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Supervisor: PhDr. Boril Šopov, MSc., LL.M.

Academic Year: 2013/2014

http://www.cuni.cz/UKENG-1.html
http://fsveng.fsv.cuni.cz/FSVENG-1.html
http://ies.fsv.cuni.cz/index.php?module=board&action=board&lng=en_GB
http://samba.fsv.cuni.cz/~lastname/master_thesis
http://samba.fsv.cuni.cz/~lastname/master_thesis
http://samba.fsv.cuni.cz/~lastname/master_thesis
mailto:jprochazkova11@gmail.com
mailto:boril.sopov@gmail.com


Declaration of Authorship

The author hereby declares that she compiled this thesis independently, using

only the listed resources and literature, and the thesis has not been used to

obtain a different or the same degree.

The author grants to Charles University permission to reproduce and to dis-

tribute copies of this thesis document in whole or in part.

Prague, July 31, 2014
Signature



Acknowledgments

Hereby, I would like to express my deepest gratitude to my supervisor, Boril
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Abstract

The central issue of this thesis is investigating the eventuality of systemic break-

downs in the international financial system through examining systemic depen-

dence between bank and insurance sectors. Standard models of systemic risk

often use correlation of stock returns to evaluate the magnitude of intercon-

nectedness between financial institutions. One of the main drawbacks of this

approach is that it is oriented towards observations occurring along the central

part of the distribution and it does not capture the dependence structure of

outlying observations. To account for that, we use methodology which builds

on the Extreme Value Theory and is solely focused on capturing dependence

in extremes. The analysis is performed using the data on stock prices of the

EU largest banks and insurance companies. We study dependencies in the pre-

crisis and post-crisis period. The objective is to discover which sector poses a

higher systemic threat to the international financial stability. Also, we try to

find empirical evidence about an increase in interconnections in recent post-

crisis years. We find that in both examined periods systemic dependence in

the banking sector is higher than in the insurance sector. Our results also in-

dicate that extremal interconnections in the respective sectors increased, while

an increase in bank-to-insurer relationships is the most noticeable.
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Abstrakt

Ústředńım tématem této práce je zkoumáńı existence možnosti systémových

poruch v mezinárodńım finančńım systému prostřednictv́ım zkoumáńı systemických

závislost́ı mezi bankami a pojǐsťovnami. Standardńı modely zabývaj́ıćı se sys-

temickým rizikem většinou k posouzeńı mı́ry závislosti mezi finančńımi insti-

tucemi využ́ıvaj́ı vzájemnou korelaci akciových výnos̊u. Jedńım z hlavńıch

nedostatk̊u této metody ovšem je, že se orientuje pouze na pozorováńı, která se

vyskytuj́ı v centrálńı části rozděleńı výnos̊u, a nezachycuje strukturu závislosti

mezi odlehlými pozorováńımi. Z tohoto d̊uvodu aplikujeme metodu, která

vycháźı z Teorie extremálńıch hodnot a soustřed́ı se výhradně na zachyceńı

závislost́ı v extrémńıch hodnotách. Analýzu provád́ıme s využit́ım dat o cenách

akcíı největš́ıch bank a pojǐsťoven v Evropské Unii. Strukturu závislost́ı sle-

dujeme v obdob́ıch před kriźı a během krize. Ćılem je odhalit, který ze zk-

oumaných sektor̊u skýtá pro mezinárodńı finančńı stabilitu větš́ı hrozbu v

podobě systémových selháńı. Snaž́ıme se také źıskat empirické svědectv́ı o

nárustu extremálńıch závislost́ı v posledńıch letech. Zjǐsťujeme, že v obou

sledovaných obdob́ıch je úroveň systemických závislost́ı v bankovńım sektoru

větš́ı než v sektoru pojǐsťovnictv́ı. Naše výsledky také naznačuj́ı, že vzájemné

závislosti mezi institucemi v jednotlivých sektorech vzrostly, z nichž nejv́ıce je

zaznamenán nár̊ust závislost́ı v extrémńıch negativńıch výnosech mezi bankami

a pojǐsťovnami.
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Chapter 1

Introduction

The aftermath of recent crisis demonstrates the necessity of financial stabil-

ity in the financial system and the whole economy. With rising number of

financial insitutions operating currently in more countries or even continents,

the international financial stability is becoming increasingly important issue.

Due to the vast expansion of markets we have been witnessing over the last

several years, financial regulatory authorities have broadened their attention

beyond borders of individual countries. The cenral point of their supervision

has become the development of international financial systems. Improvements

in financial intermediation accompanied by a growing magnitude of financial

transactions and complex financial products have resulted in deepening inter-

connections among international financial systems. Such development entails

new risks. Most importantly, it creates a huge potential for an easy spread

of financial turbulences across countries. This phenomenon is known as sys-

temic risk and it has become the major contributor to the severity of the global

financial crisis 2008/2009.

The objective of this thesis is to investigate the eventuality of simultaneous

systemic breakdowns in the EU financial system through examining systemic

dependencies between bank and insurance sectors. We test the level of mutual

dependencies between financial institutions in the respective sectors as well as

across them with the aim of uncovering which sector poses higher systemic

threat to the international financial stability. The answer is important espe-

cially from the regulatory point of view. Given the very close interactions of

banks due to their operations on the interbank market, it is reasonable to as-

sume that stronger systemic dependencies will be present in the banking sector,

resulting in a higher potential to systemic risk. If this happens to be true, it
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is a clear sign for regulatory authorities to concentrate on the mitigation of

systemic threat in the banking industry by, for instance, reflecting this risk

in higher capital requirements for banks. In the opposite case, closer supervi-

sion should be pointed towards insurance companies. In addition, we examine

systemic dependencies in the pre-crisis and post-crisis period in order to find

evidence about an increase in mutual interconnections in recent years. That

would again be a signal for regulators to ultimately introduce some regulatory

measures thanks to which the international financial system would be more

stable and better prepared to resist systemic failures.

Standard models of systemic risk often employ correlation of returns to

assess the degree of interconnectedness between institutions. The concept of

correlation has gained much of its popularity in finance since it has become

a part of the Modern Portfolio Theory (Perrin and Shaw 2009). Despite its

popularity, it is necessary to stress that it effectively works as a reliable mea-

sure of dependence only when limiting assumption about normality of financial

returns is fulfilled. Nevertheless, extensive research in finance produces plenty

of evidence which is in contradiction with normality of returns. In the real

world, financial data in most cases contain many outlying observations, which

document the existence of extreme market situations. Relying on the assump-

tion of normality leads to underestimating the effect of these observations, as

they are empirically observed more frequently than the normality-based models

would suggest. To account for the effect of outliers in financial data, we apply

method which does not impose any assumption on statistical distribution and

hence allows capturing dependence in extreme stock returns. This method is

derived from the Extreme Value Theory. For application of such method in

our thesis we got inspiration from papers Slijkerman et al. (2005) and De Vries

(2009).

There are only few empirical applications in which the extreme value method-

olgy has been utilized for analysis of systemic dependence between financial

institutions. Compared to Slijkerman et al. (2005) and De Vries (2009), we

substantially extend the dataset, as we work with the sample of the top 20

largest banks and insurance companies in the European Union. It allows us

to have a notion about the level of interdependence between most systemically

important institutions and as a result, to draw meaningful conclusions about

the stability of the international financial system and threat of systemic risk

in the European Union. In addition, we are not aware of any other work that

would investigate systemic dependencies between bank and insurance groups
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in the pre-crisis and post-crisis period.

The rest of the thesis is structured as follows. Chapter 2 discusses differ-

ent sources of dependencies among bank and insurance companies that could

promote the propagation of systemic breakdowns. Chapter 3 provides a com-

prehensive review of contemporary literature on systemic risk. In Chapter 4

we introduce various statistical concepts used for the analysis of dependence

between random variables. In Chapter 5 we present methodology, data and

results of empirical application. At last, Chapter 6 concludes.



Chapter 2

Sources of Dependence among

Banks and Insurers

A smooth functioning of financial systems is conditioned by proper identifi-

cation of potential risks and sources of instabilities. Within the context of

systemic risk and its system-wide perspective, however, the identification of

mutual dependencies among those risks is of crucial importance.

In the following chapter we elaborate on linkages among banks and insur-

ance companies that may belong to driving forces in propagation of systemic

breakdowns. We develop a theoretical background by discussing sources of

interdependencies and explaining relationships underlying the thesis. In the

first section we focus on interconnections that occur among individual institu-

tions within each sector. Next, we proceed to identify channels through which

systemic risk can spread across both sectors.

2.1 Intra-sector Dependencies

In this section we provide an economic rationale for interconnections in the two

sectors separately. Firstly, we concentrate on a bank-to-bank relationship. The

same procedure is applied to entities in the insurance sector.

2.1.1 Bank-to-Bank

In general, banks are exposed to similar risks due to a homogeneous structure

of assets on their balance sheets (De Vries 2005). This is probably what put

them most in danger of simultaneous co-crashes. A typical feature of devel-

oped banking systems is the existence of interbank markets. Banks interact
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very closely on the interbank deposit markets where they either provide liquid-

ity for financing operations of other banks or, alternatively, they get funding

from them to cover temporary liquidity shortages. Apparently, these interac-

tions are beneficial for both parties; on the other hand, they create direct risk

exposures among banks (De Vries 2005). In addition, a widespread use of fi-

nancial engineering techniques encountered in recent years has contributed to

a creation of new complex financial products such as derivatives. Derivative

transactions have become a popular investing tool among banks as they en-

able an effective dispersion of risks into the system. Nevertheless, such shift

from risk concentration towards risk diversification has built up new potential

channels through which shocks may be transmitted (David and Lehar 2011).

In terms of banking operations, business activities of individual banks are to a

large degree similar and there is no wonder that significant sources of depen-

dence emerge from them. Banks’ core activities have traditionally focused on

providing long-term loans, mortgages and other forms of credit. In addition to

direct credit risk exposures arising from loan provisions, these activities also

interconnect banks indirectly through changes in macroeconomic environment.

For instance, the level of interest rates set by the central bank is a key driver

of banks’ credit risk, as it considerably influences the extent of counterparties’

defaults (De Vries 2005).

Focusing now on dependencies stemming from banks’ liabilities, one can

also find a number of risk exposures that banks have in common. Liability side

of banks’ balance sheets is for the most part composed of customers’ short-term

deposits. Contrary to credit risk, which is closely connected to banks’ assets,

banks’ liabilities are associated with risks coming from the market, namely

interest rate risk and liquidity risk (Memmel and Schertler 2009). The devel-

opment of interest rates is one of the key drivers of banks’ deposit holdings, as

it determines the degree to which clients are willing to keep their investments in

banks. Instability and rapid changes in interest rates may trigger early deposit

withdrawals and induce clients to transform their investments into different

asset classes such as cash. Consequently, the volume of deposits on banks’

balance sheets may vary significantly and so banks can get into difficulties due

to insufficient liquidity (De Vries 2005).

To sum up, the magnitude of common direct and indirect interdependencies

together with their quantitative nature determine whether a shock to a bank

results in its expansion to other banks (De Nicolo and Kwast 2002).
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2.1.2 Insurer-to-Insurer

Insurance industry and its operations have been dynamically evolving over the

last decades. Such development entails two consequences. Firstly, growing im-

portance of insurance companies within financial system resulting in reinforcing

their role among other financial intermediaries. Secondly, new financial vehi-

cles offered by insurance companies and thus modification of risks the insurance

sector may encounter (Lorent 2008).

Similarly to bank-to-bank relationships, interconnections among insurance

companies primarily emerge from similarity of their balance sheets (Cummins

and Weiss 2011). Uniform structure of assets and liabilities implies that insurers

are exposed to common shocks and they have to withstand the same types of

risks.

Starting with the interlinkages on the asset side, the main activities of in-

surance companies have traditionally included covering risks faced by their

clients and transferring them to third parties. The core business of insur-

ance companies thus has been far from savings-based activities so typical for

banks. However, the ongoing development in the insurance industry extends

the long-established scope of activities to new non-core forms of business. As a

result, new risks through which insurers are interconnected arise. For instance,

nowadays insurance companies start offering vehicles with rather investment

features, such as guaranteed investment constracts, unit-linked contracts or

universal insurance contracts (Lorent 2008). These instruments make insur-

ance companies vulnerable to market fluctuations and expose them to market

risk. Moreover, advanced techniques of financial engineering produce derivative

contracts, which have become a popular investment tool within the insurance

industry. Given that derivatives are characterized by a large degree of com-

plexity and low transparency, they represent a new potential source of risk for

insurance companies (Lorent 2008). Interconnections among insurers are fur-

ther established through reinsurance (Cummins and Weiss 2011). Reinsurance

contracts represent a standard risk management tool under which insurance

companies protect themselves by purchasing re-insurance at other insurance

companies to make them participate in claims incurred. Intuitively, reinsur-

ance agreements create an intricate network of relationships among insurers

where ”the failure of major reinsurers triggers the failure of their reinsurance

counterparties who in turn default on their obligations to primary insurers”

(Cummins and Weiss 2011, p. 26). Therefore, in terms of systemic interde-
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pendencies, reinsurance business poses a significant threat to the insurance

industry.

2.2 Inter-sector Dependencies

In this section we elaborate on mutual dependencies that can be found between

bank and insurance groups.

Banks and insurance companies have had historically different functions

in the economy. Whereas the main task for banks is collecting deposits and

putting them again into circulation through providing credits, insurance com-

panies’ main activities involve risk mitigation and risk transferring. Due to

differences in business models both groups have also enjoyed differences in risk

exposures faced. However, the dynamic development in the finance industry

results in the convergence of activities of both groups and the strict distinction

between them is no longer possible. At present, interconnections across both

sectors occur as some of their operations crosses during the course of their

business. From the macro-prudential point of view, it is crucial that inter-

connections between bank and insurance groups are monitored and properly

examined.

2.2.1 Bank-to-Insurer

One possible channel of systemic risk between bank and insurance groups can be

found in declining diversity of products in their portfolios. Nowadays, insurance

companies extend the scope of their activities beyond offering solely typical in-

surance products and they assimilate more into banking-type activities (Lorent

2008). This diversion carries a potential for insurers to create interconnections

with banks. Focusing on investment activities, innovative derivative products

are increasingly popular among banks and insurers. Their popularity lies in

unique features of these instruments such as transferring risks between both

groups. Since banks act as counterparties in derivative transactions with in-

surance companies and vice versa, these transactions create a direct connection

between both groups. Moreover, widespread use of these instruments, however,

”may lead to a convergence of the investment portfolios of banks and insurers”

(Slijkerman et al. 2005, p. 9). In addition to derivatives, both groups hold in

their portfolios syndicated loans and they engage in equity investments. Similar

structure of investment portfolios thus may approximate their risk profiles and
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make them prone to systemic crashes (Slijkerman et al. 2005). Another source

of interdependencies emerges in connection with reinsurance transactions in

the insurance sector (Koijen and Yogo 2014). Banks play an important role in

these transactions. They issue letters of credit through which they collateralize

reinsurance agreements among insurers and reinsurers. When the insurance

sector happens to be hit by a systemic shock, it may ”trigger a sudden demand

for credit that constrains the banking sector” (Koijen and Yogo 2014, p. 4).



Chapter 3

Review of Literature

The recent financial crisis has pointed out the threat of systemic risk to the

financial system. As a consequence, extensive literature investigating systemic

dependencies among financial institutions has been produced in the last couple

of years. Given the fact that banks have been traditionally regarded as the

most systemically important, the major research of the field concentrates pre-

dominantly on the banking system. In this chapter we present a broad overview

of contemporary literature on systemic risk and systemic interconnections.

3.1 Systemic Risk and Financial Structure

The first presented is a group of papers examining a relationship between the

manner in which systemic risk propagates through the system and a network

structure financial entities form with each other.

Gai and Kapadia (2010) examine the propagation of financial contagion

in networks of institutions having arbitrary financial structure. The authors

argue that in addition to traditional risk exposures which arise from banking

operations on the interbank market, there also exist some indirect linkages and

these are connected to banking assets. Both types of interconnections then

determine the severity with which systemic risk propagates. The authors de-

tect ’robust-yet-fragile tendency’, meaning that financial systems characterized

by a high level of interconnectedness are less likely to suffer contagion; how-

ever, once it occurs it tends to bring widespread consequences. Ladley (2011)

claims that a recipe for an optimal financial network which would best cope

with the effects of contagion does not exist, as it largely depends on nature

and size of a shock. He comes to the conclusion that highly interconnected
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financial structures are better able to resist contagion occurring as a result of

small shocks, whereas more intensive shocks worsen their impacts. Another

contribution into the existing literature is the paper proposed by Allen and

Gale (2000). Similarly to other authors, they focus on the way financial conta-

gion moves through the interbank market and what consequences it brings to

the stability of financial system. The authors argue that complete interbank

structure characterized by symmetric bank-to-bank exposures is more resilient

to contagion, as thanks to such favorable network liquidity shocks may evenly

distribute into the system and their adverse effect is minimized. Babus (2007)

produces a paper which is basically an extension of the analysis performed by

Allen and Gale (2000). Her novelty is in allowing the financial network to be

modeled endogenously. The key findings in her analysis reveal that banks have

capacity to form networks that completely eliminate the potential for conta-

gion. Contrary to the outcome of Ladley (2011) who claims that no optimal

financial network can be achieved, Babus comes to the conclusion that there ex-

ist an equilibrium network among banks for which the probability of contagion

is approaching zero. Castiglionesi and Navarro (2010) also study the financial

network modeled endogenously. The authors highlight fragility of financial net-

work stemming from risky operations that banks undertake as a consequence of

insufficient capital stock. Nevertheless, even the fragile financial network can

be stable provided that banks hold enough capital to abandon moral hazard.

At last, Anand et al. (2011) investigate the potential for spread of systemic risk

in a financial structure comprising three mutually interconnected market par-

ticipants. These include domestic banks, international financial intermediaries

and business companies. Their model uncovers that modern financial systems

characterized by a diverse heterogeneity and large degree of interconnectedness

are vulnerable to system-wide breakdowns.

3.2 Systemic Dependencies among Banks

Subsequently, we present a group of papers investigating systemic dependencies

in banking systems. It is widely accepted that banks are extremely vulnerable

to systemic risk, as they get into close interactions due to their interbank

cooperation and similarity of activities. Hence, most empirical studies focus

their attention on developing methods for measuring dependencies in banking

systems.
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Hartmann et al. (2005) examine interdependencies of banks’ stock returns

in the United States and the Euro area and in both banking sectors they use

it as an indicator of systemic risk. The authors utilize an econometric measure

drawing on the Extreme value theory. Their findings suggest that the Euro

banking system presents higher stability as opposed to the US banking sector,

which is more vulnerable to systemic failures. Also, the importance of systemic

risk has increased substantially since 1990’s in both banking systems. Árvai

et al. (2009) study potential spillover effects through financial interconnections

between countries of Central, Eastern and Southeastern Europe (CESE) and

Western European countries. In addition, they also analyze the magnitude of

financial exposures across borders. They come to the conclusion that ”finan-

cial interlinkages within Europe are economically significant” (Árvai et al. 2009,

p. 5). Moreover, they uncover that the majority of CESE countries is highly

connected to banks located in Western Europe, whereas the same does not hold

for the dependence of European banks on CESE countries. There are only two

exceptions , Austria and Sweden. Elsinger et al. (2006) use data on Austrian

banks to evaluate how resilient the banking system is to systemic breakdowns.

The authors combine standard risk management instruments drawing on corre-

lation with a model encompassing interbank loans. Their key findings suggest

that banks’ portfolios of assets are highly correlated and the correlation is the

main driver of systemic risk. Moreover, contagion in the banking system oc-

curs rarely, but its widespread effects can damage a great deal of the banking

sector. Festic et al. (2011) examine a relationship between the development

of non-performing loans and a set of macroeconomic variables at a sample of

Baltic countries enlarged about Bulgaria and Romania. They succeeded to

confirm a hypothesis that the growth of credit volume might threaten the per-

formance of the banking system. With respect to a performance of the Czech

banking sector, Cihak et al. (2007) present the outcome of their paper stating

that the Czech banking sector is resilient enough to withstand potential adverse

effects of macroeconomic and prudential shocks. Despite the stability of the

banking sector as a whole, the authors recognize that some banks are more or

less sensitive to certain shocks. They particularly mention a shock to interest

rate and interbank contagion. At last, De Vries (2005) argues that there are

several channels through which banks are interconnected, and the risk of sys-

temic breakdowns exists as a consequence of similar exposures. In his concept

asset as well as liability side of banks’ balance sheets can be regarded as a linear

combination of risks. The potential for systemic breakdowns varies depending
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on the distribution of banking exposures. He concludes that exposures hav-

ing normal distribution lead to weak tendencies to systemic risk, whereas fat

tailed exposures occurring more frequently in financial systems cause a strong

potential for systemic risk.

3.3 Systemic Dependencies beyond Banks

At last, we present a group of empirical studies examining systemic dependence

between banks and other financial subsystems including insurance companies,

pension funds, mutual funds, etc.

To begin with, we summarize papers where analysis of systemic risk is

mostly carried out using the methodology based on the Extreme value theory.

Systemic risk is here characterized by mutual dependencies in lower tails of

distributions of stock returns. De Vries (2009) examines systemic risk in Eu-

rope by studying interconnections between the two most important financial

subsystems; banks and insurance companies. The author models dependencies

within and across both sectors. With respect to within-sector dependencies,

he concludes that higher downside risk is hidden in insurance sector. Regard-

ing cross-sector interdependencies, these are of rather negligible importance.

Similarly to De Vries (2009), Slijkerman et al. (2005) also concentrate on dif-

ferences in downside risk between European bank and insurance groups. Using

first a normal distribution measure, they reveal that such method appears to

be inappropriate for measuring systemic risk, as it strongly underestimates the

magnitude of downside risk. To account for that, the authors present an alter-

native measure which is better able to address downside dependence present in

the data. The authors’ findings suggest that ”risk dependence between a bank

and an insurer is significantly different from the dependence structure between

two banks or between two insurers” (Slijkerman et al. 2005, p. 22). Bühler and

Prokopczuk (2010) compare the magnitude of systemic dependencies between

the banking industry and other financial and non-financial sectors. Employ-

ing data for the US economy, they find evidence for high systemic risk in the

banking sector, whereas negligible systemic risk is detected in the insurance

sector. Moreover, they reveal a negative relationship between the magnitude

of systemic risk end the actual state of the economy. Billio et al. (2010) in-

vestigate interdependencies between four financial industries including banks,

brokers, hedge funds and insurance companies. As opposed to the other papers

mentioned in this group, they apply distinct econometric measures. Outcomes
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of Principal components analysis and Granger-causality test suggest that inter-

dependencies significantly increased during the last decade and systemic risk

appears as a result of complex network of relationships among the selected sec-

tors. Also, the authors emphasize that selected methodology serves as a good

indicator of crisis periods.

Secondly, there is a broad literature applying standard correlation to cap-

ture systemic dependence between financial institutions. Patro et al. (2013)

find correlation of stock returns as a reliable indicator of systemic risk among

financial institutions. They analyze daily changes in correlation on a sample of

the largest bank holding companies and investment banks. Their findings sup-

port the view that correlation of stock returns in the banking industry follows

an increasing trend, whereas no obvious trend can be observed in stock returns

correlation among non-banking entities. Huang et al. (2012) examine systemic

risk tendencies in banking systems of eight countries belonging geographically

to the regions of Asia and the Pacific. To illustrate how global crisis spread to

Asian area, the authors develop a unique systemic risk measure, which allows

detecting the likelihood with which individual banks might default as well as

correlation among defaults. De Nicolo and Kwast (2002) use a sample of US

large banks to analyze the development of stock returns correlation over time.

Concluding that dependence among bank institutions follows a positive trend,

their findings confirm the outcomes of many authors saying that systemic risk

in the financial sector has increased markedly in recent years. Following De

Nicolo and Kwast (2002), Schüller (2002) employs identical methodology and

looks for the evidence whether systemic dependencies among banks exist also

at the European level. He manages to confirm his hypothesis and concludes

that a potential for systemic risk in Europe increased substantially over the 15

years horizon.



Chapter 4

Measures of Dependence

In statistical terms, dependence is used to describe a statistical relationship

between random variables. It may arise when stochastic behavior of variables

which are scrutinized is somehow interlinked (Coles et al. 1999). Estimating the

level of dependence between risky financial assets has become a central issue in

a variety of financial applications including portfolio theory, risk management,

option pricing and hedging (Mashal and Zeevi 2002). In particular, it plays a

significant role when assessing the total magnitude of risk exposures.

We present various measures of dependence in this chapter. The first sec-

tion is devoted to conventional dependence measures. An approach based on

simple correlation has been historically employed as a standard measure of

dependence. Nevertheless, given the limitations of its use, risk management

welcomes alternative measures examining dependencies beyond classical cor-

relation. Those are provided in the second section. At last, extreme value

methodology is introduced in the third section. Its uniqueness lies in the fact

that unlike classical correlation, which examines dependence structure of ordi-

nary values gathering around the centre of the distribution, the extreme value

measure studies dependence in extremes. With respect to an empirical applica-

tion focused on the estimation of extreme dependence afterwards, this section

will be of a particular importance.

4.1 Conventional Dependence Measures

In modern finance, dependence is often interchanged with correlation. However,

one needs to distinguish both terms, as they are not identical. Correlation is

a limited concept and very often leads to a misleading inference on actual
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dependencies (Mashal and Zeevi 2002). In the following subsection we focus in

more details on the ordinary Pearson linear correlation. It produces a single

number summarizing the information about the dependence structure between

two random variables.

4.1.1 Pearson Linear Correlation

This subsection draws on Embrechts et al. (1999), Bradley and Taqqu (2001)

and McNeil et al. (2005).

Pearson correlation is a measure of linear dependence between two vari-

ables. Due to its computational simplicity and some other useful properties,

it represents one of the most popular instruments for measuring dependence

and is widely used in the finance industry. Nevertheless, in order to provide a

valid conclusion, some restrictions on the statistical distribution of returns are

imposed. It is necessary to keep in mind that correlation only provides reason-

able inference about the dependence between assets, when multivariate normal

distribution is taken into account. If it is not the case, correlation ceases to be

a reliable measure of dependence.

Let us consider X and Y to be a pair of random variables. The linear

correlation coefficient between both variables can be then expressed as:

ρ[X, Y ] =
Cov[X,Y]√

Var[X]V ar[Y ]
=
E[XY ]− E[X]E[Y ]

σ[X]σ[Y ]
,

where the numerator of the equation denotes covariance between X and Y and

the denominator contains squared roots of variances of X and Y .

The above formula suggets that correlation can only be defined when vari-

ances of random variables are assumed finite. When this assumption holds, Y

is almost surely an affine transformation of X, that is Y = aX + b for any

arbitrary constant a ∈ R\{0}, b ∈ R, and the correlation coefficient takes on

values within the interval
〈
-1,1
〉
.

Let us now take a look at some specific cases of dependence between random

variables. If random variables X and Y are independent, then cov[X, Y ] = 0

and so ρ[X, Y ] = 0. It is important to stress that the converse implication does

not hold, since ρ[X, Y ] = 0 does not automatically imply the independence of

the random variables. If the relationship between X and Y is characterized by

a perfect linear dependence, it holds that Y = aX + b almost surely for a ∈
R\{0}, b ∈ R, and ρ[X, Y ] = 1 in case of the positive perfect linear dependence
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and ρ[X, Y ] = −1 in case of the negative perfect linear dependence. If X and

Y are imperfectly linearly dependent, the correlation coefficient ρ[X, Y ] is to

be found within interval (-1,1).

Limitations of Correlation

Having introduced the concept of correlation, we briefly summarize its main

drawbacks.

• Firstly, correlation cannot be defined when variances of two random vari-

ables are not finite. Complications occur particularly when working with

heavy-tail distributed data. It is an empirical fact that distribution of

returns in the finance industry is far from being normal and shows the

presence of fat tails. In such a world, correlation is not apparently an

ideal measure (Embrechts et al. 1999).

• Another contra-argument is the absence of direct implication of indepen-

dence from zero correlation. More precisely, independence in the data

implies zero correlation, yet the zero correlation does not necessarily im-

plies independence (Embrechts et al. 1999). A simple example supporting

this claim can be found in Embrechts et al. (1999). Let us consider X

and Y to be two random variables with the following properties. X is

normally distributed with zero mean value and constant variance, i. e.

X ∼ N(0, σ2), and Y = X2. Then the covariance of X and Y yields:

Cov[XY ] = E[XY ]− E[X]E[Y ] = E[X3]− 0E[Y ] = E[X3] = 0.

Eventually, we can see that both variables prove strong dependence struc-

ture even despite their uncorrelatedness. This is so because X and Y

are marginally normally distributed, yet not jointly normally distributed.

Hence, the multivariate normal distribution is an ultimate assumption

for zero correlation to imply independence (Embrechts et al. 1999).

• Third, risk management is particularly concerned with the left-hand part

of the distribution of returns. Therefore, while at the forefront is mod-

elling left-tailed loss dependence, correlation is a rather global measure,

which is mainly driven by observations coming from the centre of the dis-

tribution (De Vries 2009). If the dependence of tail observations differs

significantly, a financial institution relying entirely on the conclusion of
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correlation could be exposed to a threat of bankruptcy. Hence, linear cor-

relation is not a meaningful concept for modeling dependence in extremes

(Poon et al. 2003).

• Finally, correlation analysis is a rational measure of dependence only for

linear relationships. For increasing transformations which are strictly

linear it thus satisfies (Embrechts et al. 1999):

ρ(αX + β, γY + δ) = ρ(X, Y ),

where α, γ ∈ R\{0} and β, δ ∈ R. However, for non-linear transforma-

tions T : R→ R it generally holds:

ρ(T (X), T (Y )) 6= ρ(X, Y ).

4.2 Alternative Dependence Measures

Limitations of linear correlation summarized in the previous subsection provide

the main justification why it is often not an appropriate measure for analysis

of dependence of financial risks. As a result, there is a need for alternative

measures of dependence. In the following subsections the concept of copulas as

well as other dependence measures derived from copulas are introduced.

4.2.1 Copulas

To estimate the overall riskiness of a portfolio of assets, one needs to get well

familiar with the complete joint distribution of risk factors. Every joint distri-

bution function is basically delineated by two partial elements. The first is a

marginal distribution of individual risk factors; the latter involves their mutual

dependence. A copula is a tool for extracting the dependence structure (McNeil

et al. 2005).

This concept is useful to be defined from a number of reasons. Copulas can

be surely regarded as a superior measure to simple linear correlation, as they

allow better understanding of the dependence. Thanks to a quantile scale rep-

resentation of dependence, they are especially useful for describing dependence

in extremes. They find wide applications in risk management where marginal

behaviour of individual risk factors is usually easier to detect than the depen-

dence structure of these factors. In terms of credit risk, for instance, in spite of
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the fact that estimating an individual’s default probability is a challenge itself,

it is still more passable to handle than estimating dependence among default

probabilities of several obligors. Lastly, the copula approach also forms the

basis for defining other alternatives for dependence modelling (McNeil et al.

2005).

The Copula Function and Properties

Following Coles et al. (1999) and Embrechts et al. (1999), we introduce the

copula function for a random vector (X1, X2, . . . , Xn)T .

The distribution function which describes the dependence structure among

given random variables has the form:

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

We further suppose that the marginal distribution functions for the vector

(X1, . . . , Xn) are continuous, i. e. Fi(X) = P (Xi ≤ x). A copula is such mul-

tivariate distribution function for which marginal distributions are uniform.

Hence, we need to somehow transform marginal distributions into the required

uniformity. This can be achieved by applying the probability integral transfor-

mation T:

T : Rn 7→ Rn, (x1, x2, . . . , xn)T 7→ (F1(x1), F2(x2), . . . , Fn(xn))T .

Having gained uniform marginal distributions, the copula of the random vec-

tor (X1, X2, . . . , Xn)T is then defined as the joint distribution function C of

(F1(X1), F2(X2), . . . , Fn(Xn))T :

F (x1, x2, . . . , xn) = P [F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)]

= C[F1(x1), F2(x2), . . . , Fn(xn)].

Ultimately, the function C contains complete information about the joint be-

haviour of random variables (X1, X2, . . . , Xn), whereas neglecting the informa-

tion about their marginal distributions. As stated in McNeil et al. (2005), an

n-dimensional copula C(u) = C(u1, u2, . . . , un) needs to satisfy the following

properties:

• C(u1, u2, . . . , un) is increasing in each component ui, i = 1, . . . , n.

• C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , n}; ui ∈ [0, 1].
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• For all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi we have

2∑
i1=1

. . .

2∑
in=1

(−1)i1+...+inC(u1i1 , . . . , unin) ≥ 0,

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , n}.

4.2.2 Rank Correlation

Rank correlation is a dependence measure of a copula-based type. This char-

acteristic gives the measure better properties than the standard Pearson linear

correlation. Unlike linear correlation, which depends on the copula of a bi-

variate distribution as well as on the marginal distribution probabilities, rank

correlation does not rely on the marginal distributions. The name of the statis-

tics indicates what its main idea is. Rank correlation examines the relationship

between the ranks of particular variables. To be more precise, the rank statis-

tics is only interested in the ordering of observations of a particular variable

instead of focusing on actual values (McNeil et al. 2005).

The two well-known rank correlations are Kendall’s tau and Spearman’s

rho. As stated in Embrechts et al. (2001), they stand for the best alternative

measures of dependence for the class of non-elliptical distributions, for which

the linear correlation coefficient provides a misleading conclusion.

Following McNeil et al. (2005), the Kendall’s correlation can be viewed as

a measure of concordance for a category of bivariate random vectors. Let us

assume (x1, y1) and (x2, y2) to be points defined in R2. These are denoted as

• concordant if (x1 − x2)(y1 − y2) > 0

• discordant if (x1 − x2)(y1 − y2) < 0.

Considering further a pair of random vectors (X1, Y1) and (X2, Y2), both having

the same distribution but the vector (X2, Y2) being independent of (X1, Y1),

Kendall’s rank correlation can be expressed simply as a difference of probability

of concordance and probability of discordance:

ρτ (X1, Y1) = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].

Regarding the second rank correlation measure, Spearman’s rho, it can be ex-

pressed similarly to Kendall’s tau in terms of concordance and discordance.
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Considering random vectors (X1, Y1), (X2, Y2) and (X3, Y3) being independent,

Spearman’s rank correlation for the random vector (X1, Y1) is defined as (Em-

brechts et al. 2001):

ρS(X1, Y1) = 3
(
P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]

)
.

The truth is that literature often offers more intuitive definition based on cop-

ulas. Following the definition provided in McNeil et al. (2005), Spearman’s

rho for two random variables X and Y with distribution functions F1 and F2,

respectively, can be expressed as:

ρS(X, Y ) = ρ
(
F1(X), F2(Y )

)
.

4.3 Extreme Value Measures

The risk of extreme events is ubiquitous in all areas of finance and being able

to effectively handle it is one of the major tasks for risk management. This

section deals with the issue of extreme values and more importantly, extreme

value dependence. Given the fact that the Extreme value theory (EVT) is a

central theory in the area of extreme values and forms the basis for modelling

extremal dependence in the empirical part, we first introduce the EVT in more

details and subsequently we proceed with methods which are commonly applied

for analyzing dependence in extremes.

4.3.1 Extreme Value Theory

Extreme market events have occurred several times in the past. As a typical

example one can recall the Stock market crash in October 1987, the Asian

currency crisis in 1997 or, most recently, the Global financial crisis 2008/ 2009.

The definition of an extreme market event is straightforward, as it is pretty clear

from features common to the mentioned examples. Common denominators

are mainly very low probability of occurrence, unexpectedness, and damaging

consequences which, in the worst-case scenario, expand far beyond national

borders.

Market conditions under stress are of considerable interest to regulatory

authorities, as they are aware of stress events as a significant source of systemic

risk. To protect the financial system as a whole, they impose requirements on

the minimum amount of capital that financial institutions have to put aside
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to absorb large losses (Longin 2000). For ensuring that financial institutions

are able to withstand exceptional market movements, it is vital to be able

to determine the impact of those events on institutions, their returns, and

subsequently, to model extreme returns as accurately as possible.

From the statistical point of view, extremes of random processes are com-

mon to both sides of the distribution of returns. A financial entity may en-

counter extreme positive returns lying on the right-hand tail of the distribution,

yet of much greater importance are extreme negative returns, which appear on

the left-hand tail. The EVT is a branch of statistics which is concerned with

modelling these tails of the distribution (Longin 2000).

The uniqueness of this approach lies in its ability to deal with challenges

such as lack of data. For instance, if our aim is to estimate the likelihood of a

one-in-thousand years event, it is hardly possible to collect sufficient historical

observations. However, the EVT can handle it as ”it approaches the modelling

of these rare and damaging events in a statistical sound way”(Bradley and

Taqqu 2001, p. 39).

The limit theory of extremes has been developed in parallel with another

theory of asymptotic behavior, namely the Central limit theory (CLT) (De

Haan and Ferreira 2006). Following De Haan and Ferreira (2006), for random

variables X1, X2, . . . , Xn ∼ iid (independent and identically distributed), the

limit behaviour described by CLT isX1+X2 . . .+Xn as n→∞. To find extreme

value distributions, that is the limit distributions for max(X1, X2, . . . , Xn), let

us assume x̂ to be the right-end observation of the underlying distribution

function F , that is x̂ := sup{x : F (x) < 1}. Then

max(X1, X2, . . . , Xn)
Pr−→ x̂, n→∞,

where
Pr−→ refers to the convergence in probability, since it holds that

P
(
max(X1, X2, . . . , Xn) ≤ x

)
= P (X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x) = F n(x).

For x < x̂ the probability approaches zero, for x ≥ x̂ it goes to one. Because

we wish max(X1, X2, . . . , Xn) to have a non-degenerate limit as n → ∞, we

need to normalize it. Therefore, we suppose the existence of norming constants

αn > 0 and βn ∈ R, for which the normalized maximum

max(X1, X2, . . . , Xn)− βn
αn
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follows a non-degenerate limit distribution, such that

lim
n→∞

F n(αnx+ βn) = G(x), (4.1)

for ∀x from a non-degenerate distribution G (De Haan and Ferreira 2006).

Generalized Extreme Value Distribution

The existence of non-degenerate function as in (5.1) guarantees that the limit

of the extreme is characterized by one of a group of extreme value distributions.

The group contains the Gumbel (γz), the Frechet (τz) or the Weibul (ωz) type

of distibution (Poon et al. 2003). These distributions have the following form

(Bradley and Taqqu 2001):

γz(x) = exp{−e−x}, x ∈ R

τz(x) =

{
0 for x ≤ 0, z > 0

exp{−x−z} for x > 0, z > 0

ωz(x) =

{
exp{−(−x)z} for x ≤ 0, z > 0

1 for x > 0, z > 0

The Generalized Extreme Value Distribution (GEV) has been developed within

the EVT as a model integrating the three extreme value distributions into a

single one. Therefore, the GEV can be expressed as (Poon et al. 2003):

Gξ,µ,σ(x) =

{
exp{−

(
1 + ξ(x− µ)/σ

)−1/ξ} for ξ 6= 0

exp{−e−(x−µ)/σ} for ξ = 0,

where ξ ∈ R denotes the shape parameter of G, µ ∈ R is the location pa-

rameter, and σ > 0 stands for the scale parameter. The distribution of the

extreme is hidden in the the shape paremeter ξ, which is also reffered to as the

tail index. The value of ξ specifies by which particular extreme value type the

GEV distribution is driven. When ξ > 0, the GEV corresponds to the Frechet

distribution. In case that ξ < 0, it follows the negative Weibul distribution.

Eventually, when ξ = 0, the GEV is driven by the Gumbel distribution.

To keep it in perspective, for normally distributed data the maximum value

corresponds to the Gumbell distribution. However, research in recent years

has brought enough evidence for the presence of heavy tails in financial data.1

1See for instance Müller et al. (1998) or Cont (2001).
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Therefore, in reality extreme values are likely to follow the Frechet distribution

(Poon et al. 2003).

4.3.2 Extreme Value Identification

Two approaches can be basically used for identification of extremes in the data

(McNeil 1999). The historicaly older approach is represented by the Block

maxima method (BM), which simply models the largest observations in a set of

identically distributed random variables. The extremes are modelled using the

GEV distribution described in more details in the previous subsection. Due to

high data demands, however, the applicability of this method is somewhat lim-

ited in practice. The more recent approach is the Peak-over-threshold (POT).

This method is widely used in most empirical applications as it manages to bet-

ter cope with the limited amount of data on extremes (McNeil 1999). The idea

of this approach is to model values exceeding a certain high threshold rather

than largest observations only. When the collection of observations occurring

above the specific threshold is available, the POT method is more appropriate

for extremes identification, since relying solely on maximum values from a fixed

interval could impoverish the analysis (Poon et al. 2003). Selecting an optimal

value of the threshold is the most challenging part in the POT analysis and

it requires that the trade-off between bias and inefficiency has to be carefully

optimised (Longin and Solnik 2001). On one hand, a low threshold value pro-

duces too many threshold exceedances, which leads to biases in estimation due

to the fact that excessive number of observations is involved in the tail analysis.

On the other hand, if the threshold value is determined too high, the opposite

problem arises as only few observations happen to exceed it. As a consequence,

inefficient estimates with large standard errors are produced (Longin and Sol-

nik 2001). To deal with the issue of threshold selection, a variety of diagnostic

tools can be applied. One possible technique is a bootstrap method ”which

produces an optimal value that minimizes the empirical mean square errors of

the tails index”(Poon et al. 2003, p. 934).

In terms of the distribution of threshold exceedances, these follow the Gen-

eralized Pareto Distribution (GPD) (McNeil 1999). The functional form of the

GPD is:

GPDξ,β(x) =

{
1− (1 + ξx/β)−1/ξ for ξ 6= 0

1− exp(−x/β) for ξ = 0,

where β > 0 is a scaling parameter and ξ ∈ R stands for the tail index. The
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tail index ξ provides information about the nature of tail. For the purpose of

risk management, the case when ξ > 0 is of the highest relevance, as it refers

to the distribution with heavy tails (McNeil 1999). Heavy tails are typical for

instance for the Student-t distribution. When ξ < 0, the GPD corresponds to

a finite distribution with completely eliminated tails. This type is common for

normal or log-normal distributions. At last, exponential distribution refers to

the case when the tail index ξ is equal to zero (Longin and Solnik 2001).



Chapter 5

Modelling Systemic Dependence

The previous chapters were aimed at constituting theoretical background for

empirical application. As already mentioned, contemporary literature is not

abundant in papers exploring systemic risk in the insurance industry. Indis-

pensable role of banks in the financial system leads to the fact that most re-

search in this field concentrates on the banking sector. Nevertheless, the in-

surance sector undoubtedly occupies a position of the second most important

financial subsystem. In addition, in Chapter 2 we presented numerous sources

of linkages among banks and insurers. These provide additional reasoning why

insurance companies should be more scrutinized in the context of systemic risk.

The objective of this chapter is to contribute to the scarce literature by

exploring systemic dependence between bank and insurance groups. After a

brief introduction of systemic risk, we present data, the applied methodology

and subsequently we proceed with empirical estimation.

5.1 Systemic Risk

The central issue of this thesis is investigating a depth of systemic dependencies

between bank and insurance groups. There is no doubt that similar interdepen-

dencies contribute largely to the creation of systemic risk in financial markets,

as they have a potential to result in systemic failures. Hence, this section will

introduce briefly systemic risk in the context of financial systems and it will

uncover the relevance of its control for maintaining financial stability.

To get a very general idea, systemic risk can be encountered in various areas

of human life. For the simplest possible illustration De Bandt and Hartmann

(2000) point at epidemic diseases. At the beginning individuals get contami-
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nated by a disease and due to mutual interactions with other people the con-

tamination propagates through population. Initially local problem with only

a minor impact is continually growing to larger dimensions and it eventually

results in a disaster with widespread consequences. This elementary example

is a good representation of this phenomenon as it fully captures the essence of

systemic risk.

In the light of recent economic events, systemic risk is most notably con-

nected with financial sphere and institutions operating there. For the defini-

tion of systemic risk in financial systems, let us first clarify basic elements.

De Bandt and Hartmann (2000) define a systemic event from two different

perspectives. Their ”closer concept” refers to an event ”where the release of

”bad news” about a financial institution , or even its failure, or the crash of

financial market leads in a sequential fashion to considerable adverse effects

on one or several other financial institutions or markets, e.g. their failure or

crash”(De Bandt and Hartmann 2000, p. 10). The typical characteristic is the

domino effect, which causes that troubles in individual entities spread to the

others. In addition, their ”broader concept” encompasses also ”simultaneous

adverse effects on a large number of institutions or markets as a consequence

of severe and widespread shocks” (De Bandt and Hartmann 2000, p. 10). It is

hardly possible to find a unique definition of systemic risk, nonetheless, there

is a factor that all definitions have in common. It is always associated with

a triggering event, which may have different forms (economic shock, failure

of an institution, etc), resulting in a chain of adverse economic consequences

(Schwarcz 2008).

Direct consequences of the recent crisis, a classic systemic risk event, are

attempts of regulators to build a better operating financial system robust to

random shocks. To achieve this, it is vital that sources of systemic risk are prop-

erly identified and controlled. According to BIS (2009), financial institutions

such as banks and insurance companies should receive a special attention.

5.2 Data Description

The objective of the empirical part of the thesis is to investigate the level of

systemic dependence between bank and insurance groups. Our data consists of

historical closing stock prices of the EU banks and insurance companies publicly

listed on the stock exchange. We focus our analysis on the sample of 20 banks

and 20 insurance companies. We impose several criteria on institutions in the
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sample. First, we choose banks and insurance companies that rank among the

largest in the EU, as we assume that those are the most systemically important

and so they could play a major role in the propagation of systemic risk. With

respect to that, the total volume of assets is used as an indicator determining

the size of companies. Next, selected institutions are listed on local stock

exchanges and their history provides sufficient length of time series. The final

ranking of the 20 largest banks and insurance companies has been set based

on the Forbes Global 2000, which provides information about the world’s top

2000 public companies.

For most banks and insurance companies in the sample the time series

is continually available from early 1999. The most recent observations come

from April 2014. Data has been collected in daily frequencies. Therefore, the

overall time span covers the period from January 4th, 1999 to April 17th, 2014,

generating on average 3800 daily observations for each time series. All data

has been downloaded from Bloomberg.

Table 5.1 presents the selected banks and insurance companies.1

Table 5.1: Selected Companies

Rank Bank Notation Insurer Notation
1 HSBC Holdings HSBA ING Group INGA
2 Deutsche Bank DBK AXA Group CS
3 BNP Paribas BNP Allianz ALV
4 Credit Agricole ACA Generali Group G
5 Barclays BARC Legal & General Gr. LGEN
6 Royal Bank of Scotland RBS Aviva AV
7 Societe Generale GLE Prudential PRU
8 Banco Santander SAN Aegon AGN
9 Lloyds Banking Group LLOY CNP Assurances CNP
10 Unicredit Group UCG Munich Re MUV2
11 Nordea Bank NDA Ageas AGS
12 Banco Bilbao Vizcaya BBVA Unipol Gruppo UNI
13 Commerzbank CBK Mapfre MAP
14 Intesa Sanpaolo ISP Vienna Insurance VIG
15 Natixis KN Mediolanum MED
16 Standard Chartered STAN SCOR SCR
17 Danske Bank DANSKE Sampo SAMAS
18 Dexia DEXB Uniqua UQA

19 Enskilda Banken SEBA Nďż˝rnberger NBG6
20 Svenska Handelsbank SHBA Catolica Assicurazi CASS

Source: Author

All banks in the sample belong to the group of major banks operating

internationally except for Nordea Bank, which operates only regionally. Credit

1For more details on the sample institutions see Table A.1 and Table A.2 in AppendixA.
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Agricole is the only institution not providing a full range time series, however,

given the fact that it belongs to the top 5 EU banks, we decide to keep it in

the sample, as its potential systemic impact is likely to be truly relevant.

Focusing on insurance companies, our sample involves insurance companies

providing two different types of insurance services, namely diversified insurance

and life & health insurance. When it comes to the selection of insurers, slight

changes in the final ranking had to be made, as some institutions did not

fulfilled the given criteria. For instance Standard Life, Delta Lloyd and Talanx

were ommited from the sample, since they entered stock exchange in 2006,

2009 and 2012 respectively, and their short time series are not suitable for our

analysis.

5.2.1 Descriptive Statistics

We convert the daily close values into the daily logarithmic returns in order

to reflect intra-day changes in prices. Table 5.2 and Table 5.3 provide descrip-

tive statistics for the banks’ and insurance companies’ equity returns over the

period January 4th, 1999 up to April 17, 2014. Further in the analysis we

are interested in examining daily loss returns, because negative values, and

extreme negative values in particular, should be gained major attention from

the risk management point of view. Therefore, to make our analysis simplier,

we consider losses as positive numbers, meaning that maxima in Table 5.2 and

Table 5.3 correspond to maximum losses and minima apply to maximum gains.

The very first impression from the data check seems to be in favour of non-

normality of returns. For the majority of banks in the sample the quity returns

are negatively skewed, suggesting the existence of longer left tail. Kurtosis also

indicates sharper peaks for all banks. High values of kurtosis suggest that the

returns are driven by leptokurtic distribution. To draw precise conclusion about

the nature of the data, we formally test normality of returns using the Jarque-

Bera test. The results are available in AppendixA. Based on the test, normality

is strongly rejected for all banks, which gives support to the stylized fact about

the non-normal distribution of financial data. The largest loss observed applies

to Royal Bank of Scotland and it amounts to 66.7 %. This extreme movement

came up between January 16, 2009 and January 19, 2009, when during one

day the RBS equity price dropped from 3.94332 EUR to 1.27924 EUR. We

definitely attribute this price drop to the events accompanying the Lehman

bankruptcy, as it only reflects the general trend of falling stock market prices
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shortly after the outbreak of the crisis. More interestingly, another extreme

loss of more than 40 % occured between exactly the same days at Lloyds Bank,

suggesting that this period brought truly hard times to British banks.

Table 5.2: Descriptive statistics for the banks’ daily equity returns

Mean Min. Max. St. Dev. Skewness Kurtosis
HSBA 0.0000 -0.1516 0.2200 0.0189 0.2888 11.6723
DBK 0.0001 -0.2252 0.1712 0.0254 -0.1712 7.3358
BNP -0.0001 -0.1898 0.1893 0.0250 -0.2826 7.5728
ACA 0.0001 -0.2336 0.1435 0.0273 -0.2616 6.0762
BARC 0.0001 -0.5484 0.2938 0.0313 -1.1403 33.6055
RBS 0.0007 -0.3091 0.6672 0.0353 4.0465 82.1190
GLE -0.0001 -0.2143 0.1771 0.0279 -0.0544 5.9628
SAN 0.0000 -0.2088 0.1280 0.0225 -0.2275 5.8301
LLOY 0.0005 -0.4120 0.4190 0.0319 0.8356 32.6873
UCG 0.0004 -0.1901 0.1895 0.0264 0.0874 6.9426
NDA -0.0002 -0.1776 0.1386 0.0236 -0.2960 5.2381
BBVA 0.0001 -0.1991 0.1454 0.0220 -0.2864 5.3934
CBK 0.0007 -0.1973 0.2825 0.0296 0.0485 7.7361
ISP 0.0002 -0.1796 0.1846 0.0259 0.0967 5.4555
KN -0.0001 -0.3279 0.1922 0.0271 -0.6741 16.1021
STAN -0.0002 -0.2811 0.1789 0.0259 -0.2529 10.3451
DANSKE -0.0002 -0.1397 0.1718 0.0209 0.0617 5.4326
DEXB 0.0015 -0.6931 0.4055 0.0642 -0.2386 18.4644
SEBA -0.0002 -0.2542 0.2420 0.0273 -0.1180 9.7735
SHBA -0.0003 -0.1549 0.1264 0.0207 -0.1794 5.7180

Source: Author’s computations

Focusing on insurance companies, the stock market returns of insurers re-

veal similar characteristics as identified at banks. Again, the majority of insur-

ance companies exhibits negatively skewed returns with high values of kurtosis.

These properties support the assumption about non-normal distribution of re-

turns. We test it formally using the Jarque-Bera test and for all levels of

significance we strongly reject the eventuality that the returns are normally

distributed. We record the largest loss for Belgian insurer Ageas. This time

the intra-day price drop was even more extreme than in case of banks, as it

reached enormous 77.57 %. We looked into the respective stock prices and

found out that this extreme loss return was a result of a fall in price from 54.12

EUR to 12.16 EUR between October 3, 2008 and October 14, 2008. Given

the fact that these prices are two consecutive observations, it is interesting to

notice that there was an interruption in trading lasting for more than a week.

It is likely that it has a connection with difficulties related to the forthcoming

financial crisis. Other extreme losses above 40 % and 36 %, respectively, were

suffered by insurers Aviva and SCOR.
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Table 5.3: Descriptive statistics for the insurers’ daily equity returns

Mean Min. Max. St. Dev. Skewness Kurtosis
INGA 0.0002 -0.2565 0.3214 0.0309 0.0155 12.4662
CS 0.0001 -0.1978 0.2035 0.0275 -0.2751 6.5766
ALV 0.0002 -0.1907 0.1493 0.0237 -0.2204 6.8724
G 0.0002 -0.1231 0.0923 0.0176 -0.0219 3.1056
LGEN 0.0000 -0.2490 0.3369 0.0267 0.2157 13.8191
AV 0.0002 -0.2427 0.4022 0.0275 0.7316 17.6071
PRU -0.0001 -0.2181 0.2193 0.0281 -0.0280 9.6475
AGN 0.0005 -0.3022 0.2768 0.0302 -0.1238 10.9661
CNP -0.0002 -0.1043 0.1444 0.0190 0.0159 3.0856
MUV2 0.0001 -0.1668 0.1682 0.0215 0.0048 6.8821
AGS 0.0004 -0.2589 0.7757 0.0316 3.8993 102.1700
UNI 0.0005 -0.3591 0.1966 0.0222 -1.2295 33.1384
MAP -0.0002 -0.1619 0.1345 0.0220 -0.4717 5.0217
VIG -0.0003 -0.1529 0.1974 0.0197 -0.1311 11.7574
MED 0.0000 -0.1646 0.1126 0.0249 -0.2701 2.8638
SCR 0.0005 -0.1906 0.3623 0.0266 1.2168 22.7936
SAMAS -0.0005 -0.1367 0.1823 0.0204 0.1872 7.9146
UQA 0.0000 -0.0965 0.1730 0.0173 0.3817 8.7472
NBG6 0.0001 -0.1985 0.1330 0.0182 -0.3831 10.2530
CASS 0.0002 -0.1122 0.0979 0.0166 -0.0603 4.9865

Source: Author’s computations

5.3 Methodology

”Systemic risk by its very nature is concerned wth the downside risk of the

system” (De Vries 2009, p. 3). In the manner of this claim we address the

downside risk in the EU banking and insurance sectors. We focus on bivari-

ate dependence modelling which allows us to investigate dependencies in pairs

of institutions. Similarly to De Vries (2009) and Slijkerman et al. (2005), we

are interested in bank-to-bank, insurer-to-insurer and bank-to-insurer relation-

ships. For the purpose of our analysis we apply methodology which builts

on the Extreme value theory (EVT) and is concerned with the dependence in

extreme values.

5.3.1 Dependence in Extremes

In a broad context, one can distinguish two categories of extreme value depen-

dence, namely asymptotic extreme dependence and asymptotic extreme inde-

pendence (Poon et al. 2003). Dependence between sufficiently large values of

variables can be observed in either of these categories, the difference between

both types occurs as far as real extremes are concerned. The extremal observa-

tions have tendency to occur jointly only for variables exhibiting asymptotically
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dependent behavior. For asymptotically dependent random variables X and Y

it holds that

lim
t→∞

P (X > t | Y > t) > 0.

Considering variables characterized by asymptotical independence, however,

the mutual dependence gradually disappears with observations becoming more

extreme (Poon et al. 2003). In other words, for assymptotical independent X ′

and Y ′ it holds that

lim
t→∞

P (X ′ > t | Y ′ > t) = 0.

Following Poon et al. (2003), we illustrate both types of extremal behavior in

Figure 5.1 and Figure 5.2. We present scatter plots of 3566 daily logarithmic

returns of two pairs of equities covering the period January 4th, 1999 until

April 17, 2014. Vienna Insurance equity is plotted against Uniqua equity, sim-

ilarly HSBC equity is plotted against Deutsche bank equity. Focusing on

Figure 5.1 one may notice that tail observations of one equity occur together

with rather ordinary observations of another equity, suggesting the behavior of

both equities corresponding to asymptotical independence. In contrast, Fig-

ure 5.2 indicates much stronger extremal dependence. The data uncovers an

apparent tendency of extreme observations at both equities to coincide with

each other. This persistence of dependence in tail areas reveals asymptotically

dependent variables and requires an application of special tools dealing solely

with extremes.

This illustration may serve as a motivation for an approach we intend to

apply for empirical estimation. It is introduced in the following subsection.

5.3.2 Applied Dependence Measure

To meet the objectives of empirical part of the thesis, we follow an approach as

in Slijkerman et al. (2005) and De Vries (2009) and utilize a measure developed

within the EVT framework.

Figure 5.2 provides graphic evidence of the existence of tail areas in stock

market returns. The fact that stock returns with similar characteristics are

the subject of our analysis calls for applyig a measure, which is able to handle

these critical parts of the distribution. Referring to limitations of correlation

presented in Chapter 4, we possess meaningful arguments why correlation is

not an appropriate solution to this case. Contrary to standard correlation

which focuses on observations gathering towards the center, the EVT measure
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Figure 5.1: Asymptotical independence of stock market returns

Source: Author’s computations

Figure 5.2: Asymptotical dependence of stock market returns

Source: Author’s computations
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only deals with the observations located in tails (De Vries 2005). An argument

against this approach is that it does not allow to detect an actual source of

systemic failure. One thus can only assume whether it is driven by contagion

or other macroeconomic risk factors (De Vries 2005). However, this drawback

does not reduce the applicability of the measure in our thesis as it is rather

irrelevant to the purpose of our analysis.

The approach adopted in our analysis integrates probabilities of extreme

losses and institutional failures to address systemic risk. As an indicator of

systemic risk we use so called conditional probability measure to ”directly study

the probability of an extreme loss of a variable conditional on the loss of another

variable” (Slijkerman et al. 2005, p. 8). In other words, we are interested to

know how many institutional breakdowns we might expect on average given

that a minimum of one institution has already broken down (Slijkerman et al.

2005). It can be expressed as E[τ |τ ≥ 1], where τ stands for the expected

number of failing institutions. This formulation represents our downside de-

pendence measure, since we suppose an institution to fail when it encounters an

extremely high loss defined upon exceeding a particular threshold t. Consider-

ing X1 and X2 random loss returns of a pair of institutions and t the respective

threshold level causing their failures, following De Vries (2005) we can write

the conditional measure as:

E[τ |τ ≥ 1] =
P (X1 > t,X2 ≤ t) + P (X1 ≤ t,X2 > t)

1− P (X1 ≤ t,X2 ≤ t)
+ 2

P (X1 > t,X2 > t)

1− P (X1 ≤ t,X2 ≤ t)

=
P (X1 > t) + P (X2 > t)

1− P (X1 ≤ t,X2 ≤ t).
(5.1)

Since we concentrate solely on pairs of institutions, the probability that both

institutions go bankrupt, provided that at least one of them has already gone,

can be expressed as (De Vries 2009):

P (X1 > t) + P (X2 > t)

1− P (X1 ≤ t,X2 ≤ t)
= E[τ |τ ≥ 1]− 1.

As De Vries (2009) furher states, without posing additional assumptions on the

threshold t, it is hardly possible to determine the precise level of t for which

insititutions suffer a severe loss. Therefore, a possible way to account for that

is to express systemir risk measure in terms of limit

SR(τ) = lim
t→∞

E[τ |τ ≥ 1].
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”Extreme value theory then shows that even thought the measure is evaluated

in the limit, it nevertheless provides a reliable benchmark for the dependency

at hight but finite levels t” (De Vries 2009, p. 7).

5.4 Theoretical Dependence

In Chapter 2 we named major sources of dependence among banks and insur-

ance companies and we identified that they ususally emerge from mutual risk

exposures. We will now categorize these risks into general factors in order to

derive dependence theoretically. The empirical application will follow straight

afterward.

Following Slijkerman et al. (2005) and De Vries (2009), one can distinguish

three broad classes of risks faced by companies in the finance industry. Macroe-

conomic risk (M) is a risk element that all institutions share together. Secondly,

sector-specific risk (U and V ) is a risk characteristic for given industry and it

concerns all institutions operating within the field. Finally, insitution-specific

risk (Xi and Yj) is a risk unique to individual institutions and it may thus

differ from one institution to another. Given our interest in application of the

EVT, we assume these risks to be driven by distribution with heavy tails. To

concretize the distribution, we adopt the convention that ”a random variable

exhibits heavy tails if its distribution function F (t) far into the tails has a first

order term identical to the Pareto distribution” (De Vries 2005, p. 819). That

is for any arbitrary random variable t ∼ i.i.d.

F (t) = 1− t−αL(t) as t →∞,

where L(t) is a function with the property

lim
d→∞

L(dt)

L(d)
= 1, t > 0. (5.2)

Having knowledge of this property, we can easily derive the desired form of

Pareto distribution:

lim
d→∞

1− F (dt)

1− F (d)
= lim

d→∞

(dt)−αL(dt)

d−αL(d)
= t−α, α > 0, t > 0.

Getting now back to our risk factors, we will therefore assume them distributed
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in a way such that (Slijkerman et al. 2005):

P (M > t) = P (U > t) = P (V > t) = P (Xi > t) = P (Yj > t) = t−α.

5.4.1 Bank-to-Bank

Being able to analyze downside risk dependence between two banks, we es-

sentially need to start with introducing a concept describing convolutions of

variables with tail properties (Slijkerman et al. 2005). Only then we are able

to derive the probability of a joint collapse of two banks. This concept is in

the literature regarding downside risk dependence known as Feller’s convolu-

tion theorem, as it draws on key findings in Feller (1971,VIII.8).2 However,

we will introduce it very simply based on the result of the Feller convolution

as summarized in De Vries (2009). According to De Vries (2009), the theorem

says that if a pair of independent random variables A and B satisfies

P (A > t) = P (B > t) = t−α,

then it implies for their convolution that

lim
t→∞

P (A+B > t)

2t−αL(t)
= 1,

where L(t) is a slowly varying function with the same characteristics as in (5.2).

Similarly to Slijkerman et al. (2005), we will express a bank’s stock returns

in terms of the risk factors defined in the previous subsection. Therefore, we

can write Bi = M+U+Xi, where Bi stands for the i-th bank’s stock returns, U

is a risk related to the banking industry and Xi is the i-th bank’s specific risk.

Since we have decomposed the portfolio into mutually unrelated independent

components, we can apply the convolution theorem.

Now we proceed to the point when Feller’s convolution theorem finds its

useful application. Since we are interested in the probability that the bank i

breaks down, in fact, we want to know

P (Bi > t) = P (M + U +Xi > t).

Making use of the Feller’s theorem, on condition that the threshold value t is

2See for example Slijkerman et al. (2005), Hyung and De Vries (2005) or De Vries (2005)
for the application of Feller’s convolution theorem.
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large enough, we get (Slijkerman et al. 2005)

P (Bi > t) = P (M + U +Xi > t) = 3t−α + o(t−α).

Once we are already familiar with the probability of a single bank collapse,

it is time to derive the probability of a simultaneous crash. Let us therefore

consider Bi, i = k, l for a pair of banks. Again, the convolution theorem implies

that the probability of a double crash is equal to

P (Bk > t,Bl > t) = P (M+U+Xk > t,M+U+Xl > t) = 2t−α+o(t−α). (5.3)

Why in this case the probability of the joint failure corresponds to the sum of

two marginal probabilities, De Vries (2009) refers to the convolution theorem

to provide argumentation as follows. The theorem stipulates that ”only the

probability mass along the axes counts”(De Vries 2009, p. 9). When considering

the portfolio inequalities as in (5.3), for large threshold t they overlap only in

those points above t, which are gathering along the F + B axix. Only points

in this area fulfil that both inequalities are parallelly satisfied. Consequently,

it holds that

P (Bk > t,Bl > t) = P (M + U > t) + o(t−α) = 2t−α + o(t−α).

5.4.2 Insurer-to-Insurer

Next, we will move on to the estimation of tail dependence between two in-

surance companies. We will proceed in the same manner as in the case of

bank-to-bank relationship. It will enable us to express an insurer’s portfolio

of stock returns in terms of risks it is exposed to. Since we now occupy the

insurance sector, the only change appears in the industry-specific risk compo-

nent. Let us define Ij = M +V +Yj, where Ij refers to the j-th insurer’s equity

returns, V is a risk reflecting specifics of the insurance sector, Yj is a risk unique

to the j-th insurer. Once again, the insurance company defaults when its loss

returns, or the sum of risk elements respectively, get out of tolerable levels and

exceed a high threshold t. The probability that this event occurs is

P (Ij > t) = P (M + V + Yj > t)
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and Feller’s convolution theorem ensures that it holds

P (Ij > t) = P (M + V + Yj > t) = 3t−α + o(t−α).

Let us now consider two insurance companies and their returns portfolios Ij, j =

m,n. The probability of their co-crash yields:

P (Im > t, In > t) = P (M+U+Xm > t,M+U+Xn > t) = 2t−α+o(t−α). (5.4)

Since the explanation is identical to the one given for two banks, we avoid

providing it repeatedly and refer a reader to the previous subsection.

5.4.3 Bank-to-Insurer

Having estimated tail dependence within sectors, i.e. for two banks and two

insurance companies, we will now explore the cross-sectional dependence. It is

enough to combine findings from the two previous subsections and one discovers

that the probability of a single bank’s and a single insurer’s parallel crash is

equal to:

P (Bk > t, Im > t) = P (M+U+Xk > t,M+V+Ym > t) = P (M > t) = t−α+o(t−α).

(5.5)

Getting back to our systemic risk measure (5.1), we can now simple estimate

the downside risk in the respective sectors using the outcomes (5.3), (5.4) and

(5.5). Following Slijkerman et al. (2005), probabilities that two institutions go

bankrupt given that at least one is already bankrupt yield:

E[τ |τ ≥ 1]Bank|Bank = lim
t→∞

P (Bk > t) + P (Bl > t)

P (Bk > t) + P (Bl > t)− P (Bk > t,Bl > t)

=
3t−α + 3t−α

3t−α + 3t−α − 2t−α
=

6

4
,

E[τ |τ ≥ 1]Insurer|Insurer = lim
t→∞

P (Im > t) + P (In > t)

P (Im > t) + P (In > t)− P (Im > t, In > t)

=
3t−α + 3t−α

3t−α + 3t−α − 2t−α
=

6

4
,
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E[τ |τ ≥ 1]Bank|Insurer = lim
t→∞

P (Bk > t) + P (Im > t)

P (Bk > t) + P (Im > t)− P (Bk > t, Im > t)

=
3t−α + 3t−α

3t−α + 3t−α − t−α
=

6

5
.

To summmarize the above equations, the theoretical model uncovers a

higher potential for systemic dependence within individual sectors than across

them. Intuitively, it can be justified simply by the fact that companies operat-

ing in the same field are all subject to the same risks and as a result, it makes it

easier for systemic breakdowns to emerge. In the empirical application we will

find out, among others, whether the same conclusion follows from the analysis

of real data.

5.5 Empirical Application

We now introduce a non-parametric estimator as defined in Slijkerman et al.

(2005) and De Vries (2009), so that the conditional risk measure (5.1) can be

put into practice. Following De Vries (2009), the estimation of the probability

of a simultaneous failure of two institutions, given that at least one has already

failed, can be obtained as a share of ”the number of minima and maxima that

exceed the threshold t”(De Vries 2009, p. 13). In fact, the numerator in (5.1)

can be reformulated as

P (X1 > t) + P (X2 > t) = 1− P (X1 ≤ t,X2 ≤ t) + P (X1 > t,X2 > t)

= P
(
max(X1, X2) > t

)
+ P

(
min(X1, X2) > t

)
and the denominator in (5.1) is equal to

1− P (X1 ≤ t,X2 ≤ t) = P
(
max(X1, X2) > t

)
.

Eventually, the systemic risk estimator that we utilize has the form (De Vries

2009):

ŜR(τ) = 1 +
No. min(X1, X2)

No. max(X1, X2)
.

We would like to remind a reader that we are interested in bivariate modelling,

therefore we apply ŜR(τ)− 1.
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5.6 Results

We present the results of empirical estimation. The analysis of interdependen-

cies is first carried out in each sector separately. Then we also estimate the

level of interdependence across both sectors. We create all possible combina-

tions of institutions so that every single institution is combined with the others

in the sample. Our sample consisting of 20 banks and 20 insurance companies

thus generates a total number of 190 combinations in the banking sector, 190

combinations in the insurance sector and 400 bank-to-insurer combinations.

We test dependencies in the two sample periods. The boundary line be-

tween them is December 31th, 2007. Our aim is to split data into the relatively

calm period preceding the crisis times and the period marked by financial tur-

bulences due to the crisis. We give several reasons for studying institution-to-

institution interlinkages in the two separate periods. Firstly, we believe that

systemic dependencies evolve in time and thus to some extent reflect the chang-

ing macroeconomic environment. Secondly, we believe that the development

on the global financial systems has deepened interconnections between bank

and insurance groups and as a result, the systemic risk increased.

The first period ranges from January, 1999 to December, 2007. The sec-

ond sample period starts in January, 2008 and it continues up to April, 2014.

Throughout the analysis we apply the threshold which corresponds to 3.5 stan-

dard deviations from the mean loss return. This threshold value stands for the

amount of daily loss triggering the failure of institutions.

5.6.1 Pre-crisis Period

In Table 5.4 we summarize the average and median level of intra-sectoral and

inter-sectoral dependencies in the period covering the span from January, 4th

1999 until December 31th, 2007.

Table 5.4: The overall sectoral dependence, pre-crisis period

Sectors Average SR(τ)− 1 Median SR(τ)− 1 Threshold
Bank-to-Bank 0.085 0.063 t=3.5 st.d.
Insurer-to-Insurer 0.069 0.046 t=3.5 st.d.
Bank-to-Insurer 0.073 0.048 t=3.5 st.d.

Source: Author’s computations

Our findings indicate that in the first examined period the banking sector

exhibits slightly higher systemic dependencies than the insurance sector. The
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average probability of a single-bank crash resulting in a crash of another bank

exceeds 8 %. To be more precise, it reaches 8.5 %. In comparison, the insurance

sector appears to be more stable and posing even lower threat to the interna-

tional financial stability. In the insurance industry the average probability that

two insurance companies break down, given that at least one has already failed,

amounts to 6.9 %, which is slightly less than in case of two banks. In other

words, using a similar interpretation as in Slijkerman et al. (2005), while a joint

failure of two banks on average occurs in one out of 11.7 times when there is a

bank collapse, two insurance companies fall down together only in one out of

14.4 cases when there is an insurer’s failure. There might exist several reasons

for lower level of interdependence in the insurance sector. One possible expla-

nation might be that insurance companies provide a wider range of services to

their clients and it makes them less mutually dependent than lending-oriented

banks. In addition, insurance companies are usually of much smaller size in

comparison with banks. In Table A.2 in Appendix A one can notice that the

size of the EU largest insurance company ING, measured according to the total

volume of assets, corresponds to the size of the 9th largest bank Lloyds. Hence,

it can be expected, for instance, that the insurance industry holds a lower por-

tion of derivatives trading, which normally represents one of the most relevant

sources of dependence. Eventually, in terms of the inter-sectoral dependencies,

the average probability that a bank goes bankrupt provided that an insurance

company is bankrupt or alternatively, the probability that an insurance com-

pany breakdowns in response to a breakdown of a bank, is 7.3 %. Contrary to

the outcome of Slijkerman et al. (2005), the inter-sectoral systemic risk appears

to be slightly above the systemic risk within the insurance industry.

Focusing now on individual pairs, we show the largest institution-to-institution

dependencies in Table 5.5. Complete results for all combinations are presented

in Appendix A. On the bank level, the highest probability of a joint failure has

been identified between Svenska Handelsbank and its Swedish counterparty

Skandinavska Enskilda Bank. The probability that both banks fail, condition-

ally on a failure of one of them, is 36.4 %. Other extraordinary dependencies

are apparent in pairs Societe Generale and Royal Bank of Scotland, British

banks Lloyds and Barclays, or BNP Paribas and Deutsche Bank. In all cases

the level of mutual dependence exceeds 30 %, which is well above the sector

average. The fact that we monitor strong dependencies between banks origi-

nating in the same country may refer to their common exposures to risks, which

are specific to the given country. On the other hand, if ve focus on detailed
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results for bank-to-bank combinations in Table A.5 in Appendix A, we can see

that for many combinations the conditional probability of a simultaneous fail-

ure is 0 %. For these pairs no simultaneous losses corresponding to the size of

our threshold have been identified in the examined period, which means that a

breakdown of one institution remains isolated with no systemic impact on the

other institution in the pair.

Table 5.5: Largest individual dependencies, pre-crisis period

Bank Bank SR(τ)− 1 Insurer Insurer SR(τ)− 1 Bank Insurer SR(τ)− 1
SHBA SEBA 0.364 AGN CS 0.368 SAN AGN 0.375
GLE RBS 0.357 AGN INGA 0.304 GLE AGN 0.353
LLOY BARC 0.357 AV INGA 0.304 BNP CS 0.353
BNP DBK 0.313 AV ALV 0.304 BNP AGS 0.353
BBVA GLE 0.313 MUV2 ALV 0.292 SAN G 0.316
SEBA BARC 0.308 AGS INGA 0.280 DBK ALV 0.294
GLE BNP 0.294 CS INGA 0.273 BNP INGA 0.278
LLOY RBS 0.286 MUV2 AV 0.273 DBK MUV2 0.278

Source: Author’s computations

Moving on to individual insurer-to-insurer dependencies, the largest sys-

temic risk has been detected between Aegon and AXA. The conditional prob-

ability that Aegon crashes given that AXA has already crashed and vice versa

amounts to 36.8 %. The other high systemic risk exposures are to be found

between Aegon and ING, Aviva and ING or Aviva and Allianz, in which cases

the conditional probabilities of joint crashes are slightly above 30 %. Taking

a look at complete results for all insurer-to-insurer combinations in Table A.6

in Appendix A, it is interesting to notice that systemic risk exposures concen-

trate predominantly within the 10 largest insurance companies. For the rest

of insurance companies in the sample, the conditional probability of a joint

failure in most cases does not go beyond 10 %. Again, for many pairs no si-

multaneous crash has been detected. It applies for example to insurers Sampo,

Uniqua and Nurnberger, in which cases the conditional probability of a joint

crash only occassionally touches 6 % in pairs with other insurance companies,

yet in most cases it is 0 %. At last, it remains to examine cross-sectoral sys-

temic risk at the level of individual insitutions. Our results attribute the largest

systemic dependence to Banco Santander and Aegon. The probability of the

bank’s failure provided that the insurance company has failed, and vice versa,

is 37.5 %. The other high conditional probabilities about 35 % apply to pairs

Societe Generale and Aegon, BNP Paribas and Aegon or BNP Paribas and

Ageas. Therefore, it seems that cross-sectoral dependecies between some of the
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EU largest banks and insurace companies also poses a potential threat to the

international financial stability.

5.6.2 Post-crisis Period

Having examined systemic risk between the EU largest banks and insurance

companies in the pre-crisis period, we now proceed to the estimation of systemic

dependencies in the period characterized by turbulent times around the Lehman

bankruptcy. The examined period also reflects the post-Lehman development.

It starts in January, 2008 and continues up to April, 2014.

Table 5.6 offers results for the average and median of estimates of intra-

and inter-sectoral dependencies.

Table 5.6: The overall sectoral dependence, post-crisis period

Sectors Average SR(τ)− 1 Median SR(τ)− 1 Threshold
Bank-to-Bank 0.109 0.100 t=3.5 st.d.
Insurer-to-Insurer 0.104 0.077 t=3.5 st.d.
Bank-to-Insurer 0.123 0.071 t=3.5 st.d.

Source: Author’s computations

Our findings indicate that compared to the pre-crisis period, the systemic

risk increased in both examined industries. Furthermore, systemic dependen-

cies across both sectors also increased. This is in line with our expectations

about deepened interconnections between bank and insurance groups in re-

cent years. This time, the average probability of a simultaneous breakdown of

two banks, provided that one bank breakdowns, rose to 10.9 %. It represents

an increase in the average level of interdependence in the banking industry

amounting to 28 %. In comparison, the average probability that two insurance

companies collapse, given that one has collapsed, is 10.4 %, which yields 50

% increase in the average level of interconnections in the insurance industry.

At last, the average probability of a bank’s collapse, provided that an insurer

collapses and vice versa, rose to 12.3 %. Compared to 7.3 % in the pre-crisis

period, the average level of interdependence across both sector increased even

more relatively to the banking and insurance industries. Most interestingly,

we find that in the second examined period inter-sectoral systemic dependen-

cies pose higher threat to the international financial stability than systemic

dependencies in the banking sector.

Let us now move on to individual pairs. Starting with banks, the largest

holders of systemic risk in the post-crisis period are French banks Societe Gen-
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erale, Credit Agricole and BNP Paribas. The highest conditional probability of

a simultaneous failure has been identified between Societe Generale and Credit

Agricole, which is then followed by pairs Societe Generale and BNP Paribas

and Credit Agricole and BNP Paribas. Their conditional probabilities amount

to 45.5 %, 30.8 % and 30 %, respectively. The other strong relationship is found

between Spanish banks Banco Bilbao and Banco Santander with the conditional

probability as much as 30 %. If we look at the complete results for all bank-to-

bank combinations in Table A.8 in Appendix A, one may notice that systemic

risk has spread and expanded in the post-crisis period, as conditional proba-

bilities of a joint failure approaching 30 % concern a greater number of banks.

However, it is hardly possible to identify ”hotspots” of systemic dependencies,

as it is rather dispersed across the sample. On the contrary, Belgian Dexia bank

exhibits a very weak potential for systemic risk as in pairs with other banks,

the conditional probability of a simultaneous crash only seldom exceeds 5 %.

Focusing on insurers, it is interesting that with some exceptions, stronger sys-

Table 5.7: Largest individual dependencies, post-crisis period

Bank Bank SR(tau)-1 Insurer Insurer SR(tau)-1 Bank Insurer SR(tau)-1
GLE ACA 0.455 AGN INGA 0.438 SAN CS 0.455
GLE BNP 0.308 ALV CS 0.429 NDA AGN 0.455
ACA BNP 0.300 AGN LGEN 0.412 SHBA SAN 0.417
BBVA SAN 0.300 MED ALV 0.400 BNP CS 0.364
ISP GLE 0.286 ALV INGA 0.353 HSBA ALV 0.333
STAN BBVA 0.286 CS INGA 0.313 DBK ALV 0.333
STAN DBK 0.278 SAMAS AGN 0.313 HSBA LGEN 0.308
UCG ACA 0.267 AV INGA 0.294 RBS AV 0.308

Source: Author’s computations

temic dependencies are clustered predominantly among the 8 largest insurance

companies. The remaining insurers in most cases do not exhibit any exces-

sively high conditional probabilities of a simultaneous collapse. We discover

the highest potential for systemic failure between ING and Aegon with the

conditional probability being 43.8 %. The other high probabilities above 40 %

are to be found in pairs Allianz and AXA, Aegon and Legal&General Group, or

Mediolanum and Allianz. Examining individual bank-to-insurer dependencies,

we find some evidence that the 8 largest insurance companies are also prone

to systemic breakdowns in tandem with banks. The largest exposures are un-

covered between Banco Santander and AXA and Nordea bank and Aegon. For

both pairs the conditional probability is very high and exceeds the level of 45

%.
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5.6.3 Testing Significance

Once intra-sectoral and inter-sectoral systemic risk has been explored, we need

to look for statistical evidence that systemic dependencies in the examined

sectors are statistically different in both examined periods. Hence, following

Slijkerman et al. (2005), we use the Wilcoxon-Signed Rank test.3 Since this

non-parametric test is often used for comparing matched samples in which the

assumption about normality might not be satisfied, it seems to be well suited

for our data. It tests the null hypothesis that the mean difference between

two related samples is equal to zero. In this manner, we test for the difference

between the systemic dependence in the banking and insurance sectors in the

pre-crisis and post-crisis periods. Subsequently, we also test whether the dif-

ference in bank-to-insurer dependence in both examined periods statistically

differs from zero.4 Since in all cases the p-value is equal to 0, we reject the null

hypothesis at 5 % and 1 % significance level and may conclude that systemic

dependencies in the banking sector are stronger and statistically different from

systemic dependencies in the insurance sector in both pre-crisis and post-crisis

periods. Similarly, the post-crisis period exhibits higher and statistically dif-

ferent bank-to-bank, insurer-to-insurer and bank-to-insurer dependencies than

the pre-crisis period.

5.7 Discussion and Policy Implications

In this thesis we explore a potential for systemic risk in the international finan-

cial systems through investigating systemic dependencies between bank and

insurance groups. Our results indicate an increase in the level of systemic de-

pendencies in all examined relationships in recent years. Hence, there is no

dispute that nowadays systemic risk inseparably belongs to the main issues

associated with modern financial systems. The question is how this relatively

new form of risk will be treated by regulatory authorities and whether it will be

reflected in regulatory actions taken by regulators. The current financial reg-

ulation goes rather towards the protection of individual financial institutions

against extreme market shocks while not taking into account the fact that inter-

dependencies among financial institutions are a hidden threat to the financial

system as a whole. Therefore, should systemic risk be taken into consideration

3For more information and references, see for example Chlass and Krueger (2007).
4Computations has been made in the statistical software SPSS.
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for setting regulatory requirements, large systemically important and highly in-

terconnected financial institutions might be a subject of higher capital charges

than institutions with only a minor systemic impact. On the level of insurance

companies, for instance, we have identified clustering of systemic risk mainly

among the 10 largest insurance companies, suggesting that these may belong

to the institutions due to which the current regulation might be redesigned in

the future.



Chapter 6

Conclusion

In recent decades financial systems all over the world have undergone a rapide

wave of expansion and enhancements. Major purpose of such development

can be attributed to the efforts of financial authorities to promote accelerat-

ing execution of financial transactions, eliminating transaction costs, facilitat-

ing cross-border capital flows, and all together thus lead towards the global

economic growth. One of direct consequences of the process of financial lib-

eralization is that national financial systems have somewhat disappeared and

they rather transformed into a huge global financial ecosystem, where finan-

cial institutions are free to closely cooperate. On one hand, this process carries

numerous positives, yet it is necessary to emphasize new forms of risks it is con-

nected with. Most importantly, deepened cooperation leads to the formation

of various sources of dependence due to which financial institutions can easily

transfer risk exposures from one to another. This risk gains in importance

during crisis times, when breakdowns of individual institutions no longer re-

main an issue of those institutions, but they concern other entities even beyond

national borders.

The risk of occurrence of extreme market situations is ubiquitous in finance

industry and one of the major tasks for risk management is the ability to ef-

fectively handle it. Extreme events receive lots of attention particularly in

response to the recent crisis, which showed its power and opened wide discus-

sions regarding interconnectedness of financial systems. The crisis also uncov-

ered imperfections of models applied for analysis of institutional risks and in

many cases it led to the reshaping of current risk management frameworks.

To ensure that financial institutions, or rather the entire financial systems, are

able to withstand extreme market situations, it is crucial that extreme returns
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are modelled precisely and accurately.

Hence, we apply method which disregards ordinary financial returns and

deals only with outlying observations located in tail areas of distribution of

returns. We study dependencies in extremes between bank and insurance

groups in order to investigate the eventuality of simultaneous crashes that could

threaten the stability of the international financial system. For the analysis we

collected data on stock prices of the 20 EU largest banks and insurance compa-

nies from January, 1999 until April, 2014. We split data into two shorter time

ranges and examine dependencies in the pre-crisis as well as in the post-crisis

period.

Our results suggest that in both examined periods the banking sector ex-

hibits a higher potential for systemic risk than the insurance sector. With

this respect, our findings are compatible with the outcome of Slijkerman et al.

(2005) and De Vries (2009). In the pre-crisis period the average probability of

a simultaneous crash of two banks is 8.5 %, whereas for insurers it yields 6.9

%. In the post-crisis period the average conditional probabilities in both sec-

tors converged, yet the risk of simultaneous breakdowns is still slightly higher

between banks (10.9 %) than between insurers (10.4 %). Secondly, we find

that dependencies evolve in time and under different market conditions. In all

examined relationships systemic dependencies prove to be higher in the post-

crisis period than in the pre-crisis period. In the banking sector we record 28%

increase in the average level of dependence, in the insurance sector it amounts

to 50 %, and an increase in the average level of dependence between a bank and

an insurer reaches 68 %. The latter uncovers another important fact, which is

a necessity to promote monitoring of dependencies across the respective sec-

tors. Before crisis the average probability of a joint collapse of a bank and an

insurer amounts to 7.3 % and this probability jumped to 12.3 % in the post-

crisis period. Compared to 10.9 % in the banking sector and 10.4 % in the

insurance sector, it seems that bank-to-insurer interconnections are becoming

increasingly important issue in terms of systemic risk and stability of the in-

ternational financial system. Therefore, the findings of this thesis are relevant

mainly to regulatory authorities, as it can familiarize them with the changing

pattern of dependencies between most systemically important institutions.

If we compare our results with the outcomes of theoretical model presented

in Chapter 5, we may conclude that at least in crisis times the effect of sector-

specific risks is outweighed by a new form of risks emerging between bank and

insurance sectors. The efforts to determine what particular risks these are can
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form the basis for further research in this field.
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Appendix A

Tables

1

Table A.1: Detailed information about the sample banks

Equity Assets ($bn) Category Country Stock Exchange Obs.
HSBA 2 684.1 Major UK London 3865
DBK 2 652.6 Major Germany Germany 3892
BNP 2 504.2 Major France Euronext Paris 3909
ACA 2 431.4 Major France Euronext Paris 3160
BARC 2 422.5 Major UK London 3865
RBS 2 133.1 Major UK London 3865
GLE 1 648.9 Major France Euronext Paris 3908
SAN 1 647.8 Major Spain Spain 3871
LLOY 1 495.9 Major UK London 3865
UCG 1 221.9 Major Italy Borsa Italiana 3882
NDA 892.6 Regional Sweden Stockholm 3842
BBVA 840.8 Major Spain Spain 3871
CBK 838.3 Major Germany Germany 3891
ISP 813.8 Major Italy Borsa Italiana 3883
KN 658.0 Major France Euronext Paris 3907
STAN 636.5 Major UK London 3865
DANSKE 615.6 Major Denmark Copenhagen 3830
DEXB 534.9 Major Belgium Euronext Brussels 3903
SEBA 376.8 Major Sweden Stockholm 3842
SHBA 367.0 Major Sweden Stockholm 3842

Source: Author

1All data and computations are available on demand at the author.



A. Tables II

Table A.2: Detailed information about the sample insurers

Equity Assets ($bn) Category Country Stock Exchange Obs.
INGA 1 533.7 Life&Health Netherlands Euronext Amsterdam 3911
CS 1 005.4 Diversified France Euronext Paris 3910
ALV 915.8 Diversified Germany Germany 3892
G 582.4 Diversified Italy Borsa Italiana 3882
LGEN 562.9 Life&Health UK London 3865
AV 512.7 Life&Health UK London 3865
PRU 489.4 Life&Health UK London 3865
AGN 483.2 Diversified Netherlands Euronext Amsterdam 3910
CNP 466.1 Diversified France Euronext Paris 3910
MUV2 340.6 Diversified Germany Germany 3892
AGS 128.0 Diversified Belgium Euronext Brussels 3894
UNI 109.7 Diversified Italy Borsa Italiana 3882
MAP 69.2 Diversified Spain Spain 3872
VIG 50.0 Diversified Austria Vienna 3650
MED 43.7 Life&Health Italy Borsa Italiana 3883
SCR 43.0 Diversified France Euronext Paris 3910
SAMAS 41.4 Diversified Finland Helsinky 3839
UQA 37.0 Diversified Austria Vienna 3566
NBG6 28.9 Diversified Germany Germany 3892
CASS 23.2 Diversified Italy Borsa Italiana 3404

Source: Author



A. Tables III

Equity t-statistics p-value
HSBA 21988.60 0
DBK 8743.59 0
BNP 9390.10 0
ACA 4895.71 0
BARC 182659.00 0
RBS 1096520.00 0
GLE 5789.98 0
SAN 5514.20 0
LLOY 172472.00 0
UCG 7799.18 0
NDA 4447.22 0
BBVA 4743.51 0
CBK 9701.77 0
ISP 4820.18 0
KN 42493.20 0
STAN 17271.50 0
DANSKE 4710.92 0
DEXB 55467.00 0
SEBA 15296.40 0
SHBA 5253.31 0

Table A.3: JB normality test for banks

Equity t-statistics p-value
INGA 25318.20 0
CS 7093.91 0
ALV 688.73 0
G 1559.92 0
LGEN 30775.90 0
AV 50256.20 0
PRU 14985.40 0
AGN 19596.50 0
CNP 1550.89 0
MUV2 7678.67 0
AGS 1703140.00 0
UNI 178558.00 0
MAP 4210.91 0
VIG 21028.10 0
MED 1373.78 4.9E-299
SCR 85586.30 0
SAMAS 10039.90 0
UQA 11452.10 0
NBG6 17138.40 0
CASS 3527.73 0

Table A.4: JB normality test for insurers
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