using asymptotics and to study limits for
k → ∞. We see that if limk→∞(I −M−1A)k = 0, then the error e(k) converges
to zero. The opposite implication, i.e. if the error e(k) converges to zero then
limk→∞(I −M−1A)k = 0, also holds; see, e.g., [7, Theorem 12.2.1.]. We summa-
rize these results in Theorem 2.1.

Theorem 2.1 ([7, Theorem 12.2.1.]). The error in interation (2.1) converges to
zero and x(k) converges to A−1b as k → ∞, for every initial guess x(0), if and
only if

lim
k→∞

(I −M−1A)k = 0. (2.10)

To specify when matrix I −M−1A satisfies the condition (2.10) we present
the following theorem.

Theorem 2.2 ([7, Theorem 12.2.3.]). Let G be a square matrix. Then

lim
k→∞

Gk = 0,

if and only if ρ(G), the spectral radius of matrix G , i.e.,

ρ(G) := max{|λ| : λ is an eigenvalue of G},

satisfies ρ(G) < 1.

Using Theorem 2.2 we can restate Theorem 2.1 as

Theorem 2.3 ([7, Theorem 12.2.4.]). The error in interation (2.1) converges to
zero and x(k) converges to A−1b as k → ∞, for every initial guess x(0), if and
only if

ρ(I −M−1A) < 1.

While Theorem 2.3 gives a necessary and sufficient condition for convergence
of the iterative method (2.1), it may not be easy to check. In general, the spectral
radius of the iteration matrix I−M−1A is unknown and checking whether it is less
than 1 can be complicated. There are some circumstances, however, in which this
condition can be verified. For example, when applying the Gauss–Seidel method
to system with a symmetric positive-define matrix A, then ρ(I−M−1A) < 1 and
consequently the method converges; see, e.g., [7, pp. 335-336].

Figure 2.1 illustrates the convergence of the Jacobi, Gauss–Seidel, and SOR
iterative methods for a linear system arising from the finite element discretization
of model problem (1.2)-(1.4). This behavior is typical for a class of matrices called
2-cyclic see, e.g., the discussion in [9, Chapter 5].

2.1.3 Smoothing property of stationary iterative methods

If we apply stationary iterative methods to the system of linear algebraic equa-
tions arising from the finite element discretization of the model problem (1.2)–
(1.4), the “high frequency” error components are reduced rapidly and the “low

16

Number of iterations
0 100 200 300 400 500

‖x
−
x
(k
) ‖

A

10-6

10-4

10-2

100

102

Jacobi
Gauss--Seidel
SOR

Figure 2.1: Convergence of the Jacobi, Gauss–Seidel, and SOR iterative meth-
ods for a system of linear algebraic equations resulting from the finite element
discretization of the model problem (1.2)–(1.4).

frequency” error components start to dominate; see, e.g., [3, Chapter 2], [6, Sec-
tion 13.1] and [9, Chapter 10]. This effect is known as the smoothing property of
stationary iterative methods.

Following the exposition in [3, Chapter 2] we will explain the smoothing prop-
erty of the damped Jacobi method (see Section 2.1.1) on a one-dimensional ex-
ample. Consider the symmetric positive–define matrix A ∈ RN×N , N ∈ N arisen
from the discretization of one-dimensional Poisson equation, see [3], in the form

A =


2 −1
−1 2 −1

.

−1 2 −1
−1 2

 . (2.11)

The matrix A has N eigenvalues, for j = 1, . . . , N, they are given by (see [3,
p. 18])

λj(A) = 4 sin2

(
jπ

2(N + 1)

)
. (2.12)

The N corresponding eigevectors are given by

vj =


sin
(

jπ
N+1

)
sin
(

2jπ
N+1

)
...

sin
(
Njπ
N+1

)

 . (2.13)

Eigenvectors vj, j = 1, . . . , N are called (discrete) Fourier modes. We say that
all vj with 1 ≤ j < (N − 1)/2 are low–frequency or smooth modes and all vj
with (N − 1)/2 ≤ j ≤ N are high–frequency or oscillatory modes; see Figure 2.2,

17

1 N
-1

0

1

(a) eigenvector v1

1 N
-1

0

1

(b) eigenvector v3

1 N
-1

0

1

(c) eigenvector v12

1 N
-1

0

1

(d) eigenvector v15

Figure 2.2: Graphs of the eigenvectors of A on a grid with 15 points.

where eigenvectors v1, v3, v12, v15 are plotted. The error after k iterations of the
damped Jacobi method, is given by (see Section 2.1.2)

e(k) = (I − ωD−1A)ke(0). (2.14)

Note that for the particular matrix A given by (2.11), D−1 = 1
2
I, and

e(k) = (I − ω

2
A)ke(0). (2.15)

Having known the eigenvalues of A we conclude that the eigenvalues of the matrix
G := I − ω

2
A are

λj(G) = 1− 2ω sin2

(
jπ

2(N + 1)

)
, 1 ≤ j ≤ N (2.16)

and the eigenvectors of A and G are the same. Note that according to the
Theorem 2.3 the damped Jacobi method applied to matrix A converges if and
only if ω ∈ (0, 1]. Since the eigenvectors of matrix A respectively matrix G form
a base of RN , it is possible to represent e(0) in the form

e(0) =
N∑
j=1

cjvj, (2.17)

where the coefficients cj ∈ R give the “amount” of each mode in the error.
Substituting (2.17) into (2.15) yields

e(k) =
N∑
j=1

cj(I −
ω

2
A)kvj =

N∑
j=1

cjG
kvj =

N∑
j=1

cjλ
k
j (G)vj. (2.18)

18

j1 N

λ
j(G

)

-1

-0.5

0

0.5

1

ω=1/3
ω=1/2
ω=2/3
ω=1

Figure 2.3: Eigenvalues of the matrix G for ω = 1
3
, 1

2
, 2

3
, 1. The eigenvalues λj(G)

are plotted as if j were a continuous variable.

This expansion for e(k) shows that after k iterations, the jth mode of the initial
error has been reduced by λkj (G). The eigenvalues λkj (G) depends on the choice of
parameter ω; see Figure 2.3, where eigenvalues λkj (G) are plotted for four different
values of ω. However for all values of ω satisfying ω ∈ (0, 1] the eigenvalue λ1(G),
i.e. the value associated with the smoothest mode, is always close to one; see,
e.g., [3, p. 21]. Therefore, no value of ω will reduce the smooth components
of the error effectively. Optional value providing the the best damping of the
oscillatory components is 2/3; see, e.g., [3, p. 21]. Note that with ω = 2/3, we
have |λj(G)| < 1/3 for all (N − 1)/2 ≤ j ≤ N , i.e. the oscillatory components
are reduced at least by a factor of three with each iteration.

In Figure 2.4 the damped Jacobi method with ω = 2/3 is applied to the prob-
lem with matrix A, N = 15. Figure 2.4a shows the smooth initial error and errors
after one, five and ten iterations. We see that the smooth initial error is damped
very slowly. Figure 2.4a shows a more oscillatory error and errors after one and
two iterations. The damping is much more dramatic. Figure 2.4c illustrates the
selectivity of the smoothing property. This experiment starts with initial error
consisting of the smooth and oscillatory mode. After two iterations, the high-
frequency components of the error are eliminated and the the low frequency error
components start to dominate, i.e. the error is smoothed.

Using (2.18) the kth residual can be written as

r(k) = Ae(k) = A
N∑
j=1

cjλ
k
j (G)vj =

N∑
j=1

cjλ
k
j (G)Avj =

N∑
j=1

cjλ
k
j (G)λj(A)vj. (2.19)

Since |λj(A)| < 1 for all 1 ≤ j ≤ N , we conclude that after k iterations the
residual is smoothed even more then the error.

19

1 N
-1

-0.5

0

0.5

1

e(0)

e(1)

e(5)

e(10)

(a)

1 N
-1

-0.5

0

0.5

1
e(0)

e(1)

e(2)

(b)

1 N
-1

-0.5

0

0.5

1
e(0)

e(1)

e(2)

(c)

Figure 2.4: Damped Jacobi method with ω = 2/3 applied to a problem with ma-
trix A, N = 15 with initial error consisting of (a) v2, (b) v15, and (c) (v2 + v12)/2.

20

2.2 Multigrid shemes

In this section we follow [3, Chapter 3], [17],[7, Section 14.6] and present the
most common multigrid schemes. First we will describe the concept of multigrid
on the simplest scheme, i.e. the two-grid correction scheme. Then we will state
its recursive modifications the V-cycle scheme, the µ-cycle scheme and the full
multigrid algorithm.

2.2.1 Two-grid correction scheme

Consider two triangulations Th and TH of Ω, such that the corresponding sub-
spaces Vh,p,VH,p satisfy VH,p ⊂ Vh,p, i.e. Th is a refinement of TH . We will call, in
agreement with standard multigrid literature, Th a fine grid and TH a coarse grid,
and denote Nh := dim(Vh,p), NH := dim(VH,p). We consider linear interpolation
and restriction operators I : VH,p → Vh,p, R : Vh,p → VH,p that have algebraic
representation in the form of rectangular matrices I ∈ RNh×NH , R ∈ RNH×Nh .
Let Ahxh = bh and AHxH = bH be systems of linear algebraic equations arising
from the finite element discretization of the model problem (1.2)–(1.4) using the
triangulation Th and TH , respectively; see Section 1.3. The two-grid correction
scheme solves the system Ahxh = bh using a stationary iterative method and the
coarse-grid correction as follows (see, e.g., [3, p. 37], [7, Section 14.6])

Two-grid correction scheme

1. (pre-smoothing)

◦ Perform m1 iterations of a stationary method applied to Ahxh = bh
with an initial guess yh to obtain an approximation yh.

2. (coarse-grid correction)

◦ Compute the residual rh = bh − Ahyh.
◦ Restrict the residual to the coarse grid as rH = Rrh.

◦ Solve AHeH = rH for eH .

◦ Interpolate the error eH to the fine grid as eh = IeH .

◦ Correct the approximation yh by yh := yh + eh.

3. (post-smoothing)

◦ Perform m2 iterations of a stationary method applied to Ahxh = bh
with an initial guess yh to obtain an approximation yh.

The pre-smoothing has the effect of damping out the oscillatory components of
the error; see Section 2.1.3. After a few steps, the error and the residual are
smoothed and the additional iterations are not effective. Hence, we use the
coarse-grid correction, which eliminates the low frequency error components. We
compute the residual and restrict it to the coarse grid. Note that since the
residual is a smooth vector, it can be well-represented on the coarse grid. This is
illustrated in Figure 2.5. We see that the restriction keeps the essential behavior

21

of the smooth vector while an oscillating vector is misrepresented as a smooth.
We may expect that the restriction to the coarse grid has the same property also
in the d-dimensional case.

After solving the system AHeH = rH we interpolate the error as eh = IeH
and correct our approximation yh := yh + eh. The post-smoothing smooths out
the oscillations that may occur in eh due to the interpolation.

↓
-1

-0.5

0

0.5

1

↓
-1

-0.5

0

0.5

1

↓
-1

-0.5

0

0.5

1

↓
-1

-0.5

0

0.5

1

Figure 2.5: Restriction of a smooth vector (on the left) and the oscillatory vector
(on the right) to a coarse grid.

2.2.2 The V-cycle scheme

The system AHeH = rH is smaller than the original one but it can be still too
large to be solved efficiently by a direct method. However, the two-grid correction
scheme can be applied recursively until the restricted system is small enough to
be solved by a direct method. The resulting method is called the V-cycle scheme.
The name arises from the pattern pictured in Figure 2.6a, which shows the method
beginning on the finest grid, descending to the coarsest grid, and then returning
back to the finest grid. To present the V-cycle scheme we will need the following
notation.

Let us consider a sequence of triangulations of Ω (grids): T1, . . . ,TJ , where
Tj is a refinement of Tj+1 for every j = 1, . . . , J − 1. Let Aj be the matrix arising
from the finite element discretization of the model problem (1.2)–(1.4) using the
triangulation Tj (grid j). Let matrix Ij+1

j represents the interpolation operator

from the grid j + 1 to the grid j and let matrix Rj
j+1 represents the restriction

operator from the grid j to the grid j + 1.
The V-cycle scheme is defined as (see, e.g., [3, p. 40])

22

The V-cycle scheme

1. Perform m1 iterations of a stationary method applied to A1x1 = b1 with
an initial guess y1 to obtain an approximation y1.

2. Compute b2 = R1
2(b1 − A1y1).

3. For j = 2, . . . , J − 1,

◦ Perform m1 iterations of a stationary method applied to Ajxj = bj
with an initial guess yj = 0 to obtain an approximation yj.

◦ Compute bj+1 = Rj
j+1(bj − Ajyj).

4. Solve AJyJ = bJ for yJ .

5. For j = J − 1, . . . , 1,

◦ Correct the approximation yj by yj := yj + Ij+1
j yj+1.

◦ Perform m2 iterations of a stationary method applied to Ajxj = bj
with an initial guess yj to obtain an approximation yj.

The V-cycle scheme has also a compact recursive definition, which is given as
follows; see, e.g., [3, p. 40], [17, p. 19].

The V-cycle scheme yj = V (yj, bj, j)

1. If j = J , solve AJyJ = bJ and go to step 8.

2. Perform m1 iterations of a stationary method applied to Ajxj = bj with
an initial guess yj to obtain an approximation yj.

3. Compute bj+1 = Rj
j+1(bj − Ajyj).

4. Set yj+1 := 0.

5. Call V-cycle scheme recursively yj+1 := V (yj+1, bj+1, j + 1).

6. Correct the approximation yj by yj := yj + Ij+1
j yj+1.

7. Perform m2 iterations of a stationary method applied to Ajxj = bj with
an initial guess yj to obtain an approximation yj.

8. Return yj.

The V-cycle scheme can be iterated as many time as needed to reduce the error
to an acceptable level. For the first iteration we use the initial guess y0 = 0.

2.2.3 The µ-cycle scheme

The V-cycle is just one of a family of multigrid cycling schemes. The entire family
is called the µ-cycle schemes and is defined recursively by following; see, e.g., [3,
p. 42].

23

(a) V-cycle (b) W-cycle (c) Full multigrid V-cycle

Figure 2.6: Multigrid cycling patterns.

The µ-cycle scheme yj = Mµ(yj, bj, j, µ)

1. If j = J , solve AJyJ = bJ and go to step 8.

2. Perform m1 iterations of a stationary method applied to Ajxj = bj with
an initial guess yj to obtain an approximation yj.

3. Compute bj+1 = Rj
j+1(bj − Ajyj).

4. Set yj+1 := 0.

5. Repeat µ times:

◦ Call recursively yj+1 := Mµ(yj+1, bj+1, j + 1, µ).

6. Correct the approximation yj by yj := yj + Ij+1
j yj+1.

7. Perform m2 iterations of a stationary method applied to Ajxj = bj with
an initial guess yj to obtain an approximation yj.

8. Return yj.

In practice, only µ = 1 (which gives the V-cycle) and µ = 2 are used. Figure
2.6b shows the pattern for µ = 2 and the resulting W-cycle.

2.2.4 The full multigrid algorithm

The µ-cycle schemes start with an initial guess. It is obvious that we want to
provide the best possible initial guess. A natural approach is to first solve the
problem on a coarser grid and interpolate this solution to the fine grid to be used
as a first approximation. This is applied recursively, yielding the full multigrid
algorithm; see, e.g., [3, p. 42].

The full multigrid algorithm

1. For j = 1, . . . , J − 1

◦ Restrict vector bj to a coarser grid j + 1 as bj+1 = Rj
j+1bj.

2. Solve AJyJ = bJ for yJ .

3. For j = J − 1, . . . , 1

24

◦ Interpolate yj+1 to the grid j as yj = Ij+1
j yj+1.

◦ Repeat µ times:

– Call V-cycle scheme yj := V (yj, bj, j).

Expressed recursively, the algorithm has the following compact form; see, e.g., [3,
p. 42], [17, p. 22].

The full multigrid algorithm yj = FMG(bj, j)

1. If j = J , solve AJyJ = bJ and go to step 8.

2. Restrict the right side vector bj to a coarser grid j+1 as bj+1 = Rj
j+1bj.

3. Call the full multigrid algorithm recursively yj+1 = FMG(bj+1, j + 1).

4. Interpolate yj+1 to the grid j as yj = Ij+1
j yj+1.

5. Repeat µ times:

◦ Call V-cycle scheme yj := V (yj, bj, j).

6. Return yj.

Figure 2.6c shows the pattern for µ = 1.
The convergence of described multigrid methods is based on showing that one

step of the method is a contraction. It has been studied in many papers; we refer
especially to Hackbusch [8] and McCormick [13].

25

3. Numerical experiments

After the definition of four test problems we focus on the behavior of the dis-
cretization error for higher-order finite element approximations in Experiment 1.
The differences between the use of the direct and iterative coarsest grid solver in
the V-cycle scheme, are studied in Experiment 2. In Experiment 3 we simulate
the fault of a computational device leading to the situation where one or a small
number of components of the coarse grid correction are corrupted.

The multigrid solvers used in Experiments 2-3 are always run with zero initial
guess.

3.1 Definition of problems

The first three problems are from the class

−∆u = f in Ω = (−1, 1)2 ,

u = 0 on ∂Ω.
(3.1)

Problem 1

We consider the problem (3.1) with the manufactured solution u

u(x, y) = (x− 1)(x+ 1)(y − 1)(y + 1),

and the right-hand side

f(x, y) = −2(x2 + y2 − 2).

Figure 3.1: Problem 1, solution u.

Problem 2

As the second problem we consider (3.1) with the manufactured solution

u(x, y) = sin(2πx) sin(2πy)

26

and the right-hand side

f(x, y) = 8π2 sin(2πx) sin(2πy).

Figure 3.2: Problem 2, solution u.

Problem 3

We consider the problem (3.1) with the manufactured solution

u(x, y) = ((x+ 1)(x− 1)(y + 1)(y − 1))e−100(x2+y2)

and the right-hand side

f(x, y) = e−100(x2+y2)
(

40000x4
(
y2 − 1

)
+ x2

(
40000y4 − 82000y2 + 41202

))
+ e−100(x2+y2) (−40000y4 + 41202y2 − 404

)
.

Figure 3.3: Problem 3, solution u.

27

Problem 4

Consider the L-shape domain Ω

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Ω

and the problem

−∆u = f in Ω,

u = g on ∂Ω,

with right-hand side f and Dirichlet boundary condition g imposed such that the
solution has in polar coordinates (r, θ) the form

u(r, θ) = r2/3 sin

(
2

3
θ

)
.

Figure 3.4: Problem 4, solution u.

3.2 Experiment 1 – Discretization error

In the first experiment we focus on the discretization error in the finite element
method. We discretize each of the Problems 1–4 using the finite element method
(see Section 1.3.1) with varying polynomial degree. The arisen systems of alge-
braic equations are solved using the MATLAB backslash operator that gives, for
our experiments, sufficiently accurate approximations (i.e. approximations with a
normwise relative backward error on the machine precision level). We substitute

28

the corresponding approximation for the Galerkin solution uh; see Section 1.3.
With the knowledge of the exact solutions u we evaluate H1 norm ‖u− uh‖H1(Ω)

of the discretization error (up to the quadrature error that is significantly smaller
and is neglected here).

Figure 3.5 shows the norm of the discretization error for three different choices
of the subspaces Vh,p, p = 1, 2, 3, on the sequence of uniformly refined meshes,
where each triangle is refined into four congruent triangles, i.e. the mesh size h
is reduced by factor 1/2.

h

10-210-1100

‖u
−
u
h
‖ H

1
(Ω

)

10-10

10-5

100

p=1
p=2
p=3

(a) Problem 1

h

10-210-1100

‖u
−
u
h
‖ H

1
(Ω

)

10-4

10-2

100

102

p=1
p=2
p=3

(b) Problem 2

h

10-210-1100

‖u
−
u
h
‖ H

1
(Ω

)

10-4

10-2

100

102

p=1
p=2
p=3

(c) Problem 3

h

10-210-1100

‖u
−
u
h
‖ H

1
(Ω

)

10-3

10-2

10-1

100

p=1
p=2
p=3

(d) Problem 4

Figure 3.5: Discretization error in the finite element method with varying poly-
nomial degree p = 1, 2, 3, and mesh size h for Problems 1–4.

Since the solutions of Problems 1–3 are sufficiently regular (in fact they belong
to the space C∞(Ω)) we can observe the (asymptotic) convergence of the dis-
cretization error norm in agreement with the a priory estimate (1.22) presented
in Section 1.3.1. In Problem 4 the solution exhibits a singularity at the reentrant
corner (see, e.g., [14]) and we observe the same rate of convergence for polynomial
degrees p = 1, 2, 3. Recall that here we consider the uniform mesh refinement.

3.3 Experiment 2 – V-cycle scheme with itera-

tive coarsest grid solver

One of the key ingredient of multigrid methods presented in Section 2.2 is the
solution of the system of linear algebraic equations corresponding to the coarsest
grid. In this experiment we focus on the behavior of the algebraic error in the
multigrid V-cycle scheme, where the linear system on the coarsest grid is solved
(nearly) exactly or with non-negligible algebraic error.

29

We consider the V-cycle scheme with three grids and with three pre-smoothing
and post-smoothing steps of the Gauss–Seidel method. The system corresponding
to the coarsest grid is solved directly using the MATLAB backslash operator (in
the figures denoted as direct) or iteratively using the Gauss–Seidel method. The
Gauss–Seidel method is terminated when the energy norm of the algebraic error
drops below the energy norm of the initial error multiplied by the factor 10−1 (in
the figures GS(10−1)) or 5 · 10−2 (GS(5 · 10−2)).

We discretize Problems 1–4 using the piecewise linear finite element approx-
imations. Resulting matrices are of dimensions approximately 2400 (the finest
grid) and 140 (the coarsest grid). Let x denote the solution of the system corre-
sponding to the finest grid and let y(i), i = 1, . . . , 10, denote the approximations
given by the V-cycle scheme after i-th iteration. Figure 3.6 shows the energy norm
‖x− y(i)‖A of algebraic error for Problems 1–4 and for three different variants of
the coarsest grid solver.

Number of V-cycles
2 4 6 8 10

‖x
−
y
(i
) ‖

A

10-15

10-10

10-5

100

direct

GS(10-1)

GS(5· 10-2)

(a) Problem 1

Number of V-cycles
2 4 6 8 10

‖x
−
y
(i
) ‖

A

10-15

10-10

10-5

100

direct

GS(10-1)

GS(5·10-2)

(b) Problem 2

Number of V-cycles
2 4 6 8 10

‖x
−

y
(i
) ‖

A

10-15

10-10

10-5

100

direct

GS(10-1)

GS(5· 10-2)

(c) Problem 3

Number of V-cycles
2 4 6 8 10

‖x
−
y
(i
) ‖

A

10-15

10-10

10-5

100

direct

GS(10-1)

GS(5 · 10-2)

(d) Problem 4

Figure 3.6: Algebraic error in V-cycle iterations with different variants of the
coarsest grid solver for Problems 1–4.

We observe that the V-cycle scheme converges for all three variants. Slower
convergence of the iterative variants is not surprising such as the fact that variant
with higher accuracy (GS(5 · 10−2)) converges faster than the less accurate one.

3.4 Experiment 3 – V-cycle with fault coarsest

grid correction

When solving extreme scale problems the probability of failure of one or more
devices of the high performance computing system may not be non-negligible;

30

see, e.g., [10]. This could lead to the situation where one or a small number of
components of currently computed vector are corrupted.

In this experiment we consider the two-grid correction scheme (see Section
2.2), with three pre-smoothing and post-smoothing steps of the Gauss–Seidel
method. We consider the fault two-grid correction scheme where every coarse grid
solve fails in the way that one (fixed) component of the solution eH is corrupted;
here we are using the notation established in Section 2.2. For simplicity, we
assume that we are able to detect the failure and replace the defective component
by zero. Replacing the corrupted component by zero seems to be justifiable from
two reasons. First, the coarse grid correction eH converges asymptotically to zero
vector (as the algebraic error converges to zero). Second, replacing the corrupted
component by zero can be understood as not using the coarse grid correction for
this component. The correction scheme presented in Section 2.2, i.e. without the
failures, will be hereafter called fault-free two-grid correction scheme.

We use both the fault and the fault-free two-grid correction schemes for solving
the system of linear algebraic equations resulting form the piecewise linear finite
element discretization of Problem 1, and plot the energy norms a ‖x − y(i)‖A of
algebraic errors in Figure 3.7. The sizes of the matrices are 2141 (at the fine grid)
and 517 (at the coarse grid).

Number of V-cycles
2 4 6 8 10

‖x
−
y
(i
) ‖

A

10-15

10-10

10-5

100

fault-free
fault

Figure 3.7: Algebraic error in fault and fault-free two-grid correction scheme for
Problem 1.

We see that the fault algorithm converges, however its convergence is slower
than in the fault-free variant. To further examine the process, we run the fault
and fault-free two-grid correction scheme simultaneously and plot the difference
of the currently computed approximations in the stages of the two-grid correction
scheme in the first iteration. We use upper index F to denote the vectors in the
fault variant, e.g. yFh , whereas vectors corresponding to the fault-free variant
stays denoted as in Section 2.2.

Figure 3.8 shows the piecewise linear functions determined by the differ-
ence y

[0]
h − y

[0],F
h of fault and fault-free approximations after the coarse-grid cor-

rection (in (a)), and by the difference y
[j]
h − y

[j],F
h of the approximations after

aAs in Experiment 2, x denotes the exact solution of the system corresponding to the fine
grid and y(i), i = 1, . . . , 10 the approximations given by the two-grid correction scheme after
i-th iteration.

31

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

(a) y
[0]
h − y

[0],F
h

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

(b) y
[1]
h − y

[1],F
h

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

0.02

0.04

0.06

0.08

(c) y
[2]
h − y

[2],F
h

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

0.01

0.02

0.03

0.04

0.05

0.06

(d) y
[3]
h − y

[3],F
h

Figure 3.8: Differences between the fault and fault-free approximations in stages
of the two-grid correction scheme.

j = 1, 2, 3 post-smoothing Gauss–Seidel steps (in (b),(c),(d))b.

We observe that the difference y
[0]
h −y

[0],F
h has been significantly reduced within

three post smoothing steps of the Gauss–Seidel iteration. Our explanation is as
follows. The error xh − y

[0],F
h of the fault two-grid correction scheme can be

decomposed as xh − y
[0],F
h = (xh − y

[0]
h) + (y

[0]
h − y

[0],F
h), where y

[0]
h − y

[0],F
h is a

high frequency vector. The error xh − y
[j],F
h of the approximation y

[j],F
h after j

Gauss–Seidel iterations is equal to (xh − y[j]
h) + (y

[j]
h − y

[j],F
h). Since applying the

Gauss–Seidel method is a a linear procedure, the difference y
[j]
h − y

[j],F
h is equal

to the vector obtained after j iterations of the Gauss–Seidel method for solving
the system with the same matrix, zero right-hand side, and the starting vector
y

[0]
h − y

[0],F
h . The smoothing property of Gauss–Seidel method then ensures that

y
[0]
h − y

[0],F
h is efficiently reduced; see the discussion in Section 2.1.3.

Figure 3.9 gives resuts analogous to those presented above in Figure 3.8.

bRemark the difference between y(j), which denotes the approximation given by the two-grid

correction after j-th iteration, and y
[j]
h , which denotes the approximation after j post-smoothing

Gauss–Seidel steps in the two-grid correction scheme.

32

Number of V-cycles
2 4 6 8 10

‖x
−

y
(i
) ‖

A

10-15

10-10

10-5

100

fault-free
fault

(a) Problem 1

Number of V-cycles
2 4 6 8 10

‖x
−

y
(i
) ‖

A

10-15

10-10

10-5

100

fault-free
fault

(b) Problem 2

Number of V-cycles
2 4 6 8 10

‖x
−

y
(i
) ‖

A

10-15

10-10

10-5

100

fault-free
fault

(c) Problem 3

Number of V-cycles
2 4 6 8 10

‖x
−

y
(i
) ‖

A

10-15

10-10

10-5

100

fault-free
fault

(d) Problem 4

Figure 3.9: Algebraic error in fault and fault-free V-cycle scheme with five grid,
and three pre-smoothing and post-smoothing Gauss-Seidel iterations for Prob-
lems 1–4. The sizes of the matrices are 2000 (the finest grid) and 5 (the coarsest
grid).

33

Conclusion

Multigrid methods show that the combination of two simple methods, i.e. a
stationary iterative method and the coarse grid correction, can lead to extremely
effective algorithms.

Our experiments illustrate, on simple model problems, that multigrid methods
are able to deal with the error of the coarse grid approximation caused by solving
the coarsest grid problem inexactly or with the error in one or a small number of
components of the coarse grid approximation caused by a failure of computational
devices. However, for difficult problems, e.g. problems with the inhomogeneous
diffusion tensor K, the results may differ.

The current analysis of multigrid methods assumes that the coarsest problem
is solved exactly. From this point of view, the analysis of numerical stability of
multigrid algorithms is at its very beginning and may be object of our future
work.

34

Bibliography

[1] A. Brandt and O. E. Livne. Multigrid techniques—1984 guide with appli-
cations to fluid dynamics, volume 67 of Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2011. Revised edition of the 1984 original.

[2] S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New
York, 1994.

[3] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
second edition, 2000.

[4] J. Duintjer Tebbens, I. Hnětynková, M. Plešinger, Z. Strakoš, and P. Tichý.
Analýza metod pro maticové výpočty: základńı metody. Matfyzpress, Prague,
2012.

[5] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, second
edition, 2010.

[6] M. S. Gockenbach. Understanding and implementing the finite element
method. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2006.

[7] A. Greenbaum and T. P. Chartier. Numerical Methods: Design, Analysis,
and Computer Implementation of Algorithms. Princeton University Press,
Princeton, NJ, 2012.

[8] W. Hackbusch. Multigrid methods and applications, volume 4 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1985.

[9] W. Hackbusch. Iterative solution of large sparse systems of equations, vol-
ume 95 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.
Translated and revised from the 1991 German original.

[10] M. Huber, B. Gmeiner, U. Rüde, and B. Wohlmuth. Resilience
for multigrid software at the extreme scale. ArXiv e-prints, 2015.
http://arxiv.org/abs/1506.06185.

[11] J. Liesen and Z. Strakoš. Krylov subspace methods. Numerical Mathematics
and Scientific Computation. Oxford University Press, Oxford, 2013. Princi-
ples and analysis.

[12] J. Málek and Z. Strakoš. Preconditioning and the conjugate gradient method
in the context of solving PDEs, volume 1 of SIAM Spotlights. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015.

35

[13] S. McCormick. Multigrid Methods. Frontiers in Applied Mathematics. So-
ciety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1987.

[14] W. F. Mitchell. A collection of 2D elliptic problems for testing adaptive grid
refinement algorithms. Appl. Math. Comput., 220:350–364, 2013.

[15] J. Papež. Estimation of the algebraic error and stopping criteria in numerical
solution of partial diferential equations. Master’s thesis, Charles University
in Prague, Faculty of Mathematics and Physics, 2011.

[16] J. Papež, J. Liesen, and Z. Strakoš. Distribution of the discretization and
algebraic error in numerical solution of partial differential equations. Linear
Algebra Appl., 449:89–114, 2014.

[17] I. Yavneh. Why multigrid methods are so efficient. Computing in science &
engineering, 8(6):12–22, 2006.

36

	Introduction
	Model problem and its discretization
	Function spaces
	Model problem
	Physical experiments modeled by Poisson equation
	Weak formulation
	Existence and uniqueness of the solution

	Galerkin method
	Finite element method

	Multigrid methods
	Stationary iterative methods
	Derivation of stationary iterative methods
	Convergence of stationary iterative methods
	Smoothing property of stationary iterative methods

	Multigrid shemes
	Two-grid correction scheme
	The V-cycle scheme
	The -cycle scheme
	The full multigrid algorithm

	Numerical experiments
	Definition of problems
	Experiment 1 – Discretization error
	Experiment 2 – V-cycle scheme with iterative coarsest grid solver
	Experiment 3 – V-cycle with fault coarsest grid correction

	Conclusion
	Bibliography

