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Abstract

In this thesis, we deal with the application of quantile regression to the Capital

Asset Pricing Model, which is derived in the thesis. We investigate a real

dataset to determine if one of many implications – constant beta at different

quantiles of return distribution, of the model is met. For that purpose, we

use Khmaladze test which is perfectly suited for testing if asset’s beta varies

over return distribution. Before we run the test we introduce both quantile

regression and the Khmaladze test to the reader in simple and clear notation

as we do not expect the reader to be familiar with this regression technique.
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Abstrakt

V této práci se zabýváme analýzou modelu oceňováńı kapitálových aktiv, který

je v práci odvozen, pomoćı kvantilové regrese. Analýza je provedena na reálných

datech, na kterých zkoumáme, zda–li je splněn jeden z mnoha d̊usledk̊u mod-

elu, a to že je beta konstantńı v r̊uzných kvantilech distribučńı funkce výnosu.

K tomu nám poslouž́ı Khmaladzeho test, který se pro testováńı měńıćı se bety

v kvantilech distribučńı funkce výnosu perfektně hod́ı. Jak kvantilovou re-

gresi, tak Khmaladzeho test nav́ıc před samotným testováńım v jednoduchém
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Chapter 1

Introduction

This bachelor thesis deals with a model in the asset pricing theory, with the

Capital Asset Pricing Model (CAPM). Originally established by Sharpe (1964)

and Lintner (1965), it became one of the most used models in investment port-

folio analysis, mainly because of its simplicity. The model states, that the

return of an asset, which is of interest, is affected only by market return, which

is the only variable which we can use to predict the systematic risk of an as-

set return. It moreover states, that the effect of market return on the asset

return is linear. This would all seem to be rather a naive – or in more formal

words too simple model. Therefore it comes as a no surprise, that number of

people have already showed, by whole panoply of ways, that the model fails

empirically, most notably Fama & French (2004). In this thesis, we will fol-

low an approach of number of econometricians, who tested an implication of

the CAPM – that market beta stays same in all quantiles of return distribution.

This can be analysed by quantile regression of Koenker & Bassett (1978) as was

done for example by Barnes & Hughes (2002). They analysed asset’s beta for

over–performing and under–performing firms and found for example that a size

of a firm plays a significant role when determining asset return for an under–

performing firm. Another consequence of the CAPM was tested by Chang et al.

(2011) as they found out, that not in all quantiles is the relationship captured

by the CAPM positive. Allen et al. (2009) went even further with application of

quantile regression to the CAPM and analysed the three factor model presented

by Fama & French (2004).

We will focus on the original CAPM and our main objective will be to anal-

yse if asset’s betas change in different quantiles of return distribution. As we



1. Introduction 2

stated the implication of the CAPM is that they do not change, however, there

are plenty of economic reasons why we could expect that some companies are

rewarded more when over–performing or on the other hand are losing more

when under–performing. Why we should expect this to be so is relatively sim-

ple. Imagine an industry and a small and a big company in that industry. One

could expect that when a big firm is under–performing (getting smaller returns

than the CAPM predicts), it still has some loyal customers who will keep its

returns reasonably high. On the other hand for a small firm, an absence of

such customers can lead to sudden drop in revenue and therefore much greater

drop in returns than for a big company. Hence we could see that asset’s beta

at various quantiles could be affected by other factors and this could be same

in general for industries too. Their betas can be affected either by a size of the

industry, dependency on exports or on political support. Realizing for which

firms this occurs and in what scale can be important in investor’s decision to

buy or sell as this could be associated with massive earnings and losses. Our

aim will be to investigate this problem and possibly identify these abnormali-

ties.

However, we will start from the very beginning and in Chapter 2 we will

introduce the CAPM. We will follow the approach of Sharpe, which seems to

be more intuitive. In Chapter 3 we will discuss problems regarding the model,

which assumptions are most often violated and why the model does not have

empirical success. We will follow this discussion in the next chapter by analysis

of real data. We will use Ordinary Least Squares (OLS) regression to estimate

parameters and we will discuss if our data are in accordance with the CAPM.

Chapter 5 will be devoted to the introduction of quantile regression, where we

will describe what it estimates and we will show some asymptotic results and a

test which is based on quantile regression. We will apply this methodology in

Chapter 6 where we will investigate our main question, that is if asset’s betas

vary over return distribution.



Chapter 2

Establishing the CAPM

Building on the work of Dr. Harry Markowitz (Markowitz 1959), both William

Sharpe (Sharpe 1964) and John Lintner (Lintner 1965) laid foundations of

capital asset pricing theory by independently introducing the CAPM. These two

economists used different approaches when deriving the model, with Sharpe

presenting more straightforward and rather intuitive one. In the following

pages, we will establish the aforementioned CAPM in the way William Sharpe

did it in his paper.

2.1 The Minimum Variance Frontier

First, we will explain what the Minimum Variance Frontier (MVF) means, as it

is important to understand this key feature in asset pricing theory. A good sug-

gestion for a proper definition would be simply a set of all efficient portfolios,

where efficiency is meant in a sense how everyone would intuitively imagine

it. Roughly speaking, MVF is a boundary of a set of all feasible investment

portfolios. However, to give it a proper definition, we should start with few

important assumptions and specify what investment portfolio is.

By words investment portfolio is meant to be a combination of assets to

which investors in the first period invest and from which in the second period

get revenue. We assume that all investors view the outcome to have the same

probabilistic distribution and are only interested in its expected value (expected

revenue) and standard deviation (risk). Furthermore, we assume that all as-

sets are risky and also infinitely divisible, which allows us to take into account

not the absolute value of investment return but the rate. Moreover, we ex-
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Figure 2.1: The Minimum Variance Frontier

Source: author’s computations.

pect investor to act rationally, hereby prefer higher expected return rate to a

lower value with constant variance and lower variance to higher with constant

expected return rate. Let us denote E[R] the expected return rate and σR stan-

dard deviation of the return rate of an investment plan R. Let an investor has a

utility function U = f(E[R], σR) which fulfils the above mentioned assumptions.

Now, consider E[R], σR−plane and indifference curves of investor’s utility

function as shown in Figure 2.1. Every feasible investment plan is represented

by a point on the plane according to its expected return rate and standard

deviation. In the absence of risk–less asset, the set of available investment op-

portunities will be similar to the shaded area.

To get to know more about the nature of the set, consider two investment

plans – D and F, and an investor who places a proportion of α, α ∈ 〈0, 1〉, of

his income in D and the remainder 1−α in F. Let denote H this new plan and

ρDF correlation coefficient between rates of return of the plans D,F. Then, we

know that

E[RH ] = αE[RD] + (1− α)E[RF ]

σRH
=
√
α2σ2

RD
+ (1− α)2σ2

RF
+ 2ρDFα(1− α)σRD

σRF

The arc between points D and F roughly shows where investment plan H
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may lie in the plane for all possible values of α in the case of correlation coeffi-

cient close to 1. If it is exactly 1, then we have ERH
= αERD

+(1−α)ERF
, σRH

=

ασRD
+ (1 − α)σRF

so it follows that the arc would be a segment between

these two points. On the other hand, when ρDF = −1, we would get for

α =
σRF

σRD
+ σRF

that σRH
= 0. Therefore there would exist a risk–less asset –

a feasible point on the horizontal axis, which would violate our assumptions.

Now, as we understand the set of all available investment plans, we can

define what MVF is. Firstly, a portfolio is said to be efficient, when its ex-

pected return rate is higher or equal than the expected return rate of every

other portfolio with the same risk (measured by standard deviation). In our

figure efficient portfolios are the ones on the right boundary of the shaded

area. Minimum variance frontier is the set of all efficient portfolios, i.e. the

curve ABC.

2.2 The Capital Market Line

Until now, we have been dealing with situations when no risk–less asset was

available. Let us consider such an asset F , whose expected return rate E[Rf ] is

equal to the pure interest rate π. Moreover, we assume that there is unlimited

borrowing and lending available at the interest rate π.

Consider an investor placing α of his income on the asset B and 1−α on the

risk–less asset F Note that in this case, α ∈ 〈0,∞), as values of α greater than

1 indicate that the investor has borrowed money. Using the fact that σRf
= 0.

we can calculate the expected return rate and the standard deviation of this

new investment plan G as follows:

E[RG] = (1− α)E[Rf ] + αE[RB],

σRG
=
√
α2σ2

RB
+ (1− α)2σ2

Rf
+ 2ρBPα(1− α)σRB

σRf
= ασRB

.

Clearly, for all values of α, plan G lies along the line FB In the case that we

choose B such that the line FB is tangent to the MVF, as shown in Figure 2.2,

we obtain a new set of efficient portfolios. The line FB, or more specifically

the ray FB, is called the Capital Market Line (CML). It should be noted that

it is required for the CML to be tangent to the MVF.
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Figure 2.2: The Capital Market Line

Source: author’s computations.

2.3 The Equilibrium

Recall the assumptions we set at the beginning of Section 2.1. We agreed that

every investor faces the same distributional expectations. In other words, they

must face the same MVF independently of their utility functions. Everyone can

also use unlimited borrowing as well as the same risk free asset. To sum it

up, desired portfolio of each investor lies on the CML and can be reached only

by investing into the risk free asset and the unique tangency portfolio (In the

case of Figure 2.2, portfolio B is the tangency portfolio) We call this unique

tangency portfolio a market portfolio.

The core of the CAPM lies in the understanding what happens to the tan-

gency portfolio when we change proportion of income invested in single asset.

Consider the market portfolio M and a single asset A, which is part of M, as

shown in Figure 2.3. Denote D a new portfolio with α of income invested in

A and 1 − α in M. Because some part of investor’s wealth is already invested

in M there exists α < 0 such that it is still a feasible portfolio. For such α

denote the portfolio C. Now, we have for every α from some reasonable interval

an investment plan with the expected return rate and standard deviation as

shown in Figure 2.3. Assume that the function of α, or curve AMC is smooth

at the point M. Moreover, it is clear that the curve AMC cannot cross the CML
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otherwise points on the curve, which are attainable, would be under the CML,

therefore unattainable− contradiction.

Figure 2.3: The Equilibrium

Source: author’s computations.

Evidently, the slope of the curve AMC at point M must be equal to the

slope of the CML. Using that

σ(α) =
√
α2σ2

RA
+ (1− α)2σ2

RM
+ 2ρAMα(1− α)σRA

σRM
,

we can derive that at point α = 0, where σ(0) = σRM
,

dσ(0)

dα
= − 1

σ

(
σ2
RM
− ρAMσRA

σRM

)
= −σRM

+ ρAMσRA
. (2.1)

Similarly, E(α) = αE[RA] + (1− α)E[RM ], and for all values of α we have:

dE(α)

dα
= E[RA]− E[RM ]. (2.2)

Combining results from Equation 2.1 and Equation 2.2, we obtain:

dσ(0)

dE
=

dσ(0)

dα
dE(0)

dα

=
σRM

− ρAMσRA

E[RM ]− E[RA]
. (2.3)
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The slope of the CML is
σRM

E[RM ]− π
, and as we know it has to be equal to the

slope of the curve AMC at the point M, described by Equation 2.3. Solving for

E[RA] we obtain the result:

σRM
− ρAMσRA

E[RM ]− E[RA]
=

σRM

E[RM ]− π
,

E[RA] = E[RM ]−
(

1− ρAMσRA

σRM

)
(E[RM ]− π) = π+

ρAMσRA
σRM

σ2
RM

(E[RM ]− π) .

Finally, we can use that the expression ρAMσRA
σRM

is by definition covariance

cov(RARM). Plugging this into the last equation, it yields:

E[RA] = π +
cov(RARM)

σ2
RM

(E[RM ]− π) = π + βA (E[RM ]− π) , (2.4)

where βA =
cov(RARM)

σ2
RM

.

2.4 The Security Market Line

The last feature which will be discussed in this chapter will be the Security

Market Line (SML). Let’s recall the Equation 2.4 and solve it for βA. We

obtain

βA =
π

ERM
− π

+
1

ERM
− π

ERA
.

The equation says, that for any single asset A which is part of the efficient

investment portfolio M, its market beta depends linearly on its expected return

rate. In other words, when we decide to invest in an asset with greater expected

return rate, we can expect market beta of the asset to increase proportionally.

That came certainly as a no surprise as market beta describes the magnitude of

a risk which is correlated with the market and should be directly proportional

to the expected return.

In the case there exists another tangency portfolio, it can be shown that the

relationship with the market will be exactly the same. Moreover, we would find

out that these tangency portfolios are perfectly correlated with each other and

that market betas of individual assets would not change, as shown by Sharpe
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(1964), pages 440-441. That allows us to call the tangency portfolio unique.

We have derived the traditional CAPM model the way William Sharpe did

it in 1964. Concisely, the model says that the expected return rate of an asset

A equals to the risk free rate π plus, reward for facing systematic risk – risk

which is correlated with the market and can be predicted, of the asset, risk

premium. Moreover, we learnt that a risk premium of an asset depends only

on its covariance with the market. Finally the model also says that relationship

between the expected return rate of an asset and its market beta is linear.



Chapter 3

Difficulties of the CAPM

In the previous chapter, we found out that the CAPM has very profound im-

pact on behaviour of investors. As Fama & French (2004) noticed, it has three

important implication stemming from the initial assumptions, which all can be

subject of a test. Firstly, only asset’s betas affect their expected returns with

the relationship being linear. Secondly, the beta premium is positive, which

means that the expected return on the market portfolio is greater than the

expected return of assets uncorrelated with the market. Finally, the expected

returns of assets whose returns are uncorrelated with the market returns are

equal to the interest rate – risk free return rate. The reason is that beta for

such an assets should be equal to zero.

3.1 Early Critics

Immediately after publishing the aforementioned model, the first tests were

derived to confirm or reject the theoretical results. Both time-series regressions

and cross-sectional regressions were used.

In cross-sectional regression, the approach was to regress average asset re-

turns on estimates of assets betas. The theory then implies that the intercept

is the risk free interest rate and the coefficient on beta is the difference between

expected return of the market and the risk free rate. After overcoming two

major problems with precision and bias of the data, the tests firmly rejected

the CAPM. They found out that there is a positive relationship between beta

and average return, however, it does not matched the predicted relationship.



3. Difficulties of the CAPM 11

The tests consistently found that the model underestimates the intercept and

overestimates the coefficient on beta. This fits for number of early test, as

noted again by Fama & French (2004), where some examples are presented on

page 32, the second and the third paragraphs.

Time-series regression stems from the fact that the model implies the fol-

lowing relationship between expected return and market beta:

Rit −Rft = αi + βi(RMt −Rft) + εit.

The fact that assets excess return is fully explained by its risk premium, which

depends solely on beta and expected value of RMt−Rft, means that the inter-

cept term in the regression, called “Jensen’s alpha,” equals zero for every asset.

Time-series regression tests gave similar results as cross-section regression

tests and confirmed that the relation between beta and average return is “too

flat”. For examples, see again Fama & French (2004).

Because of all these empirical failures of the model, its accuracy in esti-

mation of expected returns of assets remains questionable. Economists argue,

that this is because of its strict assumptions, which are not fulfilled in real

situations. This leads to deriving new more complicated models such as Black

CAPM, intertemporal CAPM and others.

3.2 Roll’s Critique

Roll (1977) published a famous paper about testability of the CAPM. He con-

centrated on the observability of the market portfolio and made two key state-

ments.

1. Mean variance efficiency is equivalent to the CAPM equation holding.

That implies that for any given proxy of market portfolio, there is no

difference between testing the CAPM equation or testing for mean variance

efficiency of the portfolio, with both being equivalent.

2. The market portfolio has to include all available assets, including assets

such as human capital, real estate etc. This means that the market
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portfolio is unobservable and therefore returns on all possible investment

opportunities are unobservable.

From these two statements, we can derive that the validity of the CAPM

is equivalent to the market being mean variance efficient. However we cannot

observe all investment opportunities, therefore we cannot test whether a port-

folio is mean variance efficient. Hence because the tests use proxies and not

the true market portfolio, we do not test the CAPM and we learn nothing about

the CAPM.

This makes the CAPM empirically unusable because the concept of market

portfolio lies in the heart of the model. Fama & French (2004) on page 41 state

that the relationship described by the CAPM holds in any efficient portfolio,

therefore it would be enough to find a market proxy that lies on the minimum

variance frontier. However, the strong rejections of the CAPM indicate that

no reasonable market proxy close to the minimum variance frontier was found.

Moreover they add that if researchers are constrained to reasonable proxies, it

is unlikely that they ever will.

3.3 Other problems

Apart from this rather fatal problem of the model, there are another assump-

tions, which can be called unrealistic. For example, model assumes that in-

vestors care only about mean and variance of one period return. There are

clearly also investors who optimise their portfolio over long term horizon and

others over short term horizon. Moreover we also assume that all investors

have the same information and all know the true distribution of returns.

The earlier mentioned assumptions that investors care only about mean

and variance of the return distribution is also extreme. It also makes sense

that investors care about probability of extreme events not fully captured by

variance or about other properties of the distribution, something which cannot

be explained by two parameters. It is also rational that investors are concerned

by how their portfolio co-varies with labour income, future investment oppor-

tunities or social status.

Another reason for empirical failures of the CAPM can be irrational pricing.
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Behaviourists argue, that stocks with high P/B ration (share price of a com-

pany/book value per share) are expected to do poorly and on the other hand

stocks with low P/B ration are expected to do well. Investors are influenced

by past performances which causes higher prices for growth (low P/B) firms

and vice versa. Few proponents of this view can be found in Fama & French

(2004), on page 37 in the second paragraph.

It is well known that the CAPM has its flaws and that it has never been

an empirical success. However, by deriving new capital assets pricing models

its results can be dramatically improved. Fama & French (2004) proposed on

pages 38-39 a new three factor model, which they argue performs much better

than classical CAPM. Although added variables in the model are “brute force

constructs meant to capture the patterns uncovered by previous work on how

average stock returns vary with size and the P/B ratio” and have no theoretical

explanation, it is not an obstacle in using this model in predicting expected

return rates. That ultimately results in a model which captures more of the

variation of expected returns of an assets.

As we could see, the CAPM does not appear to be working in practise and one

could expect some empirical problems when fitting it. We will try to look at the

problem of validity of the CAPM in a different way using quantile regression.

The aim will be to detect differences in beta in different quantiles of return

distribution, which could be caused for example by irrational pricing described

in the previous paragraph. Bur first we will have a look at OLS regression where

we will try to estimate the parameters of the CAPM in the classical way.



Chapter 4

Estimating the CAPM by Ordinary

Least Squares Regression

In this chapter we will proceed to the application of the CAPM. First we will

discuss what data we will use, and the reasoning for it, as it might not be that

clear what is the return of market portfolio or other variables. Moreover, we

will need to find a proxy for one parameter in our model – the risk free rate of

return, as in reality there is no general agreement about a risk free rate, so we

need to find a variable which approximates this rate. This will be all subject

of discussion in Section 4.1.

In the second section of this chapter, Section 4.2, we will run Ordinary Least

Squares regression in order to obtain estimates of market beta of estimated as-

sets. We will also discuss whether these estimates can be considered as valid,

as it will be needed to go through the all–important procedure of validating

model assumptions. This, as we will see, will appear to be a limiting obstacle,

mainly because of number of estimated models, which in fact could be much

higher, which makes checking all model assumptions lengthy and complicated.

For estimating market β of various assets, we will use time–series technique

which we mentioned in Section 3.1, where our model is in the form of

Rit −Rft = αi + βiM(RMt −Rft) + εit. (4.1)

To remind reader of the notation used, Rit stands for return of an asset i

in time period t, Rft denotes risk free rate in time period t, βi is a market beta

of asset i, αi is “Jensen’s alpha”, which according to our theory should be zero
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and finally εit is an error term, which we will assume is for given i independent

and identically distributed across all time periods t. One more thing I would

like to mention is the way how we can handle “Jensen’s alpha”, as if we would

like to obtain estimates of market betas from the CAPM. First, we can see

that if we run normal OLS regression with intercept, we obtain estimates for

this “Jensen’s alpha” and we can test whether it equals zero or not. If we

reject this test for significance of this coefficient, we will have strong argument

that something is wrong with our model. However, because of the theoretical

derivation we would expect our data to comply with this theoretical result and

then we can run regression without intercept to obtain “true”(according to our

model) estimate of asset’s market beta.

4.1 Description of the Data

In this section, we will introduce the dataset which we will use first for esti-

mation of market beta of returns of portfolios which consist from firms in the

same sector. These firms are assumed to have same market beta, as we derived

in Section 2.3, beta of an asset i can be expressed as βi =
cov(Ri, RM)

σ2
RM

, where

RM is market return and σ2
RM

is its variance. Therefore given asset i market

beta is determined only by covariance of return of this asset with return of the

market, and it makes sense to assume that for firms in the same industry this

covariance will be same. That implies, that market betas of firms in the same

industry are equal.

Because we use time-series regression, we should also mention that over a

short time period beta of an asset does not change. That allows us to consider

market betas as a parameters which do not change, which is also one of the

assumptions of OLS regression, and also of quantile regression, which we will

run later. In our time–series, we will use five year monthly data starting 1st

January 2009 and ending 31st December 2014. This choice was done as 6 years

can be considered as relatively short time period, while monthly data will give

us 72 observations, which should be enough to be able to make conclusions

regarding our model. Moreover, a month between different measurements will

be hopefully a gap big enough to ensure that our error terms are independent.



4. Estimating the CAPM by Ordinary Least Squares Regression 16

First, as I shortly mentioned at the beginning of this section, we will esti-

mate market betas of portfolios consisting from firms of the same sector. For

that we obviously need market returns of these portfolios, and for this purpose

we will use data presented by K. French. This huge dataset contains observa-

tions from 48 industries in the last 90 years with number of different statis-

tics and is available on-line at http://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/data library.html. One of these statistics are portfolio’s returns,

which we use. We will also work only with data from the time period specified

above.

We also discussed, that in our model we need an estimate (or possibly a

true value) of risk free rate. Because the portfolios we will use consists from US

companies, as a proxy for risk free return rate, I downloaded the return rate of

10 year US bonds which are possibly the safest option of investing money at

US market, with relatively short maturity. Similarly for market return rate, we

will use market index SP500 issued by Yahoo Finance which belongs between

the most popular indexes of market performance of the US market and is cal-

culated based on performance of 500 rather big companies across all sectors.

From this market index one can derive the return rate by the usual increase

divided by base value approach.

It is worth to note that data for our analysis were collected from different

sources and were not prepared for educational purposes. Because of this, we

might also need to be aware of some problems which arise with analysis of

real data, we could for example mention influential points and/or points with

high residuals which might make our analysis and resulting statistical inference

invalid. Thankfully, in the data all values are stated so we do not need to think

about what to do with missing values. Let us now go to the OLS regression.

4.2 Estimation of β

In this section, we will now be dealing with applying OLS regression to our

dataset. As we mentioned before, we will try to justify the CAPM and to find

out if our data follow this model. One important thing we will have to check

for when making decisions about significant parameters in our model and its

nature is if assumptions of the model are met. Especially in time–series regres-

sion, the fact that errors are correlated occurs relatively often and it almost

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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always has fatal consequences, as this correlation affects the statistical results

in such a way that they do not hold, not even asymptotically.

First, we will examine model with intercept and we will test the hypothe-

sis that the “Jensen’s alpha” is zero for every portfolio. We should mention,

that under this hypothesis, we will simply do t–test in OLS regression to de-

termine if the coefficient is significant. However, because we will be doing this

for 48 portfolios, even if our null hypothesis is true for all portfolios, we have

1 − (0.95)48 = 0.915 chance, that we reject at least one of these hypothesis -

i.e. we will make at least one type I error with probability of 0.915. Because

that is rather a high number we should find a better way how to determine,

whether our null hypothesis holds.

For that purpose, we will use another well-known fact and that is that if

null hypothesis is true, then p-value of the test has uniform distribution on the

interval [0, 1]. And because we will be doing 48 independent tests, if we plot

a histogram of our p-values, we know that they should be somehow equally

distributed around that interval. To give a proper mathematical conclusion to

our test, we could run a Kolmogorov-Smirnov test for comparison of empirical

distribution functions, which would tell us how close or how far we are from

the expected distribution function of uniform distribution.

However, we should still pay attention to meeting model assumptions so

we first examine correlation of lagged residuals to see if independence of er-

rors can be assumed. Histogram of these coefficients can be seen in Figure 4.1

We see, that the correlation coefficients are not balanced and that there are

more of them with negative sign, basically we could say that they are centred

around −0.075 but with a bit heavier right tail. In absolute terms, the highest

value of correlation coefficients of lagged residuals are errors from financial in-

dustry, which might represent some other problems in estimating beta for this

industry. In general, other values of correlation coefficients are in norm as if

we use Pearson test for correlation coefficient, then second lowest p-value for

a hypothesis that there is no correlation between errors is 0.032 which with

the number of tests we make is somehow in the expected region. I had a look

also at Durbin-Watson statistics, whose values were somewhere in the expected

region, so we can say that this assumption is more or less met in our data so

we can run statistical tests and make statistical inference.
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Figure 4.1: Histogram of correlation coefficients of lagged residuals in
model with intercept.
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With the methodology I mentioned at the beginning of this section, we run

statistical test about hypothesis of significance for the intercept and present a

histogram of p-values from these tests. That is presented in Figure 4.2. From

there, we can see that distribution of these p-values is nowhere near to uniform

distribution, which is also confirmed by the Kolmogorov-Smirnov test, which for

comparison with uniform distribution gives p-value 3.035 · 10−8, which suggest

that we can reject our null hypothesis that intercept equals 0 for all industries.

To stress how sure we are to reject this hypothesis, we have 17 p-values which

are smaller than 0.05, with the smallest one having value of 0.0006. We can

also explore in which way the intercept is fitted, if data suggest that if market

return is equal to the risk free rate of return, then what kind of excess return we

should expect from the portfolios, if lower or higher than risk free rate. That

can be determined by looking at the t–statistics, whose sign and size say which

way and by how much we are sure that intercept is smaller/greater than zero.

The answer on this question is clear, as only 10 t–statistics are smaller

than 0, while 16 of them are higher than 2, which basically means that all
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Figure 4.2: Histogram of p-values from test of statistical significance
for intercept.
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intercepts we would say are significant on 5% level are intercepts which are

positive. We see, that this conclusions basically means that our theory of the

CAPM is invalid, but I still feel that it might be useful to try to estimate be-

tas in the model without intercept and to compare estimated values of betas

in these two models together with their standard errors. In general, because

we saw that intercepts we fitted were mostly positive, we would expect our

estimates of betas to decrease (i.e. the line to get flatter), as most of our data

have negative value of explanatory variable. Before we present the estimates of

betas with and without intercept, we would like to add that we again checked

for autocorrelation of residuals, which again suggested that there is no auto-

correlation between them. Moreover, from the Durbin Watson test statistics,

when we plotted histogram of p-values, we got histogram which was very close

to histogram one would expect from uniform distribution, which is again in

accordance with our null hypothesis.

That allows us to run OLS regression without intercept. In Figure 4.3, we

present a plot of estimates of betas in regression with and without intercept,

together with 95% confidence interval for beta in regression with intercept.
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Figure 4.3: Estimates of betas(dots) and 95% confidence interval
from OLS regression with intercept and estimates of be-
tas(crosses) from OLS regression without intercept.
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From that plot, we see that omitting intercept does not really affect the value

of estimate of beta, which we are mainly interested in. All the estimates from

regression without intercept are well in the confidence interval from the first

regression. Similarly, if we looked at the confidence intervals from regression

without intercept, we would find out that they are more or less same, apart

from a small shift in the mean value.

It was rather interesting to see, that even though that used statistical tests

on our model said that we should not omit intercept in our regression, we also

found out, that adding the intercept in there does not give much of different

estimate of the parameter we are interested in. This would somehow give more

credibility to the CAPM, which says that the only thing which explains return

of the assets are market betas together with the performance of a market.

Therefore, the conclusion we can make from this analysis is rather unclear, as

we basically stated that the CAPM is wrong, while we found out that it is not

really much wrong. On the other hand, we did not check for other assumptions,

both if errors are independently distributed and normal, so the conclusion of

this analysis is not yet properly justified. Hence it might be useful to look at
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other properties of the CAPM, which can be subject to test. One of them, as

the title of this thesis suggests is that we might expect from various reasons

that betas will vary in different quantiles of return distribution, which would

be a contradiction of the CAPM. This is equivalent to errors being identically

distributed. We should add that normality assumption is not that important

as if without it results still hold asymptotically. We look at this question in

the next two chapters.



Chapter 5

Introduction of Quantile

Regression

In the following pages, we will be talking about regression technique called

quantile regression, which is not that common as OLS regression and might

be unfamiliar to the reader. We will state the model with parameters which

quantile regression estimates. We will also mention some asymptotic results

and present a test for homoscedasticity which uses quantile regression. This

text will be based mainly on a book (Koenker 2005) by Roger Koenker, which

presents a complete introduction to quantile regression and could be a good

source to someone who wants to learn more about this interesting, powerful,

and relatively unknown technique.

This method can be considered as a part of the big family of regression

methods which estimate some parameter of a dependent variable given some

other explanatory variables. The way it is constructed is a bit similar to clas-

sic linear models and the OLS regression which estimates mean of the return

distribution. Quantile regression basically differs from OLS regression only by

the parameter it estimates from the conditional distribution of the dependent

random variable. Consequently, the process of deriving conditional quantiles is

similar too and for easier understanding to the procedure of quantile regression

estimation I recommend to realize what each step means or does in classic OLS

regression.
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5.1 Model Statement and Statistical Inference

Let us define a model where

Y = β0 + XTβ + U, (5.1)

where X is a p-dimensional random vector, β vector of coefficients and U ran-

dom error, such that without loss of generality with zero mean. This is a simple

setting which we often meet in linear regression, but this time, we will not be

interested in estimating the mean value of Y based on values of covariates X as

usual, instead, we will focus our attention to quantiles of Y given values of X.

In other words, for τ ∈ (0, 1) and for some values of X we will be estimating

conditional quantile Qy(τ |x) of random variable Y .

For that purpose, we define a loss function as illustrated in Figure 5.1.

ρτ (u) = u
(
τ − I(u < 0)

)
.

Koenker (2005) in section 1.3 shows that if we have random variable Z and

aim to minimize expected loss E
[
ρτ (Z − z)

]
, where z is a priori given number,

then we choose z to be τ -quantile of Z. In other words if Z has got distribution

Figure 5.1: ρτ function shows weighting of absolute deviations, i.e.
how they contribute to the final sum, shown for τ = 0.75.
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function G, then

arg min
z∈R

E
[
ρτ (Z − z)

]
= G−1(τ).

Given a random sample of Z1, . . . , Zn we can then minimize the sum
∑n

i=1 ρτ (Zi−
z), which will then give us an estimate of τ -quantile G−1(τ). To extend this

approach to quantile regression and the model stated in (5.1), assume that the

random error term has distribution function F. Then we can express conditional

quantile of Y given values of X as

Qy(τ |X) = β0 + XTβ + F−1(τ), (5.2)

hence from here we can see that the conditional quantile can be then modelled

as a linear combinations of covariates and intercept. That implies, that we can

model our conditional quantile of Y given X as

Qy(τ |X) = XTβ(τ),

where β is a vector of our regression parameters, which we will want to estimate.

Analogously to what we described in the case of single random variable, let us

have a random sample (X1, Y1, . . . ,Xn, Yn), then we have Ui are iid and thus

independent of Xi. This assumption is needed as otherwise F−1(τ) would not

have been constant. Then estimation of coefficient β(τ) is done by minimizing

the sum
n∑
i=1

ρτ (Yi −XT
i β(τ)),

which is a consequence of that conditional on Xi the expected loss E
[
ρτ (Yi −

XT
i β(τ))

]
is minimized when XTβ(τ) = Qy(τ |X). Therefore, based on our

random sample Yi,Xi, i = 1, . . . , n we can formulate our quantile regression

estimate as

β̂n(τ) = arg min
β∈Rp+1

n∑
i=1

ρτ (Yi −XT
i β). (5.3)

Although there does not exist closed form expression of this parameter estimate,

finding the value of estimate can be done relatively simply by linear program-

ming methods. We can see that the expression (5.3) is a convex function of β

which can be rewritten to a linear function subject to some constraints. For

these kind of problems we can for example use simplex method which is one of

the most popular algorithms in linear programming. Details of the exact use
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of simplex method to our quantile regression problem are described again in

Koenker (2005), chapter 6. For our purposes it is enough to know that there ex-

ists efficient and quick method how to compute our quantile regression estimate.

However, estimation of parameters of models is only one part of the story

in statistics. The other one, and possibly more important one is measuring

how precise or how accurate our estimates are. In other words we want to find

out how close to the real value we are with our estimate and maybe also what

other values can be also considered as possible. Therefore we want to find dis-

tribution of our estimate in order to be able to construct confidence intervals

and be able to make some conclusions on our hypotheses.

Assume that we have got random sample Yi,Xi, i = 1, 2, . . . such that con-

ditional on Xi the distribution function of Yi is Fi, let us also denote the condi-

tional τ quantile of Yi as QYi(τ |Xi) = ξi(τ). As stated and proved in Koenker

(2005), page 120, to ensure some asymptotic properties of our estimator (5.3),

we need to employ the following regularity conditions:

1. The distribution functions {Fi} are absolutely continuous, with continu-

ous densities fi(ξ) uniformly bounded away from 0 and ∞ at the points

ξi(τ), i = 1, . . . .

2. There exists a positive definite matrix D0 such that

(i) limn→∞
1

n

∑n
i=1 xix

T
i = D0,

(ii) maxi=1,...,n
‖xi‖√
n
→ 0.

Denote then ω2 = τ(1− τ)/f 2
i (ξi(τ)), where we can note that fi(ξi(τ)) is same

for all i because of our iid error assumption and therefore ω2 does not depend

on i. Then under the conditions 1 and 2 we obtain

√
n
(
β̂n(τ)− β(τ)

)
→ N

(
0, ω2D−10

)
.

Before we advance to discussing statistical inference which stems on this

result, it might be useful to realize what these regularity conditions mean and

what the D0 matrix is. Basically in our iid error model setting the condition

1 means that our errors have absolutely continuous distribution and that at

the quantile we estimate the density is finite and positive, which is rather a
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weak assumption. The second condition places constraint on our explanatory

variables, especially on the tails as we need a finite second moments of all covari-

ates, as in case of existence D0 = E
[
XXT

]
and rather light tails so condition

(ii) holds too. However, in most applications these conditions looks to be met

so the most important assumptions and much stronger assumptions which we

stated was the one about iid error model and linear relationship, which is the

one we will need to check for. We can also note, that under these conditions

our estimate converges in probability to the true value of the parameter, which

implies its consistency.

Because we now have a distribution of our parameter estimate, it is easy

to construct confidence intervals for single parameter coefficients and also to

construct critical regions for hypothesis testing. Or we can use Hotelling’s T 2

test for testing for all coefficients in our vector of parameters. We will not dis-

cuss more this rather well known statistical theory and instead I will focus on

presenting a rather new test for testing for heteroscedasticity, which is based

on quantile regression.

5.2 Khmaladze Test for Heteroscedasticity

It is a common problem of linear regression that assumption about iid errors

with constant variance is violated. However, assessing this assumption was, at

least from my experience, always more heuristic than statistical, when after

fitting the linear model one looked at residuals in order to check whether in-

dependence of errors and constant variance could be assumed. We can note,

that in case of iid errors the quantile regression lines are going to be parallel

as from the derivations we could see in (5.2) that the value of τ affects only

the intercept. That gives us a hint how a test for heteroscedasticity could be

constructed, as we can test whether all quantile regression lines are parallel

to each other. Therefore we set our null hypothesis that all quantile lines are

parallel and the alternative hypothesis is that this is not true.

As the derivation of the test statistics is rather cumbersome and uses ad-

vanced probability theory we will not be specifying it here. Its derivation can

be found in Koenker & Xiao (2002a). The test is itself based on Kolmogorov-

Smirnov convergence of empirical distribution function to the true distribution
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function but with other present nuisance parameters it becomes rather com-

plicated. The assumptions for this test therefore only require continuous one

dimensional distribution of errors. To run the test in R we can use Khmal-

adzeTest function in R package Koenker (2015) named quantreg. To use it we

specify the model relationship which we use. We also specify which type of

test, whether “location” or “location-scale” hypothesis shall be tested. For our

problem of heteroscedasticity it is the “location” version as we only test if the

quantile regression lines differ by location. Finally, we need to specify set of τ

values which will be used for testing the hypothesis. These need to be equally

spaced. We shall also avoid trying to use too small or too high quantiles as

these lines are often very imprecise as we do not have much information in our

data about this region.

We make our conclusion on our hypothesis based on joint test statistic which

is reported in the returned object under a header Tn. We compare this value

the critical values calculated in Koenker (2005), page 318 or in the document

Koenker & Xiao (2002b) available on-line at http://www.econ.uiuc.edu/ roger/

research/inference/khmal6ap.pdf. To find the right number we need to consider

how much we truncated the true interval of quantiles (0, 1), which means basi-

cally to set ε to the lowest quantile we used in the KhmaladzeTest. Finally, we

set p as the number of slope coefficients in our model. Based on this asymptotic

critical value we decide whether to reject null hypothesis or not. We reject null

hypothesis if our reported test statistic is greater than the asymptotic critical

value.

5.3 Applying and Interpreting Quantile Regression

One could see, quantile regression is rather a novel approach which can be used

for modelling other aspects of dependent variable, not just its mean. Similarly

to linear models, quantile regression also have non-linear and non-parametric

versions. The one other application which stands out is when we have a model

with heteroscedastic variance, such that variance depends on some linear com-

bination of explanatory variables. Even in this set up quantiles are again just

straight lines, who differ by shift and slope and in this case we can adopt quan-

tile regression to estimate these values and again possibly make some statistical

inference.

http://www.econ.uiuc.edu/~roger/research/inference/khmal6ap.pdf
http://www.econ.uiuc.edu/~roger/research/inference/khmal6ap.pdf
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As I have already noted there exist an R package Koenker (2015) for fitting

quantile regression called quantreg programmed by Roger Koenker. It offers

few easily handled functions for fitting quantile regression and basic hypothesis

testing for beginner users. The code uses simplex method for finding the quan-

tile regression estimates and it works fairly quickly, as even in my computer

when I fitted 48 times five quantile regression to dataset of 72 observations,

it was done in one or two seconds. Apart from these basic functions which

take care of fitting the model and following statistical inference the package

also offers wide range of other functions associated with quantile regression

which many advanced statisticians might find useful, these include fitting of

censored quantile regression, bootstrapping quantile regression. I also find the

help pages which are associated with functions I used very helpful and well

written as the syntax follows the common-sense approach. Many references for

deeper understanding are also given, even though most of the topics are well

described in Koenker (2005).

Interpreting quantile regression lines might look like an easy task, however,

there are few things we have to be wary of. First, because we often fit lines,

they are expected to cross somewhere as even if they were originally parallel,

the estimates will never be parallel (with probability 1). Koenker (2005), is

aware of this problem and discusses it in Section 2.5, where we can learn that

it is guaranteed that quantile lines do not cross at x̄ = n−1
∑
xi. However, be-

haviour of the lines elsewhere is unpredictable and depends only on the data.

Usually quantile lines then cross far away from the bulk of data, if the model is

valid. In the other case we should pay special attention to our model, as there

might be some serious flaws.

Finally, I would like to conclude this theoretical part with a short introduc-

tion of expectile regression, which in some sense can be seen as a similar and

competing method for quantile regression and it might be good to be aware of

it. Its difference to quantile regression is basically just that the argument in the

loss function is a square of its value, which brings similarities to mean estima-

tion, where we minimize sum of square errors. More on this topic can be found

in section 2.8 of Koenker (2005). The main point we can learn in this part is

however, that in contrary to quantile regression, expectile regression does not

really have an easy interpretation as it is hard to say what exactly we estimate.

Moreover, expectile regression also has one bad feature in the sense that if we
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estimate upper expectile of the distribution, it is affected by how the lower tail

of the distribution is distributed. One can feel that if we are interested in how

distribution behaves in the upper tail, we should not really care what is in the

lower tail, and that is what quantile regression does. From these two points

of view, quantile regression looks more robust and more interpretable which

makes it generally much more used method.

To sum up this theoretical chapter, we introduced quantile regression in

mathematical detail in order to understand what it estimates and how it per-

forms. Our main result which we will need in the analysis was then the Khmal-

adze test, which can be used for discussing heteroscedasticity of residuals. In

this sense it could be considered as a competing method to assessing residual

plots, as this is often problematic area of linear regression and it is area where

quantile regression can help. Its advantage can be that it is carried out by com-

puter code so we can do it for large number of models, in contrary to checking

residual plot.



Chapter 6

Quantile Regression, Analysis of

the Data

In this chapter, we will proceed with analysis of data presented in Section 4.1.

Mainly, as the title of this thesis states, we will try to investigate whether there

is any evidence of varying beta in different quantiles of the return distribution

in our data set. We will explain how we can do this shortly.

First, let us review the statement of the CAPM, which can be written in the

following form:

E
[
Ri

]
= Rf + βi

(
RM −Rf

)
, (6.1)

where again we denote Ri return of an asset i, RM overall market return and Rf

risk free return rate and coefficient βi, our market beta of an asset i. Similarly

as in the case of the OLS regression, we will use time–series approach so we

state a model

Rit −Rft = βi(RMt −Rft) + εit, (6.2)

where we assume errors εit are for given i independent for every t and errors for

given i are also from the same distribution. Here, we can see that this model

is somehow just a rewritten version of model in Equation (5.1) and therefore

we can express conditional quantiles as in Equation (5.2) – i.e. they are just

straight lines. Therefore, for given i if we use notation as was in previous

chapter where Yt = Rit − Rft and Xt = RMt − Rft, then we have got random

sample Yt, Xt, t = 1, . . . n from a distribution Ri − Rf , RM − Rf and we can

express our conditional quantile model as

QRi−Rf
(τ |RM −Rf ) = βi(RM −Rf ) + F−1(τ), (6.3)
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where we defined Y = Ri − Rf as a difference between asset return and risk

free return, X = RM − Rf as an excess market return against risk free return

and F is a distribution function of the error term. In this model βi is still the

asset’s beta from Equation (6.1), therefore assumed to be same for all possible

values of τ.

Now, let us consider what would happen if market beta of an asset i would

vary in different quantiles of return distribution. Or in other words, for different

values of quantile τ we would have different βi(τ). That would result in a model

QRi−Rf
(τ |RM −Rf ) = βi(τ)(RM −Rf ) + F−1(τ). (6.4)

It is easy to see difference between models stated in Equations (6.3) and

(6.4). In the first model, we have got for all values of τ the same slope coef-

ficient βi and different value of intercept F−1(τ). Therefore, the quantile lines

specified by this model are parallel. On the other hand, in model (6.4) we have

for different τ different slope coefficient βi(τ) and different intercept F−1(τ),

which implies that this lines are not parallel. This is therefore a simple conse-

quence of possible varying beta over return distribution and as we saw it can

be analysed by quantile regression. However, even if we have in our true model

parallel quantile lines, the quantile regression estimates will not be parallel with

probability 1. Therefore, to asses this null hypothesis if the lines are parallel

we will need a statistical test, for that reason, we recall the Khmaladze test we

discussed in Section 5.2, which deals exactly with this kind of problem.

As it was described earlier, for using Khmaladze test we need to choose a

sequence of taus which will then be used for comparing the slope of the quantile

regression lines, it is also worth to omit extreme quantile lines from our esti-

mation as there is a big uncertainty resulting from only few data points on one

side of the line. Therefore we use sequence of taus starting at 0.2 and ending

at 0.8. Because it looks like that final value of the test statistics depends a lot

on the choice of the sequence, we run test for three different choices 0.04, 0.05

and 0.06. For this choice, we can learn that the critical values at 1%, 5%, 10%

level of significance, as calculated in Koenker (2005), page 318 or in Koenker

& Xiao (2002b), are respectively 2.483, 1.986, 1.730.

The results are presented in Table 6.1. We can note, that if we consider only

mean value of these three test statistics, only in case of smoke (1.920), and bus
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Table 6.1: Test statistics of Khmaladze test.

0.04 0.05 0.06 min mean max
Agric 1.162 0.737 0.709 0.709 0.869 1.162
Food 1.032 1.203 0.648 0.648 0.961 1.203
Soda 0.827 0.624 0.687 0.624 0.713 0.827
Beer 1.199 1.166 0.682 0.682 1.016 1.199
Smoke 2.708 1.502 1.551 1.502 1.920 2.708
Toys 2.614 1.037 1.336 1.037 1.662 2.614
Fun 0.825 0.658 0.705 0.658 0.729 0.825
Books 1.055 0.870 0.674 0.674 0.866 1.055
Hshld 0.872 0.907 1.119 0.872 0.966 1.119
Clths 1.659 1.788 1.315 1.315 1.587 1.788
Hlth 0.468 1.680 0.760 0.468 0.969 1.680
MedEq 0.689 0.535 1.159 0.535 0.794 1.159
Drugs 1.129 1.927 0.944 0.944 1.333 1.927
Chems 0.753 0.626 0.765 0.626 0.715 0.765
Rubbr 0.725 0.934 0.503 0.503 0.721 0.934
Txtls 0.788 0.888 0.463 0.463 0.713 0.888
BldMt 0.854 2.085 1.001 0.854 1.313 2.085
Cnstr 0.748 0.614 0.848 0.614 0.737 0.848
Steel 0.622 0.686 0.928 0.622 0.745 0.928
FabPr 0.860 1.002 1.284 0.860 1.049 1.284
Mach 0.724 0.845 0.717 0.717 0.762 0.845
ElcEq 0.607 0.577 0.340 0.340 0.508 0.607
Autos 0.670 0.618 0.686 0.618 0.658 0.686
Aero 1.080 1.185 1.170 1.080 1.145 1.185
Ships 0.423 0.532 0.433 0.423 0.463 0.532
Guns 0.883 0.795 0.637 0.637 0.772 0.883
Gold 1.246 0.391 1.166 0.391 0.934 1.246
Mines 0.716 0.619 0.771 0.619 0.702 0.771
Coal 0.695 0.774 0.492 0.492 0.653 0.774
Oil 0.640 0.687 0.463 0.463 0.597 0.687
Util 1.700 1.399 1.177 1.177 1.425 1.700
Telcm 0.424 0.243 0.216 0.216 0.294 0.424
PerSv 0.656 0.754 0.332 0.332 0.581 0.754
BusSv 1.913 1.870 2.034 1.870 1.939 2.034
Comps 0.802 0.398 0.446 0.398 0.548 0.802
Chips 0.610 0.692 0.532 0.532 0.611 0.692
LabEq 0.571 0.400 0.723 0.400 0.565 0.723
Paper 0.617 0.507 0.823 0.507 0.649 0.823
Boxes 0.345 1.231 0.353 0.345 0.643 1.231
Trans 1.076 1.209 0.839 0.839 1.041 1.209
Whlsl 0.747 0.906 0.703 0.703 0.785 0.906
Rtail 1.026 0.963 1.024 0.963 1.004 1.026
Meals 0.522 0.571 0.632 0.522 0.575 0.632
Banks 0.934 1.168 0.886 0.886 0.996 1.168
Insur 0.600 0.398 0.781 0.398 0.593 0.781
RlEst 1.211 1.292 1.172 1.172 1.225 1.292
Fin 0.357 0.682 0.402 0.357 0.481 0.682
Other 1.429 1.562 1.342 1.342 1.444 1.562
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service (1.939) we would reject null hypothesis at 10% significance level, but

for neither one at 5% level of significance. However, what is worrying about

these results is the great variability(some values differ by more than one) of

the test statistics, which does not appear to have a good consequences, as if

we could choose between any of the three Khmaladze tests we run on our data,

we could consequently be able to reject null hypothesis for 4 industries at 5%

level of significance and for 2 industries at 1% level of significance. the extreme

example is toys industry, where in test with sequence 0.04 the test statistic was

2.614, while the test with sequence 0.05 scored 1.037, which is a value that does

not allow us to reject null hypothesis at 10% significance level, while the former

would lead us to reject null hypothesis even at 1%. It might be quite difficult

to find an explanation for this kind of behaviour as these values were obtained

from the same data. The reason why the test statistics for toys industry vary

that much is not clearer after finding that sequences of slope estimates does

not really differ, as presented in Figure 6.1.

Even though we do not consider standard errors of these estimates, one

should expect for the same data with such a similar sequences of taus to get

similar results and it is hard to find a reason why such a difference can occur.

This appears to be a big flaw of Khmaladze test. To investigate the values

of slopes of quantile regression lines of the industries whose hypothesis about

parallel quantile lines we are more sure to reject, i.e. smoke industry and bus
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Figure 6.1: Quantile regression slope estimate for different quantiles.
Circle denotes sequence of 0.04, cross of 0.05 and square
of 0.06.
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service industry we can see Figures 6.2 and 6.3. It is clear that in both in-

dustries the slopes of quantile regression lines show certain pattern which does

not appear to be random which is reflected in the test statistics of the tests.

Interestingly, the drop off looks to happen in similar quantiles, which might be,

however, coincidence. To compare it with some other figures which do appear

to have normal value of test statistic, we can see plot of slopes of quantile re-

gression lines for telecommunication industry. This is showed in Figure 6.4
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Figure 6.2: Quantile regression slope estimate for different quantiles.
Circle denotes sequence of 0.04, cross of 0.05 and square
of 0.06.
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Figure 6.3: Quantile regression slope estimate for different quantiles.
Circle denotes sequence of 0.04, cross of 0.05 and square
of 0.06.
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For the telecommunication industry, we can see that the slope values are

distributed somehow randomly around value 0.87 and there is no reason to

think that these values suggests that slopes of quantile lines are different. If

we come back to the smoke and bus industry, one consequence of rejecting null

hypothesis is that it means that the assumption about iid errors in the model is

violated. It might be interesting to compare this result with the conclusion we

would make if we were following the classic path of checking this assumption

of the model in simple linear regression – fitted our model and then decided on

its validity by assessing fitted values v residual plot. We present this plot for a

smoke industry in Figure 6.5.

It would be rather interesting to see what would be the conclusion about the

plot from a statistician as this plot is not too far away from what I would call

ideal residual plot. I am sure that if I was given such a residual plot, I would

say OK, this is fine. However, as we can see when we look at Figure 6.5 in

more detail, there are more observations with positive residual which are close

to 0 than on the negative side, which ultimately results in asymmetry which

the test was able to capture. It is no coincidence that the other example where

we would reject hypothesis at 10% level of significance for mean value of the

three test statistics showed similar pattern of sudden drop of slope coefficients.

I was rather surprised that the test gave such a small value of test statis-
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Figure 6.4: Quantile regression slope estimate for different quantiles.
Circle denotes sequence of 0.04, cross of 0.05 and square
of 0.06.
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Figure 6.5: Fitted values and residuals plot from a simple linear re-
gression on book industry.
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tics for book industry, which appeared to have non-parallel quantile lines from

the first picture I generated. Even in Figure 6.6 it is rather clear that the

slope coefficients have increasing nature. The reason for this is that the slope

estimate has too high standard error which results that for example the 95%

confidence interval for median (τ = 0.5) is circa (1.06, 1.29) which means that
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Figure 6.6: Quantile regression slope estimate for different quantiles.
Circle denotes sequence of 0.04, cross of 0.05 and square
of 0.06.
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basically that there exists slope which is in all other confidence intervals for

other quantiles. So although the quantiles show this increasing pattern, the

uncertainty about our estimates is too big in our case so the result is that we

cannot reject null hypothesis. Because of that, we should remember that slope

estimates even with such a clear pattern do not tell us much about the validity

of null hypothesis and even in this case the data collected might not suggest

that null hypothesis should be rejected (although it “looks” obvious). That

brings me back to our discussion about smoke and bus industry, where we ar-

gued about reasons why we rejected null hypothesis based on slope estimates.

This discussion should not be interpreted in the way that if there is another

plot like that, we reject null hypothesis. The main point I wanted to make was

to give a reason why the test statistic was that high. On the other hand it is

clear that this reason is not sufficient for test Khmaladze test to give that high

test statistics.

Before I move to a part where we will discuss what we can do in order

to correct for this problem of non–parallel quantile lines, I would like now to

mention well–known problem of performing multiple statistical tests. When

we make a decision about a statistical test on 5% significance level, it means

if null hypothesis is true that with a probability of 5% we make type 1 error.

If we are to do 20 independent tests, the probability of making at least one

type 1 error is 1 − 0.9520 .
= 0.64 and in our case when we have 48 industries

the probability of making type 1 error is 0.91, which is such a high number.

If we were to control for this combined probability of making type 1 error for

all test we would need to somehow lower our level of significance. One of the

possible ways to do it is the Bonferroni method, which says that if we want

to control combined probability of type 1 error to be α and if the number of

statistical tests we do is m, then the approximate significance level we should

use for rejecting single test is α/m. However, in our case, we would be having

problems with calculating critical values, but because of the values of our test

statistics and of the fact that not a single one does not exceed 2.8 while critical

value for 1% level of significance is 2.483, it is very likely that after adopting

the Bonfferoni method we would not reject any single hypothesis.

Even though that our data do not suggest that market beta varies in quan-

tiles of the return distribution, it might be good to present a way how to correct

the model so our analysis will be valid. By rejecting the null hypothesis about
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parallel quantile lines, we basically state that variance of error terms is not

constant. In that situation we need to find the way how variance changes and

include this fact into the model. Here, we will present a way how to do it

for variance which increases as a linear combination of explanatory variables.

That would in other words mean the variance of returns changes linearly with

excess market return. Using a general notation for explanatory variables X

and dependent variable Y , then, we can define model:

Y = β0 + XTβ + XTγ · U,

where γ is an unknown parameter and other parameters and variables are same

as in (5.1). In this case, the conditional quantile can be expressed as

Qy(τ |X) = β0 + XTβ + XTγ · F−1(τ) = XTβ(τ),

which again means, that the conditional quantiles are linear. This is a very

nice feature of quantile regression as the model for independent errors and

model where errors depend linearly on X implies the same model for regression

quantiles and therefore no matter which one of these models is valid we ob-

tain the same estimate. Moreover, the Khmaladze test offers a version how to

test whether the conditional quantiles are same up to location and scale shift,

therefore if we apply this “location-scale shift” version of the test we can make

conclusion if this model with errors which variance increase linearly with X is

valid. The critical values are the same for this hypothesis too. With use of

this test we can then make conclusions about both models and decide whether

errors are constant, change linearly or change in a different way. Quantile re-

gression in this case therefore presents a strong instrument which can help us

to decide which model might be suited for our data.



Chapter 7

Conclusion

In this thesis, we introduced the CAPM and analysed a real data set by two

regression techniques to obtain evidence if the CAPM holds or not. In the first

part we run OLS regression to find out that one of the implication of the model

does not hold, that is that the intercept in the time series regression appeared

to be statistically significant. On the other hand, we were mainly interested in

assets’ betas, for which we found out that their estimates do not really change

in both models as the imprecision of our estimates was much greater than dif-

ference in estimates of beta.

We also run quantile regression analysis in order to decide if our data suggest

that the coefficient beta varies in different quantiles of return distribution. For

this purpose, we used Khmaladze test which gave us an answer that this is not

the case. We saw that economic interpretation suggested that for certain com-

panies or even for certain industries, varying beta in different quantiles could

have occurred. Because we worked with returns from portfolios of companies,

we could not detect these firms and for example we could not decide if varying

beta occurs only for firms with some common characteristics (size, past per-

formance). However, we could decide about varying beta for some industries,

but our data did not suggested that it is so. That was even in the case when

the plot of betas suggested that there was clear increasing pattern. The case

of smoke and bus service industry, which appeared to be the only industries

where varying beta was possibly occurring, might have been only result of the

number of industries we analysed. Obtained p–values from the tests we run

were too small for us to be statistically sure that beta of that industry varies in

different quantiles, as we wanted to control overall probability of Type 1 error.
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We were in that case limited by our precision of estimates and maybe if we

were able to obtain better estimates, our conclusion would have been different.

After all, we did not really used all the information provided in our data set,

as we basically had panel data but we analysed it as a number of time–series

regressions. Now, it is possible to analyse also panel data by quantile regression,

applying this methodology on our data set, the story could have been different.

Moreover, to increase precision, we could use longer time period, as this data

are available to us. This represents a room for possible extension of quantile

regression approach as this analysis would use all the information provided and

would be therefore more effective.
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