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Abstract

This thesis investigates the relationship between trading volume and stock re-

turn volatility using GARCH model in the framework of Mixture of Distri-

bution Hypothesis. Analysis is carried out for five well-known stocks selected

from the American S&P500 stock index. Our approach was to extend the vari-

ance equation of the well known GARCH model on the trading volume which

was split into three explanatory variables capturing different effects of volume

on volatility. Apart from the relationship itself, we examined the changes of

GARCH and ARCH parameters after the inclusion of volume, implicitly testing

the Mixture of Distribution Hypothesis. Interesting results and implications for

future research were identified. Firstly, we highlight the appropriateness of the

volume decomposition into expected and unexpected volume, where all the vol-

ume parameters turned out to be statistically significant. General observation

was that the increase of both expected and unexpected trading volume leads

to the increase of volatility. On the other hand, negative volume shocks tend

to decrease it. Eventhough we performed the analysis with lagged and also

contemporaneous volume, we were not able to confirm that the inclusion of

volume leads to insignificance of the ARCH and GARCH parameters, thus not

confirming the Mixture of Distribution Hypothesis. However, we found that

the volume models perform significantly better than the plain GARCH models

according to AIC. Considering these findings, it is possible to conclude that

there is positive relationship between the stock return volatility and trading

volume. We also found that the volume models perform substantially better in

modeling and predicting the future volatility.

JEL Classification C22, C52, C55, G12

Keywords GARCH, volatility, trading volume, Mixture of

Distribution Hypothesis

Author’s e-mail tom.juchelka@gmail.com

Supervisor’s e-mail boril.sopov@gmail.com

http://ideas.repec.org/j/C22.html
http://ideas.repec.org/j/C52.html
http://ideas.repec.org/j/C55.html
http://ideas.repec.org/j/G12.html
mailto:tom.juchelka@gmail.com
mailto:boril.sopov@gmail.com


Abstrakt

Tato práce zkoumá vztah mezi počtem zobchodovaných akcíı a volatilitou při

použit́ı GARCH modelu v Hypotéze Mixu Distribućı. Analýza je provedena

na pěti známých akcíıch, vybraných z indexu S&P500. Našim př́ıstupem bylo

obohaceńı druhé rovnice GARCH modelu o dodatečné vysvětluj́ıćı proměnné,

které reprezentovaly počet zobchodovaných akcíı. Kromě samotného vztahu

volatility a objemu obchod̊u jsme zkoumali, jaký vliv má zahrnut́ı dodatečných

proměnných na statistickou významnost GARCH a ARCH parametr̊u v našem

modelu. Zjistili jsme, že rozděleńı objemu obchod̊u na očekávanou a neočekávanou

složku bylo namı́stě, jelikož se všechny tyto proměnné ukázaly být statisticky

významné. Našim hlavńım zjǐstěńım bylo, že vzr̊ust počtu zobchodovaných

akcíı, tedy vzr̊ust očekávaného a neočekávaného objemu, vede ke zvýšeńı volatil-

ity. Na druhou stranu negativńı objemový šok, tedy sńıžeńı neočekávaného ob-

jemu, vede k jej́ımu sńıžeńı. Přestože jsme naši analýzu provedli jak pro prvńı

lag objemu obchodu, tak také pro současný objem, nepodařilo se nám potvrdit

hypotézu, že zahrnut́ı objemu obchod̊u zp̊usob́ı statistickou bezvýznamnost

parametr̊u ARCH a GARCH, tedy nepotvrdili jsme Hypotézu Mixu Distribućı.

Zjistili jsme však, že modely se zahrnutým objemem jsou podstatně lepš́ı,

než běžné modely typu GARCH. Výsledky naš́ı analýzy by se daly shrnout

závěrem, že s rostoućım počtem obchod̊u roste volatilita a tedy existuje stati-

sticky významný pozitivńı vztah volatility a počtu zobchodovaných akcíı. Dále

je třeba ř́ıci, že modely rozš́ı̌rené o objem jsou podstatně lepš́ı, než běžné mod-

ely typu GARCH.
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Chapter 1

Introduction

There has been extensive research in the field of quantitative finance and finan-

cial econometrics regarding the key financial markets variables such as stock

returns, trading volume, volatility or bid-ask spreads resulting in many inter-

esting findings. Despite the fact that the non-normality of returns was empir-

ically observed much earlier, it was firstly scientifically described by famous

mathematician Benoit Mandelbrot in the early 1960’s in his work called The

variation of certain speculative prices Mandelbrot (1963). Namely, he found

that returns exhibit excess kurtosis which is that either big positive or big

negative returns occure more often than normal distribution would imply. He

also observed clustering of return volatility, where periods of high volatility

are followed by periods of high volatility and periods of low volatility are fol-

lowed by periods of low volatility. The volatility clustering played important

role in econometric research that led to the formation of GARCH family mod-

els. Developed by Engle (1982) and later generalized by Bollerslev (1986), the

Autoregressive Conditional Heteroscedastic Engle (1982) and Generalized Au-

toregressive Conditional Heteroscedastic Bollerslev (1986) models proved to be

exceptional among other models in modeling and predicting the return volatil-

ity, since they capture both the clustering and non-normality of returns. While

other models at that time operated under the assumption of constant variance,

the ARCH and GARCH processes allow the conditional variance to change over

time, leaving the unconditional variance constant. In fact, constant volatility

is rather uncommon in empirical evidence. Financial markets also exhibit that

volatility is higher in falling market than in rising market. This asymmetrical

behaviour was firstly documented by Black (1976) and led to the number of

improvements of GARCH models, namely, EGARCH Nelson (1991), Thresh-
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old GARCH model Zakoian (1994) and GJR-GARCH model by L.R. Glosten

(1993). Since volatility is key imput variable in many financial models, the

precise modeling is of great importance in econometrics and should be done

carefully.

Encouraged by fairly valid modeling of volatility, researchers started to put

the volatility in context of prior information flows which included variables such

as trading volume, returns or bid-ask spreads. Particularly, there is a lot of

research in the area of volume-volatility relationship with various interesting in-

terpretations. There are suggestions in the markets that high trading volume is

associated with above average volatility, since the prices need volume to change.

Moreover, the volume tend to be higher with positive returns rather than nega-

tive returns. These suggestions were confirmed by many empirical researches for

example by Ali F. Darrat (2003) who examined intraday data of sellected stocks

in the Dow Jones Industrial Average and found that high trading volume casues

high volatility. The scientific process also led to the formation of theories ex-

plaining the volatility foundations including volume-volatility relationship. We

can find two competing theories explaining the volume-volatility relationship,

the theory of information flows and dispersion of beliefs theory. The theory of

iformation flows consists of two hypothesis, the Mixture of Distributions Hy-

pothesis (MDH) developed by Clark (1973) and Sequential Information Arrival

Hypothesis (SIAH) developed by Copeland (1976).

The Mixture of Distributions Hypothesis says that both volume and volatil-

ity are variables which are jointly determined by serially corelated mixing vari-

able. Such mixing variable measures the rate at which information arrive to

the markets. Moreover the MDH assumes that all market participants receive

the information simultaneously and the price shifts directly to the new equi-

lidbrium level, thus both the volume and volatility change contemporaneously

vis-a-vis the mixing variable. According to the MDH, researchers should also

be able to explain the volatility persistance using the mixing variable. For ex-

ample Lamoureux (1990) have examined the volume-volatility relationship and

found supportive evidence in favour of MDH.

Another hypothesis that links the volume-volatility relationship with infor-

mation flow is the previously mentioned sequential information arrival hypothe-

sis. According to Copeland (1976), traders receive information in random order

changing their trade position accordingly to new information, thereby, creat-

ing the volume and volatility. However, the information flows to the market

sequentially, therefore, not all traders have the information available simulta-
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neously. Accordingly the price is gradually shifting towards equilibrium which

is established when the information is received by the whole market. As a re-

sult, there should be evidence on both lag and contemporaneous relationships

between volume and volatility.

The second theory concerned about the volume-volatility is so called dis-

persion of beliefs theory. It states that each trader attach different importance

to each information and trades on it, thus it leads to above average volume and

volatility. The theory also incorporate the distinction between informed, and

uninformed trading, its reactions to new informations and its effects on volume

and volatility.

In our work, we plan to conduct the research on volume-volatility relation-

ship in terms of MDH, thus apart from examining the relationship itself, we will

focus on the magnitude and significance of the GARCH and ARCH parameters.

We decided to choose top five US stocks using five minute return and volume

data. The stocks will be selected according to the market capitalisation, where

we plan to include five companies with the highest market capitalisation in the

S&P500 stock market index.

Our intention is to augment one of the GARCH family models on the trad-

ing volume, moreover, the trading volume will be split into expected and un-

expected part, capturing different fundaments of trading volume and showing

their effects on the stock return volatility. On the top of that, we want to take a

look at the volatility persistance parameters which, according to MDH, should

become statistically insignificant after the inclusion of trading volume. In the

end, we will compare the ”explanatory” ability of the plain GARCH models

with those with volume included in the variance equation, where we expect

that the inclusion of trading volume will improve the explanatory power of the

model.

The thesis is organized as follows: Chapter 2 establishes the theoretical

framework, where the GARCH models are gradually introduced and founda-

tions of our research are set. In Chapter 3 the data and methodology are

described, later followed by the model application section, broken down into

five categories according to the particular stock. In Chapter 4 the final conclu-

sion is provided along with the propositions for future research.



Chapter 2

Theoretical Framework

2.1 Conditional Heteroscedastic Models

The objective of this section is to expand the theory around the topic of volatil-

ity and its modeling which shall be later put in context of Mixture of Distri-

butions Hypothesis, we also plan to introduce the model which we use in our

empirical research.

Since the asset volatility is an important input in many econometric models,

let us begin with its definition followed by some important charasteristics that

have been seen in financial markets and are crucial for our analysis.

Under the term of asset volatility, we understand the conditional standart

deviation of the underlying asset returt which measures the rate of return

fluctuation in the markets, thus serve also as the risk indicator. Asset volatility

has many financial applications, besides the options pricing models, portfolio

theory and risk management, the proper modeling of volatility can also improve

the efficiency of parameter estimation and accuracy in interval forecasts of many

financial time series models.

One of the main features of volatility is the fact that the volatility is not

directly observable, since we observe only the realised returns. Newertheless,

it has some characteristics that are commonly seen in asset returns noted in

Ruey S. Tsay (2005) . Firstly, the volatility is not constant over time, but

evolves in continuous manner which means we can rarely see volatility jumps.

Secondly, the volatility clusters, where there are periods of low volatility and

periods of high volatility. Thirdly, long memory property, where shocks from

remote periods affect the current volatility. Fourthly, the volatility is stationary

process, where it varies in fixed range which also means that longterm volatility
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predictions should converge to its long term average. Fifth, the asymmetric

behaviour of volatility, where volatility reacts differently to big price drop and

big price increase. This property is also known under the name of leverage

effect.

Also the volume-volatility relationship plays important role in financial time

series research. The main motivation for such modeling is the suggestion that

volume can be used as a proxy for information flows to the market, however,

the prior research results are contradicting. The inclusion of trading volume

should also provide some new information to the volatility models, thus make

the estimates more precise.

All these characteristics played important role in the evolution of volatility

modeling and also contributed to the formation of Conditional Heteroscedastic

models. In the following sections, we are going to provide you an insight in the

ARCH process, introducing ARCH models, its generalisations and extensions

that overcome the initial shortcomings.

At the end, the model will be put in context of the volume-volatility frame-

work in terms of Mixture of Distributions Hypothesis. Last, the model we

selected for volume-volatility modeling will be introduced.

2.1.1 The ARCH model

The first conditional heteroscedastic model that provides systematic approach

for volatility modeling is the Autoregressive Conditional Heteroscedastic (ARCH)

model developed by Engle (1982) later followed by number of improvements

and generalisations.

Before introducing the ARCH process itself, it is useful to show the modeling

of the serially uncorrelated but dependet return series rt and its properties,

namely the conditional mean and variance.

The return series is modeled as follows:

rt = µ+ at (2.1)

where conditional mean of rt is E(rt|Ft−1) = µ and conditional variance of rt

is given by V ar(rt|Ft−1) = E[(rt − µt)
2|Ft−1] = ht. It is useful to notice that

term Ft−1 stands for the information set available at time t− 1. The last term

at that appears in our model is reffered to as the shock, or the inovation of
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return series at time t. It can be written as follows:

at =
√
htεt

where {εt} is an i.i.d. sequence of random variables with zero mean and variance

one.

The objective of an ARCH is to model the conditional variance ht. Let us

begin with the simple ARCH(1), later extendet to ARCH(q) model.

The ARCH(1) model is specified as:

ht = α0 + α1a
2
t−1 (2.2)

where again at =
√
htεt, α1 ≥ 0 and α0 > 0 are parameters to be estimated.

The ARCH(1) model is just a special case of general ARCH(q) model which is

specified as follows.

ht = α0 + α1a
2
t−1 + α2a

2
t−2 + . . .+ αqa

2
t−q = α0 +

q∑
i=1

αia
2
t−i (2.3)

Where again non-negativity conditions α0 > 0 and αi ≥ 0 for all i > 0 must

hold, in order to ensure non-negativity of conditional variance. Coefficients

αi must also satisfy some regularity conditions to obtain finite unconditional

variance of at.

From the structure of the model we can see that large past squared shocks

a2t−i cause large conditional variance ht of at which in ARCH framework means

that large shocks tend to be followed by another large shock. This is similar to

the volatility clustering feature of the asset returns, thus the ARCH(q) model

is useful in modeling the financial time series.

Despite all its useful properties, ARCH model has also some shortcomings,

namely the fact, that it responds similarily to positive and negative shocks,

because conditional variance is dependent on the squares of at.

ARCH also does not provide any explanation of the source of variations,

it just mechanically describes the conditional variance. Another disadvantage

that the model is struggling with is the fact that it usually has to be specified

with high order lag structure, since the long memory feature is often present

in financial series data. There is also probability of violation of non-negativity

conditions, when it comes to the estimation of the free lag distribution.
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To overcome these problems, the model was generalised to GARCH which

will be provided in the next section.

2.1.2 The GARCH model

Althought the ARCH model proved to be exceptional in volatility modeling,

some improvements had to be done mainly due to issues mentioned above and

also to allow for more flexible lag structure. In this section, more general class

of processes, GARCH, is introduced.

As you may know, the GARCH model was suggested by Bollerslev (1986).

The extension of the ARCH process to the GARCH bears much resemblance

to the extension of the time series Autoregressive (AR) process to the general

Autoregressive Moving Average (ARMA) process and allows us more carefull

description in many situations.

The GARCH(p,q) process is given by following set of equations:

rt = µ+ εt = µ+
√
htzt (2.4)

εt|Ωt−1 ∼ N(0, ht) (2.5)

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j (2.6)

from equation 2.4 we can see that εt = rt−µ is real value, discrete time, strictly

stationary stochastic process, zt is independent identically ditributed standart

normal variable, Ωt−1 is the information set of all information available through

time t−1. Parameters p,q determine the number of lags included in the model,

α0, αi, βj are parameters to be estimated which are subjects of the following

conditions: α0 > 0, αi ≥ 0 for i = 1 . . . q measuring the short-term impact of

εt on conditional variance and βj ≥ 0 for j = 1 . . . p measuring the long-term

impact on conditional variance.

From the equation 2.6 is obvious that if p = 0 the GARCH reduces to the

ARCH(q) process and if p = q = 0 εt is simply white noise. All in all, the

most widely used specification of the GARCH asserts that the best predictor

of the future variance is a weighted average of the long-run average variance,

the variance predicted for current period, and the information in this period

captured by the most recent squared residual. This kind of process corresponds

to so called adaptive learning behaviour.

Along with the non-negativity conditions, the
∑q

i=1 αi +
∑p

j=1 βj < 1 must
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be satisfied to ensure the covariance stationarity of GARCH(p,q) process. To

put it down rigorously, let us provide you the following theorem provided by

Bollerslev (1986) on page 310.

Theorem 1. The GARCH(p,q) process defined by 2.5 and 2.6 is wide-sense

stationary with E(εt) = 0 and V ar(εt) = α0(1 −
∑q

i=1 αi −
∑p

j=1 βj)
−1 and

cov(εt, εs) = 0 for all t 6= s is and only if
∑q

i=1 αi +
∑p

j=1 βj < 1

The GARCH framework proved to be successful in volatility prediction.

Empirically, a wide range of financial phenomena exhibit the volatility clus-

tering. As we have seen, the GARCH model describes the time evolution of

average size of squared errors that is, the evolution of the magnitude of uncer-

tainty.

But again, to stay objective, we must not forget to provide the downsides of

the GARCH model. Nelson (1991) has mentioned three main disadvantages of

the model. The non-negativity condition of the estimation parameters which

are imposed in order to ensure the non-negativity of ht in all time periods. This

coditions lead to the fact that increasing εt in any time period leads to increase

of ht+m for all m > t. This eliminates the randomness in the fluctuations of ht.

GARCH is also unable to capture the leverage effect, thus the magnitude of ht

does not deppend whether εt = rt − u ≤ 0 or epsilont = rt − u ≥ 0, though it

is observed that εt ≤ 0 is related to higher ht and εt ≥ 0 is related to lover ht.

The last drawback that Nelson mentioned is the difficulty in the evaluation of

persistance of shocks to conditional volatility.

To overcome these problems, the Exponencial GARCH or EGARCH was

developed which we present in the subsequent section.

2.1.3 The Exponencial GARCH model

As we have already mentioned, Nelson (1991) has developed the Exponencial

GARCH (EGARCH) model in order to overcome the issues that GARCH was

unable to deal with. Mainly to allow for the asymmetric effect in asset returns.

The EGARCH model can be specified by adding additional parameter to the

modified GARCH equation which allows us for the asymmetric behaviour.

The EGARCH(p,q) model is defined as:

rt = µ+ εt = µt +
√
htzt (2.7)
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εt|Ωt−1 ∼ N(0, ht) (2.8)

ln(ht) = ω +

p∑
i=1

βiln(ht−i) +

q∑
j=1

αjg(zt−j) (2.9)

Where zt =
εt√
ht

is standartized residual, Ωt−1 is information set available

through time t − 1, g(zt) is a function of zt and |zt| that accommodate the

asymmetric effect between stock return and volatility changes.

The function is defined as follows:

g(zt) = θzt + γ[|zt| − E|zt|] (2.10)

Both zt and [|zt| − E|zt|] are i.i.d., zero-mean sequences with continuous

distributions. Since g(zt) is just the linear combination of the two, it is also

i.i.d., zero-mean sequence, where θ and γ are real constants.

The asymmetric behaviour of g(zt) can be seen from the following equation:

g(zt) =

{
(θ + γ)zt − γE(|zt|), if zt ≥ 0

(θ − γ)zt − γE(|zt|), if zt < 0

Over the range of 0 < zt < ∞, g(zt) is linear function of zt with the slope

(θ + γ). Over the range −∞ < zt < 0 g(zt) is linear function of zt with the

slope equal to (θ − γ), thus it allows the conditional variance ht to respond

asymmetrically to positive and negative shocks.

As you can see from the equation 2.9 the variance ln(ht) is in the logarithmic

form which ensures the non-negativity of ht in case of negativity of estimation

parameters ω, βi and αj.

In order to properly understand the meaning of the estimation parameters,

let us rewrite the equation 2.9 in the following manner:

ln(ht) = ω +

p∑
i=1

βiln(ht−i) +

q∑
j=1

λj[|zt| − E|zt|] +

q∑
j=1

δjzt−j (2.11)

where ω, βi, λj, δj are parameters to be estimated.

Parameter ω is just a constant, βi is conditional volatility persistance pa-

rameter, λj represents the symmetric GARCH effect and δj measures the asym-

metric effect. It is good to notice that λj and δj parameters are nothing else



2. Theoretical Framework 10

than just transformations of the preceding estimation parameters such that

λj = αjγ and δj = αjθ.

As for the asymmetric effect, we can distinguish among three cases that

may occure, δ > 0 indicates that positive realisation of innovation has positive

effect, δ < 0 indicates that negative realisation of innovation results in increase

of volatility and δ = 0 is the case, when the asymmetric behaviour is not taken

into account. Most often, in empirical aplications of the model, the parameter

δ is assumed to be negative.

In the next sections of the text, we would like to explain the theoretical

basis for the selection of the proper number of lags in our variance equation.

The tool we are going to use is also useful for overall model comparison which

can also serve for comparison of the GARCH models with and without volume

terms.

2.2 Model Selection Method

Although we have already presented different forms of the GARCH model, we

have not said anything specific about the lag distribution and the process by

which will be the appropriate number of parameters p,q employed in our model.

Generaly, when fitting the model, it is possible to increase the likelihood

just by including additional parameters into the model but doing so may result

in the model overspecification and loss of the predictive ability of the model.

There exist number of selection approaches that deal with the model speci-

fication issue helping us to find the model that best fits the particular analysis.

Each of those processes is suitable in different situation and uses different sta-

tistical method in the model evaluation process. The most widely utilized are

for example Bayesian Information Criterion (BIC), Akaike Information Crite-

rion (AIC), Takeuchi’s Information Criterion (TIC) or second order information

criterion.

Although all of these criterions mentioned above are useful in certain sit-

uations, for our purposes the AIC will be utilized, since it is usually used in

case of models with predictive rather than descriptive ability and carries other

useful theoretical properties outlined in Kenneth P. Burnham (2002).

Before we introduce Akaike Information Criterion itself, we provide a brief

insight to its main building block, the Kullback-Leibler distance noted as K-L

distance.
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2.2.1 Kullback-Leibler distance

In 1951, Sollomon Kullblack and Richard Leibler, S. Kullblack (1951) derived

an information measure now reffered to as the Kullback-Leibler (K-L) informa-

tion which can be conceptualized as a directed distance between two models,

say f and g. The f and g are known simple probability distributions, where f

is a notation for full reality and g denotes an approximating model in terms of

probability distribution. It is good to notice that the measure of f to g is not

the same as the measure of g to f , since it can be conceptualized as a directed,

or oriented distance.

Kullback-Leibler information between f and g for continuous functions is

defined as the multi-dimensional integral

I(f, g) =

∫
f(x)log

(
f(x)

g(x|θ)

)
dx. (2.12)

where log denotes natural logarithm. I(f, g) denotes the information lost when

f is approximated by g, thus can be understood as the distance from g to f .

Full reality f is considered to be fixed, whereas g varies over the space of

models indexed by θ. Similarly, the K-L distance can be understood as the

measure of inefficiency assuming that the distribution is g when the true distri-

bution is f . The K-L distance is always positive, unless the two distributions

f and g are identical such that I(f, g) = 0, if f(x) = g(x). Note that the es-

timation of Kullback-Leibler distance requires both the knowledge of the true

distribution f as well as all the parameters in the models gi, thus the distance

itself can not be computed for real world problems.

However, the problem of not-knowing the exact functions f and g drops

out, as we use the relative distance, where I(f, g) can be written as

I(f, g) =

∫
f(x)log (f(x)) dx.−

∫
f(x)log (g(x|θ)) dx. (2.13)

Where each of the integrals is a statistical expectation with respect to f . So

the K-L distance can be rewritten into the following form.

I(f, g) = Ef [log(f(x))]− Ef [log(g(x|θ))] (2.14)

The fitst expectation Ef [log(f(x))] is a constant that depends only on the

unknown true distribution f , since we assume that f is unambigous and does
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not change. Therefore, treating the expectation as a constant, say C, allows us

to measure the relative directed distance such that

I(f, g) = C − Ef [log(g(x|θ))] (2.15)

or

I(f, g)− C = −Ef [log(g(x|θ))] (2.16)

the term I(f, g) − C can be interpreted as the measure of the relative dis-

tance between f and g. Assume that we have two models g1 and g2 such that

I(f, g1) < I(f, g2) which means that the first model is better than the secod.

Than the following applies I(f, g1)− C < I(f, g2)− C, hence

−Ef [log(g1(x|θ))] < −Ef [log(g2(x|θ))],
,moreover,

I(f, g2)− I(f, g1) = −Ef [log(g2(x|θ))] +−Ef [log(g1(x|θ))],
so even without knowing C we can identify which model is better and how

much better it is, because C is the same for all candicate models, and as you

can see, it is irrelevant for comparison.

In the next section we will show how the relative K-L distance was used for

building the information criteria that we use for model selection issues.

2.2.2 Akaike Information Criterion

In 1973, Akaike (1973) proposed the use of the Kullblack-Leibler information

as a fundamental basis for model selection issues. As we know, the actual K-L

information cannot be computed, unless we know the functions f and all the

parameters θ in each function gi(x|θ), thus Akaike suggested that relative K-L

distance can be estimated based on the log-likelihood function at its maximum

point.

In fact, he noted that there exists unknown unique value of θ which min-

imizes the K-L distance and depends on the function f , the structure of the

model g, the sample space and the parameter space.

Since the model parameters must be estimated, the task is to minimize the

expected the K-L distance rather than the known K-L distance. So Akaike pro-

posed to estimate the EyEx

[
log(g(x|θ̂(y)))

]
by the maximised log(L(θ̂)|data).

He also found that this estimation is upward biased and under certain con-

ditions, this bias is equal to K, the number of estimation parameters in the

approximating model.
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Based on this, the following equality was suggested:

Ê(K − L) = EyEx

[
log(g(x|θ̂(y)))

]
= log(L(θ̂)|data)−K (2.17)

where g() is the candidate model, L is the maximized likelihood function, K

is number of parameters included in the approximating model, (K − L) is the

Kullback-Leibler distance and θ are the model parameters.

Later than, Akaike created the Akaike Information Criterion given by the

following equation:

AIC = −2log(L(θ̂)|data) + 2K (2.18)

As we know, the I(f, g) can be smaller when including additional known pa-

rameters in the approximating model g, but when the parameters are unknown

and must be estimated further uncertainty is added to the estimation of the

relative K-L distance, thus at some point, inclusion of additional parameters

will have the opposite effect of increasing the estimated relative K-L distance.

This can be seen from the right hand side of the equation 2.18 where

−2log(L(θ̂)|data) tends to decrease, when additional parameters are included,

while the term 2k tends to get larger as more parameters are included, thus

somehow penalises more complex and overspecified models.

At the end it is good to notice that AIC provide us rather tool for the com-

parison of the models included in the model set, than some absolute measure

of the fit, so if we have a set of poor models, AIC will give us the best one,

even though it may still be very poor in absolute sence.

2.3 Volume Volatility Relationship

Presenting conditional heteroscedastic models that properly capture the fea-

tures of volatility, we made rather mechanical description of the problem than

providing you the reasons and explanations of such behaviour. In this section,

we will focus to correctly introduce the theory which deals with the explanation

of volatility and its features through connection with trading volume.

2.3.1 Mixture of Distributions Hypothesis

A Mixture of Distributions Hypothesis (MDH) developed by Clark (1973) is

being widely used for the explanation of volatility features through the con-
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nection of volatility and trading volume. For the beginning, let us provide you

technical description of the matter and continuously build the entire theory.

Let us assume the daily stock return equation:

rt = µ+ εt

where again, µ is mean of rt conditional on past information, εt is a shock to

return series such that εt|Ωt−1 ∼ N(0, ht), where Ωt−1 is the set of information

available through time t− 1.

The Mixture of Distributions Hypothesis suggest the following:

εt =
nt∑
i=1

δit

where δit is the ith equilibrium price increment in day t, nt is the random

variable that denotes the number of daily increments representing the stochastic

rate of the information arrival to the market. The sequence of δit is assumed

to be the sequence of independently identicaly distributed random variables

with zero mean and variance σ2. Moreover, if nt is sufficiently large, than

εt|nt ∼ N(0, σ2nt). Since the number of intraday increments is random, daily

returns follow mixture of normally distributed random variables with nt as

the mixing variable. Thus, the daily returns are generated by subordinated

stochastic process, where εt is subordinate to δi and nt is the directing process.

According to Lamoureux (1990), GARCH effects may be explained as a

manifestation of time dependence in the rate of evolution of intraday equi-

librium returns. For the validity of the argument, let we assume the serial

correlation in the daily number of information arrivals which can be expressed

by subsequent equation:

nt = φ0 +

q∑
i=1

φint−i + ut (2.19)

where φ0 is a constant, φi are slope parameters of the laged nt and ut is white

noise. Let us define Θt = E(ε2t |nt). If the mixture of distributions model is

valid than Θt = σ2nt. From equation 2.19 plugged for nt into Θt = σ2nt follows:

Θt = σ2φ0 +

q∑
i=1

φiΘt−1 + σ2ut (2.20)
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This equation illustrates the fundaments of Mixture of Distribution Hypoth-

esis. It captures the same kind of persistance in conditional variance of returns

that can be estimated by GARCH model, where the autoregressive form of the

mixing variable nt is translated into the GARCH model structure. As you can

see, the conditional variance is dependent on nt the number of information that

flows to the market, thus GARCH behaviour is formed by serially correlated

information flow process.

The unpleasant fact that the nt is generally unobservable calls for the need

of some suitable proxy variable. According to Lamoureux (1990), daily trading

volume can be used. The volume is likely to contain the information about

disequilibtium dynamics of the stock markets. It is important to notice that in

case of contemporaneous relation, trading volume was assumed to be weakly

exogenous.

Therefore, the following model was proposed:

ht = ω + αε2t−1 + βht−1 + γVt (2.21)

which is simple GARCH(1,1) specification augmented on Vt the daily trading

volume term which serves as the a proxy for the mixing variable.

The mixture of distribution suggests that γ > 0, moreover, the (α+β) which

measure the persistance of conditional variance should become negligible be-

cause inclusion of trading volume should make parameters α and β statistically

insignificant if the trading volume is serially correlated. Additional insight into

the problem may provide us decomposition of volume into expected and unex-

pected part assuming that the market consists of different kind of traders.

ht = ω + αε2t−1 + βht−1 + γ1EVt + γ2UVt (2.22)

Coefficients γ1 and γ2 measure the effect of expected and unexpected volumes

on volatility. Usually it is observed that increase of unexpected volume results

in higher volatility and increase of expected volume in lower volatility, thus we

can expect corresponding signs of our estimation parameters in the regression.

At this part, it is necessary to present you one drawback that arises from

inclusion of contemporaneous trading volume. As you can find above, MDH

states that both trading volume and return volatility are driven by the informa-

tion flow process. In other words, volume and volatility are both determined by

the same variable, thus volatility can not be regressed with contemporaneous

volume as exogenous variable due to simultaneity problem resulting in incon-
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sistent estimators. Moreover, model with contemporaneous volume would not

be capable of forcasting volatility.

The solution of simultaneity proposed by Najand (1991) is to include lagged

trading volume Vt−1 instead of contemporaneous Vt in the GARCH equation,

where lagged values of endogenous variables are classified as predetermined,

thus the lagged value can be used. Besides, there has been found a positive

significant relationship between lagged volume and volatity. As mentioned

earlier, Lamoureux (1990) showed that inclusion of contemporaneous trading

volume leads to reduction of volatility persistance parameters in the GARCH

equation, thus explaining the volatility. Chen (2001) came to the finding that

the persistance is not eliminated after inclusion of lagged or contemporaneous

trading volume, thus obtaining contradicting results. Later in 1994, Lamoureux

(1994) performed the volume-volatility analysis again, this time, they developed

the model the without the assumption of weak exogenity of trading volume

resulting in quite opposite results than in previous analysis.

All these contradicting resuls led to further development of the problem

,namely to division of the trading volume into expected and unexpected com-

ponents with the assumption that expected volume representing the liquidity

trading should lead to decrease of volatility and unexpected volume repre-

senting the flow of information to the market should lead to increase of the

volatility.

Overall, there exist rather inconclusive evidence in the matter of volume-

volatility relationship and explanation of persistance parameters through in-

clusion of trading volume in the variance equation which motivates us for con-

struction of suitable model for volatility dynamics in the presence of information

arrival proxies.

2.3.2 Augmented GARCH

Until now, we have introduced basic theoretical concepts and econometric mod-

els suitable for utilisation of volume-volatility modeling and Mixture of Distri-

bution Hypothesis testing. In this section, we would like to put all the pieces

together leading to introduction of the model we use in our empirical research.

Since we want to capture the volatility as realistically as possible but still

keep the interpretation simple and understandable for the broad audience of

readers, we decided to use GARCH model which performs very well among

all the models mentioned above. Despite it does not capture all the empir-
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ically observable features of volatility, namely the asymmetric behaviour of

innovations, it will ensure the simple interpretation of estimation results of the

augmented GARCH model. As for the additional explanatory variables added

to the GARCH equation, we suggest that the most proper way would be to

include the lagged volume rather than contemporaneous to avoid the poten-

tial simultaneity problems. We also decompose the volume into expected and

unexpected parts rather than just using simple lagged volume. In addition to

show the asymmetric impact of the volume change on the volatility, we decided

to decompose the unexpected volume into two variables capturing the positive

and negative shocks. The proposed model has the following form:

ht = ω +

p∑
i=1

βiht−i +

q∑
j=1

αja
2
t−j + γ1EVt−1 + γ2UV Pt−1 + γ3UV Nt−1 (2.23)

where EVt−1 is expected volume in time t− 1, UV Pt−1 is a variable capturing

the positive volume shocks in time t−1 and the UV Nt−1 is a variable capturing

negative volume shocks in time t− 1.

This distinction of expected and unexpected trading volume has also inter-

esting interpretation, where expected volume can be understood as liquidity

trading, thus it should not have anything to do with the information arrival.

On the other hand, the unexpected volume can be interpreted as volume oc-

cured due to new, unexpected news arriwal to the market. The expected signs

of our estimation parameters are quite intuitive, since the liquidity trading is

a volume that occure periodically and liquidity is assumed to be stabilizing

factor of the markets than we can expect the negative sign of the expected vol-

ume parameter. As mentioned above, the unexpected volume represents the

information trading, however, it can be positive or negative, thus we should ac-

count for these two options in our regression. The positive unexpected volume

is assumed to increase the stock volatility and negative unexpected volume is

assume to decrease it. The lag structure of the
∑p

i=1 βiht−i and
∑q

j=1 αja
2
t−j

will be specified according to Akaike information criterion introduced in section

2.2.2..



Chapter 3

Empirical Research

3.1 Data and Methodology

3.1.1 Data description

As mentioned in the introduction, we decided to make a research on five S&P

500 constituents with the highest current market capitalisation. The data was

obtained from the Bloomberg 1 system and processed in the Stata software.

Generaly S&P 500 index represents the common stock of the 500 largest US

companies publicly listed on either NYSE or NASDAQ exchange. S&P letters

stand for Standard&Poor’s which is an American financial services company

that founded the index in 1957. All in all the importance of S&P500 lies

in the fact that the index is being used as a benchmark for American stock

performance and bellwether for the US economy.

As mentioned above, we have picked five companies with the highest market

capitalisation to date 8th of April 2014.

The selected companies are as follows:

� Apple Inccorporated

� Exxon Mobil Corporation

� Berkshire Hathaway Incorporated

� Microsoft Corporation

� Google Incorporated

1We have to thank for the data to anonymous provider.



3. Empirical Research 19

These stocks represent currently the most valuated companies in US economy,

thus we will briefly present their history, background and business activities

they perform.

Apple Inc. is an American technology corporation founded in 1976, head-

quartered in California. The company develops, designs and sells consumer

electronics and software. Later in 1980, Apple launched the initial public of-

fering of its stock for 22 dollars per share. Currently Apple inc. stocks are

traded in NASDAQ stock exchange around 520 dollars per share with market

capitalisation of 463 486 million dollars.

Exxon Mobil Corp. is an American Oil&Gas company, formed in 1999 by

the merger of two major Oil companies Exxon and Mobil. The company is

headquartered in Texas. Although the company was formed in 1999, the stocks

of Exxon and Mobil were traded far earlier in twenties of the 20th century.

Nowadays the stocks are traded in NYSE, fluctuating around 95 dollars per

share and the market capitalisation is 416 895 million dollars.

Berkshire Hathaway Inc. is an American conglomeral holding company founded

in 1839 headquartered in Nebraska USA, originally, Berkshire operated as tex-

tile manufacturing company but later in 1962 was acquired by Warren Buf-

fet and expanded into insurance and other businesses. Nowadays the stocks

of Berkshire Hathaway are traded in NYSE. Currently the price per share is

around 180 dollars with market capitalisation of 300 281 million dollars.

Microsoft Corporation is an American technology company founded in 1975,

headquartered in Washington, USA. The company mainly develops software

and consumer electronics. In 1986, Microsoft firstly issued its shares to public

for 21 dollars per share. Nowadays the Microsoft stocks are traded in NASDAQ

around 40 dollars per share, the market capitalisation of Microsoft is 325 463

million dollars.

Google Inc. is the last and the youngest company we want to introduce.

Google was founded in 1994 in California, it is a technology company that

specialises on the internet and software services and solutions. Google initially

issued its shares in 2004 for 85 dollars per share, currently the shares are trading

around 550 dollars and the market capitalisation is 359 457 million dollars.
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For all of these companies except Google, we collected raw intraday five

minute data for the close price and aggregated volume for the period beginning

from 1.10.2013 till 31.3.2014. Each regular trading day begins at 15:30:00 CET

and ends at 22:00:00 CET which makes 78 consecutive observations per regular

trading day. Moreover after exclusion of holidays, weekends and non-trading

hours we obtained 9678 observations for each of the stocks. In a Google case,

we had to restrict ourselves just for the period of 1.10.2013 - 7.3.2014 due to

many missing ovservations beginning in 10.3.2014 and consecutive days. All

in all we collected 8427 observations, however, this restriction generally should

not cause any problems in our analysis. For each stock, period and number of

observations is summarized in the table 3.1.

Table 3.1: Data collection summary

Company From Until Number of obs.

Apple 1.10.2013 31.3.2014 9678
Exxon Mobil 1.10.2013 31.3.2014 9678
Berkshire Hathaway 1.10.2013 31.3.2014 9678
Microsoft 1.10.2013 31.3.2014 9678
Google 1.10.2013 7.3.2014 8427

Source: author’s computations.

For those who are not familiar with terms such as close price or aggregated

trading volume, the explanation is provided in the subsequent rows, where we

also explain how the data were collected.

The close price is generally the latest price for which the security was traded

in given time period, thus it represents the latest up-to-date valuation of the

security. Since we use five minute periods in our analysis, the five minute close

price is the latest price of the security for every period. As you know, we

divided the trading day into 78 subsequent five minute periods and picked the

close prices for each of the period. From these close prices, the five minute

returns were calculated. In order to stay consistent with the periodicity of

prices, we also had to collect the aggregated volume for each of the five minute

interval which means that the volumes represent the sum of all traded stocks

during the given five minute interval.

The lenght of the time series was chosen according to data availability, where

the longest period supported by bloomberg platform was the six months for the

five minute observations of close price and volume. However, the number of
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observations is sufficiently large for all stocks, thus we do not have to be worried

about any problems connected with the quality of the estimation results.

Now we move on to the next section, where the method of computation and

statistical properties of returns are discussed.

3.1.2 Return series

Intraday stock returns series introduces the added dificulty in our research.

Due to the fact that we work with the five minute intraday data, the series is

rather discontinuous. Because of existence of nontrading hours, weekends and

holidays, there are many five minute intervals without any observation either of

price or volume. By definition, we calculate the return series as the log-returns

which is shown in the following equation.

rt = ln

(
Pt

Pt−1

)
= ln(Pt)− ln(Pt−1)

Pt is the close price in period t, Pt−1 is previous period close price and ln

is simply natural logarithm.

At this point, we should notice the problem of discontinuity of the time

series. Since the returns are computed from this periods and previous five

minute periods close price, we should somehow treat the fact that we dont

have any previous five minute close price observation for the first observation

of the opening period (15:30-15:35) of the day. Generally, there are two ways

how to deal with this problem.

One solution is to proxy the opening price of the day as the previous day’s

closing price which implicitly means that we assume that the time between

previous day closing price and today first close price observation is simply five

minutes. Althought this approach gives us the advantage of pseudocontinuity

of time series, it also has its disadvantages mentioned later this section. The

second approach would be to give up the return of the first five minute period

of the day and simply begin with the (15:35-15:40) as the first one for each of

the trading days. Now, let us provide you the summary statistics of the return

series with the data based on both of the approaches. Starting with the first

one, we obtained the following figures. The results from the second approach,

where we dropped each day’s first observation are summarized in table 3.3 .

If we compare the values of the two, we can see decrease in all of the

summary categories. The biggest differences can be noticed in minimum and

maximum returns which can suggest us that the biggest absolute returns occur
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Table 3.2: 5 minute returns summary statistic #1

Company Mean Std. Dev. Min Max

Apple 0.0000122 0.0015398 -0.0795977 0.028973
Exxon Mobil 0.0000131 0.0010869 -0.0192283 0.0220017
Berkshire Hathaway 9,93e-6 0.0008921 -0.0144388 0.0118229
Microsoft 0.0000214 0.0015731 -0.0146484 0.0640195
Google 0.0000388 0.0016412 -0.0111212 0.0972701

Source: author’s computations.

Table 3.3: 5 minute returns summary statistic #2

Company Mean Std. Dev. Min Max

Apple -6.97e-06 0.0010948 -0.014034 0.0062963
Exxon Mobil 0.0000132 0.0008974 -0.0079965 0.0085749
Berkshire Hathaway 2.68e-07 0.0007895 -0.0144388 0.0052429
Microsoft 3.25e-06 0.0011888 -0.0146484 .0103723
Google 7.01e-06 0.00106 -0.0088511 0.0090204

Source: author’s computations.

after the opening of the markets. Note that the returns we dropped were those

calculated from the first day close price and last previous day close price, so

actually, it was rather over night returns than five minute returns.

This phenomenon can also be seen from the line plot 3.2, where we show

the feature in particular date 1.10.2013 for Apple Inc. but similar behaviour

can be observed for all stocks every trading day.

The first spike represents the over night return and as you can see, it is

substantially different from consecutive five minute returns. The reason for

such behaviour is a fact that the overnight returns include more information

accumulated over the nontrading hours of the night resulting in very different

first period’s close price of the following day, thus larger absolute return.

The main disadvantage of keeping the over night returns in our analysis

is the fact that we would obtained strongly non-stationary time series due to

the seasonality of returns which would cause problems while implementing the

proposed volatility models. All things considered, we decided to drop them

of our analysis which implicitly means that we consider only those news that

occured in trading hours, thus avoiding any potential errors. In addition to the

first period that we decided to dispose of, we found significant parameters while
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Figure 3.1: Apple 5 minute returns plot 1.10.2013
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checking for further seasonality in the beginning of the day. Particularly we

saw significant relationship between returns and first 15 minutes of the trading

day (including the dropped first period) for all the stocks except Google. The

signs of the estimation parameters differed both across companies and across

time periods. The possible explanation of such behaviour might be the fact

that it takes some time for the markets to adjust the price to the informations

that arrived through non-trading hours.

We will not drop these observations from the regression for two reasons,

it contains informations arrived through the market hours and the behaviour

is different for each of the stocks. The solution as we propose it would be to

controll for this effects in the mean equation of the GARCH model. In the next

section, we will take closer look on the trading volume series, examining the

seasonality patterns and introducing the method by which we split the trading

volume into expected and unexpected part.

3.1.3 Volume series

As we mentioned in the theoretical framework, we will include both expected

and unexpected trading volume to our variance equation of the GARCH model.

The volume series, as we utilize it in our analysis, will be modeled as follows:

volt = µ+

p∑
i=1

βiDperiodi +

q∑
i=j

αjvolt−jδt



3. Empirical Research 24

where µ is a constant, Dperiodi is dummy variable capturing particular period

of the day, namely the beginning and the ending periods, volt−j is just simply

the lagged volume value. On the top of that, we check for possible time trends

in our regression. The fitted values from this regression would be used as an

expected volume, the residuals would be used for unexpected volume which

will be further decomposed according to its sign. The summary statistics that

we provide below is already filtered from the first period of the day.

Table 3.4: 5 minute volume summary statistic

Company Mean Std. Dev. Min Max

Apple 29162.35 72022.05 1000 2199099
Exxon Mobil 24958.87 33626.92 1525 634035
Berkshire Hathaway 8826.468 13055.95 315 559321
Microsoft 138238.6 420553.7 28.5 8644737
Google 5752.002 14904.7 100 316600

Source: author’s computations.

In line with return series, we have observed significantly higher values of

volume in the begginning and even more at the end of the trading day. The

time span of such behaviour differs across stocks and will be treated in the

volume model proposed above.

Generally, it can be seen that the volume series shows J-shaped or U-shaped

patterns during the trading day, meaning that the highest values of volume are

observed in the first and in the last ten minute period of the day. As an

example, let us present you the line plot capturing volume in 1.10.2013. see

figure 3.2. This kind of shape of intraday volume is not unique and is observable

for all stocks in our analysis. Possible explanation of such volume behaviour is

already submited in Admati (1988).

One of the proposed explanation is that high volume in particular time

span reveals the presence of asymmetric indormation as noise traders camou-

flage the activity of the informed traders, thus creates the patterns in volume

and volatility. Another explanation enshrined in fundamentals of the techni-

cal analysis is that holding security over night represents huge risk, thus daily

traders open the possitions in the open and close in the close of the market

every day.

Having presented the data we can move further to the model application,
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Figure 3.2: Apple 5 minute volume plot 1.10.2013
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where we also show the modeling procedure for the Apple Incorporated. For

other stocks, the approach will be much the same.
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3.2 Model Application

In this section, we move on to actual aplication of our models on the data. In

order to make it briefer, we provide the full step by step analysis only for the

Apple Inc. For the remaining stocks, the modelling approach is much the same,

thus we only show the final estimation results and provide its interpretations.

In the end, we will summarize the estimation results of our analysis in the

summary.

3.2.1 Apple

Before we start with the modeling of the volatility itself, we should check the

assumptions that the model stands on, namely the stacionarity of time series,

serial correlations and presence of the ARCH effects in our returns.

Let us begin with the test of stacionarity assumption, where we use the

test proposed by David Dickey and Wayne Fuller so called Dickey-Fuller test

for a unit root process. The null hypothessis states that there is unit root

process in the series, in other words, the time series is not stacionary. The

alternative hypothesis is that we have stacionary series, so we wish to reject

the null. Performing the test, we obtain the test statistic equal to −101.227

with the critical value at five percent significance level equal to −2.86. The

decision rule connected with this test is that we reject the null hypothesis if

our test statistics is less then the critical value, in our case, we can strongly

reject the nonstacionarity of the series.

For specification of the mean equation together with controlling the uncor-

relation of the returns, we decided to check the autocorrelation function.

We can observe seven significant autocorrelations, at the first, the second

and the sixth lag later followed by further lags, namely 21 and 31. This struc-

ture of returns can suggest us to use the AR process when identifying the

mean equation, above that, we decided to check for the further seasonality as

mentioned in the section 3.1.2.

For the mean equation, we decided to run simple AR model. Although the

ACF suggests us to include furhter lags, the proper way as we see it is just to

include the first three lags, thus obtaining the AR(3) model augmented on the

day periods. We have several reasons for this specification, mainly the fact that

the inclusion of the additional lag parameters does not contribute much as for

the magnitude of their parameters and also does not increase the explanatory
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Figure 3.3: ACF of apple 5 minute returns
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power of our model. It is also important to note that the joint MLE estimation

of our mean and variance equation allows for the heteroscedasticity in the

residuals which can can result in insignificance of any of the AR parameter in

the mean equation. In such case, we reestimate the mean equation where we

drop the insignificant lag parameter. The estimation results of the proposed

mean equation are presented in table 3.5.

Table 3.5: Apple mean equation results

Variable Coefficient Std. Err. t p-value

L1.r app -.037061 0.0070786 -5.24 0.000
L2.r app -0.0330483 0.0065254 -5.06 0.000
L3.r app 0.0203862 0.0078847 2.59 0.010
period1 0.0002405 0.0000472 5.10 0.000
period77 0.0004037 0.0001027 3.93 0.000

Source: author’s computations.

As you can see, we obtained significant coefficient for all explanatory vari-

ables. The variables noted as L1.r app, L2.r app until L3.r app are lagged

returns. Period1 stands for the time span (15:35-15:40) and period77 stands

for the last day’s period. As you can see the p-values are close to zero, therefore,

the following model is proposed as the mean equation.

rt = µ+ β1L1.r app+ β2L2.r app+ β3L3.r app+ β4period1 + β5period77
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After all, to show you the results of removing the serial correlation from our

returns, we present you the ACF of the residuals from the proposed mean

equation.

Figure 3.4: ACF Apple mean equation residuals
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As you can notice, we succeded in removing all major serial correlations,

thus the mean equation of our volatility model should be properly specified

and we can move to the next task of our analysis which is the testing for the

ARCH effects in the residuals.

When testing for the ARCH effects, we begin with the ACF of the squared

residuals a2t from our mean equation finding strong dependence up to almost

25th lag.

To confirm the results obtained from the ACF above, we perform the

Lagrange-multiplier test for the ARCH effects which is simply equivalent to

the usual F statistic for testing joint hypothesis in linear regression of a2t on its

lagged values. The results of this test show p-value equal to zero when testing

for fitst 15 lags. This results lead us to the conclusion of ARCH presence in

residuals.

The last task we want to adress before the estiamtion of the volatility model

itself is the proper lag specification of the variance equation. As we mentioned

earlier, we will use Akaike Information Criterion when evaluating the lag-length

of the model. But first, we need the line to start from. The financial series

theory suggest the use of PACF of squared residuals, so first, we will take look

at the PACF to identify the starting line and then use AIC for different values
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Figure 3.5: ACF Apple mean equation squared residuals
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of p,q. After the performance of the AIC test, we found that the best fit is

achieved with the (1,1) setting, thus we will estimate the GARCH(1,1) model.

Table 3.6: Apple GARCH(1,1) estimation results

Variable Coefficient (Std. Err.) z p-value

Mean Equation
L1.r app -0.024 (0.011) -2.15 0.031
L2.r app -0.031 (0.011) -2.76 0.006
period1 0.000 (0.000) 15.35 0.000
period77 0.000 (0.000) 10.42 0.000
Intercept 0.000 (0.000) -1.11 0.267

Variance Equation
L.arch 0.143 (0.005) 29.77 0.000
L.garch 0.815 (0.005) 153.28 0.000
Intercept 0.000 (0.000) 23.86 0.000

The simple GARCH(1,1) etimation results are provided in the table 3.6.

As you can see, all estimation parameters are statistically significant in both

equations. As for the variance equation, we can see relatively strong persistance

of volatility. The coefficient β equals to 0.815 meaning that previous period’s

high volatility tend to be followed by current period’s high volatility. The

responce of the model to the previous shock is not that large according to

its magnitude, where α equals to 0.143 but the parameter is very statistically

significant. The stacionarity condition of the variance equation is satisfied,
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since the α + β < 1. Moreover, both z-scores are large as for the magnitudes.

After the inclusion of trading volume, we will observe both the p-values of the

GARCH terms and the magnitude of the estimation parameters.

Before we start with the interpretation, let us note that when testing for

normality of residuals after the estimation of GARCH model we obtained p-

value equal to zero, so the residuals were not normally distributed under the

Gaussian distribution in GARCH model, thus we tried different distribution

and according the AIC the Student t distribution seems to be the best fit for

our model.

Now, let us provide you the table with estimation results of variance equa-

tion with both contemporaneous and lagged trading volume terms as described

in section above. We will not provide the estimation results of the mean equa-

tion, since it is not the area of interest in our analysis.

Table 3.7: Apple GARCH(1,1)-volume estimation results

Variable Coefficient (Std. Err.) z p-value

Contemporaneous Volume Equation
EVol -0.0000125 2.98e-06 -4.20 0.000
UvolP 3.00e-06 2.15e-07 13.99 0.000
UVolN 0.0004891 0.0000273 17.93 0.000
L.arch 0.1223221 0.0060873 20.09 0.000
L.garch 0.7352733 0.0080027 91.88 0.000

Lagged Volume Equation
L.EVol 0.0000173 3.37e-06 5.12 0.000
L.UVolP 3.28e-06 4.60e-07 7.13 0.000
L.UVolN -0.0000164 7.47e-07 -21.97 0.000
L.arch 0.1432636 0.0050768 28.22 0.000
L.garch 0.780224 0.0063875 122.15 0.000

The interpretation of our regression results is not so straightforward as it

may appear, thus we decided to describe each part of the table separately in

the following paragraphs.

From the first part of the table which captures the contemporaneous rela-

tionship between volume and volatility we can see the different behaviour of

the expected volume noted as Evol and unexpected volume divided into pos-

itive and negative shocks, where UvolP represents positive shocks and UvolN

represents negative shocks. The expected volume is generally considered to

represent liquidity trading in financial markets. Since liquidity reduces the

riskiness of the market, we expect the parameter to decrease the volatility,
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as you can see, we obtained negative coefficient that meets our expectations,

moreover, this parameter is statistically significant. The parameters capturing

the asymmetric effect of volume shocks are also very statistically significant

but we expected them to have oposite signs. Generally the unexpected volume

represent the information trading which is reflected through volume shock. On

the top of that, we expected the positive shock to increase the volatility and

negative shock to decrease it. However, our estimation results are showing us

that both positive and negative shocks tend to increase the volatility. From

the first table, we can also see the change of magnitude of GARCH and ARCH

parameters. The GARCH parameter representing the volatility persistance has

been reduced almost by 10 percent, after the inclusion of trading volume, and

the drop in the z-score is also observable, however, it is stil very statistically

significant. The parameter that expresses the response to the previous price

shock decreased as well by 14.7 percent. All in all, the results from the con-

temporaneous regression are in line with the other researches but we can not

conclude that the contemporaneous volume is able to explain the persistance

of volatility.

As mentioned in the theoretical framework, the approach of including con-

temporaneous volume was criticised due to assumption of exogeneity and the

use of lagged volumes was suggested instead. The results obtained from our

regression can show us quite subtle restults. The parameter representing the

liquidity trading has positive sign, thus suggesting that expected volume in-

creases volatility in the next period, the magnitude of this parameter is not

very large but it is statistically significant. The unexpected volume parameters

properly show the presence of asymmetric effect. The positive volume shock

can be interpreted that the higher the unexpected volume now the higher the

future uncertainty in the markets, thus increases the volatility in the next pe-

riod. The negative unexpected volume has more of an opposite effect, where

both of these parameters are statistically significant. If we focus on the inter-

pretation of our GARCH and ARCH parameters, the drop in magnitudes and

z-scores are not as big as in the contemporaneous case, we can observe the drop

by 4.2 percent in the GARCH and no decrease in the ARCH term.

In the end, we compared the aproprietness of the three models by the Akaike

Information Criterion. We found that both models with included volumes per-

form significantly better when estimating volatility. Namely the model with

lagged volume which carries the predictive ability can be contribution for for-

casting future volatility.
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3.2.2 Exxon Mobil

The second stock of our analysis is the Exxon Mobil Corporation. We fol-

lowed the same approach for modeling return, volume and volatility series as

in the case of Apple. The resulting model we chose is the GARCH(1,2) later

augmented on expected and unexpected volume terms.

The results of our plain GARCH(1,2) regression are provided in the table

3.8. The estimation results of the volume-volatility relationship are in the table

3.9. Before we provide further commentary on the estimation results, we should

say that our regression results are in line with our expectations.

Table 3.8: Exxon Mobil GARCH(1,2) estimation results

Variable Coefficient Std. Err z p-value

Mean Equation
L2.r exx -0.0274418 0.0107296 -2.56 0.011
Intercept 0.0000169 7.48e-06 2.26 0.024

Variance Equation
L1.arch 0.2295221 0.0082482 27.83 0.000
L1.garch 0.3040452 0.0369482 8.23 0.000
L2.garch 0.3641173 0.0335885 10.84 0.000
Intercept 9.12e-08 5.32e-09 17.14 0.000

Table 3.9: Exxon Mobil GARCH(1,1)-volume estimation results

Variable Coefficient Std. Err. z p-value

Contemporaneous Volume Equation
EVol 9.21e-06 2.09e-06 4.40 0.000
UvolP 0.0000173 9.47e-07 18.32 0.000
UVolN -0.0000432 1.71e-06 -25.26 0.000
L1.arch 0.1737021 0.0084213 20.63 0.000
L1.garch 0.4344811 0.0535209 8.12 0.000
L2.garch 0.2200761 0.0451006 4.88 0.000

Lagged Volume Equation
L1.EVol 0.0000151 1.90e-06 7.92 0.000
L1.UVolP 0.000011 2.33e-06 4.71 0.000
L1.UVolN -0.0000346 3.02e-06 -11.46 0.000
L1.arch 0.1936197 0.007969 24.30 0.000
L1.garch 0.3273208 0.046869 6.98 0.000
L2.garch 0.2889809 0.0402476 7.18 0.000

To comment on the results obtained in our research, we can observe that

both in the contemporaneous and in the lagged volume variance equation the
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expected volume has small positive effect on volatility. More interesting find-

ning is the presence of asymmetric effect in the volume shocks, as you can see,

the positive volume shocks tend to increase the volatility and negative vol-

ume shocks tend to decrease it. If we focuse on the parameter that represents

the persistence of volatility represented by lagged GARCH parameters, we can

hardly see substantial differences in their significance, moreover, the sum of the

GARCH parameters did not change at all. However, we can observe drop in

the ARCH parameters. In the contemporaneous model the ARCH effect was

reduced by 22 percent, in the lagged equation the magnitude of change was

19 percent. These observations can be interpreted as there are not substantial

decreases of the ARCH and GARCH effects, thus the volume does not explain

much. Last thing to note is that all additional variables are very statistically

significant. The comparisom of those models by the AIC shows that both

contemporaneous and lagged volumes included in the variance equation signif-

icantly increase the explanatory power of the model. All in all, we can rather

say that the trading volume is positively related to stock return volatility and

improves the volatility models but there is not enough evidence to state that

inclusion of trading volume explains the GARCH and ARCH parameters.

3.2.3 Berkshire Hathaway

When we examined the Berkshire Hathaway, GARCH(1,1) performed best

among tested models. The estimation results are shown in the tables 3.10

and followed by the further commentary.

Table 3.10: Berkshire GARCH(1,1) estimation results

Variable Coefficient Std. Err z p-value

Mean Equation
Period2 -0.0002754 0.0000369 -7.46 0.000
Period77 0.0008739 0.0000219 39.87 0.000

Variance Equation
L1.arch 0.1746621 0.005994 29.14 0.000
L1.garch 0.7842347 0.0068996 113.66 0.000
Intercept 3.67e-08 2.03e-09 18.10 0.000

Let us begin with the contemporaneous equation. First thing we can notice

are the opposite signs of the expected and unexpected volume terms suggesting

different reactions of volatility on liquidity trading and information trading. As

you can see increase in liquidity trading tend to decrease the volatility in the
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Table 3.11: Berkshire GARCH(1,1)-volume estimation results

Variable Coefficient Std. Err. z p-value

Contemporaneous Volume Equation
EVol -.0000173 7.66e-06 -2.25 0.024
UvolP 0.0000214 3.62e-07 59.08 0.000
UVolN 0.0012335 0.0000525 23.51 0.000
L1.arch 0.1675081 0.0077001 21.75 0.000
L1.garch 0.6451423 0.0087567 73.67 0.000

Lagged Volume Equation
L1.EVol -3.84e-07 7.35e-06 -0.05 0.958
L1.UVolP 0.000013 3.28e-06 3.97 0.000
L1.UVolN -0.0000873 5.35e-06 -16.31 0.000
L1.arch 0.1785718 0.0073769 24.21 0.000
L1.garch 0.7385407 .0078863 93.65 0.000

market. On the other hand, the arrival of new informations represented by

unexpected volumes generally increases the market volatily, however, we can

not se asymmetrical effect of unexpected volume shocks on volatility. If we

take a look at the volatility parameters, we see quite big decrease both of

their magnitude and their z-statistics, however, the parameters are still very

statistically significant, thus they should be kept in the model.

In the lagged-volume equation the results are more in line with our expec-

tations. The lagged expected volume has negative sign but it is statisticaly

insignificant with the p-value equal to 0.958 which might be interpreted that

the lagged expected volume does not affect the future market volatility. The

lagged unexpected volume terms nicely capture the asymmetric behaviour of

volume shocks. From the estimation results, we can suggest that the positive

volume shock (above average volume) tend to increase the future volatility of

the market, on the other hand, negative volume shocks tend to decrease it.

The drop in magnitude of ARCH and GARCH terms is not as dramatic as

in contemporaneous case but it is still present but again both terms still kept

their statistical significance, thus they can not be dropped out of our model.

When we compare all three models based on our AIC and BIC tests, we find

that the volume models perform much better than plain GARCH, thus it can

be useful to use the information contained in volume for prediction of future

volatility.

To conclude the results, we can say that the estimation is in line with

our generall expectations. The expected volume reduces or does not affect
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the volatility and the asymmetric effect of unexpected volume is present in

our analysis. In the next section, we perform the analysis with the Microsoft

stocks.

3.2.4 Microsoft

According to AIC we chose the GARCH(1,2) for modeling the conditional vari-

ance, above that, the results of Bayesian Information Criterion also confirmed

the suitability of the chosen model. The estimation results are provided in

table 3.12 and 3.13 .

To comment on the estimation results, we again recieved statistically sig-

nificant volume variables. In the first case where we examined the effect of

contemporaneous volume, we obtained results which are in line with outcomes

in previously analyzed stocks. Again, the expected volume has small posi-

tive effect on volatility, the positive and negative shocks indicate the pressence

of asymmetric effect. Comparing the magnitudes and significance of ARCH

and GARCH parameters, we must stay a bit cautious. As you can see, in

the contemporaneous volume equation the second lag of conditional variance

parameter became statistically insignificant. On the other hand, the first lag

increased in the magnitude, thus the persistance given by the sum of mag-

nitudes of GARCH parameters decreased from 0.6903 to 0.6507 which can be

represented by 5.74 percentage drop. If we take a look at the ARCH parameter,

we can also observe decrease in the magnitude, the percentage change accounts

for 22 percent.

Table 3.12: Microsoft GARCH(1,2) estimation results

Variable Coefficient Std. Err z p-value

Mean Equation
L1.r mcsft -0.0410837 0.0109518 -3.75 0.000
Period2 -0.0001038 0.0000514 -2.02 0.044
Period76 0.0005448 0.0000407 13.39 0.000
Period77 0.0002486 0.0000337 7.37 0.000

Variance Equation
L1.arch 0.2578876 0.0085624 30.12 0.000
L1.garch 0.5361835 0.0381386 14.06 0.000
L2.garch 0.1542089 0.0312064 4.94 0.000
Intercept 1.05e-07 5.87e-09 17.94 0.000

The second part of the table 3.13 that captures lagged volume-volatility
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Table 3.13: Microsoft GARCH(1,2)-volume estimation results

Variable Coefficient Std. Err. z p-value

Contemporaneous Volume Equation
EVol 8.41e-06 7.01e-07 11.99 0.000
UvolP 1.12e-06 7.11e-08 15.76 0.000
UVolN -3.31e-06 9.77e-08 -33.86 0.000
L1.arch 0.2027905 0.0101869 19.91 0.000
L1.garch 0.6506926 0.0566581 11.48 0.000
L2.garch 0.0314003 0.0440189 0.71 0.476

Lagged Volume Equation
L1.EVol 7.63e-06 6.24e-07 12.24 0.000
L1.UVolP 1.02e-06 5.77e-08 17.61 0.000
L1.UVolN -3.20e-06 9.80e-08 -32.63 0.000
L1.arch 0.2382207 0.0095956 24.83 0.000
L1.garch 0.4782216 0.0398169 12.01 0.000
L2.garch 0.160427 0.0321152 5.00 0.000

relationship reports very similar results. All lagged volume parameters are very

statistically significant, where the expected and unexpected lagged volumes

have similar effects as in the contemporaneous case. The GARCH parameters

stayed statistically significant. The decrease of the magnitude can be observed

in the first lag of the GARCH parameter but part of it was compensated by

the increase of the second lag. The ARCH parameter also decreased but again,

stayed very statisticaly significant.

All in all, we can not accept that the inclusion of contemporaneous or lagged

volume variables in the variance equation explains the persistance or clustering

of the volatility, however, both contemporaneous and lagged volume models

perform much better in the terms of model suitability measured by AIC and

BIC.

3.2.5 Google

The last stock analyzed in our research is the Google Inc., in the Google case,

the return series has not shown any significant autocorrelations, on the top of

that, the constant term resulted to be insignificant in the mean equation, thus

we provide only the variance equation in the table 3.14. The results after the

inclusion of trading volume are shown in the table 3.15 below.

In the model where contemporaneous volume was included, we can observe

the same results as in the previous stock, where increased liquidity trading tend



3. Empirical Research 37

to increase the volatility and unexpected volume show asymmetric behaviour.

Also the GARCH and ARCH terms were affected like in the Microsoft case.

The second GARCH lag became insignificant but the first lag increased in

its magnitude. The overall persistance measured by their sum decreased by

8.8 percent, the decrease in the magnitude of the ARCH parameter was 22.3

percent which is very similar to the results obtained in the previous stocks.

Table 3.14: Google GARCH(1,2) estimation results

Variable Coefficient Std. Err. t p-value

L1.arch 0.2146496 0.0098549 21.78 0.000
L1.garch 0.3882413 0.0464662 8.36 0.000
L2.garch 0.3506986 0.0399216 8.78 0.000
Intercept 6.28e-08 3.20e-09 19.60 0.000

Source: author’s computations.

Table 3.15: Google GARCH(1,2)-volume estimation results

Variable Coefficient Std. Err. z p-value

Contemporaneous Volume Equation
EVol 0.0000457 8.96e-06 5.11 0.000
UvolP 0.000025 4.00e-06 6.25 0.000
UVolN -0.0000898 5.12e-06 -17.55 0.000
L1.arch 0.166873 0.0110383 15.12 0.000
L1.garch 0.6750936 0.0758509 8.90 0.000
L2.garch 0.0946877 0.0633682 1.49 0.135

Lagged Volume Equation
L1.EVol 0.0000442 7.77e-06 5.69 0.000
L1.UVolP 0.0000231 3.03e-06 7.64 0.000
L1.UVolN -0.0000896 4.55e-06 -19.68 0.000
L1.arch 0.201705 0.0103598 19.47 0.000
L1.garch 0.4201113 0.050495 8.32 0.000
L2.garch 0.3004802 0.0422685 7.11 0.000

The estimation results from the equation with lagged volumes also show

similar resutls as in the previous case. The lagged parameters are statisti-

caly significant, where expected volume should increase the volatility in the

next period and the volume shock asymmetrically effect the future volatility

depending on the sign of the shock. As for the magnitude of the common

GARCH and ARCH parameters, the sum of the GARCH terms decreased by

2.48 percent and the ARCH parameter itself decreased by 6 percent. As you
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can see both stayed statistically significant, thus we hardly have evidence that

trading volume is able to explain the volatility.

When comparing the three models by AIC and BIC, both volume mod-

els perform significantly better for modeling conditional variance of the stock

returns, thus trading volume can provide us useful information for modeling

volatility. In the next section, we provide overall summary of our estimation

results obtained in our analysis.

3.3 Summary

Firstly, we had to choose appropriate data to conduct our analysis on. Since we

were examining the intraday volume-volatility relationship, we had to choose

market with high volumes, thus we focused on the two biggest stock exchanges

headquartered in New York, the NYSE and NASDAQ from which we picked

top five companies with the highest market capitalisation, namely the Apple,

Exxon Mobil, Berkshire Hathaway, Microsoft and Google. Our next task was

to analyze the data which resulted in quite big data sets with more than nine

thousand observations per stock. Before employment of the volume-volatility

model itself, we had to test the time series data for stacionarity which shown

that both return and volume series are stacionary. The next task was to iden-

tify proper structure of the model for modeling mean equation of returns and

volume series. The raw log returns were showing minor autocorrelations and

seasonality sensitive for the beginning and the end of the trading day, thus sim-

ple AR proces augmented on seasonal dummy variables turned out to be suit-

able for modeling the mean equation. The next step was to test for the presence

of ARCH effect in the residuals from the mean equation, where the autocor-

relation function indicated strong dependence later confirmed by ARCH-LM

test, thus the employment of GARCH model seemed to be appropriate. When

identifying the proper lag-length of the GARCH model, we used the Akaike

Information Criterion. From the comparison of 25 models for each stock we

choose the best one later used in our analysis. Before the inclusion of trading

volume in our conditional variance equation, we had to properly decompose

the volume into expected and unexpected parts. Generally the fitted values

from AR model with seasonal dummy variables for volume series served as the

expected volume, the residuals as the unexpected volume, above that, we split

the unexpected volume into positive and negative parts in order to capture

the asymmetric effect of volume shocks on volatility. Once the pre estimation
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issues were done, we could finally approach to the modelling of mentioned re-

lationship. First we estimated the plain GARCH(p,q) model followed by the

estimation of the model augmented on contemporaneous volume variables and

in the end with the lagged volume variables. The estimation results of the

plain GARCH model showed strong presence of volatility persistance. After

the inclusion of contemporaneous volume we have seen that all the volume pa-

rameters are statistically significant which also confirms the approprietness of

spiting the volume into expected and unexpected part. In the case of contem-

poraneous expected volume interpreted as liquidity trading, we could observe

the positive relationship, meaning that the increase in liquidity trading tend

to increase the stock return volatility. The magnitude of these effects is not

that large, where we are speaking about the scale of 10−5 up to 10−7 . In

order to increase the volatility in units, there would have to be approximately

additional hundred thousand or more stocks traded in each five minute inter-

val. The estimation results of asymmetric effect of unexpected volume shown

that positive volume shocks tend to increase the volatility. This effect is be-

ing attributed to the information trading. On the other hand the negative

shocks tend to decrease the volatility. The scales of unexpected volume terms

are much like in the expected volume. Apart from the information of volume-

volatility relationship we wanted to examine the change of the magnitude of

persistance parameters. Although some earlier studies documented that the

inclusion of volume should significantly reduce the traditional GARCH param-

eters, our findings did not confirmed this conclusion. However, the presence

of both contemporaneous and lagged volume in our volatility equation results

in significantly better fit confirmed by both Akaike Information Criterion and

Bayesian Information Criterion, especially the inclusion of lagged volume may

improve the predictive ability of the GARCH model.



Chapter 4

Conclusion

Although the volume volatility relationship is broadly described by many prior

researchers, there are still rather conflicting results that drive the econome-

tricians and financial analysts to deeper considerations of the models and re-

searches with different asset classes or time spans of the data. Generaly there

are two common theories explaining the relationship of trading volume and

asset return volatility. The theory of information flows that connects the flow

of information with the behaviour of the financial markets and the dispersion

of beliefs theory which speaks about the different behaviour of the market

participants.

In our analysis we decided to examine the Mixture of Distribution Hypoth-

esis which is a part of the theory of information flows. In a nutshell, the theory

states that both volume and volatiliy are simultaneously generated by random

sequence of informations that flow to the market. Following the approach of

Lamoureux (1990) who has augmented the ARCH model on the raw volume

series and found that after the inclusion of the trading volume, the ARCH

parameters became insignificant. However, in our research we extended the

analysis by using more appropriate GARCH model. Moreover, instead of us-

ing the raw trading volume, we decided to split the volume into two parts,

the expected volume representing the liquidity trading and the unexpected

volume representing the information trading. On the top of that, the unex-

pected volume is further split to capture the different effect of positive and

negative volume shocks. As you may suspect, the liquidity trading represented

by expected volume is stabilizing factor of the markets, thus we expected it

to reduce the stock return volatility. The unexpected volume split into pos-

itive and negative shocks is expected to have asymmetric effect on volatility,
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where positive volume shocks should be positively related to volatility whereas

negative shocks should decrease it. Before presenting the estimation results,

we should mention that volatility and trading volume are both determined by

the inflow of information, where the contemporaneous volume should not be

assumed to be exogenous in the model, thus we performed also the regression

with lagged trading volumes.

For the purpose of our analysis, we decided to choose top five American

stocks that are being traded in the NYSE or NASDAQ. The stocks are con-

stituents of S&P500 market index and represent the top five companies in the

terms of the market capitalisation. For each stock, we have collected sufficient

amount of data on the five minute intraday basis roughly for six consecutive

months, thus we did not have to worry about problems that occure with small

data sets. On the top of that, all datasets we collected behaved properly in the

sence of stationarity and other desired statistical properties.

The estimation results of both the contemporaneous and lagged models

showed us few interesting facts. The general message we should take from this

research is that the trading volume is positively related to volatility, meaning

that the increase in trading volume tends to increase the conditional variance

of returns. The volume parameters representing different types of trading have

significant effects on volatility, thus the split of the volume into expected and

unexpected terms was justified. Despite the fact that we expected the liquid-

ity trading to have stabilising effect on volatility, we obtained quite opposite

results. The expected volume parameter has positive, statistically significant

effect. The unexpected volume divided into positive and negative parts showed

the presence of asymmetric effect, where the positive volume shocks tend to

increase the volatility and negative volume shocks tend to decrease it. This

findings generally meet our expectations. When looking at the GARCH and

ARCH parameters, we are not able to confirm that either lagged or contem-

poraneous volumes reduce their significance. For all stock after the inclusion

of trading volumes the persistance parameters stayed significant but the slight

reduction of their magnitude was observable, thus we can conclude that the

inclusion of trading volume changes the magnitude of GARCH and ARCH pa-

rameters but does not affect their significance. In case of Microsoft and Google,

the inclusion of contemporaneous trading volume made the second GARCH pa-

rameter statistically insignificant, however the effect was transfered to the first

lag of GARCH parameter thus the overall GARCH effect was reduced just

slightly.
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The comparison of the plain GARCH models with those where trading

volume was included showed us that the volume models perform significantly

better. This can be benefiting for the prediction of the future volatility. In the

end, we would like to adress few things for future research.

Focusing more on the significance of ARCH and GARCH parameters, em-

ployment of different kind of modeling approaches could also show some new

results in our topic and contribute to further analysis of the problem. It is

good to note that each stock in our analysis behaved a bit differently, thus

instead of analysing the individual stocks, it would be interesting to aggregate

the data and use the stock market indices. This generalisation would provide

us comparison tool for tracking distinctions of the behaviour of the different

stock markets around the world. As you may know, in the period we used

in our analysis nothing extraordinary happened in terms of global economy,

thus the analysis is conducted on the data in common market situation. For

the next research, it could also be interesting to invetigate whether there are

some substantial differences in the volume volatility relationship in times of

global economy crisis, where stock markets experiance downturn together with

substantionaly higher volatility.
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Appendix A

Figures

Figure A.1: ACF of Exxon 5 minute returns
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Bartlett’s formula for MA(q) 95% confidence bands

Source: author’s computations.



A. Figures II

Figure A.2: ACF of Berkshire 5 minute returns
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Source: author’s computations.

Figure A.3: ACF of Microsoft 5 minute returns
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A. Figures III

Figure A.4: ACF of Google 5 minute returns
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Source: author’s computations.

Figure A.5: ACF of Exxon 5 minute return residuals
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Source: author’s computations.



A. Figures IV

Figure A.6: ACF of Berkshire 5 minute return residuals
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Source: author’s computations.

Figure A.7: ACF of Microsoft 5 minute return residuals

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

A
ut

oc
or

re
la

tio
ns

 o
f r

es
id

ua
ls

2

0 10 20 30 40
Lag

Bartlett’s formula for MA(q) 95% confidence bands

Source: author’s computations.



A. Figures V

Figure A.8: ACF of Google 5 minute return residuals
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Source: author’s computations.

Figure A.9: ACF of Exxon squared residuals
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A. Figures VI

Figure A.10: ACF of Berkshire squared residuals
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Source: author’s computations.

Figure A.11: ACF of Microsoft squared residuals

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
A

ut
oc

or
re

la
tio

ns
 o

f r
es

22

0 10 20 30 40
Lag

Bartlett’s formula for MA(q) 95% confidence bands

Source: author’s computations.



A. Figures VII

Figure A.12: ACF of Google squared residuals
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Figure A.13: ARCH-LM Apple

Source: author’s computations.



A. Figures VIII

Figure A.14: ARCH-LM Exxon

Source: author’s computations.

Figure A.15: ARCH-LM Berkshire

Source: author’s computations.



A. Figures IX

Figure A.16: ARCH-LM Microsoft

Source: author’s computations.

Figure A.17: ARCH-LM Google

Source: author’s computations.



Appendix B

Tables

Table B.1: Dickey-Fuller test for returns

Stock Statistic value Critical value p-value

Apple -101.227 -2.860 0
Exxon Mobil -99.158 -2.860 0
Berkshire Hathaway -101.468 -2.860 0
Microsoft -100.081 -2.860 0
Google -92.663 -2.860 0

Source: author’s computations.

Table B.2: Dickey-Fuller test for volume

Stock Statistic value Critical value p-value

Apple -77.882 -2.860 0
Exxon Mobil -62.765 -62.765 0
Berkshire Hathaway -72.579 -2.860 0
Microsoft -87.489 -2.860 0
Google -75.137 -2.860 0

Source: author’s computations.
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Table B.3: Akaike information criterion Apple

p/q 1 2 3 4 5

1 -104879.5 -104876.1 -104875.2 -104875.4 -104876.3
2 -104874.9 -104875.6 -104878.51 -104876.3 -104875.5
3 -104877.1 -104878.9 -104877.3 -104879.1 -104878.51
4 -104876.8 -104876.3 -104876.35 -104878.3 -104876.9
5 -104877.54 -104877.78 -104875.35 -104875.9 -104875.1

Source: author’s computations.

Table B.4: Akaike information criterion Exxon

p/q 1 2 3 4 5

1 -108279.3 -108316.1 -108315.2 -108315.2 -108314.3
2 -108314.9 -108315.6 -108314.51 -108314.3 -108313.5
3 -108315.8 -108314.92 -108313.7 -108313.6 -108314.41
4 -108313.8 -108312.9 -108313.21 -108315.3 -108314.9
5 -108314.26 -108315.33 -108315.7 -108315.6 -108315.7

Source: author’s computations.

Table B.5: Akaike information criterion Berkshire

p/q 1 2 3 4 5

1 -110880.6 -110878.7 -110877.1 -110879.9 -110879.8
2 -110878.7 -110878.3 -110879 -110879.2 -110878.6
3 -110877.2 -110878.1 -110878.7 -110878.6 -110879.1
4 -110880.3 -110878.6 -110879.1 -110878.9 -110879.3
5 -110879.6 -110880 -110879.7 -110879.4 -110878.9

Source: author’s computations.

Table B.6: Akaike information criterion Microsoft

p/q 1 2 3 4 5

1 -103694.2 -103698.9 -103698.3 -103697.4 -103697.8
2 -103698.2 -103697.4 -103697.7 -103697.1 -103696.6
3 -103697 -103698.6 -103698.4 -103698.1 -103697.7
4 -103716.3 -103715.3 -103714.2 -103712.4 -103712
5 -103715.2 -103715 -103711.2 -103712.9 -103712

Source: author’s computations.
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Table B.7: Akaike information criterion Google

p/q 1 2 3 4 5

1 -92529.65 -92549.73 -92547.16 -92547.2 -92548.1
2 -92547.6 -92548.3 -92548.2 -92547.1 -92548.12
3 -92548 -92549.3 -92548.9 -92547.3 -92547
4 -92548.4 -92548.3 -92549.1 -92547.3 -92548.61
5 -92547.9 -92549.3 -92549 -92548.96 -92549.66

Source: author’s computations.

Table B.8: Post estimation AIC

Stock AIC-GARCH AIC-Volume-GARCH AIC-L.Volume-GARCH

Apple -104879.5 -105883.5 -105655.3
Exxon -108316.1 -108718 -1086572
Berkshire -110880.6 -111716.3 -110995.6
Microsoft -103698.9 -104667 -104658
Google -92549.3 -93078.5 -92856

Source: author’s computations.

Table B.9: Apple cross distribution comparison

Distribution AIC-GARCH AIC-Volume-GARCH AIC-L.Volume-GARCH

Student -104879.5 -105883.5 -105655.3
Gaussian -103972.7 -104128.87 -104088.41

Source: author’s computations.

Table B.10: Exxon cross distribution comparison

Distribution AIC-GARCH AIC-Volume-GARCH AIC-L.Volume-GARCH

Student -108316.1 -108718 -1086572
Gaussian -107942.3 -108236.1 -108212.4

Source: author’s computations.

Table B.11: Berkshire cross distribution comparison

Distribution AIC-GARCH AIC-Volume-GARCH AIC-L.Volume-GARCH

Student -110880.6 -111716.3 -110995.6
Gaussian -110502.9 -111198.7 -110654.5

Source: author’s computations.



B. Tables XIII

Table B.12: Microsoft cross distribution comparison

Distribution AIC-GARCH AIC-Volume-GARCH AIC-L.Volume-GARCH

Student -103698.9 -104667 -104658
Gaussian -103426 -104419.9 -104432.5

Source: author’s computations.

Table B.13: Google cross distribution comparison

Distribution AIC-GARCH AIC-Volume-GARCH AIC-L.Volume-GARCH

Student -92549.3 -93078.5 -92856
Gaussian -92147 -92789 -92527

Source: author’s computations.
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