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1. Introduction

In this thesis we will be interested in collisions of atoms with negative ions. Since
our primary interest lies in theory, we consider both atoms and ions with small
proton number. These reactions are interesting as the systems are small enough
to be accurately described using the most advanced ab initio methods. In the
same time they are complicated enough to produce interesting and sometimes
unexpected physics. The reactions occurring in such collisions at low energies
can be classified as associative detachment (AD)

A+B - AB+e, (1.1)
collision detachment (CD)
A+B" -A+B+e, (1.2)
charge transfer (CT)
A+B” — A" +B, (1.3)
and elastic scattering (ES)
A+B - A+B". (1.4)

Closely related to the reaction (L)) is its reverted form, so-called dissociative
attachment
AB+e — A+B". (1.5)

Investigation of negative ion atom collisions, from theoretical and experimental
point of view has much in common with investigation of electron molecule colli-
sions, but we will not discuss this subject here. For details about this topic we
refer to recent book by Carsky and Curik [I] and references therein.

Among the reactions introduced above, perhaps the most interesting one is the
associative detachment (LLT]). Its vital role in creation of free electrons in lower
ionosphere by reaction of negative oxygen ion with atomic or molecular oxygen
was deduced from measurement of low-frequency radio measurement by Doherty
[2]. The same process, as well as reaction of molecular and atomic oxygen with
O, , was measured directly using flowing afterglow technique by the Fehsenfeld
et al. 3], 4].

Gordillo-Vazquez and Luque [5] lately pointed out that the same associative
detachment may play significant role in the conductivity of atmosphere in pres-
ence of sprites. In 2012 the same authors tried to explain the delayed sprites
by associative detachment of oxygen anions [6], but Neubert et al. [7] suggested
that only long-lasting space charge structures are affected by the associative de-
tachment, and this process cannot directly explain the delays of sprites. These
reactions are also of some significance in other atmospheres. For example mod-
els of Titan atmosphere introduced by Vuittona et al. [8] attribute them to the
measured loss of negative ions in the atmosphere.

The role of AD in interstellar medium was discussed by Black et al. [9], who
suggested that there should be evidence of associative detachment (of hydrogen
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and its anion) in the spectra of planetary nebulae. However, direct verification
was experimentally inaccessible at that time. But it is one of the crucial sources
of hydrogen molecules in plasma with temperatures of few thousands of Kelvins.
This is used also by Jenkins et al. [10].

The associative detachment for hydrogen colliding with carbon chain anions
was studied by Barchholtz et al. [I1]. Eichelberher et al. [12] studied associative
detachment with the same (hydrogenised) carbon chains, but with hydrogen,
nitrogen and oxygen. These reaction could be the starting point for creation
of more complex organic compounds in interstellar environments. These were
motivated by discovery of such a chains in these environments. Snow et al. [13]
and Yang et al. [14] I5] continued with measurement of reaction rates for more
complex organic anions with hydrogen as it is important for the ionic reactions
in the interstellar medium.

Perhaps the most important role of associative detachment in astrophysics
is its significance for creation of hydrogen molecules and their isotopes in envi-
ronment with electron abundance. These are of a great importance for models
of the early universe. Molecules are important coolants as they have finer spec-
trum than atoms and so they can cool the gas to much lower temperatures and
allow it to compress and create protogalxies and the first stars. The most im-
portant molecules are Hy. HD is also important (but it is created usually from
H, molecule) as it has finer vibrational structure than lighter Hy and can thus
cool the gas to even lower temperatures. The D, is even better in this aspect but
the small abundance of the deuterium isotope makes its creation nearly impossi-
ble. The astrophysical models of these processes depend greatly on the accurate
associative detachment rates of creation of hydrogen molecules. The studies of
such a models ([16], [17] and reference therein) led to the need of more precise
calculations as well as experimental measurements in the energy region of few eV
and lower.

The primordial chemistry depends on the rotation-vibrational distribution of
the final products of associative detachment of H + H™ collision as it is not in
local thermal equilibrium as was showed by Coppola et al. [18].

We already mentioned some experimental works. Let us now add few more,
that are of interest, as they measured directly the processes in which we are inter-
ested in, or measured aspects of system that are interesting for us. Considering
the details of the associative detachment dynamics, one of the most interesting
experiments was done by Zwier et al. [19] who measured associative detachment
for H + Cl7. The authors were able to determine information about vibrational
state of the HCI molecule by means of infra-red chemiluminescence. The same
technique was later used for the associative detachment of H + F~ by Zwier et
al. [20] and to study isotopic effect for this species (collision of D + F~) by Smith
and Leone [2I]. The next experiment that provided insight into the structure of
the products of associative detachment appeared much later. In 2002, Zivanov
et al. [22] studied the electron spectrum for reactions of hydrogen with anions
of halides. In the last year Jusko et al.[23] also build experimental set-up for
measurement of electron spectrum of associative detachment. They tested this
set-up for reaction of oxygen anion with molecular hydrogen, deuterium and car-
bon monoxide. There was also experiment with ultracold atoms of rubidium and
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hydroxide anion by Deiglmayr et al. [24].

The most important for this work are the measurements of associative de-
tachment in H + H™ collision. First measurement of this reaction was done by
Schmeltekopf et al. [25] in 1967. They measured reaction rate at 300 K in flowing
afterglow-selected ion flow tube experiment. The similar experiment was repeat-
ed in 2009 by Martinez et al.[26]. They found reaction rate at 300K only slightly
higher (2 £ 0.6 x1079 cm® s71) than in the original work [25]. This is nearly two
times smaller than the result of Cizek et al. [27]. But at the same time merged-
beam experiment by Bruhns et al. [28] shows agreement with Cizek’s result and
pointed out that the previously mentioned experiment may suffer from an error in
calibration by reaction C1~ +H — HCIl + e~. These discrepancies stimulated the
interest of other experimentalists: in 2012 Gerlich et al. [29] published thermal
rates of this reaction for low temperatures that also agree with calculations [27].

We will now give a short outline of theoretical works that are interesting for
us. We will mainly focus on works involving H + H™ collisions. Let us start with
associative detachment (L.T]).

The first theoretical works about associative detachment appeared in the end
of the sixties of the last century. The cornerstone for these calculations was set
by Chen [30] in 1967. He employs the projection formalism of Feshbach [31] to
define the local complex potential approximation applied on atom-anion collision.
In the same year Herzenberg [32] published his own version and used WKB ap-
proximation to calculate H-H™ associative detachment process for both gerade
and ungerade symmetries. Simultaneously Dalgarno and Browne [33] published
short paper with reaction rates calculated using WKB approximations and mod-
ified theory of radiative associations. One year later Chen and Peacher [34] used
semiempirical methods to determine hydrogen-hydrogen ion potential curves and
they [35] used WKB approximation and very accurate potential curves for neutral
hydrogen molecules by Kotos and Wolnicwicz [36] to determine cross sections. In
1969 Mizuno and Chan [37] published their calculation for this reaction. They
also used local complex potential and integrate the coupled Schrodinger equations
to find the phase shifts. They compared different complex potentials, previous
calculations, and they studied charge transfer and isotopic effect and showed
differential cross sections as well.

The next interesting calculation appeared ten years later, when Bieniek and
Dalgarno [38] calculated cross sections of AD to specific rotation-vibrational
states of created hydrogen molecule. They used the same local potentials as
previous calculation and used the full quantum description. The next year Bi-
eniek [39] shows that the local complex potential approximation has problems
with curve-crossing processes. He calculated the cross section to different states
from T-matrix and compared the sum with the lost of flux from complex phase
shift and found that they do not match.

This problem does not appear in the non-local treatment developed by Dom-
cke ([40] and references therein) for the electron molecule collisions. This method
was not used for the associative detachment at first but Domcke and collabora-
tors [41] 42] calculated parameters needed to understand e~ + Hy and H + H~
channels in ungerade symmetry. Meanwhile Senekowitsch et al. [43] calculated
accurate adiabatic potential for ground state of H, , that was used by Sakimoto
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[44], who calculated cross section for very low energies and by Launay et al. [45].
Both used the local complex potentials. Using the theory developed by Domcke,
Cizek et al.[27] have done fully non-local calculation for the H 4+ H~ associative
detachment in ungerade symmetry. They used the angular momentum treatment
developed by Bieniek [46] for the Penning ionization. This work also includes
the electronic spectra for outgoing electrons. In the next years they used this
method (non-local resonance model) for calculations of associative detachment in
hydrogen colliding with halide anion and compare it with the experimental data
(Cizek et al.[47] and Zivanov et al.[22) 48]).

Another interesting reaction is the charge transfer (L3]). Older theoretical
works suggest, that this reaction strongly depends on potential energy curves of
Y and % states. All theoretical works that we are aware of are few decades
old, usually calculated the charge transfer for energy region of no less than 10 eV.
Early works were done by Dalgarno and McDowell[49] and Bardsley [50], who
used the perturbated stationary state method. Later there were more general
papers about the charge transfer by Sinha and Bardsley [51], where the WKB
approximation was used and by Davidovié¢ and Janev [52], who used adiabatic
approximaton. All of them calculated the cross sections or reaction rates for
energies higher than few tens eV and they used different ways to treat electronic
potentials. Chibisov and Janev [53] wrote the summary about the charge transfer
in atom ion collisions in 1988. The experiment by Huels et al. [54] provided the
last experimental results that probed the energy region from 7 eV higher.

Calculations of Cizek [27] predicted much larger associative detachment cross
sections than their predecessors. This attracted the interest of experimentalist
([17], [29]) and the new data confirmed the accuracy of this calculation.

The main purpose of this work is to extend the non-local calculations for
H + H~ to include the excited *X} state of H + H™ in addition to the >3}
ground state. For this we will formulate the theoretical description to contain
more discrete states and also more continua. We need to generalize the numerical
codes to deal with more complex models and we construct these models and
we estimate their reliability. We will also extend the calculation of associative
detachment due to 2} state to higher energies. In this higher energy region new
channel opens — the collision detachment (L2). The new model, that includes
both gerade and ungerade states allows us to study the charge transfer as well as
the elastic scattering.

Furthermore we will study isotopic effect in greater detail and we will present
the comparison with experimental data, some of which is already published [55]
50] together with our theoretical data. These two papers are included in the
appendix [Bl The appendix [Al also contains the description of the data collection
on the attached DVD.
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2. Theoretical framework

In this chapter we summarize the theoretical background of this work. As men-
tioned in the introduction, the same theory describes also the scattering of elec-
tron on neutral molecule [1, 40]. Here we focus on systems with more than two
channels. To our knowledge, this has not been done before in the scope of non-
local resonance method.

We start this chapter with section about fixed nuclei problem where we de-
scribe the parametrization of the electron Hamiltonian. This parametrization is
then used in the next section to introduce nuclear dynamics, the partial-wave
expansion of which is also discussed. Finally, we conclude this chapter with a few
remarks on calculation of the cross sections. Atomic units (m., = h = ¢y = 1) are
used throughout this work, unless said otherwise.

2.1 Fixed nuclei

Let us assume a problem of two neutral atoms with fixed nuclei and one additional
electron. Neglecting the relativistic corrections, the Hamiltonian reads

Hy = - lez +Z|r_r‘ Z\Rl—r| Z|R2_r| (2.1)

1<)

where r; is position of ith electron, p; its momentum, and R,; is positions of
nucleus with charge N;. We can simplify this by changing bases so that

R
R1 = —R2 = 563’ (22)
where R is the inter-nuclear distance and e, is unitary vector in direction of

the z axis. For future reference, it is useful to split this Hamiltonian into three
parts, namely the kinetic energy of one of the electrons (say, i = 1) T = @,
the interaction potential of the rest of the system with this electron H,_,; that
contains all potential terms with ¢ = 1 and the rest that we will call H,; as it is the
electronic Hamiltonian of the neutral molecule. Now we can define K =T + H),
and write

Hy=T+Hy+Hy_ =K+ H,_ . (2.3)

Finding eigenstates and eigenvalues of this problem is non-trivial and can be
solved by using methods of quantum chemistry. This will give us independent
eigenvalues and eigenfunctions for every R. An example can be seen in figure
2.1l where we show eigenvalues of system H; . We shown explicitly the spectrum
for H, for R = 2au, where there are no discrete electronic states, first elec-
tronic continuum starts at £ ~ —0.14au and the second continuum at energy
E ~ 0.1au. The lower continuum describes e~ + HQ(XIZ;), i.e. electron plus
hydrogen molecule ground state, and the upper is e~ + Hy(X?3XT), i.e. electron
and hydrogen molecule in the first excited state. For larger inter-nuclear sepa-
ration the bound state H, (X'¥}) appears (around R = 3au). In figure 2] we
explicitly show this for R = 4 au , where we have discrete state for £ ~ —0.05 au
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Figure 2.1: Dependence of spectrum of electronic Hamiltonian H, on separa-
tion of nuclei R shown on example of H;. Spectrum is explicitly shown for
inter-nuclear distances R = 2,4,6au. The circles indicate discrete spectrum of
the Hamiltonian with all electrons bound. Straight lines show the one electron
continuum. Gerade and ungerade symmetry of bound state wave-function is in-
dicated by red and green colour respectively.

and similar continua as for previous case opens successively for energies around
-0.016 and 0.007 au. The second bound state H;(XlZ;r) will appear around
R = 5au. The last explicitly shown spectrum of the Hamiltonian is at R = 6 au.
The ungerade state lies around £ ~ —0.038 au; energy for gerade bound state is
E ~ —0.012 au; both continua opens at nearly the same energy £ ~ Qau. The
colour of lines and circles indicate the symmetry of bound state wave-function.
The green denotes the ungerade states and the red denotes the gerade ones. It is
a custom to use such eigenvalues to describe the dynamics of the system in Born-
Oppenheimer approximation. This approximation assumes that the eigenstates
of the above problem depends weakly on the inter-nuclear distance, therefore we
can neglect their derivatives. Here we face the problem of crossing of the bound
states into continuum. The non-local complex approximation solves this problem
by introducing so called discrete states and modifying the continuum. The dis-
crete states |¢%) (index 4 distinguishes between the states) are chosen to have slow
dependence on inter-nuclear distance and are smooth function of R. They can be
to a certain degree chosen arbitrary, i.e. we demand that for large inter-nuclear
distances it correspond with bound states of electronic Hamiltonian. We further
assume that these discrete states are orthogonal on each other and that they form
subspace in Hilbert space of our problem corresponding to projection operator
. The rest of the Hilbert space will then represent a subspace of orthogonalized
continuum states |¢g). We will assign projection operator P to this subspace.
This mean that
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P+Q= 1,
PQ=0QFP= 0,

Q=" 6u) (.
i
P=Y" [ dkieq)oil
— Jx
where k indicate momentum vector of electron in continuum and « denotes state

of the neutral molecule. The pair (a,k) describes state of complex M*(«a) +
e (k). We assume that

(Do) = di (2.6)
<¢ﬁ|¢a:> = 5<k_k/)5aa’7 2.
(dhler) = 0. (2.8)

To define the states |¢g) fulfilling these conditions we would like to describe
scattering problem in our model. Following Domcke [40] we write the Hamiltonian
as

Hy =K+ (H} — K)+ (Hq — H}), (2.9)

where superscript P stands for projection to orthogonalized continuum, i.e. X =
PXP . The initial sates is eigenstate |k®) of Hamiltonian K containing state
a of diatomic molecule and free electron with momentum k& with energy E =
k2 /24 V) (R) where V. (R) is energy of state o of Hamiltonian Hy; parametricly
dependent on R. We write the Lippmann-Schwinger equations for interaction
potentials in bracket above

0R) = k%) + GG (B) (BT — Kl ™), (2.10)

) = 1) + G (B) (Ha — H)™), (2.11)

where Géi)(E) and GI();E)(E) are Green functions corresponding to K and HZ and
E = k2/2 + V{(R). From the Lippmann-Schwinger equation (2I0) it is clear
that |¢¢®)) is eigenvector of HY and so Q|¢§{i)) = 0. The two sets of vectors
162 )Y or [¢2(7)) can be used in equation (5] to expand the projection operator
P, assuming that the total energy is low enough not to involve two electrons in
continuum. Thus the states not included are energetically high enough, that the

investigated processes do not depend on them.
Let us define the discrete state potential V,” and coupling V2 matrices as

Vi = (gl Haldh), (2.12)
Vie = (0ulHaloi™). (2.13)

The construction of [¢¢F)) guarantees that
ao’ __ a(+) o () o / (a) 1 2
Viae = (o " |Healdw ) = baard(k — k') |V} (R)+§l€ : (2.14)
knowing these function we parametrize H,; as
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el—Zm v ¢J|+Z/dk|¢k+> { +V(“]<¢ﬁ(+)l+

+Z/dk 16V (e +c. e,

which will be used in dynamics of nuclear motion.

We can use the two potential formula for T-matrix to get the separation of T-
matrix to background and resonance terms. This is useful to solve the fixed nuclei
scattering of electron and molecule and we can use data from such scattering to
construct functions V,, V. from fixed nuclei data. It is

(2.15)

T(k/7 k) = Tbg + Tres; (216>
Ty = (K| HY — K|o), (2.17)
res — <¢k/ |Hel - H W > (218>

The equation (ZIT]) can formally be solved and express resonant T-matrix

in terms of |¢f<i)>. We start by applying projection operator P and () on the
equation

PlyyY) = |¢<i’>+PGi’PHelQ|¢<*>>, (2.19)
Q) = o (QHAQ + QHaP) ), (2.20)

We use first equation to eliminate P |@Z)l({i)) which leads to

Qi) = [ B = QHaQ — QPG (E)PH.Q + i T QHLPIOE). (221)

We can use this to calculate resonant T-matrix:

1 (+)
res = <¢ ’ ‘PHelQ QHelP‘(b >
8 E — QHuQ — QH, PG (E)PH.Q + ic )

) (2.22)
QHQ is expressed in terms of V,/, PHQ and QH P in terms of discrete-state-
continuum coupling V& and we define level shift operator

Fi(B) = (64 HaPGL, (E)PHalg)) = > AP(E) = T(E). (229)

«

Using the fact that states |¢f) diagonalize operator Gy, we can use Vg, to express
level shift using well known formula (z + €)™ = v.p.2 — iwd(x):

M) = 2 [V (2.24)
(04 E/)
V(a E/'

AYYE) = dE’ Ly 2.25
ij( ) = —Vp (2.25)
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So the Voa), V7 and Vi fully describe the resonant scattering,

T (K, k Z e [E = Va— F(B)],; V. (2.26)

Tes

We have shown how to decompose our scattering problem into two parts —
background, which is usually small, and resonant which is usually the dominant
part. The choice of @ operator and |¢%) is the non-trivial part here. A few
methods were developed to find states that could be used as discrete states. For
our problem, the stabilisation methods for finding resonances in continuum is
important. Other possibility is to use state that will slowly change with inter-
nuclear distance — based on physical intuition for example fixed state centred
around one of the atoms.

In the next sections we will mostly use models with only one discrete state,
so we will drop indexes ¢ and j. This covers simple cases of different diatomic
molecules like HF, HCI, and HBr [47, [57] as well as molecules consisting of the
same or similar atoms like Hy, Do, and HD. In the case of first molecules, the
situation is simple since the electronic states are separated with large gap. The
latter case is more interesting — electronic problem has two degenerate sates for
large R due to inversion symmetry with respect to the centre between the two
nuclei. But thanks to the same symmetry we can decompose Hilbert space into
two (gerade and ungerade) sub-spaces and solve each problem separately. We
will discuss this symmetry later. Similarly, for clarity’s sake, we will drop index
a for indexing continuum, but we will return to it later.
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2.2 Nuclear dynamics

Let us introduce nuclear dynamics using the separation that we have introduced
above. To do this we assume, that the wave function of our problem has the form

) = [®a)lda) + Y [Pl (2.27)

where |®) are states in nuclear Hilbert space and |¢) are the once in electronic
space introduced in the previous section. This is the same idea as in Born-
Oppenheimer approximation, but instead of using eigenstates of the electron
Hamiltonian, we are using discrete states and orthogonalized continuum. If we
choose these correctly, they will change slowly with change of the inter-nuclear
distance, and Born-Oppenheimer-like approximation will be valid, i.e. we will
neglect derivatives with respect to inter-nuclear distance of electronic wave func-
tions.

We can extend projection operators P and () to Hilbert space of whole problem

P - / dRP.|R)(R|, (2.28)
Q - / dRQ.(R) (R, (2.29)
(2.30)

where the P.,; and Q. are the projectors defined by (2.4] and 2.5]) for each R.
We will assume, that all negative ion bound states (large nuclear separation) are
contained in subspace defined by projector ) — so this includes channels like A
+ B~ at lare internuclear distances. The P space contains channels with bound
molecule and electron e~ + AB(«a) and dissociated channels e~ + A + B.

Full Hamiltonian reads H = T + H.;, where Ty is kinetic energy operator of
nuclei and (2.I5]) can be used for H.;. We will indicate projections with super-
scripts: AYY = UAV; U,V € {P,Q} and we will omit one, if they are duplicate.
We will use Hy = T+ HY —i—HS as "unperturbed” Hamiltonian. This includes in-
teraction for channels of initial and final asymptotic states in Born-Oppenheimer
approximation — neutral with ion A+B~, electron with molecule e~ + AB(v)
including vibrational and rotational excitation v and electron with dissociated
molecule e= + A + B. The non-local coupling between the resonance and back-
ground sub-spaces H; = HjQ + ng will be our interaction Hamiltonian. The
Lippmann-Schwinger equation for scattering wave function is then

WOy = [y + G5 Hy (e ), (2.31)

where |\I/é+)) is eigenstate of Hy with incoming boundary condition.

The choice of separation of Hilbert space by P and () projectors for which we
can neglect the non-diagonal elements of operator Ty applied on |¢4,) and |¢py)
leads to

[Tn, P] = [Tn, Q] =0, (2.32)

and Green’s function G’(()Jr) can then be written as

G =B~ Hy+id ™" = P[E — Hy + i " P+Q[E — Hy +id 'Q = GP 169",
(2.33)
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Now we will use projection operators P and () on this equation 2.31], and eliminate
P|U®) in the same way as in fixed nuclei case. We will get:

Q|\If(i)> = Q|T,) + G(?HQPN’O) 4 GSQHQPGéDHPQ|\II(i)>, (2.34)

This way we reduced the problem to a small subspace () of the Hilbert space.
Equation (2.34) will be basis of numerical method to solve dynamics, but before
going into details we will like to give some interpretation of term HYFGEHF®.
If we multiply equation (2:34)) with inverse Green’s function

~1

[ng} —Q [E — HS +ic| Q, (2.35)

we will come to inhomogeneous Schrodinger equation with effective Hamiltonian

H.p = H? + HPGrHP? (2.36)

and right hand side H??|¥). We can use this and expansion of H, [2I5) to
express effective Hamiltonian as

Hepp =Ty +Va+ F(E) (2.37)

where Vj; is Born-Oppenheimer potential for discrete state (or potential matrix,
if there are more discrete states), and

F(E) = /ded’L [E =Ty — Vo — k)2 +i€] " Va, (2.38)

is the non-local energy-dependent part of effective potential produced by interac-
tion with channels in P subspace.

We will be mostly interested in associative and collision detachment. Let us
express T-matrix for this reaction. The initial state A + B~ (for Hamiltonian Hy)
belongs in resonant subspace and assuming that resonant subspace contain only
one state we have |\If(()+)> = |¢d)|<i>£l+)>. Here super-index (+) indicate incoming
boundary condition (the same can be done with outgoing boundary condition —
we will indicate it by super-index (—)). States |\If(()+)) as well as @éﬂ) satisfy
Schrodinger equations

[Ty + Vi [25) = Elaf"), (2.39)
Hol w5y = EJugY). (2.40)

To solve equation (Z34) we also need Q¥™)) = |¢d>\<bff)).This leads to the
Lippmann-Schwinger equation:

1057y = |07y + GS(B) FO(B)| (), (2.41)
where Green’s function Géi)(E) = (E — Ty — Vg+ie)™'. And we can express
T-matrix of detachment processes as

Tp = (B HPQIe™)) = <uf|vd’;f\q>g+>), (2.42)

where |\If§c_)> = |¢>§:)> |vg) is the final state of neutral molecule (or two atoms) plus
outgoing electron with momentum k. We will be more specific about vibrational
states of neutral molecule |vf) in the next subsection. This is bound by energy
conservation law. If E; denotes centre of mass kinetic energy of incoming molecule
and ion and FE, electron affinity (i.e. bounding energy of electron in anion), and
E} is energy of bound state |v;) then E; — E, = Ef + k*/2.
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2.2.1 Partial wave expansion

Now we introduce partial wave expansion (for details [46, [58]) which will effective-
ly transform this three-dimensional problem to system of one-dimensional ones,
that is more suitable for numeric calculations. We assume that all electronic state
are of Y-symmetry. This is true for all electronic states of neutral and discrete
states of anions for diatomic molecules considered in this work. Fixed nuclei
scattering problem is symmetrical along inter-nuclear axis z and so Hamiltonian
commutes with projection operator of angular momentum to this axis L.. First
we will expand electronic wave functions and coupling Vy:

) = Z Yoo (k) ki) (2.43)

where k = |k| and k = k/k. Now we use definition (ZI3) of coupling and the
fact that discrete state has »-symmetry.

Vi = Z Y (k) Va, (2.44)

and
del = <¢d‘Hel|¢klm>- (2-45)

This is still done in coordinate system where both nuclei lie on axis z. Now we
transform Vy, to coordinate system fixed in space and located in centre of mass.
Let R denote relative position of the two nuclei, R = ||R|, and R = R/R. Than
we can use the expansion

Vi (R Z\/ 21+1 Yim( R)Va (R). (2.46)

Next we want to expand the non-local part F' of the effective Hamiltonian.
Fist we need expansion of the Green’s function [E — Ty — Vp + ie] ', We know
that the potential V} is spherically symmetric and the Green’s function is thus
diagonal in angular momentum representation

(R|[E — Ty — Vy + i) ' |R') = Zylm GOIERR’) Ylm(R’) (2.47)

R/

Now we substitute this expansion and the expansion of the coupling (2Z40) into
(238) and we find partial wave expansion:

/ ARAR'Y }\,(R)Yyiap (R)F(E, R, R) = / dkdRdR

l2lomyma Lo Mo

o o 471 ~ A
Vi (B o (B =i (B)YF (R)V (R
R (Yo, B B0V, (R
YLOMO<R>RGOl<E k2/2 R R/) R/YE()M0<RI)

47
S Vi Yo B Vi ().
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We can use known properties of spherical harmonics and perform integration over
all angular variables; integration over k reveals 01, 1,and 0y, m, and integration over
spacial variables leads to Wigner 3-j symbols. This can be further simplified using
their orthogonality to get:

/ ARAR'Y 1, (R)Yyur(R)F(E,R,R") = =0, 0 f7(E, R, R)  (2.49)

RR’

where

fr=>Y fr= Z(QJ’Jrl)(é ‘g ‘é)

z o (2.50)
JAB Vi B)Gur (B = K2 /2. B ) Vi ().

The diagonality of the non-local part of the effective Hamiltonian in angular mo-
mentum basis corresponds to its spherical symmetry, and is expected as electronic
Hamiltonian as well as discrete state and coupling Vg depends only on distance
R. This means that different partial waves of |®,) will decouple in (241 and
we get a set of independent equations. There is still coupling to different contin-
uum states via different f;;. We will assume, that we need only a few of these
couplings with small value of [. This can be usually justified by low mass of
electron, meaning that centrifugal barrier % is strong enough that coupling
will be negligible for collisions of energy of our interest.

Now we will expand the Lippmann-Schwinger equation (2.41]). We start by
defining the expansion of

(R|®F) NZZ Yl (k)Yim(R)p1(R), (2.51)

m

and

(R|®F) NZ@I—Y* k)Y (R)$1(R). (2.52)

Here k is momentum of incoming scattering wave and N = /2 /7 is normalisation
constant and K = /2uF is momentum. Next we need the expansion of the
Green’s function Gy:

R|IGP R = ZYlm Gl E,R,R') R/Y* (R). (2.53)
And finally we write equation
o1(R) = ¢ (R)+ /dR'dR”GJ(E,R, R f;(E,R',R"¢;(R"). (2.54)

To expand the T-matrix we need to specify the final state of the neutral
molecule. The rotational state of diatomic molecule can be described by quantum
numbers J and m and the rotational eigenstates are spherical harmonics VimR.
Vibrational states vy, ;. (R) of molecule are then dependent on quantum number
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J from rotational state of the molecule and n that counts the vibrational states.
The expansion of the final states indicated by subscript f is

(Rlvy) = \/féYJfo(R)anJf(R) (2.55)

We thus write T-matrix

Tp(vs. K) = (vy[Vig, |5 S @I+ D@+ )i (-1)M
\/_lmJM (2.56)

- ~(Jr 1 J J [ J
Em(kl)YJM(/f)(Of 0 0) (_]\’;[f . M)tﬂ (V2 K1)

where k; is momentum of free electron with angular momentum [/, and

o (Vngap ki) = /dRanJf( W, (R)ds(R). (2.57)
The differential cross section then reads
d
1o, K) = s [4n%u] | To (v KPP, (2.58)

where s; is statistical factor, that is coming from the model. Typically it is related
to multiplicity of incoming state, usually due to symmetry of the problem.

We will be generally more interested in integral cross sections averaged over K
and integrated over k. Here we can use the orthogonality of Wigner’s 3j-symbols
and get:

472

2
Jp U J
op(vs, K) = KE si(2J + 1)<Of 0 O) 127 (anJf,kz) 2. (2.59)
Ji

Total cross section can then be obtained by summing this formula over all
(energetically accessible) final states, or we can use unitary condition. We know

that flux that is lost in discrete channel must contribute to detachment channel.
This leads to

2

Utot(E) KE

(27 1) [aRaRG (BB R R) ~ £3(E. R R)Jos ().
(2.60)

These two ways of getting total associative detachment cross section can be com-
pared to test the numerical accuracy of our calculation. It can be showed that,
using expansion of Gg;, the two expansions of oy, are equivalent if there is ei-
ther no collision detachment, or if we also sum over the discretized continuum in

equation (2.59).

2.2.2 Notes on numerical implementation

To calculate the cross section ([2359) we need to calculate the T-matrix element
(2.57). To do so we will need wave function ¢;(R) as well as the bound state
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of the neutral molecule v, s, (R). To obtain wave function ¢;(R) we will need
the non-local potential f;,;, the Green’s function GG; and the initial state wave
function ¢ and solve equation (2.54).

In the first part of this section, we will explain how we obtain non-local po-
tential f;; defined by equation (Z50). We will need to find the Green’s function
Goy ([Z4T) of neutral molecule and as a by-product we also find the states of the
neutral molecule v, 5, (R). In the next part we will show how to calculate initial
state ¢ (R) (Z5]) that is eigenstate of the system with potential V; with incom-
ing boundary condition and the expansion of the Green’s function G; for the
same system defined by the equation (Z53)). And finally we explain the method
that we are using to solve the Lippmann-Schwinger equation (Z.57)).

Calculation of non-local potential

In this section we will now try to refine equation (2.50) to the form suitable for
numerical calculation. We will also show how this corresponds with operator F' es-
tablished in (2.23)). Let us look at F(E) from equation (2.38)) in R-representation.
We get

F(E,R,R)=A(E - Ty — Vo,R,R) — %F(E — Ty —Vo,R,R)),  (2.61)

where operator Ty + V; is Hamiltonian of neutral molecule that we use to define

Goy [2417) and where

I'(E,R,R/) =2r / dkVa (R)Vi (RY), (2.62)

_ 1 _
A(E,R.R)) = —vp. / dET(E',R,R)/(E — E), (2.63)
m

where £ = k?/2. We see that for the case of R = R’ these equations coincide
with fixed nuclei variant of resonant width I'(E,R) and energy shift A(E,R)
(220 and(Z25).

Now we will show how we insert operator Ty + Vj into the F(E,R,R’) in
partial wave expansion. We focus only on one element f;; and use spectral
decomposition of the Green function

Gos(E—K*/2) = i Vntl(R)[E — k*/2 — Epy +ie] v (R, (2.64)

n

where E,; is energy of state 1v,; and the n index bound as well as continuum
states of neutral molecule. We insert this G, into equation (2.50) and change
the order of integration and summation:

Jra= Z(QJ’ +1) <é é/ g) in Vit (R) v (R') X

J/
2.65
X / A KV (R)(E — K2/2' — By +i€) 'V (R') . (2.65)

J/

F(E-E, ;,R,R")
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using Sokhotski formula —— = Fimd(z) + v.p.(2), F} can be split to hermitian

and antihermitian parts

F(E,R,R) = AJ(E, R, R') + %FI(E, R R), (2.66)
where
Ty(B, R, R') = 21Vya(R)Vau(R)), (2.67)
A(E.R.R) = 5-vp. / dE'TY(E', R, R)/(E — EY). (2.68)
m

In our calculation, we will discretise the continuous part of decomposition of Gg;.
We are using discrete variable representation (DVR) with Fourier-sine bases [59)
to calculate v,; and FE,; for Hy molecule. This represents also natural way of
discretisation of continuum states. Typically in the following sections, we use
bases of few hundred of DVR states on the interval of R from 0.01 to 15 au.
We confirmed that the results are stable (T-matrix 107%) with increasing the
number of states as well as taking larger interval for DVR calculation. It should
be mentioned, that we are expressing F; in form

F(R,R,E Z 9i(R)hi;(E)g,(R), (2.69)

where we calculate g;(R) on our grid and h;;(E — E, ;) for all included states for
Hamiltonian H,. The g;(R) and h;; can be calculated by (2.67) and for special
form of h;; we can use the results of Domcke et al. (used in [60]; see (B.I8) for
details) we can express the integral in equation (2.68)) as convergent series (the
g; is the same for real and imaginary part).

Local potential calculation

In this section we discuss the Lippmann-Schwinger equation for local potential V
and how to obtain partial wave expansion of |®) as well as irregular solution that
we will use later to construct the Green’s function G4 respectively their partial
expansion ¢; and G ;. The Lippmann-Schwinger equation

D)) = |k) + GF (B) V| ), (2.70)

can be expanded to partial waves as the potential V; is spherically symmetric.
The |k) denotes state of free Hamiltonian Ty and the Géﬂ is the corresponding
Green’s function. We use expansion (251]) and knowledge that the eigenstates
of Hamiltonian T are spherical Bessel functions and we expand the Green’s
function of the free Hamiltonian in regular and irregular solutions:

2
2s(B) = u,(R) — 2 / AR uy (R Yoy (RVa(R)oy(R),  (2.71)
where R. and R- are minimum and maximum of R, R’ respectively. And

us(R) = RKj;(KR), (2.72)
vs(R) = iRKh;(KR), (2.73)
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where j; and h; are spherical Bessel and Hankel functions respectively. The equa-
tion 2.7l is Voltera integral equation and the method we are using was proposed
by Horacek [61]. This method gives us the right(incoming) boundary conditions
and compared to the direct solution of Schrodinger equation we do not need to
calculated derivatives. We rewrite equation (2.71))

¢(R) ZAuJ(R)—%M /0 AR (v (R)us (R) — us(R)v,(R)|Va(R)¢s (R'), (2.74)

where
A—1- %“ T ARy (R)Va(R)by(R). (2.75)
If we now define 0
PR = ou(B)/A= (L= (R (R) + alRes(R), (270
ar) = -2 [Carus i) (), 2.17)
sy = -2 [Care VR ), (2.78)

and we can easily found constant A = [1—3(00)]™!, and elastic T-matrix element
is given by

(o)
1 — f(o0)
This can be calculated on a grid, because the terms in integrals on right hand
side of equation (2.76]) with f(R) will subtract.

Next we will need the Green’s function G ;. It should satisfy the Schrodinger
equation

t = / dR/UJ R)Vd<R/)¢J(R/) (279)

( d? J(J+1)

This can be done by expressing the Green’s function in terms of regular and
irregular solution as

Gy = —%¢<r)J(R<)¢<i)J(R>)- (2.81)

The regular solution is already calculated ¢y;(R) = ¢s(R). And the irregular
equation should have same behaviour in infinity as v;(R) and it is easy to show
that it obeys equation

S(R) = us(R) = L [ ARy (Ruy(RVi(R)0s(R),  (2:582)

and this can be solved similarly to the previous one, we define f(R) = ¢;)s(R)/A,
where
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f(R) = ¢,(R)/A=[1-B(R)us;(R)+ a(R)vs(R), (2.83)
2u [

o(R) =~ [ AR (RVAR)IR), (289
BR) = 2 [ AR (RVAR)S(R), (2.85)
A = 1= ARG RV R0, (R) =1+ AB(0), (2860

so the A = [1 — 3(0)]7!. The method of calculation is similar to case of regular
solution. The only difference is that we need to start from high R, so that
condition ¢¢;);(R) = v;(R) is reasonable satisfied. We are calculating this on a
uniform grid for R € (0.01,10)au that has three thousand points, we will use
further. But we include secondary grid from 10 to 100 au that will ensure correct
inclusion of asymptotic behaviour of potential. This grid is uniform in logarithmic
scale. This ensures better precision for lower energy, where it is more relevant.

By increasing these parameters we estimate error in T-matrix to be less than
1074

Lippmann-Schwinger equation with non-local potential

Finally we need to solve the Lippmann-Schwinger equation (254 with non-local
potential. This we do using the Schwinger-Lanczos method. We will give here
short review of this method, detailed description is given elsewhere [62, [59].

In the Schwinger variation principle T-matrix element

T = (95| T1ds) = (¢5IV(V = VGoV)"'V]6) (2.87)
is given by stationary values of functional

T, y] = (DsVIvi) + - |V]pi) — (- |V = VGV ]ihy), (2.88)

where V' is interaction potential and Gy is green function of Hamiltonian with-
out interaction potential. The stationary value is obtained, when |[iL) satisfy
corresponding the Lippmann-Schwinger equation. We will use decomposition of

)
[a) = > & lgi), (2.89)

(2

where cii are variational parameters, and the approximation to T-matrix elements
are then
N
TH = > (@slVIg) (M )i5(g;V |0) (2.90)
i,j=0

where the M matrix is given as M;; = (¢:|V — VGoV]g;) and |g;) can be cho-
sen arbitrary with condition of regularity of matrix M. The Schwinger-Lanczos
method was developed for case of elastic scattering, i.e. calculation of diagonal
elements of T-matrix (|¢) = |¢;) = |#);). We will start with |g; = |¢)(¢|V|p) /2
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and choose the rest of |g;) such that the matrix M is tridiagonal, and that these
vectors are V-orthogonal:

(g:|lVGoVgiz1) = (9i-1|VGoVgi) = B, (2.91)
<gi|VGOV|gi> = Qy, (2-92)

(9:lVGoVlgs) = 0 forli—j|>1, (2.93)

(9ilVlg;) = 04 (2.94)

We are using symmetric scalar product instead of Hermitian one, since the G is
symmetric and non-Hermitian operator.
The desired T-matrix element can be then written as

TN = (@VIg) (M dgn Vg = VIO PL | Py g g5

1—0[1—].—0(2— “]_—OZN

We used expansion of matrix element M, of tridiagonal matrix in form of con-
tinued fraction. We will now outline the Lanczos algorithm of construction of
bases |g;) as well as variables «; and f;:

1) = o) (lV]e) ™2, (2.96)
Bo = 0, (2.97)
ri) = GoVlgi) — Bi1lgi-1), (2.98)
ai = (gilVlri), (2.99)
i) = |ri) — culgs), (2.100)
Bi = (si|Vl]s), (2.101)
9i+1) = B 'sa)- (2.102)

In our calculation, we will also need approximation off-diagonal T-matrix T]{ZV
elements or wave function [¢Y):

N

T = (e VIeY) = (osVIg) (M ialg1|V]60), (2.103)

1=0

where the first column of matrix M ~! can be expressed as

RIS
M[M_EEM’ (2.104)
and
fi=1l—o;=B%/firr, fn=1—an. (2.105)

The method has also been generalised for symmetric treatment of in and out
channels [63]. For our purposes, the method described here is sufficient.

Our Schwinger-Lancoz calculation is usually using up to one hundred steps to
reach our requested precision of changing relative T-matrix of less than 1073,
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3. Model for H + H™

01|

0.05

E [au]

-0.05

-0.15 |

R [au]

Figure 3.1: Potential energy curves of Hy and H . The full lines represent bound
states of all electrons of interest. The dashed lines are resonances of the Ho+e™
complex in continuum of neutral molecule. The hydrogen potential curves are
well known. The 12; is the spin singlet, the 'g’ stands for spatially symmetric
bound configuration and the spin triplet state >3] is the spatially anti-symmetric
anti-bound configuration.

The hydrogen molecule potential curves are well known since the twenties of
the last century (see for example [64]). We are using data from accurate vari-
ational calculation with explicitly correlated wave-functions done by Kotos and
Wolniewicz [36] in 1965. These correspond to the Vi*(R) potentials introduced
in section 2.1 which are necessary to construct the final states of detachment
processes (2.55]) as well as the non-local potential ([Z50). We will label these
states with the spin state multiplicity, i.e. the state 12; as a = 1 and state 3%
as a = 3. In our calculations we are using cubic spline to interpolate between the
calculated points. We now define the continua (shown as red and green lines in
figure B.1]) with energy Voa) + k%/2. To construct the model for the nuclear dy-
namics we will also need the discrete states potentials Vdi 7(R) and the couplings

dky

We will now discuss the coupling between the discrete state and continuum.
We assume that only the lowest two angular momenta of the electron are relevant
(i.e. 1 € {0,1}). For the energies of interest this approximation is valid as the
electrons with larger angular momentum are forced out by the centrifugal barrier
and their contribution should be much much smaller. We must also consider
the role of the symmetry of this molecule. We are dealing with the two lowest
electronic states with different parity (gerade and ungerade). For clarity sake we
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will use the letters 'u’ and g’ as index for the discrete state (i.e. 7,5 € {(g9), (v)}).
The symmetry must be conserved throughout the electron detachment process
and so not all of the couplings can be non-zero. If parities of a discrete state
and a neutral molecule differ, then the electron in continuum must have odd
angular momentum to conserve the parity. Conversely if the parities are the
same, then the electron has even angular momentum. So in our case the only
non-zero couplings are Vd(,; ):(1), Vd(,?l ’Zj<3>,vj,f}:(3>,vd(,§};(”. We add the symbol
— between the identifier of a discrete state and a neutral molecule for lucidity
sake. If we rewrite the equation (Z50) for more continua and discrete states

P= = yeren(l g )
l

I,J o (31)
JABVi (RIGE) (B - 12, R ) Vi (),

we see that restricted to the couplings, the matrix f}j has the following structure

fJ:< i]) i ) (3.2)

Without loss of generality, we assume that the coupling Vd(:l):_é(?’) is negligible, be-
cause the transition is energetically forbidden as the resonance 23 never crosses
the potential curve of the anti-bound state 3.

The last remaining ingredient to the nuclei dynamics is the discrete potential
Vdij . Because of the symmetry of the problem this decouples to

Vi(R) = 6,V (R). (3.3)

The equations ([B.2)) and (B:3]) guarantee that the Lippmann-Schwinger equation
(254)) does not couple the two discrete state components and that we can solve
the dynamics separately for gerade and un%erade component like in the case of
one single discrete state. The potentials Vd(l (R) do depend on coupling, but can
be related to the Born-Oppenheimer potentials. These should be the same as the
real part of the local approximation of the non-local resonance model that was
derived by Domcke [40] for one continuum and we naturally generalise it to

Vil (R) = Vi (R) = 30 AR, V) — Vi), (3.4)
Using this equation we can calculate the discrete potential if we know the Born-
Oppenheimer potentials of neutral molecule and the system with one more elec-
tron. The bound states of H 4+ H™ system are directly accessible by quantum
chemistry. We are using data calculated by Senekowitsch et al. [43] for the >3
state and by Paidarova [65] for the X (circles in figure B1I). The positions
of the local potential in the region where it is not bound, should correspond to
the resonances. These are obtained from the fixed-nuclei scattering. The 23"
resonance was described by Berman, Miindel and Domcke [42], who used projec-
tion operator calculations. The R-matrix calculation performed by Stibbe and
Tennyson [66] revealed the positions and widths of 22; resonance.
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The determination of couplings V;i(lg_)(a) is described in the next section. It is
obtained from the relation of the square of the coupling to the width of resonance.

For Vl((fc) and Vd(l) that satisfy the equation (3.4]) we get negatively taken double
of the imaginary part of the local complex potential

loc

Z rO=@) (R v — yl@)y, (3.5)

where ['™~(®) is related to the coupling Vi, through (Z67). This should be
identical with the widths calculated in [66].

As we will be dealing with indistinguishable nuclei (case of H +H~ and
D + D7), we should take into account the statistic of the identical particles.
This determines the factors in the partial wave expansions (2.58) and (259, (it
is s; = % for the distinguishable nuclei for H + D~ and D + H™). For fermions,
i.e. particles with half-integer spin, we know that the wave function of N of such
particles satisfy

Y(ny,...,nn) = sgn(p)Y(ny,, ..o Ny, ), (3.6)

where the p stands for permutation with sign sgn(p) and the n; denote the position
and spin of i-th particle. The similar equation holds for bosons (particles with
integer spin) but without the sign of permutation.

V(N1 oy ny) = V(Mpyy ooy Ny, ), (3.7)

We will limit ourselves to the system of two identical particles. The relation
between spin and statistics of particles, in special case of two identical particles
can be expressed as

b(n1,m2) = (=1)*9(n2, ). (3.8)
Swapping the particles is equivalent to

R — —R, (3.9)

in the spatial part of the centre of mass coordinates system. In the partial wave
expansion this leads to the change of sign for odd angular momentum J. The
spin part of the wave function x with total spin S and z-axis component £ that
describe two particles with spin s and z-axis spin projection &; and & as

Xse(€1, E2) = (s1](8€a|Ss8E) = (556162]5€), (3.10)

where the (ss££2|5€) is a Clebsch-Gordan coefficient. If we use the known rela-
tions of these coefficients, we obtain

xse(61, &) = (1) xse (2, &), (3.11)

Combining all of these we get relation
(-1)° = (-1)7, (3.12)

that holds for two identical particles. Our wave function also includes an elec-
tronic part that depends on the internuclear distance R and we must include
this too. (This is special case of geometric Berry phase). Swapping the nuclei
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(B.9) leads to a change of the sign of the electronic wave function according to
o(r; —R) = ¢(—r,R). This means the equation ([3.I2)) can be rewritten as

(=1)° = (=1)7*, (3.13)

where we denote the symmetry of the electronic part with s.; and we set its value
to one if the symmetry is ungerade and to zero it it is gerade.

Let us now find what states are allowed for system with two protons (spin one
half) and two deuterons (spin 1). We start with two protons. These can have
total nuclear spin S zero and one. For S = 0 (singlet) we can have even states for
22; states and odd for the ungerade one. The other total nuclear spin allowed is
one (spin triplet) and here it is the other way around.

For deuterium it is almost the same, but we have also the S = 2 the spin
quintet and it will contribute to the single ones from previous paragraph.

If we sum all this and assume that all states have the same abundance we can
determine the statistical factors s; mentioned in equation (2.58). For hydrogen,
these are s; = 1 for 22+ with odd angular momentum and for 22+ with even
angular momentum and S; = 3 for the rest. For deuterium it is s; = 2 and s; = é
respectively.

In the next section we will talk about long range potential for H + H™
teraction and we will follow with sections about models we are using for our
calculations.

3

3.1 Construction of the model functions

We will start this section by describing the model for the 2 state (Vd(g), Vo(l)
and Vd(: )%(1)) that was used in previous Calculation done by Cizek et al. [27, 58]
Next we introduce our new model (with V V(1 and V 9= ) for 2%} and how
we construct it. Than we compare it Wlth the model prev1ously pubhshedl by
Beliaev [67] that has both continua — adding coupling de 973 and anti- bounding
hydrogen potential V0(3) and explain how we modified it to agree with newer
calculations of the Born-Oppenheimer potential.

3.1.1 Interactions of the >~ discrete state

Couplings and location of resonance for 2} state of H + H™ system was calculat-
ed by Berman, Miindel and Domcke [42] 41] using Feshbach projection operator
formalism. The Born-Oppenheimer potential Vlgé)(R) for R where all electrons
are bound was calculated by Senekowitsch et al. [43]. This was used by Cizek
[27, 58] to construct the model presented here. The discrete state potential Vd(u)
satisfies the equation (B.4]) (with only one term in the sum), where the local
potential is assumed to be energy of electronic bound states for larger R and
resonances for the small R. Cizek et al. [27] found that these assumptions are
accurately satisfied by

Model of Belyaev was proposed for the problem of three-body bound states of Hy . Our
model is the first non-local model of *%; and *X7 states for H+H™ collision.
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_237R 94.4exp(—22.5/R)
‘/d(u)(R) _ 1.74e=237R _ MW + E, for R < 10.6au (314)
—0.00845Re~0-358 _ 2}'%—%45 — % for R > 10.6au
and the coupling to continuum
13
V7w = N7 A B E g (R), 3.15
where £ = k?/2 and
9i(R) = exp(—ci(R — Ry)?) for i = 1,2, (3.16)
g3(R) = exp(—c3(R — Ry)). (3.17)

where A, — 1.6618, Ay — 1.3603, As — 1.0467, by — 18.8631, by — 4.6559,
b3 = 14503, C1 = 02, Co = 03302, C3 = 0489, and RO = 1.4014.
The energy dependence of I'(E) defined by (2.67) in the form of £ exp(—bE)

is advantageous as it allows to express the Hilbert transform in definition of A

(2.68) analytically [60] as
E"" exp(—bE')
.p- dE' =
v-P / E—FE
 [=T(1 + a)(—=E)*T(—a, —bE) exp(—bE), E <0,
| E*exp(—bE) (7 cot(ar) — (a) (bE), " Fi(—a,1 — a;bE)], E >0,

(3.18)

where I'(a, ) is incomplete gamma function and 1 F}(a, b; z) is the confluent hy-
pergeometric function. We are using a continuous fraction and a series expansion
respectively(see Abramowitz and Stegun [68]) to evaluate them.

3.1.2 Interactions of the 22; discrete state

For the bound state of this system we use Born-Oppenheimer potential calculated
by Ivana Paidarova [65]. This was calculated using quantum chemistry methods.
For system with three electrons the full CI calculations are possible and this leads
to very accurate potential curve. In the region where the system is not bound, it
is restricted by used bases and so it follows potential curve of neutral molecule,
simulating system of neutral molecule with free electron restricted by used bases.
The situation of the resonance in continuum is more difficult. It was studied by
Bardsley and Cohen [69], who used variational method and found it above the
anti-bound hydrogen states X", Bardsley and Wadehra [70] used semi-empirical
analysis to find the position of the resonance only few meV above the triplet state
of the neutral molecule. Esaulov [71] measured electron detachment and charge
exchange for H™ + D with energy between 0 and 1 keV and estimated position
of resonance at 0.8 £ 0.3 eV. We are using the more recent calculation done by
Stibbe and Tennyson [66]. They calculated scattering of electron on the hydrogen
molecule target using R-matrix method and then found position and the width
of the resonance using time-delay matrix method and eigenphase sum method.
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They mentioned that for inter-nuclear distances around 2.0 au the broadness of
the resonance makes it difficult for the fitting procedure to be accurate and for
lower R there is avoided crossing with the resonance that lies above. This is in
the energy region around 10 eV that is above our energies of interest. For large R
the resonance becomes narrower and fitting procedure should be more accurate.

First we develop model based on the data obtained from Paidarové [65], and

H(l). We can

Stibbe and Tennyson [66] with only one non-zero coupling %(If)
separate this task to three parts.
For low R € [1.2,4] au we have the positions of resonances and corresponding

resonance widths from Stibbe and Tennyson [66]. We use equation (3.1) and
Wigner’s threshold law [72] to find the V;i(,f)_)(l) coupling. At the same time
equation (B.4)) yields the discrete potential curve Vd(l) that is needed for equation

B3,

For large R (where the electron is bound to hydrogen as anion) is the coupling
small and we use the extrapolation of the coupling constructed it the first region.
We are still using equation (3.4 for the discrete potential Vd(l) and local potential
calculated by Paidarova. We include correct asymptotic behaviour for even larger
values of R.(See the end of this section).

The last region is for R around the crossing, where we don’t have accurate
local potential curves. We are using polynomial interpolation of Vd(l) as well as
extrapolation of coupling mentioned in previous paragraph.

Using this procedure we found coupling in agreement with the widths provided
by Stibbe. We will designate this model as («a):

Vi (R = = S (R D). (.19

0.9 1

f(R) = 0'53(1 4 (R— 421" 1+exp(0.5(R - 4.2))’ (8:20)
g2(R) = 0.145 exp(—1.5(R — 1.8)*), (3.21)

fi(E) = EY* exp(—5E), (3.22)

f2(E) = BV exp(—E). (3.23)

The factor EY/* is from the Wigner’s threshold law, and the factors for energy
dependent exponentials are put here by hands and then we estimated the depen-
dence on R and fitted the rest of the parameters. The comparison of this model
and the data that we used to construct it is on the figure and [3.3] .

We compare this to the model that was constructed by Belyaev et al. in [67].
They used the data from [66] and Bardsley and Wadehra [70] for ¥ potential
to construct their model. First we tried to compare this model with our own, and
so we take only the coupling with continuum corresponding to ground state of
hydrogen molecule and calculate the Vd(g ) the same way as we did for our model.

We could not use the Vd(g ) that was presented with the full model as we are using
only part of this model and it would shift the local potential. We will refer to
this model as (3):
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Figure 3.2: Comparison of resonance width presented by Stibbe and Tennyson
[66] and the ones calculated from different models. The model («) and (3) has
only gerade coupling and so we comparing them to the '@~ part of the width.
We are not presenting the widths here corresponding to the model () as the
solution of non-linear equation (B.4]) is not unique in most of the region we are
interested in and showing all solutions will make this figure less lucid.

g)—(1 1 2
Vil = e R(E) (3.24)
g1(R) = 0.33 exp(—1.2(R — 1.8)%), (3.25)
g2(R) = 0.22exp(—0.7(R — 4)?), (3.26)
fI(E) = fo(F) = EY*exp(—2.7212E). (3.27)

We found that this model is similar to the model («), as can be seen on the figure
and [3.3]

Next we add the second continuum from Belyaev’s model and use their Vd(lf)
in the system dynamics. We will call this model (). The missing coupling is:

g)—(3 1 2
Vil " (R, B) = Vo 2 W) (3.28)
g1(R) = 5.8 exp(—1.8(R — 1.74)%), (3.29)
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g2(R) = 4.6 exp(—0.15(R — 3.1)%), (3.30)

A(E) = £"(E) = E¥* exp(—15E). (3.31)

Potential for the discrete state is spline interpolation of the table that can be found
in the paper by Belyaev et al.[67]. Figure B.3]shows that these are not in a good
agreement neither for bound state nor with the position of the resonance according
to the Stibbe et al. We are not presenting the widths for this potential, as there
are multiple solutions for the local potential, and the width is not continuous for
neither solution we found. As we will be using mostly the next model and use
this only for comparison we are not much concerned about this.

The last and final model is constructed from the couplings of Belyaev’s model
and then we use the same procedure as for models () and (f). This model we
will mark as (d) and we use this as the final model. It follows the ab initio data
in figure and [3.3 reasonably. The discrepancies are of the order of 10%.

The long range potential is important for reaction of our interest. And it has
huge impact on cross sections for low energies.

The long range potential for H + H™ like interaction is dominated by polari-
sation, that is the same for gerade and ungerade state. Polarisation potential is

well known: 995 o7

Vool (R) = ——1;%4 - T (3.32)
It is important for detachment processes, but has little effect charge transfer.
The next correction to long range potential is the interaction between the neutral
hydrogen and the loosely bound electron in H™. This can be described well with

the term

Aexp(—BR)
— Rr
where =+ is for the gerade and the ungerade state respectively. We used the ab
initio data to fit these parameters to A = 0.439 and B = 0.258 for R > 10. In
this region we use V; =V}, + V), as our discrete state potential.
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Figure 3.3: Comparison of potential energy curves for different models. On top
there are potentials for the discrete state and in the bottom are the local potentials
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of the *X1 state/resonance. The calculation from which we construct our models

are marked with circles.

The empty circles correspond to the calculation by
Paidarova [65] that are already in continuum and used method doesn’t calculate

the energy correctly. Our final model used for calculations is (9).
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Figure 3.4: Comparison of total detachment (TD) and associative detachment
(AD) cross sections for different models for H+D~ collision with initial states in
gerade symmetry.

3.1.3 Comparison of models

We constructed these previously described models for state 22;. We can see that

the models («) and (f) that include only coupling Vd(,f)ﬁ(l) are almost identical
as the local potential curve V,. and the corresponding width go.

To asses the sensitivity of associative detachment data to uncertainty of the
model data we used all four model (a) - (0) to calculate *X} contribution to
the total detachment in H + D~. The comparison of the total detachment and
the associative detachment cross sections can be seen in figure [3.4l For the total
detachment, i.e. the sum of associative (ILT]) and the collision detachment (L2)),
all models with exception of () agree within ~ 10% accuracy. Model () is
different since it does not use the accurate ab initio data of Paidarova [65], which
can be seen in particular on position of the onset of the cross section. Associative
detachment is more sensitive to the details of the model. We see that the presence
of the second continuum, included only in complete model (§) makes associative
detachment cross section smaller. This opens the possibility, that the system
ends up in the second Hy(®EF) + e~ continuum, that does not contribute to
associative detachment (*Y] potential does not support the bound states) so it
lowers the associative detachment.

38



4. Results and discussion

T T T T
Miller et al. +—eo—
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Figure 4.1: Comparison of the cross section of associative detachment for H + H~
measured by Miller et al. [56]. Solid line is and our calculation of associative
detachment that includes both 229 and 2, channels. Dashed line includes also
the quasi-bound states of Hs, Cross section was multiplied by square root of
energy for better lucidity.

As discussed in the introduction the first calculation for the associative detach-
ment in H + H™ fully including the non-local nature of the electron detachment
was done by Cizek et al. [27]. It was limited to energies lower than 1 eV.

This collision is interesting for the higher energies as the new channel, the
collision detachment, opens. It is also expected that the 2%, state will play a role
here. We were also motivated by new experimental data for H + H™ measured
by Miller et al. [55]. The data can be seen in figure 1] together with associative
detachment calculation that includes both 229 and 2Y, contributions and we also
show associative detachment with the inclusion of metastable states (blue doted
line). The detachment to the metastable states is part of collision detachment,
but these states have lifetime long enough to be detected by the experimental set-
up as hydrogen molecules. The details about our calculation for this comparison
can be found in [55] included in appendix [Bl

In the following section we will show more detailed analysis of H+H™ collision.
We stared with associative and collision detachment in the next section. We show
contribution from 2%, and ¥, states and spectra of outgoing electrons for few
selected energies of the collision. Next we will discuss the isotopic effect that
was partially published in [56] (also is included in appendix [B]). And finally we
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will talk about the charge transfer and the elastic scattering. These processes
were made accessible to our calculation by including both gerade and ungerade
symmetries. Our calculation is thus the first one that that treats these processes
using the full non-local calculation.
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4.1 Associative and collision detachment for H4+-H™

The associative detachment on fig 1] is dominated by the 2, contribution.
Contribution from the ?¥, that we added is highest around 1 eV and even there
it is only about 10%. At about the same energy there is steep fall of this cross
section as the collision detachment channel opens. We start by comparison of the
total detachments, i.e. sum of collisional and associative detachment, for the 2%,

and 229 states.

100 . . . ' ' —
1F / ]
N'— ]
B !
° :'
01f | ]
0.01 i ]
. i classical: ZZE ------- 1
: 22+ _______ ]
| 2 +g
: quantum: °%, —— ]
E ZZ;
0.001 , .

E [eV]

Figure 4.2: Total detachment cross section comparison of classical approximation
and quantum calculation for Y} and *¥} initial states.

We start analysis of the total detachment by classical means. This will help
us to get better physical intuition for this type of collisions. We can find the
maximal impact parameter b, that for all R > R, satisfies

2

E—Vloc—é—b2 >0, (4.1)
where R, is the position of the crossing of V and V... With assumption that the
detachment process always occurs when the system gets to the autodetachment
domain (R < R,) we can calculate the classical total cross section as wb* with
this maximal impact parameter. If we have only polarisation potential V ~ 1/R*
this is so called Langevin cross section, that is o ~ 1/EY2. For 2%, state the
potential is more attractive than the pure polarization term and even the classical
calculation gives values larger than Langevin model. The gerade state behaves
more like a potential barrier. For this we can estimate the behaviour of cross

section as
) (4.2)

E,
e
g 7Ta< B
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where Ej is height of the barrier and a is its position. We have potential curves,
that are much more complicated and so we used numerical calculation to deter-
mine classical cross section for both gerade and ungerade states. For 23, states
the classical calculation agrees closely with full dynamics (figure [£.2)).

The situation for 22; state is very different from 23 state (figure £.2). Low
energy cross section of X1 state is dominated by long range polarisation poten-
tial and the quantum effects make it even larger. For 22; state, the low energy
behaviour is dominated by potential barrier, that is crossed around 0.7 eV and
then it rapidly grows. The classical calculation leads to 1/E behaviour near the
onset and quantum calculation provides bigger cross section for classically forbid-
den region, where the tunnel effect is involved (figure[d.2]). For larger energies, the
cross section of quantum calculation is lower because it respects, that crossing this
barrier doesn’t leads strictly to detachment. The local potential is still growing
even after crossing and the non-local the time the particle spends behind crossing
is not long enough (in comparison with width) to detach the electron. Although
the Y} is dominant for low energies, for energies E 2> 2eV total detachment of
the other state prevails.

10 B

o [37

0.1

0.01

E [eV]

Figure 4.3: Total detachment (TD) and associative detachment(AD) cross section
for interaction H + H~. This figure shows contribution to AD (dashed lines) and
TD (solid lines) from both initial states *%} (green) and *3} (blue) for energy
were is the contribution from gerade state relevant.

Let us now look in more detail on the total and the associative detachment (see
figure [43]). We can see there that the collision detachment (difference between
total detachment and associative detachment) channel opens shortly after outset
of detachment for *X} state. The X is much more important for associative
detachment. The maximal contribution of 22; state is around 10% at energy of
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Figure 4.4: Different channel for detachment of 22; initial state. The associative
detachment is low due to the steep growth of local potential as well as opening
of the channel with electron p-wave.

1 eV. Although it decreases much slower than the associative detachment cross
section for 21 state, when it reaches the comparable values (around 3 eV), it is
probably too small for any practical purpose. There are several reasons for the
cross section to be small. One is that there is the competing collision detach-
ment channel to excited dessociative 3¥] state of neutral molecule. The width
corresponding to this channel is larger than the one corresponding to the ground
state, but it is suppressed by higher angular momentum of electron and also by
higher offset for opening of this channel. The other reason for the smallness of the
associative detachment cross section is the threshold behaviour of the I'9)~(1).
This causes that the autodetachment occurs fast after arrival to the autodetach-
ment zone, where the bound states of the molecule overlap only slightly and so
most of the detachment it so the collisional detachment channel. This can be
seen on figure .4l The detachment to the >3} channel opens slower and around
3 eV takes over the other the channel to the electronic ground state of neutral
molecule.
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4.2 Electron spectra and final states distribu-
tions

We are also interested about spectrum of electrons that leave after the associative
or collision detachment interaction. The cross section for outgoing electron with
energy F,; and initial kinetic energy E is

dgelcr(Eez, E) = Z}: iyUyJ(E)(S(E —E,; — Ey,), (4.3)

where 0, is cross section for J-th partial wave and neural molecules (including
continuum states) in state v (the sum includes all rotation-vibrational states of
the neutral molecule that has non-zero cross section g,.7) . We use discretised con-
tinuum in our calculation, and so, strictly speaking, we cannot calculate this cross
section. More to the point, no experimental set-up can measure with infinitely
sharp electron energy resolution. When we assume that the detector measures
with Gaussian distribution with width s we must convolute this distribution with
the previous formula and we get

(B E) = —— > S oustB) e (—% E BB ) 44

This also solves our problem of discretised continuum, because we can use large
enough width s so that our sampling of continuum is dense enough to give right
result for the cross section. We confirmed the accuracy by increasing the density
of continuum sampling and calculate the same cross section. The results for initial
energies 0.75, 1, and 2 eV can be seen on figure We choose the first energy
slightly after the opening of the associative detachment channel of gerade state,
the second one to be around the maximum of associative detachment of gerade
state and the third one is around where the contribution from both symmetries
to the total detachment cross section are the same. The cross section of 22; state
is most important in the low electron energy part of the spectrum.

The reason for this is following. The release of low energy electron is sup-
pressed in ?X1 contribution since only p-wave contributes with E ? threshold
behaviour. On the other hand the 22; state decays also through release of s

wave electron with sharper threshold onset E;l/ ®. This explains dominance of the
22; contributions in electron spectra close to the zero energy.

For better understanding of this process we can draw probability w of different
modes of detachment depending on classical impact parameter b, e.g.

b= 2L (4.5)
2uF
2uE o(v)
= 4.
; T 2J+1 (4.6)

where J is initial angular momentum, F is initial energy, u is the reduced mass
of our system and sum goes over final states v, that will contribute to process in
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Figure 4.5: Cross sections for outgoing electrons energy in H + H™ collision
convoluted with Gaussian of the width of 20 meV. The figures from top to bottom
are for initial energies 0.75, 1 and 2 eV. We show contribution of *Xf and 23}
initial states and we have marked the energy where the collision detachment
changes to associative detachment (for 0.75 eV the collision detachment channel
is closed).
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Figure 4.6: Probability of detachments depending on impact parameter for 22;
initial state on the left and complete H4+H™ collision on the right for energies
from top to bottom 1, 1.5, and 2.5 eV. We are showing total detachment (TD),
associative detachment (AD). For 22; in the left part we also show separately
the contribution from 12; continuum as cyan curve. For the complete H + H™
collision on the right the green curve denotes the contribution of collisional de-
tachment(CD) alone.

question. In figure [4.6] we show these for a energies 1, 1.5, and 2 eV. This is a
good indicator of the range of interaction that are relevant for the processes.

On the left hand side of figure there is detail on the 22; initial state. We
can see that associative detachment contribution is more localized than the full
total detachment, as the particle must penetrate deeper into the autodetachment
region. For the larger impact energies the contribution to s-wave continuum grows
before closing of detachment channel. This is caused by the threshold behaviour
of the competing p-wave channel that is suppressed for large b.

On the right hand side are graphs for probability calculations from both gerade
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Figure 4.7: Detachment cross section to channels with different angular momen-
tum of final HD molecule. This includes only 23 initial state of H + D™ collision.

and ungerade channels. At the top there is good example of difference between
the two channels. The gerade channel discussed above (left hand side of the
figure) contributes as a brad between the b = 0 — —3A. The ungerade channel
is flat followed by sharp drop at b = 4 which is consequence of the attractive
interaction all the way to the autodetachment region.

We have calculated partial cross sections for associative detachment to all final
states of molecule Hy created in the process, but it is too extensive to present
everything here. The data are included in the attachment that is described in
appendix [Al

In figure [4.7 we present present differential cross section for specific final an-
gular momentum for H + H™ collision. We show this isotope, because statistical
factors s; = 1/2 are the same for the cross section increase for low J is mainly
due to the statistical factor (2J + 1) in equation (2.59). The low energy cross
section is suppressed by centrifugal barrier for higher values of J.

Some additional data for partial cross sections are also shown in figures
and [4.14] in the section about isotopic effect.
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4.3 Isotopic effect

In the classical analysis of total detachment cross section there is no difference
between the isotopes. If we look at this situation from quantum perspective, more
partial waves will contribute in heavier system. This is compensated by smaller
cross section for individual partial waves and these two effects cancels each other
and only small discrepancies remain in the total detachment cross sections (figure
A8 for ¥7), For ¥2 contribution (figure B9 the difference is after all noticeable
(~ 3%). This may be attributed to repulsive nature of the potential. The cross
section is the highest for the Dy which spends most time at the turning point.
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Figure 4.8: Isotopic effect of cross section for associative detachment and total
detachment of 21 initial state. The isotopic effect is notable, after opening
of collision detachment channel. There is no noticeable isotopic effects in total
detachment so we present only one line for the total detachment..

But if we look at associative detachment (figures EL8] for X2 and for 32)
we can see large differences after the threshold for collision detachment. This is
expected as the heavier system is more adiabatic and so the electron has more
time to autodetach on the border of autodetachment region and with less energy
transferred to it and the neutral system ends up more likely with more energy.
The associative detachment cross section thus, in general, decreases faster, for
heavier systems. This is also true for 23 contribution in figure [£.10

But interesting exception is for system in gerade symmetry around initial
energy 1 eV. As we can see in figure the highest cross section in this region
is for H + D~. To better understand this we point to the electron spectrum of
this collisions at figure .11l There is comparison of electron spectra for all three
system (convoluted with Gaussian of the width of 20 meV) for the Zz state. The
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Figure 4.9: Isotopic effect of cross section for total detachment of 22; initial state.
There is nearly no difference in total cross section between different isotopes of
hydrogen.

HD spectrum is much smoother. This is caused by the statistical factors s; that
in the case of HD don’t depend on angular momentum. We marked the threshold
between the associative and collisional detachment (F. = 0.246 V). We can see
that this threshold is situated after the large spike in cross section for Hy as well
as Dg. These are caused mainly by statistical factor mentioned earlier. The Dy
has larger mass and so is more adiabatic as mentioned at the beginning of this
section. This is consistent with the fast decrease of the differential cross section
in electronic spectrum for larger electron energies. This also correspond with
smaller associative detachment cross section that we see in figure L.10

We also include the spectra for outgoing electrons that includes both symme-
tries (figure[4.12)) this time for impact energy 2 eV. At this energy the spectrum is
dominated by contribution from the gerade states for lower electron energies and
the contribution from ungerade states dominates at high energies (as can be see
in figure fig:el-spect). We can see that smoothness of spectrum for HD collision is
much less smoother (in comparison to the other two), especially around electron
energy 0.5 eV, where contributions from gerade and ungerade parts are compa-
rable. As pointed previously for heavier particles the spectrum decreases faster
with electron energy, but has higher contribution on low electron region. This
agrees with the fact, that associative detachment is smaller for heavier systems.

The experiments often measure reaction rates rather than the cross sections
directly. Reaction rate has inherent isotopic affect. If we look at equation (.20
for calculation of reaction rate from cross section we can see that only factor
1//1t deepens on mass and everything else depends only on energy. This and the
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Figure 4.10: Isotopic effect of cross section for total detachment of 23 initial
state. There is nearly no difference in total cross section between different isotopes

of hydrogen.

small differences between (energy dependent) cross section leads to

Ho
k =k —, 4.7
XV (4.7)

where the ky are reaction rates for system with reduced mass o and the pu is
reduced mass of the system we want to calculate new reaction rate 7.

The interesting comparison is also in figures and .14 where we show
individual partial cross sections for selected rotation-vibrational states of neutral
molecule. We choose states with vibrational quantum number v = 1 and v = 6.
We can see the above mentioned fact that the cross section getting smaller but
the number of partial waves growing. We can also see that the frequency of
oscillations decreases with the reduced mass. The oscillations can be explain by
changing of overlap of incoming wave and the final state modulated by coupling.
This is faster for the higher vibrational states as their wave functions oscillating
faster. The isotopic effect then shifts the cross sections to the higher energies as
the vibrational states are situated deeper in the interaction region. This effect is
partially compensated by increased number of vibrational states for the heavier
molecules.
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Figure 4.14: Cross sections of associative detachment with final molecule in the
sixth lowest vibrational state and different angular momentum [ (even on the
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4.4 Charge transfer and elastic scattering

We will start this section with few paragraphs about theoretical description of
these precesses and in particular with the questions arising from the symmetry
of the system.

Particularly important case of diatomic system arises in collisions of two atoms
with similar nuclei, i.e. with the same charge of the nucleus. The lowest state
of such a system is inherently degenerate for large R, as both A~ + A and A
+ A~ must have the same energy. It is easy to see that electronic problem has
an inversion symmetry and the wave function can be either even or odd (space
inversion preserves wave function or it changes it’s sign). It is obvious that
hydrogen molecule has this symmetry and we will use it as an example. We can
see on figure 2.1} that for large inter-nuclear distances the potential curves merge
and as R gets lower it behaves differently for different symmetry — the gerade
symmetry is more attractive for neutral molecule and repulsive for anion plus
atom and ungerade vice versa.

Parity is quantum number that will be preserved throughout studied process-
es. We use standard terminology for these; gerade and ungerade (from German
words meaning even and odd). It is obvious that both gerade and ungerade elec-
tron functions will have the same electron density around both nuclei for the
large R. As we will be dealing only with the lowest electronic states we can sim-
ply define that the normalised sum of electron functions give wave function with
electron on the left and the difference give wave function with electron localised
on the right. Let us now discuss how this will reflect in nuclear motion.

We will first solve problems for each symmetry separately as these two prob-
lems decouple. We mentioned this earlier in chapter[3l This is achieved by solving
equation (2.54) which gives the solutions ¢ and ¢(9). (We will omit the index
J that stands for the angular moment of the partial wave, except for equations
for the cross sections.) These functions describe the strange incoming boundary
condition: linear combination of states with ion coming from the left (H~ + H)
plus and minus ion coming from the right (H + H™) respectively.

For the description of right the charge transfer we will need to decouple these
boundary condition.

ob = %(W 69, (48)
o = L (o) g0, (4.9)

V2
Using these states with localised extra electron we can describe charge transfer

and find its S-matrix element and cross sections. The S-matrix can be expressed
in terms of gerade and ungerade sub-problems.

(641516%) = 2 ((69] + (6] [3] (169) ~ ) =

1

= 2 ((9116) — (6[S]61)) = % (59 — 5@,

(4.10)

where S® and S are S-matrices of ungerade and gerade sub-problem respec-
tively and we used the fact that the mixed elements of S-matrix are identically
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zero due to the inversion symmetry

(69]S16) = (@D]S}6) = 0. (a.11)

Now we can use partial wave expansion and calculate S-matrices for each partial
wave using NRM as described above. Large number of partial waves contributes
to charge transfer. This calculation can be very expensive even though the non-
local part potential does not contribute to the S-matrix.

Cross section for charge transfer is

(9)_ A
—47TZQJ+1|875‘]—7T22J sin’ J), (4.12)

Where the A is the difference between phase shifts for the gerade and the unger-
ade channels. The charge transfer is therefore highly sensitive to the difference
of the long range potential between gerade and ungerade states.

We can also define the S-matrix elements for the elastic scattering in similar
manner:

(641516%) = 2 (9] + (6©]) IS] (199) + [69)) =

_ % (6918169} + (6] S|®)) = % (59 4 509

(4.13)
The only difference between this and the S-matrix element for charge transfer is
the sign between the terms. This means that the elastic cross section is much
more sensitive to the long range potential, especially the polarization potential
that is the same for both symmetries of initial state. The elastic cross section
can be calculated as

‘3(9) -+ S(u) —+ 2‘2
S=dr) (20 +1) 67 : (4.14)

It can be expressed as a function of sine and cosine of the sum and difference
of the phase shifts for each symmetry, but we will not be using it as it is not
practical when the absorption to other channels is involved.

For the identical nuclei H~ + H and D™ + D the charge transfer is indistin-
guishable from the elastic process. We therefore concentrate on H™ + D in the
calculation of charge transfer. As we discussed in the introduction there are some
older calculation, but they are at much higher energies than we are interested
in here — usually in order of keV. We can estimate the cross section for energies
where one channel is absorbed and the other is not. Then the cross section of
charge transfer should be a half of the associative detachment cross section. It
should be mentioned, that this is never entirely true — there are always partial
waves that are absorbed only partially and this can both increase or decrease
charge transfer cross section. The similar assumption can be made about elastic
scattering, but to elastic scattering contribute the partial waves that has similar
phase shift in both symmetries (of electronic problem) that is cancelled out in
charge transfer. Because of this, we expect the elastic cross section to be higher.
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Figure 4.15: Cross sections for charge transfer and elastic scattering for H= + D.
Comparison of non-local resonance model (NRM) calculation with 150 partial
waves, WKB approximation with 150 partial waves and converged WKB approx-
imation with 2400 partial waves. We are comparing this with the measurement
of Huels et al. [54] for charge transfer process.

We can use semi-classical calculation, namely WKB approximation, to cal-
culate difference between phase shifts of gerade and ungerade system. Let us
outline this method here. WKB approximation defines wave function in system
with potential V (r) as

o) = \/]% sin < / o) + %) , (4.15)

p(r) = \/Qm {E —Vi(r)— S+ 1)] ; (4.16)

where

2mr?

and a is classical turning point. If we compare it with asymptotic behavior of
radial function

J
(x — 00) ~ sin (px — % + 5J(p)> , (4.17)
where p = V2mFE we get equation for phase shift in WKB approximation
v 2J +1
d;(p) = li_)rn [p(r") — p| dr' — pa + % (4.18)

a
Charge transfer S-matrix element as well as cross section is depend only on
difference of phase shift of ungerade and gerade system as mentioned above. This
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Figure 4.16: Detail of cross sections for charge transfer and elastic scattering for
H~ + D. We can see the structures caused by resonances of 3 initial state.

difference can be expressed as

o0 o

[p(g)(r') — p} dr’ — / [p(“) (r') — p] dr’, (4.19)

a(“)

Ady =0 — 5 = /

a(g)

where a9 and a™ are classical turning points for gerade and ungerade symmetry
respectively. The WKB approach can not give good description of the detachment
process (like final-state distribution or spectra) but we saw, that the semi-classical
methods give reasonable result of integral quantities like total detachment. We
will see that it also gives good results for charge transfer and elastic scattering
for higher collisional energies.

We used WKB formula for calculation of charge transfer and elastic scattering
cross section with adiabatic (local) potentials with this simple model:

If it is classically allowed for particle to get over crossing of adiabatic potential
curves for atom-ion system and for neutral molecule, we assume that the particle
is absorbed to electron detachment channel and S-matrix will be zero. We used
R = 100 au as upper bound of integrals in WKB approximation and corrected
phase shifts for partial waves to that of free particle there. This is important for
cross section of elastic scattering, and has no relevance in charge transfer, where
only difference between phase shifts is relevant.

We computed cross section for charge transfer and for elastic scattering for first
150 partial waves using non-local resonant model and compare it with the same
number of partial waves in WKB approximation. We also add all contributing
partial waves in this approximation. Comparison of the results can be seen in
figure .51
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Figure 4.17: Effective potential V' (R) = V4 (R)+ ‘Z};f for the 23" state and partial
waves J = 25 to 33 (from bottom to top). We indicated zero kinetic energy with

blue line.

We can see good agreement of WKB approximation and non-local resonance
model for higher energies. WKB approximation is not accurate for low energies,
where only few lowest partial waves are involved. This is expected as WKB
approximation is not that accurate there as well as the simple model of absorption
of whole partial wave that can reach the autodetachment region. Large number
of partial waves contributes to cross section for £ > 0.5eV. It would be very
computationally demanding to converged results with the full non-local resonance
model, but as we see in figure[L. 15 that the WKB calculation limited to 150 partial
waves is almost identical with full calculation for £ > 0.5eV. We therefore
prolong the cross section with WKB calculation in this energy region.

At energies between 10 and 50 meV we can see structures caused by resonances
in 2231 channel. The detail of this region can be seen on figure together with
one of the contributing partial waves (J = 30). We can see a narrow peak caused
by the resonance in this partial wave around 27 meV. The other oscillations
are from the Ramsauer-Townsend effect, as the phases shift of the background
increases by more than 27 (see figure[£.J91). Not that these resonances are closely
related with long lived states of H? reported in [73].

For H + D~ collision, these resonances can be found between 24 and 32
partial wave. This resonance behaviour can be explained by the shape of the
effective potential for these partial waves (figure A.17). We will look at these
resonances in more detail. At the lower angular momentum, this resonances
causing the increase in associative detachment as there is overlap with neutral
potential. This can be illustratively seen on Argand diagram of elastic element
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Figure 4.18: Argand diagrams for elastic element of S-matrix for different angular
momenta. From top left to bottom right it is 24 to 27. We can see that the
collision is more elastic with growing angular momenta and that the resonance
growing wider.

of S-matrix for individual partial waves s;. If the element of S-matrix lies on
unit circle, there is no associative detachment. And as it approaches zero, the
probability of associative detachment grows to one (as no other channel is open
in this energy region). On figure we can see the resonance region for partial
wave 24, 25, 26 and 27. The resonance can be identified as a loop around the
coordinate origin with much lower point density (as it is rapid change of phase
shift). For greater angular momenta the associative detachment channel is closing
and Argand diagram converges to the unit circle. The other variable we can obtain
from S-matrix element for elastic process is the phase shift §; (shifted of hole
number multiple of 27). Resonances can be recognises as rapid change of phase
shift by 27 radians. We present phase shifts for partial waves 27, 30, 32, 33 figure
[4.19). We can see that there resonances are narrower for lower partial waves and
that grows wider and less pronounced for larger angular momentum. For the last
shown partial wave with angular momentum J = 33 the resonance disappeared
entirely. We can see background that is responsible for the Ramsauer-Townsend
effect as we mentioned earlier.

For experiments the reaction rates are important as we mentioned earlier.
These can be expressed in terms of cross section as

k= (ov)y =, /ﬁ / dEo(E)E exp (-kBiT) : (4.20)

where p is reduced mass and kg is Boltzmann constant and 7' it the temperature
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Figure 4.19: Dependence of phase shift on energy in the region with resonances
and comparison of gerade and ungerade initial states phase shifts. We show
angular momenta (from top) 27, 30, 32, 33.
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Figure 4.20: Temperature dependence of reaction rates for charge transfer H + D~
= H™ + D compared with associative detachments H + D™ — HD + e~. We
are also comparing these with experimental data measured by Roucka et al.[74].

of reactants. We calculated rates for charge transfer and associative detachment
for temperatures from 5 to 1000 K and we are showing these on the figure
together with measured data from Roucka et al. [74].

In our calculation we totally ignore 0.4 meV difference between H + D™ and
D + H™ channels. This difference goes beyond Born-Oppenheimer type approx-
imation which we use. We expect that this will have small effect for energies
E 2 1meV.

61



62



5. Conclusions and future
prospects

We have studied collisions of H + H™ and its isotopes. We calculated associative
detachment cross section in low energy region, that corresponds to the tempera-
tures from one to tens of thousand of Kelvins. This region is important for the
astrophysics — plasma with temperature in this region is important in forming
of the first protogalaxies and stars where the hydrogen and deuterium molecules
are important coolants and thus our results can supply the associative detach-
ment cross sections to the astrophysical models to get more realistic results. To
get accurate cross section for £ 2 0.7eV we had to add the cross sections for
22; symmetry that has small but measurable (on the edge of measurability)
contribution and we compare it with experiment. In addition to the associative
detachment cross section, we show the total detachment cross section and the
details about associative detachment like the partial cross section for individu-
al rotation-vibrational states of the final molecules (see appendix [Al). We also
presented the electronic spectra for a few selected energies that suggest, that the
contribution from 22; could be seen in the low electron energy end of the spectra.
We analysed isotopic effect of these collisions and we found that the total detach-
ment cross section is not dependent on the isotopic effect, but the redistribution
of the states of neutral molecule depends on it, and so the associative detachment
changes after opening the collision detachment channel. As we expected the as-
sociative detachment lowers with the increase of mass of isotopes, for which the
collision is more adiabatic. The reaction rates of course change with the mass of
the electron as they are dependent also on the velocity of the colliding particles
and not only on the kinetic energy.

We have also calculated the charge transfer cross section and the rates and
compared it with the preliminary experimental results close to energy region
we are interested in. There are some interesting structures created by orbiting
resonances in the region around 30 meV, but we do not know of any experiments
that would be able to measure these.

The construction of our model is not ideal as we are using one dimensional data
to fit two dimensional couplings. (These depend on the inter-nuclear distance as
well as on the energy of the electron in the continuum.) This could be remedied
by calculation of the couplings similarly as the Miindel, Berman and Domcke
did for the 2 state. We compared a few models and estimated the accuracy
of total cross section of the final model to be about 10%. We never considered
the complex phase of the coupling. We expect that the integral quantities like
cross sections for charge transfer, total detachment or associative detachment are
insensitive to this approximation, but the final state distribution and electronic
spectra can be influenced.

As mentioned earlier, the measurement of electronic spectra would provide
a new insight into the reactions in question. It is possible that the isotopic
effects that we calculated would be observable in the electronic spectrum. The
contribution of 22; state would be better observable in electronic spectrum as
well. Last but not least, these measurements would provide good test of the
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constructed models.

In the future we may also include non-adiabatic corrections leading to 0.4 meV
difference in the energies between H + D™ and D + H™ channels. This would
improve charge transfer calculations as very low energies.
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A. Description of detailed data
attached on DVD

The attached DVD contains data from our calculation corresponding to the asso-
ciative and total detachment. It is also available in electronic form as attachment
data.zip. In directory (folder) data you can find files named like this:

isotopes—-minimal_energy_in_eV-maximal_energy_in_eV-symmetry.dat

Here the symmetry is 'g’ for the 22; state and "u’ for the X7 initial state. There
are two ranges of energies — the first from 0.1 meV to 2 eV; this data are linear
in logarithm scale and we present only data for 22 initial state, as the other
is mostly zero in this region. The second region is from 0.55 eV to 5.5(5.45) eV
and the data are linear in this region. So for example if you want the data for
H + H™ collision for energy between 0.55 and 5.5 eV for 22; state you can find
it in the file

H_2-0.55-5.5-u.dat

Files are in text format with six columns. The first is the initial kinetic energy
of the reaction. The next is the angular momentum of partial wave (J). The
difference between the angular momentum of neutral molecule and the angular
momentum J follows. Next two are vibrational quantum number decreased by one
and the energy of this state. Finally, we present the cross section we calculated
for these parameters.

Hence the total detachment cross section can by obtained as sum over all cross
section with the same energy. The associative detachment cross section is only
sum over the vibrational state that has negative energy and thus are bound. The
electronic spectrum can be obtained using the energy conservation law and the
equation (£3]) and we can filter it according to the presented attributes to obtain
the other presented data.
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Using a merged-beams apparatus, we have measured the associative detachment (AD) reaction of H™ + H —
H, + e~ for relative collision energies up to £, < 4.83 eV. These data extend above the 1-eV limit of our earlier
results. We have also updated our previous theoretical work to account for AD via the repulsive > E; H, ™ potential
energy surface and for the effects at E; > 0.76 eV on the experimental results due to the formation of long-lived
H, resonances lying above the H + H separated atoms limit. Merging both experimental data sets, our results are
in good agreement with our new theoretical calculations and confirm the prediction that this reaction essentially
turns off for E, 2 2 eV. Similar behavior has been predicted for the formation of protonium from collisions of

antiprotons and hydrogen atoms.

DOI: 10.1103/PhysRevA.84.052709

I. INTRODUCTION

One of the simplest molecular formation reactions is
associative detachment (AD) via

H +H—->Hy+e . (1)

This reaction is of interest for fundamental atomic and
molecular physics and also because it plays an important role
in protogalactic and first star formation in the early universe
[1-3]. Two groups have recently reported measurements of
this reaction. Martinez et al. [4] measured the thermal rate
coefficient at 300 K using a flowing afterglow technique. Our
group has measured this reaction over a collision energy range
from 4 meV to 1 eV using a merged-beams method [3,5,6].
Our results lie 2.2 £ 0.9 times above those of [4]. The quoted
uncertainty represents the quadrature sum of the estimated total
experimental 1o confidence level for each measurement. We
have also taken into account minor corrections to our earlier
data, which are described below.

In [6] we hypothesized that this discrepancy is due to an
error in the measured rate coefficient of [7] for

H+ClI" - HCl+e™, 2)

which [4] used to determine their neutral H number density
and thereby normalize their results. Our apparatus is not
configured to study reaction (2) and test this hypothesis, but we
have been able to extend our measurements of reaction (1) to
higher energies and thereby provide additional benchmarks for
theory. We have also investigated and ruled out several possible
sources of systematic errors in our previous experimental
results. Additionally, we have more carefully considered the
pressure dependence of our detection method. Last, we have
updated our previous theoretical results of [3,8] to account
for AD via the repulsive 22;’ H, ™ state and for the effects at
E; > 0.76 eV on the experimental results due to the formation

“Present address: Inficon GmbH, D-50968 Cologne, Germany.
Present address: Department of Chemistry, University of Illinois,
600 South Mathews Avenue, Urbana, Illinois 61801, USA.
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of long-lived H, resonances lying above the H + H separated
atoms limit.

The rest of the paper is organized as follows: Sec. II
describes the experimental method and the various modifi-
cations performed for this work. Section III discusses the
experimental uncertainties. Our new theoretical calculations
are briefly described in Sec. IV. In Sec. V we present
our results and compare them to theory. A discussion of
our results is given in Sec. VI and a short summary in
Sec. VIL

II. EXPERIMENT

Here we briefly describe the experiment and the changes
relevant to our new results. Further details about the apparatus
and experimental method can be found in [3,5,6].

A. Method

We begin by extracting H™ from a duoplasmatron source
and forming a beam with an energy of Ey- = —e(Us + U /2).
Here e is the unit charge, Us &~ —10 kV is the nominal source
voltage, and Uy is a small correction voltage, which is defined
below. Using standard ion-optical elements, we shape, steer,
and direct the beam into a photodetachment chamber that
houses a floating cell biased to a potential Ur. The anion energy
inside the floating cell is Ey- = —e(Us + Us/2) + eUs. Near
the center of the floating cell, we cross the anions with an
infrared laser and convert a portion of the H™ beam into a beam
of ground-state H atoms of energy Ey = —e(Us — Uy/2). The
resulting merged beams exit the floating cell, whereupon the
H™ beam returns to its initial energy, while the H beam energy
remains unchanged. The beam-beam interaction energy is
controlled by varying Us.

Shortly after leaving the photodetachment chamber, the
two beams enter an interaction region of length L. Two beam
profile monitors (BPMs) are used to determine the beam-beam
overlap (Q2(z)) within the interaction region, where the z axis
is defined by the bulk velocity vectors of the copropagating
beams. We also use the BPMs to verify the alignment of the

©2011 American Physical Society
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beam axes. The relative energy E, between the beams depends,
in part, on this alignment and is given by [9] as

Ew E En E
Er:,u(H-i-H—Z ”cos@). 3)

my- my my-my

Here p = my-my/(my- 4+ my) is the reduced mass of the
colliding system, my- and my are the masses of the H™ and H,
respectively, and 6 is the angle of intersection. E; is controlled
by varying U;. This merged-beams approach allows us to
reach collision energies on the order of a few meV, limited
only by the alignment of the beams, the spread in collision
angles between the two beams, and the energy spread of each
beam. We used geometrical simulations [3,5,6] to determine
the average collision energy (E;) versus Uy, taking into account
the spreads in beam energies and angles.

Both beams are chopped out of phase in order to extract
the signal H, generated in the interaction region from various
backgrounds. Any H; formed in the interaction region has an
energy of Ey, = Ey- + Ey = —2eUs = 20 keV, neglecting
the <3.7 eV kinetic energy of the detached electron and the
similarly small internal energy of the H, formed. At the end
of this region, an electrostatic quadrupole deflector is used
to direct the H™ into a Faraday cup where the current /y-
is read and recorded. The parent H and daughter H, beams
continue on into a gas cell kept at a helium pressure of 2 x
10~* Torr for most measurements. Inside the cell a fraction of
the H is ionized by the stripping collisions forming ~20 keV
H,". Additionally, stripping of the H beam and dissociative
ionization of the H, can produce ~10 keV H*.

After the gas cell, the neutrals and resulting ions enter the
analyzer region involving two double-focusing, electrostatic
cylindrical deflectors in series [10] and a channel electron
multiplier (CEM). A hole in the outer plate of the first or lower
cylindrical deflector (LCD) allows neutrals to pass through
and travel into a neutral detector. The neutral particle current
Iy, as measured in amperes, is monitored by measuring the
secondary negative particle emission from the target inside
the neutral detector. The voltages on the LCD and upper
cylindrical deflector (UCD) are selected to transmit the 20-keV
H,* signal ions into the CEM while rejecting any of the 10-keV
H™ formed in the gas cell.

We study reaction (1) from the number of H,* ions detected
in the CEM. Experimentally, we measure the cross section oap
times the relative velocity v, between the H™ and H beams
convolved with the velocity spread of the experiment. This
gives the rate coefficient [6]

1 S e’ vg-v
{oapvr) = — @
OstNHe TaTgn Iy- Ty L(QA(2))

The left-hand-side average is over the experimental energy
spread. On the right side, oy is the stripping cross section for
H, on He forming Hy* [11], Ny, is the gas cell helium column
density, S is the background-subtracted, pressure-corrected
H, " signal, T, is the transmittance of the combined LCD-UCD
analyzer, 7, is the transmittance of the grid in front of the CEM,
n is the CEM efficiency, and vy- and vy are the velocities of
the H™ and H beams, respectively.
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B. Modifications

The present work uses a current meter with a fast response
time, enabling us to directly measure the H™ current at each
phase in the chopping pattern, which is on the millisecond
scale, and monitor it throughout each data run. Thus we are
able to measure the anion current when the laser is on, /3",
over the course of a data run. This is used for /- in Eq. (4).
‘We were also able to monitor the anion current with the laser
off, Iﬁff, and determine the attenuation factor

Al
f=1- W, (5)
H-

which is needed to extract the background-corrected S [6].
This situation is to be contrasted with our previous results
[3,6], where, due to equipment limitations, the H™ current was
averaged over the H™ chopping cycle and the resulting (]Iflkl‘]p)
was recorded using a slow current meter. As a result, for that
work f was not measured during data collection but under
simulated data collection conditions, and an average value
was used. Additionally, this factor was used to extract Ij" and
I8 from (I5'°P).

For the present work we are also using a new calibrated
neutral detector in combination with a fast current amplifier to
record the H particle current at each phase in the chopping
pattern and to monitor it throughout each data run. This
modification is described in [6]. Thus, during a data run, we are
now able to directly measure Iy, which is needed in Eq. (4). In
our previous work, the H particle current was also monitored
with a fast current amplifier; however, the neutral detector was
not designed for absolute measurements. So to analyze those
results, using the new detector we measured the H particle
current due to photodetachment (PD), IFP, to determine the
neutral-to-anion (nta) ratio

IfP
f nta = @ (6)
under simulated data collection conditions. This factor, com-
bined with the extracted I3 discussed above, was then used
in [6] to determine Iy for Eq. (4).

We have also installed a BPM immediately before the
neutral detector, at a distance of 2055 mm from the first BPM
in the interaction region. Turning off the voltage of the LCD
allows the H™ beam to pass through the hole in the outer
plate of the LCD. We used this additional BPM to measure the
position of both the H and H™ beams and verified the alignment
of the beams over a much longer lever arm than was previously
possible using only the two BPMs in the interaction region.
We find that the full angle between the beam axes measured
here is in good agreement with that reported in [6].

C. Pressure corrections

Any Hp" formed in the gas cell can be destroyed by
subsequent collisions with He in either the gas cell or the
analyzer region. The resulting products are not transmitted by
the electrostatic deflectors into the CEM, thereby reducing the
apparent signal and rate coefficient. This small systematic shift
in our data was overlooked in our previous work [3,6]. Here
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we quantified this minor correction for both our previous and
present results.

We measured the Ho ™ attenuation using an approach similar
to the one we used to determine the He gas cell column density
in Refs. [3,6]. Reconfiguring the ion source to produce H, * and
the apparatus to transmit H,* beams, we used the electrostatic
quadrupole after the interaction region to direct the beam into
a Faraday cup, where we measured the unattenuated Ho™
current Iy ;. We then guided the beam through the gas cell and
measured the transmitted current, Iﬁf , on the outer plate of the
UCD. With no He in the gas cell, the UCD reading was over
95% of that in the Faraday cup. The measured attenuated data
were corrected for this slight difference in the unattenuated
current readings.

The H,™ attenuation as a function of gas density is given
by

IH2+

70— exp(—0dNge), (7
Hyt

where oy is the total H,™ destruction cross section and Ny is

the helium column density. Following the methodology of [6],

the column density can be expressed as

Moo= [+ [ mars [
quad gas cell analyzer
®)

Here nye(l) is the helium density, and d! is the infinitesimal
path length. Using the same model as [6], we take the pressure
to be constant in each of these regions and reexpress Eq. (8) as

Nye = mily + naly + n3ls. )]

The He density in the quadrupole is n;, and the path length
[} =5.0£ 1.0 cm. In the gas cell the He density is n,, and
the path length /; = 78.7 & 1.0 cm. The He density in the
analyzer region is n3, and the path length /3 = 35.4 & 1.0 cm
is the distance that the ions travel before striking the UCD.
All uncertainties here and throughout the paper are given at
an estimated lo statistical confidence level. The respective
densities were calculated from the measured pressures using
the ideal gas law at the laboratory temperature, which was
stabilized at 293 K for both the work of [3,6] and our new
results here. The ratio of the measured pressures in each section
were pi/p, =0.137+0.019 and p3/p, = 0.105 £+ 0.034.
The uncertainties in these ratios are due to the manufacturer-
quoted accuracies of the pressure gauges (10% for p; and p,
and 30% for p3).

Attenuation data were collected for pressures up to ~4.5 x
10~* Torr and are shown in Fig. 1. From a fit to these data
we extracted a cross section of (2.75 & 0.29) x 107'° ¢cm? at
an energy of 10 keV amu~!. This estimated uncertainty is
due to the error in the attenuated and unattenuated current
readings (3% each) and the uncertainty in the He column
density (10%). The error in this latter quantity was estimated
by adding the uncertainties from each segment n;/; of the total
column density. The errors in the path lengths and gas densities
(i.e., pressures) have been given above.

Collisional destruction of H,™ has also been studied by
Suzuki et al. [12], who reported cross sections of various

outgoing channels for ion energies from 2 to 8 keV amu~!.
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FIG. 1. Attenuation of the H,* ion beam as a function of helium
gas cell pressure. The circles represent the statistically weighted mean
from three sets of measurements. The error bars are smaller than the
plotted circles. The line shows the best exponential fit.

We have derived a total destruction cross section by summing
the relevant channels in [12]. Those results, shown in Fig. 2,
indicate that the cross section is essentially constant between
2 and 8 keV amu~—'. Our result at 10 keV amu~"', also shown
in Fig. 2, is in good agreement with this trend.

To determine the expected signal attenuation factor and
correct for the H," signal loss we use our measured Hy ™ de-
struction cross section combined with Eq. (7). The appropriate
He column density is given by

Nl/-le = %l’lzlz + n3l;, (10)

where the factor of 1/2 takes into account that on average
the Hy™ ions will be formed in the center of the gas cell and
I5 =579+ 1.0 cm is the distance from the end of the gas
cell to the CEM mouth. Using these values, we calculate from
Eq. (7) that the signal attenuation with 2 x 10~* Torr He in
the gas cell is 0.92 £ 0.01. The signal must be divided by
this factor to correct for the attenuation. This corresponds to
an (8.6 &= 1.2)% upward shift in the data. The uncertainty in
this correction is estimated by propagating through Eq. (7) the
quadrature sum of the uncertainties from both Ny, in Eq. (10)
and o,.

AI(vL 2)
w
——
—
—0—
—0—
—o—
L

[*)
s

Cross section (10

0 2 4 6 8 10 12
Collision energy (keV amu’l)

FIG. 2. Experimental cross sections for total H,™ destruction vs

ion beam energy for H,™ + He. The open squares are the results

of [12], while the circle represents our measurement. The error bars
for each data set give the total 1o experimental uncertainty.
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TABLE I. Summary of systematic uncertainties at an estimated
lo confidence level. Uncertainties are treated as random sign errors
and added in quadrature.

Source Error (%)
Background subtraction 5
Anion current 3
Neutral current 10
Beam overlap 3
Total relative errors from above 12
Stripping cross section 16
Effects of unknown rovibrational population 10
Analyzer transmittance 1

Grid transmittance 1
CEM detection efficiency 2
Overlap length 1
Helium gas cell column density 7
H,* Attenuation 1

Total systematic uncertainty 24

III. UNCERTAINTIES

The various systematic uncertainties for the measurement
are given in Table I. Values are listed at an estimated lo
statistical confidence level. We have grouped them into two
sets. The errors listed in the top third of Table I add in
quadrature to £12% for each data point. This represents the
relative uncertainty between our old and new data sets and also
at different energies within each set. Adding this in quadrature
with the remaining uncertainties in the bottom two-thirds of
Table I yields the total systematic error of +24%. A detailed
discussion is given in [3,6] for the various uncertainties not
already discussed here.

IV. THEORY

A. Earlier calculations

In our previous work, the AD cross section was calculated
using nonlocal resonance theory and considering only the
coupling of the H+ H™ and H, 4+ ¢~ channels through the
lowest metastable H, ™ state of 223’ symmetry (see [3,8] for
details). This state is one of two connected to the H+ H™
asymptote (not counting the spin degeneracy). Potential energy
curves for both states are shown in Fig. 3. The second state
of 22; symmetry is repulsive and is usually neglected in the
calculations. The validity of this approximation is supported
by the very good agreement between our experimental results
[3,6] and our nonlocal calculations [3,8] below 1 eV, even after
the ~9% pressure correction of the H,™* signal described in
Sec. I C, which was not accounted for in [3,6].

B. New calculations

We have extended our experimental results to ~5 eV,
entering a regime where AD via the 2X} state becomes
possible. Figure 3 shows that for sufficiently large energies
the colliding H 4+ H™ can penetrate into the autodetachment
region along the repulsive 22;’ state. This region is defined as
the range of internuclear separations R where an electron can
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FIG. 3. H,™ and H, potential curves vs internuclear distance in
units of the Bohr radius (. The H, ™ attractive ZZ:r electronic state
is given by the dashed curve [13], and the repulsive >} electronic
state is given by the dotted curve constructed using the data of [14,15]
below ~4ay and those of [16] above ~5ay. The separated atoms limit
(SAL) for these two potential energy curves is H=('S) + H(®S). The
solid curve shows the H, ‘Z‘g* electronic state from [17] with a SAL
of H(S) + H(®S). The energy difference between the two limits is
determined by the H electron affinity energy Ega = 0.76 eV [18].

escape the anionic system, i.e., the potential energy curves of
the H, ™ system are above those for neutral Hy. This occurs for
the 22} stateat R < 5ag, where aj is the Bohr radius. Particles
collidiBg along this state can penetrate into the autodetachment
region for energies 20.75 eV motivating calculations for AD
via this state.

Due to the different symmetry of the molecular orbitals,
the 2=} and 22; contributions to the AD cross section can
be calculated separately. Thus we need only carry out new
calculations for the 2%} state. A brief description of our
approach is presented below, using atomic units. A more
detailed discussion will be given in a future presentation.

Nonlocal resonance theory is explained in detail by [19].
The main idea is as follows. The electronic state ¢4, describing
the colliding partners in the H 4+ H™ channel, is diabatically
prolonged to small R. It is also assumed to be coupled to the
H, + e~ electronic continuum states ¢ through the matrix
element

Var(R) = (pa| HelPr)

where H, is the electronic Hamiltonian. The nonlocal res-
onance model is parametrized by three functions: Vy(R),
Va(R), and Vi (R). The potential energy curves for the neutral
molecule Vy(R) and for the anion V;(R) are functions only of
R. The coupling element V4 (R), however, depends on both R
and the momentum of the detached electron k.

Once Vy(R), V4(R), and V4 (R) are known, the electronic
dynamics of the system is fully parametrized, and the nuclear
dynamics can be treated as a motion in the nonlocal energy-
dependent effective potential:

Va(R) + / Vae[E — 36> — T — Vo(R) + is]’lvjkk dk d.

Ty is the kinetic energy operator for the nuclei, d<2
is the differential solid angle for the outgoing electron, and
¢ is the usual positive infinitesimal of scattering theory. We
solve the nuclear dynamics and calculate the cross sections
using the method of [8].
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In order to include ¢, for the 23+ state, we have to
fix the parameters of the nonlocal resonance model for this
state. The proper procedure for calculating these parameters
involves extracting the discrete state ¢, from the continuum ¢y,
employing the projection-operator technique. This procedure
was followed in [20] for the ZZI state, and we used it as an
input for our calculation [8]. But it is also possible to fix the
model parameters by fitting the fixed-nuclei scattering data.
We follow this latter procedure here.

To fix the coupling amplitude, we assume the separable
form Vy(R) = g(R) f(k), where the k dependence is deter-
mined by the Wigner threshold law [21] with an exponential
cutoff:

f(k) ~ k2[+lef¢xkz’ (1 1)

where « is the cutoff parameter. The angular momentum !/
value in Eq. (11) is given by the lowest electron partial wave
allowed by symmetry (discussed below). The R dependence
is determined from the calculated local decay widths I'(R)
of [14]. The potential energy curve for the anion V;(R) is
constructed from [14,15] and extended to larger R using the
data of [16]. The data for the potential near the crossing of
the neutral and anion potential energy curves are missing.
Nevertheless, the analytic behavior near the crossing has been
discussed in detail by [19]. With this knowledge, the potential
energy curve can be interpolated through the crossing as
has been done before for hydrogen halides [22]. The actual
shape of the V,;(R) and Vy(R) crossing is modified by the
interaction of the electron scattering continuum with the
threshold behavior given by Eq. (11). Vj is from [17].

The decay of the odd-symmetry anion > state to the
even neutral '2; state is possible only through release of an
electron with odd angular momentum. In [3,8] we considered
only / = 1 (p-wave scattering) since the calculations of [23]
show that the next allowed / = 3 contribution is suppressed
by almost two orders of magnitude for the energy range of
interest. For the anion 2% f state decaying to the neutral ' =}
state, the symmetry remains unchanged, requiring release of
an electron with even angular momentum. Here we considered
only / = 0 (s-wave scattering). In each case, as Eq. (11) shows,
Vax is strongly suppressed for higher angular momenta at the
k < 1 values in our experimental results.

The anion 22; state can also decay to the first excited

3%} state of Hy. These states are both repulsive and lie very
close together. This decay, however, requires an odd value
forl. With/ =1 and k < 1, f(k), and hence Vg, is strongly
suppressed compared to the 22; to 12; decay channel with
[ = 0. The effect from the transition between repulsive states is
thus expected to be small at low energies and was not included
here.

Once the model parameters are fixed, oap can be calculated
using the methods described in [8]. Figure 4 shows our
results. As expected from the previous good agreement of
our experimental and theoretical results, the new contribution
is small and notable only for E, 2 0.75 eV. This is the
threshold where the colliding particles overcome the barrier
in the repulsive interaction potential and penetrate into the
autodetachment region.
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FIG. 4. Theoretical cross section for H- + H — H, + ¢~ as a
function of the relative collision energy E,. The dashed curve shows
the results via the attractive Hy > state, the dotted curve shows
the repulsive Hy 22; state, and the solid curve shows the sum of the
two.

Both the 2Z} and 2% contributions decay rapidly to zero
for energies above ~1 eV. This is due to the competing process
of collisional detachment,

H +H—->H+H+e, (12)

which opens up for E; = 0.76 eV and wins at higher energies.
This is discussed in Sec. VI from the point of view of general
energy-conservation arguments.

C. Contributions from quasibound H, states

At high angular momentum (J > 10), the colliding H™
and H systems can autodetach into quasibound H,. These
states, sometimes referred to as orbiting or shape resonances,
lie above the separated-atoms limit for H 4 H. Such high
J levels, temporarily stabilized by the centrifugal barrier,
will eventually dissociate spontaneously and are therefore
generally not considered in AD cross-section calculations.
However, the lifetime for all but a few of these resonances
well exceeds the flight time from the interaction region to
the gas cell, and so most are expected to contribute to the
experimental signal.

The H, flight time from the interaction region to the gas cell
is (737 &+ 640) ns. The mean is the center-to-center distance,
the upper limit is from the start of the interaction region to the
end of the gas cell, and the lower limit is from the end of the
interaction region to the start of the gas cell. Quasibound H,
(i.e., in high J levels) can strip in the He gas cell and will form
H, " in similarly high J levels. As the Hy " potential supports
stable rovibrational levels up to J = 35, we assume that any
such H,* formed will be stable and will reach the detector.

In order to compare to our measured results, we have
added the contribution of these quasibound Hj states to our
calculations for AD via the 2Xf state. So as to mimic the range
of experimental lifetimes, we have investigated the effect of
cutting out states with lifetimes less than 100, 700, and 1400 ns
and found no significant differences. In the end we included
contributions from all resonances with lifetimes longer than
700 ns. The contribution of these states is of comparable size
to the 22;’ state contribution. The effect of these resonances

for AD via the 2 E; state has not been considered as that would
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FIG. 5. (Color) Experimental rate coefficient (oapv;) as a func-
tion of the collision energy (E,). The black circles show our new
results, and the red triangles show our previous results from [3,6]
corrected for the H,™ attenuation. Although our new results extend up
to (E;) < 4.83 eV, here we show only up to the maximum (E,) of our
previous results for comparison. The error bars show the 1o statistical
uncertainties. There is an additional £12% relative systematic error
on each data point that is not shown.

be a small correction to an already small contribution. Last,
we note that the significance of these resonances for molecular
hydrogen formation in plasma environments will depend on
whether the states can relax to stable states of H, before they
dissociate by tunneling.

V. RESULTS

Relative energies E; are controlled by varying the potential
of the floating cell U;. In [3,6] data were collected for
E, < 1eV (|Us| < 281 V). Here we have extended the energy
range to E, < 4.83 eV (|Us] < 621 V). Data are collected by
stepping Uy in voltage. The present work uses voltage ranges
smaller than our earlier measurements. For |Us| < 441 V, Uy
was scanned across 60 V ranges in 10 V steps, and for |Ug| >
441 V the scanning was across 120 V ranges in 20 V steps.

Our measured rate coefficients for reaction (1) are plotted
in Fig. 5 as a function of average collision energy (E;) <
1.0 eV. The black circles represent our new results, and the
red triangles represent our previous work. Both have been
corrected for the attenuation of the H,™ ions. The error bars
on each data point display the 1o statistical uncertainty. There
is an additional +12% relative systematic error on each data
point that is not shown. The good agreement between our
new and previous results indicates that there were no hidden
systematic errors due to our previous inability to measure and
monitor f and fy, during data acquisition.
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A final potential source of systematic error that we inves-
tigated was to verify the linearity of the gas-stripping method
used to convert the product H, molecules into the measured
H, " signal. Here we measured the AD rate coefficient as a
function of helium gas cell pressure for (1—3) x 10~* Torr.
Table II the results of these AD measurements at (E.) =
16 meV versus pressure. Taking into account the attenuation of
the H,™ signal ions, to within the uncertainties the data show
no dependence on gas cell pressure.

Given the good agreement between our results in [3,6]
and our new data, we have merged them together using a
statistically weighted averaging method. We also included our
pressure-test results in this average. The 1o counting statistics
of each data point were used for the weighting. All data
sets were also measured on the same relative energy grid.
Figures 6 and 7 present the averaged data for (E;) < 1 eV
plus the new data we have collected for 1.0 eV < (E;) <
4.83 eV. Also shown are the cross-section calculations of 3,8],
supplemented by our new theoretical work here, multiplied
by v;, and convolved with the experimental energy spread.
Figure 7 shows the theoretical results with and without the
effects of the H, orbiting resonances included. As is clear from
Figs. 6 and 7, we find good agreement with theory throughout
the measured energy range. The contribution due to orbiting
resonances of Hy can also be seen in Fig. 7, as the experimental
data are shifted to slightly higher energy compared to the
calculations which do not include these resonances.

VI. DISCUSSION

The good agreement that we find here both with our
previous results and with our updated theory strengthens our
confidence that theory and experiment have finally converged
for reaction (1). Including AD via the repulsive 2X; state
increases the cross section by an amount smaller than we
are currently able to measure experimentally. The resulting
theoretical thermal rate coefficient is only 1.3% larger than
that for only the attractive state at temperatures of 4000 K,
3.5% at 8000 K, and 4.4% larger at 10 000 K. These are
significantly smaller than the ~25% experimental accuracy
with which we have been able to benchmark theory. Hence,
we continue to recommend the thermal rate coefficient of [3]
for modeling plasma temperatures below 10* K.

Additionally, our results continue to imply that the reason
for the discrepancy seen with the results of [4] lies in the
data of [7] used for normalization. This is further supported
by the theoretical AD work on hydrogen halides of [24].
They used the same theoretical approach as we do here and
found systematically higher AD rate coefficients than the

TABLE II. Rate coefficient results at (E;) = 16 meV versus helium gas cell pressure. Our theoretical results are also shown for comparison.

Pressure (10~* Torr)

Rate Coefficient (10~° cm® s~!)

Value Statistical uncertainty Relative uncertainty
1.0 5.6 +0.5 +0.7
2.0 52 +0.4 +0.6
3.0 5.2 +0.4 +0.6
Theory 5.0
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FIG. 6. The circles show the statistically weighted mean of the
experimental rate coefficients (oapv,) from our previous [3,6] and
current work as a function of the collision energy (E,) (see text).
For (E;) > 1.0 eV the data are solely from the current measurement.
The error bars represent the 1o statistical uncertainties. The solid line
is from the cross-section calculations of [3,8], supplemented by our
new theoretical work here, multiplied by v;, and convolved with our
experimental energy spread. The effects of the H, orbiting resonances
have been included in the calculations shown here.

experimental work of [7]. It appears to us that a remeasurement
of reaction (2) using a technique different from that of [7] is
clearly called for to resolve this dilemma.

Our results also verify the predictions of [8] and our new
theoretical work here that the AD cross section for reaction (1)
should decrease to essentially insignificant values for E, 2 2
eV, as shown in Fig. 6. A simplified adiabatic description of the
AD reaction can provide good insight into the physics behind
this prediction. We consider here only the 2X} symmetry.
Similar arguments can also be given for the 22; state.

Initially, the H™ and H approach one another along the
attractive 2% electronic state. This state crosses into the
autodetachment region at R ~ 3ay. Adiabatic theory dictates
that the system remains electronically in the ground state.
Inside the autodetachment region the ground state is the ' © g'
state of neutral H; plus a free electron with zero kinetic energy.
Conservation of energy requires that the final state energy
equals that initially available

E, = E. + Dy — Ega. (13)

(ouVe) (10° em’s™)

3
(E) (eV)

FIG. 7. Same as Fig. 6, but on a linear scale. The dotted
curve shows the calculations without the effects of the H, orbiting
resonances included.
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Here E, is the excitation energy of the vibrational level v
formed in the process, Dy is the 4.48-eV dissociation energy
gained by formation of Hj in the v = 0 vibrational and J =
0 rotational level [25], and Egs = 0.76 €V is the electron
affinity required to neutralize the H™ and form H[18]. For E; >
Ega, the system lies in the dissociation continuum (E, > D),
resulting in the formation of H+ H + ¢~ and not Hy 4+ e~

In reality the AD process is not exactly adiabatic. This is
manifested by the release of an electron with a nonzero kinetic
energy E., and we can rewrite (13) as

E, + E. = E;: + Dy — Ega. (14)

The nonadiabatic exchange of energy between the electron
and protons is weak though; detached electrons do not have
a large kinetic energy. Our full calculations for the 2%
state [8] show that only a negligible amount of electrons
can have energy above ~1.5 eV. Taking into account that
the largest possible value of E; will occur for E, = Dy,
this leads to the prediction that the AD process will cease
for E; 2 Ega + 1.5 eV. For reaction (1), this corresponds to
E. 2 2.26 eV. A similar argument has been suggested for
the decrease in the cross section for protonium formation
in collisions of antiprotons with hydrogen atoms (see [26]
for a review). Note that we have ignored the insignificant
kinetic energy of the final H, molecule Ey,, as conservation
of momentum gives Ey, = (me/mu,)E. K E..

Continuing the protonium analogy, one would expect
a sharp decrease in oap immediately after the collisional
detachment threshold at £, = 0.76¢eV. Inthe H™ 4+ H collision,
the drop in the cross section occurs at higher energies. This
is related to the threshold law given by Eq. (11) with [ =1
for the dominant ungerade channel. As a result, the coupling
Var vanishes for zero detached electron energy and rises
smoothly as the energy increases. The electron energy in
Eq. (14) thus cannot be exactly zero, but remains relatively
small. The smooth decrease in opp above 1 eV, confirmed
by the present experiment, thus provides a good test of the
theoretical description of the electron release amplitude.

Last, the decrease of the AD cross section is indeed slightly
weakened by positive contributions of the 2 Z; state, as shown
in Fig. 4, and orbiting resonances, as seen in Fig. 7. However,
the decreasing trend above 1 eV, controlled by Vy, is still
dominant (e.g., Fig. 6).

VII. SUMMARY

‘We have modified the experimental methods used in [3,5,6]
to measure reaction (1) up to E; < 4.83 eV. Additionally,
we have performed several modifications to better control
potential systematic errors. We find good agreement between
our previous and new data sets. To within the experimental
uncertainties, we also continue to find good agreement with
the calculations of [3,8], which have been extended here to
include contributions from the repulsive 2X} H,~ state and
for the effects on the experimental results due to orbiting
resonances of H for E; > 0.76 eV. In particular, we confirm
the predictions of [8] that this reaction turns off for E, >
2 eV. Similar behavior has been predicted for the formation
of protonium from collisions of antiprotons and hydrogen
atoms [26].
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We report experimental and theoretical results for associative detachment (AD) of D™ +D — D, +e™.
‘We compare these data to our previously published results for H- + H — H, + ¢~. The measurements show no
significant isotope effect in the total cross section. This is to be contrasted with previously published experimental
and theoretical work which has found a significant isotope effect in diatomic systems for partial AD cross sections,
i.e., as a function of the rotational and vibrational levels of the final molecule formed. Our work implies that
though the rovibrational distribution of flux is different for AD of H~ + Hand D~ + D, the total flux for these
two systems is essentially the same when summed over all possible final channels.

DOI: 10.1103/PhysRevA.86.032714

L. INTRODUCTION

One of the most fundamental systems for atomic collision
studies is the associative detachment (AD) reaction

H +H—> Hy+e” (1)
and its isotopic counterpart
D" +D—>Dy+e . (2)

Only recently, after more than 40 years of effort, have
experiment and theory finally converged for reaction (1) [1-3].
However, we know of no published experimental data for
reaction (2) and of theory only the results for the 14—17 meV
center-of-mass energy range, displaying a small resonance
behavior [4].

There are good reasons to suspect an isotope effect in the
partial AD cross sections for reactions (1) and (2). For the
same collision energy, D moves more slowly than H and
penetrates less deeply into the electron cloud of the anion
before detachment occurs. The resulting deuterated molecule
forms at higher internuclear distances and higher vibrational
levels than for the undeuterated molecule [5]. This was seen
by the only experimental AD studies we know of which
investigate the isotope effect for two-atom collision systems
[5,6]. In Ref. [5] experimental and theoretical work was carried
out for AD of H and D with CI~ and Br~ by measuring the
relative cross section as a function of the detached electron
energy. For AD of H+F~ and D+ F~ [6] the relative
vibrational level v populations of the resulting HF and DF were
determined by measuring the infrared spectra from the excited
rovibrational states. These results were supported by later
theoretical work [7]. All of these works found a pronounced
isotope effect in the partial AD cross section: higher v levels
are populated in the deuterated reactions.

“Present address: Inficon GmbH, D-50968 Cologne, Germany.
fPresent address: Max-Planck-Institut for Kernphysik, Saupfer-
checkweg 1, 69117 Heidelberg, Germany.
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Knowledge of reactions (1) and (2) comes also from
studies of the time reversed processes of dissociative electron
attachment (DEA), namely

e +H,—>H +H 3)
and
e +D, > D +D. 4

Such results can shed light on the AD process by using detailed
balance to map the initial molecular rovibrational state in DEA
onto the corresponding final state in AD.

Only a few experimental studies exist for reactions (3) and
(4). DEA measurements of D, found that the cross section at
room temperature is at least a couple orders of magnitude
smaller than that for H, [8-10]. The molecules in these
studies were essentially in their ground rovibrational level,
suggesting a strong isotope effect for AD into that level.
However, AD proceeds primarily through high rovibrational
levels [4]. The v dependence of the DEA cross section was
studied experimentally by Ref. [11] who found that DEA
for D, grew more rapidly with v than that for H,. Various
theoretical studies support this trend (reviewed by Ref. [12]),
though [13] found that the isotope effect disappears for v 2> 9.

Based on these DEA results, we would therefore expect a
strong isotope effect in the partial AD cross sections leading
to low-lying vibrational states and a weak effect for higher
vibrational states. However, it is not clear a priori which trend
wins out in the total AD cross section. For example, our AD
calculations for a series of hydrogen halides show that the
isotope effect becomes more important for heavier halogen
anions [14].

The total AD cross section can be analyzed theoretically
using classical trajectory theories as well as both a classical
and quantum opacity function for a given trajectory or partial
wave. These approaches all indicate that the total AD cross
sections for reactions (1) and (2) are insensitive to the detailed
quantum dynamics in the autodetachment region, which occurs
for internuclear distances R < 3ay, and that no isotope effect
is expected. Systems entering this region rapidly undergo

©2012 American Physical Society
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autodetachment resulting in AD. As a consequence, the total
AD cross section can be predicted by just calculating which
classical trajectories end up in the autodetachment region.
The radial motion of each trajectory with an impact
parameter b and relative collision energy E; is governed by
the effective potential
b’E,
R2’
where Vi(R) is the interaction potential for H™ +H in the
absence of any angular momentum and b?E,/R? is the cen-
trifugal barrier term. Taking b.(E;) as the critical value of the
impact parameter at which the centrifugal term just prevents
the particles from reaching the autodetachment region, then the
total AD cross section can be simply given by the geometric
cross section

V(b,R) = Vi(R) + 5

O'AD:Tt’bCZ‘ (6>

This model only depends on the particle trajectories. Since
these trajectories are a function of energy and not velocity, the
resulting cross section is independent of mass. We also note
that for some potentials it is easy to derive an analytical expres-
sion for b.(E;). For example, using the polarization potential
Vi(R) = —a/R*in Eq. (6), where « is the polarizability, yields
the Langevin cross section oy, = w+/4a/E; [15].

The above classical trajectory analysis assumes that every
collision crossing into the autodetachment region contributes
to AD. For a slightly more involved treatment we can introduce
the opacity function O(b,E;), which gives the probability
of the autodetachment for a collision along a trajectory
characterized by a given collision energy E; and impact
parameter b. The AD cross section then reads

oap(E;) = /an O(b,E;)db. (7)

This reduces to Eq. (6) if we assume that O =1 for b < b,
and O = 0 otherwise. This is a reasonable assumption for a
process characterized by a fast autodetachment rate, but in
general the opacity function depends on the particle velocity
along the trajectory and may thus exhibit an isotope effect.

The explanation of the near disappearance of the isotopic
effect can also be derived from a partial wave expansion in the
full quantum mechanical treatment. The formula for the cross
section can then be written as

g
SuE. ZLj wiL + DOL(EY), (8)

OAD =

where L is the angular momentum, wy, is a statistical weight
factor taking into account both nuclear spin and electronic
symmetry, and Op(E;) <1 is the opacity for the given
partial wave. The opacity function is equal to the detachment
probability for each partial wave and can be calculated from
the partial S-matrix for AD [7,15].

Although Eq. (8) is the exact formula, it gives very similar
results for the total AD cross section as does the classical
approach. To see this, again we assume that the opacity is
approximately equal to one when the incident partial wave L
can overcome the centrifugal barrier

LIL+1)  VE
2uR? R’

©)
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and enter into the autodetachment region. The opacity is also
assumed to be zero when the incident partial waves are shielded
from this region. Ignoring the L dependence of the factor wy,
the sum over L produces the factor Lf, where L. is the critical
value of L for which O/, vanishes. Using the classical relation
between the angular momentum and the impact parameter

L = bey/2uEy, (10

one can readily transform Eq. (8) to Eq. (6). The inclusion of
the L dependence of wy, the discrete nature of L., and the
exact form of Oy, all produce a small isotope effect as we will
discuss in detail in a subsequent paper focusing on the theory
of the reaction.

‘We conclude that when the opacity function is one for small
L and switches rapidly to zero at a certain critical value of L,
then both classical and quantum reasoning predicts there will
be no isotope effect in the total AD cross section. Such behavior
of the opacity function is not automatic as can be demonstrated
for the case of hydrogen halides [7]. The opacity function
can be expected to switch rapidly from one to zero only if
the region of internuclear distances where autodetachment
is fast is followed almost immediately by a region where
autodetachment is forbidden. Regions of internuclear distances
with weak autodetachment would lead to mass dependence in
the opacity function and thus to an isotope effect in the total
AD cross section.

In an attempt to test these simple theoretical predictions
for the isotope effect in the total AD cross section, we have
performed both laboratory measurements and fully quantum
mechanical theoretical calculations of the total cross section
for reaction (2) versus relative collision energy E.. Our
experimental and theoretical approaches have been previously
described in detail in Refs. [1-4,16]. Here we give only brief
overviews of each.

The rest of this paper is organized as follows. In Sec. II
we describe the experimental method. Section III presents our
theoretical calculations. We present and discuss our results in
Sec. IV. A summary is given in Sec. V.

II. EXPERIMENTAL METHOD

The experiment begins by creating a D, plasma in a
duoplasmatron ion source. A beam of negative particles is
extracted from the source by floating the duoplasmatron to
a potential of Us &~ —10 kV. Using charge-to-mass analysis,
we form a D™ beam which we further shape and direct into a
floating cell at a negative potential Uy. Upon entering the cell,
the anions slow down. They are then crossed with a 975-nm
laser beam which photodetaches ~10% of the D~ This creates
a beam of ground state, neutral atomic D with a kinetic
energy of ~ —e(Us — Uy), where e is the unit charge. The
resulting self-merged, anion-neutral beams exit the floating
cell, whereupon the anions return to their initial kinetic energy
of &~ —eUs, while that of the neutral atoms remains fixed at
~ —e(Us — Uy). The exact details are given in Ref. [2]. We
varied Us to set the relative energy E..

The merged beams continue into the interaction region
where D, is formed with a kinetic energy of ~20 keV. The
beginning of this region is defined by a chopping electrode
which can be used to deflect the anions and prevent them from
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entering the interaction region. We chop the neutrals on and
off by switching the laser on and off. By chopping both beams
out of phase, we are able to extract any signal D, generated in
the interaction region from background generated anywhere in
the apparatus. Beam profile monitors near the beginning and
end of the interaction region allow us to measure the profile
of each beam and determine the average overlap form factor
of the two beams (€2(z)) along the z axis set by the trajectory
of the overlapping beams. The end of the interaction region is
defined by quadrupole electrodes which deflect the anions into
a Faraday cup where the current /- is measured. The neutral
D and daughter D, continue into a helium gas cell where
a fraction of each are ionized by electron stripping forming
~10 keV D' and ~20 keV D2+ . The remaining neutrals and
resulting cations pass into an electrostatic analyzer which
consists of a series of cylindrical deflectors. A hole in the
outer plate of the lower cylindrical deflector allows the neutral
D (and the ~10~° smaller amount of D,) to pass through and
continue into a neutral particle detector where we measure the
D particle current Ip, expressed in amperes. The voltages on
the lower and upper cylindrical deflectors are set to direct the
~20 keV D;' ions onto a channel electron multiplier (CEM)
where their rate is measured and recorded as a function of the
chopping pattern.

The experiment measures the AD cross section oap times
the relative velocity between the two beams v, convolved with
the energy spread of the experiment. The energy spread is
described in detail in Ref. [2]. The resulting rate coefficient is
given by

1 S e vp-up

. (11)
05 Nue TaTgn Ip-Ip L{S2(2))

(oaDV;) =

Here oy is the stripping cross section for D, on He; Ny, is the
helium column density in the gas cell; S is the background-
subtracted D5 signal corrected for collisionally induced signal
loss in the gas cell and energy analyzer; 7, is the transmittance
of the energy analyzer; Ty is the transmittance of the grid
in front of the CEM; vp- and vp are the velocities of the
D™ and D beams, respectively; and L is the length of the
interaction region. Using our experimental energy spread and
the theoretical results described below, we find that the cross
section can be accurately extracted from the measured rate
coefficient as

12)

with (v;) averaged over the experimental velocity distribution
in the center of mass frame.

Table I lists the experimental nonstatistical uncertainties.
Throughout this paper, all uncertainties are given at an
estimated 1o statistical confidence level. We give the errors
for our present D results as well as our previous H results for
comparison. All uncertainties are treated as uncorrelated and
added in quadrature.

When comparing results within a given isotope, the relative
error is given by the uncertainties in the background subtrac-
tion, beam current measurements, and overlap of the beams.
This sum is 12% for each isotope and is dominated by the
neutral detector calibration which uses the method outlined
in Ref. [3] for H. The detector efficiency for D was calibrated
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TABLE I. Summary of nonstatistical experimental uncertainties
at an estimated 1o confidence level. Uncertainties are treated as
uncorrelated and added in quadrature. The errors for reaction (1)
and (2) are listed separately.

Source H(%) D(%)
Background subtraction 5 5
Anion current 3 3
Neutral current 10 10
Overlap of beams 3 3
Relative error within an isotope 12 12
Stripping cross section 16 17
Effects of unknown rovibrational population 10 10
Signal attenuation 1 2
Relative error between isotopes 22 22
Analyzer transmittance 1 1
Grid transmittance 1 1
CEM detection efficiency 2 2
Overlap length 1 1
Helium gas cell column density 7 7
Total nonstatistical uncertainty 24 24

by passing a D™ beam through the helium gas cell as a function
of helium pressure and recording both the transmitted D~ and
the neutral detector signal. A small correction needs to be made
for the unmeasured D" generated in the gas cell. For this we
used the velocity matched H™ cross sections from Refs. [17,18]
for the required D~ single and double electron detachment
cross sections. The uncertainties in the detachment cross sec-
tions have an insignificant effect on the measured calibration.
The dominant uncertainty in the neutral detector calibration is
due to the reproducibility of the measured efficiencies.

In order to make comparisons between isotopes, one
needs to take into account uncertainties that vary between
the data sets. These include oy, the effects of the unknown
rovibrational population of the molecules formed, and the
collisional destruction of the signal cations before detection.
For o of D, we used the velocity matched results of Ref. [19]
for H, yielding (7.7 & 1.3) x 10717 cm?. We corrected for the
collisional destruction of the signal Dj using the approach
described in Ref. [3]. For the necessary destruction cross
section we used the velocity matched results for H;r on He from
Ref. [20]. The quadrature sum for the relative error is 22%.

The total nonstatistical error of our measurements for both
isotopes is 24% at an estimated 1o statistical level. This reflects
the quadrature sum of all uncertainties listed in Table 1. The
measurement uncertainties are reviewed in further detail in
Refs. [1-3].

III. THEORETICAL METHOD
A. Cross section calculations

The AD cross section calculations for reaction (2) are
essentially the same as our previous work for reaction (1)
[3]. The basic framework is the nonlocal resonance model
described in Ref. [4]. The incoming H™ + H particles move
in the attractive potential of the H; 2. state, until they
penetrate into the H, + e~ electronic continuum by crossing
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TABLE II. AD cross sections oap as a function of relative collision energy (E,). The quoted error represents the 1o statistical uncertainty.

oap (1071% cm?)

H D
(E;) (eV) Experiment Error Theory Experiment Error Theory
0.00374 456 25.4 340 494 39.5 340
0.00418 476 36.1 331 421 60.2 330
0.00524 370 22.1 313 451 33.6 311
0.00665 348 27.3 294 371 48.2 293
0.00898 303 17.0 270 365 26.3 270
0.0119 251 19.9 240 321 38.3 244
0.0155 222 12.3 203 285 19.3 212
0.0197 212 15.9 171 250 29.1 170
0.0245 177 9.64 140 218 15.2 138
0.0300 142 11.8 116 162 19.8 115
0.0361 129 6.52 97.6 147 11.0 96.2
0.0428 96.9 8.96 833 111 16.7 81.9
0.0501 84.3 6.13 71.9 105 7.65 70.5
0.0580 68.2 6.81 62.7 83.1 13.0 61.3
0.0666 59.6 5.24 55.1 65.4 7.36 53.8
0.0758 57.7 6.14 48.9 74.0 11.2 47.6
0.0856 47.7 2.92 43.6 65.5 5.27 424
0.0961 49.5 5.63 39.2 - - -
0.107 42.3 3.59 354 47.1 7.08 35.0
0.131 31.9 2.22 29.3 48.0 4.53 29.2
0.158 393 3.67 24.7 - - -
0.187 232 1.87 21.1 38.0 5.13 215
0.218 24.5 2.46 19.0 - -
0.252 18.9 1.56 171 24.1 3.94 16.9
0.289 19.0 1.54 15.4 - - -
0.328 15.0 1.46 14.0 19.4 3.44 14.0
0.369 18.6 1.66 12.8 - - -
0.413 13.9 1.30 11.7 17.8 3.26 11.8
0.460 14.7 1.50 10.8 - - -
0.509 10.5 1.17 10.0 15.5 2.98 10.1
0.560 10.1 1.40 9.39 - - -
0.614 9.46 1.13 8.88 16.0 2.49 9.07
0.671 9.09 1.20 8.50 - - -
0.730 9.18 1.01 8.22 11.4 2.08 8.86
0.791 9.83 0.892 8.06 - - -
0.855 7.71 0.890 7.96 14.1 1.96 8.50
0.922 6.57 1.09 7.71 - - -
0.991 6.30 0.821 7.38 12.3 1.86 7.55
1.06 7.56 0.953 6.98 - - -
1.14 8.08 1.84 6.53 5.85 2.10 6.57
1.21 6.01 0.875 6.04 - - -
1.29 6.36 1.50 5.51 - - -
1.37 4.48 0.738 497 - - -
1.46 4.95 1.14 4.42 5.29 1.67 427
1.54 5.07 0.565 3.88 - - -
1.63 3.29 0.908 3.35 - - -
1.72 3.16 0.666 2.85 - - -
1.82 1.98 0.761 2.38 1.85 1.13 1.97
1.91 1.02 0.689 1.96 - - -
2.01 0.774 0.861 1.58 - - -
2.12 1.62 0.579 1.26 - - -
222 1.74 0.822 0.994 —0.09 1.09 0.540
2.33 0.572 0.527 0.781 - - -
2.44 1.28 0.469 0.619 - - -
2.55 1.08 0.318 0.502 - - -
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TABLE II. Continued.

oap (10719 cm?)

H D

(E;) (eV) Experiment Error Theory Experiment Error Theory
2.66 0.564 0.463 0.420 2.51 1.51 0.176
2.78 0.880 0.316 0.358 - - -
2.90 1.27 0.401 0.299 - - -
3.02 0.628 0.282 0.219 - - -
3.14 0.585 0.565 0.218 2.87 1.45 0.0780
3.27 0.222 0.311 0.198 - - -
3.40 0.782 0.331 0.183 - - -
3.53 0.722 0.397 0.173 - - -
3.66 0.698 0.465 0.167 - - -
3.80 —0.068 0.364 0.163 - - -
3.94 0.390 0.377 0.161 - - -
4.22 0.136 0.322 0.161 - - -
4.52 0.328 0.303 0.163 - - -
4.83 0.141 0.261 0.168 - - -

the potential energy curve of the H, ! E; state. The dynamics of
nuclear motion are described by the nonlocal energy dependent
potential [4,21]. In Ref. [3] we extended this picture to include
the contributions of the repulsive H; 23+ state, in a similar
way as Belyaev et al. [22], which increases the cross section
by about 15% for energies >0.75 eV.

There are really only two significant differences in the
theoretical description for the D™ 4 D collisions versus the
H™ + H case. First, the reduced mass is about two times larger
for the deuterated case. This number is easily included in the
new calculation, leading to a larger number of partial wave
contributions and a larger number of rovibrationally excited
D, states produced compared to H,. Second, the deuteron is
a boson with spin 1 as compared to spin 1/2 in the case of
the fermionic proton. This leads to a different nuclear spin
weighting factor for deuterium as compared to hydrogen.

Lastly, AD can produce molecules in highly rotationally
excited states which lie above the separate atom limit but are
metastable due to the angular momentum centrifugal barrier
[3]. These orbiting resonances have angular momentum up to
~30(40) for H(D,) and lifetimes well exceeding the ~1 us
flight time from the interaction region to the detector. Here we
included the contribution of these metastable states in our AD
cross section calculations, as they contribute to the measured
cross section.

B. Scattering simulations of the signal ions

We have investigated the possible scattering effects on the
signal Hf and D} generated by stripping of the AD products
in the He gas cell. The scattering cones for each ion could
differ, resulting in unequal collection efficiencies for the Hj
and D;’ signal. Measured from the midpoint of the gas cell,
the half angle for the geometric acceptance angle of our CEM
is 0.4°, though the actual acceptance half angle is likely to be
larger due to focusing effects in the electrostatic analyzer.

Scattering calculations were performed from an electron
nuclear dynamics approach. This method uses a time depen-
dent variational principle to derive an approximation to the

time-dependent Schrodinger equation (see Refs. [23,24] for
further details). The simulations indicate that 97% of the scat-
tered Hy and 99% of the scattered D are contained within the
CEM half-angle cone of 0.4°. Here we make the assumption
that these numbers are 100%, an approximation which has an
insignificant effect on the total experimental uncertainty.

IV. RESULTS AND DISCUSSION

The measured H and D data were first collected in
November of 2008 using the approach of Refs. [1,2]. Then,
using the approach of Ref. [3], the H data were remeasured
from January to July of 2010 and the D data from March to
July of 2011. Good agreement between the two approaches
was found for the H data [3] and we merged the sets together
using a statistically weighted averaging method. The D data
sets show similar good agreement and we have merged the
two data sets using the same averaging method as for the H
data. This level of agreement between data sets collected using
slightly different approaches and spanning nearly three years
gives us a high degree of confidence in the stability of the
apparatus over this time.

Our results for reactions (1) and (2) are shown in Fig. 1.
The results in red are for deuterium and those in black for
hydrogen. The error bars display the 1o statistical error of the
experimental results. The data for hydrogen and deuterium are
also presented in Table II. Additionally, we plot the Langevin
value [4,25]. This has been reduced by a factor of 2 to take into
account that AD proceeds primarily via the Hy 2%} state and
the contribution of the 22; state is negligible to first order.

Table II presents the cross sections for these reactions
in units of cm”. In Fig. 1, though, we have multiplied the
cross section data by (E.)'/2. This effectively removes any
Langevin-like behavior in the cross section [25]. Were the
reaction truly Langevin-like, the resulting oap(E;)!'/? would
be independent of (E;). The structure shown in Fig. 1
demonstrates the remaining non-Langevin behavior in the
reaction. For energies between ~3 meV and ~1 eV the reaction
is faster than Langevin. This is caused by the fact that the
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FIG. 1. (Color) Scaled AD cross section versus relative collision energy for reaction (1) is shown in black and for reaction (2) in red. The
filled circles are the measured results for the hydrogen and the filled triangles for deuterium. The error bars on each point give the associated
1o statistical error. The solid curves present our theoretical results, while the dashed line is the Langevin value.

long range interaction potential for H™ 4+ H at distances of
3ayp —20ap is much more attractive than indicated by the
dipole polarizability of the hydrogen atom. Above ~1 eV, the
reaction rapidly turns off due to the opening of the collisional
detachment channel

H(D)~ + H(D) — HD) + HD) + ¢, 13)

a process which is not accounted for by the Langevin cross
section.

As discussed earlier, theory predicts no significant isotope
effect in the total cross section for reactions (1) and (2).
Comparing only the two experimental data sets, our measured
results are also consistent with there being no isotope effect in
the total AD cross section. For a quantitative comparison we
focus on energies <0.75 eV, where AD can proceed only via
the attractive 2X;F state and which is also below the threshold
for collisional detachment [Eq. (13)]. The ratio of the D to
H data sets is 1.21 £ 0.03, which is effectively within the
estimated 22% relative error between the isotopes.

Comparing the theoretical to the experimental results, for
the corresponding energies below 0.75 eV, yields ratios of
0.84 £ 0.01 for the H data and 0.70 £ 0.06 for the D data.
With an estimated total nonstatistical uncertainty of 24%, we
find good agreement between theory and experiment for the
H data, as has been previously reported [1-3]. For the D data,
the experimental results differ from theory only at an ~1.250
level, which we interpret as being in agreement.

As discussed in the Introduction the lack of an isotope
effect is related to both the fast autodetachment rate at small
internuclear separations of H™ and H and the fact that the
trajectories depend only on the energy and not the mass of the
particles. That said, the calculations do indicate that there is
a small isotope effect due to nuclear spin at low energies.

Additionally, at energies 20.75 eV, the small differences
seen in the predicted cross sections are due to threshold
effects associated with opening of the H(D) + H(D) + e~
channel and due to the contribution of the repulsive 2%
state. These differences are too small to be discernible in our
measurements.

V. CONCLUSION

Previous experimental and theoretical work has demon-
strated the existence of a large isotope effect for the partial AD
cross section of diatomic collision systems. Our theoretical
results show no such effect in the total AD cross section
for the H™ 4+ H and D™ + D systems studied here. The new
experimental data are consistent with this as well as with
both the energy dependence and magnitude of the theoretical
calculations. Taken all together, our results indicate that though
the predicted rovibrational distribution of flux is different for
each system, the total flux is essentially the same. We expect
to see similar behavior for the AD isotope effect in other
collision systems possessing an attractive long range potential
where autodetachment is essentially forbidden leading to a
region where fast autodetachment turns on and stays on.
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