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Abstrakt 

Opioidné receptory interagujú s opioidnými zlúčeninami a vyvolávajú zníženie 

neuroexcitability. Aktivácia opioidných signalizačných dráh hrá nepostrádateľnú úlohu pri liečbe 

chronických a nádorových bolestí. Začiatok tejto práce zhrňuje všeobecné znalosti o opioidných 

receptoroch a o vzniku tolerancie. Nasledujúca časť sa zaoberá ontogenézou opioidných 

receptorov a ďalších komponent ich signalizácie, keďže sa zdá, že vek má veľký vplyv na 

molekuly v rámci samotnej signalizácie, ale i molekuly nepriamo s ňou súvisiace. Na záver tejto 

práce je poskytnutý súhrn informácií o vplyve morfia behom ontogenéze, keďže morfium je 

jedným z najčastejšie používaných opioidných zlúčenín používaných v klinickej praxi.

Kľúčové slová

Opioidné receptory, signalizácia, ontogenéza, závislosť, tolerancia, morfium

Abstract 

Opioid receptors interact with opiate compounds, causing the inhibition of 

neuroexcitability. The activation of signaling pathway of opioid receptors plays crucial role in 

the treatment of chronic and cancer pain. Summary of the general knowledge about opioid 

receptors and about the development of tolerance is in the first part of this work. Next part of the 

thesis concerns on ontogenesis of opioid receptors and other components related to the opioid 

signaling  pathways as age seems to have an immense influence on molecules within and related 

to the opioid signaling. Finally, last part of this work collects data about the influence of 

morphine during ontogenesis as morphine is one of the most used opiate compound used in 

clinical treatment.  
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Abbreviations

AC adenylate cyclase

cAMP cyclic adenosine 3’,5’-monophosphate

CGRP calcitonin-gene-related peptide

CNS central nervous system

CREB cAMP response element-binding protein

DALES [D-Ala2,Leu5,Ser6] enkephalin

DAMGO [D-Ala2, Me Phe4,Glyol5] enkephalin

Del-II [D-Ala2] deltrophin II

DOR δ-opioid receptor

DPDPE cyclic [D-Pen2, D-Pen5] enkephalin

DSLET [D-Ser2,Leu5,Thr6] enkephalin

GIRK G-protein-gated inwardly rectifying potassium channels

GPCR G-protein-coupled receptor

GRKs G-protein-coupled receptor kinases

KOR κ-opioid receptor

M6G morphine-6β-glucuronide

MAPKs mitogen-activated protein kinases

MOR μ-opioid receptor

NMDA N-methyl-D-aspartate

nNOS neuronal nitric oxide synthetase

NO nitric oxide

OR opioid receptor

PAG periaqueductal gray

PKA protein kinase A

PKC protein kinase C

PLD2 phospholipase D2

PMA phorbol-12-myristate-13-acetate

PNS peripheral nervous system

RGS regulator of G-protein signaling

SP-IR substance P-like immunoreactivity

STATs Signal Transducers and Activators of Transcription
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1. Introduction

Opioid receptors (OR) belong to the family of the seven transmembrane-spanning 

G-protein-coupled receptors (GPCRs) that are activated both by endogenous opioid peptides and 

exogenous opiate compounds. Main physiological role of  OR is to modulate the effects of 

neurotransmitters and hormones which leads into inhibition of neuroexcitability and releasing of 

neurotransmitters (Harrison, Kastin, and Zadina 1998; Minami and Satoh 1995). There are four 

basic types of OR; μ, δ, κ and ORL-1 (Minami and Satoh 1995; Mollereau et al. 1994). Each 

type of receptor and their subtypes bind increasingly selective ligands.

OR are very important from clinical point of view as many drugs used in medical care are 

targeting these receptors. Opioid drugs are used mainly for their analgesic effects, they relieve 

from acute, chronic or cancer pain. Problem is that side-effects, tolerance and dependence are 

developing, mainly with chronic treatment. There are age differences with development of side-

effects or tolerance, suggesting that opioid signaling mechanisms change during ontogenesis. 

Thus the main aim of this work is to summarize current knowledge about changes in opioid 

signaling during ontogenesis in model organisms and human as well. It is possible that the age-

dependent expression and function of molecules within and related to the opioid signaling 

pathways, along with cellular activity (such as internalization and desensitization), eventually 

lead to significant age-dependent changes in opioid analgesia and tolerance development (Zhao 

et al. 2012). 

Also, because morphine is one of the most used opioid compounds in clinical practice, it 

is important to know what are the influences on brain development and generally on health 

during ontogenesis. Therefore the collection of data about the influence of morphine during 

ontogenesis is part of this work.



7

2. Opioid receptors

OR are part of the superfamily of GPCRs. Opioid ligands bind to membrane receptors. 

Guanosine triphosphate binding protein (G-protein) and effectors, such as adenylate cyclase 

(AC) and ion channels, are activated and the signal is therefore mediated inside the cell. The 

coupling of receptor to G-protein might be possible locus of specificity for different subtypes, 

but also can play a role in regulation during chronic ligand exposure (Harrison, Kastin, and 

Zadina 1998).

After finding OR differentially located in central nervous system (CNS) and in smaller 

amounts in peripheral nervous system (PNS) as well, it was proven that there are several types. 

Physiological study on dog with chronic spinal condition suggested three types- μ, κ and σ 

receptors. Each type was distinguishable by using a different agonist which caused three 

syndromes with different symptoms. Morphine was found to be the prototype agonist for 

μ-receptor, ketocyclazocine for κ-receptor and SKF-10,047 for σ-receptor (Martin et al. 1976). 

When σ-receptors were successfully cloned, it was shown they are single transmembrane-

spanning protein with different ligands. Naloxolone could not block actions in which σ-binding 

sites took part. Therefore they are not a member of OR family (Monassier and Bousquet 2002). 

δ-receptor with high affinity to enkephalins was found in the mouse vas deferens (Minami and 

Satoh 1995). In 1996 a cDNA clone encoding hORL-1 (human Opioid Receptor-Like 1) was 

isolated. This receptor is related to OR from structural and functional point of view and is 

member of OR family, even though it appears not to be typical OR (Mollereau et al. 1994).

2.1. μ-opioid receptors

Beside basic types of OR, each type can be divided into several subtypes, these were 

proven by various pharmacological and physiological studies. Each single subtype binds 

increasingly selective ligands and is able to affect certain physiological parameter but not others 

(Harrison, Kastin, and Zadina 1998).

For μ opioid receptor (MOR) Wolozin and Pasternak (1981) suggested terms mu1 and 

mu2 sites, where mu1 mediate opiate, enkephalin and β-endorphin analgesia. Some studies 
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showed obvious separation of mu1 and mu2 sites. For example, pretreatment with naloxonazine, 

potent antagonist, antagonizes morphine analgesia, but not respiration depression. Also 

naloxonazine does not block physical dependence, therefore the different receptor mechanisms 

mediate morphine analgesia and withdrawal symptoms of morphine dependence (Ling et al. 

1984). After purification and partial amino acid sequencing (Eppler et al. 1993), a cloning of 

MOR brought an idea that different subtypes are the result of alternative splicing of one gene. 

MOR-1 has a total of 10 splicing variants in human, their differences in opioid ligand selectivity 

and affinity were only limited. Major differences appeared in efficacy and potency among these 

splicing variants (Pan et al. 2005). All variants contain exons 1, 2 and 3 which encode all seven 

transmembrane domains and the N-terminus, the difference comes in exons encoding the 

C-terminus. Variants do not differ in the binding cavity, but on the tip of C-terminus and they 

have unchanged affinity and selectivity for μ opioids (Xu et al. 2009).

In 1995, new MOR was isolated in a rat, called rMOR1B. Sequence of this receptor is 

almost identical to the rMOR1, it differs only at C-terminus, thus considered to be another 

splicing variant. Affinities to opioid compounds stay similar, but rMOR1B is much more 

resistant to agonist-induced desensitization, therefore alternative splicing of C-terminus may play 

a critical role in opiate tolerance (Zimprich, Simon, and Höllt 1995). Similarly, a splice variant 

of human MOR1, called MOR1A, has almost unchanged ligand affinity, but difference in C-

terminus may modulate receptor’s G-protein coupling or affect its cellular distribution (Bare, 

Mansson, and Yang 1994).

Compounds that were found to be highly selective for MOR include morphine, codeine, 

fentanyl, heroin, methadone, oxymorphone and oxycodone (Pasternak 2011). The MOR is 

predominantly responsible for the production of both analgesia and euphoria by the more 

common opioids (Taylor and Fleming 2001).

2.2. δ-opioid receptors

Similarly to MOR, there have been identified different subtypes of δ opioid receptors 

(DOR), called δ1 receptor and δ2 receptor. It is thought that δ1 subtype is stimulated by cyclic 
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[D-Pen2,D-Pen5] enkephalin (DPDPE) and blocked by [Ala2,Leu5,Cys6]enkephalin, whereas δ2

subtype is stimulated by [D-Ser2,Leu5.Thr6] enkephalin (DSLET) and [D-Ala2] deltrophin II 

(Del-II) and blocked by naltrindole-5’-isothiocyanate (Quock et al. 1999; Vanderah et al. 1994).

Among suggested endogenous ligands for DOR are [Leu5]enkephalin and 

[Met5]enkephalin, respectively increasing and decreasing morphine antinociception (Quock et al. 

1999). Therefore raising a hypothesis that MOR and DOR are interacting on functional and/or 

physical basis and DOR may exist within the μ-δ complex (δcomplexed (δcx) receptors), while others 

are not in this complex (δnon-complexed (δncx) receptors) (Heyman et al. 1989). Thus, enkephalins 

play a role in direct antinociception and may play a modulatory role as well. A study with 

[D-Ala2,Leu5,Ser6]enkephalin (DALES) supported a hypothesis about δ subtypes as DALES 

produced antinociception, but failed to modulate morphine antinociception, which means it 

interacted with δncx receptor (Mattia et al. 1991).

Beside the direct antinociception through DOR, their agonists show modulatory 

properties on MOR agonists, such as morphine (Heyman et al. 1989).

2.3. κ-opioid receptors

It has been established that ketocyclazocine-like opioids produce antinociception through 

κ opioid receptors (KOR) (Martin et al. 1976). KOR sites were shown in both rat and guinea pig 

brain through in vitro binding assays and quantitative receptor autoradiography. There were 

differences in these two species, showing that there are two different subtypes of KOR, termed 

κ1 and κ2, which have different affinities, different ligand selectivity profiles and even their 

neuroanatomical distribution is different (Zukin et al. 1988).

In 1993, rat KOR was cloned. When compared to the mouse KOR, it showed 97% 

similarity at the amino acid sequence and treatment with κ-selective agonist, bremazocine, 

indicated the KOR inhibitory coupling to AC (Chen et al. 1993).
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2.4. ORL-1

DNA of the ORL-1 receptor structurally resembles other OR and receptor is negatively 

coupled with AC. The inhibition of AC is mediated by ‘universal’ opiate agonist, etorphine 

(Mollereau et al. 1994; Meunier et al. 1995). Interestingly, ORL-1 possesses a low level of

specific naloxone and bremazocine binding (Bunzow et al. 1994).

ORL-1 is considered to be a non-opioid branch of OR family, as their agonists are 

inhibiting antinociception caused by other OR-selective ligands and may even cause 

hyperalgesia. ORL-1 mediates dual (opioid and anti-opioid) effects, which naloxone cannot 

reverse (Mogil et al. 1996).
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3. Signaling

Opioid receptors belong to family of receptors that interact with the pertussis toxin-

sensitive G-proteins of the Gi and Go families (Connor and Christie 2006). However, they do not 

interact with them exclusively and it was shown that they interact with pertussis toxin-insensitive 

Gz protein as well, inhibiting AC and stimulating mitogen-activated protein kinases (MAPKs) 

(Tang and Hurley 1998).

OR signaling works on catalyzing ligand nucleotide exchange on Gi and Go, causing 

inhibition of AC, inhibition of N-type calcium channels and activation of G-protein-gated 

inwardly rectifying potassium (GIRK) channels (Whistler et al. 1999). The most common action 

of OR includes inhibiting of AC, activation of K+ conductance, inhibition of Ca2+ conductance, 

and an inhibition of transmitter release. Actions like activation of protein kinase C (PKC) or 

MAPK cascade, release of calcium from intracellular stores have been added to OR functions 

(Williams, Christie, and Manzoni 2001).

OR interacts not just with G-proteins, but with other signal molecules as well. An 

interaction with calmodulin (CaM) was reported and was suggested that CaM itself could be a 

second messenger (Wang et al. 1999). Another signaling pathway mediated by activated MOR 

includes STAT5A, which acts as the second messenger and alters transcription (Mazarakou and 

Georgoussi 2005).



12

4. Tolerance and dependence

The chronic use of opiates tends to induce tolerance and dependence easily due to 

adaptive changes in the response of subject to the agent. Tolerance is often defined as a decrease 

of sensitivity to an administered drug or a need of increasing amounts of the drug to achieve the 

original effect. On the other hand, dependence is a state when the drug is required to maintain 

normal physiological function and when it is removed a physical and/or psychological 

withdrawal syndrome is produced (Taylor and Fleming 2001; Harrison, Kastin, and Zadina 

1998).

The existence of multiple forms of tolerance and dependence is suggesting a possibility 

that each component is regulated by a different cellular mechanism and tolerance/dependence is 

a complex behavior which is a result of multiple mechanisms (Taylor and Fleming 2001). 

The expression of different types of tolerance occurs with different characteristics. The 

development of tolerance and dependence is induced by multiple mechanisms, such as receptor 

desensitization, receptor phosphorylation and uncoupling, up-regulation of cAMP pathway 

(which is long-term adaptation), and down-regulation of the Na+,K+ pumping. One type is 

desensitization; a decrease of efficiency of signalization, develops rapidly, and is due to 

uncoupling of the receptor from its affined G-protein (with or without internalization) and the 

initial key event is thought to be receptor phosphorylation. Mostly it is the result of exposure to 

high concentrations of agonist (Law and Loh 1999; Koch and Höllt 2008).  Another form of 

tolerance is due to changes in AC cascade. Acute exposure inhibits cAMP pathway, while 

chronic exposure leads to up-regulation of cAMP pathway (higher concentration of AC, protein 

kinase A (PKA), and possibly other components of this pathway). Chronic administration of 

opiates alters cAMP response element-binding protein (CREB) phosphorylation or expression 

and CREB mediates up-regulation of the type VIII of AC, further contributing to cAMP pathway 

activation (Nestler and Aghajanian 1997; Cao et al. 2010). Third form is due to down-regulation 

of the Na+,K+ pumping, which causes reduction in its electrogenic contribution to membrane 

potential and partial depolarization of the cell membrane (Fleming 1999). Protein isoform, α3

subunit, is down-regulated and thus, the activity of Na+/K+ ATPase decrease causing 

depolarization of the membrane (Li et al. 2010). 
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Involvement of different kinases for MOR phosphorylation seems to be agonist-

dependent and it might be the explanation for differences in the induction of OR desensitization 

by various agonists (Koch et al. 2005).

The agonist-dependent phosphorylation increases affinity of OR to cytosolic β-arrestin 

proteins. Interaction of β-arrestins and OR ends in uncoupling of G-protein signaling and the 

involvement of endocytotic machinery leading to receptor internalization (Koch and Höllt 2008). 

A study where the agonist-induced internalization of the MOR was examined, showed that there 

are differences in the internalization of the MOR between various agonists. Etorphine caused 

internalization within 15 minutes after injection, while morphine, which is considered to be high 

affinity agonist of MOR, did not trigger detectable internalization, but it partially inhibited 

etorphine-induced MOR internalization. Naloxone, opiate antagonist, completely inhibited 

endocytosis (Sternini et al. 1996).

Studies indicate that highly addictive opiates such as morphine are failing in inducing the 

desensitization and endocytosis of receptors (Whistler et al. 1999). However, in cultured striatal 

neurons it was demonstrated that morphine-induced internalization exists, as well as [D-Ala2,Me 

Phe4,Glyol5] enkephalin (DAMGO) induced internalization, and both of them require presence 

of β-arrestins. The reason why rapid morphine-induced endocytosis appears in striatal neurons in 

much greater amount than in other cell types might by that the major type of arrestin expressed 

in striatal cells is β-arrestin-2 (Haberstock-Debic et al. 2005). Surprisingly, it was shown that 

morphine induced internalization occurs in the dendrites but not in the soma of cultured nucleus 

accumbens neurons. This indicates that opiate drugs can have different effects on trafficking of 

OR present in distinct membrane compartments of the same neuron (Haberstock-Debic et al. 

2003). Morphine has unique characteristics, as it causes sustained phosphorylation of Ser375. 

Desensitized receptors like this are kept in membrane and cannot enter the recycling cycle and be 

internalized (Schulz et al. 2004). The expression level or subcellular localization of GPCR 

kinases and/or arrestins might designate destiny of morphine-activated receptors.

In 2003, evidence was provided that phospholipase D2 (PLD2) plays key role in agonist-

induced endocytosis of MOR. Stimulating MOR with DAMGO showed an increasement in 

PDL2 activity, which was then blocked by antagonist naloxone. The DAMGO-mediated PLD2 

activation was shown to be ADP-ribosylation factor dependent. Morphine failed to activate 
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PLD2, but when heterologous PLD2 was activated by phorbol-12-myristate-13-acetate (PMA), 

morphine could induce an internalization of MOR. These results suggest that both agonist-

induced conformational change and stimulation of PLD2 were needed for inducing receptor 

endocytosis (Koch et al. 2003). 

For a long time the idea was that phosphorylation/uncoupling and internalization are part 

of the process, when tolerance is developed as the number of OR is decreasing. However, 

multiple studies proved this idea incorrect. Internalization does not necessarily mean 

desensitization. A study with two isoforms of MOR showed they markedly differ in the rate of 

their desensitization. A shorter isoform, MOR1B desensitized at a slower rate, 

immunocytochemical analysis revealed that internalization proceeded at a much faster rate and 

therefore the rate of resensitization and recycling of receptors are accelerated. This provides an 

evidence that enhanced resensitization confers resistance to agonist-induced desensitization 

(Koch et al. 1998).

It was shown that mutation of single cytoplasmic domain (C-terminus) influence agonist 

selectivity of OR endocytosis (Whistler et al. 1999; T. Koch et al. 1998). The differences in 

endocytic regulation reflect differences between individual opiate drugs in their ability to 

promote the regulation of OR signaling. The different effects of antagonists on MOR trafficking 

suggest the presence of several mechanisms of responding to ligands (Sternini et al. 1996). It has 

been suggested that arrestin-mediated regulation of OR by endocytosis and reactivation of 

receptors may play a protective role by reducing the development of physiological drug 

tolerance. Morphine fails at promoting effectively arrestin-mediated regulation of MOR. The 

failure of morphine-activated receptors to uncouple from G-protein and endocytose may play an 

important role in inducing physiological tolerance (Whistler et al. 1999; Finn and Whistler 2001; 

He and Whistler 2005; He et al. 2002; Koch et al. 2005; Grecksch et al. 2006).

He et al. (2002) suggested that coapplication of DAMGO with morphine facilitates 

endocytosis of MOR. As a result, long-term treated rats with both drugs showed reduced 

tolerance. They proposed that endocytic properties are influenced by oligomerisation of MOR. 

And in 2005, He & Whistler published that cocktail consisting of morphine and small dose of 

methadone facilitates MOR endocytosis, provide full analgesia, but has no morphine dependence 

potency. However, study by Koch et al. (2005) investigated coapplication of clinically important 
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opioids (methadone was among them) with morphine. Their results showed an increase in 

receptor endocytosis when compared to application of morphine alone, but effect was smaller 

than that caused by clinically important drugs that induce receptor internalization alone. Other 

thing was, they failed to confirm results of He and his colleagues (2002) that DAMGO facilitates 

endocytosis of MOR. Thus, the reduction of tolerance by coapplication of low doses of DAMGO 

and avoiding a promotion of morphine dependence by cocktail of methadone and morphine is yet 

to be investigated more.

Morphine tolerance is associated with superactivation of cAMP, as written earlier, but it 

also includes redistribution of DOR. While MOR are found mainly on the surface of the cell, 

DOR are mainly intracellular type of receptor. Pretreatment with morphine induced increasing 

density of DOR on cell surface. Evidence showed that morphine pretreatment does not have a 

direct effect on DOR, but it is rather indirect acting through MOR. Quantitative analysis 

suggested that increasing density of DOR is not thanks to synthesis of receptor de novo, but it is 

recruitment of pre-existing reserve receptors  (Cahill et al. 2001). Next study with other 

MOR-agonists, methadone, fentanyl and etorphine, showed similar results, i.e. increasing density 

of DOR on plasma membrane (Morinville et al. 2003). 

The rewarding effect of morphine was believed to be result of cooperation of several OR 

and there are studies which suggest that development of tolerance is induced not just by MOR, 

but DOR are involved as well. Animals cotreated with morphine and naltrindole had attenuated 

development of antinociceptive tolerance and physical dependence, and had fewer withdrawal 

symptoms. Treatment with antisense oligodeoxynucleotide to the DOR blocked the development 

of tolerance and dependence (Fundytus et al. 1995; Kest et al. 1996; Hepburn et al. 1997). 

Moreover, tolerance did not develop in DOR gene knock-out mice (Zhu et al. 1999). On other 

hand prediction that highly MOR-selective agonist would induce less tolerance was not 

confirmed. On the contrary, there was a rapid onset of tolerance, though results may indicate that 

DOR still play a modulatory role in the maintenance of the tolerant state (Zhao et al. 2002). 

Other results indicate that DOR is not correlated with inducing of tolerance as the enhancement 

of DOR-mediated antinociception was no longer detectable after 24 hours after the last dose of 

the drug, from which we might assume that it is a reversible effect (Morinville et al. 2003). 



16

Also study of mice lacking the MOR gene showed that the rewarding effect is abolished 

in MOR-deficient animals. And while morphine administration induced strong dose-dependent 

analgesia in wild type (mice with MOR), it had no effect on mutant type. Administration of 

naloxone failed to induce withdrawal symptoms in MOR-deficient mice, and there is no 

up-regulation of cyclase activity in striatum in the mutant type. All these results points to the fact 

that homozygous MOR-deficient mice do not develop physical dependence (Matthes et al. 1996).

Thus, the question of the role of DOR and its extent in development of tolerance and 

dependence is still open and yet to be studied more.  
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5. Ontogenesis in opioid receptors

The expression patterns of OR mRNAs are distinct at all ages. Though, first OR that appear 

in mouse embryo are KOR, detected in embryonic day 9.5 (E9.5) in gut epithelium. In the brain 

both MOR and KOR mRNAs are present in E11.5 already. Their adult expression patterns are 

established by E17.5. On the other hand DOR appear rather late (E19.5) and remains at low 

levels of expression. In contrast to this DOR is first OR expressed in dorsal root ganglion in 

E12.5 (Zhu et al. 1998). It was shown that MOR and KOR are present at spinal cord of rat pups 

at birth, while DOR appear in first 2 postnatal weeks. During the ontogenesis MOR is 

predominant OR in the spinal cord. Overall binding peaks at 7th postnatal day and decline to 

adulthood levels (Rahman et al. 1998). All 3 receptor types increase in density during postnatal 

development, different postnatal development of multiple OR appears. MOR initially declined 

in first few days, resulting in a 32% reduction by day 4. Rapid increase is following between 

days 7 and 14 and adult levels are reached by day 21. Sparse amounts of KOR are rising 

slightly, peaking at day 35 and declining to adult levels (Spain et al. 1985). MOR binding 

potential was found to increase with age in neocortical areas and in the putamen. Beside this, 

gender-by-age interactions were observed in the thalamus and amygdala. MOR binding 

potential decreases in postmenopausal women to levels below those of men. And while 

age-related increase in MOR density, but not affinity, were shown in one study (Zubieta et al. 

1999). Another study shows no age influence on the density of MOR and reduced affinity of 

these receptors for DAMGO (Hoskins et al. 1998). Opioid drugs lose their efficacy with 

increasing age and it seems to be a result of several interacting changes due to aging.

Age-dependent alternations in both mechanical and thermal antinociception were observed. 

Antinociceptive effects of β-endorphin and morphine are mediated by activation of different 

pathways and neural mechanisms and they develop differently. Responses to mechanical 

responses were observed at 2-4 days old rat already. Inhibition develops progressively, but the 

one produced by β-endorphin reach maximum at 7 days, while morphine-induced at 28 days. 

Thermal responses developed later, at 7days old rats and reached maximum at 28 days (Tseng et 

al. 1995). These results suggest that two descending pain inhibitory systems activated by 

β-endorphin and morphine are differentially developed. 
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5.1. Effects of age on modulation of opioid receptors 

Mechanisms of opioid tolerance and functioning of OR on molecular level are very 

complex. Many steps of molecular pathway require a modification of the expression and 

functions of signaling molecules. These modifications involve other receptors and proteins.

Binding of agonists to OR induces signaling transduction pathway activation and 

modulation of OR, i.e. phosphorylation and desensitisation. Continuous exposure to agonist 

leads to phosphorylation of OR by G-protein-coupled receptor kinases (GRKs), with GRK2 and 

GRK6 playing important role. Phosporylated receptor is then bound by β-arrestin and this leads 

to uncoupling of receptor from G-protein, causing desensitization and decreasing efficacy of 

opioid agonist. Rate and extent of desensitisation depends on cellular concentration of arrestins 

and GRKs, thus their age- and developmental-related changes influence OR functioning and 

tolerance development. Selective increase of arrestin 2 was demonstrated during neural 

differentiation in rat embryos (Gurevich et al. 2004). This steady increase continues in postnatal 

development, when arrestin 2 mRNA levels increased until 14th postnatal day and then decreased 

while arrestin 2 protein levels continued to rise (Gurevich et al. 2002). All GRKs subtypes were 

expressed in rat's fetal brain from embryonal week 12, but there was no change in their number 

with an age, beside increased expression of GRK5 which accompanied the increase in arrestin 2 

(Gurevich et al. 2004). In human prefrontal cortex, the immunodensities of GRK2, GRK6 and 

β-arrestin 2 appear to decline significantly with aging (Ontl et al. 2004).

The phosphorylation of OR by GRKs and the binding of β-arrestin initiate the 

internalization of the ligand-bound receptors. A model by Koch and his colleagues suggests 

that internalization is preventing from development of tolerance. Morphine is inefficient in 

inducing internalization, but tolerance develops rapidly (Koch et al. 2005). Though evidence for 

morphine-induced rapid MOR endocytosis from striatal cells and periaqueductal gray (PAG) 

exists, suggesting that the process of internalization is specific for certain types of cells and 

tissues (Haberstock-Debic et al. 2005; Rodríguez-Muñoz et al. 2007). Endocytosis of OR is 

regulated by phosphorylation and association with β-arrestins (Whistler et al. 1999) and they 

endocytose via dynamine-dependent mechanism involving clathrine-coated pits. Age-related 
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decrease in the kinetics of cargo transit through clathrin-coated pits was observed (Blanpied et al. 

2003). Though this study was not focused on endocytosis of OR, we might assume that clathrin 

dynamics change with age also in OR system.

5.2. Effects of age on other receptors and proteins influencing opioid signaling

There are molecules related to opioid signaling pathways, which negatively influence 

opioid action. Among various anti-opioid systems belong N-methyl-D-aspartate (NMDA) 

receptors, calcitonin-gene-related peptide (CGRP), substance P (SP) or regulator of G-protein 

signaling (RGS). These proteins play important role in opioid signaling and in the development 

of tolerance and aging has effects on all of them. 

NMDA attenuates opioid receptor-mediated G-protein activation. MOR and NMDA 

receptors are colocalized in certain areas, mainly those related to rewarding behavior and 

antinociception- caudate nucleus and PAG. Thus MOR and NMDA receptors probably dually 

regulate the output of neurons (Wang et al. 1999; Commons et al. 1999). Colocalization of these 

receptors in nucleus accumbens suggests their dual involvement in the presynaptic release of 

neurotransmitters in this region (Gracy et al. 1997). Thus the differentially regulated expression 

and function of NMDA receptor during development and aging might play important role in this 

dual involvement. There is a significant decline in agonist binding to NMDA receptor in lateral 

prefrontal/frontal cortex during both development and aging, while decline in the medial cortex 

was less significant. Interestingly, ε2 subunit shows age-related decline in its expression, while 

ζ1 subunit shows sex-related expression and no influence of aging process on its expression 

(Ontl et al. 2004; Zhao et al. 2009). 

It was shown that NMDA receptor antagonists are inhibiting the development of 

morphine tolerance in adult rats (Trujillo and Akil 1994; Herman et al. 1995). Next study 

specified the age at which inhibition appears as NMDA receptor antagonist does not inhibit or 

attenuate development of tolerance in neonatal rats, 7 days old. On the other hand, attenuation 

appeared in 14 days old rats and tolerance was significantly attenuated in 21 days old and older 



20

rats, suggesting a transition age around second postnatal week for NMDA receptors to be 

effective in decreasing the development of tolerance (Zhu and Barr 2003). 

In addition to NMDA receptors, there are some neuropeptides that are known to have 

anti-opioid effects, for example CGRP and SP. It was shown that age regulate their expression 

and function. In vitro study on cultured dorsal root ganglion neurons from 3 months and 10 

months old rats showed an increase in the immunoreactivity of CGRP and SP. As MOR are co-

localized with CGRP and SP-like immunoreactivity, it is likely that morphine acts through OR 

present in CGRP and SP. Age seems to play role in the opioid signaling as older animals were 

more sensitive to treatment with morphine. Smaller doses and shorter time was needed to induce 

increasing number of CGRP and SP neurons (Ma et al. 2000). 

RGS proteins are negative regulators of G-protein-mediated opioid signaling and they 

play crucial role in opioid signaling mechanisms, facilitate OR desensitization and 

internalization. The interaction between RGS19 and DOR (Elenko et al. 2003) and between 

RGS20 and MOR was established (Garzón et al. 2004). Specific RGS proteins play important 

role, especially RGS2, RGS4, RGS9, RGS19 and RGS20. These proteins specifically interact 

with Gα subunit, where they facilitate switch of Gα from a GTP-active state to GDP-inactive 

state (for review see Xie and Palmer 2005; Ross and Wilkie 2000). Expression of RGS proteins 

was studied and was found age-dependent; the dependency is subtype-specific and also specific 

to the region of brain. Different subtypes of RGS proteins had onset of expression and its 

duration at different postnatal days (Ingi and Aoki 2002; Wilson et al. 2005; Gold et al. 1997). 

During embryonic and early postnatal development, two RGS9 transcripts are present in whole 

brain. After postnatal day 10, the expression of one transcript increases and concentrates in 

striatum, while the expression of other one decreases (Thomas, Danielson, and Sutcliffe 1998). 

RGS4 is expressed in different areas of brain in the developing postnatal brain (neocortex, 

hippocampus, cerebellum) and in the adult brain (neocortex, thalamus, cerebellum) of rats (Ingi 

and Aoki 2002). This different expressional onset might influence the OR in their signaling and 

may alter the effects of opioids.

The PAG is a major supraspinal site in opioid analgesic actions and a significant site of 
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cellular adaptations on chronic treatment with morphine (Bagley et al. 2005; Morgan et al. 

1998). MOR-acting opioids are of limited efficacy in neuropathic pain and morphine analgesia is 

under negative functional regulation by the NMDA receptor-neural nitric oxide synthetase 

(nNOS) cascade (Rodríguez-Muñoz et al. 2008). PAG contains neuronal isoform of nNOS, 

which plays role in the development of antinociceptive tolerance to morphine as it generates NO 

that alternates MOR and its constituve activity (Kielstein et al. 2007). In the nNOS deficient 

mice less tolerance is exhibited (Heinzen and Pollack 2004). Alternation in the signaling and 

development of tolerance appears with increasing age. Chronic treatment with morphine has 

impact on PAG in both 7 days old rat pups and adult rats, but adaptive responses differ. In adults 

an up-regulation of genes associated with Fos and NADPH oxidase appeared (nitric oxide is 

implicated in oxidative stress), while in pups are changes in gene expression that alternates 

superoxide and peroxide metabolism (Bajic et al. 2012).

  

5.3. Age-dependent opioid analgesia, tolerance and dependence

Some patients require dose escalation of opioid drug. This escalation may develop due to 

several reasons, e.g. tolerance, addiction or progression of disease. Clinical data suggest that 

younger patients have a rapid onset of dose escalation. A study of terminally ill patients was 

done. Each decade after 40 years was less likely to require unusually high doses or doses over 

120mg/day of oral morphine equivalent (Hall et al. 2003). Another study, confirming these 

results, showed that patients younger than 50 years escalated dose at twice the rate than older 

patients, mainly those over 60 years, which may mean older patients have reduced rate of 

development of tolerance (Buntin-Mushock et al. 2005). Intrathecal opioid dose escalation 

occurred more steeply in younger patients (Hayek et al. 2011).

Age influence on development of tolerance has been studied on model organism. 

Different age groups of rats (3 weeks, 3 months, 6 months and 1 year) were treated with 

morphine and examined. There was a 400% increase in the length of time during which tolerance 

was developed if 1 year rat is compared to 3 weeks old one. Thus the rate of tolerance 



22

development is age dependent and tolerance occurs more rapidly in younger individuals than 

older ones. Plasma levels of morphine suggested that the molecular mechanism  change with an 

age (Wang et al. 2005). Morphine was proven to be active in analgesia in rat pups 3 days old, it 

had increasing potency and reached plateau from postnatal day 9 until postnatal day 21. 

Tolerance was possible to induce with continous administration after 72 hours in first 2 postnatal 

weeks (Thornton et al. 1997). There are several studies on rats on dose alternations of opioids 

due to age influence and presence of inflammation, when epidural administration was used. A 

very low doses were effective at reversing inflammation-induced hypersensitivity, mainly at 

younger age. Low-doses effects were demonstrated in vivo, showing importance of development 

being taken into consideration when using local epidural anesthetics. Selective analgesic effect 

of lower doses decreases with increasing age of rat pups (Howard et al. 2001; Walker and 

Fitzgerald 2007; Walker et al. 2005). Another study reveals age-specific alternations in rat's 

nociception following different morphine schedules. Thus the morphine-induced changes in 

nociception depend on developmental phase in which exposure occurs and the dosing schedule. 

While intermittent administration may produce sensitization, continuous administration 

preferentially produces tolerance (Zissen et al. 2007).

Different studies show various results from model organisms, mainly rodents, but also 

primates (Young et al. 2005; Yon et al. 2005; Slikker et al. 2007). Their results point to 

neuroapoptosis caused by general anesthesia, the level of damage is dose and age dependent. 

Developing brain is most vulnerable at the peak of synaptogenesis, which means 7 day old rat 

pup. The least sensitive period is at the end of synaptogenesis- 14 days old (Yon et al. 2005). 

Neurogenesis event in whole brain of rat pup 7 days old (28 post-conceptional days) corresponds 

to 221 post-conceptional days in human and 14 days old rat pup (35 post-conceptional days) 

corresponds to 359 post-conceptional days in human. Model organisms mature and develop at 

different rate and age, therefore is important to extrapolate the timing of events of 

neurodevelopment from experimental species to human (Clancy et al. 2001; Workman et al. 

2013; for review see Clancy et al. 2007).
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5.4. Effects of age on opioid pharmacokinetics

Drug metabolism playes important role in administration of opioid drugs as well and it 

seems there are differences between pharmacokinatices between young and older individuals. 

The effect of old age on the antinociceptive response of morphine and morphine-6β-glucuronide 

(M6G) was observed. Morphine is metabolised into morphine-3β-glucuronide and M6G. While 

no difference in antinociceptive effect or concentration time-curve of morphine were found 

between young and old animals, the antinociceptive effect-time curve and plasma M6G 

concentration time-curve were greater in aged rats. This was probably due to diminished renal 

function, decreasing the clearence of M6G. Thus the aged rats have increased sensitivity to 

morphine probably due to elevated plasma M6G (Van Crugten et al. 1997). Morphine clereance 

in neonates is slower than in adults, though when it is standardised to 70-kg person, it shows that 

clereance is similar to adult within 6-12 months after birth (Bouwmeester et al. 2004). Different 

studies with various opioid drugs show different results in age-related changes of 

pharmacokinetics and pharmacodynamics, for example a study with short-acting opioid 

remifentanil increased sensitivity in elderly people and decreased clearance of drug (Minto et al. 

1997). The EEG showed increased sensitivity of brain to opioids with increasing age, requiring a 

smaller dosage of drug to older patients (Minto, Schnider, and Shafer 1997). Effects of fentanyl 

on different age groups of foals were examined and difference in pharmacokinetics were 

observed in the earliest age stage after single dose of drug already (Knych et al. 2014).

On the other hand, methadone which is another long-lasting opioid drug, beside morphine 

that is widely used in health care showed no clearance maturation with an age. Neonatal 

clearance for the isomers is similar to those reported for adults and teenagers (Ward et al. 2014). 

Similar results showed studies with adolescents. Clearance rate in adolescents did not differ to 

the one of adults (Stemland et al. 2013; Sharma et al. 2013).
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6. Influences of morphine during ontogenesis

There are studies showing that the relieving pain in infants and neonates plays an important 

role, as noxious stimuli which are not mitigated with analgesia might influence the development 

of brain in children, especially those born very preterm. Pain-related stress predicts lower 

cortical thickness, specifically in frontal, parietal and temporal regions, compared to healthy term 

born controls (Ranger et al. 2013). Neurodevelopment of preterm infants in relation to pain was 

examined and poorer cognition and motor function in the first 2 years of life were associated 

with a higher number of skin-breaking procedures during neonatal care (Grunau et al. 2009). 

Cortical responses to noxious stimuli have been recorded from post-conceptional age of 25 

weeks and the magnitude of responses to stimuli increased with post-conceptional age (Slater et 

al. 2006). These negative influences of pain on developing brain suggest clinical usage of opioid 

drugs to relieve pain. One of the most used opioid compound is morphine, which is very 

effective, but it was shown that opioids in general,mainly morphine, influence neuronal cell 

death- apoptosis, which involves activation of a cascade of intracellular cysteine proteases. 

Caspase-3 plays a crucial role in the terminal or execution stage of apoptosis. Treatment of 

human fetal microglial cell, astrocyte and neuronal cell cultures with morphine proved that this 

opiate induces caspase-3-dependent apoptosis. Neurons were more sensitive than microglia, 

while astrocytes were resistant to morphine-induced apoptosis. Naloxone blocked apoptosis of 

these cell cultures, suggesting that opiate-receptor mechanism is involved (Hu et al. 2002). 

Similar results were presented with studies on rats, where morphine induced apoptosis of 

peritoneal macrophages and promoted accumulation of Bax protein; a death agonist from Bcl-2 

family of apoptosis regulatory genes (Singhal et al. 1998). Study specifically oriented on nucleus 

accumbens and prefrontal cortex showed increase in apoptotic factors in these regions (Katebi et 

al. 2013). On mice macrophages was demonstrated that apoptosis may be mediated through 

TGF-β (Singhal et al. 2000). All these suggest that morphine can directly effect and modulate an 

immune system of drug addicted patients. There is also a difference between acute and chronic 

treatment with morphine. While acute treatment does not influence immunodensity of pro-

apoptotic Fas receptor and anti-apoptotic Bcl-2 oncoprotein, there is a change in chronic 

treatment. The density of Fas receptor increases and the density of Bcl-2 decreases in cerebral 
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cortex. The chronic cotreatment of morphine and naloxone prevented any change in 

immunodensity of both Fas receptor and Bcl-2 (Boronat et al. 2001). Minocycline, second-

generation tetracycline with known neuroprotective effects, was administered along with 

morphine to rats. It prevented morphine-induced apoptosis and increased number of anti-

apoptotic agents, such as Bcl-2 and HSP70 in cerebral cortex and lumbar spinal cord. However, 

levels of caspase-3 stayed unchanged (Hassanzadeh et al. 2011). With these results we have to 

take into consideration the fact that morphine was administered when no noxious stimuli were 

present and therefore we cannot assess the negative effects of pain against negative effects of 

drug administration (Attarian et al. 2014). The effect of morphine administered to rat females on 

the developing fetal rat cerebrum was studied as well. Beside general decrease in fetal weight 

and crown-to-rump length, a reduced cortical thickness and number of neurons were observed in 

frontal cerebral cortex. This suggests that prenatal morphine administration has neurotoxic 

effects on both growth of fetus and neuronal proliferation and differentiation (Sadraie et al. 

2008). Similar results are from evaluation of 18 months and 3 years old infants, who were 

exposed to morphine in utero. They were more likely to have neurodevelopmental impairment 

(Hunt et al. 2008). Even though not all of these studies provide results from infants, they still 

give a suggestion of direction for further investigation, that OR are not involved only in pain 

pathways. 

On the contrary, the positive or no effect of morphine was observed as well. The effects 

of this opioid drug were studied when administered during brain growth spurt in rats. Both acute 

and chronic treatment did not alter the development of layer 5 pyramidal neurons. Only 

respiratory depression and mild acidosis were observed. Chronic exposure at early stages of 

brain growth caused higher proportions of spines with smaller head diameter (Massa et al. 2012). 

Neither lumbar intrathecal injections with morphine in early postnatal age in rat pups managed to 

detect an increase in neuronal injury or apoptosis. There were no long-term changes in hindlimb 

sensory thresholds or gait (Westin et al. 2010). Kim et al. (2001) demonstrated that high 

concentration of morphine has protective effects on primary rat neonatal astrocytes against NO-

related free radicals, including NO and peroxynitrite, but does not have this effect on other cells. 

Naloxone completely blocked the protective effect. The antioxidant system, such as glutathione, 



26

is required for protection of astrocytes through morphine. Pre-emptive neonatal morphine 

attenuates the consequences of neonatal injury, increases rate of recovery and reduces 

hyperalgesia after a subsequent inflammation in adulthood (Laprairie et al. 2008). Untreated pain 

in neonatal individuals may cause the damage to the immature brain and alter its development. 

However, morphine may have protective effects under conditions of pain and stress. Morphine 

seems to regulate some stress-related changes and has protective character only to certain limit. 

Opioids seem to have different effects in the presence and absence of pain (Dührsen et al. 2013). 

Comparable to these results, it was indicated that there is dose-dependent relationship between 

stress and neuronal damage and there are complex interactions of morphine with stress. Repeated 

stress in neonatal mice has a dose-dependent effect in hippocampal gene expresion, morphine 

alters subset of stress-related changes in gene expresion, which probably influences 

neurodevelopment (Juul et al. 2011).

Although, there is no evidence for long-term beneficial effects of treatment with morphine, 

there are several studies looking into negative long-term effects of pre-emptive morphine therapy 

in preterm neonates. One of them assesses children in the age of 5-7 years; ex-preterm infants 

were treated with either morphine or placebo. At age 5-7 were several physiological and 

psychological tests realized. It showed that morphine treated group has smaller circumference of 

head, smaller body weight, but height was same as in placebo group. Parents reported some 

social problems in morphine treated group and these infants needed longer time to make a choice 

in short-term memory tasks, but no effect was shown on IQ or academic results (Ferguson et al. 

2012). Other studies among 5-year old ex-preterm infants showed that usage of morphine in low 

doses does not have long-term effects (de Graaf et al. 2011; Macgregor et al. 1998). But de Graaf 

with colleagues (2011) showed slightly worse results in the morphine group in visual analysis of 

intelligence test and suggested adverse effect on executive functions, i.e. management of 

cognitive processes. However, in follow-up study at the age of 8 and 9 in same group no such 

results were confirmed (de Graaf et al. 2013).



27

7. Conclusion

Opioid receptors are very important from clinical point of view as many drugs used in 

medical care are targeting these G-protein-coupled receptors. The impact of aging is apparent 

and significant in effects of opioids or in the development of tolerance and dependance as the 

complex regulation steps of signalisation changes over the lifespan. 

One of the most used opioid drugs is morphine, which is targeting mainly MOR and 

develops rapid tolerance in chronic treatment. Both negative and positive effects of morphine 

were observed during ontogensis. Thus when using this drugs the complex of conditions such as 

age, stress and pain or duration of treatment should be taken into consideration.   

Age-dependent changes may have important clinical implications on the effectiveness of 

opioid therapy and probably it should be considered to use some opioids in relation to age as 

most of them are dosed to weight of body. 

Further study of changes of regulation steps and mainly how they interact with each other 

during ontogenesis may shed light onto signaling mechanisms and some negative effects of 

opioid usage. 
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