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Abstract

When there are some influential observations present in a data set (such as

outliers or leverage points), the use of some robust method may be desirable

for being able to draw relevant conclusions from an econometric analysis. In

order to use these methods properly, we need some diagnostic tools. To be

able to derive these tools theoretically, we first need to know the form of the

asymptotic representation of corresponding estimator. This thesis derives the

asymptotic representation of the estimator obtained by the method of least

weighted squares under the assumption of heteroskedastic residuals. The tight-

ness of the estimator and its asymptotic representation under several levels of

contamination is also shown in a simulation study.
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Abstrakt

V př́ıpadě, že se v datasetu vyskytuj́ı hodnoty, které se výrazně lǐśı od většiny

ostatńıch hodnot (jako např́ıklad odlehlá a vlivná pozorováńı), může být vhodné

použ́ıt některou z robustńıch metod, abychom mohli z ekonometrické analýzy

vyvodit relevantńı závěry. Pro správné použit́ı těchto metod potřebujeme di-

agnostické nástroje. Aby bylo možné tyto nástroje teoreticky odvodit, je nutné

znát formu asymptotické reprezentace př́ıslušného odhadu. V této práci je

odvozena asymptotická reprezentace pro odhad źıskaný metodou nejmenš́ıch

vážených čtverc̊u, a to za předpokladu heteroskedastických rezidúı. Těsnost

mezi t́ımto odhadem a jeho asymptotickou reprezentaćı při r̊uzných stupńıch

kontaminace je ukázána také v simulačńı studii.
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Chapter 1

Introduction

Econometric methods are a commonly used tool in economics. Although the

most frequently used methods are the classical ones, it might be desirable to use

also some of the robust methods for an econometric analysis, as the occurence

of at least some influential observations (such as outliers or leverage points) is

rather common in any data set. These influential data points can cause the

results of the classical analysis to be completely misleading, and using some

robust method as a complementary tool might help us to cope with it. To be

able to decide between individual estimation methods and use them properly,

we need some statistical tests and diagnostic tools. Although for the classical

methods, such as ordinary least squares (OLS), the theoretical background and

diagnostic tools are quite well developed, development of the diagnostic tools

for robust methods is still in progress.

As the normal equations of the robust methods are usually not linear, the

derivation of the theoretical tests is not as straightforward as e.g. for OLS. To

be able to derive them, we need to know the asymptotic representation of corre-

sponding robust estimator. This thesis derives the asymptotic representation of

an estimator obtained by the method of least weighted squares (LWS) under the

assumption of heteroskedastic residuals. The asymptotic representation of LWS

estimator was previously derived under the assumption of homoskedasticity,

see Vı́̌sek (2002b) and Vı́̌sek (2015). However, the assumption of homoskedas-

ticity is often not satisfied and therefore it seems desirable to generalize this

result for the heteroskedastic case. This thesis generalizes the result obtained

in Vı́̌sek (2015).

Notice that as compared to the original proposal this thesis does not con-

tain the specification test. This is because the attempt to derive the asymptotic
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representation using a combination of the asymptotic linearity of normal equa-

tions and the convergence of empirical distribution function was not successful

yet under some reasonable assumptions. We did succeed in deriving the asymp-

totic representation under heteroskedasticity, however, the method used here is

somewhat more complicated and extensive than expected. Therefore deriving

the specification test based on the result in this thesis is left for future research.

Except for the Introduction, the thesis includes four other chapters. As

robust methods are not a very commonly studied topic, Chapter 2 provides

an overwiev of these methods, including motivation, and introducing the in-

finitesimal approach and the methods based on this approach - least median of

squares, least trimmed squares and of course the method of LWS. In Chapter 3

there is the main result of the thesis, i.e. after summarizing the previous results

and establishing some necessary assumptions and tools, the asymptotic repre-

sentation of LWS estimator is derived under the assumption of heteroskedastic

residuals. For clarity, the derivation is divided into proving several lemmas sep-

arately and the main result is stated in Theorem 3.1 in the end of the chapter.

Chapter 4 provides results of a simulation study, where the tightness of the LWS

estimator and the derived asymptotic representation is examined. The results

are provided for several levels of contamination by both outliers and leverage

points, and under the assumption of homoskedastic, as well as heteroskedastic

residuals. Chapter 5 concludes.

All the figures in Chapter 2 were obtained using R. The numerical study in

Chapter 4 is based on Monte Carlo method and all the results were obtained

using MATLAB.



Chapter 2

Overview of robust methods

When doing any regression analysis, there are many assumptions that need

to be satisfied in order for the estimation methods to work in the required

way. One of the assumptions that is usually assumed to hold is normality of

disturbances. However, it is quite common that this assumption is broken.

Although the assumption of asymptotic normality is often sufficient due to

the central limit theorem (CLT), there may be situations, where the deviations

from normality in form of some outlying values cause the resulting estimates to

be highly inefficient or completely misleading (it can indicate even e.g. wrong

sign of the estimate of coefficient of an explanatory variable, different from an

intuitively assumed or usually obtained one in similar models). The problem

with these influential values can be overcome by robust methods.

This chapter is divided into four sections. The first section contains more

on motivation for robust methods and introduces the first attempts to make

robust estimators. The second section is devoted to the Hampel´s infinitesimal

approach, which forms the basis for the method of least weighted squares in-

troduced in the third section. The fourth section then presents, how the LWS

can be generalized to panel data.

The core literature used in this chapter is Hampel et al. (1986), Rousseeuw

& Leroy (1987) and Vı́̌sek (2000b). Throughout the thesis, knowledge of the

basic econometrics concepts and terms is assumed. To read more about the

basics see e.g. Greene (2012) or Wooldridge (2009).
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2.1 Motivation and beginnings

Already in the 1920s, Fisher (1920) started the research on comparing esti-

mation methods based on efficiency. Specifically, he showed that under the

assumption of exact normality the standard deviation has higher asymptotic

efficiency than the mean deviation (there is 12% efficiency gain).1

Even Fisher (1922) already considered data contamination and according to

his paper the classical estimation methods are reliable only within a system of

Pearsonian curves. He also showed that the efficiency decreases rather quickly

when the data are contaminated by comparing the asymptotic efficiency of

the arithmetic mean and variance estimators for normal distribution with cor-

responding estimators for t-distributions with various degrees of freedom. It

appears that already for t3 there is 50% loss of asymptotic efficiency for the es-

timator of the mean and 100% loss for the estimator of variance.2 Although the

data are usually not contaminated in a way that corresponds to t-distribution,

further research supports also the idea of rather high efficiency losses when

applying classical methods to contaminated real data - see Jeffreys (1961) or

Tukey (1960).

The data contamination that requires the use of robust methods can have

the form of outliers or leverage points. Outlier is an observation, which has

the value of the explanatory variable inside a bulk of data, but the value of the

response variable lies far away from the values of other observations. On the

contrary, leverage point is an observation, which has the value of the response

variable inside a bulk of data, but the value of the explanatory variable lies

far away from the values of other observations. Moreover, we can distinguish

between so called good and bad leverage points, where although the value of

an explanatory variable of a good leverage point lies outside the bulk of data,

it does not influence the regression line.

For a simple regression, it is not difficult to detect the influential observa-

tions (e.g. graphically), as can be seen in Figure 2.1 and Figure 2.2 (the shift to

outlying values is indicated in parts (b) of both figures). The figures also show

the effect of these influential observations on a classical estimation method,

such as ordinary least squares. Although in a simple regression like this the

1Where standard (sn) and mean (dn) deviations can be computed by following formulas:

sn =
√

1
n

∑n
i=1(xi − x̄)2 and dn = π

2n

∑n
i=1 |xi − x̄|.

2The asymptotic efficiency of corresponding estimators can be computed as 1− 6
ν(ν+1) for

the mean and as 1− 12
ν(ν+1) for the variance (where ν is the number of degrees of freedom).
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outlying values could be easily detected and treated, in a multiple regression

the detection is much more complicated. That is where we need some theo-

retical background for the detection of influential values, such as the robust

methods.

Figure 2.1: Outlier

1 2 3 4 5

0
1

2
3

4
5

(a)

explanatory variable

re
sp

on
se

 v
ar

ia
bl

e

OLS

1 2 3 4 5

0
1

2
3

4
5

(b)

explanatory variable

re
sp

on
se

 v
ar

ia
bl

e

OLS

Source: author’s computations (based on Rousseeuw & Leroy (1987)).

Figure 2.2: Leverage point
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For completeness and comparison to the robust estimators defined later, let

us recall the definition of OLS estimator. We consider the standard regression
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model:

y = Xβ + u,

where y ∈ Rn represents the response variable, X ∈M(n× (k + 1)) represents

the explanatory variables, u ∈ Rn is the disturbance term and β ∈ Rk+1 is the

vector of coefficients to be estimated.

Definition 2.1 (OLS estimator). The OLS estimator is defined as:

β̂
OLS

= argmin
β

r′r = argmin
β

(y −Xβ)′(y −Xβ),

where r, r(β) = (y −Xβ), is the vector of residuals.

It is important to note that the robust methods should not necessarily be

used instead of the classical methods, but rather as a complementary tool. In

case that there are no outlying values, the classical methods are more efficient

as compared to the robust ones. However, it is quite common that there are at

least some outliers in a data set, and it is easier to detect them by using the

robust methods than by the classical ones. Therefore to avoid the completely

misleading results in case that some outliers are present, we need to use at least

some robust method. Nevertheless, to achieve as high efficiency as possible, we

need a ”good” robust method. Since the 1960s, several researchers tried to find

the best one.

The first person who considered contamination of data after Fisher and tried

to develop some theoretical framework to deal with it was Tukey (1960), see also

Huber (1981). He worked with parametric model - however, following Fisher´s

idea he considered a certain neighbourhood of an ideal model (exact normal

distribution), which contains also the outliers. More specifically, he allowed

for an ε-proportion of ”bad” observations, resulting in following underlying

distribution:

F (x) = (1− ε)Φ(x) + εΦ
(x
σ

)
,

where Φ stands for the standard normal distribution function and σ > 0 for the

standard deviation. When allowing for deviations in this way, it follows from

the asymptotic relative efficiency (ARE)3 that already for very small proportion

of outlying values (ε = 0.0018), the asymptotic efficiency of the mean deviation

is higher relative to the standard deviation.

3ARE(ε) = limn→∞
V ar(sn)
V ar(dn)

.E
2(dn)

E2(sn)
.
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Based on these results, there has been developed an extensive theory of ro-

bustness. This theory includes 3 main approaches - 2 approaches developed by

Huber and Hampel´s infinitesimal approach based on influence functions. This

theory can be applied also to non-parametric models or to parametric models

with various underlying distributions - however, as was mentioned before, for

the usual statistical inference the commonly used underlying distribution is the

normal distribution.

The first approach proposed by Huber (1964) is the minmax approach,

which attempts to minimize the maximal asymptotic variance (this may be

useful when the number of observations is rather high and the average number

of outliers is rather small). In this approach, the underlying distribution has

following form:

F (x) = (1− ε)Φ(x) + εH(x)

which is a generalized version of the model proposed by Tukey (ε is again

the percentage of contamination and Φ is the standard normal distribution

function). However, the unknown contaminating distribution H allows for

more general form of outliers. Although the estimators from this model are

not uniquely determined, this obstacle can be controlled for by imposing fur-

ther restrictions - e.g. for uniquely determined parameter of location it is

sufficient if H is symmetric about 0. In the same paper Huber proposed the

M-estimator (maximum-likelihood-like estimator), which uses a suitable non-

constant function ρ instead of the logarithm of density function (as it is for

maximum-likelihood estimator).

Definition 2.2 (M-estimator). The M-estimator is defined as:

β̂
M

= argmin
β

ρ(y −Xβ).

The M-estimators have quite pleasant properties, however, they lack the

property of scale and regression equivariance. Therefore one needs to stan-

dardize the residuals in order to obtain an equivariant estimator. The robust

estimators proposed later (based on the infinitessimal approach) are scale and

regression equivariant even without standardization.

Although it is well mathematically developed, the second approach pro-

posed by Huber (Huber & Strassen 1973) is not very commonly used in ap-

plications, since there is no general procedure how to use it. This approach

is based on even more general neighbourhoods of normal distribution. To de-
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scribe these neighbourhoods Huber used a special type of probabilities (called

Choquet-capacities).

Before moving on to the infinitesimal approach, let us discuss some reasons,

why outliers and leverage points appear in data. According to Hampel et al.

(1986) there are four main reasons why the data deviate from strict parametric

model - gross errors, rounding and grouping, approximate model, approximate

fulfilment of the independence assumption.

The deviations in form of gross errors are usually considered the most dan-

gerous for a regression analysis. They can be caused e.g. by measurement

or typing errors and may have completely misleading values. This kind of

deviation therefore brings more problems than deviations caused by random

variability and can affect the resulting estimators the most, when untreated.

Nevertheless, the presence of gross errors is quite a common phenomenon, which

indicates the need of robust methods.

The deviations in form of rounding and grouping are considerably less prob-

lematic and it is often possible to neglect them without serious consequences.

However, it can happen that also these deviations play an important role and

therefore should not be completely ignored. They are important e.g. in case

of very coarse classification (cannot be well approximated by a continuous dis-

tribution) or in case of superefficiency (infinite Fisher information). As we will

see later, the problem with rounding and grouping can be detected by one of

the properties of influence function (local-shift sensitivity).

When the model is only approximately normal, there still are some devia-

tions, although they are not as obvious and dangerous as e.g. the gross errors.

It was empirically found that these high-quality data are usually distributed

according to a distribution that has longer tails than the normal distribution,

see e.g. Romanowski (1970) for some examples. As the length of tails is cor-

related with the level of serial correlation (Jeffreys 1961), the distributional

assumption might cause the statistical inference to be invalid. Similar conse-

quences has also the approximate fulfilment of independence assumption (if the

assumption is broken, we need to deal with serial correlation).

The aim of robust statistics then is to deal with these deviations - i.e. to

find the outliers and leverage points, describe the structure of data and deal

with unsuspected serial correlation.
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2.2 Infinitesimal approach

The Hampel’s (1968) approach links together 3 important robustness concepts:

qualitative robustness, the influence function (utilizing the infinitesimal cal-

culus) and the breakdown point. The qualitative robustness is a rather weak

but necessary condition, which is not unique for this approach. Although the

breakdown point is a general feature of robust methods as well, the influence

function is the key notion of Hampel´s approach. The properties of robust

estimators defined by means of influence function are very useful for treating

contaminated data. Also other statisticians proposed several estimators based

on Hampel´s approach.

The approach stands on the idea that many statistics are dependent only

on the empirical distribution function (EDF). Prior to introducing the features

of this approach itself, let us introduce the necessary notation. The EDF is

defined as:

Fn,ω(z) =
1

n

n∑
i=1

I{Zi(ω)≤z}(ω),

where {Zi(ω)}ni=1, ω ∈ Ω, is a sequence of independent and identically dis-

tributed (iid) random variables defined on a probability space (Ω,A, P ) and

IM(ω) is an indicator of the set M defined as:

IM(ω) =

1 if ω ∈M

0 if ω /∈M.

We can then consider many estimators as a functional of EDF (i.e. β̂ = T (Fn),

where β̂ is the estimator of interest and T (Fn) is the functional T of an EDF

Fn), which inspires the idea to use derivatives in order to study properties of

that estimator.

Now we can move to the definitions of influence function and properties of

estimators derived from it that are crucial for the infinitesimal approach. These

definitions can be found in Hampel et al. (1986).

Definition 2.3 (Influence function). The influence function of the functional T

for the distribution F and at the point z is given by:

IF (z;T, F ) = lim
t→0

T ((1− t)F + t∆z)− T (F )

t

in those z, where the limit exists.
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The influence function measures the influence on corresponding estimate,

when we add an observation at point z. Note that

T (Fn) = T (F ) +
1

n

n∑
i=1

IF (zi;T, F ).

Realizing this will be useful for the interpretation of the following properties of

the influence function.

Alternatively, the influence function also has a heuristic interpretation.

Specifically, it measures the asymptotic bias that arises due to the data con-

tamination, i.e. it helps us to find the effect that an infinitesimal contamination

at z has on the estimates.

To find the effect of contamination we use 3 following properties defined

using the influence function. The most important one is the gross-error sensi-

tivity, which is usually used as the first criterion when trying to robustify any

estimator.

Definition 2.4 (Gross-error sensitivity). The gross-error sensitivity of the func-

tional T for the distribution F is defined as:

γ∗ = sup
z∈R
|IF (z;T, F )|,

where the supremum is in fact taken over all z, where the influence function

exists.

The gross-error sensitivity is defined as a supremum of an absolute value

of the influence function. It follows that it describes the maximal effect on an

estimator that can be caused by the infinitesimal contamination. The require-

ment for γ∗ is to be finite. When we put an upper bound on γ∗, we assure that

the asymptotic bias of the estimator is bounded.

Another requirement on the properties of robust estimators is as small local-

shift sensitivity as possible.

Definition 2.5 (Local-shift sensitivity). The local-shift sensitivity is defined as:

λ∗ = sup
z,y∈R

|IF (z;T, F )− IF (y;T, F )|
|z − y|

for all z 6= y, where the influence functions exist.

The local-shift sensitivity is a measure of an effect of shifting one observa-
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tion (from z to y). Therefore it measures the maximal effect of infinitesimal

fluctuations within the data. These fluctuations (e.g. caused by rounding and

grouping as mentioned before) will be present in any data that are not contin-

uous - and by the means of λ∗ it is possible to find, whether these fluctuations

cause the estimates to be invalid. Such a discontinuity and consequently the

fluctuations occur e.g. when data are measured by a digital device and we can-

not (with probability equal to 1) measure the true value, so instead we measure

the value nearest to it that is obtainable by the device.

Another desirable property is a finite rejection point.

Definition 2.6 (Rejection point). The rejection point is defined as:

ρ∗ = inf
r∈R
{r > 0; IF (z;T, F ) = 0 when |z| > r}

for F symmetric about 0.4

The idea of rejection of outliers is one of the first robust methods. Even

without the mathematical framework and only with subjective rejection, this

can bring some efficiency gain when the data are contaminated. However,

sometimes it is not possible to detect the outliers without the mathematical

framework. This definition suggests that after reaching certain boundary (r),

the influence function is constantly 0 and the points behind this boundary are

therefore rejected. If r satisfying the stated condition does not exist, then

ρ∗ =∞ by definition of infimum.

For illustration, the influence function and its properties can be depicted as

in Figure 2.3.

Figure 2.3: Influence function

Source: author’s computations (based on Hampel et al. (1986)).

4Notice that some weaker assumpotion about F might be sufficient here, such as
median(F ) = 0.
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Additional to the influence function, Hampel´s approach uses another im-

portant robustness concept, which is called the breakdown point. It was first

introduced by Hodges (1967) and later generalized by Hampel (1971). How-

ever, the general definition requires rather deep mathematical knowledge and a

more straightforward finite sample version of this definition can be considered

instead (Donoho & Huber 1983). Slightly adjusted version of this definition

looks as follows (see Hampel et al. 1986).

Definition 2.7 (Breakdown point). The finite sample breakdown point ε∗n of the

estimator Tn at the sample (x1, ..., xn) is given by:

ε∗n =
1

n
max{m; max

iq
sup
yq

|Tn(z1, ..., zn)| <∞}, q = 1, ...,m,

where m is the number of outliers and (z1, ..., zn) are the contaminated data

obtained by replacing (xi1 , ..., xim) by arbitrary values (y1, ..., ym).

This finite sample definition is equivalent to the general definition for pa-

rameters of location. For the parameters of scale we need to impose an addi-

tional assumption, so that we ensure that the estimator does not break down:

min
iq

inf
yq
|Tn(z1, ..., zn)| > 0. It also may be desirable to consider the asymp-

totic breakdown point ε̂∗ = limn→∞ ε
∗
n, since the resulting ε∗n may depend on

(z1, ..., zn).

Intuitively, the breakdown point has a very straightforward meaning. It

is the minimal percentage of contamination within the data that causes the

estimator to break down. For example OLS cannot cope even with one outlier

(if it is far enough from the bulk of data), therefore the breakdown point is
1
n
. With increasing sample size n → ∞ we arrive at ε̂∗ = 0%. The robust

methods can cope with some level of contamination, the maximal possible

breakdown point is 50%. However, the modern robust methods do not aim for

the breakdown point as high as possible any more, since the modern algorithms

allow to adjust the level of robustness to the level of contamination present in

the particular data set.

In terms of breakdown point, the first method to achieve the desirable value,

i.e. 50%, was the method of repeated median, where Siegel (1982) tried to use

the fact that as compared to mean with 0%, median has breakdown point

50%. Although this estimator has the desirable properties, the algorithm is

too complicated to be used in practice. However, it led also other researchers

to employing the median in the robust estimation procedures and played an
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important role in development of other robust methods.

The later commonly used robust methods based on the infinitesimal ap-

proach were proposed by Rousseeuw (1984) and Hampel et al. (1986), fur-

ther studied in Rousseeuw & Leroy (1987). These are the least median of

squares (LMS) and the least trimmed squares (LTS).

The original LMS estimator was obtained by minimizing the median of

squared residuals. The later definition uses the order statistics (although there

is no median in the latter definition, the name remained the same). Let r2
(i)(β)

be the order statistic of the i-th squared residual, i.e.

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β).

Then the LMS estimator is defined as follows.

Definition 2.8 (LMS estimator). The LMS estimator is defined as:

β̂
(LMS,n,h)

= argmin
β∈Rp

r2
(h)(β),

where h ∈ R, n
2
≤ h ≤ n.

Asymptotically, this estimator has a 50% breakdown point, which can be

computed as
n−p
2

+1

n
, where p is the number of parameters to estimate (the

maximal value of breakdown point is achieved for h = n
2

+ p+1
2

). The LMS

estimator also has other desirable properties, including scale and regression

equivariance. However, there is one disadvantage in using this estimator in form

of slow convergence. It is only 3
√
n-consistent, i.e. we need more observations

for the estimator to converge to the true value. As a consequence, the LMS

estimator is less efficient than
√
n-consistent estimators.

To prevent this loss of efficiency, one can use a one-step M-estimator after

obtaining the LMS estimator. Another way how to obtain a
√
n-consistent

estimator is the LTS estimation procedure.

Definition 2.9 (LTS estimator). The LTS estimator is defined as:

β̂
(LTS,n,h)

= argmin
β∈Rp

h∑
i=1

r2
(i)(β),

where h ∈ R, n
2
≤ h ≤ n.

The LTS estimator has all the desirable properties as LMS estimator, the
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breakdown point is also the same. But as compared to LMS, the LTS estimator

converges quicker and therefore we can avoid the loss in efficiency (for proof

of consistency and other properties of LMS and LTS see Rousseeuw & Leroy

(1987)). It is also easy to note that an LTS estimator is in fact an OLS esti-

mator, which takes into account only h observations with the smallest squared

residuals. This means that the problematic observations furthest away from

the regression line are not considered. As will be discussed in the next section,

the complete omission of these observations might cause problems (in terms of

local-shift sensitivity).

2.3 Least weighted squares

As was discussed in the last section, the robust methods based on the infinitesi-

mal approach provide us with estimators that satisfy the expected requirements

(specifically, LMS or LTS estimators). However, it can happen that the estimates

resulting from these methods differ from each other, which is very unsettling

considering that both estimators are consistent. This diversity of estimates can

be illustrated on real data or on academic example, but it can also be formal-

ized. See e.g. Vı́̌sek (2000a) to see that it is possible that LMS and LTS result

in completely different estimators (the regression lines can even be orthogonal

to each other).

Another issue, which one should be aware of, is the high local-shift sensi-

tivity of LMS and LTS. This can be seen on an example in Figure 2.4, where

shifting just one observation changes the sign of resulting estimate.

To deal with these issues, Vı́̌sek (2000b) proposed the least weighted squares

estimation method.

Definition 2.10 (LWS estimator). The LWS estimator is defined as:

β̂
(LWS,n,w)

= argmin
β∈Rp

n∑
i=1

w

(
i− 1

n

)
r2

(i)(β),

where w(i) is the weight function.

We can see that the method of least weighted squares also uses the order

statistics rather than the squared residuals directly. The main difference as

compared to the other methods is the weight function. Due to this function

LWS does not work only with the h observations as LTS but uses all of them
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Figure 2.4: Local-shift sensitivity of robust estimators
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Source: author’s computations (based on Vı́̌sek (2000b)).

instead (which increases the efficiency if some of the not used data in LTS

are not contaminated). Moreover, it allows us to assign also different weights

than just 0/1 weights, which decreases the local shift sensitivity. It is also worth

mentioning that as compared to the weighted least squares (WLS) estimator the

weights in LWS are assigned implicitly by the method itself. On the contrary, to

obtain the WLS estimator, we need to assign the weights explicitly (employing

some external rule, frequently based on the ”topology” of data). Before stating

the definition of the weight function, let us for comparison and future reference

recall the definition of a WLS estimator.

Definition 2.11 (WLS estimator). The WLS estimator is defined as:

β̂
(WLS,n,w)

= argmin
β∈Rp

n∑
i=1

wir
2
i (β),

where wi are the weights assigned to the squared residuals.

Definition 2.12 (Weight function). The weight function w(i), w : [0; 1] → [0; 1],

is absolutely continuous and non-increasing, w(0) = 1 and its derivative is

bounded below by L ∈ R.

In fact, the LWS estimator is a generalization of the methods mentioned

above, which indicates that it has their desirable properties. We can obtain

those estimators (LMS, LTS and even OLS) by appropriately selecting the weights
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(for details see e.g. Vı́̌sek (2011a)). It follows that an LWS estimator is scale

and regression equivariant and can attain 50% breakdown point (however, the

method of LWS allows for adjusting the level of robustness to the level of con-

tamination of corresponding data set, as is required by the modern robust

methods).

An important feature of any estimator is consistency (as was mentioned

above, ideal is
√
n-consistency). As was shown in Vı́̌sek (2011a), under a certain

set of assumptions the LWS estimator is weakly consistent. Another advantage

of LWS estimator, important for our purposes, is its applicability to panel data

(specifically, by the means of LWS, we can robustify the estimators resulting

from a regression model with the fixed and random effects).

Prior to introducing the generalization of LWS to panel data, let us remind

the algorithm that gives us the LWS estimator, and will be used later in the

simulation study (Vı́̌sek 2012a).

(i) Let us have n observations. Select randomly p + 1 out of these n obser-

vations and run a regression in order to find a regression plane.

(ii) Find the squared residuals of all the n observations with respect to the

regression plane obtained in (i).

(iii) Order the squared residuals from (ii) by size, which gives us the order

statistics of the squared residuals. Sum the weighted obtained order

statistics as
∑n

i=1w(i)r2
(i)(β) and denote this sum S(β̂current).

(iv) Compare S(β̂current) to the sum that was obtained in the previous cycle,

S(β̂former)
5.

• If S(β̂current) < S(β̂former), continue with (v).

• If S(β̂current) ≥ S(β̂former), continue with (vi).

(v) Denote the current value of the sum of weighted ordered squared residuals

as the former value, i.e. put S(β̂former) = S(β̂current) and compute the new

value of S(β̂current) by finding β̂(WLS,n,w) for the dataset that we obtained

in (iii) by reordering the original data, evaluating the squared residuals

and repeating step (iii); then continue again with step (iv).

(vi) Consider t ∈ N.

5Set the initial value of S(β̂former) that we compare S(β̂current) to in the first cycle to

S(β̂former) =∞.
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• If the same estimates were obtained t-times, continue with (viii).

• If not, continue with (vii).

(vii) Consider v ∈ N.

• If the cycle was iterated v-times, continue with (viii).

• If not, repeat the whole procedure by going back to (i).

(viii) Take the last obtained β̂current as β̂(LWS,n,w).

Defining v ∈ N in the last step is important for the process to end at some

point with certainty, as it may happen that we cannot find the same estimates t-

times, even after many iterations. As the threshold numbers t and v, we should

choose some reasonable values to make the estimator reliable, e.g. t = 20 and

v = 10000.

2.4 LWS for panel data

Although there have been some attempts to robustify some of the panel data

methods, robust estimation methods for data with panel structure have not

been widely studied. Because of the advantages of LWS mentioned before and

because of its applicability to panel data, this section explains, how the methods

of fixed and random effects can be robustified utilizing the LWS (Vı́̌sek 2012b).

To learn about some of the other attempts using other methods (in this case

LTS), see e.g. Bramati & Croux (2007).

Before starting to explain the robust version, let us recall the panel data

model and classical fixed and random effects estimation methods. The corre-

sponding regression model looks as follows:

yit = β0 +
k∑
j=1

βjxitj + ai + uit,

where i = 1, ..., n represents the individual dimension and t = 1, ..., T repre-

sents the time dimension. The matrix notation is no longer used for clarity

(larger number of dimensions). Except for the time dimension and the unob-

served heterogeneity ai, the model is analogical to the one for cross-sections.

The unobserved heterogeneity is the reason, why we need to treat the data

with panel structure differently, using some special methods: if ai is correlated
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with the explanatory variables, the OLS estimator is inconsistent; if there is no

correlation, the OLS estimator is consistent, but we still need to deal with inef-

ficiency caused by autocorrelation of the composite errors vit,vit = ai+uit. The

most commonly used methods to deal with panel data are fixed effects (FE) for

the case of correlation (Cov(xitj, ai) 6= 0) and random effects (RE) for the case

of no correlation (Cov(xitj, ai) = 0).

The method of FE demeans the data and estimates the demeaned regression

equation (by the means of OLS), where ai no longer appears since it is time

invariant. In mathematical terms, we estimate:

yit − ȳi =
k∑
j=1

βj(xitj − x̄ij) + uit − ūi,

where ȳi =
∑T
t=1 yit
T

, x̄ij =
∑T
t=1 xitj
T

and ūi =
∑T
t=1 uit
T

.

The method of RE subtracts only a proportion of the mean that causes the

inefficiency, otherwise the procedure is the same. Specifically, a λ-proportion of

the mean is subtracted, where λ = 1− σu√
σ2
u+Tσ2

a

and σ2
u and σ2

a are the variances

of uit and ai, respectively (these variances usually need to be estimated and

therefore in practice the exact value of λ is mostly not known and we use the

estimate λ̂). Then we estimate:

yit − λ̂ȳi = β0(1− λ̂) +
k∑
j=1

βj(xitj − λ̂x̄ij) + vit − λ̂v̄i.

If a certain set of assumptions is satisfied, both FE and RE estimators are

consistent and under the assumption of normality of disturbances also efficient.

For details see again Greene (2012) or Wooldridge (2009).

To be able to generalize LWS estimator to the panel data, we first need to

redefine the order statistics of the squared residuals, since the total number of

observations is nT and not n as it was in the cross-section case. Therefore we

have nT squared residuals and we obtain:

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(nT )(β).

It follows that we have to slightly adjust the definition of the LWS estimator

for the different number of observations.

Definition 2.13 (LWS estimator for panel data). The LWS estimator for panel data
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is defined as:

β̂
(LWS,n,T,w)

= argmin
β∈Rp

nT∑
i=1

w

(
i− 1

nT

)
r2

(i)(β),

where w(i) is the weight function, defined in the same way as before.

Note that this generalized estimator inherits most of the desirable properties

from the cross-sectional LWS estimator, such as equivariance, high efficiency or

adjustable breakdown point. It can also be shown that this estimator is again

weakly consistent (just by reformulation of the proof for cross-sectional case,

see Vı́̌sek (2012b)). We can also arrive at OLS, LMS or LTS estimators by setting

appropriate weights, just as before.

It remains to explain, how the LWS method can be used to robustify FE and

RE estimators. The estimation procedure is similar to the classical one, but

we need to use some robust methods in the process. For the fixed effects, we

do the same demeaning transformation as was mentioned above, but we use a

robust estimator of the subtracted mean, which is estimated by the means of

LWS. After we obtain this demeaned equation, we estimate it by the means of

LWS in order to obtain the fixed weighted effects (FWE) estimator.

In case of RE the procedure is similar, but we need to use a robust estimator

of λ in the transformation. This robust estimator can be obtained by using LWS

for estimation of σ2
u and σ2

a and applying the formula for λ stated above. When

estimating the transformed equation by the means of LWS, we arrive at the

random weighted effects (RWE) estimator.

Since the method of LWS, as well as the methods of fixed and random ef-

fects, result in a consistent estimator, it follows that the resulting FWE and

RWE estimators are also consistent. Moreover, as follows from previous simula-

tion studies, there is a significant gain in efficiency when using FWE and RWE

estimators over their classical versions. Although when the contamination is

high, the LWS method, which ignores the panel structure of the data, gives

more reliable results than FWE or RWE (used appropriately according to the

correlation between unobserved heterogeneity and explanatory variables), for

the level of contamination up to around 10%, the FWE and RWE estimators are

more efficient.

It can be concluded that in case of (even an infinitesimal) contamination,

these robust methods for panel data using LWS give better results than the

classical ones. However, one still needs to be careful about the choice of the
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weight function. If we have an idea about the level of contamination, then we

can assign the weights appropriately (0 weights for the percentage of data that

is contaminated with certainty). The problem can arise when the contaminated

data are assigned a weight 1 (but there also are efficiency losses when too many

of the non-contaminated data are assigned 0).



Chapter 3

Asymptotic representation of LWS

As the normal equations of the method of least weighted squares are not lin-

ear as e.g. the normal equations of OLS, performing some diagnostic tools is

not as straightforward. Therefore to be able to derive some tests theoretically

(e.g. the Hausman test), we first need to derive the asymptotic representa-

tion of the corresponding estimator. The main goal of this thesis is to derive

this asymptotic representation for LWS estimator under the assumption of het-

eroskedasticity of residuals. The derivation is mainly based on Vı́̌sek (2015)

and generalized for heteroskedastic residuals.

Note that the asymptotic representation is derived for cross-sections. How-

ever, the representation for pooled LWS would be done analogically and we

would obtain the same result (where the total number of observations would

be nT instead of n). It is also worth noticing that based on the simulation

studies, the pooled LWS is the safest choice when we do not have an exact idea

about the level of contamination. Nevertheless, the result derived in this thesis

could be used to derive the asymptotic representation also for FWE and RWE

in future research.

3.1 Previous research and necessary tools

The asymptotic representation of LWS estimator was previously derived under

the assumption of homoskedastic residuals, for both non-random and random

carriers. First derivation can be found in Vı́̌sek (2002a) and Vı́̌sek (2002b),

where the case of non-random carriers is considered and the asymptotic repre-

sentation is derived using the asymptotic linearity of normal equations.

Further research about the convergence of empirical distribution function
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(Vı́̌sek 2011b) showed another way, how the asymptotic representation can be

derived. The second derivation that uses this convergence of EDF can be found

in Vı́̌sek (2015). As compared to the result in Vı́̌sek (2002b), where the esti-

mator must lie in a compact set κ ⊂ Rp, this second derivation generalizes the

result to random carriers (which is a commonly considered framework nowa-

days) and allows to carry out the minimization problem over the whole space,

i.e. for β ∈ Rp.

Although in Vı́̌sek (2015) the result is also derived under the assumption of

homoskedastic residuals, the convergence of EDF, as shown in Vı́̌sek (2011b),

holds also under the assumption of heteroskedasticity. Moreover, based on

that result, we can also show that the consistency and
√
n-consistency of LWS

estimator also holds for a model with heteroskedastic residuals as was shown

in Vı́̌sek (2011a) and Vı́̌sek (2010). These reults therefore allow to generalize

the derivation in Vı́̌sek (2015) for the case of heteroskedastic residuals, which

is shown in the next section.

Note that combining the asymptotic linearity of normal equations and the

convergence of EDF might offer an alternative (and possibly more straightfor-

ward) way to derive the asymptotic representation of LWS under heteroskedas-

ticity. However, so far we were not able to derive the result without some rather

restrictive assumptions.

Before moving on to the derivation itself, let us state the necessary condi-

tions and recall the main results about the (
√
n-)consistency, as we will need

them later. To be able to show the (
√
n-)consistency and derive the asymptotic

representation we need following assumptions.

Assumptions 3.1. Let us assume that {(V ′i , ui)′}∞i=1 is a sequence of independent

p-dimensional random variables with absolutely continuous distribution func-

tions FV,ui(v, r) = FV (v)Fui(r), v ∈ Rp−1, r ∈ R, where Fui(r) = Fu(rσ
−1
i ),

E(ui) = 0, V ar(ui) = σ2
i and 0 < a = lim inf

i→∞
σi ≤ lim sup

i→∞
σi = b < ∞.

Further, denote the densities of FV (v) and Fui(r) by fV (v) and fui(r) respec-

tively, where fui(r) = fu(rσ
−1
i )σ−1

i , and the densities fV (v) and fu(r) are

bounded by some constants BV < ∞ and Bu < ∞. Moreover, E(V1) = 0,

E(V1 · V ′1) is positive definite, and there is q > 1 such that E(||V1||2q) < ∞
(note that {Vi}∞i=1 is a sequence of iid random variables since the distribution

function FV (v) does not depend on i). Finally, consider {(X ′i, ui)′}
∞
i=1 where

we put Xi1 = 1 and Xij = Vi,j−1, j = 2, 3, ..., p for all i ∈ N . Then we can

denote FX,ui(x, r) = FX(x)Fui(r) the distribution function of (X ′1, ui)
′.
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Note that from the construction of the variables X and V follows that we

can write the regression model as:

Yi = X ′iβ
0 + ui =

p∑
j=1

Xijβ
0
j + ui = β0

1 +

p∑
j=2

Vij−1β
0
j + ui,

where we denote the true value of the β-coefficients by β0. Throughout the

derivation in the next section, we will assume without loss of generality (WLOG)

that β0 = 0 to simplify the procedure. However, at certain points we will write

β − β0 to obtain the results in their usual form.

Further notice that the assumption E(V1) = 0 is also WLOG. Otherwise we

could consider the demeaned value Ṽi = Vi −E(Vi) together with the adjusted

value of β0. Moreover, let {ũi}∞i=1 be a sequence of iid random variables. Then

the sequence {ui}∞i=1, where ui = ũi · σi, can satisfy the Assumptions 3.1.

The estimator β̂(LWS,n,w) can be found as a solution of the normal equation

that can be derived as in Vı́̌sek (2011a). We can consider the definition of

LWS estimator in Definition 2.10, where (following Hájek & Šidák (1967)) we

can put π(β, i) = j, j ∈ (1, ..., n) ⇔ r2
i (β) = r2

(j)(β). Then we can write the

definition in following form:

β̂
(LWS,n,w)

= argmin
β∈Rp

n∑
i=1

w

(
π(β, i)− 1

n

)
r2
i (β).

Moreover, let us denote the EDF of the absolute value of the residuals by F
(n)
β (r),

so that we arrive at1

F
(n)
β (r) =

1

n

n∑
j=1

I{|rj(β)|<r} =
1

n

n∑
j=1

I{|uj−X′jβ|<r} =

=
1

n

n∑
j=1

I{ω∈Ω: |uj(ω)−X′j(ω)β|<r}. (3.1)

It is important to realize that the order statistic of the absolute value of

residuals assigns to an observation the same rank as the order statistic of

squared residuals. Then we can write

π(β, i)− 1

n
= F

(n)
β (|ri(β)|) . (3.2)

1It may seem somewhat unusual to speak about the EDF when we consider variables that
are not iid. However, it can make sense as we will see later in the next section.
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Considering also the equivalence of the WLS and LWS estimator for appropriate

permutation, we can write the normal equations as follows:

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Xi(Yi −X ′iβ) = 0. (3.3)

Analogically to the EDF of the absolute value of the residuals, let us denote

the theoretical distribution function of the absolute value of the residuals by

Fi,β(v) = P (|ri(β)| < v). (3.4)

Then the mean distribution function can be defined as:

F̄n,β(v) =
1

n

n∑
i=1

Fi,β(v). (3.5)

In addition to the Definition 2.12 we need some more assumptions on the

weight function.

Assumptions 3.2. The weight function w as defined in Definition 2.12 is contin-

uous on [0, 1) with w(1) = 0. Moreover, it is Lipschitz in absolute value, i.e.

there exists Lw such that for any a, b ∈ [0, 1] we have

|w(a)− w(b)| ≤ Lw|a− b|,

and its derivative w′(α) is bounded in absolute value by a finite constant.

Finally, let E
{
w(F̄n,β0(|u|))X1X

′
1

}
be positive definite.

If the weight function was not continuous, it still would be possible to

prove the asymptotic properties, but we would need some more complicated

techniques. The weight function is not continuous e.g. for the method of

LTS, see Vı́̌sek (2006) for the proofs and derivations for this method with non-

continuous weight function.

For the consistency of the LWS estimator we need one additional condition.

Note that e.g. for OLS (where w(i) = 1 for all i) Equation 3.6 would be satisfied,

as the normal equations have a unique solution.

Assumptions 3.3. There is the only solution of

β′E

n∑
i=1

[
w
(
F̄n,β(|ri(β)|)

)
Xi (ui −X ′iβ)

]
= 0. (3.6)
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Moreover,

lim

n→∞

1

n

n∑
i=1

σi = 1. (3.7)

Note that in the usual form we would again need to replace β by (β − β0)

in Equation 3.6 and this form of Assumptions 3.3 is possible only due to the

assumption that β0 = 0 (WLOG). It is further not clear, if Equation 3.7 can

be easily satisfied. However, when we let {κi}∞i=1 be a sequence of iid random

variables with mean value equal to 1, we obtain 1
n

∑n
i=1 κi → 1 (in probability).

Lemma 3.1. Under Assumptions 3.1, 3.2 and 3.3 any sequence
{
β̂(LWS,n,w)

}∞
n=1

of the solutions of the normal equations given in Equation 3.3 is weakly con-

sistent.

For the proof of Lemma 3.1 see Vı́̌sek (2011a). To obtain the
√
n-consistency,

we have to enlarge the conditions as follows.

Assumptions 3.4. The density fu(r) is uniformly with respect to x Lipschitz of

the first order, i.e. there exists Lu such that for any a, b ∈ [0, 1] we have

|fu(a)− fu(b)| ≤ Lu|a− b|.

In addition, the derivative f ′u(r) exists and is bounded in absolute value by

U ′ <∞.

Note that if Assumptions 3.4 hold for every r, they hold for every i when we

put r = r̃σ−1
i . We further need an additional assumption about the derivative

of the weight function.

Assumptions 3.5. Let the derivative of the weight function w′(α) be Lipschitz

of the first order, i.e. there exists Jw such that for any a, b ∈ [0, 1] we have

|w′(a)− w′(b)| ≤ Jw|a− b|.

Lemma 3.2. Under the Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 any sequence{
β̂(LWS,n,w)

}∞
n=1

of the solutions of the normal equations given in Equation 3.3

is weakly
√
n-consistent.

For the proof of Lemma 3.2 see Vı́̌sek (2010). In order to derive the asymp-

totic representation we will need some additional assumptions (mainly specify-

ing the character of heteroskedasticity). To be able to specify these assumptions
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we will also need distribution function of squared residuals. To be able to define

it, let us recall Equation 3.4 and Equation 3.5. Analogically, we can write

Gi(z) = P (u2
i < z) = Fu

(
σ
− 1

2
i z

1
2

)
− Fu

(
−σ−

1
2

i z
1
2

)
and

G(z) =
1

n

n∑
i=1

P (u2
i < z) =

1

n

n∑
i=1

(
Fu

(
σ
− 1

2
i z

1
2

)
− Fu

(
−σ−

1
2

i z
1
2

))
. (3.8)

Then the corresponding densities are gi(z) and g(z), respectively, where

gi(z) =
σ
− 1

2
i

2z
1
2

(
fu

(
σ
− 1

2
i z

1
2

)
+ fu

(
−σ−

1
2

i z
1
2

))
and

g(z) =
1

2nz
1
2

n∑
i=1

σ
− 1

2
i

(
fu

(
σ
− 1

2
i z

1
2

)
+ fu

(
−σ−

1
2

i z
1
2

))
.

Notice that G(z) = 1
n

∑n
i=1 Gi(z), g(z) = 1

n

∑n
i=1 gi(z) and for z < 0 we have

Gi(z) = 0, G(z) = 0, gi(z) = 0 and g(z) = 0. Then let us assume the following.

Assumptions 3.6. Let d ∈ R+. Then there exists ∆(d) > 0 such that

inf
z∈(0,d+∆(d))

G(z) > Lg,d > 0,

n∑
i=1

(
σ−1
i − 1

)
= O(n

1
2 ) (3.9)

and

sup
−∞<z<∞

∣∣∣∣∣∣
 sup

v∈(zb−1,za−1)

fu(v)

 · z
∣∣∣∣∣∣ < Lε <∞. (3.10)

Moreover, for any δ > 0 there exists nδ ∈ N and Bg > 0 such that for all n > nδ

and any 0 < r ≤ s <∞ such that G(s)−G(r) < δ, we have

G(a−1s)−G(a−1r) < Bg (G(s)−G(r)) .

At this point, let us make several remarks justifying some of the expressions

in Assumptions 3.6, as it is not very straightforward to see, if they are likely

to be fulfilled. Let us first consider Equation 3.9 and put γi = σ−1
i . Then we
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obtain b−1 < γi < a−1 (see Assumptions 3.1). We can assume for simplicity

that (b−1, a−1) = (1 − m, 1 + m) for some m ∈ (0, 1), and that {γi}∞i=1 is a

sequence of iid random variables distributed uniformly on (1−m, 1+m). Then

we arrive at E(γi) = 1 and V ar(γi) = m2. Using CLT we obtain

1√
n

n∑
i=1

(γi − 1) = Op(1).

Equation 3.10 also deserves a comment. The form of this assumption might

seem somewhat unusual. More usual form would be

sup
−∞<v<∞

|fu(v) · v| < Lε <∞.

It would be possible to derive Equation 3.10 from this more usual form under

some additional (not very restrictive) assumptions on fu(v) (e.g. we would need

fu(v) to be Lipschitz etc.). It seems preferable to assume directly Equation 3.10.

In the next section we will need one more condition.

Assumptions 3.7. There exists q′ > 1 such that sup
i

E
(
|ui|2q

′)
<∞.

Let us further state some other definitions and previously proven lemmas

that we will need in the next section for the derivation of the asymptotic rep-

resentation under heteroskedasticity.

Definition 3.1 (Separability). Let V = (V (s), s ∈ S) ⊂ Rp, where S ⊂ Rq and

p, q ∈ N, be a stochastic process. The process is called separable if there exists

a countable dense set T , such that T ⊂ S, and for any pair (ω, t) ∈ Ω×S there

exists a sequence {sn}∞n=1 ⊂ T for which

lim

n→∞

sn = t and lim

n→∞

V (ω, sn) = V (ω, t).

The separability of stochastic processes is needed for the following lemma.

Lemma 3.3 (Štěpán 1987) tells us that when two stochastic processes have the

same distribution, they also have the same supremum over corresponding index

set.

Lemma 3.3. Let V = (V (s), s ∈ S) ⊂ R`, where ` ∈ N, be a separable stochastic

process defined on probability space (Ω,A, P ). Let further G ⊂ S be an open
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set and denote the set of all finite subsets of G by k(G). Then we have for any

closed set K ⊂ Rp, where p ∈ N

{ω ∈ Ω : V (s) ∈ K, s ∈ G} ∈ A

and

P ({ω ∈ Ω : V (s) ∈ K, s ∈ G}) = inf
J∈k(G)

P ({ω ∈ Ω : V (s) ∈ K, s ∈ J}) .

Proof of Lemma 3.3 can be found in Štěpán (1987), see also Vı́̌sek (2015).

Since we use the embedding into Wiener process (see Lemma 3.4 below) through-

out the derivation in the next section, let us now define the Wiener process and

state some of its useful properties.

Definition 3.2 (Wiener process). Let W (s), where s ∈ R+, be a stochastic pro-

cess. We say that W (s) is a Wiener process (called also Brownian motion), if

it satisfies following properties

(i) W (0) = 0.

(ii) The increments of W (s) are stationary and independent.

(iii) The increments of W (s) (i.e. W (s+ t)−W (t)) are normally distributed

with zero mean and variance s.

(iv) The function s 7→ W (s) is continuous on R+ with probability 1.

Further recall that if a random variable X has variance V ar(X) = σ2, then

V ar(a ·X) = a2 ·σ2. Moreover, if random variables X, Y are independent, then

V ar(X+Y ) = V ar(X)+V ar(Y ). It follows that when we have V ar(W (s)) = s,

then

V ar
(
n−

1
4W (s)

)
= n−

1
2 · s = V ar

(
W
(
n−

1
2 · s

))
and consequently

n−
1
4

n∑
i=1

W (τi) =D n−
1
4W

(
n∑
i=1

τi

)
=D W

(
n−

1
2

n∑
i=1

τi

)
,

where ”=D” denotes equivalence in distribution.

The embedding into Wiener process was proposed by Skorohod and ”re-

discovered” by Portnoy (1983). Let us now state some lemmas regarding the
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Wiener processes that will be used later (note that all the processes used in

the proofs in the next section are always defined only within the given proof).

Lemma 3.4 and Lemma 3.5 are taken from Štěpán (1987), see also Vı́̌sek (2015).

Lemma 3.4. Let W (s) be a Wiener process, a and b some positive numbers,

and ξ a random variable satisfying P (ξ = −a) = π and P (ξ = b) = 1 − π,

where π ∈ (0, 1), and E(ξ) = 0. Further let τ be the time when W (s) exits the

interval (−a, b). Then

ξ =D W (τ).

In addition, E(τ) = a · b = V ar(ξ).

Lemma 3.5. Let again W (s) be a Wiener process and a and b some positive

numbers. Then

P

 max
0≤t≤b

|W (t)| > a

 ≤ 2 · P (|W (b)| > a) .

The proofs of Lemma 3.4 and Lemma 3.5 can be found in Štěpán (1987).

We will further need following lemma from Rao (1973). Notice that this lemma

is formulated for iid random variables. However, as will be shown in the next

section in Lemma 3.20, we can use it also for our purpose. Denote [h]int as the

floor of h for any h ∈ R.

Lemma 3.6. Let {Xn}∞n=1 be a sequence of iid random variables distributed ac-

cording to distribution function F (x) with a continuous density f(x). Moreover,

for α ∈ (0, 1) let the upper α-quantile of F (x), qα, be given uniquely and let

f(qα) > 0. Finally, put q̂α = X(`n(α)), where `n(α) = [(1− α)n]int. Then

√
n (q̂α − qα) −→

D

N
(

0,
α(1− α)

f 2(qα)

)
.

For the proof of Lemma 3.6 see Rao (1973). A sketch of the proof can be

found also in Vı́̌sek (2015), where some of the expressions from the proof were

used, specifically

Fq̂α(x) = P (q̂α < x) = P ({ω ∈ Ω : # {Xi(ω) < x, i = 1, 2, ..., n} ≥ `n(α)}) =
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=
n∑

`=`n(α)

n!

`!(n− `)!
F `(x) [1− F (x)]n−` (3.11)

and the density of q̂α given by

n!

(`n(α)− 1)!(n− `n(α))!
F `n(α)−1(x) [1− F (x)]n−`n(α) f(x). (3.12)

We will need to adjust this probability and corresponding density for the

heteroskedastic case. However, these expressions are stated here as well to see

the analogy between homoskedastic and heteroskedastic case.

Lemma 3.7. Let α0 ∈ (0, 1). Then under the assumptions of Lemma 3.6 the

density of q̂α = X(`n(α)) is for any α ∈ (α0, 1) given by

hn,α(q) = h∗n,α(q) + ρn,α(q),

where h∗n,α(r) is a density symmetric around qα and for any K <∞ we have

sup
α∈(α0,1)

sup
|q|≤n−

1
2K

|ρn,α(q)| = O
(
n−

1
2

)
.

The proof of Lemma 3.7 follows from Lemma 3.6 and can be again found in

Rao (1973). For details see also the appendix of Vı́̌sek (2015). Before starting

the derivation itself, let us recall one more lemma.

Lemma 3.8. Let the Assumptions 3.1 hold. Then we have

sup
v∈IR+

sup
β∈IRp

√
n
∣∣∣F (n)

β (v)− F̄n,β(v)
∣∣∣ = Op(1).

Lemma 3.8 along with corresponding proof can be found in Vı́̌sek (2011b).

Now we have prepared all the necessary tools and we can move on to the next

section.

3.2 Derivation under heteroskedasticity

As was mentioned above, the derivation of the asymptotic representation un-

der heteroskedasticity in this section is mainly based on Vı́̌sek (2015). As

compared to the previous paper, we need to prove some additional lemmas and
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make several adjustments to generalize the derivation for heteroskedastic case.

Moreover, some of the proofs are more thorough for easier understanding.

For clarity of the text we will divide the derivation into proving several

lemmas separately. Let us define τM = {t ∈ Rp, ||t|| < M}, where M ∈ R+.

Then we can obtain the following.

Lemma 3.9. Let the Assumptions 3.1 and 3.4 hold. Choose arbitrarily ε > 0

and τ ∈ (1
2
, 3

4
). Then there exists K ∈ (0,∞) and nε,M,τ ∈ N such that for all

n > nε,M,τ

P

({
ω ∈ Ω : sup

r∈R
sup
t∈τM

nτ
∣∣∣∣F (n)

β0−n−
1
2 t

(r)− F (n)

β0 (r)

∣∣∣∣ < K

})
> 1− ε. (3.13)

PROOF The proof is similar to the one in Vı́̌sek (2015), as the main idea

of the proof is embedding into the Wiener process, which is not influenced by

heteroskedasticity. However, some adjustments for heteroskedasticity are nec-

essary. Moreover, some additional steps are included for more straightforward

understanding.

As follows from Equation 3.1, we have

F
(n)

β0 (r) =
1

n

n∑
i=1

I{|ui|<r} =
1

n

n∑
i=1

I{ω∈Ω : |ui(ω)|<r}

and

F
(n)

β0−n−
1
2 t

(r) =
1

n

n∑
i=1

I{
|ui+n−

1
2X′it|<r

} =
1

n

n∑
i=1

I{
ω∈Ω : |ui(ω)+n−

1
2X′i(ω)t|<r

}.

Notice that both of these empirical distribution functions are zero for any r ≤ 0.

Therefore we can consider only r > 0.

Let further #A denote the number of elements of set A and let us define

for all n ∈ N, r ∈ R+ and t ∈ τM

m
(+)
n,U(r, t) = #

{
i ∈ {1, 2, ..., n} : ui ≥ r and

∣∣∣ui + n−
1
2X ′it

∣∣∣ < r
}

(3.14)

m
(−)
n,U(r, t) = #

{
i ∈ {1, 2, ..., n} : |ui| < r and ui + n−

1
2X ′it ≥ r

}
(3.15)

m
(+)
n,L(r, t) = #

{
i ∈ {1, 2, ..., n} : ui ≤ −r and

∣∣∣ui + n−
1
2X ′it

∣∣∣ < r
}

(3.16)

m
(−)
n,L(r, t) = #

{
i ∈ {1, 2, ..., n} : |ui| < r and ui + n−

1
2X ′it ≤ −r

}
. (3.17)
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Finally, let us define mn(r, t) as:

mn(r, t) = m
(+)
n,U(r, t)−m(−)

n,U(r, t) +m
(+)
n,L(r, t)−m(−)

n,L(r, t). (3.18)

It follows that the indices included in m
(+)
n,U(r, t) are those for which we have

simultaneously
∣∣∣ui + n−

1
2X ′it

∣∣∣ < r and ui ≥ r. I.e. the indices that belong

in m
(+)
n,U(r, t) are considered for computing F

(n)

β0−n−
1
2 t

(r), but not for comput-

ing F
(n)

β0 (r). We can make analogical conclusions for m
(−)
n,U(r, t), m

(+)
n,L(r, t) and

m
(−)
n,L(r, t). Then we can conclude that∣∣∣∣F (n)

β0−n−
1
2 t

(r)− F (n)

β0 (r)

∣∣∣∣ ≤ 1

n
|mn(r, t)| .

Therefore in order to prove Equation 3.13, it suffices to prove that for all

ε > 0 and τ ∈ (1
2
, 3

4
) there exists K ∈ (0,∞) and nε,M,τ ∈ N such that for all

n > nε,M,τ

P

({
ω ∈ Ω : nτ−1 sup

r∈R
sup
t∈τM

|mn(r, t)| < K

})
> 1− ε.

In order to prove it, let us first consider Equation 3.14. The conditions∣∣∣ui + n−
1
2X ′it

∣∣∣ < r and ui ≥ r imply that

r ≤ ui < r − n−
1
2X ′it.

Note that the only possibility, how both of these conditions can be satisfied

simultaneously, is when r < r− n− 1
2X ′it, i.e. when n−

1
2X ′it < 0. It follows that

when we define

b
(+)
i (r, t) = I{

r≤ui<r−n−
1
2X′it

}, (3.19)

we obtain

m
(+)
n,U(r, t) ≤

n∑
i=1

b
(+)
i (r, t). (3.20)

We can further denote

πi(r, t) = E
(
b

(+)
i (r, t)

)
and define following process

ξ
(+)
i (r, t) = b

(+)
i (r, t)− πi(r, t). (3.21)
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Although
{
ξ

(+)
i (r, t)

}∞
i=1

is not a sequence of iid processes, the stochastic

processes are independent. Moreover, it can be shown that these processes

are separable, which we will need later. Equation 3.21 hints that separabil-

ity of the process
{
ξ

(+)
i (r, t)

}
r∈R,t∈Rp

follows from separability of the process{
b

(+)
i (r, t)

}
r∈R,t∈Rp

.

Let us first denote the set of rational numbers by Q and its p-th cartesian

product by Qp. Looking at Definition 3.1 we can put S = Q× (τM ∩Qp) and

T = R× τM . Then fix some ω ∈ Ω and select a sequence {rk, tk}∞k=1 ⊂ R× τM
such that for all k ∈ N we obtain

[rk, rk − n−
1
2X ′itk) ⊂ [r, r − n−

1
2X ′it).

We can see that the sequence {tk}∞k=1 is dependent on the sequence {rk}∞k=1

and also on the sign of n−
1
2X ′it (as was mentioned before, in the considered case

we have n−
1
2X ′it < 0 and as n ∈ N, also X ′it = c < 0). Let us for all k ∈ N put

rk ∈ Q such that rk ∈ (r, r− 1
k
· c) and tk ∈ Qp such that for some appropriate

ck ∈ R and t∗k = t · ck we obtain ‖tk − t∗k‖ <
|c|
k2

. Under these conditions

we have lim

k→∞

rk = r, lim

k→∞

tk = t and because b
(+)
i (r, t) is continuous in r

and t, also lim

k→∞

b
(+)
i (rk, tk) = b

(+)
i (r, t). Therefore we can conclude that the

process
{
b

(+)
i (r, t)

}
r∈R,t∈Rp

(and consequently the process
{
ξ

(+)
i (r, t)

}
r∈R,t∈Rp

)

is separable.

Due to the Assumptions 3.1 we have

πi(r, t) =

∫
I{
r≤v<r−n−

1
2 x′t

}dFX,ui(x, v) = (3.22)

=

∫ [∫
I{
r≤v<r−n−

1
2 x′t

}fui(v)dv

]
dFX(x) =

=

∫ ∫ r−n−
1
2 x′t

r

fui(v)dv

 dFX(x) ≤
∫ ∫ r−n−

1
2 x′t

r

Buσ
−1
i dv

 dFX(x) =

=

∫ [
Buσ

−1
i v
]r−n− 1

2 x′t

r
dFX(x) =

∫
Buσ

−1
i (−n−

1
2x′t)dFX(x) ≤

≤ n−
1
2σ−1

i Bu ‖t‖
∫
‖x‖ dFX(x) ≤

∫
‖x‖ dFX(x) =
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= n−
1
2a−1BuM · E(||X1||) = n−

1
2 ∆,

where ∆ = a−1BuM ·E(||X1||) <∞. We can further find n0 ∈ N such that for

all n > n0 we get n−
1
2 ∆ ∈ (0, 1) and hence on R× τM we obtain for all n > n0

πi(r, t) < n−
1
2 ∆.

We will further consider only n > n0 and use the embedding into a Wiener

process. Following Portnoy (1983), Jurečková & Sen (1989) or e.g. Vı́̌sek

(2011b), we can make use of Lemma 3.4.

Let us have for each i a probability space (Ωi,Ai, Pi) such that (Ω,A, P )

is the product space of these i spaces. On each of these probability spaces

define the Wiener process Wi(s) and denote a sequence of these independent

Wiener processes asW = {Wi(s)}∞i=1. Let τ
(+)
i (r, t) (defined on the probability

space (Ωi,Ai, Pi)) be the first time when Wi(s) exits the interval (−πi(r, t), 1−
πi(r, t)); in mathematical terms we have

τ
(+)
i (r, t) = inf {s ≥ 0,Wi(s) /∈ (−πi(r, t, 1− πi(r, t))} .

From Lemma 3.4 follows that

ξ
(+)
i (r, t) =D Wi(τ

(+)
i (r, t))

and due to properties of a Wiener process (see Definition 3.2 and the properties

of Wiener process following the definition) we arrive at

n−
1
4

n∑
i=1

ξ
(+)
i (r, t) =D n−

1
4

n∑
i=1

Wi(τ
(+)
i (r, t)) =D W

(
n−

1
2

n∑
i=1

τ
(+)
i (r, t)

)
,

where W (s) is again a Wiener process, such that W (s) is independent from

W = {Wi(s)}∞i=1.

As we have shown above,
{
ξ

(+)
i (r, t)

}
r∈R,t∈Rp

is a separable process. There-

fore we can apply Lemma 3.3 to obtain

n−
1
4 sup
r∈R+

sup
t∈τM

∣∣∣∣∣
n∑
i=1

ξ
(+)
i (r, t)

∣∣∣∣∣ =D sup
r∈R+

sup
t∈τM

∣∣∣∣∣W
(
n−

1
2

n∑
i=1

τ
(+)
i (r, t)

)∣∣∣∣∣ . (3.23)

Let further Ui (defined again on the probability space (Ωi,Ai, Pi)) be the first

time when Wi(s) exits the interval (−n− 1
2 ∆, 1). Taking into consideration that
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for all r ∈ R+, t ∈ τM and i = 1, ..., n we have

πi(r, t) ≤ n−
1
2 ∆ and 1− πi(r, t) ≤ 1,

we can also conclude that for all r ∈ R+, t ∈ τM and i = 1, ..., n it holds that

τ
(+)
i (r, t) < Ui.

Note that Ui does not depend on r or t. Then it follows that the expression on

the right hand side of Equation 3.23 is not larger than

sup
s∈
(

0,n−
1
2
∑n
i=1 Ui

) |W (s)| . (3.24)

Moreover, applying the last part of Lemma 3.4, we have E(Ui) = n−
1
2 ∆.

We can further find K1 < ∞ such that ∆
K1

< ε
2
. Then utilizing Markov

inequality (i.e. Chebyshev inequality for positive variables) we obtain for every

n > n0

P

({
ω ∈ Ω : n−

1
2

n∑
i=1

Ui > K1

})
≤ 1

K1

√
n

n∑
i=1

E(Ui) =
∆

K1

<
ε

2
. (3.25)

Moreover, let us find K2 > 0 such that 2K1

K2
2
≤ ε

2
. Then from Equation 3.23,

Equation 3.24 and Equation 3.25 follows that

P

(
n−

1
4 sup
r∈R

sup
t∈τM

∣∣∣∣∣
n∑
i=1

ξ
(+)
i (r, t)

∣∣∣∣∣ > K2

)
=

= P

(
sup
r∈R+

sup
t∈τM

∣∣∣∣∣W
(
n−

1
2

n∑
i=1

τ
(+)
i (r, t)

)∣∣∣∣∣ > K2

)
≤

≤ P

 sup
s∈
(

0,n−
1
2
∑n
i=1 Ui

) |W (s)| > K2

 =

= P

 sup
s∈
(

0,n−
1
2
∑n
i=1 Ui

) |W (s)| > K2

 ∩
{
n−

1
2

n∑
i=1

Ui ≤ K1

}+

+P

 sup
s∈
(

0,n−
1
2
∑n
i=1 Ui

) |W (s)| > K2

 ∩
{
n−

1
2

n∑
i=1

Ui > K1

} ≤
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≤ P

(
sup

0≤s≤K1

|W (s)| > K2

)
+
ε

2
.

Applying Lemma 3.5, using Chebyshev inequality and recalling the property of

a Wiener process that V ar(W (K1)) = K1, we find that this is further bounded

by

2P (|W (K1)| > K2) +
ε

2
≤ 2K1

K2
2

+
ε

2
≤ ε

2
+
ε

2
= ε.

Therefore we have derived that

P

(
n−

1
4 sup
r∈R

sup
t∈τM

∣∣∣∣∣
n∑
i=1

ξ
(+)
i (r, t)

∣∣∣∣∣ > K2

)
≤ ε. (3.26)

Similarly, we can derive analogical conclusions based on Equation 3.15,

Equation 3.16 and Equation 3.17. Let us define

b
(−)
i (r, t) = I{

r−n−
1
2X′it≤ui<r

}, c
(+)
i (r, t) = I{

−r−n−
1
2X′it<ui≤−r

}

and c
(−)
i (r, t) = I{

−r<ui≤−r−n−
1
2X′it

}. (3.27)

Then for

ξ
(−)
i (r, t) = b

(−)
i (r, t)− E

(
b

(−)
i (r, t)

)
, ζ

(+)
i (r, t) = c

(+)
i (r, t)− E

(
c

(+)
i (r, t)

)
and ζ

(−)
i (r, t) = c

(−)
i (r, t)− E

(
c

(−)
i (r, t)

)
hold conclusions that are analogical to Equation 3.26. From these conclusions,

Equation 3.18 and Equation 3.20 we obtain2

n−
1
4 sup
r∈R

sup
t∈τM
|mn(r, t)| ≤

≤ n−
1
4 sup
r∈R

sup
t∈τM

∣∣∣∣∣
n∑
i=1

[
b

(+)
i (r, t)− b(−)

i (r, t) + c
(+)
i (r, t)− c(−)

i (r, t)
]∣∣∣∣∣ =

= n−
1
4 sup
r∈R

sup
t∈τM∣∣∣∣∣

n∑
i=1

[(
b

(+)
i (r, t)− E

(
b

(+)
i (r, t)

))
−
(
b

(−)
i (r, t)− E

(
b

(−)
i (r, t)

))
+

+
(
c

(+)
i (r, t)− E

(
c

(+)
i (r, t)

))
−
(
c

(−)
i (r, t)− E

(
c

(−)
i (r, t)

))]
+

2Note also that generally |y| ≤ |y − x|+ |x| and |x+ y| ≤ |x|+ |y|.
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+
[
E
(
b

(+)
i (r, t)

)
− E

(
b

(−)
i (r, t)

)
+ E

(
c

(+)
i (r, t)

)
− E

(
c

(−)
i (r, t)

)]∣∣∣ ≤
≤ n−

1
4 sup
r∈R

sup
t∈τM∣∣∣∣∣

n∑
i=1

[(
b

(+)
i (r, t)− E

(
b

(+)
i (r, t)

))
−
(
b

(−)
i (r, t)− E

(
b

(−)
i (r, t)

))
+

+
(
c

(+)
i (r, t)− E

(
c

(+)
i (r, t)

))
−
(
c

(−)
i (r, t)− E

(
c

(−)
i (r, t)

))] ∣∣∣+
+n−

1
4 sup
r∈R

sup
t∈τM∣∣∣∣∣

n∑
i=1

[
E
(
b

(+)
i (r, t)

)
− E

(
b

(−)
i (r, t)

)
+ E

(
c

(+)
i (r, t)

)
− E

(
c

(−)
i (r, t)

)]∣∣∣∣∣ =

= n−
1
4 sup
r∈R

sup
t∈τM

∣∣∣∣∣
n∑
i=1

[
ξ

(+)
i (r, t)− ξ(−)

i (r, t) + ζ
(+)
i (r, t)− ζ(−)

i (r, t)
]∣∣∣∣∣+ (3.28)

+n−
1
4 sup
r∈R

sup
t∈τM∣∣∣∣∣

n∑
i=1

[
E
(
b

(+)
i (r, t)

)
− E

(
b

(−)
i (r, t)

)
+ E

(
c

(+)
i (r, t)

)
− E

(
c

(−)
i (r, t)

)]∣∣∣∣∣ (3.29)

where due to Equation 3.26 and the analogical results we conclude that Equa-

tion 3.28 is bounded in probability. To conclude the proof it remains to show

that Equation 3.29 is also small in probability. For that purpose we need to

estimate all the mean values.

Let us first realize that due to construction of b
(+)
i (r, t), b

(−)
i (r, t), c

(+)
i (r, t)

and c
(−)
i (r, t) in Equation 3.19 and Equation 3.27 all the mean values in Equa-

tion 3.29 are nonnegative. Moreover, as was mentioned before, for E
(
b

(+)
i (r, t)

)
to be nonnegative we need x′t < 0. Similarly we need x′t < 0 for E

(
c

(−)
i (r, t)

)
to be nonnegative and analogicaly we obtain x′t > 0 for the two remaining

mean values.

Let us consider x′t < 0. Recall the derivation in Equation 3.22 and the

following lines and write

πi(r, t) = E
(
b

(+)
i (r, t)

)
=

∫ ∫ r−n−
1
2 x′t

r

fui(v)dv

 dFX(x) =
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=

∫ ∫ r−n−
1
2 x′t

r

(fui(v)− fui(r)) dv

 dFX(x)+

+

∫ fui(r)∫ r−n−
1
2 x′t

r

1dv

 dFX(x) = R
(+)
b (r, t)− n−

1
2

∫
x′tfui(r)dFX(x),

where recalling Assumptions 3.1, Assumptions 3.4 and using the substitution

q = v − r we can write

∣∣∣R(+)
b (r, t)

∣∣∣ =

∣∣∣∣∣∣
∫ ∫ r−n−

1
2 x′t

r

(fui(v)− fui(r)) dv

 dFX(x)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫ ∫ r−n−

1
2 x′t

r

σ−1
i

(
fu(vσ

−1
i )− fu(rσ−1

i )
)

dv

 dFX(x)

∣∣∣∣∣∣ ≤
≤
∫ ∫ r−n−

1
2 x′t

r

σ−2
i Lu |v − r| dv

 dFX(x) =

= σ−2
i Lu

∫ ∫ −n− 1
2 x′t

0

qdq

 dFX(x) =
1

2n
σ−2
i Lu

∫
(x′t)

2
dFX(x) ≤

≤ 1

2n
a−2Lu

∫
(x′t)

2
dFX(x).

Analogically, we obtain for E
(
c

(−)
i (r, t)

)
:

E
(
c

(−)
i (r, t)

)
=

∫
I{
−r≤v<−r−n−

1
2 x′t

}dFX,ui(x, v) =

= R(−)
c (r, t)− n−

1
2

∫
x′tfui(r)dFX(x)

with ∣∣R(−)
c (r, t)

∣∣ ≤ 1

2n
a−2Lu

∫
(x′t)

2
dFX(x).

Therefore we can write for the estimate of the absolute value of the difference

of these two mean values:∣∣∣E (b(+)
i (r, t)

)
− E

(
c

(−)
i (r, t)

)∣∣∣ ≤ ∣∣∣R(+)
b (r, t)

∣∣∣+
∣∣R(−)

c (r, t)
∣∣ ≤
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≤ 1

n
a−2Lu

∫
(x′t)

2
dFX(x),

where the same result holds for
∣∣∣E (c(+)

i (r, t)
)
− E

(
b

(−)
i (r, t)

)∣∣∣ with x′t > 0.

Hence we can bound Equation 3.29 as follows:

n−
1
4 sup
r∈R

sup
t∈τM∣∣∣∣∣
n∑
i=1

[
E
(
b

(+)
i (r, t)

)
− E

(
b

(−)
i (r, t)

)
+ E

(
c

(+)
i (r, t)

)
− E

(
c

(−)
i (r, t)

)]∣∣∣∣∣ ≤
≤ 2n−

1
4 sup
t∈τM

n∑
i=1

1

n
a−2Lu

∫
(x′t)

2
dFX(x) =

= 2n−
1
4 sup
t∈τM

a−2Lu

∫
(x′t)

2
dFX(x) ≤

≤ 2n−
1
4a−2LuM

2

∫
‖x‖2 dFX(x) = O(n−

1
4 ).

As nτ−1 < n−
1
4 , this concludes the proof.

Q.E.D.

Based on this result, we can easily prove following lemmas.

Lemma 3.10. Let the Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 hold. Choose

arbitrarily ε > 0 and τ ∈ (1
2
, 3

4
). Then there exists K ∈ (0,∞) and nε,M,τ ∈ N

such that for all n > nε,M,τ

P

({
ω ∈ Ω : sup

r∈R
nτ
∣∣∣F (n)

β̂(LWS,n,w)
(r)− F (n)

β0 (r)
∣∣∣ < K

})
> 1− ε.

PROOF Put t = −
√
n
(
β̂(LWS,n,w) − β0

)
. Then β0 − n− 1

2 t = β̂(LWS,n,w) and

according to Lemma 3.2 we have t = Op(1). Hence the proof follows from

Lemma 3.9.

Q.E.D.

Lemma 3.11. Let the Assumptions 3.1 and 3.4 hold. Choose arbitrarily ε > 0

and τ ∈ (1
2
, 3

4
). Then there exists K ∈ (0,∞) and nε,M,τ ∈ N such that for all

n > nε,M,τ

P

({
ω ∈ Ω : sup

r∈R
sup
t∈τM

nτ
∣∣∣F (n)

β0

(∣∣∣r − n− 1
2X ′it

∣∣∣)− F (n)

β0 (|r|)
∣∣∣ < K

})
> 1− ε.
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PROOF Let r > 0 and realize that

F
(n)

β0

(∣∣∣r − n− 1
2X ′it

∣∣∣)− F (n)

β0 (|r|) =
1

n

n∑
i=1

[
I{
|ui|<

∣∣∣r−n− 1
2X′it

∣∣∣} − I{|ui|<|r|}
]
.

It follows that the proof will be essentially the same as the proof of Lemma 3.9.

Q.E.D.

Lemma 3.12. Let the Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 hold. Choose

arbitrarily ε > 0 and τ ∈ (1
2
, 3

4
). Then there exists K ∈ (0,∞) and nε,M,τ ∈ N

such that for all n > nε,M,τ

P

({
ω ∈ Ω : max

i
nτ
∣∣∣∣F (n)

β0

(∣∣∣ri(β̂(LWS,n,w))
∣∣∣)− F (n)

β0 (|ui|)
∣∣∣∣ < K

})
> 1− ε,

where i = 1, 2, ..., n.

PROOF Let again t = −
√
n
(
β̂(LWS,n,w) − β0

)
. Then when we put r = ui, we

have r − n− 1
2X ′it = ri(β̂

(LWS,n,w)) and the proof follows from Lemma 3.11.

Q.E.D.

Lemma 3.10 and Lemma 3.12 enable us to prove the following.

Lemma 3.13. Let the Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 hold. Then

1√
n

n∑
i=1

w
(
F

(n)

β0 (|ui|)
)
Xi

(
Yi −X ′iβ̂(LWS,n,w)

)
= op(1). (3.30)

PROOF Recall that β0 is (WLOG) assumed to be 0. Therefore we can write

1√
n

∥∥∥∥∥
n∑
i=1

w
(
F

(n)

β0 (|ui|)
)
Xi

(
Yi −X ′iβ̂(LWS,n,w)

)∥∥∥∥∥ =

=
1√
n

∥∥∥∥∥
n∑
i=1

w
(
F

(n)

β0 (|ui|)
)
Xi

(
ui −X ′iβ̂(LWS,n,w)

)∥∥∥∥∥ ,
which is bounded by

1√
n

n∑
i=1

∣∣∣w (F (n)

β0 (|ui|)
)
− w

(
F

(n)

β0 (|ri(β̂(LWS,n,w))|)
)∣∣∣×

× ‖Xi‖ ·
∣∣∣ui −X ′iβ̂(LWS,n,w)

∣∣∣+ (3.31)
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+
1√
n

n∑
i=1

∣∣∣w (F (n)

β0 (|ri(β̂(LWS,n,w))|)
)
− w

(
F

(n)

β̂(LWS,n,w)
(|ri(β̂(LWS,n,w))|)

)∣∣∣×
× ‖Xi‖ ·

∣∣∣ui −X ′iβ̂(LWS,n,w)
∣∣∣+ (3.32)

+

∥∥∥∥∥ 1√
n

n∑
i=1

w
(
F

(n)

β̂(LWS,n,w)
(|ri(β̂(LWS,n,w))|)

)
Xi

(
ui −X ′iβ̂(LWS,n,w)

)∥∥∥∥∥ . (3.33)

As β̂(LWS,n,w) is one of the solutions of the normal equation in Equation 3.3,

we can conclude that the expression in Equation 3.33 is equal to 0 (realizing

again that β0 = 0). Let us now show that the expression in Equation 3.31

converges in probability to 0. Equation 3.31 is bounded by

1

nτ+ 1
2

· nτ max
i

∣∣∣w (F (n)

β0 (|ui|)
)
− w

(
F

(n)

β0 (|ri(β̂(LWS,n,w))|)
)∣∣∣ · n∑

i=1

‖Xi‖ · |ui|+

+
1

nτ+ 1
2

·nτ max
i

∣∣∣w (F (n)

β0 (|ui|)
)
− w

(
F

(n)

β0 (|ri(β̂(LWS,n,w))|)
)∣∣∣×

×
n∑
i=1

‖Xi‖2 ·
∥∥∥β̂(LWS,n,w) − β0

∥∥∥ .
From Assumptions 3.2 it follows that this is further bounded by

Lw

nτ+ 1
2

· nτ max
i

∣∣∣∣F (n)

β0

(∣∣∣ri(β̂(LWS,n,w))
∣∣∣)− F (n)

β0 (|ui|)
∣∣∣∣ · n∑

i=1

‖Xi‖ · |ui|+

+
Lw

nτ+ 1
2

· nτ max
i

∣∣∣∣F (n)

β0

(∣∣∣ri(β̂(LWS,n,w))
∣∣∣)− F (n)

β0 (|ui|)
∣∣∣∣×

×
n∑
i=1

‖Xi‖2 ·
∥∥∥β̂(LWS,n,w) − β0

∥∥∥ .
As τ+ 1

2
> 1, E (‖Xi‖) <∞, E

(
‖Xi‖2) <∞, E (|ui|) <∞, we can use Lemma

3.1 and Lemma 3.12 to conclude that Equation 3.31 is op(1).

Similarly, we can show that Equation 3.32 is bounded by

1

nτ+ 1
2

· nτ sup
r∈R

∣∣∣∣w (F (n)

β0 (|r|)
)
− w

(
F

(n)

β̂(LWS,n,w)
(|r|)

)∣∣∣∣ · n∑
i=1

‖Xi‖ · |ui|+

+
1

nτ+ 1
2

·nτ sup
r∈R

∣∣∣∣w (F (n)

β0 (|r|)
)
− w

(
F

(n)

β̂(LWS,n,w)
(|r|)

)∣∣∣∣×
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×
n∑
i=1

‖Xi‖2 ·
∥∥∥β̂(LWS,n,w) − β0

∥∥∥ .
Using again that the weight function is Lipschitz in absolute value, this can be

bounded by

Lw

nτ+ 1
2

· nτ sup
r∈R

∣∣∣∣F (n)

β0 (|r|)− F (n)

β̂(LWS,n,w)
(|r|)

∣∣∣∣ · n∑
i=1

‖Xi‖ · |ui|+

+
Lw

nτ+ 1
2

· nτ sup
r∈R

∣∣∣∣F (n)

β0 (|r|)− F (n)

β̂(LWS,n,w)
(|r|)

∣∣∣∣ · n∑
i=1

‖Xi‖2 ·
∥∥∥β̂(LWS,n,w) − β0

∥∥∥ .
For the same reasons as before for Equation 3.31, just using Lemma 3.10 instead

of Lemma 3.12, we can conclude that Equation 3.32 is op(1). This concludes

the proof.

Q.E.D.

Before moving on to the next lemma, let us prepare some additional nec-

essary tools. Racalling Equation 3.1 and considering that rj(β
0) = uj, we

obtain

F
(n)

β0 (|ui|) =
1

n

n∑
j=1

I{|uj |<|ui|}.

When we further recall Equation 3.2, we get

F
(n)

β0 (|ui|) =
π(β0, i)− 1

n
. (3.34)

Moreover, we can denote

w∗k = w

(
k − 1

n

)
− w

(
k

n

)
(3.35)

and recalling Assumptions 3.2 (specifically w(1) = 0), by summation we obtain

w

(
k − 1

n

)
=

n∑
j=k

w∗j . (3.36)

Then combining Equation 3.34 and Equation 3.36 we arrive at

w
(
F

(n)

β0 (|ui|)
)

= w

(
π(β0, i)− 1

n

)
=

n∑
`=π(β0,i)

w∗` =
n∑
`=1

w∗` · I{u2i≤u2(`)}. (3.37)
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Using this result, we can write Equation 3.30 as

1√
n

n∑
`=1

w∗`

n∑
i=1

Xi

(
Yi −X ′iβ̂(LWS,n,w)

)
· I{

u2i≤u2(`)
} = op(1). (3.38)

At this point, let us recall Equation 3.8, for any α ∈ (0, 1) define q2
α as

the upper α-quantile of G(z) (i.e. we have 1 − G(q2
α) = α) and let us prove

following lemmas. Note that Lemma 3.14 is new as compared to Vı́̌sek (2015)

and we need it to be able to generalize for heteroskedasticity Lemma 3.15 and

what follows.

Lemma 3.14. Let the Assumptions 3.1 hold. Then we have

G(z)− [Fu(z
1
2 )− Fu(−z

1
2 )] = O(n−

1
2 ).

PROOF We can write ∣∣∣G(z)− [Fu(z
1
2 )− Fu(−z

1
2 )]
∣∣∣ =

=

∣∣∣∣∣ 1n
n∑
i=1

Fu

(
σ
− 1

2
i z

1
2

)
− Fu

(
−σ−

1
2

i z
1
2

)
− Fu(z

1
2 ) + Fu(−z

1
2 )

∣∣∣∣∣ =

=

∣∣∣∣∣∣ 1n
n∑
i=1


∫ −z 1

2

−σ
− 1

2
i z

1
2

fu(v)dv +

∫ σ
− 1

2
i z

1
2

z
1
2

fu(v)dv


∣∣∣∣∣∣ ≤

≤

 sup
v∈(z

1
2 b−

1
2 ,z

1
2 a−

1
2 )

fu(v)

 ·
∣∣∣∣∣∣ 1n

n∑
i=1


∫ −z 1

2

−σ
− 1

2
i z

1
2

1dv +

∫ σ
− 1

2
i z

1
2

z
1
2

1dv


∣∣∣∣∣∣ ≤

≤ 2 ·

∣∣∣∣∣∣
 sup

v∈(z
1
2 b−

1
2 ,z

1
2 a−

1
2 )

fu(v)

 · z 1
2

∣∣∣∣∣∣ ·
∣∣∣∣∣ 1n

n∑
i=1

(σ
− 1

2
i − 1)

∣∣∣∣∣ ≤
≤ Lε

∣∣∣∣∣ 1n
n∑
i=1

(σ
− 1

2
i − 1)

∣∣∣∣∣ = O(n−
1
2 ),

where except for the definition of G(z) we have used Equation 3.9 and Equa-

tion 3.10.

Q.E.D.

Note that here we need somewhat weaker assumptions than are stated in

Assumptions 3.6 (here we have everything to the power of 1
2
; if it is bounded
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for the expressions with the power of 1, it must be bounded also for these

expressions with the power of 1
2
). However, the Assumptions 3.6 are stated in

the stronger form, as that form is more usual. We can use this result to prove

another lemma.

Lemma 3.15. Let Assumptions 3.1 hold and put `n(α) = [(1 − α)n]int for any

n ∈ N. Then for any ε ∈ (0, 1) there are constants Kε < ∞ and K̃ε < ∞,

and there is nε ∈ N such that for all n > nε and any α ∈ (0, 1) there exists an

interval Iεα,n such that

q2
α ∈ Iεα,n for any α ∈ (0, 1), (3.39)

P

 ⋂
α∈(0,1)

{
ω ∈ Ω : u2

(`n(α)) ∈ Iεα,n
} > 1− ε, (3.40)

and for all i = 1, 2, ..., n we have

sup
α∈(0,1)

P
(
u2
i ∈ Iεα,n

)
≤ n−

1
2Kε (3.41)

and

sup
α∈(0,1)

E
[
|ui| · I(ε)

α,n

]
≤ n−

1
2 K̃ε.

PROOF The proof is again mainly based on Vı́̌sek (2015). However, several

adjustments for heteroskedasticity are necessary here. Before starting the proof

let us shorten the notation and write `n instead of `n(α). Then we can divide

the proof in two parts. In the first part we will show that for any ε ∈ (0, 1)

there are constants KU
ε < ∞ and K̃ε < ∞, and there is nε ∈ N such that for

all n > nε and any α ∈ (0, 1) there exists U
(ε)
α,n such that

q2
α ≤ U (ε)

α,n for any α ∈ (0, 1), (3.42)

P

 ⋂
α∈(0,1)

{
ω ∈ Ω : u2

(`n) ≤ U (ε)
α,n

} > 1− 1

2
ε, (3.43)



3. Asymptotic representation of LWS 45

and for all i = 1, 2, ..., n we have

sup
α∈(0,1)

P
(
u2
i ∈

[
q2
α, U

(ε)
α,n

])
<

1

2
n−

1
2KU

ε (3.44)

and

sup
α∈(0,1)

E

[
|ui| · I{q2α≤u2i≤U(ε)

α,n

}] ≤ sup
α∈(0,1)

∫
z2∈

[
q2α,U

(ε)
α,n

] |z|fui(z)dz <

<
1

2
n−

1
2 K̃ε. (3.45)

Further notice that U
(ε)
α,n does not have to be finite and let it satisfy

G(U (ε)
α,n)−G(q2

α) = min
{
n−

1
2Kε, α

}
. (3.46)

Choose and fix some ε > 0. Let W (s) be a Wiener process, see again

Definition 3.2. Then we can use Lemma 3.5 to find Kε <∞ such that

P

 sup
0≤s≤2

|W (s)| > 1

2
Kε

 <
1

4
ε. (3.47)

Similarly as before, denote a sequence of independent Wiener processes as

W = {Wi(s)}∞i=1. Further, let Ui be the first time when Wi(s) exits the interval

(−1, 1) and note that {Ui}∞i=1 is a sequence of iid random variables. Then

applying again the last part of Lemma 3.4, we obtain E(Ui) = 1. Moreover,

put

Bn =

{
ω ∈ Ω : n−1

n∑
i=1

Ui > 2

}
.

For the fixed ε > 0 we can then find nε ∈ N such that for all n > nε

P (Bn) <
1

4
ε (3.48)

and further consider only n > nε.

Returning to Equation 3.46, let us split it into two cases and define

A(ε)
n =

{
α ∈ (0, 1) : n

− 1
2

ε Kε < α
}
.
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Then consider first α ∈ (0, 1) \ A(ε)
n , i.e. the case when G(U

(ε)
α,n) − G(q2

α) = α.

In this case we can put U
(ε)
α,n = ∞. It follows that q2

α < U
(ε)
α,n = ∞ and

Equation 3.42 holds. Moreover, if U
(ε)
α,n =∞, we have

P
({
u2

(`n) < U (ε)
α,n

})
= 1. (3.49)

To show that Equation 3.44 holds for any α ∈ (0, 1) \ A(ε)
n , we can write

P
(
u2
i ∈

[
q2
α, U

(ε)
α,n

])
= Gi(U

(ε)
α,n)−Gi(q

2
α) =

= Fu

(
σ
− 1

2
i (U (ε)

α,n)
1
2

)
− Fu

(
−σ−

1
2

i (U (ε)
α,n)

1
2

)
−
[
Fu

(
σ
− 1

2
i qα

)
− Fu

(
−σ−

1
2

i qα

)]
=

= G
(
σ−1
i U (ε)

α,n

)
−G

(
σ−1
i q2

α

)
+ n−

1
2Kg ≤ Bg ·

(
G(U (ε)

α,n)−G(q2
α)
)

+ n−
1
2Kg =

= Bg · α + n−
1
2Kg ≤ n−

1
2 (Bg ·Kε +Kg) ,

where we put KU
ε = 2 ·(Bg ·Kε+Kg) and we used Assumptions 3.6 and Lemma

3.14. When we denote

Cn =
⋂

α∈(0,1)\A(ε)
n

{
ω ∈ Ω : u2

(`n) < U (ε)
α,n

}
,

then from Equation 3.49 follows that P (Cn) = 1 and therefore also Equa-

tion 3.43 holds for α ∈ (0, 1) \ A(ε)
n .

Let us now turn to the case when α ∈ A(ε)
n , i.e. G(U

(ε)
α,n)−G(q2

α) = n−
1
2Kε.

We will denote

v
(α)
i = I{

u2i≤U
(ε)
α,n

} − E
(
I{
u2i≤U

(ε)
α,n

}) ,
where due to the assumption that the distribution functions of ui (and therefore

also distribution functions of u2
i ) are absolutely continuous we can conclude

that the processes v
(α)
i , i = 1, ..., n, are separable (see again Definition 3.1).

Moreover, we can write

an,i = E

(
I{
u2i≤U

(ε)
α,n

}) = P
(
u2
i ≤ U (ε)

α,n

)
< 1. (3.50)

Then we have v
(α)
i = 1− an,i > 0 if u2

i ≤ U
(ε)
α,n and v

(α)
i = −an,i < 0 otherwise.

Let τ
(α)
in be the first time when Wi(s) exits the interval (−an,i, 1 − an,i) and
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apply Lemma 3.4 to obtain

v
(α)
i =D Wi(τ

(α)
in ),

and similarly as in the proof of Lemma 3.9

n−
1
2

n∑
i=1

v
(α)
i =D n−

1
2

n∑
i=1

Wi(τ
(α)
in ) =D W

(
n−1

n∑
i=1

τ
(α)
in

)
, (3.51)

where W (s) is again a Wiener process, such that W (s) is independent from

W = {Wi(s)}∞i=1. Since (−an,i, 1 − an,i) ⊂ (−1, 1), we have further for every

α ∈ A(ε)
n and n > nε

n−1

n∑
i=1

τ
(α)
in ≤ n−1

n∑
i=1

Ui (3.52)

and we can use Equation 3.47, Equation 3.48, Equation 3.51, Equation 3.52

and Lemma 3.3 (remember that the processes v
(α)
i are separable) to obtain

P


n− 1

2 sup

α∈A(ε)
n

∣∣∣∣∣
n∑
i=1

v
(α)
i

∣∣∣∣∣ > 1

2
Kε


 ≤

≤ P


n− 1

2 sup

α∈A(ε)
n

∣∣∣∣∣
n∑
i=1

v
(α)
i

∣∣∣∣∣ > 1

2
Kε

 ∩Bc
n

+ P (Bn) ≤

≤ P


n− 1

2 sup

α∈A(ε)
n

∣∣∣∣∣
n∑
i=1

Wi(τ
(α)
in )

∣∣∣∣∣ > 1

2
Kε

 ∩Bc
n

+
1

4
ε =

= P


 sup

α∈A(ε)
n

∣∣∣∣∣W
(
n−1

n∑
i=1

τ
(α)
in

)∣∣∣∣∣ > 1

2
Kε

 ∩Bc
n

+
1

4
ε ≤

≤ P

 sup
0≤s≤2

|W (s)| > 1

2
Kε

 ∩Bc
n

+
1

4
ε <

1

2
ε.

Define the set Dn =

ω ∈ Ω : n−
1
2 sup
α∈A(ε)

n

∣∣∣∑n
i=1 v

(α)
i

∣∣∣ < 1
2
Kε

. We have

just derived that P (Dn) ≥ 1 − 1
2
ε and therefore we have for all α ∈ A(ε)

n with
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probability at least 1− 1
2
ε

n∑
i=1

I{
u2i≤U

(ε)
α,n

} >
n∑
i=1

E

(
I{
u2i≤U

(ε)
α,n

})− 1

2
n

1
2Kε.

From Equation 3.50 further follows that

n∑
i=1

E

(
I{
u2i≤U

(ε)
α,n

}) =
n∑
i=1

P (u2
i ≤ U (ε)

α,n) =
n∑
i=1

Gi(U
(ε)
α,n) =

= n ·
∑n

i=1Gi(U
(ε)
α,n)

n
= n ·G(U (ε)

α,n).

Then we can write

n∑
i=1

I{
u2i≤U

(ε)
α,n

} > n ·G(U (ε)
α,n)− 1

2
n

1
2Kε =

= n ·
[
G(U (ε)

α,n)−G(q2
α)
]

+ n ·G(q2
α)− 1

2
n

1
2Kε =

= n
1
2Kε + n(1− α)− 1

2
n

1
2Kε = n(1− α) +

1

2
n

1
2Kε > `n,

where the last inequality follows from the way, how `n was defined. Recall that

we have put `n = [(1− α)n]int.

Therefore there are at least `n squared error terms for which it holds with

probability at least 1− 1
2
ε that u2

i ≤ U
(ε)
α,n. It follows that the `n-th order statistic

is lower than U
(ε)
α,n with probability at least 1− 1

2
ε (uniformly for all α ∈ A(ε)

n ).

This means that we have shown that Equation 3.43 holds also for α ∈ A
(ε)
n .

Equation 3.42 for α ∈ A
(ε)
n follows from definition of U

(ε)
α,n, Equation 3.44 for

α ∈ A(ε)
n follows from definition of U

(ε)
α,n, Assumptions 3.6 and Lemma 3.14.

To conclude the first part of the proof it remains to show that Equation 3.45

also holds. Let us recall Assumptions 3.1, specifically that E(ui) = 0 and

V ar(ui) =
∫
z2fui(z)dz = σ2

i < b2 < ∞. Therefore the function z2fui(z) is

bounded, say by C. Then we can employ Hölder´s inequality to obtain∫
z2∈

[
q2α,U

(ε)
α,n

] |z|fui(z)dz =

∫
z2∈

[
q2α,U

(ε)
α,n

]
{
|z|
√
fui(z)

}
·
{√

fui(z)
}

dz ≤

≤

{∫
z2∈

[
q2α,U

(ε)
α,n

] z2fui(z)dz ·
∫
z2∈

[
q2α,U

(ε)
α,n

] fui(z)dz

} 1
2

≤
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≤

{
C ·
∫
z2∈

[
q2α,U

(ε)
α,n

] fui(z)dz · P
(
u2
i ∈

[
q2
α, U

(ε)
α,n

])} 1
2

=

= C
1
2 · P

(
u2
i ∈

[
q2
α, U

(ε)
α,n

])
<

1

2
n−

1
2 K̃ε.

The second part of the proof is similar to the first one. We can analogically

show that for any ε ∈ (0, 1) there are constants K ′ε < ∞ and K̃ ′ε < ∞ such

that for all n > nε and any α ∈ (0, 1) there exists L
(ε)
α,n such that

q2
α ≥ L(ε)

α,n for any α ∈ (0, 1),

P

 ⋂
α∈(0,1)

{
ω ∈ Ω : u2

(`n) ≥ L(ε)
α,n

} > 1− 1

2
ε,

and for all i = 1, 2, ..., n we have

sup
α∈(0,1)

P
(
u2
i ∈

[
L(ε)
α,n, q

2
α

])
<

1

2
n−

1
2K ′ε

and

sup
α∈(0,1)

E

[
|ui| · I{L(ε)

α,n≤u2i≤q2α
}] ≤ sup

α∈(0,1)

∫
z2∈

[
L
(ε)
α,n,q2α

] |z|fui(z)dz <
1

2
n−

1
2 K̃ ′ε.

Then we can put I
(ε)
α,n =

(
L

(ε)
α,n, U

(ε)
α,n

)
, which concludes the proof.

Q.E.D.

Let us further denote [a, b]ord = [min{a, b},max{a, b}] for any a, b ∈ R.

Then we can use Lemma 3.15 to show the following.

Lemma 3.16. Let the assumptions of Lemma 3.15 hold. Then for any ε > 0

there is a constant Kε < ∞ and nε ∈ N such that for all n > nε and any

α ∈ (0, 1) there exists some set Bn such that P (Bn) > 1− ε,{[
u2

(`n), q
2
α

]
ord
∩Bn

}
⊂
{
I(ε)
α,n ∩Bn

}
and

sup
α∈(0,1)

P
(
u2
i ∈

{[
u2

(`n), q
2
α

]
ord
∩Bn

})
≤ n−

1
2Kε.
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PROOF After adjusting the proof of Lemma 3.15, this lemma can be proven

in the same way as in Vı́̌sek (2015). Let us state the proof also here for com-

pleteness. Fix some ε ∈ (0, 1) and use Lemma 3.15 to find a constant Kε <∞
and nε ∈ N such that for all n > nε and any α ∈ (0, 1) we have q2

α ∈ Iεα,n, the

set

Bn =
⋂

α∈(0,1)

{
ω ∈ Ω : u2

(`n) ∈ Iεα,n
}

satisfies P (Bn) > 1− ε and

sup
α∈(0,1)

P
(
u2
i ∈

{
Iεα,n ∩Bn

})
≤ n−

1
2Kε,

see Equation 3.39, Equation 3.40 and Equation 3.41. Then realize that we have{[
u2

(`n), q
2
α

]
ord
∩Bn

}
⊂
{
I

(ε)
α,n ∩Bn

}
and therefore

sup
α∈(0,1)

P
(
u2
i ∈

{[
u2

(`n), q
2
α

]
ord
∩Bn

})
≤ sup

α∈(0,1)

P
(
u2
i ∈

{
I(ε)
α,n ∩Bn

})
≤ n−

1
2Kε

which concludes the proof.

Q.E.D.

Lemma 3.17. Let {ui}∞i=1, where ui ∈ R, be a sequence of independent random

variables with absolutely continuous distribution functions Fui(z) = Fu(zσ
−1
i )

as specified in the Assumptions 3.1. Then fix some δ ∈ (0, 1). Finally, for some

∆ = ∆(q2
δ ) ∈ (0,∞) let

inf
z∈(0,u2δ+∆)

g(z) > Lg > 0. (3.53)

Then for all ε ∈ (0, 1) there exists a constant K(ε,δ) < ∞ and nε,δ ∈ N such

that for all n > nε,δ we obtain

P

 sup
α∈(δ,1)

∣∣u2
(`n(α)) − q2

α

∣∣ < n−
1
2K(ε,δ)

 > 1− ε.

PROOF To prove this lemma, some adjustments for heteroskedasticity are

again necessary as compared to Vı́̌sek (2015). We can divide the proof into two
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parts, split the absolute value, and show that for all ε ∈ (0, 1) there exists a

constant Kε <∞ such that we have

P

 sup
α∈(δ,1)

u2
(`n) − q2

α < n−
1
2Kε

 > 1− ε, (3.54)

where we again write `n instead of `n(α) for simplicity. Then similarly as

before choose and fix some ε ∈ (0, 1), let W (s) be a Wiener process (see again

Definition 3.2) and find K1 <∞ such that

P

 sup
0≤s≤2

|W (s)| > 1

2
K1

 <
1

2
ε. (3.55)

We can put K(ε) = K1L
−1
g , n∆ = 2 · [K(ε)∆−1]int + 1 and further consider

only n > n∆. Then when we denote

v
(α)
i = I{

u2i≤q2α+n−
1
2K(ε)

} − E
(
I{
u2i≤q2α+n−

1
2K(ε)

}) ,
we can write

an,i = E

(
I{
u2i≤q2α+n−

1
2K(ε)

}) = P
(
u2
i ≤ q2

α + n−
1
2K(ε)

)
,

and we have v
(α)
i = 1 − an,i > 0 if u2

i ≤ q2
α + n−

1
2K(ε) and v

(α)
i = −an,i < 0

otherwise. Let τ
(α)
in be the first time whenWi(s) exits the interval (−an,i, 1−an,i)

and apply Lemma 3.4 to obtain

v
(α)
i =D Wi(τ

(α)
in ),

and similarly as in the proofs of previous lemmas

n−
1
2

n∑
i=1

v
(α)
i =D n−

1
2

n∑
i=1

Wi(τ
(α)
in ) =D W

(
n−1

n∑
i=1

τ
(α)
in

)
, (3.56)

where W (s) is again a Wiener process, such that W (s) is independent from

W = {Wi(s)}∞i=1. Further, let Ui be the first time when Wi(s) exits the in-

terval (−1, 1) and note that {Ui}∞i=1 is a sequence of iid random variables.

Then applying again the last part of Lemma 3.4, we obtain E(Ui) = 1. Since
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(−an,i, 1− an,i) ⊂ (−1, 1), we have

n−1

n∑
i=1

τ
(α)
in ≤ n−1

n∑
i=1

Ui (3.57)

for every α ∈ (δ, 1). Moreover, let us put

Bn =

{
ω ∈ Ω : n−1

n∑
i=1

Ui > 2

}
.

Then for the ε that we have fixed earlier we can find nε > n∆ such that for any

n > nε we have

P (Bn) <
1

2
ε, (3.58)

and similarly as in the proof of Lemma 3.15 we can use Equation 3.55, Equa-

tion 3.56, Equation 3.57, Equation 3.58 and Lemma 3.3 (realizing that the

processes v
(α)
i are again separable) to obtain

P


n− 1

2 sup

α∈(δ,1)

∣∣∣∣∣
n∑
i=1

v
(α)
i

∣∣∣∣∣ > 1

2
K1


 ≤

≤ P


n− 1

2 sup

α∈(δ,1)

∣∣∣∣∣
n∑
i=1

v
(α)
i

∣∣∣∣∣ > 1

2
K1

 ∩Bc
n

+ P (Bn) ≤

≤ P


n− 1

2 sup

α∈(δ,1)

∣∣∣∣∣
n∑
i=1

Wi(τ
(α)
in )

∣∣∣∣∣ > 1

2
K1

 ∩Bc
n

+
1

2
ε =

= P


 sup

α∈(δ,1)

∣∣∣∣∣W
(
n−1

n∑
i=1

τ
(α)
in

)∣∣∣∣∣ > 1

2
K1

 ∩Bc
n

+
1

2
ε ≤

≤ P

 sup
0≤s≤2

|W (s)| > 1

2
K1

 ∩Bc
n

+
1

2
ε < ε.

Define the set Dn =

ω ∈ Ω : n−
1
2 sup
α∈(δ,1)

∣∣∣∑n
i=1 v

(α)
i

∣∣∣ < 1
2
K1

. We have

just derived that P (Dn) ≥ 1 − ε and therefore we have for all α ∈ (δ, 1) with
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probability at least 1− ε

n∑
i=1

I{
u2i≤q2α+n−

1
2K(ε)

} >
n∑
i=1

E

(
I{
u2i≤q2α+n−

1
2K(ε)

})− 1

2
n

1
2K1.

Moreover, we can write

n∑
i=1

E

(
I{
u2i≤q2α+n−

1
2K(ε)

}) =
n∑
i=1

P
(
u2
i ≤ q2

α + n−
1
2K(ε)

)
=

=
n∑
i=1

Gi

(
q2
α + n−

1
2K(ε)

)
= n ·G

(
q2
α + n−

1
2K(ε)

)
≥ n(1− α) + n

1
2K(ε)Lg =

= n(1− α) + n
1
2K1

and therefore we arrive at

n∑
i=1

I{
u2i≤q2α+n−

1
2K(ε)

} > n(1− α) + n
1
2K1 −

1

2
n

1
2K1 = n(1− α) +

1

2
n

1
2K1 > `n,

where the last inequality follows again from the way, how `n was defined. Recall

that we have put `n = [(1− α)n]int.

Therefore there are at least `n squared error terms for which it holds with

probability at least 1−ε that u2
i ≤ q2

α+n−
1
2K(ε). It follows that the `n-th order

statistic is lower than q2
α + n−

1
2K(ε) with probability at least 1− ε (uniformly

for all α ∈ (δ, 1)), which proves Equation 3.54.

The other part of the proof would be done analogically by considering

ṽi
(α) = I{

u2i≥q2α+n−
1
2K(ε)

} − E
(
I{
u2i≥q2α+n−

1
2K(ε)

})

instead of v
(α)
i .

Q.E.D.

Now recall Equation 3.5 and let us denote the density of F̄n,β0(r) by f̄n(r),

i.e. we have

F̄n,β0(r) =
1

n

n∑
i=1

P (|ui| < r) =
1

n

n∑
i=1

(
Fu
(
σ−1
i r
)
− Fu

(
−σ−1

i r
))
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and

f̄n(r) =
1

n

n∑
i=1

σ−1
i

(
fu
(
σ−1
i r
)

+ fu
(
−σ−1

i r
))
.

Then analogically to Lemma 3.17 we can prove Lemma 3.18.

Lemma 3.18. Let {ui}∞i=1, where ui ∈ R, be a sequence of independent random

variables with absolutely continuous distribution functions Fui(z) = Fu(zσ
−1
i )

as specified in the Assumptions 3.1. Then fix some δ ∈ (0, 1). Finally, for some

∆ = ∆(q2
δ ) ∈ (0,∞) and any n ∈ N let

inf
r∈(0,
√
u2δ+∆)

f̄n(r) > Lf > 0. (3.59)

Then for all ε ∈ (0, 1) there exists a constant K(ε,δ) < ∞ and nε,δ ∈ N such

that for all n > nε,δ we obtain

P

 sup
α∈(δ,1)

∣∣∣√u2
(`n(α)) − qα

∣∣∣ < n−
1
2K(ε,δ)

 > 1− ε.

PROOF The proof is analogical to the proof of Lemma 3.17.

Q.E.D.

To be able to derive the asymptotic representation, we further need to know

the probability that the i-th variable in a sequence of n independent variables

is equal to the `-th order statistic. For homoskedastic case this probability is

equal to 1
n
, as was shown in previous publications. The proof for iid variables

can be found also in Vı́̌sek (2015). In what follows, it is sufficient to know

the upper bound of this probability for the case where the variables are not

identically distributed. Let us find it in the following lemma.

Lemma 3.19. Let {ui}∞i=1, where ui ∈ R, be a sequence of independent random

variables with absolutely continuous distribution functions Hi(z). Then for all

n ∈ N, i = 1, ..., n and ` = 1, ..., n we have

P
(
u2
i = u2

(`)

)
≤ c

n
,

where c is some constant satisfying c ≥ 1.
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PROOF Let us realize that we can write

P
(
u2
i = u2

(`)

)
= Eui

(
P
(
u2

(`) = z
)
|u2
i = z

)
.

Then we want to find the probability that ` of the variables are smaller than z.

Let us denote for any k, where 0 ≤ k ≤ n the set of indices 1 ≤ i1, i2, ..., ik ≤ n

by I{i1, i2, .., ik}. Then the required probability is given by∑
I{i1,i2,..,ik}

Hi1(z) ·Hi2(z) · ... ·Hik(z)×

×
[
1−Hik+1

(z)
]
·
[
1−Hik+2

(z)
]
· ... · [1−Hin(z)] ,

where
∑

I{i1,i2,..,ik} is a sum over all k-tuples (` ≤ k ≤ n) of indices from

{1, 2, ..., n} and we can notice the analogy to the probability for homoskedastic

case in Equation 3.11 .Therefore we want to bound the following expression∫ ∞
0

∑
I{i1,i2,..,ik}

Hi1(z) ·Hi2(z) · ... ·Hik(z)×

×
[
1−Hik+1

(z)
]
·
[
1−Hik+2

(z)
]
· ... · [1−Hin(z)]hij(z)dz.

We can notice that since we do not need the exact value, only the upper

bound, we can consider the maximal and minimal distributions, multiplied by

some constant c ≥ 1. Moreover, when considering these extreme distributions,

the sum in the integral becomes the same binomial coefficient as we would

have for the homoskedastic case. We can further bound the density hij(z) by

a density corresponding to the maximal distribution function. Then we obtain

following expression

c ·
∫ ∞

0

(n− 1)!

(`− 1)!(n− `)!
H`−1
max(z)(1−Hmin(z))n−` · hmax(z)dz (3.60)

and we can integrate it by parts. Recall that to integrate by parts we can use

the formula
∫
f ′(z)g(z)dz = f(z)g(z)−

∫
f(z)g′(z)dz. Here we have

f ′(z) =
(n− 1)!

(`− 1)!(n− `)!
H`−1
max(z) · hmax(z)

f(z) =
(n− 1)!

`!(n− `)!
H`
max(z)
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g(z) = (1−Hmin(z))n−`

g′(z) = −(n− `)(1−Hmin(z))n−`−1hmin(z).

Therefore when we integrate Equation 3.60 by parts, we arrive at

c ·
[

(n− 1)!

`!(n− `)!
H`
max(z) · (1−Hmin(z))n−`

]∞
0

+

+ c ·
∫ ∞

0

(n− 1)!

`!(n− `)!
H`
max(z) · (n− `)(1−Hmin(z))n−`−1hmin(z)dz, (3.61)

where the first summand becomes 0 and to bound the second summand we

can replace hmin(z) by hmax(z). After some rearranging, we can conclude that

Equation 3.61 can be bounded by

c ·
∫ ∞

0

(n− 1)!

`!(n− `− 1)!
H`
max(z) · (1−Hmin(z))n−`−1hmax(z)dz.

We can integrate it in the same manner (n− `)-times and we arrive at

P
(
u2
i = u2

(`)

)
≤ c ·

∫ ∞
0

(n− 1)!

(n− 1)!
Hn−1
max(z)hmax(z)dz = c ·

[
1

n
Hn
max(z)

]∞
0

=
c

n
,

which concludes the proof. Note that computations for a concrete distribution

(specifically, results for exponential distribution were obtained) also support

this result.

Q.E.D.

In what follows, we will also need to use Lemma 3.7 and therefore also

Lemma 3.6. These lemmas and corresponding proofs are formulated for iid

variables. However, we can show that we are not able to distinguish the EDF

of the homoskedastic residuals from the EDF of heteroskedastic residuals in

probability. This result follows from Lemma 3.20. Then we will be able to use

Lemma 3.6 and Lemma 3.7 also for the heteroskedastic case in the proof of

Lemma 3.21.

Lemma 3.20. Let {ui}∞i=1 be a sequence of independent random variables with

EDF F
(n)
ui (v) and {u∗i }∞i=1 a sequence of iid random variables with EDF F

(n)
u∗i

(v).

Then we have

sup
v∈IR

√
n
∣∣∣F (n)

ui
(v)− F (n)

u∗i
(v)
∣∣∣ = Op(1).

PROOF To conduct this proof we can use the result from Lemma 3.8. Notice
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that Lemma 3.8 is proven under the assumption of heteroskedasticity. It implies

that it also holds under homoskedasticity, i.e. the EDF of the homoskedastic as

well as heteroskedastic residuals are close in probability to the mean theoretical

distribution function. In mathematical terms we have

sup
v∈IR

√
n
∣∣F (n)

ui
(v)− F̄n(v)

∣∣ = Op(1)

and

sup
v∈IR

√
n
∣∣∣F (n)

u∗i
(v)− F̄n(v)

∣∣∣ = Op(1).

Therefore we can write

sup
v∈IR

√
n
∣∣∣F (n)

ui
(v)− F (n)

u∗i
(v)
∣∣∣ = sup

v∈IR

√
n
∣∣∣F (n)

ui
(v)− F̄n(v) + F̄n(v)− F (n)

u∗i
(v)
∣∣∣ ≤

≤ sup
v∈IR

√
n
∣∣F (n)

ui
(v)− F̄n(v)

∣∣+ sup
v∈IR

√
n
∣∣∣F (n)

u∗i
(v)− F̄n(v)

∣∣∣ = Op(1).

Q.E.D.

Taking into account Lemma 3.19 and Lemma 3.20, we can generalize for

heteroskedasticity another lemma from Vı́̌sek (2015). The adjusted lemma and

corresponding proof then look as follows.

Lemma 3.21. Let {ui}∞i=1 be a sequence of independent random variables with ab-

solutely continuous distribution functions Fui(x) = Fu(xσ
−1
i ) with correspond-

ing densities fui(x) = fu(xσ
−1
i )σ−1

i , as specified in Assumptions 3.1. Further,

let fu(z) be bounded by some finite constant (say by Uf). Moreover, let it be

uniformly locally Lipschitz of the first order in z, i.e. there exists a constant

Kf <∞ and τ > 0 such that for any z1, z2 ∈ R, |z1 − z2| < τ , we have

|fu(z1)− fu(z2)| ≤ Kf · |z1 − z2| .

Finally, let us fix some δ ∈ (0, 1) and let for ∆ = ∆(q2
δ ) ∈ (0,∞)

inf
z∈(0,q2δ+∆)

g(z) > Lg > 0

and

inf
r∈(0,
√
q2δ+∆)

f̄n(r) > Lf > 0
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as in Equation 3.53 and Equation 3.59. Then for all ε > 0 there exists a

constant K(ε,δ) < ∞ and nε,δ ∈ N such that for all n > nε,δ there exists a set

Dn such that P (Dn) > 1− ε,

max
1≤i≤n

sup
α∈(δ,1)

∣∣∣∣∣∣E
I{ui>0} ·

I{
u2i≤u2(`n(α))

} − I{
u2i≤q2

1− `n(α)
n

}
 · I{Dn}


∣∣∣∣∣∣ <

< n−1K(ε,δ) (3.62)

and

max
1≤i≤n

sup
α∈(δ,1)

∣∣∣∣∣∣E
I{ui<0} ·

I{
u2i≤u2(`n(α))

} − I{
u2i≤q2

1− `n(α)
n

}
 · I{Dn}


∣∣∣∣∣∣ <

< n−1K(ε,δ). (3.63)

PROOF First of all note that if ui = 0, the expectation would be equal to 0.

Then let us consider Equation 3.62 and fix some ε > 0. Moreover, denote

B(1)
n =

 sup
α∈(δ,1)

∣∣∣√u2
(`n(α)) − qα

∣∣∣ < n−
1
2 ·Kε,δ

 (3.64)

and

B(2)
n =

 sup
α∈(δ,1)

∣∣u2
(`n(α)) − q2

α

∣∣ < n−
1
2 ·Kε,δ


and put Cn = B

(1)
n ∩ B(2)

n . We can employ Lemma 3.17 and Lemma 3.18 to

find Kε,δ <∞ and nε,δ ∈ N such that for all n > nε,δ we have P (Cn) > 1− ε.
In what follows, let us write in short ` instead of `n(α) for clarity and

denote Di,`,n =
{
ω ∈ Ω : ui(ω) = u(`)(ω)

}
. Lemma 3.19 implies that P (Di,`,n)

is bounded by c
n
, where c ≥ 1 is some constant. When we realize that∣∣∣∣∣I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn}

∣∣∣∣∣ ≤ 1,

we obtain

E

(∣∣∣∣∣I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Di,`,n}

∣∣∣∣∣
)
≤ E

(
I{Di,`,n}

)
≤ c

n
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and therefore ∣∣∣∣∣E
{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn}

}∣∣∣∣∣ =

=

∣∣∣∣∣E
{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dci,`,n}

}
+

+ E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Di,`,n}

}∣∣∣∣∣ ≤
≤

∣∣∣∣∣E
{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dci,`,n}

}∣∣∣∣∣+
c

n
. (3.65)

Let us further recall that
√
u2
i = |ui|. In what follows we will denote the

squared root of the `-th order statistic of the squared disturbances a little

non-tradionally by |u|`, i.e. we have
√
u2
` = |u|`. Then we can write∣∣∣∣∣E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dci,`,n}

}∣∣∣∣∣ =

=

∣∣∣∣∣E|u|`
(
E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dci,`,n}

∣∣∣ |u|` = z

})∣∣∣∣∣ .
Let us now find the upper bound of

E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dci,`,n}

∣∣∣ |u|` = z

}
. (3.66)

First of all, let us realize that we can consider only z ∈
(

0, qδ + n−
1
2 ·Kε,δ

)
when we evaluate this expected value, as there is I{Cn} present in the integral.

To show that, notice that we have for all n > nε,δ and ω ∈ Cn∣∣∣ |u|(`) − q1− `
n

∣∣∣ =
∣∣∣√e2

(`) − u1− `
n

∣∣∣ < n−
1
2 ·Kε,δ

and therefore(
|u|(`), q1− `

n

)
ord

=
(√

u2
(`), q1− `

n

)
ord
⊂
(

0, q1− `
n

+ n−
1
2 ·Kε,δ

)
.

As q2
α is defined as the upper α-quantile of G(z), we have qα < qδ for any

α ∈ (δ, 1). Recall the assumptions of this lemma and define b = qδ + ∆(q2
δ ).
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Then we can find ñε,δ such that for all n > ñε,δ and all α ∈ (δ, 1)we have(√
u2

(`), q1− `
n

)
ord
⊂ (0, b).

Moreover, we can see that

I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dc

i,`,n} = 1 (3.67)

if and only if q1− `
n
< ui <

√
u2

(`) and

I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dc

i,`,n} = −1 (3.68)

if and only if
√
u2

(`) < ui ≤ q1− `
n
.

To be able to find the upper bound of Equation 3.66, we need to know the

conditional density of ui given
√
u2

(`). Let us denote it fui| |u|(`)(v | |u|(`) = z).

Note that to derive this conditional density we need to use a different method

than was used in Vı́̌sek (2015) for homoskedasticity, where the derivation was

based mainly on the proof of Lemma 3.6. Although we can again see some

similarities to Equation 3.11 and Equation 3.12 when deriving the density of

|u|(`), the idea here is somewhat different.

We can realize that as the expectation in Equation 3.66 includes I{Dci,`,n},

we are restricted to the case where
{
ω ∈ Ω : ui(ω) 6= u(`)(ω)

}
. It means that

ui and u(`) are independent and therefore fui| |u|(`)(v | |u|(`) = z) = fui(v). This

implies that if fui(v) is Lipschitz, then the conditional density is Lipschitz

as well, which is what we need in what follows. However, we can show the

independence of ui and u(`) also formally.

By definition, the conditional density is a ratio of the joint density of the

two variables in question and the marginal density of |u|(`). Denote Hi(z) the

distribution function of |ui| and hi(z) the corresponding density. Let us first

find the marginal density of |u|(`).
Similarly as in the proof of Lemma 3.19, we need to find the probability

that at least ` of the variables are smaller than z. Let us denote for any k,

where 0 ≤ k ≤ n the set of indices 1 ≤ i1, i2, ..., ik ≤ n by I{i1, i2, .., ik}. Then
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the required probability is given by

n∑
k=`

∑
I{i1,i2,..,ik}

Hi1(z) ·Hi2(z) · ... ·Hik(z)×

×
[
1−Hik+1

(z)
]
·
[
1−Hik+2

(z)
]
· ... · [1−Hin(z)] ,

where
∑

I{i1,i2,..,ik} is a sum over all k-tuples (` ≤ k ≤ n) of indices from

{1, 2, ..., n}. Let us enlarge the notation in a way that Iij{i1, i2, .., ik} represents

the set of indices 1 ≤ i1, i2, ..., ij−1, ij+1, ..., ik ≤ n for ` ≤ k ≤ n, where ij is the

index of the random variable whose distribution function Hij(z) is derivated to

obtain hij(z). Then the density of |u|(`) is given by

n∑
k=`

∑
Iij {i1,i2,..,ik}

Hi1(z) ·Hi2(z) · ... ·Hij−1
(z) ·Hij+1

(z) · ... ·Hik(z)×

×
[
1−Hik+1

(z)
]
·
[
1−Hik+2

(z)
]
· ... · [1−Hin(z)] ·hij(z), (3.69)

where
∑

Iij {i1,i2,..,ik}
stays for the sum over all (k − 1)-tuples (` ≤ k ≤ n) of

indices from {1, 2, ..., n} and all j, 1 ≤ j ≤ k.

We can further find the joint density of ui and
√
u2

(`). Recall that in this

part of the proof we consider only the case when ui > 0 (due to the presence of

I{ui>0} in Equation 3.66). Therefore we will find the probability that 0 < ui < z′

and at the same time
√
u2

(`) < z. We can consider the cases when z < z′ and

when z′ < z separately. Let us find the joint density for z′ < z, the density for

the other case would be derived analogically.

Let us realize that 0 < ui < z′ has probability Fui(z
′) − Fui(0). Moreover,

since ui < z′ < z, we already have one ui such that |ui| is smaller than z. So

that we obtain
√
u2

(`) < z, we must find at least `−1 other such ui’s. Similarly

as before, we need to find at least k ≥ `−1 out of the remaining n−1 variables

that will be smaller than z. The probability of this event is given by

n−1∑
k=`−1

∑
I{i1,i2,..,ik−1}

Hi1(z) ·Hi2(z) · ... ·Hik−1
(z)×

×
[
1−Hik+1

(z)
]
·
[
1−Hik+2

(z)
]
· ... ·

[
1−Hin−1(z)

]
,

where we have assumed that ik = i, i.e. the observation with the index ik is

the one that we already know is smaller than z. Then the joint distribution
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function of interest is given by

[Fui(z
′)− Fui(0)]·

n−1∑
k=`−1

∑
I{i1,i2,..,ik−1}

Hi1(z)·Hi2(z)·...·Hik−1
(z)×

×
[
1−Hik+1

(z)
]
·
[
1−Hik+2

(z)
]
· ... ·

[
1−Hin−1(z)

]
and the corresponding joint density is given by

n−1∑
k=`−1

∑
Iij {i1,i2,..,ik−1}

Hi1(z) ·Hi2(z) · ... ·Hij−1
(z) ·Hij+1

(z) · ... ·Hik−1
(z)×

×
[
1−Hik+1

(z)
]
·
[
1−Hik+2

(z)
]
· ... ·

[
1−Hin−1(z)

]
·hij(z) ·fui(z′). (3.70)

It follows that the conditional density that we are looking for is given as a ratio

of Equation 3.70 and Equation 3.69. Note that as Hi(z) ∈ (0, 1) for every i

and we can assume hi(z) to be bounded and non-zero, we can conclude that

fui| |u|(`)(v | |u|(`) = z) = C·fui(v) with C <∞ being some normalizing constant.

This would be sufficient for the conditional density to be Lipschitz. However,

it can be shown that C = 1 and therefore the variables are independent. It

suffices to realize that fui(v) is a density and hence
∫∞
−∞ fui(v)dv = 1.

Then recall Equation 3.68 and we can evaluate Equation 3.66 for the case

when
√
u2

(`) = z < q1− `
n

as

E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dci,`,n}

∣∣∣ |u|` = z

}
=

= −
∫ q

1− `n

z

fui| |u|(`)(z
′ | |e|(`) = z)dz′ = −

∫ q
1− `n

z

fui| |u|(`)(q1− `
n
| |u|(`) = z)dz′−

−
∫ q

1− `n

z

{
fui| |u|(`)(z

′ | |u|(`) = z)− fui| |u|(`)(q1− `
n
| |u|(`) = z)

}
dz′

= −fui| |u|(`)(q1− `
n
| |u|(`) = z)

(
q1− `

n
− z
)

+Rn1(z). (3.71)

As we derived that the conditional density is Lipschitz of the first order, we

have ∣∣∣fui| |u|(`)(z′ | |u|(`) = z)− fui| |u|(`)(q1− `
n
| |u|(`) = z)

∣∣∣ ≤
≤ K̃f ·

∣∣∣z′ − q1− `
n

∣∣∣ ≤ K̃f ·
∣∣∣z − q1− `

n

∣∣∣ ,
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where the last inequality follows from the fact that z′ ∈
(
z, q1− `

n

)
. Then we

obtain

|Rn1(z)| ≤ K̃f ·
∣∣∣z − q1− `

n

∣∣∣ ∫ q
1− `n

z

1dz′ ≤ K̃f ·
[
q1− `

n
− z
]2

.

When we further recall Equation 3.64, we find that for all n > nε,δ and for all

ω ∈ Cn
|Rn1(z)| ≤ n−1 · K̃f ·K2

ε,δ. (3.72)

Analogically we can recall Equation 3.67 and evaluate Equation 3.66 for the

case when
√
u2

(`) = z > q1− `
n

as

E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dc

i,`,n}
∣∣∣ |u|` = z

}
=

= fui| |u|(`)(q1− `
n
| |u|(`) = z)

(
q1− `

n
− z
)

+Rn2(z). (3.73)

Similarly as before we obtain for all n > nε,δ and for all ω ∈ Cn

|Rn2(z)| ≤ n−1 · K̃f ·K2
ε,δ. (3.74)

Then we can employ Lemma 3.7 to find a constant K∗ε,δ <∞ and n′ε,δ > nε,δ

such that for all n > n′ε,δ the density of q̂1− `
n

=
√
u2

(`) can be written as

hn,α(q) = h∗n,α(q) + ρn,α(q),

where

sup
α∈(δ,1)

sup
|q|≤Kε,δ

|ρn,α(q)| ≤ n−
1
2 ·K∗ε,δ,

where recalling the expressions in Lemma 3.7 we put K = K∗ε,δ and we can

notice that the density h∗n,α(q) is (uniformly in n ∈ N, q ∈ R and in α ∈ (0, 1))

bounded by some constant Uh <∞. Then we can write

E|u|`

(
E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dc

i,`,n}
∣∣∣ |u|` = z

})
=

= −
∫ q

1− `n

q
1− `n
−n−

1
2 ·Kε,δ

[
fui| |u|(`)(q1− `

n
| |u|(`) = z)

(
q1− `

n
− z
)

+Rn1(z)
]
×

×
[
h∗n,α(z) + ρn,α(z)

]
dz+
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+

∫ q
1− `n

+n−
1
2 ·Kε,δ

q
1− `n

[
fui| |u|(`)(q1− `

n
| |u|(`) = z)

(
z − q1− `

n

)
+Rn2(z)

]
×

×
[
h∗n,α(z) + ρn,α(z)

]
dz.

It follows that for any pair of z∗, z∗∗, where z∗ ∈
[
q1− `

n
− n− 1

2 ·Kε,δ, q1− `
n

]
and

z∗∗ ∈
[
q1− `

n
, q1− `

n
+ n−

1
2 ·Kε,δ

]
, satisfying q1− `

n
− z∗ = z∗∗ − q1− `

n
, we obtain

fui| |u|(`)(q1− `
n
| |u|(`) = z)

(
q1− `

n
− z∗

)
· h∗n,α(z∗) =

= fui| |u|(`)(q1− `
n
| |u|(`) = z)

(
z∗∗ − q1− `

n

)
· h∗n,α(z∗∗).

Then we can combine Equation 3.71, Equation 3.72, Equation 3.73 and Equa-

tion 3.74 to obtain∣∣∣∣∣E|u|`
(
E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Cn} · I{Dc

i,`,n}
∣∣∣ |u|` = z

})∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∫ q

1− `n

q
1− `n
−n−

1
2Kε,δ

fui| |u|(`)(q1− `
n
| |u|(`) = z)

(
q1− `

n
− z
)
· ρn,α(z)dz

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
∫ q

1− `n

q
1− `n
−n−

1
2Kε,δ

Rn1(z) · [Uh + ρn,α(z)] dz

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
∫ q

1− `n
+n−

1
2Kε,δ

q
1− `n

fui| |u|(`)(q1− `
n
| |u|(`) = z)

(
q1− `

n
− z
)
· ρn,α(z)dz

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
∫ q

1− `n
+n−

1
2Kε,δ

q
1− `n

Rn2(z) · [Uh + ρn,α(z)] dz

∣∣∣∣∣∣ ≤
≤
{
Uf · n−

1
2 ·Kε,δ · n−

1
2 ·K∗ε,δ + n−1 · K̃f ·K2

ε,δ ·
[
Uh + n−

1
2 ·K∗ε,δ

]}
×

×


∫ q

1− `n

q
1− `n
−n−

1
2Kε,δ

1dz +

∫ q
1− `n

+n−
1
2Kε,δ

q
1− `n

1dz

 =

=
{
Uf · n−1 ·Kε,δ ·K∗ε,δ + n−1 · K̃f ·K2

ε,δ ·
[
Uh + n−

1
2 ·K∗ε,δ

]}
×

×
{

2 · n−
1
2Kε,δ

}
≤ n−

3
2 · C ′,
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where C ′ is a finite constant. Therefore we can conclude that

sup
α∈(δ,1)

∣∣∣∣∣E|u|`
(
E

{
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
×

×I{Cn} · I{Dc
i,`,n}

∣∣∣ |u|` = z

})∣∣∣∣ ≤ n−
3
2 ·C ′

and together with Equation 3.65 this proves Equation 3.62. Equation 3.63 can

be proven analogically. This concludes the proof.

Q.E.D.

Using all the previous results, we can now prove the last lemma needed to

find the asymptotic representation of the LWS estimator. Notice that in what

follows, we write
(
β̂(LWS,n,w) − β0

)
, although we assumed β0 = 0. This is to

obtain the usual form of the asymptotic representation.

Lemma 3.22. Let Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 hold. Then

we can show that
1√
n

n∑
i=1

w
(
F̄n,β0(|ui|)

)
·Xiui =

=
1

n

n∑
i=1

w
(
F̄n,β0(|ui|)

)
·XiX

′
i ·
{√

n
(
β̂(LWS,n,w) − β0

)}
+ op(1).

PROOF After adjusting all the previoius lemmas for heteroskedasticity, the

proof of this lemma can be done almost in the same way as it was done in

Vı́̌sek (2015). Only a few more adjustements are necessary. First of all, recall

Equation 3.38. Then we can write

1√
n

n∑
`=1

w∗`

n∑
i=1

Xi

(
Yi −X ′iβ0

)
I{
u2i≤u2(`)

} = (3.75)

=
1√
n

n∑
`=1

w∗`

n∑
i=1

XiX
′
i

(
β̂(LWS,n,w) − β0

)
· I{

u2i≤u2(`)
} + op(1), (3.76)

where Equation 3.75 can be rewritten as

1√
n

n∑
`=1

w∗`

n∑
i=1

Xiui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]

+ (3.77)

+
1√
n

n∑
`=1

w∗`

n∑
i=1

Xiui · I{
u2i≤q21− `n

}.
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We will first consider the case when j = 2, ..., p, i.e. for now we do not take

the intercept into account. Then using Chebyshev inequality we obtain for the

expression in Equation 3.77 and any ε > 0

P

(
1√
n

∣∣∣∣∣
n∑
`=1

w∗`

n∑
i=1

Xijui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ > ε

)
≤

≤ 1

ε2n
E

{ n∑
`=1

w∗`

n∑
i=1

Xijui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]}2

 =

=
1

ε2n
E

{ n∑
i=1

Xijui ·
n∑
`=1

w∗`

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]}2

 . (3.78)

Further realize that E(Xij) = 0 for all j = 2, ..., p and that Xi is independent

from ui (see Assumptions 3.1). Therefore for any j = 2, ..., p and for any pair

i, k, such that i = 1, ..., n, k = 1, ..., n, i 6= k we obtain

E

{
Xijui ·

n∑
`=1

w∗`

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
×

×Xkjuk ·
n∑
`=1

w∗`

[
I{
u2k≤u

2
(`)

} − I{
u2k≤q

2

1− `n

}
]}

=

= E (Xij)·E (Xkj)·E

{
ui ·

n∑
`=1

w∗`

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
×

×uk ·
n∑
`=1

w∗`

[
I{
u2k≤u

2
(`)

} − I{
u2k≤q

2

1− `n

}
]}

= 0.

It follows that Equation 3.78 is further equal to

1

ε2n

n∑
i=1

E(X2
ij) · E

{ui · n∑
`=1

w∗`

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]}2

 =

=
1

ε2n

n∑
i=1

E(X2
ij)·E

{
u2
i ·

n∑
`=1

w∗` ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
×

×
n∑

m=1

w∗m ·

[
I{
u2i≤u2(m)

} − I{
u2i≤q21−mn

}
]}
≤
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≤ 1

ε2n

n∑
i=1

E(X2
ij)·E

{
u2
i ·

n∑
`=1

w∗` ·

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣×

×
n∑

m=1

w∗m ·

∣∣∣∣∣I{u2i≤u2(m)

} − I{
u2i≤q21−mn

}
∣∣∣∣∣
}
. (3.79)

Moreover, let us realize that

∣∣∣∣∣I{u2i≤u2(m)

} − I{
u2i≤q21−mn

}
∣∣∣∣∣ ≤ 1 and simultaneously

∑n
m=1w

∗
m = 1. Therefore we have

∑n
m=1w

∗
m ·

∣∣∣∣∣I{u2i≤u2(m)

} − I{
u2i≤q21−mn

}
∣∣∣∣∣ ≤ 1

and the expression after the last inequality in Equation 3.79 can be bounded

by

1

ε2n

n∑
i=1

E(X2
ij) · E

{
u2
i ·

n∑
`=1

w∗` ·

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣
}

=

=
1

ε2n

n∑
`=1

w∗`

n∑
i=1

E(X2
ij) · E

{
u2
i ·

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣
}
. (3.80)

Now we can notice that as u2
i is always positive, we can use Hölder´s in-

equality. Therefore the expression inEquation 3.80 can be further bounded

by

1

ε2n

n∑
`=1

w∗`

n∑
i=1

E(X2
ij)
{
E
(
|ui|2q

′
)} 1

q′

E
∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}

∣∣∣∣∣
q′′


1
q′′

≤

≤ sup
i

1

ε2

n∑
`=1

w∗`E(X2
ij) ·
{
E
(
|ui|2q

′
)} 1

q′ ×

×

{
E

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣
} 1

q′′

. (3.81)

For q′ see the Assumptions 3.7 and note that if 1
q′

+ 1
q′′

= 1 and q′ > 1, then

also q′′ > 1. Moreover, realize that∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣
q′′

=

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣ .

We can further employ Lemma 3.15 to find a constant K <∞ and n′ ∈ N
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such that for all n > n′ we have

sup
i
E

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣ < n−

1
2K.

This result, together with the Assumptions 3.7, implies that Equation 3.81 can

be bounded by

sup
i
K

1
q′′ ε−2n

− 1
2q′′

n∑
`=1

w∗`E(X2
1j) ·

{
E
(
|ui|2q

′
)} 1

q′
= Op(n

− 1
2q′′ ).

It remains to consider the case when j = 1, i.e. we consider the intercept.

As we have Xi1 = 1 for all i, we can rewrite the expression in Equation 3.77 as

1√
n

n∑
`=1

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
. (3.82)

Let us show that it also is bounded in probability. We can employ Lemma

3.15 to find a constant K̃(ε) < ∞ and n′ ∈ N such that for all n > n′ and all

` = 1, ..., n there exists an interval Iε
1− `

n
,n

such that

q2
1− `

n

∈ Iε
1− `

n
,n
,

P

 ⋂
`=1,...,n

{
ω ∈ Ω : u2

(`) ∈ Iε1− `
n
,n

} > 1− ε

4
,

and for all i = 1, 2, ..., n we have

E
[
|ui| · I(ε)

1− `
n
,n

]
≤ n−

1
2 K̃(ε).

Denote the set

 ⋂
`=1,...,n

{
ω ∈ Ω : u2

(`) ∈ Iε1− `
n
,n

} by Bn. Then we have for

any ω ∈ Bn [
u2

(`), q
2
1− `

n
,n

]
ord
⊂ Iε

1− `
n
,n
. (3.83)

Let us further choose and fix some ε > 0 and some θ > 0. Then we can

find α0 ∈ (0, 1) and n0 ∈ N such that w(n0−1
n0
− α0) ≤ ε·θ

8·K̃(ε) . Moreover, for

all n > n0 we have n0−1
n0

< n−1
n

and hence w(n0−1
n0
− α0) > w(n−1

n
− α0), and
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therefore

n∑
`=`n(α0)

w∗` = w

(
[(1− α0)n]int − 1

n

)
≤ w

(
n− 1

n
− α0

)
≤ ε · θ

8 · K̃(ε)

and we can split Equation 3.82 in two parts, so that we arrive at

1√
n

`n(α0)∑
`=1

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]

+ (3.84)

+
1√
n

n∑
`=`n(α0)

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
. (3.85)

We can show that both of these summands are small in probability. Let us

consider the summand in Equation 3.85 first. We can write

P

 1√
n

∣∣∣∣∣∣
n∑

`=`n(α0)

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣∣ > θ

 =

= P

 1√
n

∣∣∣∣∣∣
n∑

`=`n(α0)

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
·
[
I{Bn} + I{Bcn}

]∣∣∣∣∣∣ > θ

 ≤
≤ P

 1√
n

∣∣∣∣∣∣
n∑

`=`n(α0)

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Bn}

∣∣∣∣∣∣ > θ

2

+

+P

 1√
n

∣∣∣∣∣∣
n∑

`=`n(α0)

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Bcn}

∣∣∣∣∣∣ > θ

2

 ≤
≤ P

 1√
n

∣∣∣∣∣∣
n∑

`=`n(α0)

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{Bn}

∣∣∣∣∣∣ > θ

2

+
ε

4
≤

≤ P

 1√
n

n∑
`=`n(α0)

w∗`

n∑
i=1

|ui| ·

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣ · I{Bn} > θ

2

+
ε

4
.

As

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣ = 1 if and only if u2

i ∈
[
u2

(`), q
2
1− `

n
,n

]
ord

, due to
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Equation 3.83 we can conclude that

P

 1√
n

n∑
`=`n(α0)

w∗`

n∑
i=1

|ui| ·

∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣ · I{Bn} > θ

2

 ≤

≤ P

 1√
n

n∑
`=`n(α0)

w∗`

n∑
i=1

|ui| · Iε1− `
n
,n
· I{Bn} >

θ

2

 .

Moreover, when we use Markov inequality, we find that this can be further

bounded by

E

 2

θ
√
n

n∑
`=`n(α0)

w∗`

n∑
i=1

|ui| · Iε1− `
n
,n
· I{Bn}

 ≤
≤ 2

θ
√
n

n∑
`=`n(α0)

w∗`

n∑
i=1

E
(
|ui| · Iε1− `

n
,n

)
≤ 2

θn

n∑
`=`n(α0)

w∗`

n∑
i=1

K̃(ε) =

=
2nK̃(ε)

θn

n∑
`=`n(α0)

w∗` ≤
ε

4

and we can conclude that

P

 1√
n

∣∣∣∣∣∣
n∑

`=`n(α0)

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣∣ > θ

 ≤ ε

2
.

Now we can turn to the summand in Equation 3.84 and write it as

1√
n

`n(α0)∑
`=1

w∗`

n∑
i=1

[
ui − q1− `

n

]
· I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]

+ (3.86)

+
1√
n

`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]

+ (3.87)

+
1√
n

`n(α0)∑
`=1

w∗`

n∑
i=1

[
ui − q1− `

n

]
· I{ui<0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]

+ (3.88)

+
1√
n

`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui<0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
. (3.89)

Then these four parts can be treated separately. We want to show that each
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of them is in probability smaller than ε
8
. Let us first consider the expression in

Equation 3.86. We can realize that due to the definition of `n(α) we have for

all α ∈ (α0, 1)

1− `n(α)

n
= 1− [(1− α)n]int

n
≥ 1− (1− α)n

n
= α ≥ α0

and consequently for all n ∈ N and all ` = 1, ..., `n(α0)

q2
1− `

n

≤ q2
α0
. (3.90)

Further put δ = α0 (i.e. q2
δ = q2

α0
) and define

B1
n = sup

α∈(α0,1)

∣∣∣√u2
(`n(α)) − qα

∣∣∣ < n−
1
2K∗ε,δ (3.91)

and

B2
n = sup

α∈(α0,1)

∣∣u2
(`n(α)) − q2

α

∣∣ < n−
1
2K∗ε,δ.

Then recall Lemma 3.17 and Lemma 3.18. Employing these lemmas we can

find (for ε that we have fixed before) K∗ε,δ < ∞ and n∗ε,δ ∈ N such that for all

n > n∗ε,δ, when we put B̃n = B1
n ∩B2

n, we obtain

P
(
B̃n

)
> 1− ε

16
.

Moreover, we can employ Lemma 3.16 and find K∗∗ε,δ < ∞ and n∗∗ε,δ ∈ N such

that for all n > n∗∗ε,δ there exists a set Cn with probability at least 1− ε
16

such

that

P

({∣∣∣∣I{u2i≤u2(`n(α))

} − I{u2i≤q2α}
∣∣∣∣ = 1

}
∩ I{Cn}

)
< n−

1
2 ·K∗∗ε,δ. (3.92)

Put Kε,δ = max{K∗ε,δ, K∗∗ε,δ}, nε,δ = max{n∗ε,δ, n∗∗ε,δ, 322θ−2ε−2K4
ε,δ}, denote

Dn = B̃n ∩Cn, and in what follows, consider only n > nε,δ. Notice that for the

set Dn we obtain P (Dn) > 1− ε
16

. Then we get for Equation 3.86

P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

[
ui − q1− `

n

]
· I{ui>0}×
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×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

})
≤

≤ P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

[
ui − q1− `

n

]
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

2

}
∩Dn

)
+

+P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

[
ui − q1− `

n

]
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

2

}
∩Dc

n

)
≤

≤ 2

θn

`n(α0)∑
`=1

w∗`

n∑
i=1

Kε,δ · E

(∣∣∣∣∣I{u2i≤u2(`)} − I{u2i≤q21− `n}
∣∣∣∣∣
)

+
ε

16
≤

≤ 2

θn
3
2

`n(α0)∑
`=1

w∗`

n∑
i=1

K2
ε,δ +

ε

16
=

2

θn
1
2

K2
ε,δ

`n(α0)∑
`=1

w∗` +
ε

16
≤ ε

8
,

where we have again used the Markov inequality, Equation 3.91 and Equa-

tion 3.92. Equation 3.88 can be treated similarly and we obtain an analogical

result. For Equation 3.87 we obtain

P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

})
≤

≤ P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

2

}
∩Dn

)
+

+P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×
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×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

2

}
∩Dc

n

)
≤

≤ P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

2

}
∩Dn

)
+
ε

16
.

To find the upper bound of this expression let us employ Lemma 3.21 and

find a constant K̃ε,δ <∞ and ñε,δ ∈ N such that for all n > ñε,δ there exists a

set An for which we have P (An) > 1− ε
32

and

max
1≤i≤n

sup
α∈(θ,1)

∣∣∣∣∣∣E
I{ui>0} ·

I{
u2i≤u2(`n(α))

} − I{
u2i≤q2

1− `n(α)
n

}
 · I{An}


∣∣∣∣∣∣ < n−1·K̃(ε,δ).

When we put ñ∗ε,δ = max

{
ñε,δ,

[
128
θ·ε qα0 · K̃ε,δ

]2
}

and from now on consider

only n > ñ∗ε,δ, then recalling Equation 3.90, we have

P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

2

}
∩Dn

)
≤

≤ P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

4

}
∩Dn ∩ An

)
+

+P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

4

}
∩Dn ∩ Acn

)
≤
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≤ P

ω ∈ Ω :
1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
· I{ui>0}×

×

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ < θ

4

}
∩Dn ∩ An

)
+
ε

32
≤

≤ 4

θ
√
n

`n(α0)∑
`=1

w∗`

n∑
i=1

q1− `
n
·E

(
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
×

×I{Dn} · I{An}
)

+
ε

32
≤

≤ 4

θ
√
n

`n(α0)∑
`=1

w∗` qα0

n∑
i=1

E

(
I{ui>0} ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]
· I{An}

)
+

ε

32
≤

≤ 4

θ
√
n

`n(α0)∑
`=1

w∗` qα0

n∑
i=1

n−1 · K̃(ε,δ) +
ε

32
≤ 4

θ
√
n
qα0K̃(ε,δ) +

ε

32
≤ ε

16
.

Equation 3.89 can be again treated analogically. Then we can conclude that

P

 1√
n

∣∣∣∣∣∣
`n(α0)∑
`=1

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣∣ > θ

 ≤ ε

2

and hence

P

(
1√
n

∣∣∣∣∣
n∑
`=1

w∗`

n∑
i=1

ui ·

[
I{
u2i≤u2(`)

} − I{
u2i≤q21− `n

}
]∣∣∣∣∣ > θ

)
≤ ε.

From what we have derived it follows that we can write Equation 3.75 as

1√
n

n∑
`=1

w∗`

n∑
i=1

Xi

(
Yi −X ′iβ0

)
I{
u2i≤u2(`)

} =

=
1√
n

n∑
`=1

w∗`

n∑
i=1

Xiui · I{
u2i≤q21− `n

} + op(1) =

=
1√
n

n∑
i=1

Xiui

n∑
`=1

w∗` · I{
u2i≤q21− `n

} + op(1).

When we further recall Equation 3.35 and Equation 3.36, we obtain

n∑
`=1

w∗` · I{
u2i≤q21− `n

} =
n∑

`=`
(i)
n

[
w

(
`− 1

n

)
− w

(
`

n

)]
= w

(
`

(i)
n − 1

n

)
,
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where we denote by `
(i)
n the smallest ` for which u2

i < q2
1− `

n

. This implies that

u2
i ≥ q2

1− `
(i)
n −1
n

. Therefore we have

q2

1− `
(i)
n −1
n

≤ u2
i < q2

1− `
(i)
n
n

and consequently

q
1− `

(i)
n −1
n

≤ |ui| < q
1− `

(i)
n
n

.

As qα is the upper α-qualtile of the function F̄n,β0(z) and this function is con-

tinuous from the left, we have

1− `
(i)
n − 1

n
= F̄n,β0

(
q

1− `
(i)
n −1
n

)
≤ F̄n,β0 (|ui|) ≤ F̄n,β0

(
q

1− `
(i)
n
n

)
= 1− `

(i)
n

n

and considering that the weight function w is monotone, we have also

w

(
1− `

(i)
n

n

)
≤ w

(
F̄n,β0 (|ui|)

)
≤ w

(
1− `

(i)
n − 1

n

)
.

Taking into account all these results and the boundedness of w′(α), we arrive

at
n∑
`=1

w∗` · I{
u2i≤q21− `n

} = w
(
F̄n,β0 (|ui|)

)
+ o

(
1

n

)
and therefore Equation 3.75 can be written as

1√
n

n∑
i=1

Xiui

n∑
`=1

w∗` · I{
u2i≤q21− `n

} + op(1) =
1√
n

n∑
i=1

w
(
F̄n,β0 (|ui|)

)
Xiui + op(1).

Let us now return to Equation 3.76 and consider the first term. When we

take into account Equation 3.37, we can write

1√
n

n∑
`=1

w∗`

n∑
i=1

XiX
′
i

(
β̂(LWS,n,w) − β0

)
· I{

u2i≤u2(`)
} =

=
1

n

n∑
i=1

XiX
′
i

n∑
`=1

w∗` I
{
u2i≤u2(`)

} · {√n(β̂(LWS,n,w) − β0
)}

=

=
1

n

n∑
i=1

w
(
F

(n)

β0 (|ui|)
)
XiX

′
i ·
{√

n
(
β̂(LWS,n,w) − β0

)}
=
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=
1

n

n∑
i=1

[
w
(
F

(n)

β0 (|ui|)
)
− w

(
F̄n,β0 (|ui|)

)]
XiX

′
i ·
{√

n
(
β̂(LWS,n,w) − β0

)}
+

+
1

n

n∑
i=1

w
(
F̄n,β0 (|ui|)

)
XiX

′
i ·
{√

n
(
β̂(LWS,n,w) − β0

)}
.

Then we can employ Lemma 3.8 and the assumption that the weight function

is Lipschitz and we get∥∥∥∥∥ 1

n
3
2

n∑
i=1

√
n
[
w
(
F

(n)

β0 (|ui|)
)
− w

(
F̄n,β0 (|ui|)

)]
XiX

′
i×

×
{√

n
(
β̂(LWS,n,w) − β0

)}∥∥∥ ≤
≤ 1

n
1
2

sup
r∈R

√
n
∣∣∣w (F (n)

β0 (r)
)
− w

(
F̄n,β0 (r)

)∣∣∣·n−1

n∑
i=1

‖Xi‖·‖Xi‖×

×
{√

n
(
β̂(LWS,n,w) − β0

)}
≤

≤ 1

n
1
2

Lw·n−1

n∑
i=1

‖Xi‖·‖Xi‖·
{√

n
(
β̂(LWS,n,w) − β0

)}
·Op(1) = Op(n

− 1
2 ) = op(1),

where we used the
√
n-consistency of the LWS estimator from Lemma 3.2. This

concludes the proof.

Q.E.D.

Finally, using this result, we can find the asymptotic representation of LWS

estimator under the assumption of heteroskedasticity. The formula for the

asymptotic representation is given in Theorem 3.1.

Theorem 3.1. Let the Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 hold.

Moreover, let Q = E
{
w(F̄β0(|u|))X1X

′
1

}
. Then

√
n
(
β̂(LWS,n,w) − β0

)
= Q−1 · 1√

n

n∑
i=1

w
(
F̄n,β0 (|ui|)

)
Xiui + op(1). (3.93)

PROOF Let us realize that

lim

n→∞

1

n

n∑
i=1

w
(
F̄n,β0 (|ui|)

)
XiX

′
i = Q a.s.
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and that Q is positive definite and therefore regular. Then the proof follows

directly from Lemma 3.22.

Q.E.D.



Chapter 4

Simulation study

This chapter provides a numerical study that illustrates the results derived in

previous chapter. The study is based on Monte Carlo method and was im-

plemented in MATLAB. The chapter is divided in three sections. The first

section explains the setup of the simulations. The second section provides re-

sults for homoskedastic residuals and is included only for complexity, therefore

the results are not discussed in detail. The results of simulations of the main

result of this thesis, i.e. the asymptotic representation of LWS estimator under

heteroskedasticity, are provided in the third section.

4.1 Setup of the simulation study

To be able to conduct the simulation study, we first generate the matrix of

explanatory variables X and the vector of error terms. These data are generated

according to normal distribution. The errors are first generated with constant

variance, which is used in the second section. To obtain heteroskedastic error

terms used in the third section, we further multiply it by a random number for

every observation i.

The second and third section are further divided in two subsections, based

on the way how the data were contaminated (outliers or leverage points). To

obtain the contaminated data, we define a threshold and contaminate all the

observations behind this threshold. Therefore in this study we consider the

case where the contamination influences the observations that are in the tails,

not in the centre of the bulk of data. This way of contamination is also the

reason for the percentage of contaminated data not to be an integer (e.g. in

the second section we have 15.09% instead of exactly 15%). The outliers are
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obtained by multiplying the response variable by 15 (for the observations that

are behind the threshold). The leverage points are obtained by multiplying

the explanatory variable by 10 and then taking negative value of the resulting

response variable to ensure that the leverage points are bad (of course again

for the observations that are behind the threshold).

Each of the subsections contains results for several levels of contamination.

The considered levels of contamination are 0%, 0.5%, 1%, 2%, 5%, 10% and

15%. Note that to obtain good results for significantly higher percentage of

contamination with the method of LWS we would need to adjust the weight

function.

The model used in the next two sections looks as follows

Yi = β0
jXij + ui

where i = 1, ..., n, j = 1, ..., p. The number of observations is set to n = 500 and

the number of variables is p = 5, with j = 1 representing the intercept. As the

number of repetitions to get the mean estimate stated in the table we choose

m = 500. The vector of true coefficients is set to β0 = (2, 4, 5,−3,−6)′. For

every considered case (homoskedasticity/heteroskedasticity, outliers/leverage

points, percentage of contamination) we estimate the coefficients using the

methods of OLS and LWS for comparison of classical and robust methods, and

provide the results for the asymptotic representation to illustrate how well it

represents the LWS estimator. This procedure (along with estimating the mean

squared error (MSE)) is repeated for every k = 1, ...,m and then we take the

mean values of these m repetitions to obtain the desired values. The estimators

for each k are then used to obtain the empirical distributions of the estimators,

which can be seen in the figures in Section 4.3.

The resulting estimators in the tables in the next sections are denoted

β̂(OLS,n) for the estimator obtained by the method of OLS, β̂(LWS,n,w) for the

estimator obtained by the method of LWS (see the algorithm described in Sec-

tion 2.3), and β̂(AR,n,w) for the estimator obtained from the asymptotic represen-

tation (see the formula derived in Section 3.2). The number in the parentheses

stated in the lower index next to each of the estimates is the MSE.1

Overall, we can see in the following sections that the asymptotic represen-

tation has lower MSE than the LWS estimator. This is due to the construction

1Note that we could alternatively use the variance instead of MSE. However, the MSE is
more appropriate here, as it accounts also for the bias.
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of the asymptotic representation - in the simulations we omit the op(1) term

that goes in probability to 0 (see Equation 3.93). This does not influence the

estimator, but it causes the MSE to be somewhat lower.

As was shown in previous studies, an important feature of a study including

LWS estimator is the choice of weight function. In what follows, we use a weight

function based on Tukey´s ρ, similarly as in Campbell & Rousseeuw (1998).

The Tukey´s weight function can be also found in Hampel et al. (1986) and

was also used e.g. in Gervini & Yohai (2002). We define the weight function

in a way that 5% of the data with largest squared residuals are assigned w = 0

and therefore are omitted. 80% of the data with smallest squared residuals are

assigned w = 1 and the remaining 15% of observations are assigned decreasing

weights. Then we can continue with the results.

4.2 Homoskedastic errors

Let us first consider homoskedastic error terms. As was mentioned above,

these results are provided just for completeness, therefore the details, such as

the distribution of the resulting estimators, are studied only in the next section

containing results for heteroskedastic residuals. We can divide this section

according to the type of contamination as follows.

4.2.1 Outliers

As the titles hint, this subsection provides results for homoskedastic residuals,

where the data were contaminated by outliers (in a way that was described

in the first section). In Table 4.1 we can see that with homoskedastic errors

and no contamination both the estimation methods, as well as the asymptotic

representation, give reasonable results. We can notice that the method of OLS

results in a more efficient estimator than the method of LWS, as the MSE is

lower.

Table 4.2 suggests that even for a very small percentage of contamination

the method of OLS gives misleading results. On the contrary, the results for

both the LWS estimator and the asymptotic representation stay basically the

same.

Similiar results follow from Table 4.3, Table 4.4 and Table 4.5, where we

can see that the OLS estimator worsens with increasing level of contamination,

as compared to the LWS estimator and the asymptotic representation.
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Table 4.1: Homoskedastic errors, 0% of contamination

Level of contamination= 0.00%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 2.000(0.0006) 4.000(0.0006) 4.999(0.0005) −2.999(0.0005) −6.000(0.0005)

β̂(LWS,n,w) 2.001(0.0010) 4.000(0.0009) 4.999(0.0009) −2.998(0.0009) −6.000(0.0010)

β̂(AR,n,w) 2.000(0.0003) 4.000(0.0003) 5.000(0.0003) −2.999(0.0003) −6.000(0.0004)

Source: author’s computations.

Table 4.2: Homoskedastic errors, cca 0.5% of outliers

Level of contamination= 0.48%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 2.562(2.2148) 4.977(3.2634) 6.229(4.2790) −3.789(2.8953) −7.595(5.7385)

β̂(LWS,n,w) 2.000(0.0009) 3.999(0.0009) 5.000(0.0010) −3.000(0.0009) −6.000(0.0010)

β̂(AR,n,w) 2.000(0.0003) 3.999(0.0003) 5.000(0.0003) −3.000(0.0003) −6.000(0.0003)

Source: author’s computations.

Table 4.3: Homoskedastic errors, cca 1% of outliers

Level of contamination= 1.00%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 2.855(3.6808) 5.859(7.6102) 7.453(10.3405) −4.417(5.2507) −8.954(14.4261)

β̂(LWS,n,w) 1.999(0.0008) 4.000(0.0010) 4.999(0.0009) −3.002(0.0009) −6.000(0.0009)

β̂(AR,n,w) 2.000(0.0003) 4.000(0.0004) 4.999(0.0004) −3.001(0.0003) −6.000(0.0003)

Source: author’s computations.

Table 4.4: Homoskedastic errors, cca 2% of outliers

Level of contamination= 1.97%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 3.720(7.8628) 7.490(18.8485) 9.272(25.1469) −5.400(10.3779) −11.110(34.1601)

β̂(LWS,n,w) 2.000(0.0009) 4.000(0.0009) 5.001(0.0009) −3.001(0.0009) −6.000(0.0009)

β̂(AR,n,w) 2.000(0.0003) 4.000(0.0004) 5.000(0.0004) −3.001(0.0004) −6.000(0.0004)

Source: author’s computations.
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Table 4.5: Homoskedastic errors, cca 5% of outliers

Level of contamination= 4.94%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 5.768(22.7668) 10.963(58.4090) 14.098(93.8538) −8.616(40.2529) −17.209(137.1784)

β̂(LWS,n,w) 1.999(0.0008) 4.000(0.0008) 5.001(0.0008) −3.001(0.0008) −6.001(0.0009)

β̂(AR,n,w) 1.999(0.0004) 4.000(0.0004) 5.001(0.0004) −3.001(0.0004) −6.000(0.0004)

Source: author’s computations.

As the percentage of contamination exceeds the 5% boundary and we get to

the decreasing part of the weight function, the LWS estimator starts to worsen

as well (as some of the contaminated observations influence the estimator,

even though with weight lower than w = 1). This phenomenon can be seen

in Table 4.6 and Table 4.7. Note that although the MSE of β̂(AR,n,w) slightly

increases, the asymptotic representation is not influenced as much as the LWS

estimator.

Table 4.6: Homoskedastic errors, cca 10% of outliers

Level of contamination= 10.02%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 8.626(53.5158) 17.338(190.5969) 21.502(287.3661) −12.950(109.9162) −26.020(418.9173)

β̂(LWS,n,w) 2.064(0.0654) 4.134(0.0737) 5.113(0.0618) −3.082(0.0699) −6.157(0.0851)

β̂(AR,n,w) 2.000(0.0005) 4.001(0.0005) 5.001(0.0005) −2.998(0.0005) −5.999(0.0006)

Source: author’s computations.

Table 4.7: Homoskedastic errors, cca 15% of outliers

Level of contamination= 15.09%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 11.106(94.3531) 22.032(339.0322) 27.453(521.8490) −16.476(193.6685) −32.824(736.9791)

β̂(LWS,n,w) 2.451(0.9313) 4.907(1.5958) 6.129(2.1961) −3.555(0.9486) −7.277(2.5727)

β̂(AR,n,w) 2.000(0.0006) 4.001(0.0006) 4.999(0.0007) −3.001(0.0006) −5.998(0.0007)

Source: author’s computations.

4.2.2 Leverage points

This subsection contains the same analysis as the previous one with the differ-

ence that the contamination is caused by leverage points instead of outliers. If
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the data are not contaminated, the result is of course the same, therefore we

can start with the level of contamination being 0.5% in Table 4.8. We can see

that the results for all levels of contamination are very similar to the previous

subsection. The only significant difference as compared to the previous sub-

section is that leverage points influence the OLS estimator more than outliers

(this phenomenon was found in previous studies and is confirmed also here).

In Table 4.11 and following two tables we can see that for the contamination

level of 5% (or higher) the OLS estimates have even wrong sign.

Table 4.8: Homoskedastic errors, cca 0.5% of leverage points

Level of contamination= 0.46%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 1.632(1.2370) 3.218(1.8055) 4.094(2.0562) −2.479(1.3157) −4.869(3.3078)

β̂(LWS,n,w) 1.999(0.0009) 3.998(0.0010) 4.999(0.0008) −3.001(0.0010) −6.000(0.0008)

β̂(AR,n,w) 1.999(0.0003) 3.999(0.0004) 5.000(0.0003) −3.000(0.0004) −5.999(0.0003)

Source: author’s computations.

Table 4.9: Homoskedastic errors, cca 1% of leverage points

Level of contamination= 1.01%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 1.288(2.3376) 2.532(4.3847) 3.026(6.9302) −1.835(3.4029) −3.776(7.8261)

β̂(LWS,n,w) 1.999(0.0010) 4.000(0.0010) 5.003(0.0010) −2.999(0.0009) −5.997(0.0009)

β̂(AR,n,w) 1.999(0.0003) 4.000(0.0004) 5.002(0.0004) −2.999(0.0003) −5.999(0.0003)

Source: author’s computations.

Table 4.10: Homoskedastic errors, cca 2% of leverage points

Level of contamination= 1.93%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 0.789(4.2693) 1.315(10.7700) 1.805(14.5045) −1.025(7.1307) −2.083(20.2994)

β̂(LWS,n,w) 1.999(0.0009) 4.002(0.0009) 5.001(0.0010) −3.000(0.0008) −6.001(0.0009)

β̂(AR,n,w) 2.000(0.0003) 4.001(0.0004) 5.000(0.0004) −3.000(0.0003) −6.001(0.0004)

Source: author’s computations.
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Table 4.11: Homoskedastic errors, cca 5% of leverage points

Level of contamination= 4.96%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) −0.808(12.5530) −1.953(42.1990) −2.249(59.7705) 1.338(24.6382) 2.732(84.0307)

β̂(LWS,n,w) 1.998(0.0008) 4.001(0.0007) 5.000(0.0008) −2.999(0.0008) −5.999(0.0008)

β̂(AR,n,w) 1.998(0.0004) 4.001(0.0004) 5.000(0.0004) −3.000(0.0004) −6.000(0.0004)

Source: author’s computations.

Table 4.12: Homoskedastic errors, cca 10% of leverage points

Level of contamination= 9.99%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) −3.196(33.9782) −6.338(114.7301) −8.002(178.5700) 4.769(67.8557) 9.469(250.9593)

β̂(LWS,n,w) 1.949(0.0311) 3.917(0.0397) 4.895(0.0465) −2.941(0.0400) −5.875(0.0610)

β̂(AR,n,w) 2.000(0.0006) 4.001(0.0005) 5.001(0.0006) −2.999(0.0005) −6.000(0.0006)

Source: author’s computations.

Table 4.13: Homoskedastic errors, cca 15% of leverage points

Level of contamination= 15.06%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) −5.010(55.4246) −10.198(209.8713) −12.809(326.8115) 7.528(117.6219) 15.135(457.1284)

β̂(LWS,n,w) 1.697(0.5156) 3.308(0.9526) 4.167(1.2896) −2.475(0.6916) −5.009(1.5066)

β̂(AR,n,w) 2.002(0.0006) 4.001(0.0006) 5.001(0.0006) −3.000(0.0006) −6.001(0.0006)

Source: author’s computations.
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4.3 Heteroskedastic errors

This section contains the results obtained for heteroskedastic residuals. As this

illustrates the main result of the thesis, we include somewhat more detailed

analysis. In addition to the tables with resulting estimators, we include also

the plots of the empirical distribution functions of β̂(LWS,n,w) and β̂(AR,n,w) to

show that the distributions do not differ significantly from each other.

The figures of the two empirical distribution functions are accompanied by

the resulting p-value of the two-sample Kolmogorov-Smirnov test (K-S test).

The null hypothesis of the test is that the two functions come from the same

distribution. Therefore in order to be able to conclude that the distributions do

not significantly differ from each other, we should not reject the null hypothesis.

Notice that the decision about rejection of the null hypothesis of the K-S test

is dependent on the size of the sample. As we have quite large sample for this

purpose, we are more likely to reject the null (i.e. even if the p-value is rather

small, we might be able to conclude that the estimators come from the same

distribution).

4.3.1 Outliers

In the first subsection we have again results for the case where the data were

contaminated by outliers. First of all, let us consider the results for data with

no contamination. We can see in Table 4.14 that with no contamination the

OLS estimator gives reasonable results even for the heteroskedastic case. This

of course makes sense as we do not need the assumption of homoskedasticity for

the OLS estimator to be unbiased. However, heteroskedasticity does influence

the efficiency of the OLS estimator and we can see that even with no contami-

nation the LWS estimator outperforms the OLS estimator in this respect.

Table 4.14: Heteroskedastic errors, 0% of contamination

Level of contamination= 0.00%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 2.002(0.0054) 4.002(0.0051) 5.000(0.0048) −3.004(0.0053) −6.004(0.0052)

β̂(LWS,n,w) 2.002(0.0025) 3.999(0.0027) 5.002(0.0029) −3.002(0.0026) −6.002(0.0028)

β̂(AR,n,w) 2.001(0.0015) 4.000(0.0017) 5.001(0.0016) −3.001(0.0015) −6.002(0.0017)

Source: author’s computations.

As was mentioned before, the MSE of the asymptotic representation is lower
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than the MSE of the LWS estimator. This also causes the EDF of β̂(AR,n,w) to

be steeper than the EDF of β̂(LWS,n,w), as we can see in Figure 4.1, where

the steeper (green) function represents the asymptotic representation and the

flatter (red) function represents the method of LWS. Specifically, we consider

the estimator of the first coefficient β1 (i.e. the intercept).2 The p-value of the

K-S test is 0.15, therefore even on 10% significance level we cannot reject the

null that these two functions come from the same distribution.

Figure 4.1: EDF of β̂
(LWS,n,w)
1 and β̂

(AR,n,w)
1 , 0% of contamination

Source: author’s computations.

Table 4.15: Heteroskedastic errors, cca 0.5% of outliers

Level of contamination= 0.47%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 2.532(2.0393) 5.007(3.3806) 6.255(4.3575) −3.608(2.1605) −7.500(5.0982)

β̂(LWS,n,w) 2.002(0.0028) 3.999(0.0026) 5.000(0.0027) −3.004(0.0029) −6.001(0.0025)

β̂(AR,n,w) 2.002(0.0017) 3.999(0.0016) 5.000(0.0016) −3.003(0.0017) −6.001(0.0015)

Source: author’s computations.

In Table 4.15 we can see that even very small percentage of contamination

affects the OLS estimator, similarly as in homoskedastic case. On the contrary,

the LWS estimator and the asymptotic representation of LWS estimator are

essentially the same as in the case with no contamination.

2For each level of contamination we always show the figure only for one of the five esti-
mators, but note that the other four look very similarly in all cases.
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It follows that also the empirical distribution functions in Figure 4.2 look

similarly as for the case with no contaminated data. The steeper (green) func-

tion again stands for the asymptotic representation and the flatter (red) func-

tion represents the LWS estimator. We consider the second coefficient β2 and

the resulting p-value of the two sample K-S test is again 0.15. Therefore we can

conclude that these two functions also come from the same distribution.

Figure 4.2: EDF of β̂
(LWS,n,w)
2 and β̂

(AR,n,w)
2 , cca 0.5% of outliers

Source: author’s computations.

In Table 4.16, Table 4.17 and Table 4.18 we can see that the results for LWS

estimator and for the asymptotic representation remain essentially the same

up to 5% of outliers, i.e. as long as the contaminated observations are not

considered in the estimation process at all.

Table 4.16: Heteroskedastic errors, cca 1% of outliers

Level of contamination= 1.04%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 2.979(4.1257) 5.944(8.0633) 7.451(10.2171) −4.442(5.3253) −9.012(14.9117)

β̂(LWS,n,w) 2.006(0.0033) 3.995(0.0032) 4.999(0.0030) −2.999(0.0028) −5.999(0.0029)

β̂(AR,n,w) 2.005(0.0019) 3.996(0.0019) 4.999(0.0018) −2.999(0.0017) −6.000(0.0018)

Source: author’s computations.

The plots of the EDFs look very similarly as well, as we can see in Figure 4.3,

Figure 4.4 and Figure 4.5. In all the figures the steeper (green) function rep-

resents again the asymptotic representation. The p-values of the K-S test are
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Table 4.17: Heteroskedastic errors, cca 2% of outliers

Level of contamination= 2.01%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 3.781(8.6033) 7.449(18.3162) 9.282(25.0117) −5.749(13.1579) −11.125(35.0836)

β̂(LWS,n,w) 2.002(0.0030) 4.002(0.0030) 4.997(0.0028) −2.998(0.0029) −6.002(0.0036)

β̂(AR,n,w) 2.001(0.0018) 4.001(0.0019) 4.998(0.0017) −2.999(0.0018) −6.001(0.0022)

Source: author’s computations.

Table 4.18: Heteroskedastic errors, cca 5% of outliers

Level of contamination= 4.97%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 5.643(21.4504) 11.516(67.3940) 14.311(99.5893) −8.611(41.0469) −17.033(136.6985)

β̂(LWS,n,w) 2.004(0.0036) 4.000(0.0031) 4.998(0.0035) −3.001(0.0035) −5.997(0.0034)

β̂(AR,n,w) 2.003(0.0025) 4.000(0.0022) 4.998(0.0024) −3.001(0.0024) −5.997(0.0024)

Source: author’s computations.

0.06, 0.09 and 0.5, respectively. Although the p-values for 1% and 2% of out-

liers are rather small, this can be caused by the high number of observations,

as was mentioned before. Moreover, we still cannot reject the null for any of

these cases on the commonly considered 5% significance level. From the overall

results it seems reasonable to conclude that up to the contamination level of

5% β̂(LWS,n,w) and β̂(AR,n,w) come from the same distribution.

Figure 4.3: EDF of β̂
(LWS,n,w)
3 and β̂

(AR,n,w)
3 , cca 1% of outliers

Source: author’s computations.
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Figure 4.4: EDF of β̂
(LWS,n,w)
4 and β̂

(AR,n,w)
4 , cca 2% of outliers

Source: author’s computations.

Figure 4.5: EDF of β̂
(LWS,n,w)
5 and β̂

(AR,n,w)
5 , cca 5% of outliers

Source: author’s computations.
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Table 4.19 and Table 4.20 suggest that when we exceed the 5% level of

contamination (i.e. we start to take some of the contaminated data into ac-

count), the LWS estimator worsens faster than the asymptotic representation

of this estimator. The same result follows also from Figure 4.6 and Figure 4.7,

where the EDF of LWS estimator starts to spread and the EDF of the asymptotic

representation remains very steep. Also the p-values of the K-S tests are very

low.

Table 4.19: Heteroskedastic errors, cca 10% of outliers

Level of contamination= 10.11%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 8.636(54.9530) 17.230(188.4013) 21.551(291.1745) −12.903(110.1769) −25.672(406.1717)

β̂(LWS,n,w) 2.047(0.0508) 4.104(0.0788) 5.141(0.0786) −3.069(0.0422) −6.146(0.0683)

β̂(AR,n,w) 1.997(0.0044) 3.994(0.0042) 4.997(0.0042) −2.998(0.0040) −5.996(0.0041)

Source: author’s computations.

Figure 4.6: EDF of β̂
(LWS,n,w)
1 and β̂

(AR,n,w)
1 , cca 10% of outliers

Source: author’s computations.

To conclude, the simulations showed that for the model with heteroskedastic

errors, where the contamination is caused by outliers, the asymptotic represen-

tation represents the LWS estimator really well up to the contamination level

of 5%. When we cross the contamination level, where all of the contaminated

data are omitted, the results start to move away from each other. Of course,

the results here also confirm that the method of OLS is not able to cope with

even very small percentage of data contamination.



4. Simulation study 91

Table 4.20: Heteroskedastic errors, cca 15% of outliers

Level of contamination= 15.17%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 11.021(93.0467) 22.140(343.5782) 27.536(523.6570) −16.657(198.2240) −33.009(747.1523)

β̂(LWS,n,w) 2.387(0.7600) 4.865(1.5158) 6.101(2.1426) −3.729(1.3888) −7.309(2.6416)

β̂(AR,n,w) 1.997(0.0058) 3.994(0.0055) 4.991(0.0061) −2.994(0.0055) −5.994(0.0053)

Source: author’s computations.

Figure 4.7: EDF of β̂
(LWS,n,w)
4 and β̂

(AR,n,w)
4 , cca 15% of outliers

Source: author’s computations.

4.3.2 Leverage points

Let us move on to the second method of contamination, i.e. we will study,

whether the results obtained in previous subsection will differ, when we con-

taminate the data by leverage points instead of outliers. The case with no

contamination is again of course the same, therefore we can start with the level

of contamination 0.5% in Table 4.21. Similarly as in the case of outliers, the

method of OLS is not able to cope with even this small level of contamination.

The LWS estimator and its asymptotic representation again seem to give very

similar results.

This claim is also supported by the plots of the EDFs as can be seen in

Figure 4.8. The flatter (red) function represents again the LWS estimator and

the steeper (green) one stands for the asymptotic representation. The p-value

of the K-S test for these two samples is 0.1. Therefore we can again conclude

that the functions come from the same distribution.
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Table 4.21: Heteroskedastic errors, cca 0.5% of leverage points

Level of contamination= 0.48%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 1.640(1.1085) 3.224(1.8941) 4.110(2.5185) −2.446(1.4876) −4.763(3.3721)

β̂(LWS,n,w) 1.999(0.0031) 4.000(0.0032) 5.001(0.0030) −3.000(0.0029) −5.996(0.0033)

β̂(AR,n,w) 1.999(0.0018) 4.001(0.0019) 5.001(0.0018) −3.000(0.0017) −5.997(0.0019)

Source: author’s computations.

Figure 4.8: EDF of β̂
(LWS,n,w)
3 and β̂

(AR,n,w)
3 , cca 0.5% of leverage

points

Source: author’s computations.

Also the rest of the analysis appears to lead to similar conclusions that we

made for ouliers. The only significant difference is again that leverage points

have somewhat larger influence on the estimates than outliers, similarly as

in the case of homoskedastic errors. The results for data with 1%, 2% and

5% leverage points can be found in Table 4.22, Table 4.23 and Table 4.24,

respectively.

Corresponding plots of the EDFs can be found in Figure 4.9, Figure 4.10 and

Figure 4.11. The steeper (green) function in all these figures illustrates again

the asymptotic representation. The resulting p-values from the two-sample

K-S tests are 0.17 for 1% of leverage points, 0.14 for 2% of leverage points and

0.29 for 5% of leverage points. Therefore in neither of these cases we can reject

the null hypothesis that the functions have the same underlying distribution

(on 10% significance level).
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Table 4.22: Heteroskedastic errors, cca 1% of leverage points

Level of contamination= 1.03%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 1.228(2.7614) 2.404(4.6888) 3.100(6.4333) −1.850(3.3792) −3.617(9.5116)

β̂(LWS,n,w) 1.997(0.0030) 3.997(0.0031) 5.003(0.0026) −3.004(0.0028) −6.004(0.0026)

β̂(AR,n,w) 1.998(0.0018) 3.998(0.0019) 5.002(0.0016) −3.003(0.0017) −6.003(0.0016)

Source: author’s computations.

Table 4.23: Heteroskedastic errors, cca 2% of leverage points

Level of contamination= 1.99%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) 0.739(4.5330) 1.262(11.2618) 1.689(15.3432) −0.914(7.4647) −1.972(20.7739)

β̂(LWS,n,w) 2.001(0.0027) 4.004(0.0030) 5.000(0.0032) −3.004(0.0034) −6.002(0.0030)

β̂(AR,n,w) 2.001(0.0017) 4.003(0.0019) 5.000(0.0020) −3.003(0.0021) −6.002(0.0019)

Source: author’s computations.

Table 4.24: Heteroskedastic errors, cca 5% of leverage points

Level of contamination= 4.86%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) −0.861(13.3486) −1.740(39.4102) −2.104(57.6227) 1.251(22.9531) 2.637(82.1514)

β̂(LWS,n,w) 2.002(0.0033) 3.999(0.0036) 5.002(0.0036) −3.001(0.0032) −5.999(0.0034)

β̂(AR,n,w) 2.002(0.0023) 4.000(0.0024) 5.001(0.0025) −3.001(0.0022) −6.000(0.0024)

Source: author’s computations.
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Figure 4.9: EDF of β̂
(LWS,n,w)
4 and β̂

(AR,n,w)
4 , cca 1% of leverage points

Source: author’s computations.

Figure 4.10: EDF of β̂
(LWS,n,w)
5 and β̂

(AR,n,w)
5 , cca 2% of leverage points

Source: author’s computations.
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Figure 4.11: EDF of β̂
(LWS,n,w)
1 and β̂

(AR,n,w)
1 , cca 5% of leverage points

Source: author’s computations.

Similarly as for outliers, the situation changes after crossing the bound-

ary of 5% level of contamination. The results for the contamination level of

10% and 15% can be found in Table 4.25 and Table 4.26, respectively. Corre-

sponding plots of the EDFs can be found in Figure 4.12 and Figure 4.13. The

p-values of the K-S tests are very low in both cases and hence for higher level of

contamination we can reject the null hypothesis.

Table 4.25: Heteroskedastic errors, cca 10% of leverage points

Level of contamination= 9.94%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) −3.144(32.5133) −6.436(117.2655) −7.874(176.0813) 4.436(63.4384) 9.363(246.1871)

β̂(LWS,n,w) 1.962(0.0259) 3.919(0.0364) 4.898(0.0463) −2.941(0.0367) −5.892(0.0394)

β̂(AR,n,w) 1.996(0.0043) 4.001(0.0043) 4.996(0.0038) −3.000(0.0039) −5.996(0.0041)

Source: author’s computations.

Table 4.26: Heteroskedastic errors, cca 15% of leverage points

Level of contamination= 15.12%

True β0 2.000 4.000 5.000 −3.000 −6.000

β̂(OLS,n) −5.249(59.1848) −10.224(210.9355) −12.867(329.2009) 7.613(120.2425) 15.262(464.4025)

β̂(LWS,n,w) 1.662(0.5733) 3.337(0.9299) 4.109(1.3942) −2.457(0.7643) −4.947(1.8217)

β̂(AR,n,w) 2.000(0.0055) 3.992(0.0054) 4.985(0.0056) −2.998(0.0057) −5.993(0.0058)

Source: author’s computations.
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Figure 4.12: EDF of β̂
(LWS,n,w)
2 and β̂

(AR,n,w)
2 , cca 10% of leverage

points

Source: author’s computations.

Figure 4.13: EDF of β̂
(LWS,n,w)
3 and β̂

(AR,n,w)
3 , cca 15% of leverage

points

Source: author’s computations.
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It follows that when considering a regression model with heteroskedastic

errors, we can draw similar conclusions for the case when the data are con-

taminated by leverage points as we did for outliers. I.e. the LWS estimator

seems to be really well represented by its asymptotic representation up to the

contamination level of 5%. The results for leverage points may be slightly more

persuasive than the results for outliers, since in none of the considered cases

we get too close to the 5% significance level when conducting the K-S test.

The results for higher contamination levels suggest that the underlying dis-

tributions of β̂(LWS,n,w) and β̂(AR,n,w) differ when there are too many contam-

inated observations. It follows that the optimal choice of weight function is

even more crucial when considering the asymptotic representation than when

we just want to obtain a reliable LWS estimator.



Chapter 5

Conclusion

The main purpose of this thesis was to derive the asymptotic representation of

the least weighted squares estimator under the assumption of heteroskedastic-

ity. After introducing the robust methods in general, and the method of LWS

more in detail in Chapter 2, the derivation of the asymptotic representation is

provided in Chapter 3. Moreover, Chapter 4 provides results of a simulation

study illustrating the tightness of the LWS estimator and the derived asymptotic

representation.

The derivation under the assumption of heteroskedastic residuals provided

in Chapter 3 is a generalization of the homoskedastic case derived in Vı́̌sek

(2015). To be able to generalize this result for heteroskedasticity, we had to

impose some more assumptions, mainly specifying the form of heteroskedas-

ticity. However, none of these assumptions seems to be too restrictive for a

commonly considered regression framework.

Then using the adjusted assumptions, it was necesssary to rederive most

of the proofs of the lemmas used in Vı́̌sek (2015). Moreover, some additional

lemmas had to be formulated and proved in order to be able to derive the result

under heteroskedasticity. This is the main contribution of the thesis.

Another original contribution are the results of the simulation study, which

illustrate the theoretical result derived in Chapter 3. In the simulations in

Chapter 4, we considered also the situation with homoskedastic residuals for

completeness. However, the main result of this thesis is illustrated in Sec-

tion 4.3, where heteroskedastic residuals were considered.

These results suggest that the LWS estimator is well represented by its

asymptotic representation, as long as most of the contaminated observations

are completely eliminated by the weight function. In that case, the empirical
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distribution functions of the LWS estimator and of the derived representation

are statistically the same (for both outliers and leverage points). The situation

changes when some of the contaminated observations are assigned non-zero

weights - then the results start to move away from each other. It follows

that when considering the asymptotic representation, the optimal choice of the

weight function is even more crucial than when we just want to obtain a reliable

LWS estimator.

The result derived in this thesis might be used for future research, e.g. for

development of some of the diagnostic tools for the estimators based on the

method of LWS, such as the specification test. Another possibility of future

research might be to simplify the procedure of deriving the asymptotic repre-

sentation. A possible (but so far unsuccessful) way to do this seems to be to

combine the asymptotic linearity of normal equations with the convergence of

empirical distribution function.
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