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Abstract 

Chimeric antigen receptors (CARs) are artificial molecules composed of an antibody derived 

antigen recognition domain which is fused with the signal transduction domain derived 

from the physiological TCR. CAR technology used to transduce patients T-cells and endow 

them with the specificity to a certain surface antigen, has been a major breakthrough 

in cancer immunotherapy in the last decade. This strategy has been most successful 

for treating hematologic malignancies. Various CAR approaches and applications are 

currently tested mainly in the United States where many clinical trials have been launched. 

In contrast, in the Czech Republic, there are only a few teams focused on this topic with no 

clinical trials going on.  

During my work on this diploma thesis and in close collaboration with MUDr. Pavel Otáhal, 

PhD., who is working on implementation of CAR technology into the Czech 

clinics for the treatment of B-cell malignancies, individual functional CARs were prepared 

and tested. CAR expressing Jurkat T-cell lines were generated using a lentiviral vector 

transduction system. CAR functionality was determined by two different assays. We have 

shown that individual CARs are able to recognize the B-cell lineage specific antigens CD19 

and CD20 and significantly up-regulate the activation molecule CD69 upon T-cell activation 

by co-cultivation with RAJI B cell used as a target. Individual CAR constructs also showed 

to be functional in the mouse thymoma cell line with NFAT-GFP reporter. Our ultimate 

goal, the preparation of a superCAR construct that would endow T-cell with dual specificity 

against both CD19 and CD20 antigens has not been accomplished yet and the work on this 

construct is still in the process.  

Within the work frame we have prepared suitable conditions for further experimental testing 

of CAR technology in vitro. Future perspective of this work relates to the completion 

of the superCAR construct. We hopeful that that newly designed dual specificity CAR 

construction would prove efficient in preventing malignant B-cells that have lost 

the expression of one of the B-cell lineage specific antigens, in order to escape their 

detection. The CAR technology for cancer immunotherapy is a perspective therapeutic 

strategy worth of research in the Czech. 

Key words: treatment of leukemia, T cells, TCR, chimeric antigen receptor, B cells, CD19, 

CD20, co-stimulation, immunotherapy 

  



 

5 

 

Abstract (CZ) 

Chimérické antigenní receptory (CAR) jsou syntetické molekuly kombinující antigenní 

specifitu monoklonální protilátky se signalizací běžného T-buněčného receptoru. Těmito 

receptory jsou geneticky modifikovány lidské T-lymfocyty a ty jsou tak vyzbrojeny 

konkrétní antigenní specifitou. Tato technologie je průlomovou v oboru nádorové 

imunoterapie. Adoptivní transfer geneticky upravených T-lymfocytů byl doposud 

nejúspěšnější formou léčby hematologických malignit. To z toho důvodu, že nádory krve 

mají difúzní charakter, na rozdíl od pevných nádorů, které mají charakteristické 

imunosupresivní mikroprostředí. CAR technologie je v současné době nejintenzivněji 

studována ve Spojených státech, kde probíhají desítky klinických studií. Přesto, že se tato 

terapeutická metoda jeví jako velice perspektivní, v České republice se jí věnuje velmi 

omezený počet lidí a probíhající klinické studie neexistují.  

Ve spolupráci s MUDr. Pavlem Otáhalem, který se tímto tématem zabývá a má velký zájem 

dostat tuto terapeutickou metodu do české klinické praxe, jsme připravili několik receptorů, 

jejichž samostatnou funkčnost jsme ověřili dvěma nezávislými metodami. Stabilní CAR-

exprimující T-buněčné linie rozpoznávající B-buněčné antigenům CD19 a CD20 byly 

připraveny za pomocí lentivirů. T-buněčné linie exprimující jednotlivé konstrukty dokázaly 

rozeznat B-buněčné antigeny a došlo k jejich aktivaci bezprostředně po ko-kultivaci 

s cílovými Raji buňkami. Aktivace se projevila významným zvýšením exprese aktivační 

molekuly CD69. Funkčnost konstruktů jsme potvrdili dalším alternativním přístupem, a to 

prostřednictvím jejich exprese v myší thymomové buněčné linii obsahující NFAT-GFP 

reportér. Příprava superCAR konstruktu, jehož využití by zajistilo simultánní expresi CD19 

a CD20 specifických receptorů v T-lymfocytech je zatím ve fázi přípravy. 

V rámci mé diplomové práce jsem si osvojena základní metodiku pro přípravu chimérických 

antigenních receptorů a byla připravena půda pro budoucí in vitro a in vivo experimenty. 

V budoucnu bychom rádi dokončili přípravu superCAR konstruktu a prokázali, že jeho 

využití znemožní únik nádorových klonů, u kterých došlo ke ztrátě jednoho z B-buněčných 

povrchových antigenů. CAR technologie je perspektivní nádorovou imunoterapeutickou 

metodou, které by měl být v České republice věnován větší prostor.  

Klíčová slova: léčba leukemie, T lymfocyty, TCR, chimerický antigenní receptor, 

B-lymfocyty, CD19, CD20, kostimulace, imunoterapie 
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1. Introduction 

Cancer is one of the leading causes of death in the 21st century1. To a certain extent, this is due 

to fact that more than 100 different types of malignancies2 are treated by largely non-specific 

treatment such as surgical removal, chemotherapy, radiotherapy or their combination. While 

these are inevitable for the elimination of the cancerous tissue, these approaches are associated 

with many negative side effects and are often insufficient (Hinrichs and Restifo, 2013). Another 

and attractive option for the treatment of these malignancies is to use the tremendous capacity 

of our immune system to recognize and remove the tumor. Tumor cells accumulate mutations 

and express tumor specific antigens (TSA) and tumor associated antigens (TAA) that should 

ensure their detection and destruction by the immune system. However, they often escape 

immune surveillance. This is for two major reasons: (i) tumor antigens are still self-antigens 

against which immune tolerance has been centrally established (Klein et al., 2009); and (ii) 

because cancerous tissue exploits several mechanisms to suppress anti-tumor immunity (Khong 

and Restifo, 2002). These include, but are not limited to, the downregulation of human 

leukocyte antigens (HLA) and thus diminishment of tumor antigen presentation, up-regulation 

of inhibitory co-stimulatory molecules, downregulation of receptors for cytolytic and apoptosis-

inducing molecules such as Fas ligand and tumor-necrosis factor α (TNF-α), secretion 

of immunity inhibiting molecules, recruitment of regulatory T-cells (Treg) or induction 

of antigen presenting cells (APC) with tolerogenic potential (Khong and Restifo, 2002). 

All these factors contribute to the formation of an immunologically suppressive tumor 

microenvironment (Hanahan and Weinberg, 2011). Moreover, uncontrolled targeting of self-

antigens often results in the development of autoimmunity and on-target/of-tumor toxicity 

(Klebanoff et al., 2016; Koneru et al., 2015; Lamers et al., 2006).  

For the above reasons, much effort has been, in recent years, invested into the development 

of alternative approaches for supplementing traditional therapy. The field of immunotherapy 

showed signs of robust advancement during the last decades (Kalos and June, 2013; Miller and 

Sadelain, 2015). Today, scientists and clinicians are able to induce specific immune responses 

against tumor by several non-specific as well as antigen-specific approaches (Hinrichs and 

Restifo, 2013; Miller and Sadelain, 2015). This advancement has been possible due 

to generation of several transgenic mouse models which play indispensable role in academic 

and clinical research, cancer therapy including. Furthermore, the development of monoclonal 

antibodies, methods of adoptive cell transfer and safe methods of cell-engineering via genetic 

                                                      
1 http://apps.who.int/gho/data/view.wrapper.MGHEMORTCAUSE10-2012?lang=en&menu=hide 
2 http://www.who.int/features/factfiles/cancer/facts/en/ 

http://apps.who.int/gho/data/view.wrapper.MGHEMORTCAUSE10-2012?lang=en&menu=hide
http://www.who.int/features/factfiles/cancer/facts/en/
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modification of different immune cell populations, for example with chimeric antigen receptors 

(CARs) (Sadelain et al., 2003; van der Stegen et al., 2015), allows so far unprecedented 

accuracy and efficiency in tumor targeting. Current immunotherapy, however, still lacks 

the capacity to fully control and fine-tune the outcome of these approaches. Further 

advancement in understanding how to control the specificity, location, timing and level 

of effector functions are the subject of current research in this field.  

Genetic modification of T-cells by CARs is a revolutionary technology emerging in the field 

of tumor immunotherapy and relatively rapidly expanding its applications. CARs combine the 

antigen recognition domain of a monoclonal antibody with the signaling domains of a T cell 

receptor (TCR) and co-stimulatory molecules and endow T-cells with the capacity to recognize 

the antigen of interest in a MHC-independent manner (Maher, 2012). Since the first efforts 

to genetically modify T-cells for the purpose of cancer therapy in early 1990s, significant 

amount of money has been invested into this field primarily in the United States. To this date, 

several research centers harboring numerous CAR clinical trials have been established not only 

in the United States but also in Europe and Asia (Appendix - Table 15). 

In this thesis I briefly summarize the current knowledge concerning immune responses to cancer 

and focus more specifically on the use of CAR expressing T-cells for immunotherapy of B-cell 

leukemias. I will continue with a brief overview of the recent and ongoing clinical trials 

exploring CAR technology and describe the current limits of its application for solid tumors. 

I will conclude the theoretical part with the most recent data concerning the advancement in fine 

tuning approaches for CAR applications.  

The experimental part of this work was performed in cooperation with Dr. Pavel Otáhal, 

from the First Medical Faulty at Charles University in Prague and focuses on the development 

of functional CAR constructs which could be potentially used for T-cell mediated therapy 

of B-cell leukemia in local clinical environment. Specifically, I focused on the preparation 

of CAR constructs targeting B-cell specific surface markers CD19 and CD20, as well 

as on CAR construct with dual specificity, so called superCAR, which would encode for CARs 

simultaneously targeting both CD19 and CD20. The activation capacity of all three CAR-T-cell 

systems will be tested and compared. In the discussion, I will touch upon the most important 

conclusions from this study which are put into context with other ongoing worldwide research 

efforts and highlight possible future directions in this rapidly developing field of translational 

research. 
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2. Overview of literature 

2.1. Immune system versus cancer 

Cancer is a very heterogeneous group of diseases that can effect practically any tissue. They all 

have in common progressive growth of a single transformed cell that has escaped the immune 

system surveillance (Hanahan and Weinberg, 2011). Approximately 14 million of new cases 

of cancer appear each year and this number is expected to rise in upcoming years3. In 2012, 

the most frequently diagnosed were lung, prostate, colorectum, stomach and liver cancer among 

men and breast, colorectum, lung, cervix and stomach cancer among women4.  

In the 1950s, when inbred mice strains became available, the study of immune responses 

to tumors became experimentally more accessible. In 1957, the idea that tumors are 

immunologically distinct and that the immune system can recognize and destroy cancerous cells 

was proposed by Macfarlane Burnet and Lewis Thomas as the immunosurveillance hypothesis 

(Burnet, 1970). They positioned lymphocytes into the center of immune responses whereby they 

recognize transformed cells. Experiments that followed focused on the very basic question, 

i.e. whether immune system is necessary to recognize and suppressed tumor growth. The results 

from these initial experiments did not show much of supporting evidence 

for the immunosurveillance hypothesis. Notably, athymic nude mice (Flanagan, 1966; 

Pantelouris, 1968) did not form chemically-induced tumors at higher frequency than wild type 

mice and thus this hypothesis became abandoned (Stutman, 1974). Later on, it became clear that 

the experiments had several drawbacks. First, nude mice are not completely 

immunocompromised, but contained a detectable population of αβ T-lymphocytes (Maleckar 

and Sherman, 1987). Second, at that time it was also not known that some inbred strains are less 

sensitive to tumor-inducing chemicals due to distinct composition of their bio-converting 

enzymes. Third, the monitoring periods may also have not been long enough to support 

the development of some types of tumors. Forth, important cell populations, such as γδ T-

lymfocytes and NK cells, have not yet been characterized at that time. And fifth, the lack 

of a mouse strain that would have a mutation specifically affecting critical immune tissues and 

cell lineages, prevented the design and performance of crucial causal experiments (Dunn et al., 

2002).  

Renaissance of the cancer immunosurveillance hypothesis arouse in the 1990s when Dighe et al. 

showed that endogenously produced interferon (IFN) γ protected the host from cancer growth 

                                                      
3 http://www.who.int/mediacentre/factsheets/fs297/en/ 
4 http://gco.iarc.fr/today/home 

http://www.who.int/mediacentre/factsheets/fs297/en/
http://gco.iarc.fr/today/home
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(Dighe et al., 1994). Another important discovery was that the component of granules 

of cytolytic T-lymphocytes and natural killer (NK) cells – perforin – is essential 

for lymphocyte-dependent killing of tumor cells. Perforin-deficient mice developed more 

chemically induced tumors than perforin-sufficient mice treated in the same way (van den 

Broek et al., 1996). It thus became clear that components of the immune system significantly 

influence tumor development. Critical experiments were conducted when mice lacking 

the recombination activation gene (RAG) 1 and (RAG-2) were generated. These mice are 

unable to rearrange lymphocyte antigen receptors and thus lack T-cells, B-cells, NK cells and 

NK T-cells (Shinkai et al., 1992). When experiments with chemically-induced tumors were 

performed on RAG knock-out mice, they developed tumors more rapidly than wild-type mice 

(Shankaran et al., 2001). Disruption of other components of the immune system revealed that 

both the innate and adaptive arms of immune system are involved in cancer immunosurveillance 

(Dunn et al., 2002). In humans, the cancer immunosurveillance hypothesis is further strongly 

supported by the presence of tumor infiltrating lymphocytes (TILs) in some patients, whose 

presence is associated with better prognosis (Figure 1a) (Clemente et al., 1996). However, 

the positive impact of TIL is ambiguous. A substantial part of the lymphocytes present 

in the tumor microenvironment may be represented by Tregs which have a suppressive potential 

(Pichler et al., 2016).  

Nevertheless, even a fully competent immune system is not “almighty” and malignant 

transformed cells may escape immunosurveillance Figure 1c). As mentioned above, the role 

of the immune systems is to protect its host and maintain homeostasis, but it doesn’t stop here. 

It has been demonstrated that it also has the potential to shape tumor development. Tumors that 

form in the absence of the immune system tend to be less immunogenic than those that develop 

in its presence (Shankaran et al., 2001). Therefore a more accurate term “cancer 

immunoediting” has been proposed by Dunn and colleagues (Dunn et al., 2002) and this feature 

is now considered as one of the hallmarks of cancerous tissues (Hanahan and Weinberg, 2011). 

The authors described three successive phases characterizing ever-evolving relationship 

between the host and tumor, which they designated as the three “Es” of cancer immunoediting 

(Figure 1). The first phase termed as “elimination” is a period when cancer immunosurveillance 

is very efficient and dominates. Transformed cells are recognized in time and eliminated (Figure 

1a). In the second phase - termed “equilibrium”, tumor variants accumulate and select mutations 

that increase their resistance to immunosurveillance, but are still kept in check by the immune 

system in a dynamic equilibrium (Figure 1b). If such equilibrium is disrupted, these resistant 

variants may “escape” and cause tumor growth and the manifestation of cancer, which 
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corresponds to the third phase of cancer immunoediting (Figure 1c) (Dunn et al., 2002; Khong 

and Restifo, 2002). 

  

Today, we have a much more comprehensive understanding of the interplay between the host 

and the developing tumor. Tumor elimination is initiated by the innate immune responses which 

subsequently activates adaptive immunity. When transformed cells reach a critical mass, they 

begin to invade the surrounding tissue and promote angiogenesis (Hanahan and Weinberg, 

2011) associated with inflammation. The increased blood flow allows the entrance of innate 

immune cells such as NK cells, NK T-cells, γδ T-cells, neutrophills, macrophages and dendritic 

cells that collectively recognize damage associated molecular patterns (DAMPs) present 

in the site of initial inflammation (Dunn et al., 2002). IFNγ production by innate immune 

lymphocytes enhances antitumor response not only by inducing cell death but mainly 

by promoting production of chemokines that support angiogenesis and attract cells of the 

adaptive immune system (Shankaran et al., 2001). Antigen specific CD4+ and CD8+ T-cells that 

have been primed by a specific tumor antigen, migrate to the draining lymph nodes, where they 

expand and mature into CD4+ helper and CD8+ effector cytotoxic T-lmphocytes. Cytotoxic 

Figure 1: Cancer immunoediting - figure is adapted from (Dunn et al., 2002).  

a) Malignant cells form constantly in the organisms, but during the elimination phase the 

immune system manages to recognize and destroy these potentially harmful cells. This period 

corresponds to immunosurveillance. b) Antitumor immunity creates selection pressure on 

cancer cells and the tumor accumulates beneficial mutations that give rise to more resistant 

tumor cell variants. The immune system does not manage to destroy all cancer cells but keeps 

them under control in a dynamic equilibrium. c) If the immune system is weakened and resistant 

tumor cells manage to escape immunosurveillance, they rapidly proliferate and tumor develops. 
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T-cells are the only antigen specific effector cells available for tumor eradication. They poses 

several cytolytic functions for killing antigen bearing tumor cells such as the ability to lyse 

target cells by secretion of perforines and granzymes or by FasL-mediated apoptosis (Sadelain 

et al., 2003). 

At the same time however, effective antitumor immune response creates a selective pressure 

on tumor cells. These cells are genetically very unstable and accumulate large numbers 

of mutations. Those variants that accumulated the most resistance-mediated mutations, render 

the tumor less visible for immune system detection and more aggressive to overcome 

established dynamic equilibrium and escape immunosurveillance (Dunn et al., 2002; Khong and 

Restifo, 2002). Thus, natural selection pressure exerted by the host immune system generates 

resistant tumor variants that have acquired several escape attributes. These are similar to those 

used by microorganisms to evade immune responses and are highlighted in Table 1 (Khong and 

Restifo, 2002; Muenst et al., 2016). 

Hematologic malignancies possess several noticeable characteristics. Majority of blood tumors 

are diffused and therefore compact mass does not represent an obstacle for the initiation 

of immune responses as it is with solid tumors (Bachireddy et al., 2015). Another advantage is 

their close proximity to the cells of the immune system which renders hematologic malignancies 

relatively immunologically responsive (Del Giudice et al., 2009; Savarrio et al., 1999). Blood 

malignancies are often a consequence of prior therapy but majority of cases manifest de novo 

(Sill et al., 2011). They frequently possess chromosomal aberrations. Gain-of-function 

mutations in components of signaling pathways lead for example to constitutive signaling 

in the IL-7 pathway in T-cell acute lymphoblastic leukemia (ALL) (Ribeiro et al., 2013) 

or to constitutive signaling in the absence of antigen through the B-cell receptor in diffuse large 

B-cell lymphoma (Davis et al., 2010). The pathology of hematological malignancies therefore 

manifests by abnormal proliferation and differentiation of a single lymphoid or myeloid cell 

clone and this neoplasm then hijacks the immune system and limits or alters its physiological 

functions (Bachireddy et al., 2015). Unfortunately gain-of-function mutations in components 

of signaling cascades result in the absence of specific tumor antigens. However an important 

feature of blood malignancies is that lymphoid and myeloid cells possess lineage 

and differentiation state-specific markers that are characteristic for a certain blood 

subpopulation and may be used for antigen specific activation of cytotoxic lymphocytes. 

Lineage markers and the fact that cells are diffused also facilitates their isolation and these 

malignancies are therefore well studied and therapy in this field is developing rapidly 

(Bachireddy et al., 2015).  
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Above I have briefly summarized the basic features surrounding tumor immune responses 

and the mechanisms of tumor escape. To better understand the underlying idea surrounding 

Evasion attribute Outcome

Genomic instability generation of a large repertoair of subclones that are selected

Downregulation/loss of MHC I downregulation of antigen presentation

Loss of tumor antigens reduced visibility for tumor specific T-cells

Lack of costimulation induction of anergy in antigen specific T-cells

Impaired death receptor signaling pathway resistance to apoptosis

Overexpression of serin proteas inhibitor block of cytotoxic activity of CTL

Secretion of immunosupressive cytokines and 

chemokines
suppression of inflammation, generation of tumor microenvironment

Activation of T-cells activation induced cell death

Role of regulatory T-cells suppressive environment

Table 1: Immune evasion mechanisms involved in tumor escape. 

Tumor cells are genetically very unstable and natural selection favors tumor cells that have 

acquired immune evasion attributes. Tumor cells hide from the immune system 

by downregulating the expression of MHC class I molecules and therefore reduce their antigen 

presentation. Independently of MHC class I antigen presentation, tumor cells also lose tumor 

antigens to reduce their visibility for tumor specific T-cells. In the tumor microenvironment, 

inflammation may be suppressed by secretion of immunosuppressive growth factors 

and cytokines such as vascular endothelial growth factor (VEGF), interleukine (IL) 10 

and transforming growth factor β (TGF-β). This results in the lack of co-stimulatory molecules 

on tumor cells and their recognition by tumor specific T-cells results in T-cell anergy 

or conversion to Tregs. Tumor cells often downregulate or acquire mutation in the signaling 

cascade of death receptors such as Fas or tumor necrosis factor-related apoptosis inducing 

ligand (TRAIL). Downregulation or loss of these molecules renders tumors resistant to Fas-

FasL activation induced cell death (AICD) and TRAIL induced apoptosis. Negative feedback 

loop in T-cell activation may be misused for tumor evasion. Antigen recognition by tumor 

specific T-cells induces upregulation of the death receptor ligand FasL causing apoptosis 

of these activated cells but also of other surrounding lymphocytes bearing Fas receptor. Tumor 

cells may also actively block the cytotoxic capacity of cytotoxic lymphocytes by upregulation 

the protease inhibitor 6 which causes the inactivation of the effector molecule granzym B 

.(Khong and Restifo, 2002; Muenst et al., 2016) 
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the development of CARs, how they function and to better appreciate their benefits in cancer 

immunotherapy, in the next section I will briefly describe the nature of classical T-cell receptor 

signaling cascade and its effector functions.  

2.2. Classical T-cell signaling pathway 

Cell signaling is most studied among T-cells. Their signaling represents a very complex 

and meticulously assembled network of a large number of proteins that together transduce 

the extracellular engagement of TCR with peptide-MHC (pMHC) across the plasma membrane 

(PM) and generate an intracellular signal which initiates the process of T cell activation. 

The TCR and signaling proteins are spatially integrated into signaling modules, whose function 

is to generate, modify and convey the signal in a way that the T cell can fulfill its signaling-

related effector functions. Acuto and colleagues, formally defined three major and distinct TCR 

modules: (i) the TCR triggering module; (ii) the regulation module and (iii) the signal 

diversification and regulation module (Acuto et al., 2008) which are depicted and described 

in Figure 2. In general, this network of signaling cascades leads to the activation of three 

critically important signaling pathways which activate transcription factors nuclear factor kappa 

B (NF-κB), nuclear factor of activated T-cells (NFAT) and activator-protein 1 (AP-1) which, 

in turn, mediate cytokine production, cell proliferation and T cell differentiation (Malissen and 

Bongrand, 2015). Besides robust changes in gene expression profile, the activation through 

the TCR also leads to the regulation of cell adhesion and cytoskeleton rearrangement (Acuto et 

al., 2008; Brownlie and Zamoyska, 2013) (Figure 2).  

The below described complexity of TCR signaling and its variegated outcomes allows 

T-lymphocytes to be involved in and to regulate a plethora of various physiological events. This 

concerns the generation of T cells in the thymus, physiological roles of T cells in the periphery 

and differentiation of CD4+ T-cells into various subclasses of helper cells, such as Th1, Th2, 

Th17, to mention just those most studied. In the thymus, the outcome of TCR signaling is 

essential for appropriate positive and negative selection of thymocytes whereby harmful 

autoreactive T-cell are removed and CD4+, CD8+, Tregs and other types of T cells with 

a diverse repertoire of TCR are generated. In all of these processes, it seem that the strength 

of antigen recognition by TCR determines the functional outcomes (Acuto et al., 2008; Filipp et 

al., 2012; Klein et al., 2009). 
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Figure 2: TCR signaling complex 

The TCR signaling machinery can be divided into three modules. The TCR is represented 

by the αβ heterodimer which associates with CD3εδ, CD3εγ and CD3ζζ. Each ε, γ, and δ 

polypeptide contain a single immuunoreceptor tyrosine activation motif (ITAM) in their 

cytoplasmic domain (red line). The ζ polypeptide has three ITAMs in its cytoplasmic domain. 

Upon antigen recognition, the co-receptor CD8 brings the protein lymphocytes specific tyrosine 

kinase (LCK) into the proximity of CD3 ITAMs that then become phosphorylated. This leads 

to the recruitment of ζ-chain associated protein kinase of 70kDa (ZAP-70) which in turn 

phosphorylates the tyrosine residues of the scaffold protein linker for activation of T-cells 

(LAT), and the Src-Homology 2(SH2) domain-containing lymphocyte protein of 76kDa (SLP76) 

(not shown). SLP76 then recruits different proteins essential for signal diversification and leads 

to three important signaling pathways. SLP76 activates phospholipase C-γ (PLCγ) which 

generates signaling molecules diacylglycerol (DAG) and inositol triphosphate (IP3). The 

signaling pathway involving DAG culminates in the activation of the transcription factor NFκB. 

The pathway involving IP3 activates the transcription factor NFAT. SLP76 also phosphorylates 

GTP exchange factors (GEFs) which lead to the activation of a mitogen-activated protein 

(MAP) kinase cascade that activates the transcription factor AP-1. These three transcription 

factors induce specific gene expression leading to cytokine production such as the production 

of IL-2, cell proliferation and differentiation (Acuto et al., 2008; Brownlie and Zamoyska, 2013; 

Filipp et al., 2012; Malissen and Bongrand, 2015). For comparison, the CAR receptor and its 

TCR-derived modules is shown in corresponding colors. 
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In the context of this chapter, it is important to mention a very important caveat which must 

be considered when immune anti-tumor responses are studied. During T-cell development, 

the mechanisms of central tolerance in the thymus delete self-reactive T-cells or convert them 

to Tregs (Anderson et al., 2005; Liston et al., 2003). Self-reactive T-cells are selected during 

negative selection through the interaction with medullary thymic epithelila cells (mTECs) which 

ectopically express tissue specific antigens, sizeable portion of them under the control 

of autoimmune regulator, AIRE (Derbinski et al., 2001). This mechanism provides protection 

against autoimmunity, however it also challenges anti-tumor immunity because it eliminates 

potential tumor-specific T-cells (Kyewski and Klein, 2006). Tissue specific antigens expressed 

in the thymus may also be expressed on tumors as TSAs. However, due to negative selection 

mechanisms high affinity CD8+ T-cells are deleted and medium affinity CD4+ T-cells 

are converted to Tregs (Klein et al., 2014). Therefore, what is left of the tumor-specific T-cell 

repertoire are low affinity T-cells that are not sufficient to potentiate satisfactory anti-tumor 

immunity (Bos et al., 2005). Blocking central tolerance through the deletion of mTECs is one 

of the many emerging ways of enhancing anti-tumor immunity (Khan et al., 2014) 

Essential for optimal helper T-cell activation and therefor also for the generation of a potent 

anti-tumor immune response is not only the signaling through pMHC-TCR interaction, termed 

as signal 1, but also signaling through distinct co-stimulatory receptors presented on T-cells 

and APCs, termed as signal 2 (Lafferty and Woolnough, 1977). In the absence 

of co-stimulation, T-cells recognizing pMHC fail to get activated, and get depleted or enter 

the unresponsive state of anergy (Schwartz, 1990).  

The fundamental co-stimulatory molecule is CD28 (Aruffo and Seed, 1987). It provides 

an obligatory second signal needed for the development of immune response to an antigen 

(Lafferty and Woolnough, 1977). CD28 is a disulfide-linked membrane homodimer receptor 

with extracellular immunoglobulin (Ig) -like domains essential for the secretion of IL-2, 

expression of IL-2 receptor and cell-cycle progression (Harding et al., 1992; Jenkins et al., 

1991; June et al., 1987). The receptor binds structurally homologous ligands B7.1 (CD80) 

(Freedman et al., 1987) and B7.2 (CD86) (Freeman et al., 1993) expressed on professional 

APCs. The second member of the CD28 family is cytotoxic T- lymphocyte antigen 4 (CTLA-4) 

which counteracts CD28 signaling. Its expression is induced upon T-cell activation and delivers 

a negative signal attenuating T-cell activation (Walunas et al., 1994).  

Additional co-stimulation molecules have been identified. The induced co-stimulator (ICOS) 

belongs to the CD28 family and binds ICOS ligand. ICOS is expressed de novo, unlike 

the constitutively expressed CD28, and its interaction with-ICOS ligand induces production 
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of IFN-γ, IL-2, IL-4 and IL-10 (Coyle et al., 2000; Hutloff et al., 1999). Targeting these 

co-stimulatory molecules has shown to be a perspective therapeutic approach and this strategy 

became a sub-field of immunotherapy (Linsley and Nadler, 2009). 

Structurally different co-stimulation molecules are members of the tumor necrosis receptor 

family (TNRF) and are equally important for the generation of many types of T-cell responses 

(Chen and Flies, 2013; Croft, 2003). Receptors such as 4-1BB (Kwon and Weissman, 1989), 

also known as CD137, OX-40 (Paterson et al., 1987), known as CD134 or TNFRSF9, or CD27 

(van Lier et al., 1987), known as TNFRSF7, are cell membrane molecules distinctly upregulated 

on activated T-cells. They provide the late-activation signal and promotes T-cell proliferation, 

cytokine production and survival (Croft, 2009). Based on these characteristics, these 

co-stimulatory receptors are being studied for potential therapeutic utility as well (Ascierto et 

al., 2010). 

It has been shown that when antigen load is high, as is the case during viral infection or within 

the tumor microenvironment, antigen specific T-cells get exhausted, lose their effector functions 

and are deleted (Virgin et al., 2009; Wherry et al., 2003; Zajac et al., 1998). Exhaustion has 

been most studied in CD8+ cytotoxic T-cell, however it seems that CD4+ T-cells follow similar 

principles and can as well acquire exhaustion phenotype (Antoine et al., 2012). This distinct 

stage of terminal T-cell differentiation is characteristic by upregulation of co-inhibitory 

molecules such as CTLA-4 or programed cell death protein (PD-1). PD-1 and its ligand are 

probably the most prominent inhibitory molecule associated with T-cell exhaustion (Wherry, 

2011). These molecules are expressed to some extent on functional effector T-cells as part 

of a negative feedback loop, however long-lasting or high expression of antigen manifests 

in T-cell exhaustion (Virgin et al., 2009). Both CTLA-4 and PD-1 inhibit T-cell signaling. PD-1 

ligand (APC) binds PD-1 (T-cells) and recruits several phosphatases to the proximity 

of the TCR which attenuates signaling (Parry et al., 2005). CTLA-4 on the other hand competes 

with CD80 and CD86 for CD28 (Pentcheva-Hoang et al., 2004). T-cell exhaustion occurs 

in a hierarchical manner - they gradually lose their ability to produce IL-2, to proliferate 

and to kill ex vivo as well as their capacity to produce TNF, IFN-γ and to degranulate. The final 

exhaustion stage is the loss of antigen specific T-cells (Wherry et al., 2003; Zajac et al., 1998).  

Blocking the PD-1 or CTLA-4 pathway is one of many emerging therapeutical strategies 

for controlling cancer immunosurveillance (Brahmer et al., 2010). Interestingly, it has been 

showed that T-cell exhaustion can be rescued by co-stimulation. The application of a 4-1BB 

specific mAb together with IL-7 restored CD8+ T-cell effector functions (Wang et al., 2012).  
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Ligands to the above mentioned co-stimulatory and co-inhibitory molecules are expressed 

primarily by APCs what make these cells a potential target for manipulation in the context 

of immunotherapy. However the expression of these molecules is not exclusive and T-cell 

activation may be therefore influence by other immune and non-immune cells (Croft, 2009).  

This capacity to communicate with the environment via a plethora of distinct surface receptors, 

places T-cells among the most important cells in the adaptive immune system. In spite of this 

seemingly overwhelming complexity including MHC restriction, CD4+ and CD8+ co-receptor 

signaling, co-stimulatory molecules, cytokine milieu, type of APC etc., some data points 

to the fact that much simpler schematics of TCR signaling are also functional (Irving and Weiss, 

1991). Moreover, there is a striking difference between CD4+ and CD8+ cells in their ability 

to differentiate into various subtypes (Luckheeram et al., 2012). While CD4+ differentiate 

into several T helper subclasses, CD8+ cytotoxic T cell’s main function is to kill target cells. 

So far, the ability to differentiate into various subtypes of CD8+ T cells has not been reported. 

Thus, while the signaling in CD4+ T cells might be quite complex in physiological scenarios 

in order to ensure the fine tuning of their responses and differentiation program, such 

complexity might not be required for the on/off activation of cytotoxic function in CD8+ T cells 

via their TCR. Recognition of this fact led to the development of several distinct approaches 

which aim to unlock the killing potential of CD8+ T cells or NK cells and use them to target 

and kill tumors (Eshhar et al., 1993; Gross et al., 1989). There are several experiments which 

lend credit to this idea. These experiments are described in the next section. 

2.3. Chimeric antigen receptors (CARs)  

Immune responses to cancer are mediated by main effector cells of the immune system – CD8+ 

T-lymphocytes (Barry and Bleackley, 2002). The tumor-killing potential of these cells, which 

is rather low due to selection in the thymus, is unfortunately further significantly suppressed 

in cancer patients. For this reason, adoptive transfer of genetically modified T-cells has 

tremendous potential in the field of immunotherapy. With advances in cell cultures and gene 

engineering it has become possible to redirect T-cells specificity with TCR-transfer 

(Stanislawski et al., 2001) or with chimeric TCR (Srivastava and Riddell, 2015). One 

of the most perspective immunotherapeutic approaches developing in the past decades 

is the adoptive transfer of chimeric antigen receptor engineered T-cells (June et al., 2015). 

In 1989 the group of Z. Eshhar published the study dealing with the possibility of constructing 

a synthetic chimeric TCR where its extracellular portion is replaced with antibody-derived 

specific antigen recognition domain (Figure 3) (Gross et al., 1989). In 1993 the same group 

discovered that the CD3ζ signaling domain alone is sufficient to trigger a TCR signaling 
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cascade and they constructed the first generation of CARs (Figure 3) (Eshhar et al., 1993). 

These antigen receptors share many attributes with conventional TCR but also show a number 

of fundamental differences (Table 2). CARs are artificial constructs consisting of a target 

protein-recognizing antibody fragment and signaling domain(s) derived from the TCR complex. 

Their structure is described in more detail in Figure 3. It is important to emphasize 

that to ensure selective anti-tumor responses, the target sequence recognized by antibody 

fragment must be practically exclusively expressed on tumor cells. Constructs encoding these 

chimeric receptors are in vitro transfected into isolated patient´s T-cells. These manipulated 

T-cells are then adoptively transferred back to patients where they recognize tumor-derived 

target protein and initiate the killing of tumor tissue (Sadelain et al., 2003).  
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2.3.1. Structure and signaling 

CARs are fusion molecules composed of an extracellular antigen recognition domain, typically 

derived from the single chain fragment variable (scFv) of a monoclonal antibody (mAb), 

a flexible spacer region, a transmembrane spanning sequence and an intracellular CD3ζ 

signaling domains derived from the TCR associated signaling CD3 complex (Figure 3) (Heiblig 

et al., 2015; Jensen and Riddell, 2015; Maher, 2012). 

Figure 3: Chimeric antigen receptor structure. 

The extracellular antigen recognition domain is composed of the variable light (VL) and heavy 

(VH) chains derived from an immunoglobulin molecule specific for an antigen of interest. 

The extracellular and transmembrane domains are connected by a flexible spacer sequence often 

derived from CD8 or CD28 subunits. The transmembrane domain is associated with the CD3ζ 

activation domains carrying ITAMs by electrostatic interactions. In second generation CARs 

the activation domain is further attached to the signaling sequence derived from the co-stimulatory 

molecules most often CD28 or 4-1BB which improves CAR T-cell proliferation. The cytoplasmic 

part of third generation CARs is further supplemented with additional one or more sequences 

from co-stimulation molecules that enhance CAR T-cell persistence. Inspired by (Heiblig et al., 

2015).  
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CAR antigen recognition is mediated by the scFv and unlike the recognition by αβ TCR, CARs 

function independently of MHC. Therefore their application is limited to the recognition of cell 

surface antigens which are available for interaction with the CAR. On the other hand, the use 

of a scFv renders the CAR T-cell independent of peptide processing and presentation 

by the target cell (Maher, 2012). This process is often disrupted in cancer cells (Dunn et al., 

2002). Antigen recognition is therefore not limited to peptides but is endowed to other 

molecules like glycolipids and carbohydrates as well (Sadelain et al., 2015). Because 

of the MHC alloreactivity, the MHC independent antigen recognition makes CARs potentially 

applicable to all patients bearing the same tumor antigen. Antigen recognition by CAR T-cells 

also differs in affinity and sensitivity compared to traditional TCR. Because tumor specific 

T-cell, if present, are mostly low affinity, CARs bind antigens with higher affinity (Harris and 

Kranz, 2015). However TCR are more sensitive in antigen recognition than CARs. For T-cell 

activation it is theoretically sufficient to have one antigen molecule on the target cell surface 

(Sykulev et al., 1996). On the other hand, CAR T-cells are activated by cross-linking, so they 

require in minimum a 100x higher antigen concentration on target cells (Harris and Kranz, 

2015) (Table 2). Higher affinity to antigen does not necessarily result in higher activation of T-

cells. In contrast low affinity immunoreceptors are more potent in discriminating target cells 

with low and high expression of antigen. Most tumor antigens are self-antigens that only differ 

in their expression level, time or location compared to physiological expression, so this must be 

taken into account when applying CAR T-cells to patients (Chmielewski et al., 2004). 

The design of the most convenient antigen recognition domain is further complicated by target 

epitope heterogeneity. For example, the antigen mucin 1 which is highly expressed in ovarian 

and breast cancer, is highly glycosylated and has different epitopes recognizable with distinct 

efficiency by CAR T-cells (Wilkie et al., 2008).  

Following the antigen-recognizing scFv fragment of CAR is a space/hinge region which 

separates the extracellular antigen recognition domain from the membrane crossing sequence. 

This provides a certain range of flexibility to the receptor. Unlike conventional TCR where 

the antigen recognition is determined by the pMHC-TCR interaction, for CAR T-cells 

the antigen recognition is determined by the structure, level of expression and type of epitope 

(Hudecek et al., 2015). The spacer provides flexibility and the ability to “reach” the target 

antigen (Guest et al., 2005). The ideal length of the hinge region is dependent on the dimension 

of the targeted surface antigen. The most common spacers used in CAR construction are derived 

from CD8α (short spacer), or from the IgG hinge (long spacer), typically IgG1 or IgG4, 

or from the Fc domain of IgG. When Fc derived domain is used, it must be altered or mutated 

to avoid in vivo interaction with physiological FcγR. Membrane proximal epitopes require 
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longer spacer domains for efficient T-cell activation (Harris and Kranz, 2015). In the case 

of CD19 epitope, a wide variety of spacers may be used in vitro, ranging from 12-229 amino 

acids. However, in vivo shorter spacers (12 aa) have proven to be more effective than 

intermediate (119 aa) or long spacers (229 aa) (Hudecek et al., 2015). It is therefore critical 

to consider the structure of the spacer domain based on the target when designing the optimal 

CAR because this domain dramatically affects in vivo antitumor activity.  

The following transmembrane domain is structurally very important and affects CAR antigen 

recognition and signaling. This region is often covered by fragments derived from T-cell 

molecules like co-receptors CD3, CD4 or CD8, or co-stimulatory molecules CD28 or CD134 

(also known as OX-40). The transmembrane domain derived from CD3ζ proved to be capable 

of heterodimerizing with the endogenous CD3ζ which leads to the upregulation of CD3ε 

and enhanced responsiveness to stimulation via CAR (Bridgeman et al., 2010). 

The intracellular signaling region has been the most studied and subjected to various 

modifications throughout the years of CAR development. For signal transduction, the CD3ζ-

derived signaling domain containing ITAMs or γ chain-derived fragment from the high affinity 

receptor for IgE – FcεR1 are routinely used. The first generation of CARs was very simple and 

signals provided by these receptors mimicked those provided by the natural TCR. These 

receptors had only the signaling domain in their cytoplasmic part (Figure 3) (Eshhar et al., 

1993). Logically, the signaling outcome of this first CAR generation which lacked the capacity 

to generate co-stimulatory signals, was not the same as the outcome observed upon 

the activation of natural TCR. Therefore this domain became intensely modified and redesigned 

(Irving and Weiss, 1991). In physiological conditions, T-cell stimulation needs a second signal 

which is provided mainly by the co-stimulatory receptor CD28 (Geiger et al., 1999; Maher et 

al., 2002). The absence of such signal results in decreased proliferation of T-cells, T-cell anergy 

or their elimination by programmed cell death. In agreement with this notion is the fact 

that initial CAR construct that incorporated only the CD3ζ signaling domain failed to show 

clinically relevant success (Harding et al., 1992).  

To overcome this drawback, the CD3ζ has been fused with a core segment of the signaling 

domain derived from a single co-stimulatory molecule, such as CD28 (Maher et al., 2002), 4-

1BB (Long et al., 2015), CD27 (Song et al., 2012), ICOS (Guedan et al., 2014) or OX-40 

(Finney et al., 2004). The co-stimulatory domains increased the effect of the signaling domain 

by mimicking the co-stimulation provided by APCs during physiological TCR recognition. 

A CAR fusion molecule providing the first and second signal together, was first constructed 

by Helene M. Finney and her colleagues (Finney et al., 1998). Co-stimulatory domain of CD28 
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and 4-1BB are most intensively studied and used as signaling domains in these CARs. 

The second generation of CARs enhances effector functions and T-cell proliferation, act on cell 

differentiation and cell death by increasing the expression of corresponding downstream 

regulators (Maher et al., 2002). It has been shown that the type of co-stimulatory signaling 

domain incorporated in the CAR molecule has significant impact on T-cell memory 

development, CAR signaling and CAR T-cell metabolism (Kawalekar et al., 2016).  

CD3ζ-CD28 CARs showed enhanced T-cell proliferation in vitro and enhanced tumor killing 

in vivo (Finney et al., 2004). In addition, upon antigen encounter and receptor cross-linking, 

this construct effectively induces the secretion of IL-2 and cell proliferation which are features 

necessary for effector T-cell function and the induction of long-term memory (Maher et al., 

2002; Zhong et al., 2010). Enhanced secretion of other cytokines such as IFN-γ, TNF-α 

and GM-CSF was also observed (Finney et al., 2004). When compared with 4-1BB containing 

CARs, CD28-CARs eradicate tumors at earlier time points (Zhao et al., 2015). However, 

their proliferative potential and persistence is much lower than in the case of 4-1BB CAR T-

cells due to more rapid expression of exhaustion markers such as CTLA-4 or PD-1 (Kawalekar 

et al., 2016). Thus, while the addition of CD28 signaling domain delays activation-induced cell 

death of T cells expressing CAR construct, upon its repeated re-stimulation, the effect of CD28 

co-stimulation diminishes (Long et al., 2015). It has been shown that in contrast to CD28 CAR 

T-cells, 4-1BB CAR T-cells induce CD8+ central memory and CAR T-cell persistence 

(Kawalekar et al., 2016).  

In this context it necessary to highlight the fact that major limiting factors for efficacy of CAR 

therapy is CAR T-cell exhaustion and antigen-independent CAR T-cell activation. As this 

directly relates to CAR-mediated co-stimulatory signaling, several studies addressed 

the question how these signaling moieties contribute to these phenomena. Adrienne H. Long 

and her colleagues. demonstrated that CD28-CAR exhaustion is due to antigen independent 

CAR activation caused by CAR clustering. The incorporation of the 4-1BB domain partly 

suppresses the development of exhaustion, leads to the increase of cytokine production, 

improves anti-tumor effect in vivo and increases in vivo persistence of CAR T-cells. 

By comparing the transcription profile of CD28-CARs and 4-1BB-CARs the group of Crystal 

Mackall identified that 4-1BB CARs showed higher expression of genes encoding transcription 

factors associated with memory and, on the other hand, lower expression of genes encoding 

exhaustion-related transcription factors. They also identified three pathways that might 

contribute to the improved functionality of 4-1BB-CARs such as response to hypoxia, cellular 

metabolism and negative regulation of apoptosis (Long et al., 2015). First clinical trial 
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incorporating the signalling domain of 4-1BB was performed by a group from the University 

of Pensylvania and two out of three patients in this trial experienced complete remission 

of chronic lymphocytic leukemia (CLL). CAR19 T-cells persisted in circulation for several 

months, proliferated and CAR expression memory T-cells were detected (Kalos et al., 2011; 

Porter et al., 2011). 

As both molecules – CD28 and 4-1BB provide at the same time general and specific benefits, 

it has been investigated whether the co-expression of the two molecules along with the CD3ζ 

would lead to the enhanced cytolytic activity (through CD28) and enhanced CAR T-cell 

persistence (through 4-1BB). The co-expression of 4-1BB and CD28-derived signaling modules 

enhanced its effect and led to the increased potency and persistence of CAR T-cells 

after antigen stimulation (Zhong et al., 2010). For this reason, combinatorial fusion of CD28 

and 4-1BB constructs has been marked as the third generation of CARs. Several studies 

confirmed the positive effect of the 3rd generation of CARs in enhancing T-cell responses 

(Carpenito et al., 2009; Wang et al., 2007). Notably, T-cell survival and activation was truly 

enhanced when combining 4-1BB and CD28 signaling domains through the upregulation 

of several anti-apoptotic factors from the TNF family, such as B-cell lymphoma 2, 

and maintained immune memory (Imai et al., 2004; Long et al., 2015; Zhong et al., 2010). 

However, it is very likely that to a certain extend 4-1BB stimulation was mediated 

by endogenous bystander T-cells. Final conclusions are therefore difficult to make because 

different studies focused on different CAR constructs, used different cohort of patients (age, 

type of malignancies) and many studies were not supported by in vivo experiments. The latter 

are essential since in vitro results often do not correspond to final in vivo observations. 
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Table 2: Comparison of the conventional T cell receptor and the artificial chimeric antigen 

receptor.  

The conventional TCR recognizes antigen in the context of MHC molecules through its variable 

αβ or γδ chains. CAR recognition domain is derived from an antibody VL and VH. The antigen 

recognized by the TCR is a peptide either derived from endogenous proteins (presented 

on MHC class I) or from exogenous proteins (presented on MHC class II). CAR T-cells function 

in a MHC-independent manner and therefore their recognition is not limited to peptide 

antigens. The TCR signaling machinery is composed of αβ TCR and CD3 chains 

and co-receptor CD4 or CD8). In contrast, CARs have a single CD3ζ signaling domain usually 

fused with a single co-stimulatory signaling sequence. The affinity of the TCR is in the order 

of micromoles while CAR affinity is much higher – in nanomolar values. Theoretically, 

the recognition of one single antigen molecule is sufficient to trigger T-cell activation. 

In contrast more than a hundred CAR receptors must be crosslinked for CAR T-cell activation. 

Adapted from (Harris and Kranz, 2015) 

 

TCR CAR

Antigen recognition domain VαVβ/VγVδ Fab VL VH 

MHC restriction yes no

Antigen origine intracellular and extracellular cell surface 

Antigen type peptides peptides, carbohydrates

Number of subunits in receptor complex 10 1

Number of ITAMS 10 3

Number of tyrosines as substrates 20 6

Coreceptor, co-stimulatory involvement yes (CD4, CD8, CD28 ect.) none known

Affinity for antigen 10
4
-10

6 
M

-1
10

6
-10

9
 M

-1

Number of surface receptors per T-cell 50 000 > 50 000 but varies

Minimum number of antigens required 1 > 100

Signaling Machinery

Antigen recognition
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2.4. Treatment of hematological cancers 

Since the invention of CARs in the 1990s, these synthetic receptors have gone a long way 

and have finally reached clinical trials (Appendix - Table 15). Some are more successful, some 

less. The success of this therapeutic approach is so far highly dependent on the type of disease 

and the nature of the targeted antigen. As mentioned above, CARs are MHC-independent. 

Therefore, ideal target antigens are primarily cell surface molecules and, owing to a killing 

efficiency of CD8+ T cells, the greatest potential for their application seems to be cancer 

immunotherapy. However, a considerable complication is that TAAs are usually expressed 

on both healthy as well as on malignant tissues. Hence, the selection of appropriate tumor target 

antigen is of critical importance, otherwise CAR application can lead to on-target/off-tumor 

toxicity which can cause serious or even lethal side effects (Hinrichs and Restifo, 2013).  

So far the biggest success in clinical application of CARs has been achieved in treating 

hematological cancers, specifically B-cell malignancies. This is due to the expression of B-cell 

lineage specific marker – CD19 (LeBien and Tedder, 2008). CD19 is a surface molecule 

expressed exclusively on B-cell lineage from pro-B-cells to mature B cells. Hematopoietic stem 

cells and other tissues lack CD19. This makes CD19 a hot candidate for CAR targeting. 

Importantly, it is expressed on almost all B-cell malignancies, except 5% of undifferentiated 

immature B-cell lineage in ALL. Very convenient is also the fact that long-term B-cell depletion 

and reduced immunoglobulin levels in patient treated with CD19 specific CARs is well 

tolerated due to immunoglobulin supplementation (Heiblig et al., 2015).  

Another cell surface molecule expressed preferentially by B-lymphocytes is CD20. It’s a mature 

B-cell marker that functions as a Ca2+ channel and is also being tested for malignant B-cell 

targeting (LeBien and Tedder, 2008). 

CAR-targeted CD19 clinical trials have shown robust and lasting tumor regression in most 

pediatric and adult patients with relapsed/refractory ALL and in some patients with CLL (Grupp 

et al., 2013; Kalos et al., 2011; Porter et al., 2011).  

In order to be eligible for allogeneic hematopoietic stem cell transplantation (allo-HSCT), 

patients must achieve complete remission by prior chemotherapeutic treatment. However many 

patients fail to meet these conditions and never receive potential life-saving allo-HSCT. Thus, 

for those patients that still have minimal residual disease (MRD), their chance for complete 

recovery is diminished compared to MRD- patients (Brentjens et al., 2013). Therefore, 

the introduction of CAR technology into clinics is acclaimed as a long awaited breakthrough 

in the treatment of hematological malignancies. 
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2.4.1. Isolation and manufacturing of CAR T-cells   

In clinical practice, manufacturing CAR T-cells begins with leukapheresis and T-cells isolation. 

This is a process where the whole blood of a patient is removed from the body, certain cellular 

component is selected and the rest is reintroduced back into circulation. In the case of CAR 

therapy, T cells are separated from the blood, ex vivo expanded, transduced to express 

an appropriate chimeric antigen receptor and finally adoptively transferred back into the patient 

(Davila et al., 2014a). 

Leukapheresis should be applied before lymphodepleting chemotherapy in order to obtain 

sufficient T-cell numbers. According to the Department of Health and Human Services, 

the physiological T-cell count is between 500-1 200 cells/mm3. The absolute T-cell count below 

200-300/mm3 would thus probably lead to poor T-cell collection. Apheresis normally takes 

place under hematopoietic stem cell mobilizing agent free conditions, but this varies depending 

on patient, the type of mobilizing agent and the type of T-cell isolation. Anti-coagulants are 

mixed with the blood in order to prevent blood clotting. The number of apheresis cycles 

depends on the number of target cells present in blood and on the desired final number 

of isolated cells. The apheresis product varies depending on patient’s health conditions and their 

previous therapy. CD3+CD45+ T-cells can represent from 2.29% up to 4.67% of total blood 

count (Kalos et al., 2011). After isolating a sufficient number, T-cells are activated 

and expanded in vitro. The most convenient and Food and Drug Administration (FDA) 

approved method for T-cell activation is their stimulation via anti-CD3/anti-CD28 mAb coated 

magnetic beads (Levine, 2015).  

2.4.2. CAR gene delivery systems  

The next step is T-cell transduction with the CAR transgene. Mammalian cells can 

be transduced by several vectors. The most frequently used is viral vector transduction due to its 

high efficiency of gene delivery but transposon system such as the Sleeping beauty can be used 

as well (Kebriaei et al., 2016) Since retroviruses can permanently incorporate their genetic 

information into the host genome, they have been studied and utilized as natural gene delivery 

system for permanent cell transduction (Sakuma et al., 2012)  

The retroviral genome is a single-strand RNA that encodes three large open reading frames gag, 

pol and env which are bounded by two long terminal repeats (LTRs) at the 5´and 3´end. These 

are required for viral transcription, reverse transcription and integration. The gag gene encodes 

viral core proteins, the pol gene encodes a set of enzymes needed for viral replication 

and the env gene encodes the viral surface protein. For safer use these viral genes are split into 
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separate plasmids thus limiting the formation of retroviral competent particles. A packaging cell 

line, most frequently the human embryonic kidney (HEK) cell line 293T, is then transfected 

with these multiple plasmids along with a plasmid carrying the exogenous DNA encoding CAR 

construct. Viral particles produced by HEK293T cells are then used to transduce target cells. 

Within these cells, the viral RNA is transported to the nucleus, reverse transcribed into dsDNA 

and randomly and permanently incorporated into the host genome ensuring a long-term gene 

expression. Retroviruses preferentially integrate into replicatively active euchromatine and such 

integration can cause the deregulation of physiological gene expression. This issue was resolved 

by the use of self-inactivating (SIN) vectors which create deletions in the LTRs 

and thus prevents the reactivation of provirus production, but not the expression of CAR 

construct. Unfortunately, retroviruses are unable to infect non-dividing cells which is highly 

inconvenient because majority of human T-cells are quiescent or dividing only occasionally 

(Vannucci et al., 2013). 

Thus other vectors have been studies for gene transfer especially those derived from the human 

immudeficiency virus (HIV). Lentiviruses are closely related to retrovirus but are more 

advanced. They require more regulatory genes that neutralize host cell defense and effect viral 

replication. They can infect non-dividing cells and unlike retroviruses, they don’t target cellular 

promotors for their incorporation into the genome, so the risk of insertional mutagenesis 

and oncogenicity is minimal. Similar as for retroviral vectors, for safety reason, the viral genes 

were split into separate packaging constructs and LTRs were mutated by the SIN vector. 

Lentivirus vectors have been further modified to transduce even wider range of cells 

by replacing the env gene with the highly conserved vesicular stomatitis virus glycoprotein 

(VSV-G) which is used for cell entry (Sakuma et al., 2012; Vannucci et al., 2013). 

After transduction, cells must be tested for the presence of replication competent viruses. 

If negative, then they are expanded in vitro, typically in bioreactors, to obtain sufficient number 

of cells. Finally after up to 20 days of cell cultivation and expansion, CD3/CD28 mAb coated 

magnetic beads are removed, cells are harvested, washed, concentrated and cryopreserved until 

being applied to the patient (Kalos et al., 2011; Levine, 2015).  

2.4.3. Clinical application 

The clinical application can slightly differ across clinical trials, but in principal they are 

the same. Once the genetically modified CAR T-cells are prepared, they are ready for patient 

application. In vivo studies on mice, as well as clinical studies have shown that for efficient 

CD19 specific T-cell-mediated targeting, some form of foregoing therapy is indispensable. 

Patients treated with cyclophosphamide before T-cell infusion showed enhanced persistence 
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of modified T-cells despite the fact that they have been infused with a lower number of CAR 

T-cells compared to the control group not treated with cyclophosphamide (Davila et al., 2013) 

Chemotherapy may increase the potential of CAR T-cells by stressing tumor cells, that have not 

been depleted by chemotherapy and making them more sensitive to cytotoxic CAR T-cells. 

It may also increase the potential of engraftment and migration towards tumor cells (Porter et 

al., 2011). Therefore the clinical protocol begins with the application of lymphodepleting 

chemotherapy. CAR T-cells are then applied by intravenous infusion in a split-dose approach. 

The total number of infused CAR T-cells varies depending on clinical trial as well. 

In the clinical study reported by Brentjens and his colleagues, the number of infused 

CAR19+/CD3+ T-cells ranged from 0.4-3.2x109 (Brentjens et al., 2011). In the study published 

by Kalos and his group the total number of infused cells ranged from 0.3-5x109 (Kalos et al., 

2011). Neither of these studies discriminated CD4+/CD8+ T-cells for infusion. However 

the predominant infused T-cell phenotype was CD4+. In CLL patients the mean of CD4+ T-cells 

was 88% and the average ratio of CD4+/CD8+ was 10.5. On the other hand, in ALL patients the 

mean of CD4+ T cells was diminished to approximately 63%. Despite the domination of CD4+ 

T-cells, the number of FoxP3+ regulatory T-cells was minimal (Brentjens et al., 2011).  

After T-cell infusion, the trafficking of tumor specific T-cells to the site of tumor is monitored 

and the ability to persist and proliferate as well as the ratio of modified T-cells in vivo 

is analyzed. Renier J. Brentjens and his group analyzed the trafficking of CAR T-cell 

by immunohistochemistry of autopsies and showed that tumor specific T-cells truly migrate 

to lymph nodes, liver and bone marrow. They detected CAR19 T-cells 44 hours after infusion 

but also 2 months later (Brentjens et al., 2011). Michael Kalos and colleagues, who performed 

the study with CAR19 construct incorporating the co-stimulatory signaling domain of 4-1BB, 

detected CAR T-cell persisting in the blood even six months later (Kalos et al., 2011). Based 

on the ratio of isolated CAR19 T-cells analysis from patients 5 weeks post infusion, CD4+ 

and CD8+ transfected T-cells were endowed with the equivalent ability to proliferate and persist 

in vivo (Brentjens et al., 2011). Unfortunately several negative side effects are associated 

with CAR19 T-cell activation and proliferation (Brentjens et al., 2013). These are described 

in more detail in the next section. 

2.4.4. CAR T-cell therapy related toxic effect 

Cytokine-release syndrome 

The serum and bone marrow cytokine levels are monitored to provide evidence of CAR T-cell 

function. However, CAR treatment is often accompanied with the cytokine release syndrome 

which is the most common toxic side effect of CAR T-cell therapy (Namuduri and Brentjens, 
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2016). The massive production of pro-inflammatory cytokines may occur several days to weeks 

after infusion of CAR T-cells as a consequence of T-cell triggering, activation and proliferation, 

and if not managed properly, it can cause life threatening complications. The symptoms vary 

depending on the severity of cytokine overproduction. Common are high temperatures, chills, 

or myalgias5 but may escalate to life-threatening vascular leak, hypotension, respiratory 

and renal failure, cytopenias6 and coagulopathy. Among the measured parameters are primarily 

serum and bone marrow markers of systemic inflammation such as cytokines, chemokines 

and other biochemical parameters (Brentjens et al., 2013; Kalos et al., 2011)(Table 3). 

 

 

In the clinical study reported by Michael Kalos and his group, they measured a panel of 30 

cytokines, chemokines and other relevant soluble factors in their clinical study. The most 

                                                      
5 Muscle pain  
6 Reduction in the number of blood cells 

Cytokines and receptors

IFNγ

IL-6

IL-8

IL-2 receptor α 

IL-2 receptor β 

Chemokines

macrophage inflammatory protein 1α 

macrophage inflammatory protein 1β 

monocyte chemotactic peptide-1 

CXC chemokine ligand 9 

CXC chemokine ligand 10 

Biochemical parameters

C-reactive protien

ferritin

aminotransferase

serum D-dimer

alkaline phosphatase

Table 3: List of most the commonly evaluated systemic inflammation markers associated 

with CAR T-cell therapy. 
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relevant changes were detected for IFNγ which increased three fold above the base line (Kalos 

et al., 2011). 

It has been shown that the severity of cytokine release syndrome correlates with the severity 

of leukemia. In other words, the higher the tumor burden, the more sever cytokine release 

syndrome (Maude et al., 2014). Among other complications with similar toxic side effects 

are macrophage activation syndrome and tumor lysis syndrome. 

These post-infusion complication are well manageable by the application of IL-6-receptor 

blocking antibody - tocilizumab, glucocorticoids, corticosteroids and TNF inhibitor - etanercept 

(Grupp et al., 2013). In several clinical studies all patients suffering from cytokine release 

syndrome were treated by the above mentioned procedures and all of them fully recovered 

and their laboratory results returned to physiological values (Grupp et al., 2013; Maude et al., 

2014; Porter et al., 2011). Interestingly, patients treated with CAR19 T-cells incorporating 

the signaling domain from the co-stimulatory molecule 4-1BB, instead of CD28, as in trials 

mentioned above, did not suffer from cytokine release syndrome. Some patients had higher 

levels of IL-6, IFN-γ or IL-2R but their clinical conditions did not require anti-cytokine 

treatment and pro-inflammatory cytokine levels reverted to physiological values despite 

continued function of CAR T-cells (Kalos et al., 2011).  

B-cell aplasia 

The absence of CD19+ B-lymphocytes is a severe but well manageable toxic side effect 

accompanying properly functioning CAR19 T-cells and their persistence in vivo. This effect 

is detectable in all patients for which the therapy was successful. Unlike previously mentioned 

toxic side-effects, B-cell aplasia is a long-term effect. The absence of B-cells and therefore 

the disruption of humoral immunity are corrected and compensated by the intravenous infusion 

of immunoglobulins to maintain their necessary levels. The administration of antibiotics is also 

the part of such prevention and compensatory measures (Maude et al., 2014).  

Encephalophaty 

Neurologic toxicity may also occur after CAR T-cell infusion. Symptoms are high temperatures 

during which patients may experience delirium, aphasia7 and hallucinations. Symptoms usually 

resolve after 2-3 days and the medication is not required (Maude et al., 2014). 

The clinical procedure described above refers to B-cell malignancy treatment with CD19 

specific CAR T-cells in general. However B-cell malignancies are a heterogeneous group 
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of leukemia and the treatment as well as the patient´s responses may differ depending 

on the specific type of leukemia or lymphomas. The transduction methods, optimal T-cell 

subtype, cultivation conditions, type of co-stimulation, presence of conditioning therapy 

or other immune enhancers and the degree of tumor burden must be taken into account when 

tailoring CAR therapy to a particular patient (Sadelain, 2015). 

2.4.5. Anti-CD19 clinical trials 

Many clinical trials employing CAR technology have been initiated and conducted in the United 

States. In general, their number has grown dramatically since the year 2000 (Figure 4a). Among 

the most targeted antigens, CD19 is at the top of the list (Figure 4b). The first report of CD19 

CAR T-cell clinical trial was published by Kochenderfer and colleagues from National Cancer 

Institute in 2010. A patient with follicular lymphoma was treated with autologous anti-CD19-

CAR transduced T-cells. Impressive partial remission lasted 32 weeks. CD19+ blood cells were 

absent from week 9 to week 39 post CAR T-cell infusion (Kochenderfer et al., 2010). 

This success in cancer immunotherapy launched a wave of clinical trials using anti-CD19 CAR 

T-cells. The first clinical study with second generation CAR T-cells containing 4-1BB 

co-stimulation included three patients with CLL. Two out of three patients showed complete 

remission (Kalos et al., 2011) which lasted at least till September 2015 So far, the most dramatic 

success was reported in patients with ALL (Brentjens et al., 2013; Grupp et al., 2013; Maude et 

al., 2014). Renier J. Brentjens and colleagues from the Memorial Sloan Kettering Cancer Center 

treated 5 relapsed ALL patients with autologous CD19-28-ζ specific CAR T-cells. All patients 

demonstrated complete remission and no MRD was detected (Brentjens et al., 2013). In another 

study where Marco L. Davila and colleagues treated 16 ALL patients with CAR transduced 

T-cells, complete response was achieved in 88% of them and patients became eligible for allo-

HSCT (Davila et al., 2014b). Shannon L. Maude and her team. from the Children´s Hospital 

of Philadelphia reported 27/30 children and adult patients with ALL complete remission 

and 6 months post infusion 68% of patients had CAR T-cell persistence and 73% had B-cell 

aplasia (Maude et al., 2014). A summary of actively recruiting or ongoing clinical trials 

is presented in Appendix – Table 15. 

Even though these results are very promising, CAR T-cell therapy is still at its infancy 

and suffers from many limitations that are yet to be overcome. For example, as mentioned 

earlier, CAR T-cell therapy is still associated with diverse life threatening adverse effects 

and spatiotemporal aspects of this therapy are still difficult to regulate. Moreover, at present 

time, it is non-applicable to other types of cancers, such as solid tumors. 
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Figure 4: CAR and TCR clinical trials for oncology indications in the US between 1994 and 

2014.  

a) The total number of new CAR clinical trials for solid tumor immunotherapy throughout 

the years 2002 to 2014. b) The overall number of ongoing CAR clinical trials for tumor 

individual antigens.  Reprinted by permission from Macmillan Publishers Ltd: Nature Medicine 

(Klebanoff et al., 2016), copyright 2016 
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2.5. Treatment of solid tumors 

So far I have described the use of CAR T-cells only for B-cell leukemia which has shown to be 

the most effective due to the presence of the well-defined, B-cell lineage markers, CD19 

and CD20.  

However, solid tumor antigens have also been tested for the purpose of CAR T-cell therapy 

(Figure 4a and b). Treating solid tumors by CAR T-cells remains a challenge to this day. Even 

though the safety and feasibility of CAR T-cell treatment for certain solid tumors has been 

established in clinical trials, their application is still limited by off tumor/on target toxicity 

(Lamers et al., 2006). Very few antigens are uniquely specific for solid tumors. Target antigen 

candidates are most commonly “self” antigens that are co-expressed on healthy tissues which 

are therefore also attacked by CAR T-cells. Alternative way based on the targeting 

of neoantigens could decrease the level of autoimmune toxicity. Unfortunately, most solid 

tumors are in general not derived from constantly renewable tissues, like leukemia 

and lymphomas. Therefore, targeting a given tumor tissue as a single and oncoantigen specific 

entity, is not possible. The treatment of solid tumors using CAR T-cells is further complicated 

by the tumor microenvironment which actively suppresses the effector functions of T-cells. 

CAR T-cells need to traffic to the tumor site and actively invade to tumor mass in order to kill 

malignant cells. However, CAR T-cells cannot easily contact malignant cells because 

of the compact solid tumor architecture, local presence of inhibitory mechanisms and because 

of the possible absence of molecules on CAR T cells necessary for cell trafficking such 

as integrines, chemokines and chemokine receptors. These may be downregulated due 

to in vitro cultivation and genetic modifications of CAR T-cells (Guo et al., 2016).  

An example of a targeted solid tumor antigen against which CAR T-cells are undergoing 

clinical trials is mesothelin. Mesothelin is a glycosylphosphatidyl inositol membrane-anchored 

glycoprotein. Its high expression was detected in many malignancies such as pleural 

and peritoneal mesothelioma or pancreas, lung, breast, ovarian and esophagela cancers. 

However mesothelin is also expressed on other tissues such as cornea, pleura, pericardium, 

peritoneum, tonsils, fallopian tubes or cervix. Because of heighten possibility for on target/off 

tumor toxicity, the FDA ordered very strict and low dosage phase I clinical study which 

is currently ongoing. Although it is too early to make any conclusions, so far the results have 

shown no on target/off tumor toxicity, but neither tumor regression (Klebanoff et al., 2016). 

MUC16 is another candidate antigen expressed in the majority of ovarian cancers. It is a cell 

surface glycosylated mucin. Unfortunately, it is also expressed on other tissues, such as the eye. 
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Analogous to mesothelin, MUC16-specific CARs are in the “fine-tuning” dosage test in phase 

I clinical trials (Koneru et al., 2015).  

CAR T-cells targeting another potential marker of solid tumors, carbonic anhydrase IX (CAIX), 

have already showed off tumor/on target toxicity in one clinical study. CAIX is expressed 

on some kidney cancers but also by epithelial cells of the bile duct. Patients treated with CAIX 

specific T-cell developed liver function abnormalities and cholangitis, but unfortunately no 

cancer regression occurred. 12 patients are part of an ongoing clinical trial that is evaluating 

the optimal dosage and safety of CAIX specific CAR T-cells (Lamers et al., 2006). 

The receptor tyrosine protein kinase ERBB2 specific third-generation CAR T-cells so far also 

failed to provide a story with a happy ending. Treated patients developed lethal inflammatory 

cytokine release syndrome in the lungs (Morgan et al., 2010).  

More encouraging results so far have been observed in patients treated with disialoganglioside 

(GD2) specific CAR T-cells. The molecule GD2 which is expressed in neuroblastomas is being 

tested in pediatric patients and so far, no on target/off tumor toxicity has been detected. In fact, 

3/11 patients experienced some tumor regression and two out of these three even sustained 

complete remission. Patients did not experience any neural toxicity besides pain at the site 

of tumor. However, as only first-generation CAR T-cells were used for this study, the use 

of the second-generation CAR technology may enhance the anti-tumor effect as well as toxicity 

(Louis et al., 2011). 

It is evident from existing results that many issues are yet to be resolved. The clinical 

and toxicity outcomes of CAR T-cell therapy are influenced by tumor type and tumor targeted 

antigens, by the presence of co-stimulatory molecules, the way CAR T-cells are engineered 

and also the presence or absence and type of conditional therapy. Engineering CAR T-cells with 

safety and tissue-specific mechanisms may also be a solution for diminishing off tumor toxic 

side effects (Guo et al., 2016; Klebanoff et al., 2016). 

2.6. Regulating CAR T-cell safety and specificity 

To this day the biggest challenge in cancer therapy is to eliminate tumor cells without damaging 

healthy tissue. To minimize the on target/off tumor CAR T-cell toxicity, many teams have been 

working on engineering safety and tissue selective mechanisms that would prevent unwanted 

auto-reactivity of T-cells (Klebanoff et al., 2016). Experimentally tested mechanisms that could 

enhance the safety and specificity of CAR expressing T-cells are summarized below.  
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A simple form of CAR T-cell regulation may be achieved by transfecting cells by RNA 

electroporation. In this way, the receptor is introduced into the cell only temporarily because 

RNA does not integrate into the host genome. Therefor the expression of CARs on these cells 

is only short-lived and toxicity, if present, fades spontaneously in a couple of days (Figure 5d) 

(Zhao et al., 2010). 

CAR T-cells may be engineered to co-express a “suicide” gene and become sensitive 

to the treatment with a prodrug. Thus, in case of CAR-mediated toxicity, it enables 

the regulation of CAR T-cell activity via induction of apoptosis by application of the prodrug. 

Good example of such suicide gene is a widely used herpes simplex virus-thymidine kinase. 

The insertion of this gene into CAR T-cells renders them susceptible to ganciclovir8 (Figure 5a) 

(Bonini et al., 1997). An alternative approach is the co-expression of an inducible caspase-9 

(iCaps9) construct in CAR T-cells. The human caspase-9 is engineered to be activated after 

ligand-induced dimerization of CAR construct. This enables specific depletion of activated 

CAR T-cells that co-express the iCasp9 and undergo induced apoptosis (Figure 4b) (Zhou et al., 

2014). Another suicide gene available is the truncated epidermal growth factor receptor 

(tEGFR). Cells co-expressing tEGFR may undergo antibody-dependent cellular cytotoxicity 

after the administration of the tEGFR specific antibody cetuximab (Figure 5c) (Wang et al., 

2011). 

The possibility to eliminate CAR T-cell through induced apoptosis is convenient but the ability 

to regulate the duration, location and timing of CAR T-cell activity would be even more useful 

and would enhance the safety of genetically engineered T-cells. Several spatiotemporal control 

strategies already exist and have been tested. One strategy proposes to co-transduce T-cells with 

two separate CARs one of which provides a dominant inhibitory signal - iCARs. The dominant 

inhibitory receptor recognizes an antigen expressed by healthy tissues and its signaling domain 

is derived from inhibitory molecules such as PD-1 or CTLA-4 (Fedorov et al., 2013; Klebanoff 

et al., 2016). The other CAR recognizes the tumor antigen, which should not be express 

on healthy tissues (Figure 5e) (Fedorov et al., 2013). Alternative, but similar approach 

is the co-transduction of two separate CARs neither of which is sufficient for triggering T-cell 

activation. These so called “logic-gated” CARs both need to bind antigen in order to activate 

the cell (Figure 5f) (Klebanoff et al., 2016).  

Recently Chia-Yung Wu and collaborators. have developed a more sophisticated mechanism 

of controlling CAR duration and timing by re-spliting the antigen recognition domain 
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and the signaling domain into two distinct modules. In these “on-switch” CARs, the two 

modules dimerize only in both the presence of cognate antigen and the dimerizing molecule. 

Dimerization of the antigen recognition domain and the signaling domain induces signaling 

and CAR T-cell activation. Activation may be also disrupted by competitive binding 

of the small molecule dimerizer and again re-induces. This opens up a potential door 

for pharmacologic regulation of this drug by physicians (Figure 5g) (Klebanoff et al., 2016; Wu 

et al., 2015). Lastly “masked CARs” have been developed. These receptors have their antigen 

binding domain blocked by a peptide mask that is attached to a protease substrate. When cells 

bearing these receptors get into a protease rich environment such as the tumor 

microenvironment, the protease substrate is cleaved and the mask is released. The antigen 

binding domain of the receptor is revealed and become operational (Figure 3h) (Klebanoff et al., 

2016).  

Recently, an outstanding system using a synthetic notch receptor to engineer customized cell 

response has been introduced by Lim and his group (Morsut et al., 2016). This system has been 

used by Roybal and colleagues. for engineering „ AND-gate“ T-cells that express two distinct 

receptors which can be activated only after dual antigen recognition. The synthetic notch 

receptor is expressed constitutively and its activaton drives the expression of the CAR receptor. 

This „AND-gate“ T-cell needs both antigens 1 and 2 to get activated, thus sparing single antigen 

expressing cells from killing (Morsut et al., 2016; Roybal et al., 2016).  

In aggregate, research surrounding the academic and clinical interest in CAR technology 

is currently booming. Inhere described latest innovations in this field attest to a fast-pacing 

advancement in constructional design of CAR, CAR transfection approaches, clinical 

applicability of CAR technology to various types of tumors under well-controlled conditions 

and with increased biosafety precausions. Given all these features and due to its sensitivity 

and specificity to recognize relevant molecular structures, in the near future, CAR technology 

will find even wider applicability not only in the immunotherapy but also in many other areas 

of translational medicine. 
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Figure 5: Safety and tissue-selectivity mechanisms that may be inserted into gene-engineered 

T-cells.  

See text for details. Reprinted by permission from Macmillan Publishers Ltd: Nature Medicine 

(Klebanoff et al., 2016), copyright 2016 
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3. Materials and Methods 

3.1. Experiment layout 

The overarching goal of the work initiated by MUDr. Pavel Otáhal has been to implement CAR 

T-cell therapy for B-cell malignancy treatment into the clinics in Czech Republic. Integral part 

of this goal was to adapt the basic skills and knowledge concerning CAR T-cell engineering. 

As a part of this effort and the main objective of my thesis was to generate and test 

the functionality of CD19- and CD20-specific CAR T-cells. An ultimate goal of my work was 

to prepare a “superCAR” that would carry a construct in which CD19 and CD20 specific CAR 

sequences are fused into one open reading frame and thus expressed on protein level in an equal 

stoichiometric ratio. The activation capacity and cytotoxicity of individual CARs 

and the superCAR T-cells would be then compared.  

It is of note that the construction of the superCAR is achieved by a separation of the two 

individual CAR constructs (CD19 and CD20) by a short viral T2A sequence which ensures that 

the product of translation is split into two individual peptides accordingly. SuperCAR T-cells 

would therefore be double specific for both target molecules on malignant B cells - CD19 

and CD20. Theoretically, this would endow superCAR T-cells with enhanced potential 

to recognize MRD and enable the elimination of malignant cells that have lost one 

of the antigens due to cancer immunoediting. This could minimize the potential of antigen 

escape by malignant cells.  

It is necessary to mention that before I have initiated my work on this project, Dr. Otahal’s team 

was able to design and fully synthesize two CD19-CD20 superCAR constructs: CD20-41BB-

FceR1γ-CD19-CD28-CD3 ζ and CD20-CD28-FceR1γ-CD19-41BB-CD3ζ. However, upon their 

testing, both constructs failed to be expressed in a permissive cell line. Thus, the initial aim 

of my work was to determine the faulty part of these constructs, find their functional 

replacement, test CD19 and CD20 constructs individually and only then to attempt to fused 

these two functional sequences into one working superCAR construct.  
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3.2. Material 

3.2.1. Constructs 

Individual constructs specific for the B-lymphocyte antigen CD19 were either cloned out 

of non-functional superCAR constructs or directly provided as a synthesized sequences by Dr. 

Otáhal (Table 4). The schematic representation of individual sequences is represented 

in Figure 6. 

 

  

contruct construct origin

CD19-CD28-CD3ζ 
cloned out of superCAR

CD20-4-1BB-FceR1γ-CD19-28-CD3ζ 

CD20-CD28-FceR1γ 
cloned out of superCAR

CD20-CD28-FceR1γ-CD19-4-1BB-CD3ζ 

CD19-4-1BB-CD3ζ provided by Dr.Pavel Otáhal

CD20-4-1BB-CD3ζ provided by Dr.Pavel Otáhal

Table 4: Summary of CAR constructs used in the following experiments 

All original constructs were provided by Dr. Pavel Otáhal and were then cloned 

and incorporated in the GFP+ lentiviral vector pWPXLd (Figure 8) instead of GFP. 
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Figure 6: Schematic representation of the sequence modules of individual planned and used 

constructs.  

The first box represents the leader sequence derived from CD4, CD8 or GM-CSF. The following 

box represents the antigen recognition domain derived from the single chain fragment variable 

of the anti-CD20 (orange) or anti-CD19 (gray) antibody.4-1BB and CD28 are activation 

sequences from co-stimulation receptors. Each construct has either ζ or γ activation sequence 

from the CD3 activation complex in TCR or FceR1 respectively. Myc-tag and flag-tag are tagging 

sequences enabling antibody detection of individual constructs. a) and b) are original non-

functional superCAR constructs. c) and f) have been cloned from a) and b) respectively. d) and e) 

have been directly provided by Dr. Pavel Otáhal. g) represents the planned new superCAR 

construct, the structure of which has been designed only after several rounds of testing 

experiments.  
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Table 5: Sets of primers used for amplification and cloning of CAR constructs 

All constructs were sub-cloned into the lentiviral vector pWPXLd. Forward (F) and reverse (R) 

primers are in red and green colors, respectively.  

 

Template Product F/R primer sequence (5´-> 3´) Primer name

TCATTGGATCCACCGCCATGGTTCTCCTG

GTG
CAR-F

TCATTGAATTCTTACTGTGGAGGCTTCT

CGTGCTTCAGGG
CAR20Fc-R

TCATTGGATCCATGGGCCGCGGCGTGCCC

TTCCGC
CD19-28-z-F

TCATTGAATTCTTAGCGAGGGGGCAGGGC CD19-28-z-R

CATTAGATCTGAATTCGCCAGCATGGCC

CTGCCTGTG
PO20-F

GAATTCGCCAGCATGGCCCTGCCTG PO20-F1
GAAGATCTTCGAATTCGCCAGCATGGCCC

TGCCTG
PO20-F2

TTAGATCTAGGTCCGGGGTTCTCTTCCA

CGTCGCCGCAGGTCAGCAGGCTGCCCCGGC

CCTCGCCGGAGCCGCTGCGCTTGCGCCGCT

TGTCGTCATCGTCTTTGTAGTCTCTGGG

GGGCAGGGCCTGCATGTGCAGGG

PO20-R

TCT GGG GGG CAG GGC CTG CAT GTG 

CAG
PO20-Rev1Seq

CD20-4-1BB-ζ

CD20-4-1BB-FceR1γ-CD19-CD28-ζ

CD20-CD28-FceR1γ-CD19-4-1BB-ζ CD20-CD28-FceR1γ

CD19-CD28-ζ

CD20-4-1BB-ζ-FlagTag-T2A

Annealing region F/R primer sequence (5´-> 3´) Primer name

GAGCAGGTTCCATTCATTGTT TUPOF

GTTAGCATAGTTCTTAATATAAGTT TUPOR

AAGTGGCGGAGGGGGATCCGATAT PO20_SP-F1

CCTAGACCTCCAACACCCGCCCCT PO20_SP-F2

TGCAGGACATCTTCACGGAG PO20_SP-R1

TCT GGG GGG CAG GGC CTG CAT GTG CAG PO20-Rev1-Seq

GGA GCA ACA TAG TTA AGA ATA CC PO20-Rev2-Seq

CAT TCT CAA GCC TCA GAC AGT GG pWPXLd F1

GGA AAG AAT AGT AGA CAT AAT AGC pWPXLd F2

 5´and 3´end of MCS in the pJET 

cloning vector

Inside CAR20-4-1BB-ζ

3´end of CAR20-4-1BB-ζ

inside pWPXLd

Table 6: Sequencing primers 

Sequencing primers used in different combinations for the verification of amplified sequences 

during cloning procedures of individual CAR constructs into the cloning vector pJET (Figure 7) 

and the expression lentiviral vector pWPXLd (Figure 8).  
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Figure 7: pJET1.2 blunt vector map 

The individual CAR blunt-end PCR products were cloned into the pJET vector which 

carries the selection gene for ampicillin resistance. 

Source: https://www.thermofisher.com/order/catalog/product/K1231) 

 

Figure 8: pWPXLd lentiviral vector map 

The individual CAR constructs were cloned to replace GFP sequence. The expression vector 

carries the ampicillin resistance gene. 

https://www.thermofisher.com/order/catalog/product/K1231
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3.2.2. Cell lines and culture conditions 

All cell lines were maintained in an appropriate medium (Table 7) supplemented with 10% fetal 

bovine serum (FBS), 1% penicillin and streptomycin and cultivated at 37°C with 5% CO2, if not 

stated otherwise.  

 

 

 

 

 

 

 

 

 

  

Cell line Cell type Cultivation medium

HEK293T human embryonich kidney cells DMEM

Jurkat B10 immortalized human T-lyphocytes RPMI 1640

RAJI human B-cell lymphoma RPMI 1640

BW5147
NFAT-GFP mouse thymus T-cell lymphoma IMDM

Jurkat 
CAR immortalized human T-lyphocytes RPMI 1640

BW5147
NFAT-GFP-CAR mouse thymus T-cell lymphoma IMDM

Table 7: Cell lines and their culture mediums used in described experiments. 
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3.2.3. Antibodies 

In below described experiments several methods requiring the use of monoclonal antibodies 

were used. Used antibodies and their specificities are summarized in Table 8.  

  

Antigen Clone Host Reactivity Conjugate Manufacturer Method

CD69 FN50 mouse human AF647 Exbio FACS

CD20 LT20 mouse human APC Exbio FACS

CD3 MEM57 mouse human PE Exbio FACS

CD28 human purified
kind gift from 

prof.Hořejší
activation

CD19 LT19 mouse human FITC Exbio FACS

GAPDH rabbit
human/mouse

/rat
purified Sigma-Aldrich WB

Myc-Tag mouse all purified
Cell Signaling 

Technology
WB

F(ab´)2 goat mouse AF647
Jackson 

ImmunoResearch 
FACS

IgG light 

chain
goat mouse

horsradish-

peroxidase

Jackson 

ImmunoResearch 
WB

rabbit mAb goat rabbit
horsradish-

peroxidase
Biorad WB

primary antibodies

secondary antibodies

Table 8: Primary and secondary monoclonal antibodies used in described experiments. 
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3.3. Methods 

3.3.1. Polymerase chain reaction  

3.3.1.1. Cloning of individual CARs from non-functional superCAR constructs 

The nonfunctional superCAR constructs were used as templates for polymerase chain reaction 

(PCR) to obtain individual CAR sequences (Table 4). Primers specific for individual constructs 

(Table 5) were used for their PCR amplification reaction (Table 9).  

CAR CD20-CD28-FceR1γ was cloned out of CAR CD20-CD28-FceR1γ-CD19-4-1BB-ζ using 

primers CAR-F and CAR20Fc-R. CD19-CD28-ζ was cloned out of CAR CD20-4-1BB-FceR1γ-

CD19-28-CD3ζ using primers CD19-28-z-F and CD19-28-z-R (Table 5).  

 

 

3.3.1.2. Generation of a new superCAR 

For financial reasons, we had to generate a new superCAR construct by using general methods 

of molecular cloning, rather than by direct synthesis. The simplified cloning strategy 

is described in Figure 9. The CAR CD20-4-1BB-ζ construct in pWPXLd was cloned 

out of the lentiviral expression vector (Figure 8) using a two-step PCR protocol (Table 10). 

Primers PO20-F and PO20-Rev1Seq were used for the first PCR reaction step (Table 5; Table 

10). The PCR product of correct size was resolved by agarose gel electrophoresis, excised 

from the gel and isolated by Agarose Gel Extraction Kit (Jena Bioscience GmbH). The isolated 

Steps Temperature Time

Initial denaturation 98°C 30 sec

35 cycles

Denaturation 98°C 7 sec

Annealing 62°C 20 sec

Elongation 72°C 50 sec

Final extention 72°C 2 min

Components 25 μL reaction

5x Q5 reaction buffer 5 μL

10mM dNTPs 0.5 μL

10μM forward primer 1.25 μL

10μM reverse primer 1.25 μL

Template DNA (10 ng) 1 μL

5x high-fidelity DNA polymerase 0.25μL

5x Q5 high enhancer 5μL

Nuclease free water 10.75μL

Table 9: PCR characteristics.  

The properties of PCR used for the cloning of CD20-CD28-FceR1γ and CD19-CD28-ζ out 

of their appropriate superCAR. Q5 high-fidelity DNA polymerase was used 

for amplification (New England BioLabs Inc.,Ipswich, Massachusetts. 
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product was used as a template for the second PCR amplification step with primers PO20-F 

and PO20-R (Table 5; Table 10). 

Figure 9: Simplified scheme of the cloning strategy for the generation of a new superCAR 

construct. 

CD20-4-1BB-ζ is cloned out of the pWPXLd expression vector in a two-step PCR. In the first 

PCR step, the CD20-4-1BB-ζ fragment is cloned out of the expression vector using primers 

PO20-F and PO20-Rev1Seq. In the second PCR step the product from the first PCR is used 

as a template. Primers PO20-F and PO20-R were used. The forward primer adds to the pre-

existing CD-20-4-1BB-ζ sequence the Bgl II restriction site at the 5´end. The reverse primer 

adds to the 3´end a flag-tag to distinguish CD20-4-1BB-ζ from the myc-taged CD19-28-ζ. 

The reverse primer also introduces the T2A sequence which enables the transcription 

of the superCAR construct in one open reading frame but the translation and expression 

of the individual CARs as separate polypeptides. At the far 3´end, the reverse primer also 

generates a Bgl II restriction site. This final fragment is ligated in front of the pre-existing 

CD19-CD28-ζ in pWPXLd using the Bgl II and BamHI restriction sites which are fully 

complementary.  
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3.3.2. Ligation into the cloning vector 

The size of blunt-ended PCR products were verified by agarose gel electrophoresis and ligated 

into the pJET cloning vector (Thermo Scientific, Waltham, Massachusetts) at room temperature 

(RT) for 5 minutes (Table 11). Then, 4 μl of ligation mixture were used for heat shock-mediated 

transformation of bacteria which were then spread on Luria-Bertani (LB) agar plates 

with ampicilin (Amp) and cultivated upside down overnight at 37°C. Single colonies were 

selected, resuspended in LB medium with Amp and cultivated overnight by shaking at 37°C. 

Plasmid isolation was performed by ZyppyTM Plasmid Miniprep Kit. DNA was eluted into 15 

μL of RNas-free water and concentration was determined by nanodrop ND-1000 

spectrophotometr.  

  

Components Volume

2x reaction buffer 5 μL

PCR product 1 μL

pJET1.2/ blunt cloning vector (50 ng/μL) 0.5 μL

Nuclease free water 3 μL

T4 DNA ligase 0.5 μL

Table 11: Composition of ligation reaction.  

Individual CAR PCR products were ligated into the pJET cloning vector. Reaction was set 

at room temperature (RT) for 5 minutes. (Thermo Scientific, Waltham, Massachusetts) 

Components 25μL reaction

5x Q5 reaction buffer 5μL

10mM dNTPs 0.5μL

10μM forward primer 1.25μL

10μM reverse primer 1.25μL

Template DNA (10ng) 1μL

5x High fidelity DNA polymerase 0.25μL

5x Q5 enhancer 5μL

Nuclease free water 10.75μL

Table 10: PCR characteristics.  

The PCR properties used for the generation of CD20-4-1BB-ζ-CD19-CD28-ζ superCAR. 

Steps Temperature Time

Initial denaturation 98°C 60 sec

35 cycles

Denaturation 98°C 7 sec

Annealing 60°C 20 sec

Elongation 72°C 90 sec

Final extenstion 72°C 120 sec
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3.3.3. Restriction enzyme digestion protocol 

Correct ligation of individual CAR constructs into the pJET cloning vector was verified 

by enzyme digestion (Table 12 and 13). Restriction enzymes and buffers were provided 

by Thermo Scientific, Waltham, Massachusetts. 

 

Restriction was verified by agarose gel electrophoresis and products corresponding 

to the expected molecular size of individual CAR constructs (CD19-CD28-ζ = 1542 bp; CD20-

CD28-FceR1γ = 1281bp; CD20-4-1BB-ζ = 1522bp) were sent for sequencing. Sequences were 

analyzed using the program BioEdit. Products correctly ligated into the pJET cloning vector 

were again cut by restriction enzymes BamHI and EcoRI (CD19-CD28-ζ and CD20-4-1BB-

FceR1γ) and Bgl-II (CD20-4-1BB-ζ). Adequate fragments were separated from the pJET vector 

Table 12: Reaction properties for the restriction of CD19-CD28-ζ and CD20-CD28-FceR1γ.  

Control restriction reaction of CD19-CD28-ζ and CD20-CD28-FceR1γ out of the pJET 

cloning vector was performed by restriction enzymes BamHI and EcoRI at 37°C for 1 hour.  

Components Volume

DNA 2μL (300ng DNA)

enzyme EcoRI 1μL

enzyme BamHI 1μL

buffer Tango 2μL

water 4μL

Table 13: Reaction properties for the restriction of CD20-4-1BB-ζ.  

Control restriction reaction of CD20-4-1BB-ζ out of the pJET cloning vector was performed 

by the restriction enzymes Bgl-II at 37°C for 1 hour. 

Components Volume

DNA 0,5μL (300ng DNA)

enzyme BglII 1μL

buffer O 1μL

water 7.5μL
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by agarose gel electrophoresis. DNA was then isolated by Agarose Gel Extraction Kit (Jena 

Bioscience GmbH) and its concentration determined by nanodrop. CAR fragment ligation 

into the lentiviral expression vector pWPXLd was done analogously to the cloning into the 

pJET cloning vector using 1:3 molar ratio as mentioned above.  

3.3.4. CAR transfection by lipofection 

To determine correct CAR cell surface expression, the HEK293T cell line was transfected 

by lipofection using the protocol provided by SigmaGen Laboratories for their LipoJetTM 

In Vitro DNA and siRNA Transfection Kit. 

3.3.5. Western-blot  

To verify CAR expression on protein level, HEK293T were transfected with individual CAR 

constructs and their cell lysates analyzed by western blot. Proteins were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (10% acrylamid resolving gel 

and 4% acrylamic stacking gel) and blotted to a polyvinylidene fluoride (PVDF) membrane. 

CAR constructs containing a myc-taged intracellular signaling domain were probed with the 

primary mouse myc-tag specific antibody and visualized by goat anti-mouse IgG light chain 

specific secondary antibody conjugated with horseradish-peroxidase (Table 8). Enhanced 

chemiluminescent substrate (ECL) 1 and ECL2 were used as horseradish-peroxidase substrate 

(Thermo Scientific, Waltham, Massachusetts).  

3.3.6. Lentiviral vector preparation and engineering of CAR T-cells 

For the generation of a T-cell line stably expressing individual CAR constructs, Jurkat cells 

were genetically modified using a second-generation self-inactivation lentiviral vector based 

system. Infectious viral particles were generated in HEK293T cells. HEK293T cells were plated 

on day 0 in order to obtain approximately 80% confluency on day 1. Cells were co-transfected 

on day 1 with the transfection mixture (Table 14) containing transgene expression vector 

(CD19-CD28-ζ; CD19-4-1BB-ζ; CD20-4-1-BB-ζ; empty vector pWPXLd), and the viral 

packaging plasmids (VSV-G; GagPol) (provided with generosity by Meritxell Alberich Jorda, 

Ph.D.) using the transfection reagent polyethylenimin (PEI). Cells were incubated at 37°C 

supplemented with 3% CO2. On day 2, i.e. 24 hours after transfection, the medium was carefully 

replenished. Viral particles containing infection medium was collected on day 2 and 3 after 

transfection, centrifuged at 3000 rpm for 5min and used to infect Jurkat cells at 37°C 

supplemented with 5% CO2 for 3h. After 3h, infectious medium was replaced with regular 

medium (Table 7).  
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3.3.7. CAR transfection by electroporation  

The mouse T-cell line BW5147 in which NFAT is fused with the green fluorescent protein 

(GFP) was transfected with individual CAR constructs by electroporation. 15-20 million cells 

were electroporated in 300μL DMEM medium supplemented with 10% FBS and in the absence 

of antibiotics. DNA concentration was 1.5 μg per million cells and voltage was 270V. 

Electroporation was performed using the BTX-ECM830 electroporator (BioTech, Prague, 

Czech Republic). 

 

3.3.8. Fluorescence-activated cell sorting 

The expression of individual CAR constructs and NFAT-CAR T-cell activation was confirmed 

by fluorescence-activated cell sorting (FACS). Cell suspension was stained in an appropriate 

amount of fluorophore-conjugated antibodies (Table 8) for 25 minutes at 4ºC in the dark. Cells 

were washed twice with PBS supplemented with 3% phosphate-buffered saline (FBS) to 

remove unbound antibodies that would cause a false positive signal. Cells were also stained by 

Hoechst 33258 (eBioscience, San Diego, California) to label dead cells for their elimination 

from further analysis. All FACS data were derived from gating on live single cells. Cells were 

analyzed using the LSR II flow cytometer (BD, Biosciences, San José, California) and obtained 

data was processed using FlowJo 9.9 software (Tree Star, Ashland Oregon). To obtain a pure 

population of CAR expressing T-cells, cells were sorted by BD Influx Cell Sorter using 

the above described staining protocol (BD Biosciences, San José, California).  

  

Components Volume

DMEM (no ATB, no FBS) 100 μL 

Gag/pol 1 μg

VSV-G 1 μg

construct 1 μg

PEI 9 μL 

Table 14: Components and volumes of the transfection mixture.  

The transfection mixture was prepared and left at RT for 20min and then applied drop-wise 

onto cells. The volumes correspond to 450 000 HEK293T cells plated on day 0 on a 6-well 

plate resulting in 80% confluency on day 1. 
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4. Results 

4.1. General consideration 

CAR T-cells are being tested in phase I/II clinical trials all over the world mainly in the United 

States of America, China and some European countries (Appendix). Czech Republic however 

is not one of them. The overarching goal of this work was, in close collaboration with Dr. Pavel 

Otáhal, to complete a preparatory phase for implementing CAR T-cell therapy 

for hematological malignancies into the Czech clinic, notably, to prepare a functional CAR 

constructs targeting CD19 and CD20 markers on malignant B cells. 

Specific aims were to verify the functionality of individual CAR constructs derived from the 

original non-functional superCAR constructs and attempt to create a new functional superCAR 

that would endow T-cells with dual specificity for both CD19 and CD20 antigens. Below, these 

specific aims are arranged as chronological list of laboratory experiments:  

a. Generation of the following CAR constructs: 

CD19-CD28-ζ 

CD19-4-1BB- ζ (provided by Dr. Pavel Otáhal) 

CD20-CD28-FceR1γ 

CD20-4-1BB-ζ (provided by Dr. Pavel Otáhal) 

CD20-4-1BB-ζ-CD19-CD28-ζ 

b. Generation of Jurkat T cell lines expressing individual CAR constructs (JurkatCAR). 

c. Verification of the functionality of individual CAR construct by several functional assays. 

d. Expression of individual CARs in patients T-cells and comparison of their effector functions. 
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4.2. Generation of CAR constructs 

4.2.1. Cloning the independent CAR constructs 

Generally, the constructs were prepared by amplifying relevant sequences from originally 

prepared but non-functional superCAR constructs as shown in Figure 10 and 11. 

 

 

  

Figure 10: CD19-CD28-ζ PCR product.  

a) Red rectangle denotes CD19-CD28-ζ PCR product (1542bp) amplified from CD20-4-1BB-

FceR1γ-CD19-CD28-ζ superCAR template with primers CD19-CD28-z-F and CD19-CD28-

z-R (Table 5). b) The product corresponding to the molecular size of 1542bp was cut out 

of the agarose gel (empty red rectangle), DNA was isolated and ligated into the cloning 

vector pJET. 
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Analogously to CD19-CD28-ζ cloning (Figure 10) the CD20-CD28-FceR1γ PCR product 

was amplified from the non-functional supercar (Figure 11). 

 

 

 

 

4.2.2. SuperCAR cloning 

In order to construct a new superCAR, the faulty part of CAR sequence had to be identified. 

Then, the intention was to replace these parts with functional CAR sequences that were chosen 

after testing for making a fused CD20-CD19 superCAR construct. Experiments highlighted 

below show that suitable candidates for superCAR construction were CD19-CD28-ζ and CD20-

4-1BB-ζ. Therefore, we had decided to amplify one of these sequences, notably CD20-4-1BB-ζ, 

and then fused it by ligation with CD19-CD28-ζ template (Figure 9 and Figure 12). Several 

additional sequences needed to be added to the construct to ensure optimal stoichiometry 

of translation, surface expression and detectability (for cloning strategy details see Material 

and Methods).  

Figure 11: CD20-CD28-FceR1γ PCR product.  

a) Red rectangle denotes CD20-CD28-FceR1γ PCR product (1281bp) amplified from CD20-

CD28-FceR1γ-CD19-4-1BB-ζ superCAR with primers CAR-F and CARFc-R (Table 5). b) 

The product corresponding to the molecular size of 1281bp was cut out of the agarose gel 

(empty red rectangle), DNA was isolated and ligated into the cloning vector pJET. 
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4.3. CAR construct expression on protein level 

The individual CAR constructs were expressed in HEK293T (for details see Materials 

and Methods) and their expression on the protein level was first verified by western blot 

(for details see Materials and Methods). The result presented below in figure 13 suggests that 

the superCAR co-expressing CD20-CD28-FcR1can´t be expressed due to faulty expression 

of this construct. Other CAR constructs incorporating the CD3ζ signaling component were 

detectable on protein level. 

Figure 12: CD20-4-1BB-ζ PCR enhancement.  

a) The fragment CD20-4-1BB-ζ was cloned out of the lentiviral vector pWPXLd in the first 

round of the two step using primers PO20-F and PO20-Rev1Seq (Table 5). b) Because the PCR 

product is a mixture of specific and non-specific fragments, the fragment corresponding to the 

size of 1521bp was cut out of the agarose gel, DNA was isolated and used for the second PCR 

step. c) The second PCR using primers PO20-F and PO20-R generated the fragment CD20-4-

1BB-ζ enriched for the sequences needed for the construction of the superCAR with appropriate 

restriction sites as well as Flag-tag and T2A sequences (Figure 9). 



Results 

59 

 

 

4.4. Lentivirus vector production 

Lentiviruses carrying the CD19-CD28-ζ, CD19-4-1BB-ζ, CD20-4-1BB-ζ or GFP in the empty 

vector pWPXLd were produced in HEK293T cell line (view Material and Methods). 

Transfection efficiency was verified by FACS analysis of the virus producing cells. The antigen 

specific domain of the CAR construct is the scFv derived from a CD19 or CD20 specific mouse 

antibody, therefore the goat-anti-mouse Alexa 647 conjugated mAb was used to detect surface 

expression of CARs. As illustrated in figure 14, the expression of individual CAR constructs 

in infected HEK 293T cells was ≥88% and therefore succesfull production of functional 

Figure 13: Western-blot showing the expression of individual CAR constructs.  

a) CD19-CD28-ζ(56,5kDa), CD19-4-1BB-ζ (56,5kDa), and CD20-4-1BB-ζ(46kDa), all 

containing a Myc-tag- intracellular domain were readily detected in the HEK293T cell line 

(bands corresponding to the red arrow). The expression of CD20-CD28-FceR1γ, which also 

has an incorporated Myc-tag sequence, was not detected on protein level. Non-transfected 

HEK293T cells and cells transfected with the empty vector pWPXLd were used as negative 

controls. The non-specific bands are considered as products of degradation. b) The 

housekeeping gene GAPDH (36kDa) was used as a loading control. 
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lentiviral particles. Non-transfected cells and cells transfected with empty vector were used 

as negative controls.  

 

 

 

  

Figure 14: CAR expression in the virus producing HEK293T cell line. 

 HEK293T cells were stained by goat anti-mouse F(ab´)2 specific antibody. The presence 

of empty lentiviral pWPXLd vector was detected due to GFP expression. Cloning of CAR 

constructs into these vectors replaces GFP and thus cells become GFP-. Cells that have not 

been transduced were negative for the CAR construct. 98% of cells transfected with 

the pWPXLd empty vector were GFP+ but CAR–. 92% of cells transfected with CD19-CD28-ζ, 

88% of cells transfected with CD19-4-1BB-ζ, and 95% of cells transfected with CD20-4-1BB-ζ, 

were CAR+.  
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4.5. CAR expression in T cells 

Jurkat T-cells often serve as a surrogate CD3+ T cell population for testing various aspects of T 

cell physiology and are often used to test the efficiency of CAR constructs (Posey et al., 2016; 

Wu et al., 2015). Here, Jurkat T cells were infected with indicated lentivirus CAR constructs 

(Figure 15). Non-transfected Jurkat T cells and Jurkat cells transfected with an empty vector 

were used as negative controls. The infection efficacy of Jurkat cells ranged from 10-14%. 

Transfection efficiency of Jurkat cells by empty vector was 3 times higher than transfection 

by individual CAR constructs. This is likely caused by a larger size of the constructs carrying 

CAR transgene (Figure 15). 

As shown in Figure 15, 25% of non-transfected cells were CD3+ and none of them expressed 

the CAR construct. 14% of cell transfected with CD19-CD28-ζ, 10% of cells transfected with 

CD19-4-1BB-ζ and 9.8% of cell transfected with CD20-4-1BB-ζ, were double positive. Out 

of the cells transfected with pWPXLd empty vector 31% were double positive for empty vector 

(GFP+ cells) and CD3. Overall, the low expression of CD3 by Jurkat cells is likely due to a bad 

quality of the used aliquot which spontaneously lost CD3 expression. It has also been reported 

that low expression of CD3 may be associated with the relatively low lentiviral transduction 

efficiency (Wherry, 2011). In all subsequent functional experiments CD3+CAR+ Jurkat cells 

were sorted out, and thus this issue could be neglected.  

 

 

 

  

Figure 15: CAR expression in transfected Jurkat cells.  

Transfected and non-transfected cells were stained by the goat anti-mouse F(ab)´2 specific 

antibody and by PE conjugated CD3 specific antibody. It is of note that only those empty 

vector transduced Jurkat cells were considered as positive which expressed intermediate-

to high levels of GFP.  
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4.6. CD69 expression 

To verify CAR T-cell activation we measured the expression of activation molecule CD69 

by Jurkat T-cells after stimulation with Raji B-cells expressing CAR-targeted antigens, CD19 

and CD20. CD69 is a transmembrane C-type lectin and is considered as one of the first gene 

expression responses after T-cell activation (Simms and Ellis, 1996). Jurkat cells expressing 

individual CAR constructs were co-cultured overnight with Raji (CD19+CD20+) target cells 

(Figure 16) at a radio 1:4. Cells were then pelleted and stained for CD69 and CD3 (Figure 17). 

Jurkat cells not expressing CARs and Jurkat cell expressing empty vector were used as negative 

controls. Activated Jurkat cells by anti-CD3 and anti-CD28 mAb was used as a positive control 

(dot plot not shown).  

 

 

 

 

 

 

 

 

 

Figure 16: CD19 and CD20 expression by Raji target cells.  

99% of Raji target cells are double positive for the target molecules CD19 and CD20. Jurkat 

cells were used as a negative control.  
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Figure 17: CD69 expression by activated CAR T-cells after co-cultivation with CD19+CD20+ Raji 

target cells.  

a) After overnight co-cultivation, cell mixture was stained by anti-CD69 Alexa647 and anti-CD3 

PE to distinguish Jurka from Raji cells. There was a noticeable shift from CD3+CD69low to 

CD3+CD69high population. 26% of all cells were double positive after Jurkat-CD19-CD28-ζ 

activation by target cells. Co-cultivation of Jurkat-CD19-4-1bb ζ with Raji cells cause activation of 

13% of all cells and in the experiment with Jurkat-CD20-4-1bb ζ the percentage of activated cells 

was 16%. b) The bar-graph quantifying the experiment shown in (a) in which the proportion of 

activated CD69+ cells is related to the population of CD3+ Jurkat T cells only; those co-culture 

experiments which show mean with SD were performed 3 times (n=3), those shown as mean value 

only, twice (n=2).  

 

 

a 

b 
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4.7. NFAT-GFP activation assay 

To verify the functionality of the CAR constructs we performed another activation experiment 

using the mouse thymoma cell line BW5147 which has the transcription factor NFAT fused 

with GFP (further referred to as NFAT-GFP cells) (Figure 18b and c). These cells were 

electroporated by individual CAR constructs (for details see Materials and Methods). CAR 

expression after electroporation was determined 24h later (Figure 18a). CAR+ cells were sorted 

and co-cultivated overnight with target Raji cells (Figure 16). Electroporated NFAT-GFP 

with the absence of CAR construct were used as a negative control. The empty vector pWPXLd 

could not be used as a negative control because it carries the GFP reporter gene.  

  

a 

b 
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Figure 18: NFAT-GFP electroporation and activation.  

a) Electroporated cells were stained with the CAR specific antibody anti-F(ab)´2. 12%, 13% 

and 6% of cells were positive for CD19-CD28-ζ, CD19-4-1BB-ζ and CD20-4-1BB-ζ construct, 

respectively. The electroporation efficiency was lower than expected; CAR+ cells were therefore 

sorted and afterwards co-cultivated with Raji cells at ration 1:4. b) GFP expression after 

overnight co-cultivation with Raji cells revealing NFAT activation in CAR positive cells. 

Samples electroporated with individual CAR constructs were gated on CAR+ cells and GFP 

expression was analyzed. We could detect a distinct population of CAR+GFP+cells, however the 

percentages were very low - 4.4%, 2.3% and 5.6% for CD19-CD28-ζ, CD1-4-1BB-ζ and CD20-

4-1BB-ζ, respectively. Co-cultivation of CAR- cells with Raji cells served as a negative control. 

This sample was not gated on CAR+ cells. c) Bar-graph showing the percentage (mean with SD; 

n=3 for CD19-CD28-ζ, CD19-4-1bb-ζ and n=2 for CD2-4-1BB-ζ) of NFAT-GFP+ cells (gated 

on CAR+ cells) after activation with target Raji cells.  

 

c 
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We also wanted to see whether the expression of two distinct CAR constructs by a single cell 

would have some sort of effect on T-cell activation. At this point we did not yet have 

the superCAR construct prepared, so to mimic the potential activity of double specific cells, we 

tried an alternative approach - electroporation of the NFAT-GFP cell line by two distinct CAR 

constructs simultaneously (Figure 19).  

 

 

 

 

 

 

  

Figure 19: NFAT-GFP double CAR expressing cells.  

NFAT-GFP cells were electroporated with 270V by two constructs simultaneously to mimic the 

effect of the potential superCAR construct. Cells were electroporated with the constructs used 

for superCAR generation – CD19-CD28-ζ and CD20-4-1BB-ζ. The cultivation of NFAT-GFP 

cells that received 270V with Raji cells were used as a negative control.  
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5. Discussion 

Adoptive therapy with CD19 specific CARs has met great success in the clinics 

for the treatment of hematological malignancies (Sadelain, 2015). However it has been reported 

that treatment with CD19 specific CAR T-cell enhances the appearance of CD19- tumor cells 

(Grupp et al., 2013; Maude et al., 2014). The idea of generating a double specific CAR that 

would be specific for the antigen CD19 and also for the alternative B-cell specific surface 

antigen CD20, logically came to mind. This mechanism would greatly diminish the possible 

escape of tumor cells that have lost the antigen CD19. The two superCAR constructs designed 

by Dr. Otáhal, (Table 4, Figure 6) however failed to be expressed on the cell surface 

of permissive cells. In order to at least partially reveal the reason why these constructs are not 

expressed, we cloned the individual CAR constructs and tested their protein expression 

independently. CD19-CD28-ζ, CD19-4-1BB- ζ, CD20-CD28-FceR1γ, CD20-4-1BB-ζ, were 

transfected into the Jurkat T-cell line, but among these, only CD20-CD28-FceR1γ failed to be 

expressed (Figure 13). While we did not analyzed the reason behind such failure, the question, 

whether the incorporation of an alternative activation domain which would replace FceR1γ 

segment, has been raised. The use of the γ signaling chain from the FcεR1 in CARs has been 

previously reported (Eshhar et al., 1993). Given that the protein expression of γ fragment-

derived from FcεR1 should not represent a problem, we can’t exclude that a technical error was 

likely to cause this outcome. As an in vivo comparative study between the γ-chain and CD3ζ 

chain has shown that the latter is a much more potent activator of CAR T cells-mediated anti-

tumor immunity (Haynes et al., 2001), we decided to remove the non-functional, CD20-CD28-

FceR1γ construct from further experimentations.  

For the generation of a new superCAR construct we chose to incorporate the CD20-4-1BB-ζ 

into the pre-existing lentiviral expression vector pWPXLd carrying CD19-CD28-ζ (Figure 9) 

Due to the financial limits, we opted to implement this strategy by using general approaches 

of molecular cloning. The cloning of the CD20-4-1BB-ζ out of the lentiviral expression vector 

was complicated by the fact that several necessary sequences needed to be added to the 3´end 

of the construct itself. In order to be able to discriminate the individual CAR protein products, 

we intended to add a CAR-specific tag sequence detectable by a relevant cognate antibody. 

Further on, to ensure the monocistronic transcription of the two CARs from one open reading 

frame, we needed to separate the two constructs by the T2A sequence (Szymczak et al., 2004). 

Lastly, we planned to ligate the CD20-4-1BB-ζ into CD19-CD28-ζ/pWPXLd through 

the complementary restriction sites BglII/BamHI. CD19-CD28-ζ already contained a BamHI 

restriction site so we only needed to add the BglII site to both the 5´ and 3´end 
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of CD20-4-1BB-ζ (Figure 9). These conditions however led to the fact that the revers primer 

PO20-R for cloning of CD20-4-1BB-ζ had over 130bp and was causing significant technical 

difficulties (Table 5). The primer annealed non-specifically to the 5´end of the construct 

and upon amplification generated undesirable mutations. We attempted to introduce several 

optimizing steps to the PCR protocol, including various annealing temperatures and dividing 

the PCR reaction into two successive steps (Figure 12) as well as optimize the primer sequence, 

Unfortunately, sequencing of the final PCR product always revealed point mutations or larger 

insertions. These technical difficulties precluded us to complete the construction 

of the superCAR in time allocated for completion of this diploma thesis. It is clear that more 

time, effort and continuous optimization of this approach are needed to generate sequentially 

faithful construct.  

Similar experimental approaches adapting simultaneous expression of two CAR receptors 

in one effector T cell have already been used. Notably, the offset of antigen escape by T-cells 

co-targeting HER2 and IL-13Rα2 in glioblastoma and enhanced antitumor activity was reported 

by Ahmed and his group (Hegde et al., 2013). Another approach is parallel targeting of two 

tumor antigens such as MUC-1 and the prostate stem cell antigen which are highly co-expressed 

in a variety of solid tumors by two distinct CAR T-cells lines mixed together. Such approach 

generates superior antitumor effect, however, it was reported that it is not enough to achieve 

a complete response (Anurathapan et al., 2014). Alternative approaches and strategies might be 

used in the future to generate the superCAR construct. Inspiration might come from a recently 

published approach adapted by Chen and her team. Instead of working with two separate CARs, 

they engineered a dual-antigen recognition construct built into a single-chain CAR molecule 

(Zah et al., 2016). This minimalistic system has several advantages. Due to its reduced size, 

such CAR construct exhibits increased transduction efficiency (Bos et al., 2010). Moreover 

production of bispecific single chain CARs is more cost effective compared to producing two 

distinct CAR T-cell lines whereby, in addition, CD19 specific CAR T-cells have the tendency 

to overgrow CD20 specific CAR T-cells despite the presence of the CD20 antigen (Zah et al., 

2016). Strategies dealing with potential solutions for tumor antigen escape and overall 

functional regulation of CAR T cells are currently a hot topic in the field of CAR cancer 

therapy. 

For gene transfer of CAR constructs into primary cells most frequently used approaches 

are retroviral or lentiviral transduction protocols (Sakuma et al., 2012; Wu et al., 2015). 

For the generation of CAR expressing Jurkat T-cell lines we decided to generate lentiviral 

particles (Kutner et al., 2009) (Figure 14) which are, unlike retroviruses, also efficient 
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for transducing non-dividing cells (Lewis et al., 1992). This could be useful for future 

experiments with patients T-cells. In our hands, the transduction efficiency of individual CAR 

constructs in Jurkat T-cell was below 20% (Figure 15) which is substantially less than reported 

in literature, where this efficiency in T cells reached up to 99% (Wu et al., 2015). Protocols 

differ in several points. The transgene expression vector size (Bos et al., 2010), the type of viral 

packaging plasmid (Cronin et al., 2005), the transfection reagent, and the resulting virus titers, 

all influence the final transgene expression efficiency (Cockrell and Kafri, 2007). It has also 

been reported that low expression of CD3 may be associated with the relatively low lentiviral 

transduction efficiency (Wherry, 2011). For technical reasons we did not determined titers 

of the viral particles and therefor it is likely, that virus concentration in our experiments were 

not optimal. Nevertheless, for functional studies, we sorted CAR expressing Jurkat T cells, 

so further experiments were done with a homogenously CAR positive cell populations.  

CAR function was assessed by quantification of the T-cell activation-induced surface marker 

CD69. Its increased surface expression occurs within few hours after T-cell activation and this 

assay is therefore used as a standard method for monitoring T-cell activation (Simms and Ellis, 

1996). We co-cultivated target CD19+CD20+ Raji cells (Figure 16) with CAR expressing T-cells 

analogously to the experiment presented by Wu and his colleagues (Wu et al., 2015), 

with altered co-cultivation ratio. To ensure maximum antigen source we increased 

the effector:target cell ratio from 1:2 to 1:4. We observed increased fraction of CD69high cells 

after overnight co-cultivation of Raji with CAR-expressing Jurkat cells. 26%, 13% and 16% 

of CD3+ cells upregulated CD69 expression after co-cultivation with CD19-CD28-ζ, CD19-4-

1BB-ζ and CD20-4-1BB-ζ, respectively (Figure 17). We can therefore conclude that individual 

CAR constructs are expressed on the surface of Jurkat cells and are functional as the recognition 

of their cognate antigen CD19 and CD20 on target Raji cells leads to their activation.  

To confirm the functionality of individual CAR constructs by an alternative approach, 

we decided to try and take advantage of the mouse thymus lymphoma BW5147 cell line 

available in our laboratory which has the transcription factor NFAT fused with GFP. A similar 

experiment examining NFAT-dependent GFP expression in CAR expressing Jurkat cells 

was also conducted by Wu and his colleagues (Wu et al., 2015). We were not sure if the above 

mentioned experiment published by Wu et al. would be applicable to our conditions where 

we used instead of the human Jurkat cell a mouse cell line transduced with CAR constructs 

consisting of relevant human sequences. Our experiment was therefore an exploratory, proof 

of principle experiment. To minimize work with biohazard lentivirus we opted for safer 

transfection methods, at least initially when the result was uncertain. For unknown reasons 



Discussion 

70 

 

the transfection efficiency of BW5147 NFAT-GFP cell line was in general very low (Figure 

18a). To obtain at least a minimal number of required CAR expressing cells, we had to use 

electroporation over lipofection. 12%, 13% and 6% of cells were CAR+ for CD19-CD28-ζ, 

CD19-4-1BB-ζ and CD20-4-1BB-ζ, respectively after electroporation (Figure 18a). Even 

though we optimized the voltage, cell suspension concentration and DNA concentration, 

the efficiency was lower than expected so we decided to sort CAR+ cells before co-cultivation 

experiments. Unfortunately, low electroporation efficiency resulted in very low numbers 

of sorted CAR+ NFAT-GFP cells. Nevertheless we adjusted the cell ratios, established 

co-cultivation experiments and observed that a small but distinct population of CAR+ cells was 

in fact GFP+ after recognizing the CD19 or CD20 antigen on target Raji cells. 4.4%, 2.3% 

and 5.6% for CD19-CD28-ζ, CD1-4-1BB-ζ and CD20-4-1BB-ζ respectively were detected 

as GFP+ (Figure 18b and c). The quality of this data is of course partly hampered by a low 

number of used cells and the results must be interpreted with caution. Despite this caveat, we 

consider the result as a proof of principle for validation of this system to test the efficiency 

of CAR construct. In the future however, it would be necessary to prepare a NFAT-dependent 

GFP expressing human cell line and use lentivirus for higher efficiency of transgene expression.  

Because we were not able to prepare a functional superCAR construct that would encode 

for two distinct CD19-CD28-ζ and CD20-4-1BB-ζ polypeptide chains, we decided to try at least 

co-transfection of the two individual constructs into the NFAT-GFP mouse cell line 

and perform the co-cultivation experiment (Figure 19). There was no significant difference 

in NFAT-dependent GFP expression in cells electroporated by a single CAR construct and cells 

electroporated by both CAR constructs simultaneously. However, we could not distinguish 

whether both constructs are co-expressed as both CD19-CD28-ζ and CD20-4-1BB-ζ molecules 

have incorporated a myc-tag sequence. During the superCAR construction, we took this fact 

into account and tried to incorporate a distinct flag-tag sequence for the CAR CD20-4-1BB-ζ 

(Figure 9). This significantly contributed to the size and complexity of the reverse primer used 

for the preparation of CD20-4-1BB-ζ construct and likely contributed to the failure 

of superCAR cloning strategy. However, individual CAR constructs can be readily expressed 

and therefore we can assume that they may be co-expressed simultaneously by single cells 

(Hegde et al., 2013) and/or by a cell population (Anurathapan et al., 2014).  These strategies 

could be also adapted for CAR co-expression. However, as mentioned above, the amount 

of DNA affects the transfection efficiency (Bos et al., 2010) and CD19 CAR expressing cells 

have the tendency to overgrow CD20 CAR expressing cells (Zah et al., 2016). Thus 

our experiment, with its inhere reported result, may only be considered as a pilot experiment 

out of which no final conclusions can be made.  
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Recently, several studies comparing the effect of CD28 and 4-1BB co-stimulation on CAR T-

cell function, persistence and tumor eradication have been published (Kawalekar et al., 2016; 

Zhang et al., 2015; Zhao et al., 2015). Initially we also wanted to focus on the comparison 

of individual constructs with different co-stimulatory modules in relation to their cytotoxic 

activity. However, because so far we managed only initial experiments on the human Jurkat T-

cell line and not on primary T-cells, theses comparative experiments are still ahead of us. 

The overarching goal of this work was, in close collaboration with Dr.Otáhal, to contribute 

in building a new type of dual specificity CAR constructs for their implementation in CAR T-

cell therapy for hematological malignancies at Czech clinics. The original idea was to construct 

a previously designed functional superCAR, compare its function with individual single CARs 

in cell lines, test its efficiency on an animal model and primary human cells. Very soon 

however, it became evident that this ambitious project would require more time, effort, skills 

and financial support, which go beyond the scope of work of one master student. The 

preparation of the individual constructs themselves was the most time consuming part 

and unfortunately we ran out of time to complete the construction of the new superCAR 

by classical methods of molecular cloning. The essential part of this work comparing individual 

single CAR constructs with the superCAR construct could not therefore be accomplished. 

Nevertheless, I see tremendous benefits from working on this exciting project. This work laid 

the groundwork for future experiments in a very perspective field of immunotherapy that is yet 

to be implemented in the Czech clinic. On top of that, this work has taught me a great deal 

of laboratory techniques, methods and protocols that are widely applicable for many research 

fields of experimental biology, in general, and immunology, in particular., and which are 

indispensable for my future work in science.  
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6. Conclusion 

The overarching goal of this work was to prepare and evaluate recombinant constructs for their 

possible implementation in CAR T-cell therapy for hematological malignancies into the Czech 

clinic. This was a collaborative effort with MUDr. Pavel Otáhal, the pioneer of CAR technology 

in Czech Republic, with specific goals to generate functional CAR constructs specific for the 

B-cell lineage antigens CD19 and CD20 and ultimately to generate a functional superCAR that 

would endow T-cells with the dual specificity for both antigens CD19 and CD20.  

We demonstrated that individual CAR constructs, built up from distinct segments of several 

co-stimulatory molecules were fully functional and worked independently of each other. Jurkat 

T-cell lines expressing individual CD19 and CD20 CAR constructs were successfully generated 

by lentiviral transduction and their targeting capacity was confirmed by two alternative 

approaches. The generation of a new functional superCAR construct was initiated, however, 

it was not accomplished in time dedicated to complete the work on this thesis. This was 

apparently due to a complicated cloning strategy and several technical difficulties that slowed 

down the progress of our work. Thus, because the generation of the superCAR construct was 

not yet completed, we were not able to compare the efficiency of individual single CAR 

constructs with that of superCAR. It is of note that such comparison would be possible only 

in real physiological conditions, i.e. using an appropriate animal model or human patients, 

where the frequency of malignant B-cell clones able to escape the detection upon losing one 

of the markers, CD19 or CD20, can be assessed.  

Thus, although the ultimate objective of this ambitious project was not accomplished within the 

realm of this thesis, we have acquired the methodology and set the groundwork for future 

experiments. Employment of CAR Jurkat T-cell lines in functional experiments were extremely 

educative and enabled to acquire necessary laboratory skills and expertise which are essential 

and indispensable for future scientific endeavors in this fast progressing field 

of immunotherapy.  

The CAR technology for cancer immunotherapy is a perspective therapeutic strategy worth 

of research effort in the Czech Republic. Future experiments would focus on finishing 

the generation of the superCAR construct and testing new CAR constructs in primary human 

T-cells, in animal models and in the future, perhaps also in oncological patients. Although, 

given the local conditions and expertise, it is extremely difficult to compete with large 

American and Asian centers specializing on CAR immunotherapy, we are very hopeful that our 
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work in cooperation with MUDr. Pavel Otáhal could bring this therapeutic technology closer to 

patients in the Czech Republic. 
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7. Appendix 

 

Center Malignancy
co-

stimualtion

Gene 

modification

Disease 

status

Conditioning 

therapy

ClinicalTrials.gov 

identifier

Shenzhen Second 

People's Hospital

CLL

ALL

Lymphoma

CD28-CD3ζ 
retrovirus/

retrivirus

relapse/

refractory
CF NCT02456350

National Cancer 

Institute

B-cell lymphoma

B-cell leukemia

HL, NHL

retrovirus
14 days from 

last treatment
CF NCT02659943

National Cancer 

Institute

Pediatric/adolesc

ent B-ALL or 

lymphoma

CD28-CD3ζ retrovirus
relapse/

refractory

at discretion of 

investigator
NCT01593696

National Cancer 

Institute
any CD28-CD3ζ retrovirus

relapse/

refractory
CF NCT00924326

Abramson Cancer 

Center of the 

University of 

Pennsylvania

CLL

SLL
relapse/

refractory
*Ibrutinib ? NCT02640209

Abramson Cancer 

Center of the 

University of 

Pennsylvania

ALL 4-1BB-CD3ζ lentivirus
relapse/

refractory
NCT02030847

Abramson Cancer 

Center of the 

University of 

Pennsylvania

adult CLL/SLL 4-1BB-CD3ζ 
relapse/

refractory
NCT01747486

Abramson Cancer 

Center of the 

University of 

Pennsylvania

HL 4-1BB-CD3ζ 
electroporatio

n

relapse/

refractory
NCT02277522

Abramson Cancer 

Center of the 

University of 

Pennsylvania

Lymphoma
4-1BB-CD3ζ 

relapse/

refractory
NCT02030834

Abramson Cancer 

Center of the 

University of 

Pennsylvania

MCL

Diffused large B-

cell lymphoma

Follicular 

lymphoma

relapse/

refractory
Pembrolizumab NCT02650999

University of 

Pennsylvania

children 

B-cell lymphoma

B-cell leukemia

4-1BB-CD3ζ lentivirus

chemo-

resistante

refractory

variable

chemotherapy
NCT01626495

University of 

Pennsylvania
HL 4-1BB-CD3ζ 

electroporatio

n

relapse/

refractory
NCT02624258
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Jichi Medical 

University
NHL retrovirus

relapse/

refractory
NCT02134262

Kite Pharma, Inc.

DLBCL

PMBCL

TFL

relapse/

refractory
CF NCT02348216

Kite Pharma, Inc. B-precursor ALL
relapse/

refractory
NCT02614066

Kite Pharma, Inc.

pediatric/adolesc

ent B-precursor 

ALL

relapse/

refractory
NCT02625480

Kite Pharma, Inc. MCL
relapse/

refractory
C NCT02601313

Beijing Doing 

Biomedical Co., Ltd.
ALL, CLL, NHL

relapse/

refractory
NCT02656147

Beijing Doing 

Biomedical Co., Ltd.
ALL, CLL, NHL

relapse/

refractory
NCT02546739

Shanghai 

GeneChem Co., Ltd.
B-cell leukemia 4-1BB-CD3ζ 

relapse/

refractory
NCT02672501

Southwest 

Hospital, China
ALL, CLL, NHL

relapse/

refractory
NCT02349698

Fred Hutchinson 

Cancer Research 

Center

ALL, CLL, NHL 4-1BB-CD3ζ lentivirus
relapse/

refractory
NCT01865617

Fred Hutchinson 

Cancer Research 

Center

NHL 4-1BB-CD3ζ lentivirus
relapse/

refractory

*Durvalumab 

(mAb against PD-

L1)

C

NCT02706405

Peking University 

Cancer Hospital

B-cell lymphoma
CD27-CD3ζ lentivirus

relapse/

refractory
NCT02247609

Chinese PLA 

General Hospital

B-cell leukemia

B-cell lymphoma
4-1BB-CD3ζ retrovirus

relapse/

refractory
NCT01864889

Chinese PLA 

General Hospital
MCL 4-1BB-CD3ζ 

relapse/

refractory
NCT02081937

Shanghai Tongji 

Hospital, Tongji 

University School of 

Medicine

B-cell lymphoma

B-cell leukemia lentivirus
relapse/

refractory
NCT02537977

Xinqiao Hospital of 

Chongqing
B-cell lymphoma CD28-CD3ζ retrovirus

relapse/

refractory
NCT02652910

Baylor College of 

Medicine

NHL

ALL

CLL

CD28-CD3ζ

+

CD28-4-1BB-

CD3ζ 

retrovirus
relapse/

refractory
C NCT01853631

Baylor College of 

Medicine

NHL

ALL

CLL

CD28-CD3ζ /

virus specific T-

cells

γ-retrovirus
relapse/

refractory
none NCT00840853

Baylor College of 

Medicine

Lymphoma

CLL, ALL

CD3ζ 

(+ CD28-CD3ζ) 
γ-retrovirus

relapse/

refractory

Ipilimumab or 

none NCT00586391

Baylor College of 

Medicine

NHL

ALL

CLL

CD28-CD3ζ γ-retrovirus
relapse post 

allo HSCT
none NCT02050347
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Baylor College of 

Medicine

NHL

CLL

EBV-specific CAR 

T-cells

+ CD28-CD3ζ 

γ-retrovirus
relapse/

refractory
C or none NCT00709033

Memorial Sloan 

Kettering Cancer 

Center

CLL

indolent 

lymphoma

CD28-CD3ζ 

+ 4-1BB-CD3ζ 

γ-retrovirus 

or  lentivirus

relapse/

refractory
C NCT00466531

Memorial Sloan 

Kettering Cancer 

Center

pediatric ALL

EBV-specific CAR 

T-cells

+ CD28-CD3ζ 

γ-retrovirus
relapse/

refractory

variable

chemotherapy
NCT01430390

Memorial Sloan 

Kettering Cancer 

Center

CLL CD28-CD3ζ γ-retrovirus
relapse/

refractory
C NCT01416974

Memorial Sloan 

Kettering Cancer 

Center

adult ALL CD28-CD3ζ γ-retrovirus
relapse/

refractory
C NCT01044069

Memorial Sloan 

Kettering Cancer 

Center

NHL CD28-CD3ζ γ-retrovirus
relapse/

refractory
chemotherapy NCT01840566

Memorial Sloan 

Kettering Cancer 

Center

pediatric and 

young adult

ALL

CD28-CD3ζ 
relapse/

refractory
C NCT01860937

City of Hope 

Medical Center

intermediate-

grade B cell 

lymphoma

no 

costimulation
lentivirus

relapse/

refractory
APBSCT NCT01318317

City of Hope 

Medical Center
ALL CD28-CD3ζ lentivirus

relapse/

refractory
chemotherapy NCT02146924

M.D. Anderson 

Cancer Center

B-cell lymphoma

CLL
CD28-CD3ζ transposon

relapse/

refractory
APBSCT NCT00968760

M.D. Anderson 

Cancer Center

prophylaxis 

or active 

malignancies

CD28-CD3ζ transposon
relapse/

refractory
None NCT01497184

M.D. Anderson 

Cancer Center

prophylaxis 

or active 

malignancies

CD28-CD3ζ transposon None NCT01362452

Uppsala University

B-cell lymphoma

B-cell leukemia
CD28- 4-1BB-

CD3ζ 
γ-retrovirus

relapse/

refractory
NCT02132624

Second Military 

Medical University

B-cell lymphoma

B-cell leukemia
relapse/

refractory
CF NCT02644655

The Second 

Affiliated Hospital 

of Henan University 

of Traditional 

Chinese Medicine

B-cell lymphoma

B-cell leukemia
CD28-CD3ζ 

+ 4-1BB-CD3ζ 

relapse/

refractory
NCT02685670

Juno Therapeutics, 

Inc.
ALL CD28-CD3ζ virus

relapse/

refractory
chemotherapy NCT02535364

Juno Therapeutics, 

Inc.

NHL

MCL

DLBCL

relapse/

refractory
chemotherpay NCT02631044

Seattle Children's 

Hospital

child and young 

adult

B-cell leukemia

lentivirus
relapse/

refractory
NCT01683279

University College, 

London
DLBCL

relapse/

refractory
CF NCT02431988
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University College, 

London

pediatric and 

young adult 

ALL

Burkit lymphoma

relapse/

refractory
CF NCT02443831

Novartis 

Pharmaceuticals
DLBCL lentivirus

relapse/

refractory
NCT02445248

Table 15: Ongoing and recruiting CAR19 clinical trials. 

Information summarizing ongoing and recruiting clinical trials using CAR T-cells 

for immunotherapy of hematological B-cell malignancies were retrieved from clinicaltrials.gov. 

The following abbreviations stand for: CLL-chronic lymphocytic leukemia; ALL-acute 

lymphoblastic leukemia; SLL-small lymphocytic leukemia; HL-Hodgkin´s lymphoma; NHL-

Non-Hodgkin´s lymphoma; MCL- mantle-cell lymphoma; DLBCL- Diffuse large B-cell 

lymphoma; PMBCL- Primary mediastinal B-cell lymphoma; TFL- Transformed follicular 

lymphoma; C-cyclophosphamide; F-Fludarabine; HSCT-hematopoietic stem-cell transplant; 

APBSCT-Autologous peripheral blood stem cell transplantation  
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