
BACHELOR THESIS

Lukáš Jeĺınek

Graph-based SLAM on Normal
Distributions Transform Occupancy

Map

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: RNDr. David Obdržálek, Ph.D.

Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2016

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague date 28.7.2016

i

Title: Graph-based SLAM on Normal Distributions Transform Occupancy Map

Author: Lukáš Jeĺınek

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. David Obdržálek, Ph.D., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: Recent advances in Normal distributions transform occupancy map
(NDT-OM) representation have proven to be a viable option for mapping static
as well as dynamic environments. Scan registration methods using NDT maps
offer a fast and reliable way of registering two laser scans. In this work, we com-
bine 2D NDT mapping and scan matching with the graph-based representation of
simultaneous localization and mapping (SLAM). This novel approach uses NDT
mini-maps for partial map storage inside the pose graph nodes. It also includes
fast incremental scan matcher for odometry estimation. The scan matcher allows
to create larger mini-maps which offer better loop closure validation. This work
also presents a novel robust distribution to distribution (D2D)-NDT scan match-
ing. It is used for loop closure registration and validation of correct matches.
The implementation can operate as an online algorithm inside the Robot Oper-
ating System (ROS) framework. The algorithm was tested on MIT Stata Center
datasets.

Keywords: SLAM NDT incremental scan matching ROS robot localization and
mapping

ii

I acknowlage my colleague Jiri Horner for sharing his knowledge in C++ pro-
gramming. I would like to thank to my family and friends for all their support.

iii

Contents

Introduction 3

1 NDT SLAM problem analysis 4
1.1 SLAM problem definition . 4
1.2 SLAM’s position estimation categories 5
1.3 Map representation . 5
1.4 Registration . 7
1.5 Graph-based SLAM on NDT maps 8

2 Used algorithms and key concepts 10
2.1 Graph-based SLAM . 10

2.1.1 Pose graph creation . 10
2.1.2 Loop closure creation . 11
2.1.3 Optimization . 12

2.2 NDT mapping algorithms . 13
2.2.1 NDT grid . 13
2.2.2 NDT-OM extension . 14

2.3 Registration algorithms . 15
2.3.1 NDT registration . 15
2.3.2 D2D-NDT registration . 16
2.3.3 ICP . 18
2.3.4 Correlative scan registration 18

3 NDT Graph-SLAM overview 20
3.1 System composition . 20
3.2 Moving window . 21
3.3 NDT frame creation . 24
3.4 Loop closure detection . 24
3.5 Robust D2D-NDT registration . 25

3.5.1 Adaptation of correlative registration 25
3.5.2 Algorithm overview . 26
3.5.3 Solution validation . 27

4 Implementation 29
4.1 Used libraries . 29

4.1.1 ROS . 29
4.1.2 Point Cloud library . 29
4.1.3 G2O . 29
4.1.4 Eigen . 29

4.2 Structure of the implementation 30
4.2.1 NDTGrid2D . 30
4.2.2 VoxelGrid2D . 31
4.2.3 NDTCell . 31
4.2.4 Registration algorithms . 32

1

5 Evaluation of NDT Graph-SLAM 33
5.1 MIT dataset details . 33
5.2 ROS SLAM algorithm overview 34

5.2.1 The Gmapping . 34
5.2.2 The Hector SLAM . 34

5.3 NDT Graph-SLAM evaluation . 35
5.3.1 NDT frame generation frequency 35
5.3.2 Robust D2D score threshold 36
5.3.3 Iterative room mapping 37
5.3.4 Long corridors . 39

6 Future works 42

Conclusion 43

Bibliography 44

List of Figures 47

List of Abbreviations 49

List of Attached Files 50

Appendices 51

Appendix A ndt gslam package documentation 52
A.1 Overview . 52
A.2 Architecture . 52
A.3 Parameter specification . 52
A.4 ROS API . 53

2

Introduction

Humanity has envisioned many tasks which could be carried out by robots in-
cluding transportation, health care, save and rescue and much more. Robots
of the current world can efficiently operate only in very limited conditions. To
solve problems of the future we need fast and reliable algorithms for our robots.
The big question in the field of mobile robotics is how efficiently localize a robot
and create the map as precise as possible. This problem is often referred to as
Simultaneous localization and mapping (SLAM) problem.

Precise localization is a crucial part of any good navigation software. Gener-
ated map plays an important role in path planning and multi-robot coordination.
SLAM algorithm should rely mostly on robots internal sensors like, e.g., sonars,
cameras, wheel encoders. Using Global positioning system (GPS) is only possible
in an outdoor environment. The precision of this localization is very often not
good enough to successfully navigate robot.

The solution to the full problem of map building and robot positioning needs
to combine algorithms for map representation, sensor measurement registration
and position estimation. This work presents a novel approach in full SLAM
problem based on Normal distributions transform (NDT) maps. In recent years
NDT map building process has proven to be a reliable choice for scan registration.
A map representation based on NDT can handle dynamic objects and updates
occupancy. The pose estimation problem was in recent years solved mostly by
graph-based SLAM optimizing engines. The graph-based method offers flexibility
and speed even on big maps. Both techniques were studied separately and provide
good results. The missing part is how to combine these approaches to improve
robustness of full SLAM solution. To fulfill this goal, we will present a novel
method for robust registration on top of NDT grids. The most challenging part of
this fusion is how to represent the map. We use method based on small local mini
maps which are easily used in the graph of the SLAM optimizer. Our algorithm
has the additional robustness to odometry error by utilizing our NDT version
of incremental scan matching. The combination of these part creates the whole
system which can estimate its position without initial guess and robustly close
errors caused by imprecise robot movement. On top of algorithm benefits, we
wanted to make source code and implementation easily accessible and improvable.
For this reason, we have decided to implement it in Robot operating system
(ROS), which is a current standard environment for robotic projects of all sizes.

This work has following structure. First chapter analyze full SLAM on NDT
maps. The second chapter provides more information about algorithms used in
this work. The third chapter describes the whole system of NDT SLAM. The
fourth chapter makes the focus on implementation details behind the algorithms.
In the last chapter, we wrap up results of this algorithm and compare it to existing
ROS implementations.

3

1. NDT SLAM problem analysis

The full SLAM problem solution requires a combination of data association, map-
ping and pose estimation. In the first step, the algorithm needs to receive data
from sensors. The standard SLAM requires information about the movement of
the robot and robot’s perception of an environment. The standard odometry
tracking of the robot is done with wheel encoders or with the Integrated Mea-
surement Unit (IMU).Perception of the environment can be obtained from 2D or
3D laser scanner. Another option is to use stereo cameras or Kinect1.

SLAM algorithm based on laser scans are still frequently used in real life
applications. The standard versions work with 2D scans [KMvSK11] [GSB07a].
Two scans can be used for a registration. It is a process which calculates relative
transformation between two scans by aligning one scan on top of the other one.
The registration is used for a variety of tasks, e.g. map building, odometry
estimation, unique feature detection. Some registration techniques are described
in the section 1.4.

The result of every SLAM solution should be a map which can be used in
navigation and a trajectory planning. One possible map representation is the set
of unique landmarks. The other option is to integrate measurement together and
create a dense map of the environment. These methods will be analyzed in the
section 1.3

Lastly, we need to estimate a position of the robot based on information from
odometry and the map. Hence, we need to define what it is the position of the
robot and how we will represent it.

1.1 SLAM problem definition

We describe the position estimation problem as a process which finds the location
of the robot in every time step. We also need to estimate how the map will look
like in every time step. In the real world, we deal with the sensors which always
have some inherited noise. Therefore, we are not able to provide exact position
of the robot. For this reason, we use a probabilistic definition of the problem.
The robot moves through unknown space along trajectory expressed as variables
x1:T = {x1, ...,xT}. While moving robot is taking the odometry measurements
u1:T = {u1, ...,uT} and the perception of environment z1:T = {z1, ..., zT}. The
solution to position estimation is a probability of the robot’s trajectory x1:T and
the map m of the local environment given all the measurements and the initial
pose x0:

p(x1:T ,m | z1:T ,u1:T ,x0) (1.1)

The odometry is represented as triple (x, y, θ) in 2D system. The initial pose can
be interpreted as an origin of the coordinate system for the global map.

1www.xbox.com/en-US/kinect

4

www.xbox.com/en-US/kinect

1.2 SLAM’s position estimation categories

Over the past decade researchers have developed three distinctive categories of
SLAM position estimation.

The first type is the Extended Kallman Filter (EKF) variant. It is based
on the Kalman filters (KF). The KF assume that probability density function is
from Gaussian distributions and the position model is linear. This assumption is
usually not correct for the robot movement model. The EKF solves the problem
with non-linearity of the robot’s pose model. The performance of EKF strongly
depends on a quality of statistical model for noise in the sensors and the odometry.
Unfortunately, these models are usually not available. A set of comparative tests
for convergence and inconsistencies of EKF is in work of [HD07].

Another category is based on the Particle filters (PF). The set of weighted
particles represents the current state of the robot. This representation has the
advantage in modeling uncertainty through a multi-modal distribution and can
deal with non-Gaussian sensor noise. The authors [MTKW02] proposed compu-
tationally efficient method based on the PF called FastSLAM. It uses the par-
ticles to represent posterior probability of the robot motion. Each particle also
holds K Kallman filters representing landmark positions (unique features in the
environment). The authors of this algorithm have demonstrated that it is possi-
ble to calculate high-precision maps utilizing FastSLAM. Inspired by FastSlam,
a method based on Rao-Blackwellized Particle Filter is proposed in [GSB07b].
Derivations of this approach are still actively used in robotics today.[GSB07a]

The last category models positions of the robot with a graph representation.
The least square optimization of the graph finds a possible robot trajectory over
time. A graph node represents a possible pose of the robot and an edge between
two nodes is a relative movement. The Nodes may also hold some information
about current state of the map or a laser measurement. This representation
was first time used in work of [LM97]. This technique was later improved by
[OLT06]. They have presented an efficient optimization approach based on the
scholastic gradient descent. It was able to correct even large graphs. Later,
multiple authors have improved SLAM optimization by adding hierarchies to
large graphs or adding robustness to the optimization process. The graph-based
model of SLAM offers flexibility for adaptation of new improvements and can be
reasonably fast even on large graphs. More details about a graph generation and
optimization is in the section 2.1.

1.3 Map representation

A map of an unknown environment is a standard part of the SLAM problem
solution. This map needs to be stored for local path planning and obstacle avoid-
ance. The map precision is an important characteristic for an obstacle avoidance
algorithms. The ideal map should keep low memory consumption because robots
often have limited access to memory. The high-quality map is also beneficial for
a precision of registration algorithms.

A point-cloud [RC11] is the map representation which stores measurements
as simple points in space. It is the most accurate representation because no
data from the sensor are lost. Scan-matching algorithms e.g. Iterative closest

5

Figure 1.1: On the left is visualization of occupancy grid. On the right is visual-
ized point cloud of a room.

point (ICP) use this data-structure. It is very easy to convert from this model
to a different type of a map because it has all the information from the sensor
measurement. A Problem is a memory consumption. If the robot runs for a long
time with a higher frequency of the sensor data production, it is likely that robot
will consume a significant amount of memory.

An occupancy map is a grid-based type of the map. It consists of the grid
with cells. In every cell, it has just one value describing the likelihood that cell
is occupied. This value becomes higher with more incoming data measurements.
It has a constant memory consumption over time. It is also possible to use this
representation for the registration [KMvSK11]. Furthermore, it can represent
unoccupied spaces with a low likelihood value. This feature is used by many
path planning and obstacle avoidance algorithms. The occupancy maps are the
main output format for SLAM maps in ROS.

A quadtree is a tree data structure. Each node of the tree has exactly four
children. The nodes are decomposing space into smaller sub-areas. Every node
has its threshold. When it is reached, the cell is divided into a four smaller
cells. This process dynamically changes a resolution of the grid. Therefore, we
get higher precision in places where it matters more. The maximal precision is
bounded by the minimal size of leaf nodes.

The NDT representation [BS03] uses grid-based data-structure. Each cell has
normal distribution parameters stored inside. The normal distribution is calcu-
lated from scan points which are mapped into the cell. This model offers constant
memory consumption over time. The NDT has a better internal representation
of the mapped points than octree (3D case of quad-tree) which was proven in
the work of [SAS+13]. They have shown that a coarser NDT grid can have a
better map precision than finer octree map. The standard NDT representation
of the map is fully explained in the section 2.2.1. The NDT maps can also in-
clude occupancy information. This extension is called NDT-Occupancy mapping
(NDT-OM) and it is presented in the section 2.2.2. Furthermore, this extension
can remove dynamic objects from the map which is crucial for SLAM in dynamic
environment.

6

Figure 1.2: The local and global ambiguities in scan registrations. On the left is a
local ambiguity. On the right is a global ambiguity with two maps. The first map
is an original map without all information about the environment. The second
map is reality with all features. The registration wrongly associated matching
based on information only from the first map.

1.4 Registration

A scan registration is a key concept in the full SLAM solution. The SLAM algo-
rithm can use scan matching between two scans to determine a transformation.
It tells us how far a robot moved between two scans. Unfortunately, these scans
might not offer enough information for successful registration. Imagine a robot
which is standing in the corner of a room with the sensor facing the wall. Scan
from this robot has only information from a very limited field of view which may
lead to alignment errors. Therefore, it is usually necessary to combine individual
scans to operate with more data.

One of the algorithms which use this process is called incremental scan-
matching. It takes arriving scan and tries to match it against the map built
from previous measurements. By doing so, it can be used as a replacement for
robot odometry. The section 2.3.2 provides the NDT based algorithms which are
suitable for incremental scan-matching. Another popular approach is the ICP
[LM97]. All these algorithms use optimization methods (e.g. Newton’s method)
which require a good initial guess. Otherwise, they converge to some local mini-
mum.

The scan registration also verifies loop closures in the graph based SLAM. The
Loop closure is an edge which close the loop (creates a cycle) of robot’s movement
in the graph. More details about loop closure generation are in the section 2.1.2.

The scan matcher needs two scans to perform registration. The graph-based
SLAM stores these measurements inside of the nodes. In case that two nodes
physically overlap they share the same measurement of the environment. The
registration finds this similarity and calculates transformation between nodes.
The biggest problem with this alignment is that we have no valid prior information
about positions of these nodes. These two scans can overlap, or they can be from
completely different parts of the world. The registration needs to estimate the
transformation. Additionally, it needs to correctly identify if two scans overlap.
We present one such an algorithm in the section 2.3.4

However, even scan matcher with correct validation can fail to identify the
overlap. This is caused by ambiguities in the environment [Ols09a].

The first is a local ambiguity. Imagine a robot which moves in a long corridor
similar to one in the figure 1.2 on the left. This environment does not have many
distinctive features. One of the nodes has a measurement of two straight lines

7

shown in top part. The second node has a measurement of the whole corridor
shown on the bottom. The ellipses represent two out of an infinite number of
correct alignments which would result in a perfect match. In reality, only one
of them may be correct. Unfortunately, registration is not able to recognize the
correct answer.

The second one is a global ambiguity. This ambiguity usually happens when
the algorithm does not have enough information about the whole environment.
One of the nodes has a measurement in the top part of the figure 1.2 on the
right. The second node has only information in the first rectangle. From this
perspective, it looks like there is only one possible match. Unfortunately, based
on reality in the environment these two nodes do not overlap at all because
the correct match is shown in the second rectangle. Once again registration
algorithm had no chance of figuring this out without prior knowledge about the
whole environment.

1.5 Graph-based SLAM on NDT maps

After initial research, we have noticed benefits of the NDT mapping. The NDT
maps have a good memory consumption. They can hold occupancy information
and reject dynamic objects with the use of NDT-OM extension 2.2.2. The reg-
istration algorithms for the NDT grids already exist. Unfortunately, they need
initial guess for correct convergence.

The Graph based pose estimation currently represent a flexible way how to
find robot’s position. It is also possible to extend it to work on large scale
maps. Additional topological information from the graph can be beneficial for
the detection of registration ambiguities.

Further, in the work of [SSAL13b], authors have described that scan matching
based on the NDT grids can provide precise result in mapping process with use
of the NDT-OM extension. They have proven this by mapping large area with
the incremental scan matching. This process resulted in the precise map. They
have noted in the conclusion that even though results are very accurate, there is
a need for a solution with loop closure mechanism to improve results. They have
also tested the reliability of dynamic object rejection. Their results have proven
that the NDT-OM is a really good option for a dynamic environment.

The loop closures can be created in graph based SLAM and additionally tested
by robust scan matcher. This work presents robust registration method for loop
closure registration and validation on NDT maps 3.5.

In the previous works, there was always one global NDT map. The iterative
scan matching then used this map for the alignment of incoming scans. In this
work, we use the pose graph which is optimized by SLAM’s back-end. The
optimization makes changes to the location of the nodes which needs to update
the global map. Therefore, we present a way how to represent the map which
can be updated after graph optimization 3.3.

Incremental scan matching on NDT grids was proven to get good results.
Therefore, it should be included in this work as well and combine it with rest of
the proposed system 3.2.

Lastly, it needs to be implemented in a way that on-line processing of real
datasets is possible. It needs to have standard ROS interface commonly found in

8

other SLAM packages. It should use standard libraries available in ROS.
The final result of this works should be an implementation of 2D graph based

SLAM on NDT maps with easy use inside of ROS ecosystem.

9

2. Used algorithms and key
concepts

This chapter offers an introduction to multiple state-of-the-art algorithms used
in this work. It starts with an explanation of a graph-based SLAM variant.
The next Section 2.2 describes NDT based map representations. The section
2.3 is dedicated to NDT based registration algorithms. We also include a basic
introduction to ICP and Correlative registration algorithm.

2.1 Graph-based SLAM

A graph-based SLAM constructs a graph representation of the pose estimation
problem. This graph is called a pose graph. Nodes in the graph represent poten-
tial poses of a robot at certain time stamp T . Therefore, the nodes are represent-
ing our trajectory {x1, ...,xT} Additionally, they also hold current state of the
map. Edges in the graph represent possible transformation between the nodes.
They also include a covariance matrix representing noise from odometry sensor.
The process of edge creation is executed in algorithm’s front-end. It creates them
either from odometry uT or by measurement data zT registration. Once the graph
is completed, it is optimized by algorithms back-end. Result of this process is the
most likely position of all nodes in the graph.

2.1.1 Pose graph creation

Process of graph creation operates in SLAM’s front-end. First step is to receive
robot’s movement. This transformation may come from wheels’ encoders, vi-
sual odometry from camera or IMU. Front-end also receives a covariance of the
transformation based on noise model of source sensor. From transformation and
covariance we can create an edge for the graph. This edge type is usually called
odometry edge. Consecutive odometry measurements creates long chain of edges
in graph.

Nodes represent current robot position. Therefore, they should have some
initial estimate. This initial guess may come from concatenation of transforma-
tions in odometry edges. Another method is to use propagation of transformation
through minimum spanning tree constructed out of full graph.

Second type, represents edges from nodes to landmarks. A landmark is and
unique descriptors of the place. When landmark is detected, front-end creates
node representing this place and landmark edge connecting it with graph. Edge
carries transformation between current node and landmark. If landmark already
exists than created edge might help to optimize correct pose estimate of other
nodes.

Third common type of edges are loop closure edges. These edges usually con-
nect two nodes, which share same perception of the world. Aligning these percep-
tions yields virtual transformation between these nodes. A covariance needs to be
provided from alignment process and depends on used technique. Loop closure

10

edge usually exists if we have revisited same place again. This is crucial infor-
mation for SLAM’s back-end. Based on it optimalization finds out if odometry
edges reliably represent reality and adjust pose estimates.

2.1.2 Loop closure creation

First step of correct loop closure creation is to identify all nodes ,which might
have overlapping measurements. Given pose a we find all nodes b1...bn from graph
whose sensor measurements overlap pose a. This could be determined by find-
ing relative position of nodes a and bi. One possible method how to determine
is to use Dijkstra projection mentioned in [Ols09a]. Dijkstra projection starts
at node a and concatenate covariances and transformation along the minimum
uncertainty path. This path is selected based on determinant of covariance ma-
trix. Small covariance matrix has lower determinant than covariance matrix with
large numbers. Minimum uncertainty selection guaranties that algorithm will get
to the target bi with maximum precision. Concatenation of covariances is done
based on equation:

Pa+b = JaPaJ
T
a + JbPbJ

T
b (2.1)

Ja =

1 0 −x sin θ − y cos θ
0 1 x cos θ − y sin θ
0 0 1

 Jb =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.2)

where Pa is acumulated covariance, Pb is aditional covariance, Jaccobian Ja use
parameters from transformation (x, y, θ)a and Jb from (x, y, θ)b Concatenation of
transformations is defined as:(

x
y

)
a+b

=

(
x
y

)
a

+R(θa)

(
x
y

)
b

(2.3)

θa+b = θa + θb (2.4)

where R(θa) is rotation matrix created from angle θa.
After successful generation of overlapping nodes, every potential pair needs

to be tested by registration algorithm. This algorithm needs to be robust enough
to reject as many incorrect pairs as possible. If matching is possible it should
align measurements and return best transformation. More about this type of
algorithms can be found in section 1.4.

Even the best registration algorithm may fail and return erroneous measure-
ment. Loop closure process needs to reject these errors. One solution is to use
method proposed by [Ols09a]. In this approach we first group loop closure edges
into groups based on their topological distance from each other. Later we validate
every cluster against internal inconsistencies. Edges marked as inconsistent are
deleted from system.

Other option is to use robust optimization engines, witch can identify outliers
in the form of error edges. Comparison of known outliers rejection methods was
done by [SP13].

11

2.1.3 Optimization

Back-end receives graph with odometry edges and loop closure edges. The main
task of back-end is to optimize this graph and return the most likely position
of nodes. Popular method of optimization is to use the Gauss-Newton or the
Levenberg-Marquardt algorithms.

To utilize these methods we first need to define our error function. We will use
notation similar to one presented in section 1.1. Let x = (x1, ...,xT)T be a vector
of graph’s nodes positions. Let zi,j to be a registration algorithm transformation
between nodes xi and xj. Let Ωi,j be a information matrix of this transformation
(information matrix is an inverse of covariance). Lastly let ẑi,j be a estimate of
registration transform received from initial configurations of nodes i and j.

The log-likelihood of measurement zi,j is than defined as:

li,j = (ẑi,j − zi,j)TΩi,j(ẑi,j − zi,j) (2.5)

where (ẑi,j − zi,j) is a difference between expected measurement and real mea-
surement. Now we can define out error function as

F (x1,T) =
∑

<i,j>∈G

(ẑi,j − zi,j)TΩi,j(ẑi,j − zi,j) (2.6)

Our goal is to calculate such a x that this function is minimal. More formaly
we wan to find solution to

x̄1,T = argminx F (x) (2.7)

Information on how to minimize this function, calculate derivatives and how
to exploit structure of the problem to get significant speed gains continue in
reading in this tutorial [GKSB10].

12

2.2 NDT mapping algorithms

2.2.1 NDT grid

NDT grid representation was first time used by [BS03] in their scan registration
process. Central idea was to convert laser scan into grid with cells containing
normal distributions. Points in space from laser scanner are first separated into
corresponding cells. From points in single cell we approximate normal distribution
(µi, Pi) by calculating mean and covariance:

µi =
1

n

n∑
k=1

xk (2.8)

Pi =
1

n− 1

n∑
k=1

(xk − µi)(xk − µi)
t (2.9)

NDT grid was than used for registration.Originally proposed grid could be up-
dated with new laser scans only by keeping used points and recalculating all
cells again. This has changed with proposed recursive covariance update step by
[SAS+13]. Their update step offers way how to fuse in new measurements. First
it calculate normal distributions for added points. In second step, it merges old
covariances with new one.

Consider two sets of measurement {xi}mi=1 and {yi}ni=1 than formula for mean
calculation is in equation (2.11). Recursive update for covariance (RCU) is in
equation (2.14)

Tx =
m∑
i=1

xi Ty =
n∑

i=1

yi Tx⊕y = Tx + Ty (2.10)

µx⊕y =
1

m+ n
Tx⊕y (2.11)

Sx =
m∑
i=1

(xi −
1

m
Tx)(xi −

1

m
Tx)T Sy =

n∑
i=1

(yi −
1

n
Ty)(yi −

1

n
Ty)

T (2.12)

Sx⊕y = Sx + Sy +
m

n(m+ n)
(
n

m
Tx − Tx⊕y)(

n

m
Tx − Tx⊕y)T (2.13)

Px⊕y =
1

m+ n− 1
Sx⊕y (2.14)

Proof and further explanation for these equations can be found in work of
[SAS+13] and later improved in [SSAL13a].

In addition to fusing in new laser measurements we can also easily generated
coarser grid by merging cells from higher resolution grid to grid with lower resolu-
tion. This mechanism is useful in path planning where we can plan on coarser grid
which could be faster. Also, we can use multi-level scan matching approaches,
which will be discussed in next section 2.3. Small disadvantage of this method is
that we need to keep number of points used in every cell.

13

It is worth noting that in continual integration of scans calculated mean and
covariance grow unbounded with increasing number of points added. This could
lead to numerical instabilities. Second problem is that cell’s distribution contains
measurements from all scans. This is problem in dynamic environment where
some objects might disappear. These problems are solved by restricting maximal
number of points in cell with parameter M

Nx⊕y =

{
n+m, n+m < M

M, n+m ≥M
(2.15)

Parameter M modifies how fast we let RCU replace old measurements by new
one. Small value of M makes adaptation faster and big M keeps weight of older
data higher. This cause to have new data making smaller impact on result of
process.

2.2.2 NDT-OM extension

NDT grids offers good compromise between space and precision, but it lacks
information about occupied space and unoccupied space. This is crucial for plan-
ning algorithms. This functionality was added to NDT by [SAS+13] and later
improved by same authors in later work [SSAL13a]. Every cell in NDT-OM is
represented with parameters ci = {µi, pi, Ni, pi}, where µi and Pi are parame-
ters of estimated normal distribution, Ni is number of points in cell and pi is
probability of the cell being occupied.

Calculation of occupancy parameter is done by ray-tracing. Consider that
we have current map mx. We have calculated new NDT map my from incoming
distance measurements. Both maps needs to be in the same coordinate system.
Ray-tracing starts at current robot position in map mx. End point of ray-tracing
is value of mean from one of the cells in new map my. Program visits every cell
along the line and updates covariance. It is important to visit every cell just
once. When is ray-tracing over we merge in all cells from my into mx with RCU
update rule.

The main idea in occupancy update calculation is that not all cells are oc-
cupied fully. Normal distribution usually occupies only part of the cell. A ray
tracing through this cell might not intersect bounds of normal distribution at
all. In order to consistently update occupancy the update value should not be
a constant. Better option is to choose a function describing difference between
map my and mx. This function with explanation might be found in [SSAL13a].

14

Figure 2.1: Image describing raytracing update. Yellow elipses represent normal
distributions. Letter R represent robot position and red line ray tracing line.
RCU will be applied to the cell marked A. A distribution in cell marked with
letter B will get updated as unoccupied. Cell C will stay without any update.

2.3 Registration algorithms

2.3.1 NDT registration

NDT registration process was first time explained by [BS03]. They have explained
how to make 2D registration between older scan (target scan) and newer scan
(source scan). Target scan was converted to NDT grid by technique mentioned
in section 2.2.1. Result of registration should be transformation defined in 2D:

T :

(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
tx
ty

)
(2.16)

where (tx, ty)
T represents translation and θ represents rotation. Transformation

is used for transforming source scan. At the beginning of program parameters of
transformation are initialized either by zero or from initial guess. For each point
of transformed scan cost function is computed This function is defined as:

score(p) =
∑
i

exp(−1

2
((T (xi,p)− µi)

TP−1i (T (xi,p)− µi)) (2.17)

where p = (tx, ty, θ) are parameters of transformation, N(µi, Pi) are parameters
of normal distribution where point x is transformed by transformation T .Goal of
the NDT scan-matching is to find parameters p which maximize this function.
This maximization problem is changed to minimization problem by searching for
minimal value of -score. Newton’s algorithm finds minimizing parameters in p by
iteratively solving equation

H∆p = −g (2.18)

Representation of hessian, gradient and all derivations might be found in work
of [Mag09]. Magnusson also introduced new scaling parameters into score function
in order to reject possible outliers. probability distribution function (PDF) inside
of cells of target NDT grid may not be always from normal distribution. In
practice any representation which approximates structure of the element is valid.
Outliers are points far from the mean of distribution and cause unbounded growth
of PDF.

At the beginning, algorithm created discrete NDT grid out of target scan.
This introduces discretization problems. These problems are cause by points

15

generating PDF which are larger than their cells. In the original work of [BS03]
this was solved by creating 4 target grids where each grid is translated by half
of the cell size in single direction. This process made this algorithm inefficient.
Introduction to multi-layer NDT grid structure, presented by [UT11], solved this
problem. Multi-layer approach consists of several grids with different resolution.
Grids are ordered from coarser grid to finer grid. Algorithm starts with coarse
grid and estimates parameters of transformation. Calculated transformation is
used as initial guess at lower level. This principle practically eliminated need for
four overlapping grids. It also offered better convergence time and increase to
robustness. Algorithm is able to converge when matched scans are farther away.
Good configuration is 4 layers with cell sizes 2, 1, 0.5 and 0.25 meters.

Another improvement to algorithm is usage of concept of linked cells. In
practical registration very often part of the source scan lie far from any target
cells. This causes only small portion of points contribute to score function. It can
cause algorithm failure or just increase time of convergence. Linked cells prevent
this by providing cells in target scan, which are close to the point from source
scan. Implementation of this technique is possible with use of kD-tree with means
of all cells as input points. Every point or source scan finds k-nearest cells and
execute score calculation on them.

Algorithm 1 NDT algortihms with muilti layer and linked cell enhancements

Require: source scan, target scan, parameters (x, y, θ) of initial transformation,
cell resolution for each layer

1: function NDTRegistration(scans, scant, pinit,resolutions)
2: p← pinit
3: for all res from resolutions do
4: ndtt ←createNDTGrid(res,scant) . described in section 2.2.1
5: transform each point xi ∈ scantrans with T (xi,p)
6: p← computeSingleGrid(scantrans, ndtt, p)
7: end for
8: return calculated parameters p of transformation
9: end function

2.3.2 D2D-NDT registration

Distribution to distribution (D2D)-NDT is variant of NDT registration algorithm
proposed by [SMAL12]. It is extension of original algorithm presented in section
2.3.1. Instead of using only one grid for target scan. This aproach uses two grids.
One for source scan and second for target grid. Algorithm than minimize the sum
of L2 distances between pairs of PDF’s from both grids. Formally, transformation
between two sets of cells X and Y is defined as:

f(p) =

nX ,nY∑
i=1,j=1

−d1 exp

(
−d2

2
µT
ij(R

TPiR + Pj)
−1µij

)
(2.19)

µij = Rµi + t− µj (2.20)

where p = (tx, ty, θ); X(µi, Pi) and Y (µj, Pj) are PDF’s of individual cells in
pair; a pair (R, t) represents rotation matrix from parameter θ and translation

16

Algorithm 2 Computing transformation on with single target NDT grid and
source point cloud

Require: source scan, target NDT grid, parameters (x, y, θ) of initial transfor-
mation

1: function computeSingleGrid(scans, ndtt,pinit)
2: while not converged do
3: p← pinit
4: (score, g,H)← (0, 0, 0)
5: for all points xi ∈ scantrans do
6: x̄i ← T (xi,p)
7: cells←find k-closest cells to x̄i
8: for all cells ci ∈ cells do
9: {based on [Mag09]}
10: (score, g,H)← (score, g,H)+ calcNewtonParameters(ci,x̄i)
11: end for
12: end for
13: solve H∆p = −g
14: p← p +∆p
15: end while
16: return p
17: end function

vector t = (tx, ty). Regulation parameters d1 and d2 are set to values d1 = 1
and d2 = 0.05. Equation 2.20 represents difference in means where mean ui is
transformed to new position.

Optimization of this function is done in similar way to 2.3.1 by utilizing New-
tons method and solving H∆p = −g. Derivations for calculation of hessian and
gradient are presented in work of [SMAL12].

This algorithm is also possible to improve by iterating over multiple layers
with different resolutions similar to NDT registration in previous section.

In comparison, with NDT registration this algorithm needs only NDT grids
for registration. Point cloud can be thrown away after successful creation of grid.
This allow saving memory and efficiently represent maps in SLAM. In addition,
D2D is almost ten times faster than standard NDT registration on same dataset.
This was proven in comparative study from [MVS+15]. The main cause of this
speed up is smaller number of calls for score calculation. In point to distribution
(P2D)-NDT mentioned in last section we need to calculate score for each point
in source point cloud. In case of D2D we just calculate score function for each
cell of source grid. This is done by generating only pairs between cell from source
grid and closest cell from target cell. Closest cell can be easily found by using
kD-tree with values of target grid’s means.

17

2.3.3 ICP

The iterative closest point (ICP) algorithm was first introduced by [CM92] and
it is still very popular method for registering point clouds. To briefly summaries
algorithm: ICP iteratively refines position of two point clouds by optimizing the
sum of square distances between corresponding pair of points from two clouds.
This approach is usually called point-to-point registration. Class of algorithms
based on ICP has developed many modifications. Surrvey of base type of ICP
algorithms and their comparison on well designed datasets is in work of [PCSM13].

2.3.4 Correlative scan registration

Correlative scan registration is algorithm presented by [Ols09b]. This method
was developed to robustly solve registration problem. It does not require any
initial guess. Therefore, it is possible to use it for loop closure registration.

The algorithm requires two point clouds. Target point cloud is used for gen-
eration of fast look up table filled with bit values. It is created by separating
points from target cloud into individual cells. Every cell which has some points
in it is marked as occupied. After this step we have a table with value 1 in cells
with some points and value 0 in cells without points. In next step we add sensor
noise to the table. As a function of our noise we use radially symmetric kernel.

Ki,j = exp

−1

2

(√
(ir)2 + (jr)2

σ

)2
 η (2.21)

K =

 2 14 2
14 100 14
2 14 2

 (2.22)

where Ki,j is one element of kernel;
√

(ir)2 + (jr)2 is euclidean distance from
center of the kernel to the element i, j with cell size parameter r. Standard
deviation of sensor nose is abbreviated by σ and η is kernels max value.

The Kernel overlaps over every occupied cell in the table. If value of kernel is
higher than value in table. Table is updated with the kernels value. Generated
smoothing can be seen in figure 2.2.

This algorithm is avoiding initial guess by trying all possible rotations and
translations of source cloud. Every point of transformed source cloud is mapped
into certain cell of look up table. The total score of transformed cloud is sum
of all mapped cells scores. Algorithm usually tries rotations and translations
from selected range. Transformation with the best score is the most probable
transformation.

This brute force process might take long time if we select small cell size to
achieve good registration. To speed up this process we first need to avoid compu-
tationally expensive calculation of goniometric functions in transformation. This
can be achieved by first generating all possible rotations of point cloud. For each
rotation we try all translations from selected range with step size selected based
on cell size of look up table.

Real speed improvements offers usage of two layer architecture of look up ta-
bles. The first table has coarse resolution. This table is used for initial estimation

18

Figure 2.2: Image on the left shows look up table before applying a smoothing
kernel. Image on the right is after application of the kernel.

on the whole range of selected rotations and translations. The transformations
with best score are used in the second round. From every good transformation is
generated search space voxel. Origin of voxel is taken from transformation. Size
of voxel is cell size from coarse table. Search voxels are evaluated on look up table
with fine resolution. Search space is this time limited to search voxel and initial
transformation is taken from origin of voxel. The best result is our solution. By
this process computation time drops rapidly as show in work of [Ols09b].

19

3. NDT Graph-SLAM overview

In this chapter we will present our solution to 2D version of the graph based SLAM
on the NDT maps. This chapter starts with complete overview of the algorithm.
In the next sections we explain how each part of the system is designed.

3.1 System composition

The standard input of many SLAM algorithms is an odometry. In our case, we
do not require any prior information about the robot movement. Our source of
odometry is a fast incremental scan matching. The only mandatory input is a
point cloud extracted from the robot’s laser measurement. The scan matcher
calculates relative transformation based on received point cloud and a map from
previous iterations of the incremental scan matcher. We will call this map a
moving window. Details are in the section 3.2.

The resulting transformation is used in the NDT frame creation process. The
NDT frame is a small map which is created out of couple consecutive scans. A
precise transformation is needed to merge these scans into a single frame. In
our system, we use transformation from incremental scan matcher. The pose
graph stores the NDT frame inside the node. The NDT frames integrate multiple
scans to reduce the problem with the limited field of view. Each frame carries
more information which gives a better outline of the world. More information
about the world also helps to reduce a chance of ambiguous loop detections 1.4
because larger frames have a higher chance to include some unique features.
Additionally, we also want to utilize advantages of NDT-OM occupancy update
rule. It can detect dynamic objects with ray-tracing. The detection is done
by merging multiple scans and re-observing the same cell multiple times. More
information about design choices behind NDT frames is in the section 3.3.

The next phase of the algorithm creates a node in the pose graph when the
NDT frame is created. An odometry edge connects two consecutive nodes. The
odometry received from scan matching process was used to create NDT frames.
Therefore, odometry edge has a transformation between origins of consecutive
frames. In the next step, pose graph generates possible loop closure edges. The
algorithm traverses a graph with Dijkstra projection and applies our radius based
metric described in section 3.4.

The potential matches need to be registered and validated. It is the most
difficult problem. We need an algorithm which can perform 10s of registration
per second. At the same time, it needs to reject matches which are not from the
same part of the environment. Some errors caused by local and global ambiguities
1.4 will not be avoided. We propose a solution to these problems by improving
version of D2D-NDT. In this adaptation, we use a robust initial pose estimation
from the correlative scan registration 2.3.4 and fine alignment from D2D-NDT
2.3.2. The full description is in 3.5.

The loop closure edges need to be validated against possible outliers caused by
ambiguities. We have decided to use a robust optimization engine with switchable
constraints. We have made a decision based on the comparative study by [SP13],
where this method offered the best results. An important factor in optimization

20

Figure 3.1: A diagram of the graph based SLAM on NDT maps

process is a number of nodes and edges in the graph. The computation time
grows with increasing number of elements in the graph. We limit the number of
nodes by using NDT frames. Two consecutive frames can be farther away from
each other because they represent a bigger part of the environment.

A Smaller number of nodes in the graph also mean less work to the NDT
mapper. In the case of successful loop closure, we need to regenerate map based
on the new position of nodes in the graph. In this version of the algorithm, we
just iterate over all frames and merge them to the new map based on the new
origins. In the future NDT frames allow to generate only a part of the map based
on a request from a user. It could also be possible to load and save individual
frames and save memory in the long run of the algorithm.

A combination of these parts together creates the graph-base SLAM on the
NDT maps.

3.2 Moving window

A moving window is a special type of the NDT grid. It uses all features of the
NDT-OM including the occupancy update and the dynamic object rejection. The
main idea behind the moving window is to offer a small map which can be used
by incremental scan matcher in order to efficiently align incoming scans against
a longer history. In the standard incremental scan matching approach, we need
to know the whole map. This map is then used to correct small errors when

21

revisiting the same place again. A problem with this method arises when an
alignment fails. In this case, the incorrectly aligned scan is merged into the map.
It creates the same feature multiple times in the map. The next registration can
use the wrong feature, and the error might never be corrected. The NDT-OM can
solve some of the degeneration by cleaning occupied cells which are on the way
between robot position and the new measurement. In order for this mechanism to
work, the next scan needs to converge to the original correct position. This is very
unlikely with a corrupted map and the standard NDT technics for registrations,
which can end up in the local optimum during the scan refinement step.

In our system, we do not need to know the whole map of environment because
loops closures errors are fixed by pose graph optimization. We need incremental
scan matcher to provide us a good local estimate of the robot movement. For this
purpose, we only need to know the part of the environment overlapped with a
current scan. It strongly depends on the type of a sensor and an environment. In
our setup, robot operates in the indoor environment with laser sensor ranging up
to 20m in long corridors. In this scenario window size of 20m should incorporate
all information which can help in scan registration. If it is possible to select
smaller window size based on the structure of the environment, the algorithm
may save time and memory.

The mowing window also needs to follow a movement of the robot to incorpo-
rate new measurements. It can be done in two ways. The first, we might rotate
window based on exact changes of the robot global position. The algorithm must
transform the whole window after each small movement of the robot. This ap-
proach tries to transform every single normal distribution inside grid in every step
of the algorithm. Transformed cell’s distribution may suddenly overlap multiple
fields. We would need to develop a mechanism how to split original distributions
into the multiple cells. A better way is to keep windows orientation fixed and
only translate the window based on the robot’s movement. It prevents a rotation
of distributions in the cells but still, suffers from the same splitting problem. The
final solution is to move the window only in multiples of the cell size. It does not
affect parameters of normal distribution inside of original grid when the window
moves multiple fields in any direction. After the movement, some cells may get
out of the scope of the current window. These cells are destroyed which help to
reduce accumulated error in the window.

To minimize any alignment issues we have decided to perform fast scan match-
ing. We achieve it by processing as many laser scans as possible. The high-
frequency scan matching does not need initial guess because a valid result is rea-
sonably close to the initial position of the source and the target measurements.
The registration algorithm which is capable of this performance needs to work in
order of milliseconds. Two algorithms developed for fine registration on top of
the NDT grid are the P2D-NDT and the D2D-NDT. We use the standard D2D
algorithm because it offers ten times better run time than P2D. A comparative
study by [MVS+15] shows that even though P2D is usually more precise, it needs
significantly more computation time. Skipping multiple measurements from the
sensor may cause that we will not be able to estimate robustly transformation
and the whole process can converge to a local minimum.

22

Algorithm 3 Moving window processing loop

Require: point cloud X, move window’s NDT grid M , transformation To to the
origin of moving window, transformation Tr unused from move in last call of
function, transformation P last known absolute pose of moving window.

1: function calculateTransform(X)
2: Xo ← transformPointCloud(X,To ∗ Tr)
3: No ← createNDTGrid(Xo)
4: Tox ← alignD2D(No,M)
5: M .mergeIn(Xo,Tox) . applies transformation on point cloud and merge it

into moving window
6: Tdiff ← P−1 ∗ (To ∗ Tox)
7: P ← To ∗ Tox . update of absolute pose of window for next call
8: Tr ←M .moveWindow(Tox)
9: return Tdiff
10: end function

Figure 3.2: Picture shows a difference between moving window in purple and
NDT map corrected with loop closures in a white color.

23

3.3 NDT frame creation

The NDT frame is created by merging multiple point clouds based on transfor-
mation received from odometry estimation. The important question is how many
scans should we combine? This algorithm uses consecutive addition of transfor-
mation as in equation 2.3. Afterward, it calculates a total displacement done by a
robot. If it is more than a threshold we close down the old NDT frame and start
to add scans into the new empty frame. The new frame is assigned its coordinate
system based on current robot position. Every new scan is transformed into the
coordinate system of currently opened frame and merged in. The closed frame is
sent to the pose graph generation where it is transformed into the node.

A Selection of good displacement parameter is important for a run of the
algorithm. A small value will create many nodes in the pose graph. Every node
will reflect an only small portion of the environment. This will make loop closure
computationally expensive by a need to evaluate too many possible loop closure
nodes. At the same time, loop closing algorithm will work with only limited
information. This may cause a bigger number of local and global ambiguities in
registration. A large value of displacement will generate fewer nodes with more
information in each node. This is less computationally dependent. On the other
hand, it creates an ambiguous environment inside of the NDT frame. The loop
closure registration may not correctly deduce which part of the same environment
in the frame is correct for registration. The registration algorithm is forced to
identify this situation and solve it. At the same, it wastes an optimizer’s potential
in ambiguity rejection based on topological information of the whole environment.

3.4 Loop closure detection

A loop closure detection is done on top of the pose graph. The loop detector
can use current positions of the graph nodes and relative transformations stored
in the odometry and loop closure edges. With this information, we need to find
all nodes which can with current node create a loop closure edge. The process
starts by Dijkstra projection mentioned in the section 2.1.2 from the current node.
A part of the projection is also a calculation of the relative displacement along
the edge. The sum of displacements is used as a parameter for rejection of nodes
which are too close to our current position. These nodes are certainly overlapping
with our start node and therefore it is not necessary to check them again. All
the nodes passing the previous test are used in one of two rejection models.

The first model tests all nodes against selected radius. The second mecha-
nism is using cumulative transformation and covariance calculated by Dijkstra
projection. In validating if two nodes overlap we use same metric as presented
by [Ols09a].

∆c = (cb − ca) (3.1)

s = max(0, ‖∆c‖ − ra − rb)
∆c

‖∆c‖
(3.2)

mahl = sTP−1a,b s (3.3)

where ca and cb are the centroids of start and currently compared NDT grids;
ra and rb are radii of the respective NDT grids and P−1a,b is an inverse of the

24

accumulated covariance.
The selected nodes are registered by robust D2D. Those matches with high

score are inserted into the graph. The edges added by this mechanism may
still include some errors or ambiguities. Rejection of these edges is done in the
optimizer.

3.5 Robust D2D-NDT registration

Construction of a robust D2D registration needs to be fast and precise. Also,
it needs to have a mechanism how to reject invalid association. It can use only
information present in NDT grids because a loop closure mechanism is working
only with this data. We knew that the D2D offers quick and reliable registration
on the NDT grids with a good initial guess. The correlative scan matching
algorithm 2.3.4 can provide registration without a knowledge of the initial guess.
Unfortunately, in the standard version, it is not possible to operate with NDT
grids. The performance of this algorithm is also slower than D2D. To solve these
problems we have developed modified version of the correlative algorithm which
can work on top of NDT grids.

3.5.1 Adaptation of correlative registration

We have started with the base algorithm described in the section 2.3.4. It is
sufficient for our needs when this algorithm provides only a rough initial guess.
For this reason, we use only one layer architecture. Our single grid has double
cell size in comparison with the original size of the NDT grid. It offers faster
execution time. In the first part of the algorithm, we need to go over large search
space because we cannot expect any prior information from the graph. Larger
grid size limits the number of translation because we always try translations in
multiple of the cell size as mentioned in the 2.3.4.

Secondly, we need to transfer original NDT grid into a reasonable point cloud.
In our implementation, we have decided to recreate point cloud out of grid by
taking a mean from every cell with distribution. A collection of these means makes
our mean cloud. In addition, we use information about how many points were
used to create a normal distribution. This information is used in our algorithm
as a weight for every mean value. Original algorithm uses two point clouds.

First is called target cloud and is used for the creation of look up table. This
table is created by projecting all points to individual cells. When is a cell occupied
by at least one point it is marked with value 1. In our scenario, we use a cloud
of means from the target grid to construct a look-up table. Use of means is more
robust to outliers than original look-up table from a point cloud. The original
implementation marked every cell occupied regardless on the number of points
mapped into it. Our grids need at least 4 points to create a normal distribution.
This limits an influence of the single point spread in a space and also emphasizing
dominant structures in the environment. Target grid conversion to mean cloud
does not loose any information in comparison to the original cloud. This is
because the look-up table and the target grid are aligned. On top of that double
step size of the look-up table makes four cells from the target NDT contribute to
a single look-up cell.

25

The second source cloud is used for scoring in the look-up table. Every point
of a point-cloud contributes to total score based on the value from the look up
cell it belongs to. In our case, the single point represents information about the
mean center of multiple points. In order to keep all information, algorithm maps
mean into the correct cell in the look-up table. By doing this, the mean only
contributes once. Fortunately, a score generated by mean can be scaled with
the use of weight associated with the mean. This makes a weighted mean point
contribute the same amount to the system as standard points from point cloud.
The score function is defined as:

score(T,C) =
1

d

∑
p∈C

v(T, p)w(p) (3.4)

where T is transformation which should be applied to point p of cloud C. A
function v(T, p) applies transformation T to point p maps it to look up table and
return score value for single point. A function w(p) return weight of current mean
point. Scaling factor d is defined as

d = m
∑
p∈Ct

w(p) (3.5)

where m is the maximal value one point can receive from look up table after
application of smoothing kernel in equation 2.21; Ct represents target point cloud.

The last problem with conversion of source cloud to mean cloud is to han-
dle discretization errors. These errors happen when we need to transform NDT
grid. In this situation, one original PDF may overlap multiple cells. The original
point cloud would contribute into multiple cells. Our mean formulation would
contribute only to one cell based on mean location. To minimize this effect, we
map every mean value into the target look-up table which has double cell size in
comparison with source NDT. This process is similar to multi-layer discretization
removal in multi-layer NDT registration [UT11]. The Target look up table also
include a smoothing kernel, which assigns some value to cells surrounding occu-
pied cell in the table. This also makes mean which could potentially slip out of
occupied cell’s boundaries contribute to the total score.

By executing these approximations, we were able to create a version of the
correlative registration on top of NDT grids. Coarser resolution improved perfor-
mance and allowed us to search larger search space. Approximation of the input
cloud into means reduce the number of a point we need to test in every iteration
of the algorithm loop. This effectively lowered number of calls to the look-up ta-
ble, which speeds up the whole process. In addition, mean cloud removes outliers
from the points spread in space.

3.5.2 Algorithm overview

With the coarse initial guess estimate, we can construct the algorithm. The first
step is to run correlative estimation algorithm on a pair of grids. The result is
the best initial guess it could find in the selected search space. The correlative
estimator uses a coarse look-up table which means that grid still needs to be
transformed up to two NDT cell. The next step is to run the D2D algorithm.

26

The multi-layer definition of the D2D can converge to the right solution if there is
one. The problem arises if two matched grids are from different locations and do
not share same environment features, e.g., lines, corners. In this case, correlation
registration finds the best possible solution, which means that it rotates grid in a
way that maximalizes a score. The D2D than try to find the best alignment and
usually falls to the first local minimum it can find. To solve these situations we
propose solution validation process. Example of bad alignment is in figure 3.3.

3.5.3 Solution validation

Robust alignment offers us the best transformation between the source and the
target NDT grid. This alignment can fail and not provide a successful registra-
tion at all. We need to validate if this registration succeeded or failed. In this
algorithm, we again use correlative scan matcher. In this case, we use a cell size
of the target look-up table matching the cell size of the NDT target grid. We map
every point from mean source cloud into a look-up table and receive a total score
based on contributions of each weighted mean point. In this case, discretization is
helping us to provide better results. Some means may stay out of the target grid
this means that registration was less successful which result in a lower score. This
method can reject scans based on their overlap. It is not able to distinguish the
wrong alignment in case that two scans look similar but originate in two different
parts of the environment. This ambiguity is resolved in the graph.

Algorithm 4 Robust D2D registration algorithm

Require: source NDT grid Gs and target NDT grid Gt. Resolution of NDT
grids r. Validation threshold v

1: function align(Gs, Gt, r)
2: transformation T is identity
3: (T ,score) ← correlativeEstimater(Gs, Gt,T , 2 ∗ r)
4: T ← alignD2D(Gs, Gt,T)
5: (T ,score) ← correlativeEstimater(Gs, Gt,T , r)
6: if score ≥ v then
7: return (T ,true)
8: else
9: return (T ,false)
10: end if
11: return T
12: end function

27

Figure 3.3: Images show the results of the robust D2D-NDT registration. The red
dots represent target scan and the green dots source scan. The first row shows
valid alignment marked with high score.The second row shows two alignments
which were rejected by validation.

28

4. Implementation

In this chapter, we will present implementation details of our system. First, we
present all libraries used in this project. Later we will introduce outcome in
the form of the ROS package. Also, we will briefly present the structure of the
program and key components.

4.1 Used libraries

4.1.1 ROS

The ROS [QCG+09] is a popular robotic framework. It offers a flexible way how
to combine existing tools, libraries, and algorithms to make a full robotic solution
from drivers up to the higher logic of planning and mapping. The communication
between individual programs (nodes) is done through the subscriber-publisher
model. A configuration of programs is stored in the parameter server. This
server also takes care of managing communication between nodes.

4.1.2 Point Cloud library

The Point Cloud Library (PCL) is a standard ROS library for manipulation with
point clouds [RC11]. The library includes state-of-the-art algorithms in registra-
tion, filtering, segmentation, and feature extraction. It also contains tools for
visualization and manipulation with point clouds. In our project, we use mostly
point cloud class which is the most basic data structure in the library. We also
use registration base class for implementation of our scan matching algorithms.

4.1.3 G2O

The G2O is a pose graph optimization library presented by [KGS+11]. It is
currently the most used library for the pose graph optimization. It offers well
designed extendable interface which makes it easy to add a new definition of pose
graph optimization. New optimization methods often have an implementation
for this library. In our program, it is used as main optimization engine for our
pose graph.

4.1.4 Eigen

The Eigen [GJ+10] is a templated C++ library for linear algebra. It includes
modules for dense and sparse matrix representations, numerical solvers and trans-
formation representation. This project mostly uses geometry module with affine
transformation. We also utilize numerical solvers in our implementation of reg-
istration algorithms. We have selected this library because it is considered a
standard library for linear algebra in the ROS. Many packages use it and offer
API’s designed with this library.

29

4.2 Structure of the implementation

The architecture of the whole system can be divided into three parts. The first
part is theROS interface. In our implementation, this interface expects only laser
scanner data. However, it is also possible to provide odometry information. The
interface uses standard names for topics. This interface includes all inputs and
outputs which can be found in other SLAM packages. Additionally, it provides a
map in the form of a point cloud. The full documentation of this interface is in
Appendix A.

The second part is the SLAM algorithm interface implemented in C++. It
offers the same functionality as the ROS interface. We have decided to have
this double interface because it is convenient to use our SLAM also without the
ROS subscribe-publish interface. It was mainly used for debugging and testing
purposes. This interface also offers some flexibility if we decide to do a different
version of our algorithm. In this case, we do not have to rewrite node’s source
code. In this layer of abstraction, we take care of an initial estimation of the
odometry and the NDT frame building process. A map generation also takes
place in this part of the architecture.

Thirds part is graph SLAM interface. This interface makes abstraction around
graph creation and optimization process. This section is using our custom pose
graph implementation. On top of this graph, we developed a loop closure de-
tection and validation. This graph is synchronized with the graph inside of op-
timization engine G2O. We carry two graphs for the reason of easier switching
between different optimization engines in the future. Our graph representation
also includes additional information about state and type of the edge. Imple-
menting it into G2O would require rewriting this code with every new optimizer
and with every new G2O edge and vertex type.

An important part of the architecture is handling of NDT frames. A created
frame is stored inside shared pointer. The same pattern is used in PCL’s point
cloud data type. The shared pointer is then passed to the graph creation process
and also to the NDT map building process. Nodes of the pose graph include
this pointer as their representation of the world. The NDT frames in nodes are
used for loop closure registration. This means that registration algorithms use
the shared pointers in their API as well. This approach is also a standard for
registration algorithm in the PCL library

4.2.1 NDTGrid2D

The NDTGrid2D is the main class for all operations in our approach. It offers
basic functionality for grid creation. It can be merged with or without a use
of ray-tracing (occupancy update). It is used for dynamic entity update from
NDT-OM. It also offers grid translation which is needed for the moving window
implementation. Another group of functionality is for registration algorithms.
They require radius search and k-nearest neighbor search. The odometry es-
timator also needs to use means from cells. The last group is output format
methods. Grid can create a coarser instance of itself. It is also able to be printed
to standard console output. We have implemented methods for conversion into
our custom type of occupancy and NDT map messages. These messages are used

30

Figure 4.1: Overview of individual parts of architecture and their relationships.

only internally and can be transformed into ROS variants.
In order to fulfill all these needs implementation of NDTGrid2D is just a

higher abstraction layer on top of the VoxelGrid2D. The voxel grid is taking care
of memory layout, resizing, element lookup and ray-tracing. The NDTGrid2D
has two template parameters. The first parameter is the type of the cell. Grid is
initialized from a point cloud, for this reason, it needs to have second template
parameter representing a type of the point. The second parameter is standardly
used in PCL related algorithms.

Core algorithm logic for merging and updating cells is stored in every cell.
This allows developing new cells without any changes to the grid.

4.2.2 VoxelGrid2D

It is a generic grid-like structure with one template parameter. The type used in
the template is required to have implemented operator plus and copy assignment.
This data structure is intended to use with larger cell types in the sparse envi-
ronment. Based on these requirements we designed the memorry model. Grid
is represented by single vector which holds pointers to cells. In the case of the
unoccupied cell, it uses null pointers. The grid is initialized empty with no cells
inside. It allows dynamic resizing either manual or automatic based on inputted
cells. It offers base functionality for ray-tracing and radius search.

4.2.3 NDTCell

The NDT cell is the core of all calculations on top of the grid. In case of NDT-OM
implementation it holds covariance and mean estimation, occupancy update rule
and RCU update rule for merging of cells with Gaussian inside. In the future

31

experiments we can easily design a new type of the cell with different calculation
model and keep NDTGrid2D and the VoxelGrid without modifications.

4.2.4 Registration algorithms

When designing registration algorithms we have decided to use same interface as
PCL’s registration algorithms. By extension of their base class our programs can
be used standard way inside of PCL. This makes it easy to use our algorithms
alongside PCL implementations. It also possible to use all visualization and io
tools provided by PCL. Our algorithms have option to run in multiple threads
which boost their performance on the multi-core processors.

32

5. Evaluation of NDT
Graph-SLAM

In this chapter, we will demonstrate the functionality of our algorithm. We com-
pare it with two well known SLAM approaches implemented in ROS. We also
explain what parameters lead to the best results with our algorithm. The experi-
ment is conducted by running prerecorded data files from PR2 robot operating in
Massachusetts Institute of Technology (MIT) Stata Center [FJKL13]. We chose
this dataset because laser scanner provides a sufficient number of points to pro-
duce NDT fields with a normal distribution. It is also recorded in the form of
”bag file” which is the standard format in ROS. It offers very challenging situ-
ations for robust testing. It is not uncommon that algorithms fail on many of
recorded data sets. The problem is even more difficult when using only 2D laser
data information.

5.1 MIT dataset details

This dataset offers fine laser data with 1130 points per scan. The sensor’s field of
view is 260 degrees. The 2D laser scans have the maximum range of 60 m with
publishing frequency around 20 Hz. The dataset was recorded on multiple floors
of the Stata Center. Transportation between floors is done with an elevator. Our
and other two tested approaches cannot handle transportation between floors.
Therefore, we have selected only data sets which stay on the same floor. Our
experiments were conducted only on the second floor because it has information
about ground truth.

We have selected two datasets which showcase possibilities of this algorithm.
The first dataset runs in a small loop inside of one room. The mapping of this
first dataset is challenging because robot needs to correct its position multiple
time. It is also computationally difficult for loop closure mechanism because it
needs to test loop closures with all previously measured data.

The second dataset starts in the long corridor and moves in a direction towards
the room from the first dataset. It makes multiple loops and then it moves
through a corridor to the new room. It maps this room and returns through the
same corridor. In this type of setup odometry, information or incremental scan
matching can accumulate error over long corridor and last room, which should
be visible on the returning trip. This tests loop closure mechanism over a long
distance.

In the figure 5.1 is a ground truth map for used datasets built with NDT-OM
based on the transformation from ground truth odometry measurements provided
with the dataset.

33

Figure 5.1: The NDT map generated out of selected datasets with use of ground
truth odometry information.

5.2 ROS SLAM algorithm overview

5.2.1 The Gmapping

The Gmapping proposed by [GSB07a] is the popular SLAM algorithm in ROS.
It is based on Rao-Blackwellized particle filters. In this algorithm, each particle
is carrying a representation of the map. In this setup number of particles rapidly
increase memory usage. For this reason, authors used not the only odometry to
estimate robot movement but also the most recent measurements and registration.
It reduces the number of possible samples by providing a better estimate of robot’s
movement. The Gmapping was used in dozens of projects in ROS. It is one of
the best if not the best SLAM algorithm in the ROS SLAM used by every novice
user in ROS. It is well documented and tested. The output representation is in
a form of occupancy grid with fine resolution 0.05m.

5.2.2 The Hector SLAM

The Hector SLAM proposed by [KMvSK11] uses fast and robust scan matching
to estimate robot’s movement and build a map. The algorithm also does not
use any odometry which makes it ideal for aerial robots. Registration is done by
optimization of laser end points with the map built from previous iterations. The
registration equation is solved using a Gaussian-Newton minimization method.
This approach may converge to a local minimum. The algorithm uses multi-
ple grids each with a coarser resolution to prevent this problem. This method
operates on top of occupancy grid with fine resolution around 0.05m.

In comparison to our method, it is very similar to our front end odometry
estimator. Our method of running window uses fast incremental scan matching.
It also uses several layers to avoid local minimum. The biggest difference is in
underlying map model. In our algorithm, we use map with coarse cell size 0.25m
with PDF inside. Also, we also have loop closure engine with pose graph which
should resolve more difficult localization errors.

34

5.3 NDT Graph-SLAM evaluation

In all our experiments we have used our SLAM algorithms as was described in
section 3.1. We have decided to set moving window size to the max range of the
sensor which is 60 m in our dataset. We have also set fixed values for radius search
for loop detection to 20m. We selected this value so we can test as many loop
closures as possible. During our mapping and localization test, we also record
all loop closure measurements. These are saved to the disk as point cloud file
(.pcd). We also save results of loop closure registration with resulting score for
evaluation of loop closure algorithm based on changing parameters. Files from
experiments are available in an attachment of this work. Initial value for loop
closure registration threshold was set to 0.6. Every loop registration with a score
higher than this value will be inserted into the graph as loop closure edge.

The output from our method is in point clouds. Each point represents the
position of mean value inside of the cell. Resolution of this map is same as for
all NDT grids (0.25m). Our representation is different in comparison to output
methods of the Gmapping and the Hector mapping which uses occupancy map.
Representation of the output map does not change characteristics of reconstructed
maps. It is important that map has correct shape. It is also important that empty
places like hallways or centers of the rooms stay unoccupied with as little noise
as possible. The result should not include any phantom walls. These are walls
present on the map, but they do not exist in reality. They are usually caused
by wrong pose estimation. In our representation, we also output pose graph
visualization which is only for debugging and demonstration purposes.

5.3.1 NDT frame generation frequency

In this experiment, we wanted to test what is an optimal Euclidean distance
between two consecutive NDT frames. We use same representation of frames as
mentioned in the section 3.3. Based on the design of the system this parameter
should influence the quality of loop closure detection and validation. In order
to test this parameter, we have decided to test it on the second dataset with
distances 1m 2m and 4 meters.

One meter range has generated frame every 1 meter of robot’s trajectory. This
has created a high amount of nodes with small map representation of environment
inside. For mapping purposes, this created nice map because there was small
odometry error inside of the frame. The error may be caused by wrong odometry
estimate from the moving window. This can be observed in the first picture of the
figure 5.2. It is also important to note that it has generated the biggest amount
of loop closure edges. This is mainly thanks to the fact that it is easier for two
frames get a high overlapping score from robust D2D if they have no errors inside.
On the other hand, it is more probable that these scans will have problems with
ambiguities. This has happened in a total of 4 times in the second dataset with
registration threshold set to 0.6.

The second variant with two meters long distance between frames offered
optimal results. It has generated fewer nodes than the first variant. Loop closure
edges added to the graph were able to repair errors from odometry estimation
and still keep the same quality of the map.

35

Figure 5.2: Comparison of effect of different frequency of frame creation. From left
pictures of 1m, 2m and 4 meter distance between frames. Red arrows represent
odometry edges, green edges are loop closure edges, black dots represent point
cloud of means from each cell (the wall). Bottom right corner represent the
ground truth.

The third variant failed to find loop closures. Every frame had data with
heavy noise inside. It caused that none of the loop closing tests received score
more than 0.1.

Based on these results we have decided to use fixed distance of 2 meters
between two frames in the next tests.

5.3.2 Robust D2D score threshold

In a previous section, we have used fixed registration threshold to value 0.6. In
this section, we will test if this is an optimal value. This test is executed by setting
the threshold to value 0.6 and then running the second dataset. All measurement
data received from all loop closure registration are sorted based on score value
into groups. The first group has score range from 0.4 to 0.49. The second group
from 0.5 to 0.59. The third group starts at 0.6 and ends in 0.69. The last group
includes all loop closures with higher value. We will look at a number of edges in
each category which have the wrong alignment. These edges are usually created

36

correct error total
[0.7,1] 21 0 21

[0.6, 0.7) 33 1 34
[0.5, 0.6)] 18 26 44
[0.4, 0.5)] 13 28 31

Figure 5.3: Number of correct and incorrect registrations in score groups

by a failure of the registration algorithm. The other reason might be ambiguity
in the environment. We want to minimize the number of incorrect edges in our
graph. Result of this experiment is in 5.3.

Based on the result we can conclude that algorithm can securely identify valid
loop closure in this dataset if the score is above 0.6. One error in this category
was caused by ambiguity in a long corridor. This error is not possible to correct
by usual registration algorithms. 2.3 Other two categories equally include more
errors than correct results. Errors can be divided into two types. Some incorrect
registrations are caused by matching unrelated places. These places are different,
but it is possible to match them in a way which yields a good score. The score
assigned by matcher is usually lower than 0.55. Some errors are also registration
failures. In this type of error, it mostly depends on the structure inside of the
frame. It happens if two frames include the same area but each has a dominant
number of cells mapping different feature of the environment. This ambiguity
makes robust estimator connect these two parts. It increases the total score in
these likely parts. On the other hand, parts of the frames not matching each
other lower the score. As a result, the score of these errors is in the range from
0.4 up to 0.6.

Based on this experiment we can set the threshold to 0.6 or higher and get
high-quality loop closures to fully correct the graph.

5.3.3 Iterative room mapping

This dataset represents a single room. In order to fully map it, the robot moved
multiple time around the room. Every movement carries some error. It is nec-
essary to correctly align consecutive scans. This well demonstrates coordination
of the moving window with the loop closure mechanism. The whole room has
fitted inside the moving window and registration provided robust transformation
for NDT frame building process. Loop closures were correctly identified all above
threshold 0.6. The distance between frames is set to 2m as discussed in previous
sections. The map is compact and without any defects.

Hector mapping has not converged into correct output. It was not able to
cope with rotations of the robot in this dataset. We have also tested slowing
down dataset with rate 0.6. This has not helped to Hector recover correct data.

The Gmapping offers the solution with similar quality to our result.

37

Figure 5.4: The Map of the room mapped by our NDT aproach, the Hector map-
per and theGmapping.(from up to down) Visualization of our approach includes
visualization of pose graph with red odometric edges and green loop closure edges.
The black spots represent means of each cell’s normal distribution, which is our
wall.The bottom right picture represents the ground truth.

38

5.3.4 Long corridors

The long corridor dataset was selected because it maps two main rooms plus it
adds a mapping of top part of the map. This part with its irregular shapes proven
to be very difficult mostly for hector mapping. It has failed mapping process as
you can see on the middle image in the figure 5.5. The Gmapping algorithm
offered accurate result.

Our approach has recovered the main shape of the map correctly. The small
difference is in noisiness of the walls. Our algorithm has higher noise. The
main reason is different mapping model. The Gmapping and the Hector map-
ping are both using extremely fine map with resolution 0.05m. Our approach
is using coarser 0.25m grid. Our map is coarser but still represents free space
correctly without noise. The coarse grid has also an advantage in path planning
or ray-tracing which is faster. Finer grids often need to be converted into lower
resolutions to work with them efficiently.

The second difference is a length of the corridors. Our approach has shortened
its length. The main reason is data alignment ambiguity. Robot passing through
these corridors do not see the end of the hall. This makes him observe only two
straight walls on the right and on the left. Without prior information about
robot movement, this is correctly understood as robot standing still without any
movement. The way our algorithm deals with this type of errors is by closing
a loop closure when returning to the same place through a different path. In
this case, the robot used the same trajectory, which leads to same error only
in the opposite direction. The only other solution how to solve this problem is
to integrate the movement of the robot into moving window incremental scan
matching. The result is a correct length of the corridor as can be seen in the
figure 5.6.

39

Figure 5.5: Map of the corridors mapped by our NDT approach, hector mapper
and Gmapping. Visualization of our approach includes visualization of pose graph
with red odometric edges and green loop closure edges. White spots represent
means of each cell’s normal distribution. The last picture represents the ground
truth.

40

Figure 5.6: Top picture shows portion of map with corridor when incremental scan
matcher may use initial guess from odometry. Bottom picture shows ambiguous
registration in corridor area.

41

6. Future works

This work has focused on 2D graph based SLAM on NDT maps.
The performance of NDT mapping and registration depends on the amount

of data which can be inputted into cell creation. Therefore, couple merged layers
from 3D laser point cloud could represent better 2D information for registration.
It will require processing of 3D data which is out of the scope of this work.

The future works should also focus on 3D mapping. It will require different
methods for loop closure registration. One of the options is a creation of feature
descriptor and utilizing well know registration algorithms used in computer vision.
Another improvement could be a fusion of 3D image color information into 3D
point cloud. This would add more information to individual cells. It could
increase precision and convergence time in 3D case.

This work is possible to extend on the side of pose graph as well. The graph
can be improved by fusion of similar nodes. This would allow using this algorithm
over a long period without an increase in memory usage. Another improvement
could implement multi-layer graph representation for mapping purposes of mul-
tiple floors.

42

Conclusion

NDT graph-based SLAM algorithm presented in section 3.1 can reliably solve
robot localization problem as well as create map representation of the world.
The algorithm is suitable for use on robotic systems equipped with a 2D laser
scanner. The algorithm does not require odometry information. Therefore, it is
particularly useful for robots lacking odometry sensors (e.g. drones).

The whole process starting with parsing of input data and ending with provid-
ing location and map can run in an online matter. The combination of NDT scan
matcher for fast odometry estimation and pose graph map optimization proved
to be a good combination. While incremental scan matching was not able to cre-
ate correct map in challenging environment because pose errors were too large,
correct generation of loop closure allowed for valid map creation and was able to
prevent introducing scan matching errors into the map.

The proposed solution of loop closure validation can correctly identify suffi-
cient number of loop closing constrains. It also offers fast processing time 1.

The algorithm is implemented as ROS package ndt gslam. It uses similar
interface to other SLAM algorithms in ROS, threfore it can be used as their
replacement with no additional effort needed. On top of that, it offers the maps
also in the form of point clouds. All registration algorithms were implemented
with the use of standard PCL APIs which makes them viable option for the use
in the PCL ecosystem.

1in our installation on oridinary laptop with only two-core processor, we processed up to 50
loop closures per second

43

Bibliography

[BS03] P. Biber and W. Strasser. The normal distributions transform: a
new approach to laser scan matching. In Intelligent Robots and
Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ Inter-
national Conference on, volume 3, pages 2743–2748 vol.3, Oct 2003.

[CM92] Yang Chen and Gérard Medioni. Object modelling by registration of
multiple range images. Image and vision computing, 10(3):145–155,
1992.

[FJKL13] Maurice Fallon, Hordur Johannsson, Michael Kaess, and John J
Leonard. The mit stata center dataset. The International Journal
of Robotics Research, 32(14):1695–1699, 2013.

[GJ+10] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[GKSB10] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram
Burgard. A tutorial on graph-based slam. IEEE Intelligent Trans-
portation Systems Magazine, 2(4):31–43, 2010.

[GSB07a] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transac-
tions on Robotics, 23(1):34–46, Feb 2007.

[GSB07b] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques
for grid mapping with rao-blackwellized particle filters. Trans. Rob.,
23(1):34–46, February 2007.

[HD07] S. Huang and G. Dissanayake. Convergence and consistency anal-
ysis for extended kalman filter based slam. IEEE Transactions on
Robotics, 23(5):1036–1049, Oct 2007.

[KGS+11] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard. g2o: A general framework for graph optimization. In Proceed-
ings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3607–3613, Shanghai, China, May 2011.

[KMvSK11] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flex-
ible and scalable slam system with full 3d motion estimation. In
Proc. IEEE International Symposium on Safety, Security and Res-
cue Robotics (SSRR). IEEE, November 2011.

[LM97] Feng Lu and Evangelos Milios. Globally consistent range scan align-
ment for environment mapping. Autonomous robots, 4(4):333–349,
1997.

[Mag09] Martin Magnusson. The three-dimensional normal-distributions
transform: an efficient representation for registration, surface anal-
ysis, and loop detection. 2009.

44

[MTKW02] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben
Wegbreit. Fastslam: A factored solution to the simultaneous local-
ization and mapping problem. In In Proceedings of the AAAI Na-
tional Conference on Artificial Intelligence, pages 593–598. AAAI,
2002.

[MVS+15] M. Magnusson, N. Vaskevicius, T. Stoyanov, K. Pathak, and A. Birk.
Beyond points: Evaluating recent 3d scan-matching algorithms. In
2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 3631–3637, May 2015.

[Ols09a] Edwin Olson. Recognizing places using spectrally clustered local
matches. Robot. Auton. Syst., 57(12):1157–1172, December 2009.

[Ols09b] Edwin B Olson. Real-time correlative scan matching. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference
on, pages 4387–4393. IEEE, 2009.

[OLT06] Edwin Olson, John Leonard, and Seth Teller. Fast iterative align-
ment of pose graphs with poor initial estimates. In Proceedings 2006
IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006., pages 2262–2269. IEEE, 2006.

[PCSM13] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane
Magnenat. Comparing icp variants on real-world data sets. Au-
tonomous Robots, 34(3):133–148, 2013.

[QCG+09] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an
open-source robot operating system. In ICRA Workshop on Open
Source Software, 2009.

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud
Library (PCL). In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011.

[SAS+13] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and A. J.
Lilienthal. Normal distributions transform occupancy maps: Appli-
cation to large-scale online 3d mapping. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 2233–2238,
May 2013.

[SMAL12] Todor Stoyanov, Martin Magnusson, Henrik Andreasson, and
Achim J Lilienthal. Fast and accurate scan registration through min-
imization of the distance between compact 3d ndt representations.
The International Journal of Robotics Research, 31(12):1377–1393,
2012.

[SP13] N. Sünderhauf and P. Protzel. Switchable constraints vs. max-
mixture models vs. rrr - a comparison of three approaches to robust
pose graph slam. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 5198–5203, May 2013.

45

[SSAL13a] J. Saarinen, T. Stoyanov, H. Andreasson, and A. J. Lilienthal. Fast
3d mapping in highly dynamic environments using normal distribu-
tions transform occupancy maps. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4694–4701, Nov
2013.

[SSAL13b] T. Stoyanov, J. Saarinen, H. Andreasson, and A. J. Lilienthal. Nor-
mal distributions transform occupancy map fusion: Simultaneous
mapping and tracking in large scale dynamic environments. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 4702–4708, Nov 2013.

[UT11] Cihan Ulas and Hakan Temeltas. A 3d scan matching method based
on multi-layered normal distribution transform. IFAC Proceedings
Volumes, 44(1):11602–11607, 2011.

46

List of Figures

1.1 On the left is visualization of occupancy grid. On the right is
visualized point cloud of a room. 6

1.2 The local and global ambiguities in scan registrations. On the
left is a local ambiguity. On the right is a global ambiguity with
two maps. The first map is an original map without all informa-
tion about the environment. The second map is reality with all
features. The registration wrongly associated matching based on
information only from the first map. 7

2.1 Image describing raytracing update. Yellow elipses represent nor-
mal distributions. Letter R represent robot position and red line
ray tracing line. RCU will be applied to the cell marked A. A
distribution in cell marked with letter B will get updated as unoc-
cupied. Cell C will stay without any update. 15

2.2 Image on the left shows look up table before applying a smoothing
kernel. Image on the right is after application of the kernel. 19

3.1 A diagram of the graph based SLAM on NDT maps 21
3.2 Picture shows a difference between moving window in purple and

NDT map corrected with loop closures in a white color. 23
3.3 Images show the results of the robust D2D-NDT registration. The

red dots represent target scan and the green dots source scan. The
first row shows valid alignment marked with high score.The second
row shows two alignments which were rejected by validation. . . . 28

4.1 Overview of individual parts of architecture and their relationships. 31

5.1 The NDT map generated out of selected datasets with use of
ground truth odometry information. 34

5.2 Comparison of effect of different frequency of frame creation. From
left pictures of 1m, 2m and 4 meter distance between frames. Red
arrows represent odometry edges, green edges are loop closure
edges, black dots represent point cloud of means from each cell
(the wall). Bottom right corner represent the ground truth. 36

5.3 Number of correct and incorrect registrations in score groups . . . 37
5.4 The Map of the room mapped by our NDT aproach, the Hector

mapper and theGmapping.(from up to down) Visualization of our
approach includes visualization of pose graph with red odometric
edges and green loop closure edges. The black spots represent
means of each cell’s normal distribution, which is our wall.The
bottom right picture represents the ground truth. 38

5.5 Map of the corridors mapped by our NDT approach, hector map-
per and Gmapping. Visualization of our approach includes visu-
alization of pose graph with red odometric edges and green loop
closure edges. White spots represent means of each cell’s normal
distribution. The last picture represents the ground truth. 40

47

5.6 Top picture shows portion of map with corridor when incremental
scan matcher may use initial guess from odometry. Bottom picture
shows ambiguous registration in corridor area. 41

48

List of Abbreviations

D2D Distribution to distribution. 16, 17, 20, 22, 25–27

EKF Extended Kallman Filter. 5

GPS Global positioning system. 3

ICP Iterative closest point. 5, 7, 10, 18

IMU Integrated Measurement Unit. 4, 10

KF Kalman filters. 5

MIT Massachusetts Institute of Technology. 33

NDT Normal distributions transform. 3, 6–10, 13–17, 20–27, 30, 31, 33–35, 37,
40, 42, 43, 47

NDT-OM NDT-Occupancy mapping. 6, 8, 14, 20–22, 30, 31, 33

P2D point to distribution. 17, 22

PCL Point Cloud Library. 29–32, 43

PDF probability distribution function. 15, 16, 26, 34

PF Particle filters. 5

RCU Recursive update for covariance. 13, 15, 31, 47

ROS Robot operating system. 3, 8, 9, 29–31, 33, 34, 43

SLAM Simultaneous localization and mapping. 3–11, 17, 20, 21, 30, 33–35, 42,
43

49

List of Attached Files

This is a list of files attached to this work. It is also available online at https:

//github.com/Lukx19/ndt_gslam_attachments.

attachements.zip

docs .. doxygen documentation
experiment length1 ..Data from the experiment 5.3.1 with NDT frame
distance =1

experiment length2 ..Data from the experiment 5.3.1 with NDT frame
distance =2 and 5.3.2

experiment length4 ..Data from the experiment 5.3.1 with NDT frame
distance =4

iterative roomData from the evaluation 5.3.3
ndt gslamThe source code of the ROS package in the apendix A

50

https://github.com/Lukx19/ndt_gslam_attachments
https://github.com/Lukx19/ndt_gslam_attachments

Appendices

51

A. ndt gslam package
documentation

A.1 Overview

This package is used for simultaneous localization and mapping (SLAM) of an
unknown environment. It creates a 2D map of the environment. This package
is possible to use with or without information from odometry. This algorithm
includes fast incremental scan matcher for precise odometry estimation. It also
uses a graph-based representation of robot motion. It gives an advantage in re-
covering robot’s map and position after significant drift or scan matcher’s error.
It provides two maps. The first map is from incremental scan matcher. It repre-
sents only the local area around the robot. It may be used for obstacle avoidance.
The second map has information about the whole environment. Therefore, it is
ideal for planning algorithms.

A.2 Architecture

This package includes three major parts. The first part is iterative scan matcher.
It uses fast registration based on D2D-NDT alignment process. It can register
incoming scans up to 70 Hz. The second part is pose graph holding small mini-
maps inside the nodes. Edges represent relative transformation between two
nodes. The graph also includes loop closure edges. These edges are created by
observing the same place in the map from two different nodes. These loop edges
can correct the map by using g2o graph optimization library.

A.3 Parameter specification

It is important to set up parameters correctly, to get maximum out of this package.
The first parameter is a size of scan matching map. This parameter should be
set based on a range of laser scanner. Window size parameter can be used for
limiting the maximal range of laser scanner.

The second important parameter is a radius of search. This parameter sets
how many nodes in surroundings of the last node will be checked for potential
loop closure. Large radius will increase usage of computational resources.

The third parameter is a minimal distance for loop closure detection. It is
calculated by going backwards over odometry edges in the graph. This process
concatenates traveled distance on each edge. Resulting distance is checked against
this parameter. If it is bellow, the limit node is not checked for loop closures.
The idea behind this is that it is not necessary to check last couple nodes in the
graph because they would not introduce any new information.

52

A.4 ROS API

Subscribed Topics

scan (sensor msgs::LaserScan)
Laser measurements.

odom (nav msgs::Odometry)
Robot’s odometry information. Used if selected subscribe mode == ODOM.

pose (geometry msgs::PoseWithCovarianceStamped)
Robot’s pose estimation. Used if selected subscribe mode == POSE.

Published Topics

map (nav msgs/OccupancyGrid)
Map of the environment.

graph (visualization msgs::MarkerArray)
Visualization of pose graph.

win ndt (ndt gslam::NDTMapMsg)
Incremental scan matchers map.

map pcl (pcl::PointCloud¡pcl::PointXYZ¿)
Point cloud of the map with points representing mean values from NDT cells.

win pcl (pcl::PointCloud¡pcl::PointXYZ¿)
Point cloud of the scan matchers map with points representing mean values
from NDT cells.

Parameters

robot base frame id (string, default: base link)
robot’s base frame name in tf tree.

odom frame id (string, default: odom)
tf frame provided by odometry system.

map frame id (string, default: map)
frame id used in published maps. Algorithm creates tf transformation between
odom frame id and fixed frame id.

subscribe mode (string, default: NON)
three posible options are NON, ODOM and POSE. Based on selection of mode this
node subscribes to correct topic. NON will not subscribe to any topic. ODOM

will subscribe to odom and received odometry will be used in incremental scan
matching. POSE will subscribe to pose and use pose estimate for incremental
scan matching.

scanmatch window radius (double, default: 40)
radius of incremental scan-matcher’s map. Should be in meters.

node gen distance (double, default: 2)
euclidean distance between two consecutive nodes in the pose graph.

loop max distance (double, default: 30)
maximal search radius for loop closure edges detection. Higher values are
computationally more demanding, but can recover map from bigger errors.
Should be in meters.

loop min distance (double, default: 14)

53

selects how many meters from current node may not be detected any loop
closure. Distance is measured by concatenation of previous odometry edges’
transformations. Example: if selected default node gen distance than last 8
nodes in graph will not be tested for loop closures.

loop score threshold (double, default: 0.6)
loop closure rejection threshold. All potential loop closure edges with higher
score than selected will be inserted into the pose graph. Value should be in
range [0,1].

serialize graph (bool, default: true)
turn on or off publishing of the pose graph visualization.

Required tf Transforms

laser frame → robot base frame

This transformation is used for transforming laser scans to robot coordinate
frame.

robot base frame → odom frame

This transformation is necessary for correct calculation of provided tf trans-
form. It is usually provided by odometry system.

Provided tf Transform

map frame → odom frame

Transformation localizing robot inside of calculated map.

54

	Introduction
	NDT SLAM problem analysis
	SLAM problem definition
	SLAM's position estimation categories
	Map representation
	Registration
	Graph-based SLAM on NDT maps

	Used algorithms and key concepts
	Graph-based SLAM
	Pose graph creation
	Loop closure creation
	Optimization

	NDT mapping algorithms
	NDT grid
	NDT-OM extension

	Registration algorithms
	NDT registration
	D2D-NDT registration
	ICP
	Correlative scan registration

	NDT Graph-SLAM overview
	System composition
	Moving window
	NDT frame creation
	Loop closure detection
	Robust D2D-NDT registration
	Adaptation of correlative registration
	Algorithm overview
	Solution validation

	Implementation
	Used libraries
	ROS
	Point Cloud library
	G2O
	Eigen

	Structure of the implementation
	NDTGrid2D
	VoxelGrid2D
	NDTCell
	Registration algorithms

	Evaluation of NDT Graph-SLAM
	MIT dataset details
	ROS SLAM algorithm overview
	The Gmapping
	The Hector SLAM

	NDT Graph-SLAM evaluation
	NDT frame generation frequency
	Robust D2D score threshold
	Iterative room mapping
	Long corridors

	Future works
	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	List of Attached Files
	Appendices
	Appendix ndt_gslam package documentation
	Overview
	Architecture
	Parameter specification
	ROS API

