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Introduction

Notions of energy and momentum play a major role in modern physics. They were present
already at the times of birth of the Newtonian mechanics and slowly matured as physics evolved
into their current form. They appear in Lagrangian formulation of dynamics and ful�ll a pivotal
function in the Hamiltonian formalism. Because the canonical quantization relies on Hamiltonian
formalism, energy and momentum play an important role (at least historically) also in quantum
physics. But one of the pillars of modern physics, the general relativity, resists vigorously all the
attempts to de�ne some universal notion of energy and momentum. The source of the di�culties
lies in the equivalence principle, which requires the existence of coordinates with respect to which
the gravitational �eld vanishes locally. These di�culties may suggest that the notion of energy-
momentum in general relativity is ill-de�ned and should be abandoned as a dead end. On the
other hand, there are several reasons why this problem may be worth of investigation. First
of all, the situation is not at all hopeless. A lot of progress has been made in this direction
and several interesting and promising constructions for energy-momentum have already been
proposed. Moreover, the nature of the problem � one of the central notions of physics being
seemingly incompatible with a foundational principle of general relativity � makes it attractive,
since we may very well learn valuable lessons while researching it. Additionally, because the
concept of energy is connected with Hamiltonian dynamics, investigation of general-relativistic
energy-momentum may provide us with tools valuable in the search for the theory of quantum
gravitation. In fact, the basic obstacle in formulation of the quantum theory of gravitation �
the vast gauge freedom of such a theory � is also a consequence of the equivalence principle.

The most promising approaches to the problem of general-relativistic energy-momentum seem
to be of non-local nature. There are two very satisfactory global constructions that are appli-
cable in asymptotically simple space-times, the ADM construction where energy-momentum is
measured on space-like hypersurfaces and the Bondi construction with asymptotically null hy-
persufaces. There are also several promising quasi-local (i.e. measured over a �nite region)
constructions, although none of them is fully satisfactory and universally applicable. In this
thesis we are mainly concerned with the Bondi mass of asymptotically simple space-time that
contains interacting electromagnetic and scalar �elds, but we also brie�y review some other
constructions.

In this thesis we employ the spinor formalism. Spinors are very interesting concept on their
own and have proven to be a valuable tool in general relativity. We dedicate the majority of the
introductory part of this thesis to introduce spinors and related concepts.

In the �rst chapter, following [11] closely, we introduce the spinors on algebraic level and
give their geometrical interpretation. We elucidate the relation between two-component spinors
and usual tensor algebra and develop Penrose's abstract index notation in detail. In the second
chapter we introduce spinor �elds in the spacetime (on the working level) and the notion of
covariant di�erentiation of spinors. We explain how the spinor calculus is related to the Newman-
Penrose formalism. This formalism can be built up using purely tensorial terms but the use of
spinors provides us with the deeper insight into the structure of the Newman-Penrose equations.
In the rest of the second chapter we derive the Bianchi identities and the Ricci identities in the
spinor form. These equations serve as the equations of gravitational �eld, i.e. in the spinor
formalism they replace the role of the Einstein equations.

The third chapter is devoted to a modi�cation of the Newman-Penrose formalism, the Geroch-
Held-Penrose (GHP) formalism. While the former is adapted to a given null tetrad, the latter
is adapted to two null directions. In this chapter we show how the systematic use of boost and
spin gauge freedom e�ectively reduces the number of the Newman-Penrose equation.
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We have mentioned that there exist several promising suggestions how to construct quasi-
local quantities in general relativity. One of the most fruitful and the most inspiring suggestion
has been made by Penrose and we call this construction the Penrose mass. It was inspired by the
twistor theory developed by the same author and his collaborators. In the thesis we do not want
to go into the details of this theory, but we introduce some basic notions which will be necessary
later. We write down the twistor equation and de�ne the twistor as its solution, we discuss the
existence of the solutions in the �at and curved spacetime.

From a broader point of view, many quasi-local constructions that have been suggested can
be understood as a 2-surface integral of the quantity called the Nester-Witten form. A uni�ed
formalism for description of these construction has been given by Szabados. Following closely his
papers [18, 19] and the review paper [20], we present the spinorial analysis of geometry of spacelike
2-surfaces, in particular topological 2-spheres. In usual 3+1 decomposition of general relativity
it is customary to introduce the intrinsic covariant derivative induced on the 3-hypersurfaces
foliating the spacetime. An interesting feature of the analysis of spacelike 2-surfaces is the
observation that this "canonical" intrinsic derivative is too rigid to encompass information which
should be relevant for the construction of quasi-local quantities. Indeed: we might expect that
the quasi-local energy will be given as the 2-surface integral of the curvature tensor, where the
curvature tensor is derived from the intrinsic covariant derivative. However, the Gauss-Bonnet
theorem asserts that such integral is always proportional to a single characteristic of the surface:
the Euler characteristic, which, for orientable compact surfaces, reduces to 2− 2g where g is the
genus of the surface. This simpli�ed deduction illustrates that the usual intrinsic derivative does
not contain all relevant information.

Nevertheless, there is another connection which can be reasonably called intrinsic to a 2-
surface: the Sen connection. It turns out that this connection has much richer structure which
we reveal in the chapter 5. We introduce the notion of 2-surface spinors and present the decom-
position of the Sen derivative into its irreducible parts. Surprisingly enough, one irreducible part
of the Sen operator is the Witten operator (which played an important role in Witten's proof
of the positivity of mass) and the second irreducible part is the twistor operator. This shows
that although the twistor equation has been imposed by Penrose for di�erent reason, it actually
appears naturally in the description of intrinsic geometry of 2-surfaces.

In chapter 6 we �nally de�ne the Penrose mass. Original Penrose's construction was motivated
by the linearized gravity, but in the thesis we present contemporary standard derivation of
the Penrose mass [20, 7]. This derivation starts from constructing quasi-local quantities in
the Minkowski spacetime and continues by "guessing" an appropriate analogy in the curved
spacetime. We arrive at the expression for the Penrose quasi-local charges in the Newman-Penrose
formalism. Unfortunately, even the Penrose mass su�ers from several drawbacks. Although we
do not discuss them in the thesis, it is worth to mention that the twistorial construction works
only for the so-called non-contorted surfaces. Roughly speaking, these are the surfaces which can
be embedded in the (conformal) Minkowski spacetime, preserving their extrinsic and intrinsic
curvature. If such embedding is possible, the twistorial norm can be shown to be constant over
the 2-surface which is necessary in order to extract the components of the energy-momentum and
the angular momentum from the object known as the kinematical twistor. If the 2-surface cannot
be embedded this way, the twistorial norm is not constant over the surface and the construction
fails. Such surfaces are called contorted and the Penrose mass cannot be de�ned for them.

There have been several attempts to overcome these di�culties. For the sake of our thesis we
have chosen two important and interesting examples. In the chapter 7 we discuss the notion of
global energy in asymptotically �at spacetime and introduce the ADM and the Bondi mass (see
above). A natural quasi-localization of the Bondi mass is the Ludvigsen-Vickers construction,
which we brie�y describe. A more sophisticated suggestion (based on the sheaf-theoretical argu-
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ments) have been given by Dougan and Mason. We do not go into details but mention important
properties of the Dougan-Mason mass. This concludes the theoretical introduction.

Goals and results

In this thesis we do not aim to solve the long standing problem of appropriate de�nition of
quasi-local mass in general relativity. As we explain in the introduction to paper attached to
the thesis, our goal is to make a �rst step to construct the Penrose mass for spacetimes with
the scalar �eld sources. Although there are many particular examples of Penrose's mass (mainly
due to Paul Tod), the examples with scalar �elds are missing. However, because of lack of exact
solutions with scalar or electromagnetic and scalar �elds, it is necessary to construct the Penrose
mass indirectly, e.g. by the 3+1 or 2+2 decomposition. An important criterion of correctness
of particular construction is whether this construction in the limit of large spheres gives correct
Bondi or ADM mass (which are de�ned unambiguously). Hence, in this thesis we have solved a
simpler problem: we have calculated the Bondi mass for the spacetimes with interacting scalar
and electromagnetic �elds. Details of this construction are explained in the second part of the
thesis and in the paper attached.

The main result of this thesis is the expression for the Bondi mass

MB =
1

2
√
π

∮ (
Ψ0

2 + σ(0)σ̇(0) +
1

6

∂

∂u

(
φ0φ0

))
dŜ .

In the formula above, Ψ0
2 is the leading term in corresponding component of the Weyl spinor, σ0

is the asymptotic shear of Newman and Penrose, φ0 is the radiative part of the scalar �eld and
u stands for (retarded) time. An interesting feature is that the scalar �eld itself contributes to
the Bondi mass, since this is not the case with purely EM �eld.

The Bondi mass-loss formula measures how the Bondi mass of the spacetime changes when
the gravitating system inside the spacetime produces gravitational or another radiation. For
"reasonable" matter, i.e. matter satisfying the null energy condition, the Bondi mass-loss formula
is negatively semide�nite, which means that the Bondi mass is either constant or decreasing
function of time u. For example, at is was shown in [2], the conformally invariant scalar �eld
does not obey this condition and hence corresponding mass-loss formula is inde�nite. In this
thesis we have shown that interacting electromagnetic and scalar �elds do not su�er from this
defect. In paper we have shown that the mass-loss formula for the case of our interest reads

ṀB = − 1

2
√
π

∮ [
σ̇(0)σ̇(0) + φ0

2φ
0
2 + φ̇0φ̇0 + ieA0

2

(
φ0φ̇0 − φ̇0φ0

)
+ e2A0

2A
0
2φ

0φ0
]
dŜ ,

where φ0
2 is the radiative component of EM �eld, e is the charge of scalar �eld and A0

2 is the
Newman-Penrose component of the 4-potential. This formula can be brought into form

ṀB = − 1

2
√
π

∮ [
σ̇(0)σ̇(0) + φ0

2φ
0
2 +

(
Duφ(0)

)(
Duφ(0)

)]
dŜ ,

where Du is the gauge-covariant derivative with respect to time. This expression is manifestly
gauge invariant and negative semi-de�nite. Our results reduce to previously known expressions
when one of the �elds (or both) is missing.
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Part I

Theoretical introduction
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1. Spinors in General Relativity

In this chapter we will brie�y1 introduce (2-)spinor formalism which proved to be a fruitful
alternative to the commonly used tensor calculus. The formalism is in a sense tailored for a
special case of four-dimesional manifold endowed with the Lorentzian metric. As a result, it
lacks some of a generality of the tensor formalism, which can be readily applied to manifold
of any dimension. But its functionality in the case of four-dimensional manifold compensates
more than enough for this de�ciency. Many formulae of general relativity simplify considerably
when approached from spinorial viewpoint and some hidden structures reveal themselves. In
fact, spinor calculus may appear to be more fundamental than the tensorial one, but even if that
is not the case, it still constitutes a very useful representation for certain problems in physics.

1.1 Matrix representation of four-vector

We start by examining a general Hermitian matrix A of dimension 2× 2. We say that a matrix
is Hermitian, if it equals complex conjugate of its transposition, i.e. Aij = Aji. Therefore its
diagonal elements must be real and the remaining two elements must be related by complex
conjugation. Thus a general Hermitian matrix may be written in the form

A =

(
α+ β γ + iδ
γ − iδ α− β

)
, (1.1)

with α, β, γ and δ arbitrary real numbers. Now consider its determinant

det(A) = α2 − β2 − γ2 − δ2. (1.2)

This formula formally resembles the expression for the Lorentz norm2 of a vector, s2 =
T 2 −X2 − Y 2 − Z2. Hence we see, that it is possible to assign a Hermitian matrix

(
T + Z X + iY
X − iY T − Z

)
(1.3)

to a four-vector of components T , X, Y , Z, and that the determinant of the matrix is equal to
its length. Moreover, this correspondence is clearly one-to-one.

Let us now restrict our attention to the special case of a null vector, so that matrix (1.3)
has zero determinant. Since its columns are linearly dependent, we can factorize the matrix as
a direct product of two two-vectors

(
T + Z X + iY
X − iY T − Z

)
=

(
u1

u2

)(
v1 v2

)
, (1.4)

with all the components of the two-vectors being complex. Because the matrix is Hermitian, we
have

(
u1

u2

)(
v1 v2

)
=

(
v1

v2

)(
u1 u2

)
, (1.5)

1We refer an interested reader to the more complete work [11] from which the present thesis took a lot of
inspiration.

2In this thesis we use (+−−−) signature.
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which yields
(
u1

u2

)
= κ

(
v1

v2

)
, (1.6)

with κ being real. Thus we see that it is possible to decompose the matrix (1.3) as
(

T + Z X + iY
X − iY T − Z

)
=

(
ξ
η

)(
ξ η

)
. (1.7)

This decomposion is unique up to the phase transformation
(
ξ
η

)
7→ eiφ

(
ξ
η

)
, (1.8)

where φ is real. Complex numbers ξ and η may be regarded as the components of a spin-vector,
an object central to this chapter.

1.2 Stereographic projection

In the previous section we have shown how an entirely new object, a spin-vector, can be extracted
from a null four-vector. We will spend the rest of this chapter studying this object, mainly from
geometrical point of view. However, we do not give a thorough treatise on the object, as our aim
is simply to help to build an intuition for a concept of spin-vector.

So, what is the meaning behind these mysterious numbers ξ and η? It turns out that the
answer is not as remote as it may seem. A concept essential to the tensor calculus is that of
a direction3, and we will �nd that encoding an information on direction4 in a suitable way, we
arrive at just those two numbers. The key to the gate that stands in our way is stereographic
projection.

In general, the stereographic projection is a mapping that projects a sphere onto a plane. We
are interested in a particular case of such a projection. Consider the three-dimensional Euclidean
space E3 and choose Cartesian coordinates x, y, z with origin at a point O. Consider a unit
sphere at origin representing the space of directions from O. Let P (X,Y, Z) be an arbitrary
point on the sphere. (X2 + Y 2 + Z2 = 1.) We �nd the projection of the point P by drawing a
line from the north pole N(0, 0, 1) through the point P . The point p where this line intersects
the plane z = 0 is the stereographic projection of the point P from the north pole (see Figure
1.1).

The projection maps the southern hemisphere onto the unit disk in the xy-plane. In particu-
lar, it projects the south pole into the origin. The image of northern hemisphere covers the rest
of the plane with the projection of the north pole unde�ned. Note, however, that the closer
to the north pole the point P lies, the further from the origin it projects. Therefore, we can
associate the projection of the north pole with the in�nity.

Our next step is to �nd the relation between coordinates of the point P = (X,Y, Z) and
the coordinates of its image p = (xp, yp, 0) under the stereographic projection. Because the line
passing through the points p and P also intersects the z-axis, X/Y = xp/yp does hold. Therefore,
it remains to �nd how x2

p + y2
p depends on the coordinates of the point P . The situation � as

seen in the plane determined by the point p and the z-axis � is shown in the �gure 1.2. Two
similar right-angled triangles are outlined in the picture. One with the hypotenuse NP , the other

3The other one of similar importance is a concept of magnitude.
4Actually hand in hand with information on magnitude.
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x

y

z

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

P = (X,Y, Z)

(xp, 0, 0)

(0, yp, 0)
p = (xp, yp, 0)

O

Figure 1.1: Stereographic projection from the north pole. It maps the point P on the unit sphere
to the point p in the xy-plane.

one with the hypotenuse Np. The ratio of their lenghts is 1−Z
1 and so

√
X2+Y 2√
x2
p+y2p

= 1−Z
1 . Putting

everything together, we get

xp =
√
x2
p + y2

p

X√
X2 + Y 2

=
X

1− Z ,

yp =
√
x2
p + y2

p

Y√
X2 + Y 2

=
Y

1− Z . (1.9)

Employing spherical coordinates on the unit sphere,

X = sin θ cosφ ,

Y = sin θ sinφ ,

Z = cos θ ,

equations (1.9) acquire the form

xp =
X

1− Z =
sin θ cosφ

1− cos θ
= cosφ

2 sin θ
2 cos θ2

1− (cos2 θ
2 − sin2 θ

2 )
= cosφ cot

θ

2
,

yp =
Y

1− Z =
sin θ sinφ

1− cos θ
= sinφ

2 sin θ
2 cos θ2

1− (cos2 θ
2 − sin2 θ

2 )
= sinφ cot

θ

2
. (1.10)

Now, with the in�nity regarded as the image of the north pole under the stereographic
projection, we have e�ectively constructed a one-to-one map between the unit sphere and the
xy-plane including in�nity. We can use this map to de�ne new coordinates on the sphere with
the coordinates of the point P being x and y coordinates of its stereographic projection.
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z

r

P = (Z,
√
X2 + Y 2)

p = (0,
√
x2p + y2p)

Z

1− Z

θ

π−θ
2

θ
2

N=(1, 0)

O = (0, 0)

Figure 1.2: Stereographic projection from the north pole � as seen in the half-plane NOP �
using cylindrical coordinates (z, r).

We can also regard the xy-plane as the representation of the Argand plane of complex numbers
(including in�nity), stereographic projection then induces one-dimensional complex coordinate
ζ = x+ iy on the sphere. From (1.9) and (1.10) we get

ζ =
X + iY
1− Z = eiφ cot

θ

2
. (1.11)

In what follows we will also need the inverse relations. To solve (1.11) for the Cartesian
coordinates we start with Z (recall that X2 + Y 2 + Z2 = 1):

ζζ =
X2 + Y 2

(1− Z)2
=

1 + Z

1− Z ,

Z =
ζζ − 1

ζζ + 1
. (1.12)

Now we can easily obtain

X =
ζ + ζ

1 + ζζ
, Y =

ζ − ζ
i(1 + ζζ)

, Z =
ζζ − 1

1 + ζζ
. (1.13)

Note however that, strictly speaking, ζ is not true coordinate on the whole sphere, because
the coordinate of the north pole is not �nite. Recall, that it is in general impossible to cover the
sphere by single coordinate chart. We could, of course, de�ne coordinates using two di�erent
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stereographic projections, e. g. one projecting from the north pole and the second one projecting
from the south pole. But there are other options on how to specify points on the sphere, rather
than just covering it by coordinate patches. For example, we could say that the point (x, y, z) of
R3 represents a direction in R3 and the point P of the sphere emerges as an intersection of this
direction with the sphere. This way any point q(x, y, z) speci�es an equivalence class

{q′ : xq′/x = yq′/y = zq′/z > 0},
which does in turn specify a point on the sphere.

Let us adopt a similar approach: Our projection maps points of the sphere onto the points
of the xy-plane, mapping the P of the sphere to the p of the plane. Coordinates of the point
P = (X,Y, Z) are then given by single complex number ζ = xp + iyp. This complex number can
be written as a ratio ζ = β

α for some α, β ∈ C. Numbers α and β will be called homogeneous
coordinates of the point ζ. Obviously, these coordinates are non-unique, because any other
coordinates κα and κβ determine the same ζ for any non-zero complex κ. (Thus the name
homogeneous.) Numbers α and β are basically ξ and η of (1.7). But to see this, and to actually
make the identi�cation meaningful, we need to switch to Minkowski space M. To do so, we need
to �nd out a way how to translate our construction to M so that it will respect the Lorentz
symmetry. For example, if we tried to identify the space R3 of the outlined procedure with the
hyperplane T = 0 (where T stands for a time coordinate), such a construction would clearly be
not Lorentz invariant, because simultaneity is not an absolute concept in special relativity (i.e.
hyperplanes T = const are not Lorentz invariant). To overcome this problem, we regard ζ as
a coordinate on the light cone. Consider the intersection of the light cone with the hyperplane
T = 1. In Euclidean space T = 1, this intersection is an unit sphere and each point on the sphere
may represent a null direction. In the spirit of (1.13) we can write

X =
ζ + ζ

1 + ζζ
, Y =

ζ − ζ
i(1 + ζζ)

, Z =
ζζ − 1

1 + ζζ
, T = 1. (1.14)

Substituting β/α for ζ, these equations acquire the form

X =
βα+ βα

αα+ ββ
, Y =

βα− βα
i(αα+ ββ)

, Z =
ββ − αα
αα+ ββ

, T = 1. (1.15)

We have already noted that relations (1.15) are unchanged under transformation α, β 7→
κα, κβ. Thus we have two redundant degrees of freedom. We can harness this ambiguity and
use one degree of freedom to encode the information on the extent of vector. To do so, we
need to extend our description on the whole null cone, rather than just its intersection with the
hyperplane T = 1. This can be accomplished by simply multiplying equations (1.15) by some
convenient real function of α and β (same function for each of the equations). We choose this
function to be αα + ββ, as the form of the equations suggests, and add a factor 1√

2
for later

convenience. Thus we get

X =
1√
2

(
βα+ βα

)
, Y =

1

i
√

2

(
βα− βα

)
, Z =

1√
2

(
ββ − αα

)
, T =

1√
2

(
ββ + αα

)
.

(1.16)

Substituting now from (1.16) for the components of four-vector in (1.3), we �nally see that
α, β of (1.16) are essentially5 the same as η, ξ of (1.7).

5Ignoring discrepancies due to normalization.
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1.3 Spin transformations

In this section we will study an important concept of spin transformation. Consider a regular
complex matrix

A =

(
α β
γ δ

)
,

with numbers α and β not related to α and β of the previous section. A transformation

(
ξ
η

)
7→
(
ξ̃
η̃

)
= A

(
ξ
η

)
(1.17)

maps a spin-vector into another spin-vector. Through (1.16) this induces a linear transformation
of the null cone. The change in null directions is given by the transformation of ζ

ζ 7→ ζ̃ =
αζ + β

γζ + δ
, (1.18)

which is conformal (because holomorphic) and invariant under A 7→ kA, k 6= 0. Normalizing
determinant of A to unity has thus no in�uence on how null directions are transformed, altering
only the way in which the extent of vectors is a�ected. We de�ne the spin-matrix to be a complex
matrix with unit determinant. If A in transformation (1.17) is a spin-matrix, we refer to it as
spin transformation.

From (1.3) we can readily infer how X, Y , Z, T transform. We have

(
T + Z X + iY
X − iY T − Z

)
7→
(

T̃ + Z̃ X̃ + iỸ
X̃ − iỸ T̃ − Z̃

)
=

=
√

2

(
ξ̃
η̃

)(
ξ̃ η̃
)

=
√

2

[
A

(
ξ
η

)][
A

(
ξ
η

)]†
=

=A

(
T + Z X + iY
X − iY T − Z

)
A†,

(1.19)

where † denotes Hermitian conjugation6.
Recall that Lorentz transformations are exactly those linear transformations that preserve

the lengths of the vectors. Because the length of a four-vector is equal to the determinant of
matrix (1.3), we �nd from (1.19) that a spin transformation induces a Lorentz transformation
of the null cone7. If we extend the domain of a spin transformation (1.19) such that it may
act on arbitrary Hermitian matrix (1.3), it clearly de�nes a Lorentz transformation of the whole
Minkowski vector space.

Notice that both A and its negative −A generate the same Lorentz transformation. It can be
shown that every spin transformation corresponds to a unique restricted8 Lorentz transformation
and that to each restricted Lorentz transformation there are exactly two corresponding spin
transformation, one being the negative of the other.

6The right hand side of the (1.19) can be written in the form (1.3), because the resulting matrix AXA† is
Hermitian if A is.

7det(AB) = det(A)det(B)
8Restricted Lorentz transformation is a Lorentz transformation that does not involve space or time reversal.

Consequently, any such transformation lies in the identity component of the Lorentz group, i. e. it can be
continuously changed to the identity.
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For illustrative purposes we will �nd explicit form of spin transformation that corresponds to
the rotation about the z axis and the one that corresponds to the boost in the z direction.

In the case of rotation by angle φ about the z axis, the null directions are also rotated in the
same manner. Therefore, in terms of ζ, such a transformation corresponds to

ζ̃ = ζeiφ. (1.20)

Thus the spin-matrix we are looking for has the form

A = ±
(
e

iφ
2 0

0 e−
iφ
2

)
. (1.21)

Notice that this matrix is unitary. Actually, any unitary matrix corresponds to a spatial rota-
tion and vice versa. To see this, observe that trace of the matrix (1.3) equals

√
2T and that

Tr(AXA†) = Tr(X) if and only if A is unitary.
Under the boost in the z direction the coordinates transform as

T̃ =
T + vZ√

1− v2
, X̃ = X, Ỹ = Y, Z̃ =

Z + vT√
1− v2

, (1.22)

where v is the velocity parameter. We rewrite these relations as

T̃ + Z̃ = w (T + Z), X̃ = X, Ỹ = Y, T̃ − Z̃ = w−1 (T − Z), (1.23)

with w =
√

1+v
1−v . Comparing this result with (1.3) we �nd out that the corresponding spin-matrix

has the form

A = ±
(
w

1
2 0

0 w−
1
2

)
. (1.24)

This transformation is particularly simple when expressed in terms of ζ, as all we get is a simple
expansion

ζ̃ = wζ. (1.25)

1.4 Geometric representation of spin-vector

Our aim here is to �nd a way how to geometrically represent a spin-vector. We have already
established a correspondence between a null four-vector and a spin-vector, but the structure
of four-vector is not rich enough to capture all the information on spin-vector: a four-vector
associated with the spin-vector (ξ, η) is una�ected by transformation (ξ, η) 7→ eiφ(ξ, η), where
φ is real. As we will �nd out, it is possible to constuct a geometric object that determines the
associated spin-vector nearly completely, leaving unknown only the overal sign of the spin-vector
� an ambiguity that cannot be removed. The object is a null �ag and we will closely follow [11]
in its construction.

We start with considering an abstract two-dimensional sphere that represents null directions.
A (future) null direction speci�es a point on the sphere, thus it determines a coordinate ζ = ξ

η .
We will assign one more geometric object to a spin-vector: a real vector L tangent to the sphere.
These two objects � null direction and a vector tangent to the sphere � will together determine
components ξ, η up to the overall sign, and will constitute basis for a structure of a null �ag. A
suitable tangent vector L needs to meet three criteria:
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• Since a vector is real and tangent to the sphere, its form is

L = λ
∂

∂ζ
+ λ

∂

∂ζ
. (1.26)

• Because the purpose of our construction is to "geometrize" a spin-vector, it has to be a
function of components ξ and η, i.e. λ = λ(ξ, η).

• It needs to be a true geometric vector. Thus its components have to transform correctly
under passive spin-transformations9.

A function λ(ξ, η) �xes L for each coordinate system. To make it consistent with the last point,
we need to �nd λ(ξ, η) that � when regarded as a component of a true vector � is invariant
under spin-transformations, i.e. the transformed λ must be the same expression in transformed
ξ, η as was the old λ in original ξ, η.

Let us inspect how restrictive our conditions are. Consider coordinate systems ζ = ξ
η and

ζ̃ = ξ̃
η̃ that are mutually related by spin transformation

ξ̃ = αξ + βη , η̃ = γξ + δη , ζ̃ =
αζ + β

γζ + δ
. (1.27)

Since L is vector, we must have

λ
∂

∂ζ
+ λ

∂

∂ζ
= λ̃

∂

∂ζ̃
+ λ̃

∂

∂ζ̃
. (1.28)

From (1.27) we can �nd the relation between ∂
∂ζ and ∂

∂ζ̃
. We arrive at

∂

∂ζ
=
∂ζ̃

∂ζ

∂

∂ζ̃
=

[
∂

∂ζ

(
αζ + β

γζ + δ

)]
∂

∂ζ̃
=

(
α(γζ + δ)

(γζ + δ)2
− γ(αζ + β)

(γζ + δ)2

)
∂

∂ζ̃

=
αδ − βγ
(γζ + δ)2

∂

∂ζ̃
=

1

(γζ + δ)2

∂

∂ζ̃
=
η2

η̃2

∂

∂ζ̃
, (1.29)

because αδ − βγ = 1 by the requirement that (1.27) is spin transformation. Substituting (1.29)
in (1.28) we have

η2

η̃2
λ
∂

∂ζ̃
+
η2

η̃
2λ

∂

∂ζ̃
= λ̃

∂

∂ζ̃
+ λ̃

∂

∂ζ̃
. (1.30)

Coe�cients standing by ∂
∂ζ̃

on both sides of the last equation must be equal (and the same holds

true for coe�cients standing by ∂

∂ζ̃
). This yields

η2λ = η̃2λ̃ . (1.31)

Thus λ must be proportional to 1
η2 and we choose

L = − 1√
2η2

∂

∂ζ
− 1√

2η2

∂

∂ζ
. (1.32)

9The whole construction relies on the structure of the Minkowski space, therefore we restrict ourselves to
Lorentz transformations.
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Vector L that we have found lies in the tangent bundle of the abstract two-sphere of null direc-
tions. But since we can identify this sphere with an intersection of the null cone and a hyperplane
T = 1, we can also assign a four-vector of Minkowski vector-space to the vector L. We will de-
note both the vector in the abstract space of null directions and its image in the Minkowski
vector-space by the same symbol L. This four-vector L is tangent to the sphere lying in the
hyperplane T = 1, and therefore it is space-like and orthogonal to the null direction given by ζ.

So far we have associated two objects with a spin-vector: a null vector K given by (1.16)
and a space-like vector L speci�ed by (1.32). Both are fully determined by the spin-vector (ξ, η).
Conversely, given vectors K and L, we can �nd values of ξ and η up to the sign ambiguity. For
a null direction given by K determines a ratio ζ = ξ

η and from L we can deduce η2. Hence we
know all of the values ξ2, ξ/η and η2.

Notice that while L of abstract space of null directions is Lorentz invariant, its image in the
Minkowski space is not. We can easily see this, once we recall that, by construction, a four-vector
L lies in hyperplane T = 1, which is not Lorentz invariant. Hence a need for a concept of null
�ag arises. Consider a null half-plane Π given by set of vectors

aK + bL, a, b ∈ R, b ≥ 0 . (1.33)

We will call this half-plane a null �ag. It is determined by a null vector K � its �agpole � and a
space-like vector L orthogonal to the K. Conversely, a null �ag uniquely �xes a null vector K and
determines a space-like vector L up to the transformation L 7→ k1L+ k2K, k2 ≥ 0, thus �xing L
of abstract sphere uniquely. Hence, a null �ag is capable of representing a spin-vector no less than
a pair of vectors K and L. Moreover, a null �ag is invariant under the Lorentz transformations.
Indeed, recall that a four-vector L corresponds to a vector tangent to the abstract sphere of
null directions and therefore to two in�nitesimally close null directions. Half-plane Π is clearly
determined by these two directions.

Let us now return to the phase transformation (1.8):
(
ξ
η

)
7→ eiφ

(
ξ
η

)
, φ ∈ R.

Since the four-vector K is not altered by this transformation, its e�ect on null �ag is determined
by its e�ect on vector L. So how does the vector L transform under (1.8)? Consider �rst a sit-
uation with the vector given by (1.32) that lies in an Argand-Gauss plane of complex numbers,
with ζ being its standard coordinate. Because multiplication ζ 7→ exp(iθ)ζ results in rotation
of the Argand plane (through angle θ), we can see that transformation (ξ, η) 7→ exp(iφ)(ξ, η)
results in rotation of that vector through an angle 2φ.10 Correspondence between Argand plane
and the abstract sphere of null directions is provided by stereographic projection, and the stere-
ographic projection is conformal11. Hence L is also rotated through angle 2φ under the phase
transformation (1.8).

Now, apply the phase transformation (1.8) and starting from φ = 0 increase φ gradually.
Once φ attains value φ = π, the spin-vector is transformed into its negative, while the null
�ag revolves through the whole circle. It takes one more rotation of the null �ag to transform
the spin-vector into its original form. Phase transformation (1.8) corresponds to an actual spin
transformation: a rotation through an angle 2φ about the axis given by vector K, as can be
most easily seen from (1.21). Thus we can see that no "ordinary" geometric object is capable
of representing spin-vector completely, for a rotation through an angle 2π leaves that object

10Components of L are quadratic in η−1.
11Conformality is well known property of stereographic projection, although we have not shown it to be true

in this introduction. We refer an interested reader to [11].
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unchanged, while the spin-vector is transformed into its negative. We will refer to the quantities
that must be rotated through 4π to return to their original state as spinorial objects. A well
known example of such objects are fermions.

The property that rotation through 2π is not fully equivalent to the identity stems from
topology of proper rotations in Euclidean 3-space. Euler proved that any such rotation can be
written as a rotation about some �xed axis12. Therefore we can represent any proper rotation by
a vector in Euclidean 3-space: the direction of the vector will determine the axis of the rotation,
while the length of the vector will determine the angle through which the space is rotated. But
because rotations through angle θ and through θ+2π result in the same transformation, we need
to identify vectors of the same direction the (oriented) length of which does di�er by a multiple
of 2π. Hence the set of all proper rotations can be visualized as a closed ball of radius π centered
at the origin. And since the rotation corresponding to the vector v of length π is the same as
the one corresponding to the vector −v, points opposite on the boundary must be considered
identical.

A closed curve lying in the ball represents a continuous rotation that returns to the original
rotation (original orientation). It may cross the boundary and in such a case it returns inside the
ball on the opposite side. We can deform the curve by a continuous deformation. The number of
points in which the curve crosses the boundary may then change, but they appear or disappear
only in pairs (see Figure 1.3). Therefore there are two classes of closed curves in the space of
proper rotations: those that cross the boundary in an even number of points and those that have
odd number of intersections with the boundary. Any closed curve can be continuously deformed
into any other closed curve of the same class, but it is not possible to deform it into a curve of
the other class. A rotation through 2π intersects the boundary once and therefore cannot be
deformed into the identity rotation, while a rotation through 4π crosses the boundary two times
and thus is continuous with the identity.

Figure 1.3: Consider the closed curve in the leftmost picture above. It intersects the boundary
in two points. We can move the curve inside the ball by the means of continuous deformation,
as is illustrated in the other two pictures. Then it is clearly possible to deform it further in order
to make it arbitrarily close to the identity rotation. Notice that points of crossing disappear in
pair, i.e. there are two such points in the �rst two pictures, and zero in the third picture.

12The terminology may appear little confusing. We use a word rotation to label a certain automorphism of
Euclidean space, and a rotation R, when applied to some geometric object, therefore determines only its �nal

position. In common language term rotation may also refer to a continuous movement. To describe such a
movement we need a map t 7→ R(t). Euler's theorem states that for any such continuous rotation there is another
continuous rotation about a �xed axis.
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1.5 Operations on spinors

In this section we will de�ne basic operations on spinors. Space of spin-vectors is a vector space
over complex numbers, therefore among basic operations to consider there are scalar multiplica-
tion of a spin-vector, addition of two spin-vectors and some kind of an inner product. We impose
one requirement on these operations: we want them to have geometric meaning, i.e. to be coor-
dinate independent. Thus we require them to be invariant under passive spin transformations.
In the case of the �rst two operations it is straightforward to both choose their de�nition and to
check the invariance: given the spin-vectors κ and ω with components κ0, κ1 and ω0, ω1,

κ = (κ0, κ1) ,

ω = (ω0, ω1) ,

and a complex number λ, we de�ne scalar multiplication and addition simply by

λκ =λ(κ0, κ1) = (λκ0, λκ1) , (1.34)

κ+ ω =(κ0, κ1) + (ω0, ω1) = (κ0 + ω0, κ1 + ω1) . (1.35)

Covariance under spin transformations

(
κ0

κ1

)
7→
(
κ0̂

κ1̂

)
=

(
α β
γ δ

)(
κ0

κ1

)

follows from the linearity of matrix multiplication:
(
α β
γ δ

)(
λκ0

λκ1

)
= λ

[(
α β
γ δ

)(
κ0

κ1

)]
,

and likewise for the operation of addition.
A search for a suitable inner product would be little more tricky. We will simply check that

the choice

{κ,ω} = {(κ0, κ1), (ω0, ω1)} = κ0ω1 − κ1ω0 (1.36)

yields the desired invariance, as follows from the fact that determinant of a spin-matrix equals
one:

κ0̂ω1̂−κ1̂ω0̂ = det

(
κ0̂ ω0̂

κ1̂ ω1̂

)
=

∣∣∣∣
(
α β
γ δ

)(
κ0 ω0

κ1 ω1

)∣∣∣∣ =

∣∣∣∣
α β
γ δ

∣∣∣∣
∣∣∣∣
κ0 ω0

κ1 ω1

∣∣∣∣ = κ0ω1−κ1ω0 .

(1.37)

We will expand on these results in the next sections dedicated to the spinor algebra, but
before we do so, we need to discuss the notation that this work follows.

1.6 Abstract-index notation

Classical approach to the tensor formalism employs notation where tensors are represented by
their components. For example an array V α represents a (contravariant) vector. Index α takes
values from 1 to n, where n stands for dimension of the considered space, and for each such
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α, the number13 V α is α-th component of the vector. Disadvantage of such formalism is that
tensors can only be accessed via their components. A more modern, coordinate-free approach
deals with tensors directly, i.e. it denotes the aforementioned vector simply as V. The problem
with this formalism is that it lacks an ability to e�ectively deal with various index permutations
and contractions, something at which the classical approach is very e�cient.

The formalism used in this thesis is that of the abstract indices. It retains the functionality of
the classical approach while also allows us to deal with tensors directly. Formally the notation is
nearly identical to the classical one, but the symbol V α represents the vector itself, not its com-
ponents. Symbols with other indices are also needed. But while symbols V α and V β correspond
to the same vector V, we do not want them to represent the very same mathematical object.
For then identities like V α = V β would hold, rendering the formalism unusable. Even if we were
to introduce rules forbiding substitutions like V αVα = V βVα, other problems would remain. For
example antisymmetric product V αW β − V βWα would identically be null. Therefore we create
several distinct copies Vα, Vβ , Vγ ... for each relevant vector space V̊ . Vectors V α, Wα... belong
to the space Vα, while V β , W β ... belong to Vβ and so on. This way we achieve that although
V α and V β correspond to the same vector V, they are di�erent objects. Similarly we create
copies Vα, Vβ , Vγ ... for the space dual to V̊ . Then we construct copies of tensor spaces of higher
valence.

While it is convenient to be able to work with tensors directly, we often wish to use com-
ponents anyway. Let us denote vectors of some chosen basis by δαi , with the bold Latin index
distinguishing between di�erent vectors of the basis and the normal Greek index used to deter-
mine the copy of the relevant vector space14. Then, using usual summation convention for bold
Latin indices, we can express any vector V from that vector space as

V α = V iδαi , (1.38)

where V i are components of the vector V with the respect to the basis δαi . Basis dual to δαi
consists of covariant vectors δiα satisfying

δiαV
α = V i , (1.39)

for any V α ∈ Vα. Particularly, we have
δiαδ

α
j = δij. (1.40)

Kronecker delta symbol δij equals one whenever i = j and is zero otherwise.
Now consider some other basis δα

î
for the same vector space Vα. With the help of the dual

base δîα we can obtain components V î = V αδîα. Similarly, we may express components of δαi
with respect to δα

î
and components of δα

î
with respect to the basis δαi and arrive at

δîi = δαi δ
î
α , δi

î
= δα

î
δiα . (1.41)

These two matrices are useful when we wish to compute components of a tensor with respect to
one basis from the components with respect to the other basis. Consider tensor Aαβγ , we have

Ai
jkδ

α
i δ

j
βδ

k
γ = Aαβγ = Aî

ĵk̂
δα
î
δĵβδ

k̂
γ . (1.42)

Contracting with δl̂αδ
β
m̂δ

γ
n̂ (and renaming indices) we get

Aî
ĵk̂

= Ai
jkδ

î
iδ

j

ĵ
δk
k̂
. (1.43)

13Or the function of the coordinates, if we are concerned with vector �elds.
14Thus the basis consists of vectors δα1 , δ

α
2 ,..., δ

α
n , where n stands for dimension of vector space Vα.
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1.7 Spinor algebra

After short interlude on abstract indices we can resume our discussion of spinor algebra. We will
denote the vector space of spin-vectors by G̊ and use non-bold uppercase Latin letters to indicate
copies of that space, i.e. we will use symbols GA, GB etc. for copies of G̊ . To denote components,
bold uppercase Latin letters will be used. Symbol κA will therefore denote a spin-vector from
the space GA and for its components we will write κA, where A takes values from {0, 1}. As
usually, lowered indices will indicate covariant spinors.

In an earlier section we have found the Lorentz invariant inner product of two spin-vectors
given by

{κ,ω} =

∣∣∣∣
κ0 ω0

κ1 ω1

∣∣∣∣ . (1.44)

It is an antisymmetric bilinear map from G̊ ×G̊ into complex numbers C. As such, it provides us
with a natural correspondence between the space of spin-vectors G̊ and its dual, since it allows
us to assign a map {κ, ◦} : ω 7→ {κ,ω} to any spin-vector κ. Because the map {κ, ◦} is linear
in its argument it belongs to the space G◦. Using index notation we will denote both the map
{κ, ◦} and its preimage κA by the same kernel letter κ, i.e. {κ, ◦} = κA and {κ,ω} = κAω

A.
Since the inner product itself is a multilinear map, it corresponds to a spinor of valence

[
0
2

]
.

We will denote it by Greek letter ε :

{κ,ω} = εABκ
AωB . (1.45)

Because the inner product is antisymmetric, we have εAB = −εBA. The relation between spinors
κA and κA de�ned in the last paragraph can be expressed in the form

κB = εABκ
A . (1.46)

Due to the antisymmetry of εAB we need to be careful about what indices we contract through.
When we contract through the second index we get εABκB = −εBAκB = −κA, instead of κA.

To �nd a formula that relates the components of spin-vector κA to components of κA, we use
(1.44):

{κ,ω} = κ0ω1 − κ1ω0

= κAω
A = κAω

A = κ0ω
0 + κ1ω

1 . (1.47)

Thus we have κ0 = −κ1 and κ1 = κ0. This result shows that a map κA 7→ εABκ
A is one-to-one.

Consequently, there must be the inverse map from GB to GA. Since that map is clearly linear,
there exists a spinor εAB that e�ects it:

εABκB = κA . (1.48)

We expect εAB to be antisymmetric. To show that, we use the antisymmetry of εAB . We have

εABκAωB = κAω
A = εBAκ

BωA = −εABκBωA = −κBωB = −εBAκAωB (1.49)

for arbitrary spinors κA and ωB , which proves the desired. Now, substituting from (1.46) for κB
into (1.48), and similarly, substituting from (1.48) into (1.46), we get two equations:

κA = εACκC = εACεBCκ
B = δABκ

B , (1.50)

κB = εCBκ
C = εCBε

CAκA = δABκA , (1.51)
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where δAB of the �rst equation is the canonical isomorphism from GB into GA and δAB is the
canonical isomorphism between GA and GB . One can easily check that, as the notation suggests,
both spinors are actually the same15.

We have seen that spinors εAB and εAB can be used for lowering and raising the spinor
indices. In accordance with that, we can write δBA = εACε

BC = εCAε
CB = εA

B . Thus we can
consider εAB to be either εAB with the second index raised or εAB with the �rst index lowered.
Subsequently, we may consider εAB to be εAB with both indices raised. In the following we shall
often use symbol εAB instead of δBA .

At the �rst glance, the rules (1.46) and (1.48) for lowering and raising of spinor indices
may seem rather confusing. It may be therefore worthwhile to pause here and introduce some
mnemonics to ease the remembering of the correct rules. First observe, that due to the antisym-
metry of ε a general spinor changes the sign whenever we switch positions of contracted indices.
The mechanism behind this is the same as in (1.49), i.e. for a general spinor ξABC we have
ξA

AC = εDAξ
DAC = −εADξDAC = −ξDDC . This means that it is su�cient to remember that

εA
B = δBA . Then it is easy to reconstruct the correct rules. For example, we may proceed as

follows:

εABξCA
D = −εABξCAD = −δBAξCAD = −ξCBD . (1.52)

It may also be helpful to observe that indices of εAB function in a sense inversely than those of
εAB . When we use εAB to lower the index of some spinor ξAC , we get εABξAC = ξB

C . Notice
that the index we lower is the same as the �rst index of εAB and we rewrite it as B, which is the
second index of εAB . On the other hand, when raising indices, as in εABξBC = ξAC , we raise the
index that is the same as the second index of εAB and then we `change' it into A, the �rst index
of εAB . Thus we only need to remember that in εAB �A (of the e�ected spinor is lowered) and
goes into B �, while in εAB �index B goes into A �. If we imagine a circle around ε, both these
movements are in the direction of its positive rotation.

Let us now turn our attention back to equation (1.44). The inner product given by that
relation satis�es the Jacobi identity

{κ,ω}τ + {ω, τ}κ+ {τ ,κ}ω = 0 , (1.53)

as can be seen by Laplace expansion of
∣∣∣∣∣∣

τ0 κ0 ω0

τ1 κ1 ω1

τA κA ωA

∣∣∣∣∣∣
= 0 , A = 0, 1 , (1.54)

with respect to the last row. As a corrolary to (1.53), we see that any pair of spin-vectors whose
inner product is nonzero form a basis. For example, if κ and ω satisfy {κ,ω} 6= 0, then the
Jacobi identity (1.53) shows how to express any other spin-vector τ as their linear combination.

We shall refer to a pair of spin-vectors that form a basis as a dyad and usually denote those
spinors by letters o and ι (omikron and iota). A dyad normalized so that oAιA = 1 will be called
a spin-frame. Let κ0 and κ1 be components of a spin-vector κ with respect to the spin-frame
(o, ι):

κA = κ0oA + κ1ιA . (1.55)

Transvecting the last equation with ιA and oA we obtain relations

κ0 = −κAιA and κ1 = κAoA . (1.56)

15δAB (of the �rst equation) = εACεBC = (−εCA)(−εCB) = δAB (of the second equation)
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To continue the discussion we introduce a rather useful new symbol εAA which collectively
denotes spin-vectors of the dyad:

ε0
A = oA , ε1

A = ιA . (1.57)

Using this notation we can rewite (1.55) as16

κA = κAεA
A . (1.58)

We write εAA for the basis dual to εAA. By de�nition, it satis�es

εA
BεA

A = δBA = εA
B , (1.59)

where we de�ne εAB to be an equivalent of the Kronecker delta. Solving the last equation we
arrive at

εA
0 = −ιA , εA

1 = oA , (1.60)

or, in a case of general dyad when {o, ι} = χ 6= 0,

εA
0 = − 1

χ
ιA , εA

1 =
1

χ
oA . (1.61)

The notation we have just introduced allows us to write

ξA
BC = ξA

BCεA
AεB

BεC
C (1.62)

for the components of a general spinor ξABC . Applying this to spinors εAB and εAB yields

εABεA
AεB

B =εABεB
B = εAB =

(
0 χ
−χ 0

)
,

εABεA
AεB

B =εA
AεAB = εAB =

(
0 1

χ

− 1
χ 0

)
, (1.63)

where χ = 1 in the case of spin-frame. Similarly, we may use εAB = εA
BεA

AεB
B = εA

AεA
B,

thus obtaining εAB = δBA in accordance with our earlier de�nition.
For the relation (1.58) or its generalization

ξA
BC = ξA

BCεA
AεB

BεC
C (1.64)

to be consistent with (1.62), the following relation must hold:

εA
BεA

A = δBA . (1.65)

This is just a condition for completeness of the basis εAA.
We can employ matrices εAB and εAB to lower or raise bold (component) indices. We may

also freely contract over bold indices. Consistency is ensured again by relations (1.59) and (1.65).
For example we have

ξAηA =
(
ξAεA

A
)
ηA = ξA

(
εA

AηA
)

= ξAηA ,

16Remember that we sum over the identical bold indices.
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or
(
ξAε

AB
)
εB

B = ξAεA
AεABεB

B = ξAε
AB .

Let us now return back to the Jacobi identity (1.53). Using the abstract index notation the
equation acquires the form

εABεC
DκAωBτC + εBCεA

DωBτCκA + εCAεB
DτCκAωB = 0 . (1.66)

Because the above relation holds true for arbitrary spin-vectors κ, ω and τ , spinor ε must satisfy
the following equation:

εABεC
D + εBCεA

D + εCAεB
D = 0 . (1.67)

After we contract the previous equation with εEB and rename a few indices, we arrive at

εA
CεB

D − εBCεAD = εABε
CD . (1.68)

Applying this result on arbitrary spinor χCD we �nd that antisymmetric part of any such spinor
is proportional to εCD:17

1

2
(χAB − χBA) =

1

2
χX

XεAB . (1.69)

Symmetry operations play an important role in spinor as well as tensor calculus. We shall use
a common notation where round brackets symbolize symmetrization over the enclosed indices,
for example:

γAB
(C1C2...Cn) =

1

n!

∑

σ

γAB
Cσ(1)Cσ(2)...Cσ(n) , (1.70)

where the summation is taken over all n! permutations of the set {1, . . . , n}. Antisymmetrization
is denoted by square brackets:

γAB
[C1C2...Cn] =

1

n!

∑

σ

sgn(σ)γAB
Cσ(1)Cσ(2)...Cσ(n) . (1.71)

We can enclose a group of indices in vertical bars to exclude them from the operation of symmetry.
For example, the symbol βAB [C|DE|F ] denotes

βAB
CDEF − βABFDEC . (1.72)

Now we can rewrite (1.69) as χ[AB] = 1
2χX

XεAB . Since any spinor χAB can be decomposed
into a sum of its symmetric and its antisymmetric part, we have

χAB = χ(AB) + χ[AB] = χ(AB) +
1

2
χX

XεAB . (1.73)

Thus we see that all infromation on spinor χAB is contained in two spinors χ(AB) and 1
2χX

X ,
both of them symmetric. (The latter, being a scalar, can be considered symmetric, since it
has no indices.) This is a special case of general fact that any spinor can be decomposed into

17This is the consequence of a general fact, that in a space of dimension n, any two n-forms (totally antisym-
metric covariant tensors of valence n) may di�er only by a common factor.
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the sum of outer products of symmetric spinors with εs. To prove this18 we �rst show that
spinors19 φIAB...F and φI(AB...F ) di�er only by the sum of outer products of εs with spinors
of lower valence. We shall use a symbol `∼' to denote such a relation, i.e. we wish to show
that φIAB...F ∼ φI(AB...F ). Clearly, the relation `∼' de�nes an equivalence class. Therefore,
it su�ces to show that φI(AB...F ) ∼ φIA(B...F ) for any spinor φIAB...F , because then we can
reiterate the argument to obtain φI(AB...F ) ∼ φIA(B...F ) ∼ φIAB(C...F ) ∼ ... ∼ φIAB...F . To
prove that φI(AB...F ) ∼ φIA(B...F ) we expand the symmetrization of φI(AB...F ) as follows:

φI(AB...F ) =
1

r

(
φIA(BC...F ) + φIB(AC...F ) + φIC(AB...F ) + . . . + φIF (AB...E)

)
, (1.74)

where r is the number of indices A,B, ... , F . Next we rewrite the right hand side as

φIA(BC...F ) +
1

r

[(
φIB(AC...F ) − φIA(BC...F )

)
+ . . . +

(
φIF (AB...E) − φIA(BC...F )

)]
. (1.75)

Consider the term φIB(AC...F ) − φIA(BC...F ). By (1.69) we have

φIB(AC...F ) − φIA(BC...F ) = εABφI
X

(XC...F ) , (1.76)

and we get a similar result for each other of such terms. This establishes that φI(AB...F ) ∼
φIA(B...F ) and repeating the procedure we get φIAB...F ∼ φI(AB...F ). The di�erence φIAB...F −
φI(AB...F ) consists of terms that are outer products of εs with spinors of lower valence. These
spinors of lower valence are not necessarily symmetric. But because aforementioned argument
applies to them as well, they can too be expressed as their symmetrized versions plus outer
products of εs with spinors of lower valence. We can repeat the process until only symmetric
spinors and εs remain. Thus we have proved that any spinor φIAB...F is a sum of the symmetric
spinor φI(AB...F ) and of outer products of εs with symmetric spinors of lower valence.

To illustrate this result we perform the decomposition for a spinor χABC . Proceeding along
the lines of the given proof, we �rst get

χ(ABC) =
1

3

(
χA(BC) + χB(AC) + χC(AB)

)
= χA(BC) +

1

3

(
εABχ

X
(XC) + εACχ

X
(XB)

)
.

We repeat the computation for the spinor χA(BC), arriving at

χA(BC) =
1

2
(χABC + χACB) = χABC +

1

2
εBCχA

X
X . (1.77)

Thus we have

χABC = χ(ABC) −
1

3
εABχ

X
(XC) −

1

3
εACχ

X
(XB) −

1

2
εBCχA

X
X . (1.78)

1.8 World-tensors in spinor formalism

As we have seen at the beginning of this chapter, a general Hermitian matrix

V AB =

(
T + Z X + iY
X − iY T − Z

)
(1.79)

18The proof is taken from [11].
19Symbol I stands for set of indices which do not directly enter the following argument and therefore need not

to be stated individually. We will call such a symbol, which stands for several indices, a composite index.
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de�nes a four-vector V α whose components are

V a =




T
X
Y
Z


 . (1.80)

We have also found that if a vector V α is null, it is possible to partition the matrix MAB into
an outer product of two spin-vectors:

V AB =

(
T + Z X + iY
X − iY T − Z

)
=

(
ξ
η

)(
ξ η

)
. (1.81)

While it is tempting to simply write
(
ξ
η

)(
ξ η

)
= κAκB (1.82)

for the rightmost part of the last equation, we ought to be more careful. Clearly, an opera-
tion of complex conjugation needs to be included into the spinor calculus to make it capable of
handling world-vectors. But are we able to simply add it as a map from G̊ onto G̊ , the way
equation (1.82) suggests? It turns out that such an operation would spoil the Lorentz invariance
of the formalism. The problem is that complex conjugation does not treat all complex num-
bers equally � imaginary numbers are multiplied by −1 under complex conjugation, while real
numbers are not a�ected at all � and that Lorentz transformations do not in general respect
that structure. For example a rotation about the axis given by spin-vector's �agpole results in
a phase transformation κ 7→ ei

φ
2 κ of that spin-vector. Hence it is possible to transform a purely

imaginary spin-vector into a real one. Surely, complex conjugation does not commute with such
a transformation, thus violating the Lorentz symmetry.

We see that the complex conjugate of spin-vector κA ∈ GA cannot be a quantity of the same
type. We de�ne a new space GA′

that consists of complex conjugates of elements from GA.
Complex conjugation thus does not map GA onto GA, but GA onto GA′

:

κA = κA
′
. (1.83)

Applying the complex conjugation twice should result in the identity, i.e. κA = κA
′

= κ
A

= κA.
Therefore, complex conjugation applied on an element of GA′

results in an appropriate element
of GA.

Operations of addition and scalar multiplication in GA′
are de�ned so that

λκA + µωA = τA ⇐⇒ λκA
′
+ µωA

′
= τA

′
. (1.84)

That means that complex conjugation de�nes an anti-isomorphism between spaces GA and GA′
.

We de�ne the dual to GA′
and spaces of higher valence analogously as we did for GA. We also

create copies of those spaces so that we can employ the abstract index formalism. Here we need
to make sure that correspondences between elements of various spaces are chosen correctly. For
example there is an isomorphism between GA′

and GB′
, but there also is an anti-isomorphism

between GB and GB′
and we want them to be consistent so that any index substitution will

commute with complex conjugation, i.e. κB = κB
′
for each B. Then there is a complication due

to the fact that e.g. GB′ arises both as a dual to GB′
and as a complex conjugate of GB . We �x

these relations by the de�nition

τX′κX
′

= τXκX , (1.85)
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where the bar on the right hand side denotes ordinary complex conjugation of scalars. As the
equation (1.82) demonstrates, we will need to deal with spinors that possess both primed and
unprimed indices. While it is important to preserve relative positions of primed indices as well
as relative positions of unprimed idices, we do not need to uphold relative order between primed
and unprimed indices due to the fact that we cannot substitute an unprimed index for primed
one and neither the other way around. Thus we have χABC′ 6= χBAC′ , while χABC′ = χAC′B .

Spinor spaces GA and GA′
are isomorphic. When we consider them separately, i.e. we ignore

how they are related by complex conjugation, they have the same properties. Therefore all
the results on `unprimed' spinors we got in previous sections hold for `primed' spinors as well.
Particularly, any spinor of primed indices can be decomposed as a sum of outer products of
symmetric (primed) spinors with (primed) εs. Consequently, any spinor can be written as a
sum where each term is an outer product of spinor symmetric in both its primed and unprimed
indices and εs. For example for a spinor ξABA′B′ we have

ξABA′B′ = ξ(AB)(A′B′) −
1

2
εABξ

X
X(A′B′) −

1

2
εA′B′ξ(AB)

X′

X′ +
1

4
εABεA′B′ξXX

X′

X′ . (1.86)

Now that we have learned how to deal with complex conjugation, we can return to our original
discussion and rewrite the equation (1.81) as

V AA′
=

(
T + Z X + iY
X − iY T − Z

)
=

(
ξ
η

)(
ξ η

)
= κAκA

′
. (1.87)

This suggests that even in a case of general Hermitian matrix (representing a general four-vector)
we should use AA′ instead of AB for its indices. Now we may regard both a list of numbers
V a and a Hermitian matrix V AA′

as di�erent coordinate representations of the same object, the
four-vector V α. The matrix V AA′

does also represent a spinor V AA
′
, so we may equate that

spinor with the vector V α. If we think of the index α as a composite index that stands for AA′20,
we may regard a tensor algebra as embedded in the spinor one. In a similar fashion, β may be
considered to be an composite index standing for BB′, γ an composite index for CC ′ and so
forth. Spinors that can be rewritten using just these composite indices will be called complex
world-tensors. An example of such a spinor would be

σAA
′BB′CC′

DD′EE′ = σαβγδε . (1.88)

The complex conjugate of complex world-tensor is another complex world-tensor:

σAA′BB′CC′
DD′EE′ = σA

′AB′BC′C
D′DE′E = σαβγδε . (1.89)

Certain complex world-tensors are invariant under complex conjugation and we shall refer to
them as real world-tensors or simply world-tensors. For a real world-tensor we therefore have

σαβγδε = σαβγδε . (1.90)

Spinors of the type κAκA
′
corresponding to null four-vectors are examples of such real world-

vectors.
20In this work we use bold lowercase latin letters to indicate component indices, i.e. we write V a for components

of a vector V. As an abstract index corresponding to the index a we use the greek letter α instead of its latin
variant. We do so in order to ease distinguishing between abstract and component indices, since lowercase bold
indices are rather hard to tell apart from their non-bold variants. At this moment, however, it would be more
convenient to use the more straightforward convention, since then we would have a as a composite index standing
for AA′, b standing for BB′ and so on.
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Now that we have found how to equate certain spinors to world-tensors, we may ask whether
it is possible to express arbitrary spinorial expression in terms of tensor formalism. A natural
place to start is the simplest of spinors, a spin-vector κA. It is clear that it is unachievable to
transcribe κA directly into a tensor expression � κA simply lacks indices. But we may still try
to �nd some spinorial expression that would have informational content identical to that of the
κA21 and which would be expressible in tensor formalism. We have already seen how to assign
the four-vector κAκA

′
to spinor κA, but such correspondence is ambiguous. The four-vector

κAκA
′
is unchanged under the phase transformation κA 7→ exp(iφ)κA , φ ∈ R. Since we need to

pair primed and unprimed indices to form a world-tensor, it clearly is not possible to construct
suitable tensorial expression using only κA and κA

′
as its building blocks. Fortunately, there

is one more ingredient we can use: the canonical spinor εAB (and its complex conjugate). The
simplest world tensor we can create using κA, εAB and their complex conjugates is spinor

P ab = κAκBεA
′B′

+ κA
′
κB

′
εAB . (1.91)

We can easily see that it is antisymmetric in indices a and b. To interpret this tensor, we will
need the relation

εAB = oAιB − ιAoB , (1.92)

which holds if oAιA = 1. We can prove it simply by expanding formula εAB = εA
AεABεB

B for a
spin-frame εAA. Because for any nonzero κA there exists a spinor τA such that the pair κA, τA

form a spin-frame22, we can rewrite εAB as κAτB − τAκB . Thus we have

P ab =κAκB
(
κA

′
τB

′ − τA′
κB

′
)

+ κA
′
κB

′ (
κAτB − τAκB

)

=κAκA
′
(
κBτB

′
+ τBκB

′
)
− κBκB′

(
κAτA

′
+ τAκA

′
)

= KαLβ −KβLα , (1.93)

where the vector Lα = κAτA
′

+ τAκA
′
is space-like and orthogonal to the vector Kα = κAκA

′
.

As can be shown, these two vectors determine the �ag plane of κA.
When dealing with general spinor, we proceed similarly. Basically, there are three distinct

cases which may occur. The �rst case is when a spinor χA...FA′...F ′ has equal number of primed
and unprimed indices. Then it is possible to transcribe it directly. For example we can write
κAτA

′
= V α, where V α is a complex four-vector. If desired, we can consider its real and imaginary

part separately, thus obtaining two real world-tensors. In the second case the spinor has unequal
number of primed and unprimed indices, while the total number of indices is even. In such a case
we multiply it with suitable εs to make the numbers of unprimed and primed indices same, and
then proceed as in the �rst case. An example would be a spinor χABCDA′B′ . We simply make
an outer product of it with εC′D′ to obtain the spinor χABCDA′B′εC′D′ which can be readily
interpreted as a tensor. The last case is of a spinor that possesses odd number of indices. This is
the only case when true tensorial representation is actually impossible, since a spinor with odd
number of indices is a true spinorial object, i.e. it changes sign when rotated through 2π. A
tensor is able to represent it only up to the sign ambiguity. To progress, we multiply such spinor
with itself to obtain an expression having an even number of indices. Such expression is of one of

21So that that expression would be both fully determined by and would fully determine the spin-vector κA.
Strictly speaking, it is not always possible to achieve such an equivalence, since world-tensors are not spinorial
objects in a sense that a full rotation returns them into their original state. But even if the spinor under
consideration is a true spinorial object, we can still try to �nd a world-tensor representing it uniquely up to the
sign ambiguity.

22Notice that the requirement κAτ
A = 1 does not �x τA uniquely, since if τA satis�es κAτ

A = 1, then same
holds for any τ̃A = τA + cκA , c ∈ C as well.
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previous cases and it determines the original spinor up to the sign. Probably the best example
is that of a spin-vector κA, which we have discussed above. Its square, the spinor κAκB is of the
second type. Taking an outer product with εA

′B′
we arrive at κAκBεA

′B′
, which is a complex

world-tensor. In this particular example it su�ces to consider only its real part, since it contains
all the information on κAκBεA

′B′23.
There are two essential tensors that can be constructed using just εs. The �rst is the sym-

metric tensor

gαβ = εABεA′B′ . (1.94)

Applying the tensor gαβ on a four-vector V α results in the lowering of its index:

gαβV
α = εABεA′B′V AA

′
= VBB′ = Vβ . (1.95)

Thus we see that gαβ acts like the metric tensor and so we shall de�ne the latter by the equation
(1.94).

The other tensor is the alternating tensor eαβγδ. We shall simply state its form here, without
proving that it possesses the desired attributes24:

eαβγδ = iεACεBDεA′D′εB′C′ − iεADεBCεA′C′εB′D′ . (1.96)

If we were to transcribe a general spinorial relation as a relation between tensors, knowing how
to �nd tensorial analogue of any spinor would in most cases not su�ce. After all, symbols that
represent spinors or tensors contain very little valuable information on their own. Its through an
explicit use of operations on and between spinors or tensors that we usualy capture the content.
Therefore it is important to know how to transcribe operations on spinors: the addition of spinors,
the multiplication of spinor by scalar, the outer product of spinors, operations of contraction and
of index permutation/substitution. Hence we should put each one of those operations under
close scrutiny, but that is exactly what we won't do, since it would require prolonged discussion.
We shall only brie�y mention the case of index permutation, since that one is actually quite
important from the conceptual perspective, while the discussion of the other cases would revolve
mostly about technical subtleties. To illustrate such technical di�culties, consider for example
the outer product of spin-vectors µA and νA

′
, i.e. the relation

µAνA
′

= χAA
′
. (1.97)

Tensorial analogues for these spinors (obtained by the aforementioned procedure) are: µAµBεA
′B′

=
Mαβ for µA, νC

′
νD

′
εCD = Nγδ for νA

′
, but simply χAA

′
= χα for χAA

′
. Thereby we see that

the outer multiplication of spinors does not necessarily results in the simple outer multiplication
of relevant tensors, since here clearly MαβNγδ 6= χα. The way out of this problem depends on
circumstances. Expressions Mαβ and Nαβ tell us nothing about the overall sign of spin-vectors
µA and νA

′
, and unless we have access to some other tensor which provides us with information

on their relative sign, the overall sign of χα is also unknown to us. Thus knowing just Mαβ

and Nαβ we may determine only the square χαχβ , and so we should look for the way to relate
MαβNγδ with χαχβ . This may be done by applying suitable (spinor) index permutation on
expression MαβNγδ, obtaining χαχβgγδ.

23As we will see later, the imaginary part of κAκBεA
′B′

can be obtained from the real part by dualization.
24We want eαβγδ to be totally antisymmetric and to satisfy the normalization condition eαβγδt

αxβyγzδ = 1.
We actually are not prepared to show that the latter is satis�ed by the de�nition given above, since we are yet to
introduce the required tetrad.
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Let us now turn our attention to the operation of index permutation. Consider some spinor
χAA′BB′ = χαβ . Switching the whole pair AA′ with BB′ clearly results in χβα, but what is an
e�ect of permutation A ↔ B? To �nd an answer, we need to consider the case of symmetric
tensor Tαβ and the case of the antisymmetric one, the bivector Fαβ , separately.

Let us start with a symmetric tensor Tαβ = T(αβ). We are interested in the relation between
TBA′AB′ (which, due to the symmetry of Tαβ , equals TAB′BA′) and the original tensor Tαβ .
When we split TAA′BB′ into parts symmetric and antisymmetric in indices A and B

TAA′BB′ =
1

2
(TAA′BB′ + TBA′AB′) +

1

2
(TAA′BB′ − TBA′AB′) , (1.98)

we may observe that, because of the symmetry of Tαβ , the expression in the �rst brackets is
actually symmetric in both AB and A′B′, and the expression in the second brackets is fully
antisymmetric. Thus we can write

TAA′BB′ = SAA′BB′ +
1

4
TCC′

CC′
εABεA′B′ , (1.99)

where 1
4TCC′CC

′
= 1

4Tγ
γ is the trace of Tαβ , and SAA′BB′ , which is totally symmetric, is the

trace-free part of Tαβ , i.e. Sγ
γ = 0. The permutation A ↔ B (or A′ ↔ B′) leaves SAA′BB′

unchanged, while it reverses the sign of the second term of (1.99). Hence, interchanging indices
A and B (or A′ and B′) in symmetric tensor Tαβ amounts to the tensorial operation of trace
reversal.

Next we investigate the case of bivector Fαβ = F[αβ]. We proceed similarly as we did before,
and decompose Fαβ into parts symmetric and antisymmetric in AB:

FAA′BB′ =
1

2
(FAA′BB′ + FBA′AB′) +

1

2
(FAA′BB′ − FBA′AB′) . (1.100)

Because of antisymmetry of Fαβ , the �rst parenthesis is symmetric in AB and antisymmetric in
A′B′, while the second parenthesis is antisymmetric in AB and symmetric in A′B′. Therefore
we have

Fαβ = φABεA′B′ + εABψA′B′ . (1.101)

Spinors φAB and ψA′B′ are both symmetric, and related to Fαβ by

φAB =
1

2
FABC′

C′
, ψA′B′ =

1

2
FC

C
A′B′ . (1.102)

When we interchange indices AB or A′B′, one of the terms in decomposition (1.101) switches
the sign. This is related to the tensorial operation of dualization. The dual ∗Fαβ of bivector Fαβ
is de�ned as

∗Fαβ =
1

2
eαβ

γδFγδ . (1.103)

Substituting for Fγδ from (1.101) and for the alternating tensor from (1.96), we arrive at

∗FAA′BB′ = −iφABεA′B′ + iεABψA′B′ (1.104)

and, �nally,

∗FAA′BB′ = iFAB′BA′ = −iFBA′AB′ . (1.105)
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While we are discussing dualization, it may be worthwhile to introduce some useful terminol-
ogy. A bivector, which when multiplied by the imaginary unit equals its dual, i.e. iFαβ = ∗Fαβ ,
is said to be self-dual. By (1.104), we have FABA′B′ = εABψA′B′ for self-dual bivector. On
the other hand, we say that a bivector FABA′B′ = φABεA′B′ is anti-self-dual. Such a bivector
satis�es the relation ∗Fαβ = −iFαβ . For an arbitrary complex bivector Fαβ , the expression

−Fαβ =
1

2
(Fαβ + i∗Fαβ) = φABεA′B′ (1.106)

is anti-self-dual, and expression

+Fαβ =
1

2
(Fαβ − i∗Fαβ) = εABψA′B′ (1.107)

is self-dual.
Let us now turn back to the issue of index permutation. So far, we have seen which tensorial

operations correspond to permutation of spinorial indices only in special cases of symmetric
and antisymmetric tensors. But because any tensor Hαβ can be decomposed into the sum of
its symmetric and antisymmetric parts, we can easily deduce the rules for such a general case.
Consider the permutation A↔ B. The symmetric part of Hαβ undergoes the change25

H(αβ) 7→ H(αβ) −
1

2
Hγ

γgαβ , (1.108)

while the antisymmetric part is transformed according to

H[αβ] 7→ i∗H[αβ] . (1.109)

As a result, we may write

HBAA′B′ = H(αβ)−
1

2
Hγ

γgαβ + i∗H[αβ] =
1

2
(Hαβ +Hβα)− 1

2
Hγ

γgαβ +
1

2
ieαβ

γδHγδ , (1.110)

or

HBAA′B′ =
1

2

(
gα
γgβ

δ + gβ
γgα

δ − gαβgγδ + ieαβ
γδ
)
Hγδ . (1.111)

Thus we see that the tensor

Uαβ
γδ =

1

2

(
gα
γgβ

δ + gβ
γgα

δ − gαβgγδ + ieαβ
γδ
)

(1.112)

e�ectuates the desired permutation. It is not hard to check that to perform the permutation
A′ ↔ B′, it su�ces to apply the complex conjugate of the tensor Uαβγδ, the tensor Uαβγδ =
1
2

(
gα
γgβ

δ + gβ
γgα

δ − gαβgγδ − ieαβγδ
)
. Thus, to summarize, we have

HBAA′B′ = Uαβ
γδHγδ , HABB′A′ = Uαβ

γδHγδ . (1.113)

Finally, since any index permutation can be achieved by successively applying suitable permu-
tations on pairs of indices, any permutation of spinor indices can be captured by the virtue of
tensors Uαβγδ and Uαβγδ.

We continue this section with introducing some tetrads which we can construct from spin-
frame, and close it with some remarks on transforming between components with respect to

25The trace of a tensor and the trace of its symmetric part are of course the same.
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spin-frame and components with respect to some tetrad. Let us consider a spin-frame oA, ιA

with normalization oAιA = 1. A null tetrad is de�ned by

lα = oAoA
′
, nα = ιAιA

′
, mα = oAιA

′
, mα = ιAoA

′
. (1.114)

These are all null four-vectors. Nearly all scalar products between them vanish, with exception
of

lαn
α = 1 , mαm

α = −1 . (1.115)

Vectors lα, nα, mα, mα are linearly independent, hence constituting a basis. The dual basis is
nα, lα, −mα, −mα. Thus we may write

gαβ = δaαδβa = 2l(αnβ) − 2m(αmβ) . (1.116)

Sometimes it is more convenient to use tetrad that contains only real four-vectors. Starting
either from lα, nα, mα, mα, or from oA, ιA, we can easily construct a Minkowski tetrad :

tα =
1√
2

(lα + nα) =
1√
2

(
oAoA

′
+ ιAιA

′
)
,

xα =
1√
2

(mα +mα) =
1√
2

(
oAιA

′
+ ιAoA

′
)
,

yα =
i√
2

(mα −mα) =
i√
2

(
oAιA

′ − ιAoA′
)
,

zα =
1√
2

(lα − nα) =
1√
2

(
oAoA

′ − ιAιA′
)
. (1.117)

Four-vectors tα, xα, yα and zα, de�ned as above, satisfy the desired conditions (for constituting
Minkowski tetrad)

tαtα = 1 , xαxα = yαyα = zαzα = −1 , tαxα = tαyα = tαzα = xαyα = xαzα = yαzα = 0 .

(1.118)

In previous sections, we have introduced symbols εAA and εAA for spin-frame. Such a notation
allows us to lower and raise component indices in a similar way that we do with the abstract
ones. Analogously, we may introduce symbols gaα and gαa for tetrad and its dual:26

g0
α =tα , g1

α = xα , g2
α = yα , g3

α = zα ,

gα
0 =tα , gα

1 = −xα , gα
2 = −yα , gα

3 = −zα . (1.119)

Now suppose that we are given coordinates V a of some four-vector, taken with respect to the
tetrad gaα, and we want to �nd coordinates with respect to the spin-frame εAA. The abstract
index formalism provides us with a very plain solution. We may proceed in the virtually same
manner as we did when we transformed bewteen coordinates taken with respect to di�erent
vector bases. Given components V a, we can recover the vector V α = V aga

α, and since in
our formalism V α = V AA

′
, we may simply use the basis dual to εAA to obtain components

V AA′
= V αεA

AεA′A
′
. So the transformation is achieved by means of the object27 gaαεAAεA′A

′
.

26Although here the notation δαa , which does not contain information on relative order of indices aα, would
su�ce, since the metric is symmetric.

27Remember that component index a is not a composite index, i.e. it does not equal AA′. Therefore there is
no summation carried out between indices a and AA′.

32



The same object would be used, if we started from VAA′ and wanted to obtain Va. In the
remaining two cases the object gαaεA

AεA′A
′
would be used. These two objects,

ga
AA′

=ga
αεA

AεA′
A′
,

gAA′
a =gα

aεA
AεA′

A′
, (1.120)

are called Infeld - van der Waerden symbols. Components of a general world-tensor χα...βµ...ν

are related by

χa...c
m...n = ga

AA′
. . . gc

CC′
gMM′

m . . . gNN′
nχAA′...BB′

MM′...NN′
(1.121)

and

χAA′...BB′
MM′...NN′

= gAA′
a . . . gBB′

bgm
MM′

. . . gn
NN′

χa...c
m...n . (1.122)

If εAA and gaα are related by (1.117), we have

g0
AA′

=
1√
2

(
1 0
0 1

)
, g1

AA′
=

1√
2

(
0 1
1 0

)
, (1.123)

g2
AA′

=
1√
2

(
0 i
−i 0

)
, g3

AA′
=

1√
2

(
1 0
0 −1

)
. (1.124)

These are proportional to the well known Pauli matrices and the unit matrix.

33



34



2. Spinor analysis

So far we have considered only spinors at a point. In this chapter we will introduce covariant
derivative on spinors, which will provide us with means to compare spinors at di�erent points.
Then we will brie�y describe spinor formulation of general relativity. We assume that reader is
already familiar with di�erential geometry and tensor formulation of general theory of relativity.

2.1 Spinor covariant derivative

Tensors on manifold are given their geometric meaning through isomorphism between the space
of vector �elds and the space of derivatives of scalar �elds on the manifold. In this chapter we
adopt an axiomatic approach where we postulate the existence of spinor structure on manifold
and demand that the space of real world-vectors constructed from spinors is isomorphic with
derivatives of (complex) scalar �eld on manifold. (This for example �xes the dimension of
manifold.) We require a covariant derivative ∇AA′ to have the following properties:

1. The basic properties of any derivative operator, i.e.

• Linearity: Let αA, βA be two spinor �elds of the same valence1. Then

∇AA′
(
αA + βA

)
= ∇AA′αA +∇AA′βA . (2.1)

• The Leibniz rule: For any two spinor �elds αA, βB

∇AA′
(
αAβB

)
=
(
∇AA′αA

)
βB + αA∇AAβA . (2.2)

• The derivative annihilates constant scalar �elds.

We also require that an operation of covariant derivative commutes with the operation of
index substitution (not involving indices AA′ of its operator ∇AA′) and with the operation
of contraction.

2. We demand that V α∇αf = V (f) for any world-vector V and scalar f .

3. We want the operation of covariant derivative to commute with complex conjugation, i.e.
if βBAA′ = ∇AA′αB then βBAA′ = ∇AA′αB. Formally, this means that the operator ∇α is
real.

4. We want the covariant derivative to be torsion free2, i.e. ∇[α∇β]f = 1
2∆αβf = 0 for any

scalar �eld f , and to annihilate the spinor εAB , i.e. ∇AA′εBC = ∇AA′εB′C′ = 0.

Proof of the existence of such a covariant derivative may be found for example in chapter 4
of [11]. Here we only prove the uniqueness of such a construction, following the notation used in
aforementioned book. Suppose we have two covariant derivatives ∇AA′ and ∇̃AA′ , both of which
satisfy the above requirements. Since the relation ∇AA′f = ∇̃AA′f holds3 for any scalar f , the

1Symbols A, B stand for composite indices.
2Torsion tensor Tαβ

γ is de�ned by the relation 2∇[α∇β]f = Tαβ
γ∇γf , for any scalar �eld f .

3As follows directly from our requirement that V AA
′∇AA′f = V (f) for any scalar f and world-vector V.
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di�erence ∇̃AA′ −∇AA′ annihilates scalar �elds. Thus we have
(
∇̃AA′ −∇AA′

) (
fαB + βB

)
=

αB
(
∇̃AA′ −∇AA′

)
f + f

(
∇̃AA′ −∇AA′

)
αB +

(
∇̃AA′ −∇AA′

)
βB =

f
(
∇̃AA′ −∇AA′

)
αB +

(
∇̃AA′ −∇AA′

)
βB

for any scalar �eld f and spinor �elds αB and βB . Consequently, ∇̃AA′ −∇AA′ is equivalent to
some spinor �eld ΘAA′B

C :
(
∇̃AA′ −∇AA′

)
κC = ΘAA′B

CκB , (2.3)

and4
(
∇̃AA′ −∇AA′

)
λC

′
= ΘAA′B′

C′
λB

′
. (2.4)

By a familiar procedure we extend these rules on covariant spin-vectors and spinors of higher
valence. Using the Leibniz rule and the property that the derivative commutes with contraction,

we have 0 =
(
∇̃AA′ −∇AA′

) (
αBβB

)
= αB

(
∇̃AA′ −∇AA′

)
βB + βB

(
∇̃AA′ −∇AA′

)
αB , or

(
∇̃AA′ −∇AA′

)
κC = −ΘAA′C

BκB , (2.5)

and similarly for λB′ . In a case of a spinor of higher valence, e.g. χAB′C , we �nd
(
∇̃XX′ −∇XX′

)
χAB′

C = −ΘXX′A
DχDB′

C −ΘXX′B′
D′
χAD′

C + ΘXX′D
CχAB′

D , (2.6)

again by the Leibniz rule. Applying these results on the spinor εAB , we get
(
∇̃XX′ −∇XX′

)
εAB = −ΘXX′A

DεDB −ΘXX′B
DεAD = −ΘXX′AB + ΘXX′AB . (2.7)

If, as we required, εAB is covariantly constant, i.e. ∇XX′εAB = ∇̃XX′εAB = 0, we �nd that
ΘXX′AB is symmetric in AB. To prove the uniqueness we will have to use the requirement on
the derivative to be torsion free. To do so, we �rst need to �nd how the operator ∇̃AA′ −∇AA′

acts on world-vectors. Employing (2.6) we arrive at
(
∇̃CC′ −∇CC′

)
V AA

′
= ΘCC′B

AV BA
′
+ ΘCC′B′

A′
V AB

′

=
(

ΘCC′B
AεB′

A′
+ ΘCC′B′

A′
εB

A
)
V BB

′

=Qγβ
αV β . (2.8)

Now we are able to work out what restrictions on Qαβ
γ does the torsion free property of

covariant derivative imply. E�ects of operators ∆αβ and ∆̃αβ on scalar �eld di�er by

∆̃αβf =2∇̃[α∇̃β]f = 2∇̃[α∇β]f

=2∇[α∇β]f − 2Q[αβ]
γ∇γf

=∆αβf − 2Q[αβ]
γ∇γf . (2.9)

4Because ∇AA′λB
′
is actually de�ned as ∇AA′λ

B
.
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Therefore, if ∆αβ = ∆̃αβ = 0 holds, we obtain symmetry of Qαβγ in the �rst two indices.
From the requirement that the covariant derivative annihilates εAB we got the symmetry of
ΘAA′BC in the last two indices. Therefore, the tensor Qαβγ = ΘAA′BCεB′C′ + ΘAA′B′C′εBC is
antisymmetric in the pair βγ. To conclude, we have found that Qαβγ is symmetric in indices
αβ and antisymmetric in indices βγ. This means that Qαβγ is identically zero5. Thus we have
proved that torsion free spinor covariant derivative that annihilates εAB is unique.

2.2 Spin coe�cients and the Newman-Penrose formalism

Once we have chosen spin-frame or tetrad �eld (at least locally), we may project all the other
geometric objects onto it, obtaining a number of scalar quantities. This way we can rewrite
relations between spinorial objects in terms of relations between scalar �elds. Such a description
may o�er certain advantages over the tensorial one, especially if the choice of spin-frame is
of some physical signi�cance. Here we shall outline one special case of such description, the
Newman-Penrose formalism.

Suppose there are two spin-vector �elds ε0A, ε1A on some region of a manifold, and that these
�elds form a spin-frame at each point of that region. Not unexpectedly, we shall also use symbol
oA and ιA for those �elds. From these spinors we can construct a null tetrad lα, nα, mα, mα:

lα = oAoA
′
, nα = ιAιA

′
, mα = oAιA

′
, mα = ιAoA

′
. (2.10)

Let us now consider some spinor �eld, say χABB′ . At points where the spin-frame is known,
χABB′ is fully described by the set of scalar �elds χABB′ = χABB′εA

AεB
BεB′B

′
. They could be

used in the formalism, but it is often more convenient to decompose the spinor into (the sum
of direct product of εs with) symmetric spinors, project them onto the spin-frame, and work
with these scalar �elds instead of the components of the original spinor. When we contract a
symmetric spinor with spin-vectors of spin-frame, the results depends only on the overall number
of os and ιs entering the contraction, and not on their relative order, e.g. for a symmetric spinor
ΦABC , ΦABCo

AoBιC = ΦABCo
Aιboc and so on. Therefore it is common to use a notation

where independent components are designated by the number of ιs entering the contraction, or
eventually by two numbers, if there are both primed and unprimed indices. For example, we
would write

Φ0 =ΦABCo
AoBoC ,

Φ1 =ΦABCo
AoBιC ,

Φ2 =ΦABCo
AιBιC ,

Φ3 =ΦABCι
AιBιC ,

for independent components of the symmetric spinor ΦABC .
Perhaps the most important element of the formalism is the scalar description of the covariant

derivative. Once we know what is the action of the derivative on spin-vectors of spin-frame, we
are able to evaluate the covariant derivative of any spinor. Consider for example the derivative

5If tensor (or spinor) is symmetric in group of indices that overlaps with a group of indices in which that tensor
is antisymmetric, the tensor equals zero. This statement is nontrivial only in cases when those two groups overlap
in exactly one index. In such a case, e.g. Q(αβ)γ = Qα[βγ] = Qαβγ , we proceed as follows:

Qαβγ = Qβαγ = −Qβγα = −Qγβα = Qγαβ = Qαγβ = −Qαβγ .
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of a simple spin-vector:

∇AA′κB = ∇AA′
(
κBεB

B
)

= εB
B∇AA′κB + κB∇AA′εB

B . (2.11)

This illustrates that with spinors ∇AA′εB
B (and their complex conjugates) at our disposal, we

may completely reconstruct the derivative. But the quantities that we are really interested in
are the so-called spin coe�cients

γAA′C
B = εA

B∇AA′εC
A , (2.12)

rather than spinors ∇AA′εB
B . (This is of course due to our intent to work with scalar quantities.)

Employing these spin coe�cients, we may write

εB
BεA

AεA′
A′∇AA′κB =εB

B∇AA′
(
κCεC

B
)

= εB
BεC

B∇AA′κC + κCεB
B∇AA′εC

B

=∇AA′κB + γAA′C
BκC (2.13)

for the components of ∇AA′κB . We would obtain a similar equation for the covariant derivative
of spin-vector from the complex conjugated space, only this time the required scalars would be
εA′B

′∇AA′εC′A
′
, instead of εAB∇AA′εC

A. These two sets of scalars are related by complex
conjugation:

γAA′C′
B′

= εA′
B′∇AA′εC′

A′
. (2.14)

Because we work with spin-frame, i.e. the condition oAι
A = 1 holds and hence εAB are

constant scalars, the sixteen quantities γAA′C
B are not fully independent, for we have6

0 =∇AA′εBC = ∇AA′
(
εB

AεAC

)
= εAC∇AA′εB

A + εB
A∇AA′εAC

=εAC∇AA′εB
A − εBA∇AA′

(
εABεBC

)
= εAC∇AA′εB

A − εAB∇AA′εC
A

=γAA′BC − γAA′CB . (2.15)

Quantities γAA′BC are therefore symmetric in the last two indices, which means that there are
only 12 independent (complex) scalars characterizing the covariant derivative.

Similarly as we derived the symmetry of γAA′BC, we can �nd the components of the derivative
of covariant spin-vector. This time, however, we need just the constancy of εAB, which holds
quite generally. We obtain:

εB
A∇AA′κA =εB

A∇AA′
(
κCεA

C
)

= ∇AA′κB + κCεB
A∇AA′εA

C

=∇AA′κB + κC
(
−εAC∇AA′εB

A
)

=∇AA′κB − γAA′B
CκC . (2.16)

Generalising the previous results straightforwardly to the case of the derivative of a general
spinor, we arrive at

εA
A . . . εB′

B′
. . .εC

C . . . εD′
D′∇XX′ΦA...B′...

C...D′... = ∇XX′ΦA...B′...
C...D′...

− γXX′A
YΦY...B′...

C...D′... − . . . − γXX′B′
Y′

ΦA...Y′...
C...D′... − . . .

+ γXX′Y
CΦA...B′...

Y...D′... + . . . + γXX′Y′
D′

ΦA...B′...
C...Y′... + . . . .

(2.17)

It is often convenient to employ a special symbol for each of the twelve independent rotation
coe�cients:

6Here we use that εAB = εA
CεCB = εA

C (−εBC) = −εBA.
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ε = γ00′0
0 , γ = γ11′0

0 , β = γ01′0
0 , α = γ10′0

0 ,
κ = −γ00′0

1 , τ = −γ11′0
1 , σ = −γ01′0

1 , ρ = −γ10′0
1 ,

π = γ00′1
1 , ν = γ11′1

1 , µ = γ01′1
1 , λ = γ10′1

1 .

To conclude the presentation of the formalism we introduce special notation for covariant
derivative in each of the directions of the null tetrad:

D = oAoA
′∇AA′ = lα∇α , ∆ = ιAιA

′∇AA′ = nα∇α ,
δ = oAιA

′∇AA′ = mα∇α , δ = ιAoA
′∇AA′ = mα∇α .

Putting all this new notation to work, we may express a derivative of a basis spinor, e.g.
oAoA

′∇AA′oB , as follows:

oAoA
′∇AA′oB = DoB = εB

B
(
εBADo

A
)

= εoB − κιB , (2.18)

and by similar calculations for other such derivatives we arrive at the relations

DoA = ε oA − κ ιA, (2.19a)

DιA = π oA − ε ιA, (2.19b)

∆oA = γ oA − τ ιA, (2.19c)

∆ιA = ν oA − γ ιA, (2.19d)

δoA = β oA − σ ιA, (2.19e)

διA = µ oA − β ιA, (2.19f)

δoA = α oA − ρ ιA, (2.19g)

διA = λ oA − α ιA. (2.19h)

2.3 Spinorial equations of gravitational �eld

Einstein equation, which describes the dynamics of gravitational �eld, involves contractions of
the Riemann tensor, metric tensor and the energy-momentum tensor of the source �elds. To take
the �rst step towards acquiring the spinorial equivalent of the Einstein equation we decompose
the Riemann tensor into the sum of symmetric spinors. We de�ne (the sign of) the Riemann
tensor7 by the equation

(∇α∇β −∇β∇α − Tαβγ∇γ)V δ = Rαβγ
δV γ , (2.20)

which holds for any vector V α and where Tαβγ stands for the torsion tensor. The covariant
derivative we use is torsion free, therefore Tαβγ = 0 throughout this chapter.

The Riemann tensor Rαβγδ (with the fourth index lowered) possesses several symmetries.
It is antisymmetric in the �rst two and in the last two indices, and it is symmetric under the
permutation αβ ↔ γδ:

Rαβγδ = R[αβ][γδ] , (2.21)

Rαβγδ = Rγδαβ . (2.22)

7We also refer to the Riemann tensor Rαβγ
δ as the curvature tensor.
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Furthermore it satis�es two Bianchi identities8:

R[αβγ]δ = 0 , (2.23)

∇[εRαβ]γδ = 0 . (2.24)

These relations fully describe all symmetries of the Riemann tensor. Note that the Einstein
equation on its own does not capture these properties. Nevertheless, we need to re�ect them in
the spinorial description of gravitation and they will result in additional equations for spinor �elds
associated with gravitation. But let us �rst brie�y discuss some aspects of these properties of the
curvature tensor. The above symmetries are not independent. The interchange symmetry (2.22)
is a consequence of symmetries (2.21) and of the Bianchi symmetry (2.23). Bianchi identities
are consequence of the fact that the Riemann tensor is a commutator of covariant derivatives. A
general procedure to derive such a relation is to express the operator ∇[α∇β∇γ] (acting on some
object) once as ∇[[α∇β]∇γ] and then as ∇[α∇[β∇γ]] and compare the resulting expressions.

To prove the relation (2.23), we apply the operator ∇[α∇β∇γ] on an arbitrary function f and
compare the expression9 ∇[α∇[β∇γ]]f = ∇[α

(
1
2Tβγ]

δ∇δf
)
with the expression ∇[[α∇β]∇γ]f =

− 1
2R[αβγ]

δ∇δf . We then easily get (2.23) by the assumption of vanishing torsion.
Searching for a proof of (2.24) one should apply ∇[α∇β∇γ] on a vector. The outlined proce-

dure then leads to equations

∇[α∇β∇γ]V
δ = ∇[α∇[β∇γ]]V

δ = ∇[α

(
1

2
Rβγ]ρ

δV ρ
)

=
1

2

(
∇[αRβγ]ρ

δ
)
V ρ+

1

2

(
∇[αV

ρ
)
Rβγ]ρ

δ

(2.25)

and10

∇[α∇β∇γ]V
δ = ∇[[α∇β]∇γ]V

δ =
1

2
R[αβ|ρ|

δ∇γ]V
ρ − 1

2
R[αβγ]

ρ∇ρV δ . (2.26)

The term 1
2

(
∇[αV

ρ
)
Rβγ]ρ

δ of the �rst equation, (2.25), equals the term 1
2R[αβ|ρ|δ∇γ]V

ρ of the
second equation (2.26). Furthermore, the second term of (2.26) is zero by Bianchi symmetry
(2.23). Therefore, equating (2.25) with (2.26), we obtain the Bianchi identity (2.24).

The procedure described above is applicable beyond the realms of general relativity as well.
For example, the electromagnetic (Maxwell) tensor Fαβ may be regarded as the commutator of
gauge-covariant derivatives, and progressing as above, we obtain one half of Maxwell equations,
the equation ∇[γFαβ] = 0. Therefore, we may consider the equation ∇[γFαβ] = 0 to be an
analogue of the Bianchi identity (2.24) for the case of electromagnetic �eld.

8If the torsion was non-zero, Bianchi symmetries would acquire a little more complicated form:

R[αβγ]δ +∇[αTβγ]δ + T[αβ
εTγ]εδ = 0 ,

∇[εRαβ]γδ + T[εα
ζRβ]ζγδ = 0 .

9We �rst use ∇[β∇γ]f = 1
2
Tβγ

δ∇δf , and then apply the anti-symmetrization in all three indices. Similarly, in
the second case, we �rst express the commutator of derivatives acting on covariant vector ∇γf using the Riemann
tensor, and only then apply anti-symmetrization in all indices.

10Here we apply the commutator ∇[α∇β] on a tensor of higher valence, namely ∇γV δ. We do not examine such
an operation (and many other important aspects of the theory) in this work, since we assume that the reader is
already familiar with the tensor calculus and general relativity. Nevertheless, using the Leibniz rule and the fact
that the covariant derivative does commute with the operation of contraction, we may �nd out what an action of
∇[α∇β] on a general tensor looks like in similar fashion as we generalized the action of covariant derivative from
the action on contravariant spin-vectors to an action on general spinors. Speci�cally, one can easily check that
∇[α∇β]

(
V γW δ

)
= W δ∇[α∇β]V

γ + V γ∇[α∇β]W
δ and that ∇[α∇β]Vγ = − 1

2
Rαβγ

δVδ .
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Before we �nally rewrite the curvature tensor in spinor terms and �nd what properties of
curvature spinors do the above relations imply, we need to introduce one rather helpful identity.
We shall make use of it while searching for spinorial analogues of Bianchi identities. Let us
consider a tensor GαβB that is skew in indices αβ. We de�ne its dual ∗GαβB by

∗GαβB =
1

2
eαβ

γδGγδB .

Now write γA for the composite index B. We wish to prove the following equivalence:

G[αβγ]A = 0⇔ ∗GαβαA = 0 . (2.27)

To prove the implication from right to left, rewrite G[αβγ]A as

G[αβγ]A = δκ[αδ
λ
βδ
µ
γ]GκλµA = −1

6
eαβγδe

κλµδGκλµA = −1

3
eαβγδ

∗GµδµA . (2.28)

The implication in the other direction is given by

∗GαβαA =
1

2
eαβγδGγδαA =

1

2
eαβγδG[γδα]A . (2.29)

Let us now rewrite the Riemann tensor in spinor terms. We want to decompose it into the
sum of direct products of εs with symmetric spinors, but we shall not directly apply the procedure
that we outlined when we proved that such decomposition is always possible. Rather, we will
follow the symmetries of the tensor. The Riemann tensor Rαβγδ is skew in αβ and in γδ. By
the antisymmetry in the �rst two indices, we have

Rαβγδ =
1

2
RAX′B

X′

γδεA′B′ +
1

2
RXA′

X
B′γδεAB . (2.30)

The antisymmetry in the last two indices then implies

Rαβγδ =
1

4
RAX′B

X′

CY ′D
Y ′
εA′B′εC′D′ +

1

4
RAX′B

X′

Y C′
Y
D′εA′B′εCD

+
1

4
RXA′

X
B′CY ′D

Y ′
εABεC′D′ +

1

4
RXA′

X
B′Y C′

Y
D′εABεCD . (2.31)

Using the symbol XABCD for 1
4RAX′B

X′
CY ′D

Y ′
and the symbol ΦABC′D′ for 1

4RAX′B
X′
Y C′Y D′ ,

the previous equation acquires the form11 12

Rαβγδ = XABCDεA′B′εC′D′+ΦABC′D′εA′B′εCD+ΦA′B′CDεABεC′D′+XA′B′C′D′εABεCD . (2.32)

11Since the Riemann tensor is real, we have

XA′B′C′D′ =XABCD =
1

4
RAX′B

X′
CY ′D

Y ′ =
1

4
RAA′BB′CC′DD′εA

′B′εC′D′

=
1

4
RAA′BB′CC′DD′εABεCD =

1

4
RXA′XB′Y C′Y D′ ,

and similarly for ΦA′B′CD.
12What follows is a rather long and technical discussion on properties of spinors XABCD and ΦABC′D′ . Unless

the reader is already familiar with the spinorial description of the general relativity, it may bene�cial to reveal
some results in advance. We will decompose the spinor XABCD in the terms of totally symmetric spinor ΨABCD
(the Weyl spinor) and the real scalar Λ. The Weyl spinor does not enter the Einstein equation and describes the
�free gravitational �eld�. On the other hand, the Ricci spinor ΦABC′D′ and the scalar Λ are fully determined
by the matter �eld through the Einstein equation, which � in the spinorial formalism � is a purely algebraical
relation. Di�erential equations for the gravitational spinor �elds will be provided by the Bianchi identity (2.24).
Therefore, the results of the following exposition, while they may appear to be overly technical, they are not
devoid of physical signi�cance.
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Because of the symmetry (2.21) of the curvature tensor, we have

XABCD = X(AB)(CD) , (2.33)

ΦABC′D′ = Φ(AB)(C′D′) , (2.34)

for spinors XABCD and ΦABC′D′ . Spinor ΦABC′D′ is therefore symmetric, which means that as
far as only terms involving spinors ΦABC′D′ and ΦA′B′CD in equation (2.32) are concerned, we
have already achieved the form we desire. On the other hand, spinor XABCD does not possess
such a full symmetry and we wish to decompose it further. But before we attempt to do so, let
us examine what are the consequences of the interchange symmetry (2.22) on these two spinors.
Equating (2.32) and the same expression with the indices αβ and γδ interchanged, and then
contracting the resulting equation with suitable products of εs, we obtain:

XABCD = XCDAB , (2.35)

ΦABC′D′ = ΦC′D′AB . (2.36)

Hence, the spinor ΦABA′B′ is a real world-tensor, and, due to its symmetry (2.34), it is trace-free,
i.e. Φα

α = 0. Another outcome of symmetries (2.21), (2.22) � a one that we shall immediately
put in use � is that XA(BCD) = X(ABCD). To see this, simply observe that � employing
symmetries (2.33) and (2.35) � each term in symmetrization X(ABCD) is equal to some term
XA◦◦◦ with the index A in the �rst position. The second index of such a XA◦◦◦ is determined
unambiguously by the term of X(ABCD) under consideration. The order of the last two indices
is not �xed, but also � due to symmetry (2.33) � does not matter. Lastly, both X(ABCD) and
XA(BCD) are totally symmetric in indices BCD. Therefore it is clear that shifting indices A in
all terms of the X(ABCD) to the �rst position results in the tensor XA(BCD).

The last result suggests that in order to decompose the spinor XABCD, we should try to
isolate the tensor XA(BCD). Since XABCD is already symmetric in CD, we have

XA(BCD) =
1

3
(XABCD +XACBD +XADCB)

=XABCD +
1

3
(XACDB −XABDC) + (XADCB −XABCD)

=XABCD +
1

3
XAYD

Y εCB +
1

3
XAY C

Y εDB . (2.37)

The interchange symmetry (2.35) implies that the spinor XAY B
Y is antisymmetric. Hence it

equals 1
2XZY

ZY εAB . Denoting 1
6XZY

ZY by Λ, the previous equation acquires the form

XABCD = ΨABCD + Λ (εADεBC + εACεBD) , (2.38)

where ΨABCD stands for X(ABCD). Substituting this result into (2.32), we obtain the Riemann
tensor in the terms of totally symmetric spinors Λ, ΦABC′D′ , ΨABCD multiplied by εs, which
concludes the �rst part of our program.

We still haven't found what properties must spinors Λ, ΦABC′D′ and ΨABCD possess in order
to satisfy the Bianchi identities (2.23) and (2.24). Consider �rst the symmetry (2.23):

R[αβγ]δ = 0 .

The identity (2.27) shows us that the above equation is equivalent to the equation

∗Rαβαδ = 0 , (2.39)
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where dualization is applied to the �rst two indices of the curvature tensor. It is much easier to
spinorially interpret the Bianchi symmetry in this form than in the original one (2.23). That is
because the dualization of the tensor GαβA antisymmetric in the indices αβ amounts to a simple
interchange of spinor indices A′B′ followed by the multiplication by the imaginary unit i (cf.
(1.105)). Applying this on (2.32), the Bianchi symmetry may be expressed as

∗Rαβαδ =

= i
(
XAB

ADε
B′A′

εA′D′ + ΦABA′D′εB
′A′
εAD + Φ

B′A′

ADε
ABεA′D′ +X

B′A′

A′D′εABεAD

)

= i
(
−XAB

ADεD′
B′

+ ΦD
BB′

D′ − ΦD′
B′B

D +X
A′B′

A′D′εD
B
)

= i
(
−XAB

ADεD′
B′

+X
A′B′

A′D′εD
B
)

= 0 , (2.40)

where we have used the reality of the world-tensor ΦABA′B′13. Using the decomposition (2.38),
one can easily see that the last line of the previous equation may be transcribed as Λ − Λ = 0.
The Bianchi symmetry (2.23) is therefore equivalent to the reality condition on Λ.

We approach the Bianchi identity (2.24), ∇[εRαβ]γδ = 0, in a similar fashion. Tensor∇εRαβγδ
is antisymmetric in indices αβ and γδ, but not in any pair involving the index ε. Therefore, to
apply the identity (2.27), we must dualize it with respect to indices αβ. The Bianchi identity is
thus equivalent to

∇α∗Rαβγδ = 0 . (2.41)

Substituting for Rαβγδ from (2.32), we obtain

∇α∗Rαβγδ =

= i∇AA′

(
XAB

CDε
B′A′

εC′D′ + ΦABC′D′εB
′A′
εCD + ΦB

′A′

CDε
ABεC′D′ +X

B′A′

C′D′εABεCD

)

= i
(
εC′D′∇B′

A XAB
CD + εCD∇B

′

A ΦABC′D′ − εC′D′∇BA′ΦA
′B′

CD − εCD∇BA′XA′B′

C′D′

)
= 0 .

(2.42)

Contracting the last line with εCD (or εC
′D′

), we �nd that the spinor equivalent of the Bianchi
identity (2.24) is the equation

∇AB′XABCD = ∇A′

B ΦA′B′CD , (2.43)

or, substituting for XABCD from (2.38), the equation

∇AB′ΨABCD + εBD∇CB′Λ + εBC∇DB′Λ = ∇A′

B ΦA′B′CD . (2.44)

We may isolate the part containing the spinor ΨABCD from the part containing the scalar Λ by
symmetrizing the above equation in indices BCD, thus obtaining

∇AB′ΨABCD = ∇A′

(BΦCD)A′B′ . (2.45)

The rest of the Bianchi identity (2.44) is then equivalent to the condition14

∇AA′
ΦADA′B′ + 3∇DB′Λ = 0 . (2.46)

13In the following text we shall no longer di�erentiate between spinors ΦA′B′CD and ΦCDA′B′ .
14To prove it, simply decompose the spinor ∇A′

B ΦA′B′CD as follows:

∇A
′

B ΦA′B′CD = ∇A
′

(BΦCD)A′B′ +
1

3
εBC∇A

′
A ΦADA′B′ +

1

3
εBD∇A

′
A ΦACA′B′ .

43



Now that we have concluded the discussion of the curvature tensor and its spinorial descrip-
tion, we are ready to investigate what is the spinorial equivalent of the Einstein equation

(
Rαβ −

1

2
Rgαβ

)
+ λgαβ = −8πGTαβ , (2.47)

where λ stands for the cosmological constant and G for the gravitational constant. Tensor Tαβ
is the energy-momentum tensor of the matter �elds. Here we shall be not concerned with its
origin or any properties other than that it is symmetric. The symbol Rαβ represents the Ricci
tensor Rαβ = Rαδβ

δ and R is the scalar curvature Rαα. Since both these quantities are derived
from the curvature tensor, we are readily able to express them in spinor terms. By (2.32) and
(2.38), we get

Rαβ =Rαδβ
δ

=XADB
DεA′B′ − 2ΦABA′B′ +XA′D′B′

D′
εAB

=6ΛεABεA′B′ − 2ΦABA′B′ (2.48)

for the Ricci tensor15, and

R = Rαα = 24Λ (2.49)

for the scalar curvature. Substituting these results into (2.47), we obtain16

ΦABA′B′ + 3

(
Λ− 1

6
λ

)
εABεA′B′ = 4πGTABA′B′ . (2.50)

We may split the equation (2.50) into its trace-free part and its trace, thus obtaining

Φαβ = 4πG

(
Tαβ −

1

4
T γγ gαβ

)
= 4πT(AB)(A′B′) , (2.51)

and

Λ =
1

3

(
πGT γγ +

1

2
λ

)
. (2.52)

To summarize, using the symmetries (2.21), (2.22) and (2.23), we have managed to rewrite
the curvature tensor Rαβγδ in terms of a real scalar Λ, a real symmetric spinor ΦABC′D′ and a
symmetric spinor ΨABCD:

Rαβγδ = ΨABCDεA′B′εC′D′ + ΨA′B′C′D′εABεCD

+ ΦABC′D′εA′B′εCD + ΦCDA′B′εABεC′D′

+ Λ [(εACεBD + εADεBC) εA′B′εC′D′ + (εA′C′εB′D′ + εA′D′εB′C′) εABεCD] .

(2.53)

Substituting this into (2.44) and using (2.45), we arrive at the equation

3εB(C∇D)B′Λ = −εB(C∇AA
′
ΦD)AA′B′ ,

which, after contraction with εBC , gives (and is equivalent to the) (2.46).
15Equation (2.48) reveals that the spinor ΦABA′B′ is proportional to the trace-free part of the Ricci tensor.
16In principle, we do not need to substitute for the scalar curvature, since its only function in the Einstein

equation is to reverse the trace of the Ricci tensor. Trace reversal of the symmetric tensor Tαβ amounts to simple
interchange of spinorial indices A and B (or A′ and B′), c.f. (1.99).
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If the tensor Rαβγδ is to describe the curvature of the physical space, then, according to the theory
of general relativity, gravitational spinors Λ, ΦABC′D′ and ΨABCD must satisfy the Einstein
equations

Φαβ =4πG

(
Tαβ −

1

4
T γγ gαβ

)
, (2.54)

Λ =
1

3
πGT γγ +

1

6
λ . (2.55)

We see that in the absence of matter (Tαβ = 0), and if the gravitational constant λ is zero, the
only non-vanishing part of the curvature tensor may be the spinor ΨABCD, which is therefore
called the Weyl spinor. The �rst part of the decomposition (2.53) is the well-known Weyl tensor

Cαβγδ = ΨABCDεA′B′εC′D′ + ΨA′B′C′D′εABεCD . (2.56)

Its anti-self-dual part will be denoted by

ψαβγδ = ΨABCDεA′BεC′D′ . (2.57)

The spinor ΦABA′B′ , which is � up to the factor of proportionality � equal to the trace-free
part of the Ricci tensor, is often referred to as the Ricci spinor. We introduce symbol φabcd for
anti-self-dual form

φαβγδ = ΦABC′D′ εA′B′ εCD . (2.58)

Anti-self-dual form related to the scalar curvature will be denoted by

λαβγδ = Λ (εACεBD + εADεBC) εA′B′εC′D′ . (2.59)

Finally, there are two more equations that the above gravitational spinors need to satisfy:

∇AB′ΨABCD = ∇A′

(BΦCD)A′B′ , (2.60)

∇AA′
ΦADA′B′ + 3∇DB′Λ = 0 . (2.61)

These equations constitute the spinorial analogue of the Bianchi identity (2.24). In the spinorial
formulation of Einstein's theory of gravitation, these are the di�erential (�eld) equations for the
gravitational �eld17.

To close this section, we will discuss how to reformulate the above results into the language
of the Newman-Penrose formalism. As we have already mentioned, we use the following notation
for the projections of a symmetric spinor ξA...DA′...D′ onto the spin-frame18:

ξn,m =

N−n︷ ︸︸ ︷
oA . . . oB

n︷ ︸︸ ︷
ιC . . . ιD

M−m︷ ︸︸ ︷
oA

′
. . . oB

′

m︷ ︸︸ ︷
ιC

′
. . . ιD

′
ξA...BC...DA′...B′C′...D′ . (2.62)

For example, we write Φ01 for ΦABC′D′oAoBoC
′
ιD

′
, or Ψ3 for ΨABCDo

AιBιCιD19.

17Consider, for example, the Einstein equation in vacuum. By (2.51) and (2.52) we have ΦABA′B′ = 0, Λ = 1
6
λ.

The Bianchi identity is then equivalent to the di�erential equation

∇AA
′
ΨABCD .

Formally, the above equation is the wave equation for a zero rest-mass spin 2 particle (in this case the graviton).
18Where the spinor ξA...DA′...D′ has N unprimed and M primed indices.
19If the spinor does not possess both primed and unprimed indices, we use only one su�x to denote its projec-

tions. As an example, for spinor ΨABCD � which does not have any primed indices � we write Ψ3, not Ψ30,
for ΨABCDo

AιBιC ιD.
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We wish to �nd projections of the Einstein equation (2.50) and the Bianchi identity (2.44).
The Einstein equation is purely algebraic and thus it is straightforward to project it. The Bianchi
identity is little more tricky, since it involves di�erentiation. Consider a spinor ∇XX′ξA...DA′...D′ .
To �nd its N-P components, let us �rst decompose the spinor ξA...DA′...D′ as follows:

ξA...BC...DA′...B′C′...D′ =
∑

n,m

N !M ! ξn,m

N−n︷ ︸︸ ︷
(−ι)(A . . . (−ι)B

n︷ ︸︸ ︷
oC . . . oD)

M−m︷ ︸︸ ︷
(−ι)(A′ . . . (−ι)B′

m︷ ︸︸ ︷
oC′ . . . oD′) .

(2.63)

Applying the operator ∇XX′ and projecting onto the spin-frame, we obtain20

N−n︷ ︸︸ ︷
oA . . . oB

n︷ ︸︸ ︷
ιC . . . ιD

M−m︷ ︸︸ ︷
oA

′
. . . oB

′

m︷ ︸︸ ︷
ιC

′
. . . ιD

′ ∇XX′ξA...DA′...D′ = ∇XX′ξn,m

+nξn,mι
A∇XX′oA + (N − n) ξn,mo

A∇XX′ (−ιA)

+ (N − n) ξ(n+1),mo
A∇XX′oA + nξ(n−1),mι

A∇XX′ (−ιA)

+mξn,mι
A′∇XX′oA′ + (M −m) ξn,mo

A′∇XX′ (−ιA′)

+ (M −m) ξn,(m+1)o
A′∇XX′oA′ +mξn,(m−1)ι

A′∇XX′ (−ιA′) . (2.64)

Projecting the operator ∇XX′ of the last equation onto the directions of the null tetrad and
using equations (2.19a) - (2.19h) (or directly the de�nitions of the rotation coe�cients), we get
the equations

N−n︷ ︸︸ ︷
oA . . . oB

n︷ ︸︸ ︷
ιC . . . ιD

M−m︷ ︸︸ ︷
oA

′
. . . oB

′

m︷ ︸︸ ︷
ιC

′
. . . ιD

′
DξA...DA′...D′ = Dξn,m + (2n−N) εξn,m

+ (2m−M) εξn,m + (N − n)κξ(n+1),m − nπξ(n−1),m + (M −m)κξn,(m+1) −mπξn,(m−1) ,
(2.65)

N−n︷ ︸︸ ︷
oA . . . oB

n︷ ︸︸ ︷
ιC . . . ιD

M−m︷ ︸︸ ︷
oA

′
. . . oB

′

m︷ ︸︸ ︷
ιC

′
. . . ιD

′
∆ξA...DA′...D′ = ∆ξn,m + (2n−N) γξn,m

+ (2m−M) γξn,m + (N − n) τξ(n+1),m − nνξ(n−1),m + (M −m) τξn,(m+1) −mνξn,(m−1) ,
(2.66)

N−n︷ ︸︸ ︷
oA . . . oB

n︷ ︸︸ ︷
ιC . . . ιD

M−m︷ ︸︸ ︷
oA

′
. . . oB

′

m︷ ︸︸ ︷
ιC

′
. . . ιD

′
δξA...DA′...D′ = δξn,m + (2n−N)βξn,m

+ (2m−M)αξn,m + (N − n)σξ(n+1),m − nµξ(n−1),m + (M −m) ρξn,(m+1) −mλξn,(m−1) ,
(2.67)

N−n︷ ︸︸ ︷
oA . . . oB

n︷ ︸︸ ︷
ιC . . . ιD

M−m︷ ︸︸ ︷
oA

′
. . . oB

′

m︷ ︸︸ ︷
ιC

′
. . . ιD

′
δξA...DA′...D′ = δξn,m + (2n−N)αξn,m

+ (2m−M)βξn,m + (N − n) ρξ(n+1),m − nλξ(n−1),m + (M −m)σξn,(m+1) −mµξn,(m−1) .
(2.68)

20The second and the fourth line of the equation (2.64) may be further simpli�ed. We have ιA∇XX′oA =
oA∇XX′ ιA due to the normalization of the spin-frame. The second line therefore equals (2n−N)ξn,mιA∇XX′oA,

while the fourth is (2m−M)ξn,mιA
′∇XX′oA′ .
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With the above results at our disposal, we can easily (though tediously) �nd all projections
of the Bianchi identity. Let us maybe illustrate this by �nding the projection of the equation
(2.44) onto spinors oBoB

′
oCoD. To project the left hand side, rewrite it21 as follows:

∇AB′ΨABCD =εAX∇XB′ΨABCD = εAAεA
X∇XB′ΨABCD

=− ιA∇0B′ΨABCD + oA∇1B′ΨABCD . (2.69)

Employing (2.65) and (2.68) we straightforwardly obtain

oBoB
′
oCoD∇AB′ΨABCD =− ιAoBoB′

oCoD∇0B′ΨABCD + oAoBoB
′
oCoD∇1B′ΨABCD

=−DΨ1 + 2εΨ1 − 3κΨ2 + πΨ0 + δΨ0 − 4αΨ0 + 4ρΨ1 . (2.70)

Analogously, with the help of equations (2.65) and (2.67), we �nd that

oBoB
′
oCoD∇A′

B ΦCDA′B′ = −ιA′
oBoB

′
oCoD∇B0′ΦA′B′CD + oA

′
oBoB

′
oCoD∇B1′ΦA′B′CD

= −DΦ01 + 2εΦ01 − 2κΦ11 − κΦ02 + πΦ00 + δΦ00 − 2βΦ00 − 2αΦ00 + 2σΦ10 + 2ρΦ01 .
(2.71)

Equating the last two results gives us one of the projections of the Bianchi identity. Proceeding
along similar lines for the other projections of equation (2.44) we obtain the following equations:

DΨ1 − δΨ0 −DΦ01 + δΦ00 = (π − 4α)Ψ0 + 2(2ρ+ ε)Ψ1 − 3κΨ2 + 2κΦ11

− (π − 2α− 2β)Φ00 − 2σΦ10 − 2(ρ+ ε)Φ01 + κΦ02, (2.72a)

DΨ2 − δΨ1 + ∆Φ00 − δΦ01 + 2DΛ = −λΨ0 + 2(π − α)Ψ1 + 3ρΨ2 − 2κΨ3

+2ρΦ11 + σΦ02 + (2γ + 2γ − µ)Φ00 − 2(α+ τ)Φ01 − 2τΦ10, (2.72b)

DΨ3 − δΨ2 −DΦ21 + δΦ20 − 2δΛ = −2λΨ1 + 3πΨ2 + 2(ρ− ε)Ψ3 − κΨ4

+2µΦ10 − 2πΦ11 − (2β + π − 2α)Φ20 − 2(ρ− ε)Φ21 + κΦ22, (2.72c)

DΨ4 − δΨ3 + ∆Φ20 − δΦ21 = −3λΨ2 + 2(α+ 2π)Ψ3 + (ρ− 4ε)Ψ4 + 2νΦ10

−2λΦ11 − (2γ − 2γ + µ)Φ20 − 2(τ − α)Φ21 + σΦ22, (2.72d)

∆Ψ0 − δΨ1 +DΦ02 − δΦ01 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2

+(ρ+ 2ε− 2ε)Φ02 + 2σΦ11 − 2κΦ12 − λΦ00 + 2(π − β)Φ01, (2.72e)

∆Ψ1 − δΨ2 −∆Φ01 + δΦ02 − 2δΛ = νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3

−νΦ00 + 2(µ− γ)Φ01 + (2α+ τ − 2β)Φ02 + 2τΦ11 − 2ρΦ12, (2.72f)

∆Ψ2 − δΨ3 +DΦ22 − δΦ21 + 2∆Λ = 2νΨ1 − 3µΨ2 + 2(β − τ)Ψ3 + σΨ4

−2µΦ11 − λΦ20 + 2πΦ12 + 2(β + π)Φ21 + (ρ− 2ε− 2ε)Φ22, (2.72g)

∆Ψ3 − δΨ4 −∆Φ21 + δΦ22 = 3νΨ2 − 2(γ + 2µ)Ψ3 + (4β − τ)Ψ4 − 2νΦ11

−νΦ20 + 2λΦ12 + 2(γ + µ)Φ21 + (τ − 2β − 2α)Φ22, (2.72h)

2.4 Ricci identities

The action of the commutator ∇[α∇β] on a tensor can be expressed by the means of the Riemann
tensor, i.e.

(∇α∇β − ∇β ∇α)ωγ = −Rαβγδ ωδ . (2.73)

21Here we have already omitted terms involving εs since they are annihilated by the projection under consider-
ation. (Spinor oBoCoD is of course symmetric in BCD.)
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The above relation (and a similar one for a contravariant vector) is sometimes called the Ricci
identity. In this section we shall show that when the commutator ∇[α∇β] is applied on a spinor,
the result is determined by the curvature spinors through equations which are formally very
similar to the Ricci identity we just mentioned. For that reason, we shall call those equations
the (spinorial) Ricci identities as well.

Let us �rst take a closer look at the commutator ∇[α∇β]. It is antisymmetric in indices αβ
and therefore may be decomposed as follows:

(∇α∇β − ∇β ∇α) = 2∇[α∇β] = εAB�A′B′ + εA′B′�AB , (2.74)

where operators �AB and �A′B′ are de�ned by

�AB = ∇X′(A∇X
′

B), �A′B′ = ∇X(A′∇XB′). (2.75)

These operators are merely contractions of the commutator ∇[α∇β] with εAB and εA
′B′

, respec-
tively, e.g.

εAB [∇α,∇β ] = εAB (∇AA′∇BB′ −∇BB′∇AA′) = ∇AA′∇AB′ −∇AB′∇AA′

= ∇AA′∇AB′ + ∇AB′∇AA′ = 2∇A(A′∇AB′) = 2�A′B′ . (2.76)

Consequently, �AB and �A′B′ annihilate scalar quantities,

�ABφ = �A′B′φ = 0. (2.77)

If we employ the notation we just introduced, we may write the Ricci identities in the form

�ABξC = ΨABCD ξ
D − 2 Λ ξ(AεB)C , �ABξB = − 3 Λ ξA,

�(ABξC) = ΨABCD ξ
D, �A′B′ξA = ΦABA′B′ ξB , �ABξA′ = ΦABA′B′ ξB

′
.

(2.78)

The above identities are not all independent, but we list them for convenience.
Let us now prove the Ricci identities. It is a well known fact that while the operator ∇a∇b

does not satisfy the Leibniz rule, the commutator [∇a,∇b] does:

[∇α,∇β ](kγωδ) = kγ [∇α,∇β ]ωδ + ωδ[∇α,∇β ]kγ . (2.79)

Since the operators �AB and �A′B′ are just contractions of the commutator [∇α,∇β ], they also
satisfy the Leibniz rule. Although we do not know how the commutator acts on spinors, we know
its action on vectors. Hence, we apply the commutator (2.74) to the null vector ξCξC′ :

ξC′ (εAB�A′B′ + εA′B′�AB) ξC + ξC (εAB�A′B′ + εA′B′�AB) ξC′ = −Rαβγδ ξD ξ
D′

.
(2.80)

We transvect this equation with ξC . It serves us in two ways. First, it annihilates the term
ξC (εAB�A′B′ + εA′B′�AB) ξC′ , and secondly, it annihilates all terms in the decomposition (2.53)
of the Riemann tensor that are antisymmetric in indices CD. Consequently, we arrive at

ξCεAB�A′B′ξC + ξCεA′B′�ABξC = ΨABCD εA′B′ ξC ξD

+ ΦCDA′B′ εAB ξ
C ξD + 2ΛξAξBεA′B′ . (2.81)

The last term can be written in the form of contraction with ξC preserving manifest symmetry
in AB:

2 Λ ξA ξB = 2 Λ εC(AξB) ξ
C .

48



Thus we obtain

ξC (εAB�A′B′ξC + εA′B′�ABξC) =

ξC
(
ΨABCDεA′B′ξD + ΦCDA′B′εABξ

D + 2ΛεC(AξB)εA′B′
)
. (2.82)

Now we only need to show that the expression in the parentheses on the left hand side of the
equation (2.82) equals the bracketed expression on the right hand side of the same equation.
For then we could obtain the Ricci identities by simply separating the part symmetric in AB
and the part symmetric in A′B′ of the resulting equation. Unfortunately, spinor ξC , though
being arbitrary, is not independent of the bracketed expressions and therefore it is not obvious
from (2.82) that those expressions are equal. To overcome this problem, substitute the expression
κC+kλC for spinor ξC , with k an arbitrary real (or complex) number. Both sides of the equation
(2.82) then obtain a form of a second order polynomial in k. Obviously, the coe�cients of each
k0, k1 and k2 on the left hand side must be equal to the corresponding coe�cients on the right
hand side. For coe�cients of k1 we get the equation

κCεAB�A′B′λC +κCεA′B′�ABλC +λCεAB�A′B′κC +λCεA′B′�ABκC = 2(ΨABCD εA′B′ κC λD

+ ΦCDA′B′ εAB κ
C λD + 2Λ εC(AλB)κ

CεA′B′). (2.83)

Due to the Leibniz rule (2.79) and the property (2.77) we have

λCεAB�A′B′κC = εAB�A′B′
(
λCκC

)
− κCεAB�A′B′λC = κCεAB�A′B′λC , (2.84)

and similarly for λCεA′B′�ABκC . Applying these results, the equation (2.83) obtains the form

κC (εAB�A′B′λC + εA′B′�ABλC) = κC(ΨABCD εA′B′ λD

+ ΦCDA′B′ εAB λ
D + 2Λ εC(AλB)εA′B′). (2.85)

This time the (arbitrary) spinor κC is independent of the expressions in brackets (since it is
independent of λC). Thus we have

εAB�A′B′ξC + εA′B′�ABξC =

εA′B′ΨABCDξ
D + ΦCDA′B′εAB ξ

D + 2ΛεC(AξB)εA′B′ . (2.86)

Symmetrizing this identity �rst in AB, then in A′B′ gives us the Ricci identities

�A′B′ξC = ΦCDA′B′ξD, �ABξC = ΨABCDξ
D + 2ΛεC(AξB).

Remaining equations in (2.78) are merely variations on these results.
We may be interested to �nd the action of the whole commutator 2∇[α∇β] on a spinor. By

(2.74) and (2.78) we get

[∇α,∇β ]ξC = (εAB�A′B′ + εA′B′�AB) ξC

= εA′B′ ΨABCD ξ
D + εAB ΦCDA′B′ ξD + 2 Λ εA′B′ εC(AξB). (2.87)

The expression on the right hand side is similar to the anti-self-dual-part of the Riemann tensor.
Indeed, let us de�ne spinor

RABCDA′B′ = RαβCD =
1

2
εC

′D′
Rαβγδ

= ΨABCD εA′B′ + ΦCDA′B′ εAB − 2 Λ εA(C εD)B εA′B′ . (2.88)

Then we can write

(∇α∇β − ∇β∇α) ξC = −R D
αβC ξD = RαβCD ξ

D. (2.89)
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2.5 Di�erential equations for the spin coe�cients

The spin coe�cients, which were introduced in the second section of this chapter, are de�ned by
the equation (2.12) which reads

γAA′C
B = εA

B∇AA′εC
A .

The action of the covariant derivative in the Newman-Penrose formalism is fully speci�ed through
these coe�cients. Consequently, they need to suitably re�ect the properties of the derivative.

There are two sets of di�erential equations which the scalar �elds γAA′C
B satisfy due to their

relation to the derivative. The �rst set are the commutation relations. The covariant derivative
we use is torsion-free, which means that the commutator 2∇[α∇β] annihilates scalar �elds:

2∇[α∇β]φ = 0 , (2.90)

for any scalar φ. Projecting the last equation onto the null tetrad and employing (2.65) � (2.68)
gives us the following relations:

∆D −D∆ = (γ + γ)D + (ε+ ε)∆− (π + τ)δ − (τ + π)δ, (2.91a)

Dδ − δD = (π − β − α)D − κ∆ + (ρ+ ε− ε)δ + σδ, (2.91b)

∆δ − δ∆ = νD + (β − τ + α)∆ + (γ − γ − µ)δ − λδ, (2.91c)

δδ − δδ = (µ− µ)D + (ρ− ρ)∆ + (α− β)δ + (β − α)δ. (2.91d)

Two remarks are appropriate here. First, notice that the operators of the above equations are
meant to act on scalars. We do not write that explicitly since in the Newman-Penrose formalism
we do not deal with any quantities other than scalars. Second, there are six di�erent projections
of the equation 2∇[α∇β]φ = 0 onto the spin-frame. We list only four since the remaining two
are just complex conjugates of equations (2.91b) and (2.91c).

To obtain the second set of di�erential equantions for spin coe�cients, consider the action of
the commutator 2∇[α∇β] on a general spinor. It must be in accordance with the Ricci identity
(2.87). Projecting that equation onto the spin-frame and using (2.65) � (2.68) and de�nitions of
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the spin coe�cients, we obtain equations

Dρ− δκ = ρ2 + (ε+ ε) ρ− κ
(
3α+ β − π

)
− τκ+ σσ + Φ00, (2.92a)

Dσ − δκ = (ρ+ ρ+ 3ε− ε)σ − (τ − π + α+ 3β)κ+ Ψ0, (2.92b)

Dτ −∆κ = ρ(τ + π) + σ(τ + π) + (ε− ε)τ − (3γ + γ)κ+ Ψ1 + Φ01, (2.92c)

Dα− δε = (ρ+ ε− 2ε)α+ βσ − βε− κλ− κγ + (ε+ ρ)π + Φ10, (2.92d)

Dβ − δε = (α+ π)σ + (ρ− ε)β − (µ+ γ)κ− (α− π)ε+ Ψ1, (2.92e)

Dγ −∆ε = (τ + π)α+ (τ + π)β − (ε+ ε)γ − (γ + γ)ε+ τπ − νκ+ Ψ2 − Λ + Φ11,
(2.92f)

Dλ− δπ = (ρ− 3ε+ ε)λ+ σµ+ (π + α− β)π − νκ+ Φ20, (2.92g)

Dµ− δπ = (ρ− ε− ε)µ+ σλ+ (π − α+ β)π − νκ+ Ψ2 + 2Λ, (2.92h)

Dν −∆π = (π + τ)µ+ (π + τ)λ+ (γ − γ)π − (3ε+ ε)ν + Ψ3 + Φ21, (2.92i)

∆λ− δν = −(µ+ µ+ 3γ − γ)λ+ (3α+ β + π − τ)ν −Ψ4, (2.92j)

∆µ− δν = −(µ+ γ + γ)µ− λλ+ νπ + (α+ 3β − τ)ν − Φ22, (2.92k)

∆β − δγ = (α+ β − τ)γ − µτ + σν + εν + (γ − γ − µ)β − αλ− Φ12, (2.92l)

∆σ − δτ = −(µ− 3γ + γ)σ − λρ− (τ + β − α)τ + κν − Φ02, (2.92m)

∆ρ− δτ = (γ + γ − µ)ρ− σλ+ (β − α− τ)τ + νκ−Ψ2 − 2Λ, (2.92n)

∆α− δγ = (ρ+ ε)ν − (τ + β)λ+ (γ − µ)α+ (β − τ)γ −Ψ3, (2.92o)

δρ− δσ = (α+ β)ρ− (3α− β)σ + (ρ− ρ)τ + (µ− µ)κ−Ψ1 + Φ01, (2.92p)

δα− δβ = µρ− λσ + αα+ ββ − 2αβ + (ρ− ρ)γ + (µ− µ)ε−Ψ2 + Λ + Φ11, (2.92q)

δλ− δµ = (ρ− ρ)ν + (µ− µ)π + (α+ β)µ+ (α− 3β)λ−Ψ3 + Φ21. (2.92r)
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3. GHP formalism

In previous chapter we introduced the Newman-Penrose formalism and used it to reformulate
equations of Einstein's theory of gravitation. Despite the fact that the formalism is very economic
� there are only 12 independent (complex) spin coe�cient as opposed to 40 independent (real)
Christo�el symbols of the standard formalism� it produced very complicated expressions. There
are two reasons for such a complexity. The �rst one is of course the complexity of the equations
themselves. Equations of Einstein's theory are fairly complicated, they deal with tensors with
many degrees of freedom, and thus it may be expected that any description of such a theory
in terms of scalar quantities will yield a large number of complicated equations. But there is
also another cause for such a complexity: scalars of the Newman-Penrose formalism depend on
the choice of the null tetrad (or the spin-frame). In addition to the trivial dependence of all
Newman-Penrose scalars due to them being obtained through projections onto the spin-frame,
there is a deeper dependency which holds for spin coe�cients1. It stems from the fact that the
spin coe�cients are projections of the covariant derivatives of basis spinors, and those derivatives
of course depend not only on the curvature of the space-time, but also on the spin-frame �eld
itself. Consequently, a signi�cant portion of the information contained in the spin coe�cients
tells us nothing about physical curvature, but rather about properties of the basis �elds. This
� in a sense unphysical � content of the formalism re�ects the gauge freedom we have in the
choice of the spin-frame.

It should be pointed out that speci�c physical problems often o�er us some natural way to
�x a portion of that gauge freedom. (For example there may be unique time-like Killing �eld, in
which case it is quite natural to choose the null tetrad so as to make lα+nα parallel to the Killing
�eld.) If such a possibility is exploited, then the spin coe�cients acquire additional physical or
geometric signi�cance. Unfortunately, it is usually not possible to �x the spin-frame fully just
on a basis of some physical reasoning. This suggests that it may advantageous to develop some
kind of a partially covariant formalism which would not require a fully speci�ed choice of the
spin-frame, but which would still be relatively similar to the NP-formalism. GHP(Geroch-Held-
Penrose) formalism which we present in this chapter possesses such a properties. Formally, it
strongly resembles the Newman-Penrose formalism. However, it does not deal with true scalars,
but rather with indeterminate quantities subject to a gauge freedom2.

In GHP formalism one chooses two null directions at each point. These two directions play a
role similar to the role of the null tetrad in the Newman-Penrose formalism. Now consider a null
tetrad consisting of null vectors lα, nα and of complex space-like vectors mα, mα. We require
that vectors lα, nα lie in those two null directions which we have chosen at each point. This
requirement signi�cantly reduces the freedom in the choice of the basis. But there is of course
still some gauge freedom left. We can rescale the vector lα (the vector nα must then be rescaled
suitably to preserve the normalization) and we can rotate space-like vectorsmα, mα in the space-
like 2-plane which they de�ne. GHP formalism is then basically the Newman-Penrose formalism
adjusted so as to be covariant with respect to the remaining 2-parameter gauge freedom.

1The last statement is maybe little misleading. It is of course precisely the dependence of Newman-Penrose
projections on the choice of the tetrad which is re�ected in this �deeper� dependency of the spin coe�cients.

2Strictly speaking, we will work with scalar quantities, but that is only because our approach will be similar
to the classical approach to the tensor formalism where tensors are represented by their components. In that
formalism, when we write Tab for some tensor, we of course presuppose that some basis has been chosen with
respect to which the components Tab are taken. Nevertheless, we do not really care what speci�c basis has been
chosen. We are allowed to ignore those details because the formalism is covariant with respect to all such choices.
Similarly, in GHP formalism we work with projections onto some �xed null tetrad, but we are not interested in
what exact gauge has been chosen, for the formalism is gauge covariant.
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3.1 Null tetrad and gauge freedom

As in the NP formalism, consider the null (NP) tetrad consisting of two real and two complex
null vectors

lα = oAoA
′
, nα = ιAιA

′
, mα = oAιA

′
, mα = ιAoA

′
(3.1)

and introduce operators of covariant derivative associated with these vectors by

D = lα∇α, ∆ = nα∇α, δ = mα∇α, δ = mα∇α. (3.2)

Vectors of the null tetrad satisfy relations

lαnα = −mαmα = 1, lαmα = nαmα = lαlα = nαnα = mαmα = 0. (3.3)

In GHP formalism we do not require the null tetrad to be �xed completely. We only demand
that vectors lα and nα lie in the �xed null directions. What then is the remaining freedom in
the choice of the NP tetrad? The most general transformation that preserves the direction of
both lα and nα is of the form

oA 7→ λoA , ιA 7→ µιA , (3.4)

where λ and µ are arbitrary (nonzero) complex numbers. The normalization (3.3) then requires
|λµ| = 1, but since we also wish to preserve the normalization of the spin-frame, we simply put
µ = λ−1. The gauge transformation therefore reads

oA 7→ λ oA, ιA 7→ λ−1 ιA. (3.5)

It will prove useful to write R exp(iθ) for λ2, with R and θ real. Consider a gauge transfor-
mation with θ = 0, i.e. a transformation where λ is real. This transformation of the spin basis
results in the following transformation of the null tetrad:

lα 7→ R lα, nα 7→ R−1nα, mα 7→ mα, mα 7→ mα. (3.6)

We see the transformation rescales the null vectors lα,nα and leaves the space-like vectors mα,
mα unchanged. Such a transformation will therefore be called the boost3.

On the other hand, if λ of the gauge transformation (3.5) has the unit length, i.e. if R = 1,
then the null tetrad is transformed as follows:

lα 7→ lα, nα 7→ nα, mα 7→ eiθmα, mα 7→ e−iθmα. (3.7)

A transformation of this kind is called the spin4.
In GHP formalism, all physical quantities and equations are projected onto the NP tetrad.

Thus, instead of tensorial (spinorial) equations, in the GHP formalism we work with scalar
quantities and scalar equations. This is similar to NP formalism, but in GHP formalism the NP
tetrad is determined only up to the gauge transformation (3.5). Hence we need to study how do
scalar quantities transform under those transformation.

Suppose that some quantity transforms according to

η 7→ λpλqη.

3If we rewrote the transformation (3.6) in terms of the Minkowski tetrad, we would see that it results in a
boost in the z-direction.

4Now again, if we rewrote the transformation (3.7) in terms of the Minkowski tetrad, we would �nd that it
results in a rotation of the 2-plane determined by the vectors mα and mα.
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Then we call it a weighted quantity of type (p, q). We say it has a spin weight 1
2 (p−q) and a boost

weight 1
2 (p+q). A quantity η of spin weight s and boost weight b transforms as η 7→ Rb exp(isθ)η

under the gauge transformation.
We would expect most scalars that result from projecting a tensor onto the NP tetrad to be

weighted. But as we shall see, it is not always the case. Non-weighted quantities, i.e. quantities
that transform inhomogenenously under (3.5), may emerge if the projected tensor itself does
depend on the gauge, as is the case with the spin coe�cients. But before we discuss this critical
issue more closely, let us turn our attention to the �prime-transformation� which helps us to
simplify the notation.

3.2 Spin coe�cients

In the Newman-Penrose formalism, the connection is described by twelve complex quantities
called spin coe�cients. We introduced them in section 2.2. They are essentially the Ricci
rotation coe�cients with respect to the null tetrad, see the following table (adopted from [17]).

∇ oA∇oA ιA∇oA ιA∇ιA
D κ ε π
∆ τ γ ν
δ σ β µ

δ ρ α λ

Thus, for example, ρ = oAδoA, γ = ιA∆oA, etc.
In this section, we wish to discuss the following transformation

oA 7→ iιA, ιA 7→ ioA, oA
′ 7→ −iιA′

, ιA
′ 7→ −ioA′

. (3.8)

It will be denoted by prime ′ and we shall refer to it as the prime-transformation.
Let us now apply the prime-transformation on the di�erential operators D, ∆, δ, δ and on

the spin coe�cients. For the operator D we get

D′ =
(
oAoA

′∇AA′

)′
= ιAιA

′∇AA′ = ∆ .

Proceeding similarly for the remaining operators, we obtain

D′ = ∆, ∆′ = D, δ′ = δ, δ
′

= δ. (3.9)

The spin coe�cients transform between themselves under the prime operation. For one half of
them, we have

κ′ = − ιA∆ιA = −ν,
τ ′ = −ιADιA = −π,
σ′ = −ιAδιA = −λ,
ρ′ = −ιAδιA = −µ,
β′ = −ιAδoA = −α,
ε′ = −ιA∆oA = − γ.

(3.10)
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The other half would yield similar relations5. We therefore can see that it is not necessary
to introduce all twelve spin coe�cients, since the half of them can be obtained by the prime
operation. Thus, in the GHP formalism we de�ne only spin coe�cients

κ, τ, σ, ρ, ε, β. (3.11)

Because the prime operation commutes with complex conjugation, we obtain similar results for
conjugated coe�cients.

Let us now turn back to the study of the gauge transformation (3.5). What are the boost
weights of the spin coe�cients? For the coe�cient κ, for example, we get

κ = oAoBoB
′∇BB′oA 7→ (λoA)(λoB)(λoB

′
)∇BB′(λoA) = λ2λoA (λDoA + oADλ)

= λ3 λκ,

where term containing Dλ vanishes by oAoA = 0. Therefore, coe�cient κ has boost weight (3, 1).
By similar calculation we �nd

κ : (3, 1), τ : (1,−1),

σ : (3,−1), ρ : (1, 1).
(3.12)

On the other hand, coe�cients ε and β transform as

ε 7→ λλε + λDλ,

β 7→ λλ−1β + λ−1δλ,
(3.13)

which means that these quantities do not have a boost weight.

3.3 Boost weighted operators

Operators D,∆, δ and δ under the gauge transformation (3.5) transform according to

D 7→ λλD, ∆ 7→ λ−1λ−1∆, δ 7→ λλ−1δ, δ 7→ λ−1λδ. (3.14)

Nevertheless, when acting on the scalar of weight (p, q), these operator transform inhomoge-
neously, e.g.

Dη 7→ λλD(λpλ
q
η) = λp+1λq+1Dη + p λpλq+1 η Dλ + q λp+1λq η Dλ.

That is, if η is the scalar of weight (p, q), its derivative Dη is not a weighted scalar anymore.
However, we have seen that two of the spin coe�cients, namely ε and β, also transform inho-
mogeneously. We can guess that by appropriate combination of operators D,∆, δ and δ and
non-weighted spin coe�cients it would be possible to obtain weighted scalars even after di�e-
rentiation. From (3.13) we �nd

ε η 7→ λp+1 λq+1 ε η + λp λq+1 η Dλ,

ε η 7→ λp+1 λq+1 ε η + λp+1 λq η Dλ.
(3.15)

Comparing the behavior of operator D to the behavior of the product ε η we can see that object

Dη − p ε η − q ε η 7→ λp+1 λq+1 (Dη − p ε η − q ε η)

5As far as the spin coe�cients are concerned, the prime-transformation is involutory.
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already is a weighted scalar with the weight (p + 1, q + 1). Thus, we de�ne the operator Þ
(pronounced as �thorn�) by

Þη = (D − p ε − q ε) η

for η : (p, q). Since Þη has weight (p+ 1, q + 1), the operator Þ itself has weight (1, 1).
Next, consider transformation of δ−operator:

δη 7→ λλ−1δλpλ
q
η = λp+1λq−1δη + pλpλq−1ηδλ+ qλp+1λq−2δλ.

It is not a big surprise that in order to obtain weighted operator constructed from δ, we have to
add an appropriate expression containing the spin coe�cient β. Again, we �nd

β η = λp+1 λq−1 β η + λpλq−1 η δλ,

β η = λp−1 λq+1 β η + λp−1λq η δλ.
(3.16)

It is clear that inhomogeneous term in p βη nicely cancels corresponding term in δη, but inhomo-
geneous term in qβη has wrong powers of λ and wrong operator (δ instead od δ). The problem
is that complex conjugation turns δλ into δλ while the desired term is δλ.

The �prime� operation, however, does exactly what we need. Recall that the prime turns
oA into iιA and vice versa. On the other hand, oA transforms as λoA under boost while ιA

transforms as λ−1ιA. That means that the prime e�ectively turns λ into λ−1:

(
oA
)′

= i ιA 7→ i λ−1 ιA = λ−1
(
oA
)′
.

In other words, we can immediately write down transformation rule for β′ and its complex
conjugate:

β′ 7→ λ−1 λβ′ + λ δλ−1 = λ−1 λβ′ − λ−2 λ δλ,

β
′ 7→ λλ−1 β

′ − λλ−2 δλ.
(3.17)

Thus, correct transformation can be achieved by de�ning operator ð (pronounced as �eth�) as

ðη =
(
δ − p β + q β

′)
η. (3.18)

It is clear from the equations above, that ð has weight (1,−1), i.e. it transforms η of weight
(p, q) into ðη of weight (p+ 1, q − 1).

Weighted operators Þ and ð are associated with NP operators D and δ. Operators associated
to NP operators ∆ and δ can be obtained easily by taking the prime of Þ and ð. The only thing
to realize is that some signs must be adjusted because the prime e�ectively turns λ into λ−1.

Now we may take the equations written in the Newman-Penrose formalism and substitute
for derivative operators D, ∆, δ, δ from the expressions that we found for weighted operators
Þ, Þ′, ð, ð′. Doing so, we obtain equations which are manifestly covariant with respect to the
gauge transformation (3.5). As a consequence, they do not contain non-weighted spin coe�cients
and are therefore considerably simpler than their NP counterparts. Let us illustrate this on the
projection (2.72a) of the Bianchi identity, which � when we write −τ ′ and −β′ for coe�cients
π and α � has the form

DΨ1 − δΨ0 −DΦ01 + δΦ00 = (−τ ′ + 4β′)Ψ0 + 2(2ρ+ ε)Ψ1 − 3κΨ2 + 2κΦ11

(τ ′ − 2β
′
+ 2β)Φ00 − 2σΦ10 − 2(ρ+ ε)Φ01 + κΦ02 .
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The equation contains several non-weighted terms, namely derivative terms and terms involving
coe�cients β, β, β

′
and ε. The rest are terms with the weight (3, 1). If we arrange all non-

weighted terms on the left hand side of the equation, the right hand side becomes weighted.
Consequently, the left hand side � now containing all non-weighted terms � is a weighted
quantity as well. Since there is no non-zero weighted combination of non-weighted coe�cient,
we see that those non-weighted terms must combine into the weighted operators Þ, Þ′, ð, ð′.
Speci�cally, for equation (2.72a) we obtain

ÞΨ1 − ð′Ψ0 − ÞΦ01 + ðΦ00

=− τ ′Ψ0 + 4ρΨ1 − 3κΨ2 + 2κΦ11 + τ ′Φ00 − 2σΦ10 − 2ρΦ01 + κΦ02 .

3.4 Résumé

In this chapter we brie�y introduced the essentials of the GHP formalism. Since this chap-
ter contains some auxiliary equations and some motivation, here we merely summarize basic
relations.

In GHP formalism we de�ne four boost-weighted spin coe�cients

κ = oADoA : (3, 1), τ = oA∆oA : (1,−1),

σ = oAδoA : (3,−1), ρ = oAδoA : (1, 1),
(3.19)

and two non-weighted spin coe�cients

ε = ιADoA,

β = ιAδoA.
(3.20)

Weighted derivative operators read:

Þ = D − p ε − q ε, Þ′ = ∆ + p ε′ + qε′,

ð = δ − p β + q β
′
, ð′ = δ + p β′ − qβ.

(3.21)
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4. Twistor equation and twistors

Twistor theory, originally proposed by Roger Penrose, was intended as an alternative attempt to
unify general theory of relativity with the quantum theory. After more than 40 years of research
in the area of twistor theory it seems that formidable mathematical di�culties connected with
the formulation of the twistor theory in curved spacetimes are convincing enough to abandon the
theory as an alternative to quantum gravity. Nevertheless, the twistor theory as a mathematical
tool inspired research both in pure mathematics (e.g. integrable systems) and physics. The
problem of quasi-local mass is one of the most remarkable successes of the twistor theory in the
area of physics.

In this thesis we do not intend to provide the description of the twistor theory and the twistor
geometry, although it is an engaging part of di�erential geometry on complex manifolds. Our aim
is just to present technical tools necessary for our calculation of the Bondi mass of the spacetime
with electro-scalar sources. Hence, we skip the motivation for the twistor equation which arises
naturally when one tries to solve the so-called zero-rest-mass equations using the contour integral
in the complex plane. In this chapter we simply present the twistor equation and solve it. In
Chapter 6, however, the twistor equation arises naturally in a di�erent context to be explained
in detail.

4.1 1-valence twistor equation

The twistor equation of valence 1 or univalent twistor equation is equation

∇(A
A′ω

B) = 0. (4.1)

An interesting and important feature of this equation is its conformal invariance. Indeed, consider
the conformal transformation

ε̂AB = Ω εAB , ε̂AB = Ω−1 εAB

where the hat denotes conformally rescaled quantities. If we set

ω̂A = ΩωA, ω̂A = ωA,

the rule for conformal transformation of the covariant derivative

∇AA′ωB = ∇̂AA′ωB + Ω−1 ωA∇BA′Ω

immediately gives

∇A′(AωB) = 0 → Ω−1 ∇̂A′(Aω̂B) = 0.

Hence, the twistor equation is conformally invariant with the conformal weight −1.
By standard spinorial decomposition we �nd

∇AA′ωB = ∇(A
A′ω

B) +
1

2
εAB ∇XA′ωX .

Denoting

πA′ =
1

2
i∇XA′ωX
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and using (4.1) we can rewrite the twistor equation in the form

∇AA′ωB = − i εAB πA′ . (4.2)

Unfortunately, (4.2) does not have a solution in a general curved spacetime. It has a solution
only in the spacetimes of type N, �at spacetime and conformally �at spacetimes. Therefore,
in this chapter we assume the �at spacetime in which the covariant derivatives commute when
acting on any spinorial quantity:

∇A(A′∇AB′)ωB = 0, ∇A′(A∇A
′

B)ωC = 0. (4.3)

Substituting (4.3) into (4.2) we �nd two conditions

∇B(A′πB′) = 0 and ∇A′

B πA′ = 0.

Since

∇AA′πB′ = ∇A(A′πB′) +
1

2
εA′B′ ∇X′

A πX′ ,

these conditions imply

∇AA′πB′ = 0. (4.4)

That is, πB′ is a constant spinor, a notion which exists only in type N spacetimes. Now that we
know the spinor πA′ is constant, we can easily integrate (4.2):

ωB = ω̃B − i xBA
′
πA′ (4.5)

where ω̃A is the �integration constant�, i.e. it is a constant spinor.

4.2 Twistor space

In the previous section we have shown that the solution of the twistor equation in the �at space-
time is determined by two constant spinors ω̃A and πA′ , each of them having two independent
complex components, and reads

ωA = ω̃A − i xAA
′
πA′ .

Thus, the space of the solutions of twistor equation is complex four-dimensional space called
twistor space and denoted by Tα. Element Zα ∈ Tα is called the twistor. Twistor determined by
spinors ω̃A and π̃A′ is denoted by

Zα = (ω̃A, πA′), ZA = ω̃A, ZA′ = πA′ .

Twistor space has a natural structure of the vector space given by

(ω̃A, πA′) + λ (ξ̃A, ηA′) = (ω̃A + λξ̃A, πA′ + λη̃A′).

Notice that ωA is a spinor �eld rather than a single spinor, unlike the constant spinor ω̃A

which is, in a sense, a coordinate of the twistor Zα. Obviously, ω̃A is the value of �eld ωA at the
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origin of the coordinate system xAA
′

= 0. If we choose a di�erent origin at aAA
′
, the value of

ωA at this point will be

ωA(a) = ω̃A − i aAA
′
πA′ .

Thus, instead of writing Zα = (ω̃A, πA′) we can write Zα = (ωA, πA′) and regard ωA and πA′ as
spinors which transform according to

ωA 7→ ωA − i xAA
′
πA′ ,

πA′ 7→ πA′
(4.6)

under the shift of the origin by vector xAA
′
.

As in the spinor algebra, we can introduce dual twistor space Tα and complex conjugated

spaces Tα
′

and Tα′ . Let us denote the components of a twistor as

Zα = (ωA, πA′) = (ω0, ω1, π0′ , π1′) = (Z0, Z1, Z2, Z3). (4.7)

A natural norm on the twistor space is de�ned by

H(Z,Z) = ωA πA + ωA
′
πA′ = ω0 π0 + ω1 π1 + ω0′

π0′ + ω1′
π1′

= Z0 Z2 + Z1 Z3 + Z2 Z0 + Z3 Z1
(4.8)

where Zα = Z
α′

. Equivalently we can write

H(Z,Z) = Hαβ′ Zα Z
β′

(4.9)

where

Hαβ′ =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , detHαβ′ = 1. (4.10)

Since Hαβ′ is non-degenerate, it introduces a metric on the twistor space by

H(Z1,Z2) = Hαβ′ Zα1 Z
β′

2 .

Notice that the diagonal form of Hαβ′ is diag(−1,−1, 1, 1), so the metric Hαβ′ has signature
(−2, 2).

Non-degenerate Hαβ′ allows us to introduce an isomorphism Tβ
′

7→ Tα by

Zα = Hαβ′ Z
β′

.

For Zα = (ωA, πA′) we have

Zα = Hαβ′ Z
β′

= (Z2, Z3, Z0, Z1) = (πA, ω
A′

). (4.11)

Since the spaces Tα
′

and Tα are isomorphic, complex conjugated twistor with primed upper
indices can be always mapped to a dual twistor with unprimed lower indices. That is, we never
need primed twistors; a di�erence to the spinor case.
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Clearly, the norm H(Z,Z) = Hαβ′ZαZ
β′

= ZαZ
α is invariant under the shift of the origin, for

we have

Zα Z
α = ωA πA + ωA

′
πA′ 7→

(
ωA − i xAB

′
πB′

)
πA +

(
ωA

′
πA′ + i xBA

′
πB

)
πA′

= ωA πA + ωA
′
πA′ .

(4.12)

4.3 2-valence twistor equation

Twistor equation of valence 2 is the spinorial equation

∇(A
A′ω

BC) = 0 (4.13)

where ωBC is a symmetric 2-valent spinor. Before actually solving the equation we derive an
auxiliary identity. Solution of the twistor equation then follows.

We start with the relation for the total symmetrization of the object ∇AA′ωBC and use the
symmetry of ωBC :

∇(A
A′ω

BC) =
1

3

[
∇(A
A′ω

B)C + ∇(B
A′ω

C)A + ∇(A
A′ω

C)B
]

= ∇(A
A′ω

B)C +
1

6
εCA∇A′Xω

XB +
1

6
εCB∇A′Xω

XA ,

So far we have eliminated symmetrization in three indices in favour of symmetrization in two
indices which can be, however, eliminated further using the spinorial identity

∇AA′ωBC = ∇(A
A′ω

B)C +
1

2
εAB ∇XA′ωXC .

For brevity we introduce spinor

λAA′ = ∇XA′ωXA.

In this notation, total symmetrization of ∇AA′ωBC can be written in the form

∇(A
A′ω

BC) = ∇AA′ωBC − 1

6

[
3 εAB λCA′ + εBC λAA′ + εAC λBA′

]
.

After some arrangements and using the identity

εB[Aλ
C]
A′ = −1

2
εAC λBA′

we �nally arrive at desired relation

∇(A
A′ω

BC) = ∇AA′ωBC − 2

3
εA(Bλ

C)
A′ . (4.14)

For the sake of Chapter 6 we introduce vector �eld

KA
A′ =

2

3
i λAA′ =

2

3
i∇XA′ωXA (4.15)
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in terms of which the identity (4.14) acquires the form

∇(A
A′ω

BC) = ∇AA′ωBC + i εA(BK
C)
A′ . (4.16)

Twistor equation (4.13) then implies

∇AA′ωBC = − i εA(BK
C)
A′ . (4.17)

Let us investigate some properties of the vector �eld Ka. As in the case of univalent case,
twistor equation has non-trivial solutions only in the �at spacetime where covariant derivatives
commute,

∇XX′∇AA′ωBC = ∇AA′∇XX′ωBC .

Substituting from (4.17) and writing the symmetrization explicitly we �nd

εAB∇XX′KC
A′ + εAC∇XX′KB

A′ = εXB∇AA′KC
X′ + εXC∇AA′KB

X′ . (4.18)

In order to simplify this expression we contract it with εAB ,

3∇XX′KC
A′ = ∇XA′KC

X′ + εXC ∇CA′KC
X′ . (4.19)

Symmetrization in indices X ′A′ and XC immediately yields

∇(X
(X′K

C)
A′) = 0. (4.20)

Next, contraction of (4.19) with εXC gives

∇CX′KC
A′ = ∇CA′KC

X′

which means that antisymmetric part of ∇CX′KC
A′ vanishes. However, antisymmetric part must

be always proportional to symplectic form,

∇C[X′KC
A′] =

1

2
εX′A′ ∇CC′KCC′

,

so that the divergence of vector �eld Kc is identically zero:

∇cKc = 0. (4.21)

We have found that symmetric part of tensor ∇aKb is zero. Indeed, using standard decom-
position we can write

∇aKb = ∇(A(A′KB′)B) +
1

2
εAB∇X(A′KX

B′) +
1

2
εA′B′∇X′(AK

X′

B) +
1

4
εAB εA′B′ ∇cKc.

(4.22)

The �rst and the last term on the right hand side is symmetric in ab while the middle two terms
are antisymmetric. However, symmetric terms vanish by (4.20) and (4.21) and only antisymmet-
ric part remains:

∇aKb =
1

2
εAB∇X(A′KX

B′) +
1

2
εA′B′∇X′(AK

X′

B) .
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In other words, since the symmetric part vanishes, vector Ka satis�es the Killing equations

∇aKb + ∇bKa = 0

and hence it is a Killing vector!
But the equation (4.18) does actually restrict the quantity ∇aKb even further. If we contract

it by εA
′X′

and εXC , we �nd

−εAB∇A′CK
A′C = 4∇AA′KBA′

, (4.23)

which, after the symmetrization in AB, yields

0 = ∇(A
X′K

B)X′
. (4.24)

Thus we see that only one term in (4.22) survives:

∇aKb =
1

2
εAB ∇X(A′KX

B′). (4.25)

Therefore, ∇aKb is self-dual two form.
Let us recapitulate what we have found in this section. We started with the twistor equation

in the �at spacetime

∇(A
A′ω

BC) = 0.

We have shown that any spinor ωBC satisfying the twistor equation must satisfy also equation

∇AA′ωBC = − i εA(BK
C)
A′

where KAA′
is self-dual Killing vector in the sense, that its derivative ∇aKb is self-dual. Now it is

clear that the twistor equation cannot have non-trivial solutions in arbitrary spacetime, because
general spacetime possesses no Killing vectors.

At the end of this section we �nally solve the twistor equation in a way similar to solution
of univalent twistor equation. Notice that, by (4.25), ∇AA′KBB′ is antisymmetric in AB and
symmetric in A′B′. Consider object

∇AA′∇BB′KC
C′ .

Since in the �at spacetime covariant derivatives commute, this object is automatically antisym-
metric in AC and BC by (4.25). Antisymmetry in AB follows from simple calculation:

∇AA′∇BB′KC
C′ = −∇AA′∇CB′KB

C′ = ∇BA′∇CB′KA
C′ = −∇BA′∇AB′KC

C′ .

Thus, ∇AA′∇BB′KC
C′ is antisymmetric in each pair of unprimed indices. Since the maximal possible

rank of antisymmetric form built on two-dimensional space of spinors is 2, this object must vanish
identically:

∇AA′∇BB′KC
C′ = 0. (4.26)

The rest of derivation is straightforward. Equation (4.26) integrates to

∇AA′KB
B′ = λABA′B′ (4.27)
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where λABA′B′ is a constant spinor. However, using the symmetries of ∇AA′KB
B′ we can decompose

this spinor as

λABA′B′ = 2 εABMA′B′

where MA′B′ is symmetric constant spinor. After �rst integration we therefore have

∇AA′KB
B′ = 2 εABMA′B′ .

Next integration gives

KAA′
= TAA

′
+ 2xAB

′
MA′

B′ (4.28)

where TAA
′
is an arbitrary constant spinor. This result can be inserted into (4.17) and the

equation obtained can be integrated for the last time. Solution of the twistor equation can be
�nally written in the form

ωBC = − i xBA′
xCC

′
MA′C′ + i T

(B
A′ x

C)A′
+ ΩBC (4.29)

where ΩBC is an arbitrary symmetric constant spinor.
Notice that there are exactly ten complex constants entering the solution (3 constants for

symmetricMA′B′ , 3 constants for symmetric ΩAB and 4 constants for TAA′). Thus, there are ten
independent solutions to the twistor equations which coincides with the number of the Killing
vectors in the �at spacetime. We have already mentioned that the twistor equation indeed has
non-trivial solutions only in the Minkowski spacetime. In the derivation of the solution we have
seen that the solution of the twistor equation always implies the existence of the Killing vector.
Next we have seen that the solution of the twistor equation was based on the fact that ∇aKb is
a constant tensor; such tensors, however, exist only in the �at spacetime. And �nally, we have
found that the number of independent solutions to the 2-valent twistor equation is equal to the
number of the Killing vectors of the Minkowski spacetime. Hence, the Killing equation and the
twistor equation are intimately related.

4.4 Twistor equation in GHP formalism

In this section we project the twistor equation

∇(A
A′ω

B) = 0

onto the null tetrad and obtain the set of scalar di�erential equations between the components of
the spinor ωA and the spin coe�cients. Next we use the GHP formalism to reduce the number
of equation and to see the character of the twistor equation more explicitly.

We know that whenever ωA is a solution to the twistor equation, it must satisfy

∇AA′ωB = − i εAB πA′

for some spinor πA′ (which must be constant in the �at spacetime). Let us introduce the com-
ponents ω0 and ω1 by

ωA = ω0 oA + ω1 ιA (4.30)

so that

ω0 = − ιA ωA : (−1, 0), ω1 = oA ω
A : (1, 0),
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where the pair (p, q) after the colon denotes the weight of corresponding quantity (recall the
de�nition of weight in 3.1). Similarly we decompose the spinor πA′ as

πA′ = π1′ oA′ − π0′ ιA′ (4.31)

so that

π0′ = πA′ oA
′
, π1′ = πA′ ιA

′
.

Projections of the twistor equation onto the null tetrad in the Newman-Penrose formalism follow.

Dω0 = − ε ω0 − π ω1 − i π0′ ∆ω0 = − γ ω0 − ν ω1

Dω1 = κω0 + ε ω1 ∆ω1 = τ ω0 + γ ω1 − i π1′

(4.32)

δω0 = −β ω0 − µω1 − i π1′ δω0 = −αω0 − λω1

δω1 = σ ω0 + β ω1 δω1 = ρω0 + αω1 + i π0′

Now we rewrite equations (4.32) in the Geroch-Held-Penrose formalism. Since the weight of
ω0 is (p = −1, q = 0) and the weight of ω1 is (p = 1, q = 0), we can use de�nitions (3.21) to �nd
the action of Þ and ð on these quantities:

Þω0 = (D + ε)ω0, Þ′ω0 = (∆ + γ)ω0,

Þω1 = (D − ε)ω1, Þ′ω1 = (∆− γ)ω1,

(4.33)

ðω0 = (δ + β)ω0, ð′ω0 = (δ + α)ω0,

ðω1 = (δ − β)ω1, ð′ω1 = (δ − α)ω1.

In this notation, projections (4.32) simplify to (4.34).

Þω0 = −π ω1 − i π0′ Þ′ω0 = − ν ω1

Þω1 = κω0 Þ′ω1 = τ ω0 − i π1′

(4.34)

ðω0 = −µω1 − i π1′ ð′ω0 = −λω1

ðω1 = σ ω0 ð′ω1 = ρω0 + i π0′

Although the set of equations (4.34) is not too clumsy, compared to usual Newman-Penrose
equations, it is still redundant. What is the action of �prime� operation introduced in (3.2)?
Behaviour of the spin coe�cients is given by (3.10), behaviour of the components of spinors ωA

and πA′ is found easily. For example, the prime of ω0 reads

(
ω0
)′

=
(
− ιA ωA

)′
= − i oA ωA = − i ω1.

In a similar way we �nd

(
ω1
)′

= − i ω0, (π0′)
′

= − i π1′ , (π1′)
′

= − i π0′ .
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Now, take, e.g. the �rst equation in (4.34) and perform the �prime�-operation:

Þω1 = κω0 7→ − iÞ′ω0 = − i κ′ ω1.

However, according to (3.10) we have κ′ = −ν. Thus, under the prime, our equation transforms
to

Þ′ω0 = − ν ω1

which is just the �rst equation in the second column in (4.34)! Hence it is not necessary to
explicitly write down all of equations (4.34) since the half of them can be obtained simply by
taking the prime. In fact, the only independent equations are (4.35) and (4.36).

Þω0 = ω1 τ ′ − i π0′ Þω1 = κω0 (4.35)

ðω0 = ρ′ ω1 − i π1′ ðω1 = σ ω0 (4.36)

As will be explained in Chapter 6, the Penrose mass is associated with the 3-volume enclosed
in a topological sphere S. In this context, vectors ma and ma are chosen to be tangent to the
sphere S and vectors la and na are orthogonal to the sphere. Equations (4.35) are then normal
projections of the twistor equation while equations (4.36) are tangential projections. Solutions of
both (4.35) and (4.36) do not exist in general but, by the Atiyah-Singer index theorem, equations
(4.36) can be solved if S has certain properties to be discussed in Chapter 6. The solutions to
(4.36) are called two-surface twistors.
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5. The geometry of spacelike

2-surfaces

After introducing some basic constructions of the twistor theory in the previous chapter, now we
present some mathematical tools to analyze the geometry of spacelike two-dimensional surfaces.
These tools will be necessary in our construction of the Penrose and the Bondi mass. The reason
is obvious: quasi-local mass or angular momentum should be associated with such 2-surfaces.

The analysis of spacelike 2-surfaces is analogous to the 3+1 formulation of general relativity,
see e.g. [21]. Three-dimensional spacelike hypersurface Σ has a unique normal vector na which
de�nes the projection operator from full four-dimensional spacetime to Σ. Three-dimensional
spatial metric hab is then projection of metric tensor gab onto Σ. Intrinsic geometry of the
hypersurface can be characterized in terms of covariant derivative Da associated with spatial
metric hab, extrinsic geometry is encoded in the extrinsic curvature Kac = hba∇bnc. Both these
objects, derivative Da and extrinsic curvature Kac can be used to calculate the Riemann tensor
of hypersurface Σ.

On the other hand, in the case of spacelike 2-surface, we have two independent normal
directions which will be denoted by ta and va. Again, we de�ne the projector Πa

b to the subspace
orthogonal to ta and va which induces metric qab on the 2-surface. However, now there are two
natural connections derived from the Levi-Civita connection and they will be denoted by δa and
∆a, the latter being two dimensional version of the so-called Sen connection.

In this chapter we brie�y review some aspect of the geometry of spacelike 2-surfaces. These
tools have been developed gradually by Szabados in papers [19, 18] which we follow very closely.

5.1 2-surface tensor �elds

Let (M, gab) be a manifold and T aM its tangent bundle, let S be a closed orientable spacelike
2-surface. Then the restriction of T aM to S will be denoted by V aS and it can be decomposed
uniquely into tangent bundle T aS and the bundle of vectors normal to S:

V aS = T aS ⊕ NaS.
Elements of T aS will be called 2-surface vector �elds and elements of general space T a..bc..d S will
be called 2-surface tensor �elds. Let ta ∈ NaS be a timelike unit normal, let va ∈ NaS be a
spacelike unit normal, so that

tata = − vava = 1, tana = 0.

Clearly, there is a boost gauge freedom in the choice of ta and va:

ta 7→ coshu ta + sinhu va,

va 7→ sinhu ta + coshu va.

Any vector Xa ∈ V aS can be written in the form

Xa = Πa
b X

b + Oab X
b

where Πa
b and Oab are projection operators

Πa
b : V aS 7→ TS, Πa

b = δab − ta tb + va vb,

Oab : V aS 7→ NS, Oab = ta tb − va vb.
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Trivial calculation shows that projection operators are gauge invariant. Condition that tensor
T a..bc..d be a 2-surface tensor is

Πa
a′ . . .Π

b
b′ Πc′

c . . .Π
d′

d T
a′..b′

c′..d′ = T a..bc..d ,

i.e. its projection to S must be equal to the original tensor.
Two-dimensional metric qab induced on S is given by the projection of four-dimensional metric

gab to S:

qab = Πc
a Πd

b gcd = gab − ta tb + va vb.

Volume 2-form induced on surface S is naturally given by

εab = εabcd t
c vd

where εabcd is the volume 4-form on M . Again, it is easy to show that qab and εab are gauge
invariant quantities.

5.2 The two dimensional Sen operator

There are two natural operators of the covariant derivative characterizing the geometry of 2-
surfaces. Let Xa be a surface vector �eld. The �rst operator is usual covariant derivative δa
induced on S by familiar relation

δaX
b = Πc

a Πb
d∇cXd. (5.1)

This operator is compatible both with spacetime metric gab and with induced metric qab in the
sense that

δaqbc = δagbc = 0.

The connection associated with operator δa can be represented by the following quantities:

τab = Πe
aΠf

b∇etf , νab = Πe
aΠf

b∇evf . (5.2)

Since the projector Πa
b is boost invariant and since Πa

b t
b = Πa

bv
b = 0, these quantities under the

boost transform as

τab 7→ coshu τab + sinhu νab,

νab 7→ sinhu τab + coshu νab.
(5.3)

The Riemann tensor SRabcd characterizing the curvature of 2-surface is derived from connection
δa by

(δaδb − δbδa)Xc = − SRabcdXd.

Quantities τab and νab are 2-surface tensors by de�nition. Hence, action of these tensors on
�elds Xa and Y a which are not 2-surface vectors is equivalent to action of these tensors on their
tangential projections Πa

cX
c and Πa

cY
c. Suppose, now, that Xa and Y a are 2-surface tensors.

Then we have

τabX
aY b = XaY b∇atb
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and similarly for νab. Since Xa and Y a are orthogonal to both ta and va, we have

Y b∇atb = − tb∇aY b and Xb∇atb = − tb∇aXb.

Thus, the action of antisymmetric part t[ab] on XaY b is

2 τ[ab]X
a Y b = (Xa Y b − Xb Y a)∇atb = −Xa tb∇aY b + Y a tb∇aXb = − tb [X,Y ]

b
= 0

by the orthogonality of tb and commutator [X,Y ]b. Hence, antisymmetric part of τab vanishes
and so tensor τab is symmetric. The same consideration applies to tensor νab.

Let us now turn to another operator of covariant derivative which can be de�ned on S. The
2-dimensional Sen operator ∆a is de�ned by

∆a = Πb
a∇b. (5.4)

Connection de�ned by ∆a is again compatible with spacetime metric gab but not with the induced
two-dimensional metric qab. In terms of the Sen operator, relations (5.2) can be written as

τab = Πd
b ∆atd, νab = Πd

b ∆and. (5.5)

Suppose that Xa is a surface vector, i.e. Πa
bX

b = Xa; we want to �nd the di�erence between
δa and ∆a on Xb. We �nd

δaXb = Πc
aΠd

b∇cXd = Πd
b∆aXd = ∆a(Πd

bXd) − Xd∆aΠd
b = ∆aXb −XeΠ

e
d∆aΠd

b .

Hence, we de�ne

Qeab = −Πe
d∆aΠd

b (5.6)

and write

δaXb = ∆aXb + QeabXe for 2-surface �eld Xa. (5.7)

Simple calculation shows that Qeab can be expressed in terms of τab and νab as

Qeab = tb τ
e
a − vb ν

e
a . (5.8)

Notice that Qeab is, unlike τab and νab, independent of the boost gauge.
In order to derive the relation between the Riemann tensor and the Sen operator, let us write

(for arbitrary Xc)

∆a∆bXc = (∆aΠd
b)∇dXc + Πe

aΠf
b∇e∇fXc.

The �rst term can be rearranged as follows:

(∆aΠd
b)∇dXc = −Qeab∆eXc − τabt

e∇eXc + νabv
e∇eXc.

Thus, by the symmetry of τab and νab, the commutator of the Sen operators reads

(∆a∆b − ∆b∆a)Xc = Πe
aΠf

b (∇e∇f −∇f∇e)Xc − (Qeab −Qeba) ∆eXc. (5.9)

In the conventions used in the thesis, the Riemann curvature tensor is de�ned by

(∇a∇b −∇b∇a)Xc = −R d
abc Xd.

Similarly we de�ne the curvature tensor Fabcd and torsion T eab tensor associated with the Sen
operator ∆a. Relation (5.9) can be then written in the form

(∆a∆b − ∆b∆a)Xc = −F d
abc Xd − T eab ∆eXc, (5.10)

where

F d
abc = Πe

a Πf
b R

d
efc ,

T eab = 2Qe [ab].
(5.11)
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5.3 2-surface spinors

Let us now investigate the geometry of 2-surfaces in terms of spinors. Recall that the Newman-
Penrose (or Geroch-Held-Penrose) null tetrad consists of vectors la, na,ma and ma satisfying
relations (3.3). Null vectors la and na can be constructed from our vectors ta and va normal to
2-surface by

la =
1√
2

(ta + va) , na =
1√
2

(ta − va) . (5.12)

Now we can employ the spin basis (oA, ιA) associated with la and na via relations

la = oA oA
′
, na = ιA ιA

′
. (5.13)

Conversely, we can express normals ta and va in terms of basis spinors as

ta =
1√
2

(
oAoA

′
+ ιAιA

′
)
, va =

1√
2

(
oAoA

′ − ιAιA
′
)
. (5.14)

The basis of T aS is then formed by null vectors

ma = oA ιA
′
, ma = ιA oA

′
.

The symplectic form εAB = oAιB − oBιA is related to the spacetime metric by usual formula

εAB εA′B′ = gab.

Notice that εAB is in fact independent of the choice of the spin basis, because all two-forms
on two-dimensional spinor space must be proportional to each other. Without an additional
structure, εAB is the only canonical object on the space of spinors.

However, when we �x the normal vectors ta and va, and thus �x the spin basis (up to gauge
freedom), there is another canonical object which can be constructed: we will denote it as γAB
and de�ne it as

γAB = 2 tAA
′
vBA′ = oA ιB + oB ι

A. (5.15)

Obvious properties of γAB are

γAA = 0, γAB γ
B
C = ε A

C , det γAB = −1. (5.16)

Let ξA be an eigenspinor of γAB , i.e. γABξ
B = λξA for some eigenvalue λ. Multiplying this

equation with γCD and using (5.16) we �nd that eigenvalues of γAB are only λ = ±1. Eigenspinors
with λ = 1 will be called right-handed while the eigenspinors with λ = −1 will be called left-
handed.

Each spinor ξA ∈ SA can be then decomposed into right-handed and left-handed part using
the projection operators

πA+ B =
1

2

(
εAB + γAB

)
, πA− B =

1

2

(
εAB − γAB

)
. (5.17)

It is straightforward to verify that for arbitrary spinor ξA, its projections πA± Bξ
B are right

handed and left handed eigenspinors of γAB , respectively.
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The projection operators Πa
b and O

a
b in terms of the null tetrad can be found from well-known

expression for the metric tensor or, equivalently, the Kronecker delta which reads

δab = lanb + lbn
a −mamb −mbm

a.

Using (5.14) and (5.12) we obtain

Oab = nalb + nbl
a, Πa

b = −mamb − mbm
a. (5.18)

By the de�nition (5.15) we have

γABγ
A′

B′ = lanb + lbn
a +mamb +mamb.

Hence, combining these relations we �nd the projection operators Πa
b and Oab to be

Πa
b =

1

2

(
ε A
B ε A′

B′ − γAB γ
A′

B′

)
,

Oab =
1

2

(
ε A
B ε A′

B′ + γAB γ
A′

B′

)
.

(5.19)

5.4 Spinor decomposition of the Sen curvature

We have seen that the curvature tensor Fabcd associated with the Sen operator ∆a is given by
(5.11). In previous section we have derived the spinor from of the projection operators (5.19),
while the spacetime Riemann tensor can be decomposed as in (2.53). Recall that when we
derived the Ricci identities in the spinor form, section 2.4, we have found that the commutator
of derivatives [∇a,∇b] acting on the spinor ξC is given by anti-self-dual part of the Riemann
tensor RabCD = 1/2 εC

′D′
Rabcd. Similarly we de�ne

FabCD =
1

2
εC

′D′
Fabcd =

1

2
εC

′D′
Πe
a Πf

b Refcd. (5.20)

Substituting (2.88) for anti-self-dual part of the Riemann tensor and (5.19) for the projection
operator we �nd

4FabCD =
[
ΨABCD − γEA γ

F
B ΨEFCD + γAB γ

E′F ′
ΦCDE′F ′

]
εA′B′

− 2 Λ
[
γA(CγD)B + εA(C εD)B

]
εA′B′

[
γA′B′ γEF ΨEFCD εAB + ΦCDA′B′ − ΦCDE′F ′ γE

′

A′ γF
′

B′

]
εAB

+ 2 Λ γCD γA′B′ εAB .

(5.21)

This expression can be simpli�ed signi�cantly. Spinor FabCD is antisymmetric in ab which are
indices tangent to surface S (because they arose from the projection Πe

aΠf
bRefCD). Hence,

FabCD must be proportional to the volume 2-form εab induced on S by pull-back of εabcd from
four-dimensional spacetime. Volume 2-form εab can be written as

εab = εabcd t
c vd = εabcd n

c ld = i (εABoA′ιB′ − εA′B′oAιB) .

Since now we have the symmetric spinor γAB = 2o(AιB), the product oAιB can be decomposed
into the sum

oA ιB =
1

2
γAB +

1

2
εAB
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so that the induced volume 2-form reads

εab =
i

2
(εAB γA′B′ − εA′B′ γAB) . (5.22)

Now we can write

FabCD = λCD εab

from which, by contraction with εab and using εabεab = 2, we get

FabCD =

[
− i

2
γAB ΨABCD +

i

2
γA

′B′
ΦCDA′B′ − iΛ γCD

]
εab. (5.23)

Let us now return to commutator (5.10). In order to �nd the action of commutator [∆a,∆b]
on the spinor �eld, let us put Xc = ξCξC′ and contract the equation with ξC :

ξC ξC′ [∆a,∆b]ξC = − Fabcd ξ
C ξD ξD

′ − 2Qe [ab] ξ
C ξC′ ∆eξC . (5.24)

Now we eliminate the self-dual part of Fabcd by decomposition

Fabcd ξ
C ξD = FabCD(C′D′) ξ

C ξD +
1

2
εC′D′ εX

′Y ′
FabCDX′Y ′ ξC ξD. (5.25)

The second term on the right hand side is obviously anti-self-dual part εC′D′FabCDξ
CξD while

the �rst term reads

FabCD(C′D′) ξ
C ξD = Πe

a Πf
b RabCD(C′D′)ξ

CξD

= Πe
a Πf

b

(
ΨE′F ′C′D′εCDεE′F ′ + ΦEFC′D′εE′F ′εCD − 2ΛεE′(C′εD′)F ′εEF εCD

)
ξC ξD

(5.26)

which vanishes by the symmetry of ξCξD. Hence, we can write

ξC [∆a,∆b]ξC = FabCD ξ
C ξD − 2Qe [ab] ξ

C ∆eξC (5.27)

and therefore1

[∆a,∆b]ξC = FabCD ξ
D − 2Qe [ab] ∆eξC . (5.28)

Next we �nd the spinor form of the torsion represented by tensorQeab. Recalling the de�nition
(5.6) and employing the spinor form of projector (5.19) we �nd

4Qeab = γEB ∆a γ
E′

B′ + γE
′

B′ ∆ γEB − δEB γ
E′

D′ ∆a γ
D′

B′ − δE
′

B′ γED ∆a γ
D
B . (5.29)

1Similarly as in section 2.4 we put ξC = αC + kβC , where αC , βC are arbitrary independent spinors and k is
an arbitrary real or complex number. The equation (5.27) will then contain terms quadratic in k, terms linear in
k, and terms not dependent on k. The equation must hold for each group separately. Collecting terms linear in
k, we obtain the equation

kβC [∆a,∆b]αC + αC [∆a,∆b] (kβC) = 2kFabCDα
CβD − 2Qe[ab]kβ

C∆eαC − 2Qe[ab]α
C∆e (kβC) .

Now, using [∆a,∆b]l = −2Qe[ab]∆el, where l = kβCα
C , we arrive at

βC [∆a,∆b]αC = βC
(
FabCDα

D − 2Qe[ab]∆eαC

)
,

which yields the desired result.
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If we de�ne

QEaF =
1

2
γXF ∆a γ

E
X , (5.30)

the Sen-derivative of γAB can be written in the form

∆aγ
E
B = 2QEaF γ

F
B . (5.31)

Inserting this back to (5.29) we �nd

2Qeab = QEaXγ
X
B γ

E′

B′ + QE
′

aX′γX
′

B′ γEB + δEB Q
E′

aB′ + δE
′

B′ QEaB . (5.32)

5.5 Decomposition of spinors

In the spinor formalism we frequently use the fact that any spinor φAB can be decomposed into
totally symmetric and totally antisymmetric part according to

φAB = φ(AB) + φ[AB] = φ(AB) +
1

2
εAB φ

X
X .

In general, both these parts are irreducible, unless an additional structure is present. In our
case, this structure is provided by the symmetric spinor γAB . Symmetric part φ(AB) can be
then decomposed further into part representing the trace of φ(AB) with respect to γAB and the
trace-free part. By the trace we mean the contraction of φAB with γAB , i.e. the complex number

γAB φ(AB) = γAB φAB .

The trace-free part of φ(AB) is then spinor of the form

T CD
AB φCD = φ(AB) − k γAB γ

CD φCD

with k chosen so that

γAB T CD
AB φCD = 0.

Relation γABγAB = −2 then implies k = −1/2 and hence we de�ne operator

T CD
AB = δC(Aδ

D
B) +

1

2
γAB γ

CD (5.33)

which projects spinor φAB into its γ-trace-free part

T CD
AB ΦCD = φ(AB) +

1

2
γAB γ

CDφCD,

γAB T CD
AB φCD = 0.

(5.34)

Full decomposition of the spinor φAB into irreducible parts then reads

φAB =
1

2
εAB φ

X
X − 1

2
γAB γ

CD φCD + T CD
AB φCD. (5.35)

Let us apply this decomposition to the Sen derivative ∆AA′ of arbitrary spinor λB :

∆A′AλB =
1

2
εAB ∆A′Xλ

X − 1

2
γAB γ

CD ∆A′CλD + T CD
AB ∆A′CλD. (5.36)
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By de�nition of T CD
AB , the trace-free part of the Sen derivative ∆AA′λB is

T CD
AB ∆A′CλD = ∆A′(AλB) +

1

2
γAB γ

CD ∆A′CλD. (5.37)

This can be written in the form of action of new operator T C
A′AB on the spinor λC , where

T C
A′AB = δC(A∆B)A′ +

1

2
γABγ

CD∆DA′ ,

T C
A′AB λC = ∆A′(AλB) +

1

2
γABγ

CD∆A′CλD.

(5.38)

In terms of this operator, decomposition of ∆AA′λB reads

∆AA′λB =
1

2
εAB ∆A′Cλ

C − 1

2
γAB γ

CD ∆A′CλD + T C
A′AB λC . (5.39)

We will show that in the case of spinor ∆AA′λB , part proportional to γAB in expression (5.39)
is not an independent irreducible part. Using the de�nition of the Sen derivative, ∆a = Πc

a∇c
and the spinorial form of the projection operator (5.19) we �nd

∆AA′λB =
1

4

[
∇AA′λB − γCA γ

C′

A′ ∇CC′λB

]
. (5.40)

Contracting this equation with εABγA
′

B′ we �nd (after relabeling some dummy indices)

γB
′

A′ ∆AB′λA =
1

4

[
γB

′

A′∇AB′λA + γAB ∇AA′λB

]
. (5.41)

On the other hand, contracting equation (5.40) with γAB yields

γAB∆AA′λB =
1

4

[
γAB∇AA′λB + γC

′

A′∇CC′λC
]
. (5.42)

Since the right hand sides of equations (5.41) and (5.42) coincide, we arrive at identity

γAB∆AA′λB = γB
′

A′∆AB′λA. (5.43)

Now, let us rewrite the trace parts (both ε and γ) in decomposition (5.39) using the identity
(5.43):

1

2
εAB∆A′Cλ

C − 1

2
γAB γ

CD∆CA′λD =
1

2

(
εAB εA′

B′ − γAB γB
′

A′

)
∆CB′λC .

Obviously, the term in the bracket is the projection operator and so the spinor decomposition
(5.39) can be brought into the form of the sum of two irreducible parts,

∆A′AλB = ΠCB′

AA′ εCB ∆DB′λD + T C
A′AB λC . (5.44)

Now we can see why the γ−trace is not an independent irreducible part: it appears as one term
in the projection of the ε−trace ∆DB′λD.

In fact, the operator T C
A′AB (or its chiral projections πD

′

± A′T C
D′AB ) constitutes tangential

part of the twistor equation (4.1). In the twistor theory, it was introduced as a tool to construct
solutions of the zero-rest-mass equations. Here we have shown that the twistor operator appears
naturally as a part of the geometry intrinsic to S.
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6. Penrose's mass

In this chapter we brie�y review Penrose's construction of quasilocal mass, following [7, 20].

6.1 Motivation

Let us start our discussion with rather trivial case of Newton's gravity. Newtonian gravitational
potential φ is subject to the Poisson equation

∆φ = 4πGρ ,

where ρ is the mass density of gravitating source. Strength of gravitational �eld K is related to
gravitational potential by familiar relation

K = −∇φ.

These formulae allow us to pass from well-de�ned notion of local mass-density to quasilocal
mass. Let us choose any �nite three-dimensional volume V with boundary S = ∂V . The mass
contained in volume V is, by the de�nition of ρ, equal to

m[V ] =

∫

V

ρ dV , (6.1)

where we use square brackets to emphasize that m[V ] is mass associated to a volume V . Now,
using the Poisson equation and the Gauss divergence theorem we arrive at the expression

m[V ] =
1

4πG

∫

V

∆φ dV =
1

4πG

∮

S

na∇aφ dS ≡ m[S] , (6.2)

where na is the normal to 2-surface S.
Thus, we have two equivalent expressions (6.1) and (6.2) for the mass contained in volume

V or, equivalently, the mass enclosed in surface S. Notice that while the volume integral (6.1)
is expressed in terms of the source (mass density), surface integral (6.2) is expressed in terms
of �eld quantity, potential φ. In general relativity, the mass density ρ must be replaced by the
energy-momentum tensor Tab and we can expect that some notion of quasi-local mass(energy)
can be obtained by integrating Tab over some 3-volume V . On the other hand, Tab decribes only
non-gravitational �elds and vanishes in the regions where only gravitational �eld propagates.
Hence, using the energy-momentum tensor it is impossible to de�ne quasilocal energy associated
to pure gravitational �eld and the volume integral like (6.1) is expected to vanish.

However, one can still hope to �nd reasonable notion of quasilocal mass in terms of surface
integral like (6.2) which contains the �eld quantities instead of sources. Energy-momentum
tensor is related to the curvature tensor Rabcd via Einstein's equations. The di�erence is that
Rabcd does not vanish even in the vacuum if the gravitational �eld is present. So, in order to �nd
an appropriate notion of quasilocal mass(energy), we are looking for a suitable surface integral
of the Riemann tensor.
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6.2 Quasilocal quantities in Minkowski spacetime

In this section we brie�y discuss quasilocal quantities associated to matter �elds(rather than to
pure gravitational �eld) in the �at spacetime possessing 10 Killing symmetries. Let Ka be a
Killing vector of the spacetime subject to the Killing equation

∇aKb + ∇bKa = 0 or 2∇(aKb) = 0 (6.3)

and let Tab be (symmetric) energy-momentum tensor of the �eld. Recall that Tab must satisfy
equation

∇aTab = 0 (6.4)

by the requirement that the theory be invariant under di�eomorphisms.
Then we can associate a conserved quantity to each of the Killing vectors of the spacetime.

De�ne the four-current ja by

ja = TabK
b. (6.5)

This current automatically satis�es the continuity equation:

∇aja = (∇aTab)Kb + Tab∇aKb = 0 ,

where we used (6.3), (6.4) and the symmetry of Tab (so that Tab∇aKb = Tab∇(aKb)).
Now we can choose a spacelike three-dimensional hypersurface Σ with the boundary S =

∂Σ and integrate ja over Σ to obtain charge Q[K] associated with Killing vector Ka which is
conserved, constant in time. Of course, ja cannot be integrated over Σ directly because it is a
three-dimensional hypersurface while ja is a one-form. For this reason we have to introduce the
Hodge dual ωabc of ja given by standard relation

ωabc = εabcd j
d. (6.6)

The Hodge dual ωabc is a three-form and thus can be integrated over three-surface Σ.
Form ωabc is closed, i.e. ∇[eωabc] = 0. This can be shown as follows. Since the exterior

derivative of ωabc is the four-form, it must be proportional to εabcd:

∇[eωabc] = λ εabce.

Coe�cient λ can be obtained by contraction of the last equation with εabce:

4!λ = εabce∇eεabcdjd = 3! δed∇ejd = 3!∇djd = 0

where we have used relation εabceεabcd = 3!δed and the continuity equation. Hence, λ = 0 and
form ωabc is closed.

By the Poincaré lemma, any closed form in �at spacetime is also exact and therefore there
exists a two-form Kab such that

ωabc = 3∇[aKbc]. (6.7)

Two-form Kab is called the superpotential1 for the current ja. Now we can de�ne the charge by

QS [K] =

∫

Σ

ωabc =

∫

Σ

εabcdT
deKe , (6.8)

1Sometimes, term superpotential is reserved for the Hodge dual of Kab, i.e. for quantity (1/2)εabcdKcd.
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which, by the Stokes theorem, is equivalent to

QS [K] =

∮

S

Kab. (6.9)

Suppose that Σ is chosen to be a Cauchy hypersurface with boundary S. Since all Cauchy
hypersurfaces have the same boundary S at spacelike in�nity, the value of QS [K] does not depend
on the choice of Cauchy hypersurface Σ. This can be interpreted as the conservation of the charge
in time.

6.3 Penrose's construction and twistors

Let us now turn to full general relativity. In the previous section we obtained expression (6.8)
for the charge associated with the Killing vector Ka. This expression is analogous to Newtonian
expression (6.1) in the sense that it is a volume integral of object representing the source of
gravity, mass. By source we mean the mass-density in the Newtonian case and energy-momentum
tensor in the relativistic case. However, as noted above, charge QS [K] necessarily vanishes if
only gravitational �eld is present.

Hence, we would like to re-express (6.8) in terms of curvature tensor rather than in terms
of Tab. The �rst possibility is to replace the energy-momentum tensor by the left hand side
of Einstein's equations, i.e. by the Einstein tensor. An obvious drawback of this suggestion is
that the Einstein tensor consists of contractions of the Riemann tensor and therefore does not
contain information about �pure� gravitational �eld which is represented by the (trace-free) Weyl
part of the Riemann tensor. For this reason, charge QS [K] must be expressed by the integral of
Riemann tensor rather than by the integral of the Ricci tensor. On the other hand, tensor Rabcd
cannot be integrated over 2-surface S and so we introduce new tensor �eld fab to construct a
2-form Rabcdf

cd which already can be integrated.
Thus, Penrose's suggestion is that the volume integral (6.8) can be expressed as a surface

integral of the Riemann tensor as follows:
∫

Σ

εabcdT
deKe = κ

∮

S

Rabcdf
cd , (6.10)

where κ is a constant to be determined later. Let us �nd conditions under which the above
relation holds.

Without the loss of generality we may assume that f cd is antisymmetric and thus can be
written in the form

f cd = ωCDεC
′D′

+ ωC
′D′
εCD

with ωCD symmetric. In addition, we assume that f cd is anti-self-dual2(and hence necessarily
complex) in order to simplify the calculations:

f cd = ωCD εC
′D′
.

Integrands in (6.10) cannot be compared directly, because the integral on the left hand side
is taken over the volume Σ while the right hand side integral is taken over the boundary S = ∂Σ.

2A two-form is self-dual, if it is multiplied by i under Hodge dualization. It is self-dual, if it is multiplied by −i
under dualization. General real 2-form is a sum of self-dual part ωC

′D′
εCD and anti-self-dual part ωCDεC

′D′
.
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Applying the Stokes theorem, the right hand side transforms to the volume integral

κ
∮

S

Rabcdf
cd = 3κ

∫

Σ

∇[e

(
Rab]cdf

cd
)

where the covariant derivative acts on both quantities Rabcd and f cd. However, by the Bianchi
identity we have ∇[eRab]cd = 0 and so the covariant derivative acts only on f cd. Now that we
have written the right hand side integral in (6.10) as a volume integral, we can compare both
integrands:

εeabcT
cdKd = 3κ∇[ef

cdRab]cd. (6.11)

At this stage we could insert spinorial equivalents into (6.11) and �nd desired conditions. How-
ever, it is more convenient to multiply (6.11) by ε eab

f and remove the antisymmetrization in the
operation of exterior derivative. Let us evaluate more complicated right hand side �rst:

r.h.s. = 3κε eab
f ∇[ef

cdRab]cd = 3κε eab
f Rabcd∇ef cd = 6κ∗Rfecd∇ef cd (6.12)

where ∗Rabcd is the Hodge dual of the Riemann tensor de�ned by

∗Rabcd =
1

2
ε ef
ab Refcd.

Using the notation of section 2.3, namely de�nitions (2.57), (2.58) and (2.59), decomposition of
dual Riemann tensor reads

∗Rabcd = −iψabcd + iψabcd − iφabcd + i φabcd − iλabcd + iλabcd.

Recall that f cd = ωCDεC
′D′

. Thus, contraction of ∗Refcd with ∇ef cd will annihilate all terms
antisymmetric in CD and terms symmetric in C ′D′. Direct calculation then reveals

r.h.s = 6κ
[
2 iΨFECD∇(E

F ′ω
CD) + 2 iΦCDF ′E′∇E′

F ω
CD + 4 iΛ∇EF ′ωEF

]
. (6.13)

Evaluation of the left hand side of (6.11) multiplied by ε eabf is much easier:

l.h.s. = ε eab
f εeabc T

cdKd = 3! gcf T
cdKd = − 3!

8πG
GfdK

d.

Using the spinor equivalent of the Einstein tensor, or substituting for T cd directly from (2.50),
we arrive at

l.h.s. =
6

4πG

[
ΦFDF ′D′ KDD′

+ 3 ΛKFF ′

]
.

Finally we compare the left hand side to the right hand side and obtain equality

ΦFDF ′D′ KDD′
+ 3 ΛKFF ′ =

= 8πGκ
[
iΨFECD∇(E

F ′ω
CD) + iΦCDF ′E′∇E′

F ω
CD + 2 iΛ∇EF ′ωEF

]
(6.14)

We have brought both integrands in (6.11) to the form such that they can be compared and
conditions under which they equal to each other can be discussed.
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First, in order to eliminate the constants we set

κ = (8πG)−1.

Let us equate terms containing the Ricci spinor:

ΦFDF ′D′ KDD′
= iΦCDF ′E′ ∇E′

F ωCD. (6.15)

On the left hand side, the Ricci spinor is contracted with the two-index object while on the right
hand side there is a contraction over three indices. Hence, we rewrite the left hand side as

ΦFDF ′D′ KDD′
= ΦCDF ′E′ ε C

F KDE′
= ΦCDF ′E′ ε

(C
F KD)E′

where we have used the symmetry of the Ricci spinor in the last step. Equation (6.15) then
yields

∇CC′
ωAB = − i εC(AKB)C′

. (6.16)

So, we arrived at �rst condition which ωAB must satisfy. However, symmetrization of this
equation in all (unprimed) indices leads to

∇(A
C′ω

BC) = 0. (6.17)

This is an example of the twistor equation. We can see that ωBC satisfying (6.16) automatically
satis�es also the twistor equation (6.17) and so the only term in (6.14) containing the Weyl spinor
vanishes. Then, single remaining condition follows from the comparison of terms containing Λ:

∇BA′ωBC = − 3

2
iKCA′ .

It is straightforward to show that even this condition is a consequence of (6.16), for we have

∇CC′ωCB = − i

2

(
εCC KBC′ + εCBKCC′

)
= − 3

2
iKBC′ . (6.18)

Let us recapitulate the results. Following Penrose, we suggested to de�ne the quasilocal
charge associated with the Killing vector Ka by (cf. 6.10)

QS [K] =
1

8πG

∮
Rabcd f

cd (6.19)

where

f cd = ωCD εC
′D′

is anti-self-dual form. Then we required that, applying the Stokes theorem, integral (6.19) should
reduce to the volume integral

QS [K] =

∫

Σ

εabcd T
deKe.

This requirement implied that symmetric spinor ωCD must satisfy the twistor equation (6.16)
or, equivalently, twistor equation in the form (6.17).
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6.4 Explicit expression for charge

Let us write the expression for quasi-local charge (6.19) explicitly in terms of the Newman-Penrose
quantities. First, the integrand reads

Rabcd f
cd =

(
ψabcd + ψabcd + φabcd + φabcd + λabcd + λabcd

)
ωCD εC

′D′
. (6.20)

Contraction of the expression in the brackets with ωCDεC
′D′

annihilates all terms symmetric in
C ′D′ and antisymmetric in CD, i.e. terms containing ψabcd, φabcd and λabcd. Remaining non-zero
terms are

Rab := Rabcd f
cd = 2 εA′B′ ωCD ΨABCD + 2 εAB ω

CD ΦCDA′B′ + 4 Λ εA′B′ ωAB . (6.21)

Quantity Rab is a two-form. However, in the integral

QS [ωAB ] =

∮

S

Rab,

the integrand must be proportional to a two-dimensional volume-form (2)εab induced on the
surface S:

QS [ωAB ] =

∮

S

R (2) εab ≡
∮

S

R dS.

Thus, we have to �nd an expression for R.
We now introduce the Newman-Penrose null tetrad consistently with previous chapters in a

following way. Let la and na be null vectors orthogonal to surface S and let ma and ma be null
vectors tangent to S. A spinor dyad is chosen in a standard way so that

la = oA oA
′
, na = ιA ιA

′
, ma = oA ιA

′
, ma = ιA oA

′
.

Two-dimensional volume-form on the surface S is therefore a contraction of four-dimensional
εabcd with vectors normal to S:

(2)εab = εabcd l
c nd. (6.22)

Using the spinor equivalent of Levi-Civita symbol (1.96) we �nd

(2)εab = i (εAB oA′ ιB′ − εA′B′ oA ιB) . (6.23)

Normalization is chosen so that

(2)εab (2)εab = 2.

Finally, form Rab must be proportional to (2)εab,

Rab = R (2)εab.

Contracting this equation with (2)εab and using (6.21) we arrive at

R = 2 i ωCD oA
′
ιB

′
ΦCDA′B′ − 2 i oA ιB ωCD ΨABCD − 4 iΛ oA ιB ωAB . (6.24)
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In order to write this expression down in terms of NP scalars, we use the fact that arbitrary sym-
metric spinor can be factorized to a symmetrized direct product of uni-valent spinors. Namely,
we decompose ωCD as

ωCD = α(C βD).

Spinors αC and βC in terms of basis spinors oC and ιC read

αC = α0 oC + α1 ιC , βC = β0 oC + β1 ιC .

Now, performing contractions in (6.24) we �nd

R = 2 i α0 β0 (Φ01 − Ψ1) + 4 i α(0 β1) (Φ11 − Ψ2 + Λ) + 2 i α1 β1 (Φ21 − Ψ3).

We can conclude that the quasi-local charge is given by relation

QS [αA, βB ] =
1

8πG

∮

S

Rabcdf
cd

=
i

4πG

∮

S

[
α0β0(Φ01 −Ψ1) + (α0β1 + α1β0)(Φ11 −Ψ2 + Λ) + α1β1(Φ21 −Ψ3)

]
dS.

(6.25)

We conclude this chapter with few general remarks on applicability of Penrose mass as in-
troduced herein. We have seen that if the surface integral 1

8πG

∮
S Rabcdf

cd is to correspond to
the charge integral

∫
Σ
εabcdT

deKe, the anti-self-dual 2-form f cd = ωCDεC
′D′

must be a solution

of the twistor equation ∇(A
A′ωBC) = 0. But the twistor equation has only the trivial solution

in general space-time. In order to make the construction viable in general space-times, we thus
need to weaken the condition on ωCD. Penrose's suggestion is to consider a solution of a pro-
jection of the twistor equation onto the 2-surface S. Speci�cally, to consider ωCD = α(CβD),
where αA, βA are solutions of the so-called 2-surface twistor equation T C

A′AB ωC = 0. (The
solution of �tangential valence 2 twistor equation� is under-determined.) Penrose mass given by
this modi�ed construction will not yield the integral

∫
Σ
εabcdT

deKe in general space-time, since
that integral can not even be generally de�ned. But this is actually a good news. As we will
discuss in the next chapter, a charge integral of the matter energy-momentum T ab is not very
useful quantity in general space-time, because we also need to take account of the gravitational
energy. The �modi�ed� Penrose mass is one of several promising candidates for a quasi-local
(total) energy in the general relativity.
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7. Mass in General Relativity

In this chapter we will brie�y review the issue of mass in general relativity, mostly following the
article [20] by László B. Szabados. It turns out that a notion of energy is very elusive in general
relativity. Let us �rst consider the energy of non-gravitational �elds. It should be described by
the energy-momentum tensor Tab which satis�es the condition ∇aTab = 0 and, as a consequence,
the energy de�ned by it is locally conserved. Considering however the energy in a �nite domain we
generally �nd that it is not conserved, because it is not possible to write the covariant derivative
as a coordinate derivative over a �nite region in a curved space. An apparent explanation for
this gain or loss of the energy is the interaction between the gravitational and non-gravitational
�elds, which is actually expected to result in a transfer of the energy between the two. The line of
reasoning we just followed thus brings us to the concept of the energy of the gravitational �eld.

How can we describe this gravitational energy? Perhaps the most natural attempt at this
point is to search for some tensor gravTab that would represent the gravitational energy-momentum
so that the sum gravTab + Tab � encompassing the total energy and momentum of a system �
would be conserved. It turns out, however, that such a tensor cannot exist. The reason for this
interesting trait of the gravitation lies in the very heart of the general relativity, in the equiv-
alence principle. The equivalence principle requires that for any given point (i.e. a space-time
event) there exist coordinates in which the gravitational �eld vanishes locally at that point. Com-
ponents of tensor gravTab with respect to those coordinates are therefore also zero there1. But
because a tensor that vanishes in one coordinates is also zero in any other coordinates, we have
gravTab = 0 at the point we just considered. Since the same analysis can be carried out at any
other point, the tensor gravTab is identically zero. Nevertheless, it is possible to de�ne quantities
tab which satisfy2 the requirement ∂a (Tab + tab) = 0, but such quantities must be intrinsically
coordinate-dependent. Quantities of this type are called pseudotensors. While pseudotensors are
an interesting subject, they may as well be regarded as a symptom of a problem rather than a
solution. Their basic disadvantage � when interpreted as strictly local quantities � is a lack
of geometric meaning unless some background structure is speci�ed3. We shall not focus on
pseudotensors in this chapter and will turn our attention to di�erent approaches to the notion
of gravitational energy.

As the preceding discussion suggests, the equivalence principle sets up signi�cant obstacles to
any local geometric description of the gravitational energy. Fortunately, even non-local objects
may possess a clear geometric meaning. Consider a covariant derivative. Christo�el symbols,
which are used in coordinate description of covariant derivative, are functions of the �rst coor-
dinate derivatives of the metric and we can make them locally vanish at any single point due to
the equivalence principle. Christo�el symbols therefore do not have a local geometric interpreta-
tion. Nevertheless, if we consider them over a �nite region of space-time, they obtain geometric
meaning as a covariant derivative. This suggests that a non-local approach to the gravitational
energy may be a viable alternative. There are basically two kinds of non-local quantities, namely
global quantities which are taken over the whole of a manifold and quasi-local quantities which
are taken over a �nite region, possibly limiting such a region to a single point. But before we

1By vanishing of a gravitational �eld we mean the vanishing of the gravitational force, i.e. a quantity which
depends on the �rst derivatives of the metric. We presume gravTab to be a function of this gravitational force.

2In fact, complex Tab + tab usually needs to be multiplied by a suitable power of the metric determinant to be
(coordinate-)divergence-free.

3Lack of a background structure is a recurrent theme in gravitational physics. Most of the physics we are used to
is formulated on some �xed background, usually on a background of the Minkowski space-time. General relativity
is di�erent, since it describes dynamics of the background geometry itself. This lack of primordial geometric
structure is again a consequence of the equivalence principle and the resulting universality of the gravitation.
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inspect these two possibilities more closely, let us take a detour and give a few remarks on a
concept of energy.

What we have said so far might suggest that the object we are searching for is some kind of
a gravitational counterpart to the energy-momentum tensor Tab. This seems however not to be
the case. The canonical way to obtain the symmetric energy-momentum tensor Tab in general
relativity is through variational derivative of the action Im for the matter �elds with respect to
the background metric gab. But the gravitational action Ig is a functional of the metric alone,
and taking its variational derivative with respect to gab yields equations for gravitational �eld.
There is no apparent background structure with respect to which we could vary the action Ig and
obtain a gravitational analogue to the energy-momentum tensor of the matter �elds. Moreover,
the energy-momentum tensor should be � because of its de�nition Tab ∼ δIm/δgab � regarded
foremost as the source �eld for the gravitation and not as the energy-momentum.

By contrast, canonical energy-momentum originates as Noether current in a �at space-time,
ensuing from a symmetry of the physical system with respect to space-time translations. Thus
it seems appropriate to look for a suitable analogue to this Noether current in a curved space.
A translation of a �at space-time is a special case of continuous symmetry. When searching for
the energy of a gravitating system, it is therefore natural to consider continuous symmetries of
the space-time. Such symmetries are generated by Killing vector �elds and we should perhaps
expect Killing �elds associated with the energy to be time-like. And indeed, for stationary4

asymptotically �at space-times a fully satisfactory construction for the total mass is known
and it is closely connected with time-like Killing �elds which those space-times possess. The
construction was �rst given by Arthur Komar and is quite analoguous to the Newtonian case,
where the mass enclosed in a 2-surface is proportional to the �ux of the gravitational force
through the 2-surface5. In Komar's construction we consider stationary observers who �y along
the time-like Killing �eld. They do not follow geodesics, since they need to accelerate against
the gravitational force to stay at �the same place�. If Ka is the time-like Killing �eld, then the
acceleration is basically Kb∇bKa, apart from some factor arising from the normalization of Ka.
Now similarly to the Newtonian case, we may integrate this acceleration over a closed space-
like 2-surface (lying in a hypersurface orthogonal to Ka) and obtain a quantity which may be
interpreted as a mass. Following the procedure we have just sketched, one would arrive at the
expression

M = − 1

8π

∮

S

(
∇aKb

)
εabcd (7.1)

for the mass enclosed by the 2-surface S. An important feature of the above expression is that
as long as all the matter is inside the 2-surface S, the quantity M does not depend on the exact
choice of S. This is the reason why the construction yields a well de�ned mass for asymptotically
�at space-times6.

4By de�nition, the existence of a time-like Killing �eld is equivalent to stationarity.
5In Newtonian gravity the Laplacian of the gravitational potential φ is proportional to the matter density ρ:

∇2φ = 4πρ .

Consider a compact region Σ of a 3-space with a boundary S = ∂Σ. By the Gauss law the following holds true
for the mass M contained in the region Σ:

M =
1

4π

∫
Σ

(
∇2φ

)
εabc =

1

4π

∮
S

(∇aφ) εabc .

The mass is therefore proportional to the �ux of the gradient ~∇φ over the surface S.
6Even if space-time is not vacuous near the in�nity, a limit of the quantity (7.1) when the 2-surface S is
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While Komar's construction is very appealing, it has a great shortcoming � namely the very
limited applicability. A general space-time simply does not possess any Killing �elds and we
therefore need to look for some more general construction for the gravitational energy.

7.1 Global energy and momentum

In previous paragraphs we touched upon serious di�culties that stand in a way of obtaining
a reasonable energy-momentum for gravitating systems. There is, however, an important class
of space-times for which we are able to de�ne a well-behaved global energy and momentum. If
a space-time is asymptotically �at, we know how to obtain a reasonable energy-momentum of
the whole space-time, even if it does not have any Killing �eld. But before we discuss these
global energy-momenta, we ought to specify what we actually mean by an asymptotically �at
space-time.

7.1.1 Asymptotic simplicity

One expects that for an asymptotically �at space-time there exists some notion of in�nity such
that when we approach that in�nity the geometry is gradually becoming more and more �at-like.
This unfortunately does not make for a very usable de�nition. To obtain the results advertised
above a stricter de�nition must be adopted. Here we will introduce the concept of asymptotic
simplicity which was �rst proposed by Penrose. It relies on a conformal transformation that
allows us to compactify the original space-time and thus directly access the in�nity and its
neighborhood. First, we elucidate this procedure in Minkowski space-time.

Minkowski metric in standard coordinates reads

ds2 = dt2 − dx2 − dy2 − dz2 . (7.2)

We will introduce an appropriate conformal transformation

ds2 7→ dŝ2 = Ω2ds2 (7.3)

of the physical metric, so that the �in�nity� will be �nitely close with respect to the transformed
metric ĝab. Let us �rst suitably rewrite the Minkowski metric. Our construction will respect the
spherical symmetry, so we start by rewriting the metric using spherical coordinates:

ds2 = dt2 − dr2 − r2dΣ2 , (7.4)

where

dΣ2 = dθ2 + sin2 θ dφ2 .

Next we employ the null coordinates u, v,

u = t− r , v = t+ r , (7.5)

in a place of the pair t, r. The metric thus acquires the form

ds2 = du dv − 1

4
(v − u)

2
dΣ . (7.6)

continuously stretched to the in�nity is well de�ned for asymptotically �at space-times.
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Now we may apply the conformal factor

Ω2 =
4

(1 + u2) (1 + v2)
, (7.7)

obtaining

dŝ2 =
4

(1 + u2) (1 + v2)
du dv − (v − u)

2

(1 + u2) (1 + v2)
dΣ2 (7.8)

for the rescaled metric ĝab. To make the signi�cance of this result more apparent, we employ
new coordinates

p = arctanu , q = arctan v , −π
2
< p ≤ q < π

2
, (7.9)

in which ĝab has the form

dŝ2 = 4 dp dq − sin2 (p− q) dΣ2 . (7.10)

We see that ĝab in these coordinates looks nearly same as the physical metric in the form (7.6),
the only signi�cant di�erence being that there is the factor sin2 (p− q) in front of the spherical
element in metric (7.10), instead of the factor (v − u)

2 in front of the element dΣ2 in the physical
metric (7.6). Switching to the coordinates

T = q + p , R = q − p , (7.11)

−π < T < π , 0 <R < π , |T | < π −R ,

we arrive at

dŝ2 = dT 2 − dR2 − sin2RdΣ2 . (7.12)

Now we can see clearly that the correspondence sin2 (p− q)↔ (v − u)
2 simply means that while

a space-like hypersurface t = const is �at with respect to the physical metric gab, space-like
hypersurface T = const with respect to the rescaled metric ĝab is a 3-space of positive (elliptic)
constant curvature. Actually, the space-time we obtained is locally identical to the Einstein static
universe, which is topologically a product of the real line with the 3-sphere and can be described
by the metric (7.12) with −∞ < T <∞, 0 < R < π. Thus we see that the Minkowski space-time
can be conformally transformed to a region of the Einstein static universe (see �gure 7.1). This
provides us with a neat way of representing the in�nity of the Minkowski spacetime. Minkowski
space-time is conformal to an open region of the Einstein static universe and the boundary of
that region may be interpreted as a representation of the in�nity.

Let us now describe the structure of this in�nity. Conformally transformed Minkowski space-
time is sketched in a picture 7.2. It should be interpreted, especially when considering the in�nity,
as a region of the Einstein static universe (�g. 7.1). Now consider a future-pointing time-like
radial geodesics. Both of the coordinates t and r increase to in�nity along them, but since they
are time-like, we also have t − r → ∞. As a consequence, both u and v grow to in�nity, and
therefore p → π/2 , q → π/2 , or, if coordinates T , R are used, T → π , R → 0 . This means
that all future-pointing time-like geodesics approach the point i+ of the compacti�ed Minkowski
space-time (7.2). For this reason we call it the future time-like in�nity and, considering its
location in the Einstein static universe, it is topologically a point. Similarly, past-pointing radial
time-like geodesics approach the point i−, which is called past time-like in�nity. It is easy to
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Figure 7.1: Conformally transformed Minkowski space-time as a region of the Einstein static
universe. (The angular coordinates have been suppressed.)

see that non-radial time-like geodesics also approach either i+ or i−. In the case of space-like
radial geodesics, we have t+ r →∞ and t− r → −∞, which means that u→ −∞ while v →∞.
Thus we have p→ −π/2 , q → π/2 , or in other words T → 0 and R→ π. Non-radial space-like
geodesics behave asymptotically same and thus we see that all space-like geodesics tend to i0, or
the space-like in�nity, which is again topologically a point. For null geodesics we have t+r →∞
and t − r → const as t → ∞, and t + r → const and t − r → −∞ as t → −∞. In other words,
they approach points q = π/2, p = c with −π/2 < c < π/2, in the future, and come �from�
points p = −π/2, q = c′, where −π/2 < c′ < π/2, of the past. All those points lie either in
the null hypersurface I+ (I is pronounced as �scri�) called the future null in�nity, or in the null
hypersurface I− called the past null in�nity. Both I+ and I− can be shown to be topologically
a product of the line and the 2-sphere.

Now that we have introduced a tangible representation of in�nity of the �at space-time, we
are prepared to introduce the de�nition of asymptotic simplicity7. De�nitions given here are
taken from [17] (where they were adopted from [6]).

A space-time (M, g) is said to be asymptotically simple if there exists another manifold (M̂, ĝ)
such that:

1. M is an open submanifold of M̂ with a smooth boundary ∂M ,
7We do not de�ne an asymptotical �atness, because it has been de�ned in many incompatible ways in the

literature.
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Figure 7.2: Conformal diagram of Minkowski space-time. (Adopted from [15].)

2. there exists a real function Ω on M̂ such that ĝab = Ω2gab on M and Ω = 0, ∇aΩ 6= 0 on
∂M ,

3. every null geodesic has two endpoints on ∂M .

The manifold (M̂, ĝ) is called the unphysical space-time.
The restrictions given above are rather strong. For example the Schwarzschild space-time is

not asymptotically simple, for there are trapped null geodesics that will never reach the in�nity.
This indicates that we should probably weaken our conditions. We say that a space-time (M, g) is
weakly asymtotically simple if there is another space-time (M ′, g′) which is asymptotically simple
and which is isometric to (M, g) near the in�nity. Speci�cally, there must exist a neighborhood
U ′ of ∂M ′ in M ′ such that M ∩ U ′ is isometric to an open subspace of M ′.

7.1.2 ADM and Bondi energy-momenta

We are able to associate satisfactory energy-momenta with (weakly) asymptotically simple space-
times, even if they do not possess any exact Killing �elds. Their asymptotic simplicity does
however allow us to de�ne asymptotic translations (vector �elds that are translations at the
in�nity), so that we are able to talk about energy and momentum in a manner analogous to
the Noether currents. In ADM (Arnowitt, Deser, Misner) construction we measure the energy
(and momentum) over a space-like hypersurface. Original construction relies on Hamiltonian
formalism and energy-momentum arises as a value of the Hamiltonian associated with a suitable
asymptotic translation. The integral over the region of the space-like hypersurface is expressed by
an integral over its two-dimensional boundary, which is then stretched to the in�nity. In present,

90



we know several di�erent approaches to the computation of the ADM energy-momentum. Let
us mention approaches based on background tetrad �elds. If the tetrad �eld is constructed from
a spin-frame εAA = λAA , we obtain the energy-momentum in the form of the 2-surface integral
of the Nester-Witten 2-form:

PAB′
=

1

4π

∮

S

i

2

(
λB

′

A′∇BB′λAA − λB
′

B′∇AA′λAB

)
. (7.13)

The Nester-Witten 2-form

u(α, β)ab =
i

2

(
βA′∇BB′αA − βB′∇AA′αB

)
(7.14)

will be encountered repeatedly in the remainder of this chapter. Many other results for the global
or quasilocal energy-momentum can be written in its terms and it has some pleasant properties.
For example, it is �essentially Hermitian�, i.e. it di�ers from Hermitian only by an exact form:

u(α, β)ab − u(β, α)ab = −i∇[aXb] , (7.15)

where

Xa = αAβA′ . (7.16)

This property is useful (e.g.) when proving the positivity of the energy.
The basic di�erence between the ADM and the Bondi energy-momentum is that the Bondi

energy-momentum is measured over a hypersurface that is asymptotically null. This distinction
has notable consequences. Consider an isolated system which at some time t0 sent a wave of
radiation towards the in�nity (see �g. 7.3). We would expect the energy of the isolated system
to decrease at the time t0, since the radiation is carrying away a portion of its energy. But the
radiation intersects every space-like hypersurface that is in the future of the radiative event t0.
This means that ADMmass does not decrease in time for radiating systems. On the other hand, if
we measure the energy over a family of asymptotically null hypersurfaces, there are hypersurfaces
not intersected by the radiation. The Bondi energy of a radiative system is therefore decreasing.

Now again, there are several methods of calculating the Bondi energy-momentum and we
shall not discuss them more closely in this chapter. However, we should point out that such
calculations generally result in an integration over a space-like 2-surface lying in the null in�nity.
(As opposed to an integration over a space-like 2-surface that is being stretched towards the space-
like in�nity in the case of ADM energy-momentum.) The structure of null in�nity gives rises to
the so-called BMS (Bondi, Metzner, Sachs) group, which preserves the asymptotic form of the
metric. It is a semidirect product of the Lorentz group and the in�nite-dimensional commutative
group of supertranslations. Supertranslation are connected with particular reparametrizations
of curves along the null generators of the null in�nity and it has a group of translations as its
four-parameter subgroup.

7.2 Quasi-Local Energy and Momentum

While it is nice that we are able to de�ne an energy-momenta for a whole space-time (if it is
weakly asymptotically simple), there is no apparent reason why it should be not possible to
speak of energy-momentum on a quasi-local level, moreover, the energy-momentum as a quasi-
local quantity seems to be both more in accordance with our intuition and more theoretically
interesting than a global energy-momentum.
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Figure 7.3: Conformal diagram of an idealised radiative system. An isolated system is located at
the �center� of the space-time. It is inactive except for a �nite interval when it radiates energy
towards the null in�nity. A family of space-like hypersurfaces is illustrated by dashed lines in the
left picture, while the dashed lines in the picture on the right represent hypersurfaces that are
asymptotically null. Energy measured over space-like hypersurfaces is not expected to change in
time, since the radiation intersects each such hypersurface. On the other hand, if we measure
the energy over asymptotically null hypersurfaces, the energy should decrease with time, because
�the later� hypersurfaces are not intersected by the outgoing radiation.

92



All the energies-momenta that we have mentioned so far could be rewritten as an integral
over a closed (orientable) space-like 2-surface. This seems natural for charge quantities and we
will look for quasi-local energy-momentum in such a form.

When constructing a quasi-local quantity we would typically start with searching for some
suitable Lagrangian or Hamiltonian formulation. Both approaches do however require us to
choose some gauge reduction. Langrangian formulation with Noether-like analysis yields only the
divergence of conserved current, while the Hamiltonian action may be altered by various boundary
terms. Lastly, we need to specify what the transformations which generate the conserved current
are exactly. For example, in the case of energy-momentum, we need to de�ne what is meant by
space-time translations � something not obvious in a curved space.

Here we shall not discuss the procedure outlined above any more deeply. We shall rather
adopt a more heuristical description of the problem. Our focus here will be on two speci�c
constructions based on the Nester-Witten 2-form.

Consider the following integral over a closed orientable space-like 2-surface S:

HS [λ, µ] :=
1

4π

∮

S

u(λ, µ)ab =
1

4π

∮

S

γA
′B′
µA′∆B′Bλ

BdS , (7.17)

with λA, µA
′
an arbitrary spinor �elds. Operator ∆AA′ stands for the Sen derivative and γAB is a

spinor related to the geometry of the 2-surface analogous to the Dirac spinor γ5. Both quantities
are de�ned in Chapter 5. The quantity HS [λ, µ] has certain favorable features. First, observe
from the rightmost expression of equation (7.17) that HS [λ, µ] depends only on the values of
the �elds λA, µA

′
on the 2-surface S, because the Sen derivative is tangential to the surface.

Next, we have HS [λ, µ] = HS [µ, λ] as a consequence of the equation (7.15) and the integration
being taken over a closed 2-surface. Thus we see that equation (7.17) de�nes a Hermitian scalar
product on the vector space of smooth spinor �elds on the 2-surface S.

Consider now a pair λAA = (λ0
A, λ

1
A) of smooth spinor �elds on S. If ΛA

B is a constant SL(2,C)

matrix, then HS [ΛA
CλA,ΛB′D

′
λB

′
] = ΛA

CΛB′D
′
HS [λA, λB

′
], i.e. numbers HS [λA, λB

′
] trans-

form as spinorial components of a Lorentz four-vector under a spin-transformation ΛA
B. More-

over, because of the hermicity of the scalar product HS [◦, ◦], the four-vector represented by
numbers HS [λA, λB

′
] is real.

Thus we see that after choosing a two-dimensional subspace of the in�nite-dimensional vector
space of smooth spinor �elds on S, i.e. specifying two �elds λAA , and choosing a symplectic
structure εAB thereon, we obtain a promising candidate for an energy-momentum in terms of
the integral (7.17):

PAB′

S = HS [λA, λB
′
] ,

m2
S = εAB εA′B′ PAA′

S PBB′

S . (7.18)

Various proposals for quasi-local energy-momentum based on Nester-Witten 2-form di�er by the
choice of metric εAB and spinor �elds λAA . In the remainder of this chapter we shall present two
such constructions, the Ludvigsen-Vickers construction based on propagating the �elds λAA from
null in�nity, and the Dougan-Mason construction where λAA are independent �elds satisfying a
particular (anti-)holomorphicity condition.

7.2.1 Ludvigsen-Vickers construction

Ludvigsen-Vickers construction [8] is related to the notion of Bondi mass. One of the accom-
plishments of the original paper was actually the proof of positivity of the Bondi mass under
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certain circumstances and the unmodi�ed construction strongly relies on the structure of the
null in�nity (and thus is applicable only in weakly asymptotically simple space-times).

Consider a closed space-like 2-surface in a (weakly) asymptotically simple space-time and
suppose that the 2-surface can be connected to the future null in�nity by a smooth null hy-
persurface N . The intersection of N with I+ de�nes another 2-surface S∞ and N provides us
with a smooth bijection between the cut S∞ of the I+ and the 2-surface S. We will utilize this
bijection to transport a particular structure of the null in�nity onto S.

Let us introduce a coordinate r as an a�ne parameter along the null generators of N and a
null four-vector la tangential to those generators. Lastly we de�ne na as a null vector �eld on N
orthogonal to space-like cuts of N of constant r and normalized so that lana = 1. Thus we may
write la = oAoA

′
, na = ιAιA

′
for some spin-frame oA, ιA on N .

A general radiative space-time does not admit asymptotically constant spinors, but there
is a weaker condition � the asymptotic twistor equation � that can be solved in such general
(weakly) asymptotically simple space-times, and which implies asymptotic constancy if the space-
time is non-radiative. Moreover, the space of solutions to the asymptotic twistor equation is
2-complex-dimensional8, i.e. it has a structure of a spin space � exactly the structure that is
needed for the de�nition of energy-momentum based on Nester-Witten 2-form. We shall denote
it by SA

∞.
Thus we just need to associate a spinor �eld on S with a solution of asymptotic twistor

equation. An asymptotic form of a spinor does however not determine that spinor uniquely in
the whole space-time. Therefore, an additional condition needs to be imposed that will allow
us to associate a unique spinor �eld on S with a solution of the asymptotic twistor equation on
S∞. In other words, we need to choose an equation of propagation, so that we can transport a
spinor along the null generators of N . Unfortunately, it is not obvious what propagation equation
should one choose and results depend strongly on this, in a sense arbitrary, choice.

The equation of propagation chosen by Ludvigsen and Vickers reads

oAoA
′∇BA′λA = 0 . (7.19)

They considered it to be a natural choice, since it possesses the following desirable properties:

• The resulting energy-momentum enclosed in a 2-surface S is non-decreasing when S is
stretched over a larger region. More speci�cally, the mass-gain formula Pa(Sr1)ka ≤
Pa(Sr2)ka holds for r1 ≤ r2 and a future-pointing time-like ka, if dominant energy condition
is satis�ed on N .

• Equation (7.19) reduces to parallel transport if space-time is �at.

• In the case of linearized gravity, the resulting Pa(S) reduces to the �correct� energy-
momentum enclosed in the 2-surface S.

In GHP formalism, the equation (7.19) acquires the form

þλ0 = 0 (7.20)

ð′λ0 + ρλ1 = 0 . (7.21)

We use the propagation equation speci�ed above to transport two independent solutions λAA
of asymptotic twistor equation from the cut S∞ onto the 2-surface S. This establishes a 2-
complex-dimensional vector space9 (i.e. a spin space) of spinor �elds on S which we shall denote

8Which means that if spinors of a spin-frame εA
A are solutions of the asymptotic twistor equation, then

components of any other such solution taken with respect to that spin-frame are constant on the 2-surface S∞.
9Recall that a space of solutions of asymptotic twistor equation is 2-complex-dimensional.
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SA. We de�ne a metric εAB on space SA to be a 2-form with respect to which do the �elds λAA
form a spin-frame if they are normalized at S∞. Thus we have all the components needed to
de�ne the energy-momentum as in equations (7.18).

The quasi-local energy-momentum of Ludvigsen and Vickers has two important drawbacks.
First, it is not genuinely quasi-local. It depends on global properties of space-time, because the
null in�nity is needed in construction. The other problem is existence of caustics in general
curved space-times, which may prevent us from joining the 2-surface S to I+ by a smooth null
hypersurface N . Thus for the construction to be viable, either the 2-surface S must be �close
enough� to the null in�nity, or the space-time cannot be �too curved�. For small spheres, where
the original construction is usually not possible because of the caustics, a modi�ed procedure
may be employed. A small sphere can be described as a space-like cut of a null cone emanating
from some point p. We then may propagate the spin structure that exists at the vertex p along
the null cone onto the 2-surface S.

7.2.2 Dougan-Mason construction

In construction of Dougan and Mason the desired spin space of spinor �elds over S is obtained
as a space of solutions for speci�c anti-holomorphicity or holomorphicity condition. Consider a
null tetrad adapted to the 2-surface S, i.e. vectors ma, ma are tangential to the surface S. Then
we will say that a spinor �eld λA on S is holomorphic if mb∇bλA = 0 and anti-holomorphic if
mb∇bλA = 0. Now suppose there are two holomorphic �elds λA, µA on S and consider their inner
product εABλAµB . By holomorphicity of λA and µA we have mc∇c

(
εABλAµB

)
= 0 and thus, by

Liouville's theorem, the quantity εABλAµB is constant on S. A closed space-like 2-surface which
allows for two holomorphic �elds λA and µA such that their inner product εABλAµB is non-zero
will be called generic. Space of holomorphic spinor �elds on a generic 2-surface S is a 2-complex-
dimensional vector space. This follows from constancy of inner product of two holomorphic
spinors on S, for components of holomorphic spinor �eld αAwith respect to holomorphic dyad
λA, µA are εABαAµB/λCµC and εABαAλB/λCµC and therefore constants on S. We shall say
that a surface which is not generic is exceptional. Similar remarks hold for anti-holomorphic
spinors, i.e. their inner product is also constant, we can de�ne generic and exceptional surfaces,
and anti-holomorphic spinors on such generic surfaces form a spin space.

We have seen that if S is generic, Dougan-Mason construction de�nes a 2-complex-dimensional
subspace of the space of spinor �elds on S, and thus provides a background to employ the Nester-
Witten 2-form and obtain a quasi-local energy-momentum. But are generic 2-surfaces common?
Unfortunately, we do not know the answer for a general closed 2-surface. Nevertheless, a 2-surface
with topology of 2-sphere is either generic or can be made generic by a small perturbation.

The Dougan-Mason construction has nice positivity properties. It can also be shown, that
under certain circumstances (under the condition of the positivity proof), vanishing of Dougan-
Mason energy-momentum is equivalent to the �atness of the space Σ enclosed by S, while van-
ishing of the Dougan-Mason mass means that D(Σ) has a pp-wave geometry and the matter
(inside) may be only radiation.
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Part II

Calculations and results
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8. Einstein-electro-scalar equations

Our ultimate goal is to calculate the Bondi mass of the spacetime where interacting charged scalar
�elds and electromagnetic �elds are present. For this purpose we employ twistorial methods
reviewed in the �rst part of the thesis.

We have seen that the Penrose mass given by (6.25) in terms of the Newman-Penrose quan-
tities, namely by the components of the Ricci spinor, Weyl spinor and scalar curvature. Thus, in
order to evaluate the mass we have to �nd expressions for these NP quantities �rst. The Bondi
mass is the limit of the Penrose mass and corresponds to the case when the surface S in (6.25) is
taken to be the two-sphere of I, i.e. sphere at in�nity. For the evaluation of the Bondi mass we
need asymptotic solution of Einstein's equations with the energy-momentum tensor representing
interacting scalar and electromagnetic �elds.

Coupled scalar and electromagnetic �elds will be referred to as the electro-scalar �elds and
corresponding set of Einstein's equations together with equations for electro-scalar �elds will be
called Einstein-electro-scalar equations. In this chapter we �rst derive the Lagrangian of electro-
scalar �elds in the �at spacetime, derive the equations of motion and generalize them to curved
spacetime. This is a standard topic [13, 6] and we present it only brie�y just for completeness
and in order to �x the conventions.

Next we translate all equations to the spinor formalism and rewrite them as a �rst-order
system of equations. Finally we project these equations onto the Newman-Penrose null tetrad
and rewrite them using the Newman-Penrose formalism. This treatment is believed to be new.
In the next chapter we present asymptotic solution of Einstein-electro-scalar equations.

8.1 Lagrangian of electro-scalar �eld

In this section we derive the Lagrangian of electro-scalar �elds in the �at spacetime by demanding
the local gauge invariance of non-interacting complex scalar �eld. We follow the conventions of
[13]. In the signature (1,−1,−1,−1) used in the thesis, the Lagrangian of complex scalar �eld
reads

L0 = (∂µφ)(∂µφ) − m2 φφ. (8.1)

This Lagrangian is invariant under global gauge transformation

φ 7→ e−iθφ, φ 7→ eiθφ, θ ∈ R,

but is not invariant under local gauge transformation when θ is an arbitrary real function (rather
than constant). In order to preserve local gauge invariance of L0 we have to add several terms
to this Lagrangian.

Let us investigate how the Lagrangian L0 transforms under local gauge transformation. We
restrict ourselves to in�nitesimal gauge transformation so that

δφ = − iθφ, δ∂µφ = − iφ∂µθ − i θ∂µφ,

δφ = iθφ, δ∂µφ = iφ∂µθ + i θ∂µφ.
(8.2)

Then the Lagrangian transforms according to

δL0 = jµ ∂µθ
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where

jµ = i
(
φ∂µφ − φ∂µφ

)
(8.3)

can be interpreted as the four-current density of free scalar �eld. This interpretation (on classical
level) comes from the fact that jµ is conserved in the sense ∂µjµ = 0 (which follows from the
Klein-Gordon equation for free scalar �eld) and hence

ρ = i (φφ̇ − φ φ̇)

can be interpreted as the charge density. Obviously, for any real scalar �eld jµ vanishes and φ is
uncharged. Under the gauge transformation, the four-current jµ transforms according to

δjµ = 2φφ∂µθ. (8.4)

Now we wish to add terms to the Lagrangian L0 which will cancel terms in δL0. Let us
introduce vector �eld Aµ and construct function

L1 = − eAµjµ (8.5)

so that

δ (L0 + L1) = jµ∂µθ − e jµ δAµ − 2 e φφAµ∂µθ. (8.6)

Clearly, �rst two terms will cancel each other if we postulate

δAµ =
1

e
∂µθ

which is a usual gauge transformation of the four-potential of electromagnetic �eld. With this
transformation law we have

δ (L0 + L1) = − 2 e φφAµ ∂µθ.

This term can be canceled easily by adding the third term

L2 = e2 φφAµAµ

to the Lagrangian. Hence, entire Lagrangian reads

LS = L0 + L1 + L2 = (∂µφ)(∂µφ) − m2 φφ − eAµ jµ + e2 φφAµAµ (8.7)

and its variation under the gauge transformation is zero:

δL = 0.

To summarize, we required local gauge invariance of original Lagrangian L0. In order to en-
sure it, we had to introduce new �eld Aµ and postulate its transformation properties. By adding
appropriate terms to Lagrangian we arrived at invariant Lagrangian which therefore represents
scalar �eld coupled to the �eld Aµ. However, we have seen that postulated transformation law
is identical with the transformation law for the potential of electromagnetic �eld. Lagrangian
(8.7) still does not describe the dynamics of the �eld Aµ, as it does not contain its derivatives.
Clearly, ∂µAν is not a gauge invariant object, for we have

δ∂µAν =
1

e
∂µ∂νθ.
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In order to form a gauge invariant tensor we antisymmetrize the last expression and de�ne
electromagnetic tensor

Fµν = ∂µAν − ∂νAµ. (8.8)

Kinetic term representing the dynamics of electromagnetic �eld must be quadratic in Fµν and
the only choice is

LEM = − 1

4
Fµν F

µν .

To conclude, we have arrived at the Lagrangian describing the scalar �eld, electromagnetic �eld
and their interaction in the form

LS+EM = [(∂µ + ieAµ)φ]
[
(∂µ − ieAµ)φ

]
− m2 φφ − 1

4
Fµν Fµν . (8.9)

From the �eld-theoretical point of view it is useful to introduce the notion of gauge covariant-
derivative Dµ by

Dµφ = ∂µφ + i eAµ φ,

Dµφ = ∂µφ − i eAµ φ.
(8.10)

In terms of covariant derivatives, the Lagrangian reads

LS+EM = (Dµφ)(Dµφ) − m2 φφ − 1

4
Fµν Fµν (8.11)

Equations of motion of �elds φ, φ and Fµν can be derived in a straightforward way from the
Euler-Lagrange equations

∂µ
∂LS+EM
∂∂µφ

− ∂LS+EM
∂φ

= 0,

∂µ
∂LS+EM
∂∂µφ

− ∂LS+EM
∂φ

= 0,

∂µ
∂LS+EM
∂∂µAν

− ∂LS+EM
∂Aν

= 0.

(8.12)

We �nd following �eld equations:
(
DµD

µ + m2
)
φ = 0,

(
DµD

µ + m2
)
φ = 0,

∂µFµν = e Jν ,

(8.13)

where the four-current Jν is now given by

Jµ = i
(
φDµφ − φDµφ

)
. (8.14)

In curved spacetime we take the Lagrangian in the form

L = (Daφ)
(
Daφ

)
− m2 φφ − 1

4
Fab F

ab, (8.15)
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where Dµ is a gauge covariant derivative de�ned by

Daφ = ∇aφ + i eAa φ,

Daφ = ∇aφ − i eAa φ.
(8.16)

and the electromagnetic �eld tensor is

Fab = ∇aAb − ∇bAa. (8.17)

Unknown variables are the scalar �elds φ, φ and the vector potential of electromagnetic �eld Aa.
Euler-Lagrange equations derived from Lagrangian (8.15) are

(
DaD

a + m2
)
φ = 0,

(
DaD

a + m2
)
φ = 0,

∇aF ab = jb,

(8.18)

where the four-current jb is given by

jb = i e
(
φDbφ − φDbφ

)
. (8.19)

8.2 Electromagnetic �eld

In the �at spacetime, Fµν = ∂µAν − ∂νAµ which implies ∂[αFµν] = 0. In the language of
di�erential forms, F is an exact form, F = dA, and thus it is automatically closed, dF = 0. This
property holds also in curved spacetime where Fab is de�ned by

Fab = ∇aAb − ∇bAa. (8.20)

Then, using the de�nition of the Riemann tensor, its exterior derivative is

∇[cFab] =
2

3

[
∇[c∇a]Ab + ∇[b∇c]Aa + ∇[a∇b]Ac

]

= − 1

3

[
R d
cab + R d

bca + R d
abc

]
Ad

= AdR[abc]d = 0

(8.21)

by the symmetries of the Riemann tensor. Hence, by the de�nition of Fab, it satis�es half of
Maxwell's equations

∇[cFab] = 0. (8.22)

Antisymmetric electromagnetic tensor Fab can be decomposed in a usual way as

Fab = φAB εA′B′ + φA′B′ εAB . (8.23)

On the other hand, Fab is a curl of Aa, i.e.

Fab = ∇aAb − ∇bAa. (8.24)

Comparing both expressions and contracting it with εAB and εA
′B′

, we arrive at relations between
the potential Aa and symmetric spinor φAB (see, e.g. [14]):

φAB = ∇X′(AA
X′

B), φA′B′ = ∇X(A′AXB′). (8.25)
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By (2.27), the equation ∇[cFab] = 0 is equivalent to

∇a∗Fab = 0, (8.26)

where ∗Fab is the Hodge dual of Fab,

∗Fab =
1

2
εabcd F

cd = − i φAB εA′B′ + i εAB φA′B′ . (8.27)

Substituting spinor equivalent of ∗Fab into (8.26) yields

∇AB′φAB = ∇A′

B φA′B′ . (8.28)

On the other hand, equation (8.26) guarantees that Fab is an exact form and thus can be written
in the form (8.24) so that the spinors φAB and φA′B′ are given by (8.25). Since (8.28) is just a
spinor equivalent of (8.26), equation (8.25) should imply (8.28). We will prove this statement as
a separate lemma.

Lemma 8.2.1. Let spinors φAB and φA′B′ be given by (8.25), i.e.

φAB = ∇A′(AA
A′

B), φA′B′ = ∇A(A′AAB′).

Then equation (8.28) is automatically satis�ed, i.e.

∇AB′φAB = ∇A′

B φA′B′ .

Proof. We have to show that

∇AB′φAB − ∇A
′

B φA′B′ = ∇AB′∇X′(AA
X′

B) − ∇A
′

B ∇X(A′AXB′) = 0.

Let us write

∇AB′∇X′(AA
X′

B) =
1

2

[
∇AB′∇X′AA

X′

B + ∇AB′∇X′BA
X′

A .
]

(8.29)

By standard decomposition into symmetric and antisymmetric parts we obtain

∇AB′∇X′AA
X′

B = −�A′B′AA
′

B +
1

2
�Ab,

∇AB′∇X′BA
X′

A = −∇(A(A′∇B′)B)A
a +

1

2
�ABAAB′ − 1

2
�A′B′AA

′

B +
1

4
�Ab.

(8.30)

Recall the de�nition of operators �AB and �A′B′ given by (2.75). Thus, we have

∇AB′φAB =
3

8
�Ab −

1

2
∇(A(A′∇B′)B)A

a +
1

4
�ABAAB′ − 3

4
�A′B′AA

′

B . (8.31)

Expression for ∇A′

B φA′B′ can be obtained by simple complex conjugation of the previous relation,
so that

i∇a∗Fab = ∇AB′φAB − ∇A
′

B φA′B′ = �ABAAB′ − �A′B′AA
′

B . (8.32)

By the spinor form of the Bianchi identities (2.78) we have

�ABAAB′ = − 3 ΛAb + ΦabA
b

which is manifestly real expression and immediately implies

∇AB′φAB − ∇A
′

B φA′B′ = �ABAAB′ − �A′B′AA
′

B = 0.

We can conclude that (8.25) implies (8.26) or, equivalently, (8.28).
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8.3 Einstein-electro-scalar equations

In this section we rewrite �eld equations (8.18) and gravitational �eld equations as the system
of �rst-order equations in order to simplify the procedure of asymptotical solution of these
equations. Unknown variables are:

• ΦABCD, the Ricci spinor;

• ΨABCD, the Weyl spinor;

• φAB , φA′B′ , electromagnetic spinors;

• Aa, the vector potential, subject to the Lorenz condition ∇aAa = 0;

• φ, φ, scalar �elds.

We start with the case of equations for the scalar �elds φ and φ. According to (8.18), these
�elds satisfy the second-order equations

(∇a + ieAa) (∇a + ieAa)φ + m2 φ = 0,

(∇a − ieAa) (∇a − ieAa)φ + m2 φ = 0.
(8.33)

Expanding the operator on the left hand side of the �rst equation we arrive at equation

�φ+ 2eiAa∇aφ+ ieφ∇aAa − e2AaAaφ+m2φ = 0.

Imposing the Lorenz gauge condition, ∇aAa = 0, and introducing the notation

ϕa = ∇aφ, ϕAA′ = ∇AA′φ, (8.34)

the last equation acquires the form

�φ = − 2 i eAa ϕa +
(
e2AaAa − m2

)
φ. (8.35)

Now we can treat the vector �eld ϕa, the gradient of φ, as a new variable, equations for which
can be derived in a following way (cf. [14]). Object ∇AA′ϕAB′ can be decomposed in a usual way
as

∇AA′ϕAB′ = ∇A(A′ϕB′)A +
1

2
εA′B′ ∇AX′ϕX

′

A = −�A′B′φ − 1

2
εA′B′ �φ.

The �rst term vanishes by (2.77) while the second one is given by (8.35). Thus, we obtain
�rst-order equation for ϕAA′ :

∇AA′ϕAB′ = i eAcϕc εA′B′ +
1

2

(
m2 − e2AcAc

)
φ εA′B′ . (8.36)

Now we turn to equations for the four-potential Aa. Again, we decompose object ∇A′

A ABA′

as

∇A′

A ABA′ = ∇A′

(AAB)A′ +
1

2
εAB ∇A

′

X A
X
A′ .

The �rst term is (up to sign) equal to φAB , cf. (8.25), while the second term vanishes by the
Lorenz condition. Hence, equation for the potential reads

∇A′

A ABA′ = −φAB . (8.37)
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Finally we take the Maxwell equations ∇aFab = jb and express Fab in terms of φAB according
to equation (8.23):

∇aFab = ∇AB′φAB + ∇A′

B φA′B′ = jb.

However, by lemma 8.2.1 we have

∇AB′φAB = ∇A′

B φA′B′

and thus the Maxwell equation acquires the form

∇AB′φAB =
1

2
jb =

ie

2

(
φDbφ − φDbφ

)
.

Using the de�nition of gauge covariant derivative (8.16) we arrive at the �nal form of equation
for spinor φAB :

∇AB′φAB =
ie

2

(
φϕb − φϕb

)
− e2 φφAb. (8.38)

The last ingredient is the energy-momentum tensor entering the right hand side of Einstein's
equations. In general relativity, the energy-momentum tensor is derived from the action of non-
gravitational �elds

I[gab] =

∫
LS+EM(gab)

√− g d4x

where g is the determinant of metric. Then we de�ne the energy-momentum tensor by[21]

Tab =
α

4π

1√−g
δI

δgab
. (8.39)

Conservation law ∇aTab = 0 follows from the requirement that the theory be invariant under
di�eomorphisms, regardless of particular form of gravitational part of the action. In terms of the
Lagrangian, the energy-momentum tensor reads[3]

Tab =
α

4π

[
∂LS+EM
∂gab

− 1

2
gab LS+EM

]
. (8.40)

For Lagrangian (8.15) we �nd (cf. [6])

Tab =
α

4π

[(
D(aφ

) (
Db)φ

)
− 1

2
Fac F

c
b − 1

2
gab LS+EM

]

=
α

4π

[
1

2
(ϕa ϕb + ϕb ϕa) +

ie

2

(
φAaϕb + φAbϕa − φAaϕb − φAbϕa

)

+ e2φφAaAb −
1

2
Fac F

c
b − 1

2
gab LS+EM

]
.

(8.41)

Components of the energy-momentum tensor are related to the Ricci spinor via Einstein's equa-
tions in the spinor form (2.50).

Let us summarize unknown variables and equations they satisfy.
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• scalar �eld φ and its gradient ϕAA′ ;

∇AA′φ = ϕAA′ , ∇AA′ϕAB′ = i eAcϕc εA′B′ +
1

2

(
m2 − e2AcAc

)
φ εA′B′ , (8.42)

• potential Aa of electromagnetic �eld constrained by the gauge condition ∇aAa = 0;

∇A′

A ABA′ = −φAB . (8.43)

• electromagnetic spinor φAB ;

∇AB′φAB =
ie

2

(
φϕb − φϕb

)
− e2 φφAb. (8.44)

• spin coe�cients γ B
A CC′ satisfying the Ricci identities;

• Weyl spinor ΨABCD and Ricci spinor ΦABA′B′ satisfying the Bianchi identities;

∇DA′ΨABCD = ∇D′

(AΦBC)A′D′ ;

∇BB′
ΦABA′B′ = − 3∇AA′Λ.

(8.45)
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9. Electro-scalar �elds in NP

formalism

In this chapter we project Einstein-electro-scalar equations obtained in chapter 8 onto the
Newman-Penrose null tetrad.

Four-potential Aa = AAA′ is a real vector �eld and its components with respect to the spin
basis will be denoted by

A0 = AXX′oXoX
′
, A1 = AXX′oXιX

′
, A1 = AXX′ιXoX

′
, A2 = AXX′ιXιX

′
. (9.1)

Since Aa is a real �eld, its components transform under complex conjugation according to

A0 = A0, A1 = A1, A1 = A1, A2 = A2. (9.2)

The potential can be then written in the form

AAA′ = A0 ιAιA′ − A1 ιA oA′ − A1 oA ιA′ + A2 oA oA′ .

Similarly we introduce NP-components of electromagnetic spinor φAB by

φ0 = φAB o
A oB , φ1 = φAB o

A ιB , φ2 = φAB ι
A ιB . (9.3)

Spinor φAB is then[17]

φAB = φ0 ιA ιB − 2φ1 o(A ιB) + φ2 oA oB .

Potential Aa is governed by equation (8.43),

∇A′

A ABA′ = −φAB .
NP-projections of this equation are

DA1 − δA0 = (π − α− β)A0 + (ε− ε+ ρ)A1 + σA1 − κA2 + φ0, (9.4a)

DA2 − δA1 = −µA0 + πA1 + (π − α+ β)A1 + (ρ− ε− ε)A2 + φ1, (9.4b)

∆A0 − δA1 = (γ + γ − µ)A0 + (β − α− τ)A1 − τA1 + ρA2 − φ1, (9.4c)

∆A1 − δA2 = νA0 − λA1 + (γ − γ − µ)A1 + (α+ β − τ)A2 − φ2. (9.4d)

In chapter 8 we introduced notation φ for the scalar �eld itself, φ for its complex conjugate
and ϕAA′ = ∇AA′φ for the gradient of the scalar �eld. Projections of the gradient will be denoted
in agreement with [2] as

ϕ0 = Dφ, ϕ2 = ∆φ, ϕ1 = δφ, ϕ1 = δφ,

ϕ0 = Dφ, ϕ2 = ∆φ, ϕ1 = δφ, ϕ1 = δ φ
(9.5)

So, under complex conjugation, index 1 consistently transforms to 1 and vice versa, while indices
0 and 2 are "real" in the sense 0 = 0, 2 = 2. Equations(9.5) can be regarded as dynamical
equations for scalar �eld φ. Fields ϕAA′ and ϕAA′ can be written in terms of the spin basis as

ϕAA′ = ϕ0 ιA ιA′ − ϕ1 ιA oA′ − ϕ1 oA ιA′ + ϕ2 oA oA′ ,

ϕAA′ = ϕ0 ιA ιA′ − ϕ1 oA ιA′ − ϕ1 ιA oA′ + ϕ2 oA oA′ .
(9.6)
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Now we can complete equations for electromagnetic �eld. Equation (8.44),

∇AB′φAB =
ie

2

(
φϕb − φϕb

)
− e2 φφAb,

is the spinor version of Maxwell's equations with four-current ja on the right hand side. NP-
projections of this equation follow:

Dφ1 − δφ0 = (π − 2α)φ0 + 2ρφ1 − κφ2 +
ie

2

(
φϕ0 − φϕ0

)
+ e2φφA0, (9.7a)

Dφ2 − δφ1 = −λφ0 + 2πφ1 + (ρ− 2ε)φ2 +
ie

2

(
φϕ1 − φϕ1

)
+ e2φφA1, (9.7b)

∆φ0 − δφ1 = (2γ − µ)φ0 − 2τφ1 + σφ2 +
ie

2

(
φϕ1 − φϕ1

)
− e2φφA1, (9.7c)

∆φ1 − δφ2 = νφ0 − 2µφ1 + (2β − τ)φ2 +
ie

2

(
φϕ2 − φϕ2

)
− e2φφA2. (9.7d)

Dynamical equation for the gradient ϕAA′ is provided by equation (8.42)

∇AA′ϕAB′ = i eAcϕc εA′B′ +
1

2

(
m2 − e2AcAc

)
φ εA′B′ . (9.8)

Projected on the spin basis, this equation is equivalent to following four scalar equations:

Dϕ1 − δϕ0 = (π − α− β)ϕ0 + σϕ1 + (ρ+ ε− ε)ϕ1 − κϕ2, (9.9a)

Dϕ2 − δϕ1 = −µϕ0 + (π − α+ β)ϕ1 + πϕ1 + (ρ− ε− ε)ϕ2

+ e2φ (A0A2 −A1A1) + ie (A1ϕ1 +A1ϕ1 −A0ϕ2 −A2ϕ0)− φm2/2, (9.9b)

∆ϕ0 − δϕ1 = (γ + γ − µ)ϕ0 − τϕ1 + (β − α− τ)ϕ1 + ρϕ2

+ e2φ (A0A2 −A1A1) + ie (A1ϕ1 +A1ϕ1 −A0ϕ2 −A2ϕ0)− φm2/2, (9.9c)

∆ϕ1 − δϕ2 = νϕ0 + (γ − γ − µ)ϕ1 − λϕ1 + (α+ β − τ)ϕ2. (9.9d)

9.1 Einstein's equations

Einstein's equations in the spinor form (2.51), (2.52) are

ΦABA′B′ = 4π T(AB)(A′B′),

3Λ = πT XY
XY .

In order to avoid the symmetrization, we can write them in the form

ΦABA′B′ = 4π TABA′B′ − 3 Λ εAB εA′B′ . (9.10)

In chapter 8 we have derived the energy-momentum tensor for electro-scalar �elds (8.41). From
this expression it follows that the trace of energy-momentum tensor is

12πα−1Λ = −ϕaϕa + ieφAaϕa − ieφAaϕa − e2φφAaA
a + 2m2φφ

= 2
(
ϕ(1ϕ1) − ϕ(0ϕ2)

)
+ 2ieφ

(
A(0ϕ2) −A(1ϕ1)

)

− 2ieφ
(
A(0ϕ2) −A(1ϕ1)

)
− 2e2φφ (A0A2 −A1A1) + 2m2φφ.

(9.11)
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Components of the Ricci spinor in the Newman-Penrose formalism are (we set α = 1)

Φ00 = φ0φ0 + ϕ0ϕ0 + e2A2
0φφ+ ieA0

(
φϕ0 − φϕ0

)
,

Φ01 = φ0φ1 + ϕ(0ϕ1) + e2φφA0A1 + ieφA(0ϕ1) − ieφA(0ϕ1),

Φ11 + 3Λ = φ1φ1 + ϕ(1ϕ1) + e2φφA1A1 + ieφA(1ϕ1) − ieφA(1ϕ1) +m2φφ/2,

Φ02 = φ0φ2 + ϕ1ϕ1 + e2φφA2
1 + ieφA1ϕ1 − ieφA1ϕ1,

Φ12 = φ1φ2 + ϕ(1ϕ2) + e2φφA1A2 + ieφA(2ϕ1) − ieφA(2ϕ1),

Φ22 = φ2φ2 + e2φφA2
2 + ieA2

(
φϕ2 − φϕ2

)
.

(9.12)
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10. Asymptotic solution of

Einstein-electro-scalar equations

After introducing all necessary equations, in this chapter we solve them asymptotically, i.e. in
the neighbourhood of the null in�nity I. Following the procedure developed in [9] and explained
in [17], we work in the physical spacetime rather than in the unphysical spacetime. However, we
use construction [1] (adapted from I− to I+) which di�ers slightly from [17].

We use conventions established in [1] and [2], where conformal �eld equations for free electro-
magnetic �eld and for free scalar �elds have been analyzed. More general discussion of conformal
Einstein-Maxwell-Yang-Mills equations can be found in fundamental paper by Friedrich[4].

10.1 Asymptotic �atness

Our aim is to �nd asymptotic solution of Einstein-electro-scalar equations near null in�nity under
assumption that the spacetime (M, gab) with electro-scalar �elds is asymptotically �at. Hence,
we assume that there exists a conformal factor Ω and unphysical spacetime (M̂, ĝab) such that

• ĝab = Ω2 gab where Ω > 0 in M ;

• there exists embedding ψ : M 7→ M̂ ;

• hypersurface I : Ω = 0 is a boundary of M embedded in M̂ ; this hypersurface is called
in�nity and can be divided into spacelike in�nity i0, future and past timelike in�nity i±

and future and past null in�nity I+;

• ∇aΩ 6= 0 on I.

We will be interested in asymptotic behaviour of several geometrical quantities near I+. We
use the notation X = O (Ωm) whenever Ω−mX is �nite on I+, i.e.

X = O (Ωm) ⇔ lim
Ω→0
|Ω−mX| < ∞.

We assume that all geometrical quantities in the unphysical spacetime are analytic and regular
on I+ in the sense that all quantities are of order O (1). Thus, in the unphysical spacetime, all
quantities can be expanded into the series in the neighbourhood of the form

X =

∞∑

m=0

X(m) Ωm (10.1)

where X(m) is independent of Ω.
Under conformal rescaling, the covariant derivative transforms according to relations

∇AA′ξB = ∇̂AA′ξB + Ω−1 ξA ∇̂BA′Ω, ∇AA′ξB′ = ∇̂AA′ξB′ + Ω−1 ξA′ ∇̂AB′Ω.
(10.2)

Moreover, for any scalar φ we have ∇AA′φ = ∇̂AA′φ.
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10.2 Construction of the coordinate system

We will work in the neighbourhood of future null in�nity I+, see �gure 10.2. Null in�nity has
topology[5] S2×R. Let us choose arbitrary cut S0 with the topology S2 and introduce coordinates
x2 and x3 on this cut. Since S0 is a two-sphere, a natural choice of the coordinates are standard
spherical coordinates

x2 = θ, x3 = φ.

Coordinates on spheres will be labelled by indices I, J, · · · = 2, 3. So, we have coordinatized the
initial cut S0.

Next we wish to introduce coordinates on entire I+. Since I+ is a null surface, it is generated
by a congruence of null geodesics. Let γx = γx(u) be a null geodesic crossing S0 at point with
coordinates xI and parametrized by the a�ne parameter u. We propagate coordinates xI from
S0 to I+ by condition

∇γ̇xxI = 0,

i.e. we require coordinates xI to be constant along null generators of I+. Hence, a triple

(u, x2, x3)

constitutes a coordinate system on I+. Notice that since u is an a�ne parameter, we have a
gauge freedom expressed by transformation

u 7→ a(xI)u + b(xI)

where a and b are arbitrary functions. This freedom can be reduced by demanding u = 0 on S0,
so only freedom in rescaling u 7→ a(xI)u remains.

Now we construct a congruence of null geodesics coming from interior of the spacetime and
crossing I+ and orthogonal to spheres u = constant. Having done this, for each point P (u, x2, x3)
there is a null geodesic γ′u,x = γ′u,x(r) coming from the interior of the spacetime and crossing I+

at point P ; let r be an a�ne parameter of this geodesic. We propagate coordinates u and xI

into the spacetime by conditions

∇γ̇′
u,x
xI = ∇γ̇′

u,x
u = 0

i.e. we require that these coordinates be constant along geodesics γ′u,x. Again, we have a freedom
in the choice of parameter r

r 7→ c(u, xI) r + d(u, xI).

Thus, we have constructed a coordinate chart

xµ = (u, r, x2, x3)

on I+ and its neighbourhood. Remaining gauge freedom is in coordinate transformation on S0,

xI 7→ x̂I = x̂I(x2, x3),

in the rescaling of coordinate u,

u 7→ û = a(x2, x3)u

and in the rescaling a�ne parameter r mentioned above.
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Q(u, r, x2, x3)

Figure 10.1: Construction of the coordinate system adapted to I+. Figure taken from [15].

10.3 Null tetrad

On the tangent space TS0 we can de�ne a pair of mutually complex conjugated null vectors ma

and ma satisfying

mama = 0, mama = −1

and introduce usual NP operators δ and δ associated with them. Since these operators act on
the sphere where coordinates u and r are constant, they can be expressed in the form

δ = P I ∇I , δ = P
I ∇I . (10.3)

Vectors ma and ma can be propagated onto I+ and next to the interior of the spacetime by
conditions

∇γ̇x ma = 0, ∇γ̇′
u,x
ma = 0.

Let us de�ne the gradient

la = ∇au, lµ = (1, 0, 0, 0).

Surface u = constant consists of null geodesics intersecting I+ at cut Su. Hence, la is a null
vector, lala = 0. Then it is a tangent vector to a null geodesic, for we have

la∇alb = la∇a∇bu = la∇b∇au = la∇bla =
1

2
∇b(lala) = 0

by nullity of la. The last equation shows that la is in fact a�nely parametrized. Since it is
tangent to null surface generated by a�nely parametrized geodesics γ′u,x along which only r is
varying, we have

la =
∂

∂r
, lµ = (0, 1, 0, 0). (10.4)
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By the choice of r, vector la is pointing towards I+.
Now, at each point of the spacetime we have real vector la and pointing towards I+ and two

complex vectors ma and ma spanning the tangent space of spacelike spheres S, both orthogonal
to la. Then, there is unique real na orthogonal to la and ma satisfying

lana = 1.

In general, let components of na with respect to coordinates (u, r, x2, x3) be

nµ = (Q,H,C2, C3).

Normalization condition lµnµ = 1, however, implies

Q = 1.

Notice that, by construction, vector na is the null vector tangent to generators of null hyper-
surfaces. In particular, na is tangent to generators of I+ along which only coordinate u varies,
and therefore

na =
∂

∂u
on I+.

Consequently, functions CI must vanish on I+. Term H∂r must vanish there as well but this
will be a consequence of the fact that ∂r is zero on I+, see below. This does not hold necessarily
in the neighbourhood of I+ anymore.

The components of metric tensor can be recovered from the vectors of null tetrad via relation

gµν = lµ nν + lν nµ − mµmν − mµmν (10.5)

and they read (cf. equation (31) in [1])

gµν =




0 1 0 0
1 2H C2 C3

0 C2 −2P 2P
2 −P 3P

2 − P 2P
3

0 C3 −P 3P
2 − P 2P

3 −2P 3P
3


 . (10.6)

Hence, functions H,CI and P I are not only components of tetrad vectors, but they also form
components of the metric tensor and they will be referred to as metric functions.

Thus, we have established the Newman-Penrose null tetrad (la, na,ma,ma). Their compo-
nents with respect to basis induced by coordinates xµ are

lµ = (0, 1, 0, 0), mµ = (0, 0, P 2, P 3),

nµ = (1, H,C2, C3), mµ = (0, 0, P
2
, P

3
).

(10.7)

Since la and na are real null vectors, they can be written in the form

la = oA oA
′
, na = ιA ιA

′
(10.8)

where |oAιA| = 1 by lana = 1. Nevertheless, transformation of the phases of spinors oA and ιA

leaves vectors la and na unchanged, so we can always choose this phase so as to achieve oAιA = 1.
Remaining null vectors orthogonal to both la and na and normalized to −1 must be of the form
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oAιA
′
and ιAoA

′
, respectively. Without the loss of generality, we set (relabelling original vectors

ma and ma if necessary)

ma = oA ιA
′
, ma = ιA oA

′
. (10.9)

Hence, we have established the spin basis adapted to the null tetrad. Available gauge freedom
in the choice of the tetrad is the rotation of vectors ma and ma, i.e. the transformation

oA 7→ eiθoA, ιA 7→ e−iθιA, or ma 7→ e2iθma, ma 7→ e−2iθma. (10.10)

Clearly, this transformation leaves la and na invariant.

10.4 Spin coe�cients and frame equations

With the tetrad introduced above, several spin coe�cients simplify or even vanish. We have
shown that la satis�es the geodesic equation Dla = 0. However, from (2.19a) it follows

Dla = D(oAoA
′
) = (ε+ ε)la − κma − κma,

which immediately implies

κ = 0, ε+ ε = 0.

By rotation (10.10), ε transforms as

ε 7→ ε+ iDθ,

so that the sum ε+ ε is invariant under this rotation. However, quantity ε− ε transforms as

ε− ε 7→ ε− ε+ 2iDθ

and hence solving equation

Dθ =
∂θ

∂r
=

i

2
(ε− ε)

we can achieve ε = ε. Equation for Dθ is a �rst-order initial value problem for which arbitrary
initial conditions can be imposed on the surface r = constant. Thus, we have set

ε = 0

but θ is still not �xed completely.
Further restrictions on the spin coe�cients follow from the commutation relations. Applying

commutator (2.91d) on coordinates u and r yields

ρ = ρ, µ = µ. (10.11)

Similarly, commutator (2.91b) acting on r and commutator (2.91c) acting on u give

π = τ = α + β. (10.12)
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Remaining commutators (acting on xµ) are either trivial or represent equations for the metric
functions. Commutator (2.91a) applied to coordinates r and xI , commutator (2.91b) applied to
r and xI and commutator (2.91c) to xI gives

DH = − γ − γ, (10.13a)

DCI = 2πP I + 2πP
I
, (10.13b)

DP I = ρP I + σP
I
, (10.13c)

∆P I − δCI = (γ − γ − µ)P I − λP
I
, (10.13d)

δH = −ν, (10.13e)

δP I − δP
I

= (α− β)P I + (β − α)P
I
, . (10.13f)

These equations will be referred to as the frame equations.

10.5 Asymptotic behaviour

The last ingredient necessary to �nd asymptotic solution of Einstein-electro-scalar equations is
to establish asymptotic behaviour of the null tetrad and other geometrical quantities. Let us
make a remark on the construction introduced above. Strictly speaking, null in�nity I+ is not a
part of physical spacetime M since it is well-de�ned only in the unphysical, conformally rescaled
spacetime as the boundary ∂M . Under conformal rescaling, geodesics of the physical spacetime
are mapped into curves in the unphysical spacetime which are not geodesics anymore, although
their causal type is preserved. For example, timelike geodesics are mapped into timelike curves
which are not geodesics. The only exception are null geodesics, i.e. null geodesics of physical
spacetime are mapped to null geodesics of the unphysical spacetime. Since our coordinates
near I+ are based on the families of null geodesics generating I+ and null geodesics generating
hypersurfaces intersecting I+, this construction can be performed in the unphysical spacetime
and then translated to coordinates in the physical spacetime (with I+ itself removed).

In section 10.1 we explained that all geometrical quantities can be expanded in the series (10.1)
in conformal factor Ω. However, we do not know a priori, what is the asymptotic behaviour of
geometrical quantities and thus we do not know what is the leading term in series (10.1) for
particular X. On the other hand, by assumption made in section 10.1, we assume all unphysical
geometrical quantities to be regular on I+, i.e. we assume that any unphysical quantity X̂ is of
order O (1). Using this assumption and behaviour of quantity X under conformal rescaling we
can deduce the asymptotic behaviour of physical quantity X in the physical spacetime. Hence,
in this section we perform the analysis sketched in previous lines.

Recall that unphysical metric ĝab and physical metric gab are related by conformal rescaling

ĝab = Ω2 gab. (10.14)

In terms of symplectic form εAB , the spinor equivalent of metric tensor, the conformal rescaling
reads

ε̂AB = Ω εAB . (10.15)

Symplectic form can be constructed from the basis spinors as

εAB = oA ιB − oB ιA.
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Hence, we can prescribe arbitrary conformal transformation of basis spinors which is consistent
with (10.15). A natural choice (see, e.g. discussion in [15]) is

ôA = Ω−1 oA, ι̂A = ιA,

ôA = oA, ι̂A = Ω ιA.
(10.16)

Vectors of the null tetrad then transform according to

l̂a = Ω−2 la, n̂a = na, m̂a = Ω−1ma. (10.17)

We emphasize again that unphysical spinors ôA and ι̂A are assumed to be regular on I+ which
implies that physical spinor oA = ΩôA vanishes on I+ while the spinor ιA remains non-vanishing
there.

Now, recall the construction of coordinate r in section 10.2. Let r̂ be an a�ne parameter
of null geodesics intersecting I+ in the unphysical spacetime and let l̂a be a tangent to these
geodesics. Then, by de�nition,

D̂l̂a = 0

where D̂ = l̂a∇̂a. Acting on scalars, we have

D̂ =
∂

∂r̂
.

Since r̂ is an a�ne parameter, we can rescale it in such a way that

r̂ = 0, and D̂Ω =
∂Ω

∂r̂
= −1 on I+. (10.18)

Thus, in the neighbourhood of I+, r̂ = −Ω + O
(
Ω2
)
. However, following [17], we identify

coordinate r̂ with conformal factor Ω as we are interested in the limit Ω→ 0 which corresponds
to limit r̂ → 0. The Bondi mass is not a�ected by this di�erence.

Let us now see what happens in the physical spacetime. First, it is important that relations
(10.16) and (10.17) imply that also la is a geodesic. Indeed, using (10.2) we �nd

Dlb = Ω2 ôA ô
A′ (
∇̂AA′ l̂b + Ω−1oAoB′∇BA′Ω + Ω−1oBoA′∇AB′Ω

)
= Ω2D̂l̂b = 0.

Next we �nd relation between DΩ and D̂Ω, which follows immediately from (10.17):

DΩ =
∂Ω

∂r
= Ω2 D̂Ω = Ω2 ∂Ω

∂r̂
.

If we treat r̂ as a function of r, we can write

∂

∂r̂
=

dr
dr̂

∂

∂r

and applying this on Ω we �nd

dr̂ = Ω2 dr . (10.19)

Comparing this result with (10.18) we see that near the I+ we may set

dΩ

dr
= −Ω2 . (10.20)
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Consider derivative of quantity X along the null geodesic la. Since only r varies along this
geodesic, we have

la∇aX =
∂X

∂r
= Ω2 ∂X

∂r̂
= −Ω2 ∂X

∂Ω
.

Thus, in the neighbourhood of I+ we have

D =
∂

∂r
= −Ω2 ∂

∂Ω
. (10.21)

In other words, we can use Ω as a coordinate instead of r, so that the NP operators (acting on
scalars) read

D = −Ω2∂Ω, ∆ = ∂u − Ω2H ∂Ω + CI∂I , δ = P I∂I , δ = P
I
∂I . (10.22)

In particular, we have

DΩ = −Ω2, ∆Ω = −Ω2H, δΩ = δΩ = 0. (10.23)

In addition, by (10.16) we have

CI = O (Ω) , P I = O (Ω) . (10.24)

Now we establish asymptotic behaviour of the spin coe�cients under assumption that un-
physical spin coe�cients are regular on I+. Under conformal rescaling, the spin coe�cients
transform as

κ = Ω3 κ̂, τ = Ω τ̂ + δ̂Ω, σ = Ω2 σ̂, ρ = Ω2 ρ̂ + Ω D̂Ω,

ε = Ω2 ε̂, γ = γ̂ + Ω−1∆̂Ω, β = Ω β̂, α = Ω α̂ + δ̂Ω,

π = Ω π̂ − δ̂Ω, ν = Ω−1 ν̂, µ = µ̂ − Ω−1 ∆̂Ω, λ = λ̂.

(10.25)

These relations have been derived using the de�nitions of spin coe�cients, see table on page
55, the rule for transformation of covariant derivative (10.2) and the behaviour of the spin basis
(10.16). Derivatives with the hat are operators associated with the unphysical spin basis ôA and
ι̂A. We assume order O (1) for all unphysical quantities. Nevertheless, tangential derivatives of
Ω vanish on I+ where Ω = 0, and thus we can use estimates

D̂Ω = O (1) , ∆̂Ω = O (Ω) , δ̂Ω = O (Ω) , δ̂Ω = O (Ω) .

In the tetrad introduced above, coe�cients ε and κ vanish and thus, by (10.25), their un-
physical counterparts ε̂ and κ̂ vanish as well. Moreover, by (10.23) we have

τ = Ωτ̂ , π = Ωπ̂

and thus

τ = O (Ω) , π = O (Ω) . (10.26)

Similarly, α = Ωα̂ and

α = O (Ω) , β = O (Ω) . (10.27)
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For coe�cients γ, µ and λ we �nd

γ = γ̂ + O (1) = O (1) ,

µ = µ̂ − O (1) = O (1) ,

λ = λ̂ = O (1) .

(10.28)

Coe�cient ν is manifestly of order

ν = Ω−1 ν̂ = O
(
Ω−1

)
(10.29)

and coe�cient σ is

σ = Ω2 σ̂ = O
(
Ω2
)
. (10.30)

Finally, for coe�cient ρ we have

ρ = Ω2 ρ̂ − Ω = −Ω + O
(
Ω2
)
.

Using the remaining freedom in the choice of origin of r we can set[17]

ρ = −Ω + O
(
Ω3
)
. (10.31)

Let us now turn to asymptotic behaviour of physical �elds. First we �nd appropriate law for
conformal transformation of the potential Aa. Let us put

Aa = Ωw Âa (10.32)

where w is the conformal weight to be determined. By the rule (10.2) we have

∇AA′ABB′ = ∇̂AA′ABB′ + Ω−1AAB′∇̂BA′Ω + Ω−1ABA′∇̂AB′Ω.

Contracting with εA
′B′

= Ωε̂A
′B′

and rearranging terms we �nd

∇A′

A ABA′ = Ωw+1∇̂A′

A ÂBA′ + wΩwÂBA′∇̂A′

A Ω + εAB ΩwÂc∇̂cΩ. (10.33)

Potential is related to electromagnetic spinor φAB by relation (8.25):

φAB = ∇A′(AA
A′

B) = Ωw+1∇̂A′(AÂ
A′

B) + wΩwÂA
′

B ∇̂AA′Ω.

Thus, if we set w = 0, equation (8.25) will be conformally invariant with weight 1 in the sense

φAB = Ω ∇̂A′(AÂ
A′

B).

Moreover we can de�ne

φ̂AB = ∇̂A′(AÂ
A′

B).

To summarize, we postulate following behaviour of electromagnetic �eld and the potential:

Aa = Âa, φAB = ∇A′(AA
A′

B),

φAB = Ω φ̂AB , φ̂AB = ∇̂A′(AÂ
A′

B).
(10.34)
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Again, we assume that unphysical quantities are of order O (1) near I+. Then, for physical
components of the potential we obtain

A0 = AAA′ oAoA
′

= Ω2 ÂAA′ ôAô
A′

= O
(
Ω2
)
,

A1 = AAA′ oAιA
′

= Ω ÂAA′ ôAι̂
A′

= O (Ω) ,

A1 = AAA′ ιAoA
′

= Ω ÂAA′ ι̂Aô
A′

= O (Ω) ,

A2 = AAA′ ιAιA
′

= Ω ÂAA′ ι̂Aι̂
A′

= O (1) .

(10.35)

Similarly, for electromagnetic spinor we �nd

φ0 = φAB o
A oB = Ω3 φ̂AB ô

A ôB = O
(
Ω3
)
,

φ1 = φAB o
A ιB = Ω2 φ̂AB ô

A ι̂B = O
(
Ω2
)
,

φ2 = φAB ι
A ιB = Ω φ̂AB ι̂

A ι̂B = O (Ω) .

(10.36)

Equation (8.42) is genuinely non-conformally-invariant and so we have to prescribe conformal
behaviour of the scalar �eld on physical grounds. Natural requirement is that the scalar �eld
vanishes at in�nity, so we postulate

φ = Ω φ̂ (10.37)

and therefore

φ = O (Ω) , (10.38)

provided that φ̂ is regular on I+. Components of the gradient ϕa = ∇aφ then behave according
to formulae (recall (10.22) and (10.24))

ϕ0 = O
(
Ω2
)
, ϕ1 = O

(
Ω2
)
, ϕ1 = O

(
Ω2
)
, ϕ2 = O (Ω) . (10.39)

We expand these quantities as follows:

φ = φ0 Ω + φ1 Ω2 + O
(
Ω3
)
, (10.40a)

ϕ0 = ϕ0
0 Ω2 + O

(
Ω3
)

= −φ0 Ω2 + O
(
Ω3
)
, (10.40b)

ϕ1 = ϕ0
1 Ω2 + O

(
Ω3
)
, (10.40c)

ϕ1 = ϕ0
1

Ω2 + O
(
Ω3
)
, (10.40d)

ϕ2 = ϕ0
2 Ω + ϕ1

2 Ω2 + O
(
Ω3
)
. (10.40e)

The Weyl spinor is conformally invariant with zero weight1:

ΨABCD = Ψ̂ABCD.

1This depends on the conventions used. What is convention-independent is the behaviour of the Weyl tensor
Cabcd = ΨABCDεA′B′εC′D′ . In the non-abstract index formalism, components of tensors are related to compo-

nents of spinors via van der Waerden symbols σAA
′

a which can have a conformal weight and thus they a�ect the
conformal weight of ΨABCD, as in, e.g. [10].
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Under certain weak assumptions it is possible to show[17] that Ψ̂ABCD vanishes on I+ and
therefore is of order O (Ω). Then the components of the Weyl tensor behave as

Ψ0 = ΨABCDo
AoBoCoD = Ω4Ψ̂0 = O

(
Ω5
)
,

Ψ1 = ΨABCDo
AoBoCιD = Ω3Ψ̂1 = O

(
Ω4
)
,

Ψ2 = ΨABCDo
AoBιCιD = Ω2Ψ̂2 = O

(
Ω3
)
,

Ψ3 = ΨABCDo
AιBιCιD = Ω1Ψ̂3 = O

(
Ω2
)
,

Ψ4 = ΨABCDι
AιBιCιD = Ψ̂4 = O (Ω) .

(10.41)

Asymptotic behaviour of the components of the Ricci spinor can be found from Einstein's equa-
tions (9.12):

Φ00 = O
(
Ω4
)
,

Φ01 = O
(
Ω4
)
,

Φ11 + 3Λ = O
(
Ω2
)
,

Φ02 = O
(
Ω4
)
,

Φ12 = O
(
Ω3
)
,

Φ22 = O
(
Ω2
)
.

(10.42)

Behaviour of scalar curvature Λ is found from (9.11) to be

Λ = O
(
Ω2
)
. (10.43)

This completes our discussion of conformal behaviour of physical and geometrical quantities
used in the calculation. In the following section we expand all quantities in the series in Ω,
substitute them into the �eld equations in the NP formalism introduced in the previous sections
and �nd the coe�cients of those expansions.

10.6 Asymptotic solution

Ricci identities (2.92a) and (2.92b) in our tetrad reduce to

Dρ = ρ2 + σ σ + Φ00, (10.44a)

Dσ = 2 ρ σ + Ψ0. (10.44b)

We expand the scalar �eld φ into the series

φ = φ0 Ω + O
(
Ω2
)

(10.45)

so that

ϕ0 = Dφ = −φ0 Ω2 + O
(
Ω3
)

(10.46)

and

Φ00 = φ0 φ0 Ω4 + O
(
Ω5
)
. (10.47)
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Similarly, we expand ρ and σ into

ρ = −Ω + ρ0 Ω3 + O
(
Ω4
)
, (10.48a)

σ = sΩ2 + s1 Ω3 + O
(
Ω4
)
. (10.48b)

Substituting these expression into (10.44a) and (10.44b) we �nd

ρ0 = − s s − φ0 φ0, s1 = 0.

Recall that when we constructed the coordinate system, we introduced arbitrary coordinates
xI on the cut S0 of I+. Since the cut S0 is a two-sphere, it is convenient to identify xI with
standard spherical coordinates2 θ and φ. Metric tensor on the two-sphere has components

(2)gIJ = diag
(
−1,− sin2 θ

)
.

Let us de�ne functions pI by

p2 =
1√
2
, p3 = − i√

2

1

sin θ
(10.49)

so that vectors m̂ = pI∂I and m̂ = pI∂I satisfy

m̂I m̂I = 0, m̂
I
m̂I = −1.

We know by (10.24) that vector m = P I∂I is of order O (Ω), so it can be expanded into

P I = Ω pI + Ω2 qI + O
(
Ω3
)

(10.50)

where pI can be speci�ed freely and higher order terms are determined by the frame equation
(10.13c). Hence, we choose pI to be (10.49) which implies

δ = Ω δ̂ + Ω2 qI ∂I + O
(
Ω3
)
, where δ̂ =

1√
2

(
∂

∂θ
− i

sin θ

∂

∂φ

)
. (10.51)

Finally, using the frame equation (10.13c) we �nd

δ = Ω δ̂ − sΩ2 δ̂ + O
(
Ω3
)
, δ = Ω δ̂ − sΩ2 δ̂ + O

(
Ω3
)
. (10.52)

Let us expand coe�cients α and β into series as usually. Taking (10.12) into account we
arrive at following expansions:

α = aΩ + a1 Ω2 + O
(
Ω3
)
, (10.53a)

β = bΩ + b1 Ω2 + O
(
Ω3
)
, (10.53b)

π = (a+ b)Ω + (a1 + b1)Ω2 + O
(
Ω3
)
, (10.53c)

τ = (a+ b)Ω + (a1 + b1)Ω2 + O
(
Ω3
)
. (10.53d)

Ricci identites (2.92d) and (2.92e) simplify to

Dα = ρα+ βσ + ρπ + Φ10, (10.54a)

Dβ = (α+ π)σ + ρβ + Ψ1. (10.54b)

2Unfortunately, symbol φ represents both angle φ and the scalar �eld φ. However, the meaning of symbol φ
should be clear from the context where it appears.
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These identities now imply

b = − a, b1 = − a s. (10.55)

Coe�cient a can be determined from the frame equation (10.13f) for I = 2, 3:

a = a, a = −cot θ

2
√

2
. (10.56)

In Chapter 3 we introduced operators Þ and ð acting on scalar quantities depending on their
boost and spin weights. Consistently with this notation, we introduce operator ð associated
with the leading term of operator δ, i.e. with operator δ̂. Acting on scalar η of spin weight w,
operators ð and ð are de�ned by

ðη = δ̂ + 2waη, ðη = δ̂ − 2waη. (10.57)

It is straightforward to show that coe�cient σ has the spin weight 2 and its complex conjugate
has weight −2.

Higher term of α can be found from the Ricci identity (2.92p) which in our coordinates reads

δρ− δσ = (α+ β)ρ− (3α− β)σ −Ψ1 + Φ01. (10.58)

This equation gives

a1 = ðs + a s. (10.59)

Thus, coe�cients α, β, π and τ have expansions

α = aΩ + (ðs+ as)Ω2 + O
(
Ω3
)
, (10.60a)

β = − aΩ − a sΩ2 + O
(
Ω3
)
, (10.60b)

π = ðsΩ2 + O
(
Ω3
)
, (10.60c)

τ = ðsΩ2 + O
(
Ω3
)
, (10.60d)

where

a = − cot θ

2
√

2
. (10.61)

These expansion are, in fact, identical with corresponding expansions of solution to vacuum
Einstein's equations, see [17].

Now we can use the Bianchi identity (2.72a) which simpli�es to

DΨ1 − δΨ0 −DΦ01 + δΦ00 = (π − 4α)Ψ0 + 4ρΨ1 + πΦ00 − 2σΦ10 − 2ρΦ01 (10.62)

This equation is satis�ed up to order O
(
Ω5
)
and in order O

(
Ω6
)
we reveal the equation

Ψ1
1 = −ðΨ0

0 + 3φ0
0φ

0

1 + φ0φ0
(
3e2A0

0A
0
1 − ðs

)
− φ1ðφ0 − φ1ðφ0

+
1

2

(
φ0ðφ1 + φ0ðφ1

)
− 1

2
sð(φ0φ0)

+
3

2
ie
(
A0

0φ
0ðφ0 −A0

0φ
0ðφ0 +A0

1φ
1φ0 −A0

1φ
0φ1
)
.

(10.63)
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This is already a di�erence from the vacuum case, when only term ðΨ0
0 is present. For free

electromagnetic �eld our result simpli�es to Ψ1
1 = 3φ0

0φ
0

1−ðΨ0
0 which is consistent with expansions

presented in [12], page 394.
Next, we expand functions CI into the series

CI = cI0Ω + cI1 Ω2 + O
(
Ω3
)

and the frame equation (10.13b) shows

c20 = 0, c21 = − 1√
2

(
ðs+ ðs

)
, (10.64a)

c30 = 0, c31 = − i√
2 sin θ

(
ðs+ ðs

)
(10.64b)

so that

CI∂I = −Ω2
[
(ðs)δ̂ + (ðs)δ̂

]
+ O

(
Ω3
)
. (10.65)

Let us expand γ as

γ = γ0 + γ1Ω + γ2Ω2 + O
(
Ω3
)

(10.66)

and use the Ricci identity (2.92f) which now reduces to

Dγ = 2πα+ 2πβ + πτ + Ψ2 − Λ + Φ11. (10.67)

From this identity we �nd

γ1 = 0, (10.68a)

γ2 = aðs− aðs− 1

2
Ψ0

2 +
1

6
∂u
(
φ0φ0

)
. (10.68b)

Similarly we expand µ and λ as

µ = µ0 + µ1 Ω + µ2 Ω2 + O
(
Ω3
)
, (10.69a)

λ = λ0 + λ1 Ω + λ2 Ω2 + O
(
Ω3
)

(10.69b)

and use the Ricci identities (2.92h) and (2.92g) which simplify to

Dµ− δπ = ρµ+ σλ+ 2βπ + Ψ2 + 2Λ, (10.70a)

Dλ− δπ = ρλ+ µσ + 2απ + Φ20. (10.70b)

These equations give

µ0 = 0, λ0 = 0. (10.71)

Ricci identity (2.92q),

δα− δβ = µρ− λσ + αα+ ββ − 2αβ −Ψ2 + Λ + Φ11, (10.72)

implies

µ1 =
1

2
. (10.73)
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Coe�cient γ0 now vanishes by the Ricci identity (2.92n):

γ0 = 0. (10.74)

From the Ricci identity (2.92m) we obtain

λ1 = ṡ (10.75)

where the dot means di�erentiation with respect to coordinate u which represents the (retarded)
time. The Ricci identity (2.92r) reduces to

δλ− δµ = µπ + (α− 3β)λ−Ψ3 + Φ21 (10.76)

and we �nd

Ψ0
3 = −δ̂ṡ+ 4aṡ. (10.77)

Recall that s has the spin weight −2. Since the time derivative does not involve contraction with
ma or ma, it does not change the spin weight and we can write

Ψ0
3 = −ðṡ. (10.78)

Returning to equation (10.70b), we �nd

λ2 = −δ̂ðs+ 2aðs+
1

2
s. (10.79)

Since s has the spin weight −2, quantity ðs has the spin weight −1 because operator ð acts as
the spin-raising operator; we can write

λ2 = ððs+
1

2
s. (10.80)

Finally, coe�cient µ2 is determined by the Ricci identity (10.72):

µ2 = −Ψ0
2 − ð2s− sṡ− 1

6
∂u(φ0φ0). (10.81)

Now we expand the metric function H which is of order O (1) into the series

H = h0 + h1 Ω + h2O
(
Ω3
)
. (10.82)

The leading term h0 is found from the Ricci identity (2.92n) to be

h0 =
1

2
. (10.83)

Next term is naturally found from the frame equation (10.13a):

h1 = − 1

2
Ψ0

2 −
1

2
Ψ

0

2 +
1

3
∂u(φ0φ0). (10.84)

The Bianchi identity (2.72g) implies

Ψ̇0
2 = φ0

2φ
0
2 −

1

3
φ̇0φ̇0 − ð2ṡ + sΨ0

4 −
1

6

(
φ0φ̈0 + φ0φ̈0

)

+ ieA0
2

(
φ0φ̇0 − φ0φ̇0

)
+ e2 (A0

2)2φ0 φ0.
(10.85)
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10.7 Summary

In this �nal section of the chapter we summarize all expansions. Spin coe�cients:

ρ = −Ω −
(
ss+ φ0φ0

)
Ω3 + O

(
Ω3
)
, (10.86a)

σ = sΩ2 + O
(
Ω3
)
, (10.86b)

α = aΩ + (ðs+ as) Ω2 + O
(
Ω3
)
, (10.86c)

β = − aΩ − a sΩ2 + O
(
Ω3
)
, (10.86d)

π = τ = (ðs) Ω2 + O
(
Ω3
)
, (10.86e)

λ = ṡΩ +

(
s

2
+ ððs

)
Ω2 + O

(
Ω3
)
, (10.86f)

µ =
1

2
Ω −

(
ð2s+ sṡ+ Ψ0

2 +
1

6
∂u(φ0φ0)

)
Ω2 + O

(
Ω3
)
, (10.86g)

γ =

(
aðs− aðs− 1

2
Ψ0

2 +
1

6
∂u(φ0φ0)

)
Ω2 + O

(
Ω3
)

(10.86h)

Ricci scalars:

Φ11 = − 1

4
∂u
(
φ0φ0

)
Ω3 + O

(
Ω4
)
, (10.87a)

Λ =
1

12
∂u
(
φ0φ0

)
Ω3 + O

(
Ω4
)
, (10.87b)

Weyl scalars:

Ψ3 = −ðṡΩ2 + O
(
Ω3
)
. (10.88a)

10.8 The Bondi mass

Using the expansions found in the previous chapter, we can now turn to evaluation of the Penrose
charge integral (6.25)

QS [αA, βB ] =
1

8πG

∮

S

Rabcdf
cd

=
i

4πG

∮

S

[
α0β0(Φ01 −Ψ1) + (α0β1 + α1β0)(Φ11 −Ψ2 + Λ) + α1β1(Φ21 −Ψ3)

]
dS.

(10.89)

The Bondi mass arises as the limit of this integral for Ω → 0, i.e. when the surface S is chosen
to be the cut of I+ at arbitrary time u. In order to �nd this limit we have to investigate
asymptotic properties of the integrand. The main results were �nd in the previous chapter
where we have found asymptotic expansions of all relevant components of the Riemann tensor.
The only remaining thing is to determine asymptotic behaviour of the surface element dS and
the behaviour of components αA and βA.
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By (6.23), the surface element dS is given by

dS = (2)εab = Ω−2 i(ε̂AB ôA′ ι̂B′ − ε̂A′B′ ôAι̂B) = Ω−2 (2)ε̂ab = O
(
Ω−2

)
.

Thus, the surface element diverges as Ω−2 at null in�nity I+. In order to obtain any meaningful
notion of the mass-energy, the integrand must be of order O

(
Ω2
)
: for lower order integrand we

would obtain diverging quantity, for higher order integrand we would obtain zero.
In chapter 6 we explained how to choose the spinors αA and βA; they are two independent

solutions of tangential projections of the univalent twistor equation, i.e. they are 2-surface
twistors satisfying tangential parts of equations

∇(A
A′α

B) = 0, ∇(A
A′β

B) = 0.

In section 4.1 we have established the conformal invariance of the twistor equation provided that
spinors αA and βA transform as

αA = Ω−1 α̂A, βA = Ω−1 β̂A, or, equivalently, αA = α̂A, βA = β̂A. (10.90)

As usually, we assume that unphysical spinors are regular on I+. We decompose spinor αA as

αA = α0 oA + α1 ιA

and simultaneously

α̂A = α̂0 ôA + α̂1 ι̂A.

Contracting equation α̂A = αA with oA and ιA and having relations (10.16) on mind (and
applying the same consideration to spinor βA)

α0 = Ω−1α̂0, α1 = α̂1,

β0 = Ω−1β̂0, β1 = β̂1.
(10.91)

Now, expanding the integrand in (10.89) we �nd

α0β0 (Φ01 −Ψ1) dS = − α̂0 β̂0

(
1

2
ð(φ0φ

0
) + Ψ0

1

)
dŜ + O (Ω) , (10.92a)

2α(0β1) (Φ11 −Ψ2 + Λ) dS = − 2α̂(0β̂1)

(
1

6
∂u(φ0φ

0
) + Ψ0

2

)
dŜ + O (Ω) , (10.92b)

α1β1 (Φ21 −Ψ3) dS = α̂1β̂1
(
ðṡ
)
dŜ + O (Ω) . (10.92c)

Thus, on I we obtain a �nite and non-zero limit of the Penrose charge integral. The energy-
momentum obtained in this way is called the Bondi energy-momentum and its zeroth component
is usually refered to as the Bondi mass. The details of this construction are described in the
paper [16] attached to this diploma thesis and will not be repeated here.
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Abstract In this paper we calculate the Bondi mass of asymptotically flat spacetimes with interacting
electromagnetic and scalar fields. The system of coupled Einstein-Maxwel-Klein-Gordon equations is
investigated and corresponding field equations are written in the spinor form and in the Newman-Penrose
formalism. Asymptotically flat solution of the resulting system is found near null infinity. Finally we use
the asymptotic twistor equation to find the Bondi mass of the spacetime and derive the Bondi mass-loss
formula. We compare the results with our previous work [4] and show that, unlike the conformal scalar
field, the (Maxwell-)Klein-Gordon field has negatively semi-definite mass-loss formula.
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1 Introduction

It is a well known fact that the energy-momentum of gravitational field cannot be introduced at the local
level which is, after all, the consequence of the equivalence principle. Since it is highly desirable to have a
meaningful notion of the energy and the momentum, many suggestions have been made in order to define
the quasi-local energy-momentum which is associated with, e.g., a compact spacelike hypersurface Σ
with boundary S, rather than with a spacetime point. The quasi-local quantities are usually expressed
as the surface integrals over the 2-surface S. The most influential suggestions are, for example, those of
Penrose [19], Hawking [11], Dougan and Mason [8] and Brown and York[6]. For extensive reviews on
the subject, see [25,16].

On the other hand, in the case of asymptotically flat spacetimes there is a well-defined notion of global
energy-momentum associated with the entire spacetime (ADM mass [2] defined at spatial infinity) or
energy-momentum associated with an isolated gravitating source (Bondi mass [5] defined at null infinity).
Hence, one of the natural criteria of the plausibility of particular quasi-local energy-momentum is whether
it coincides with the ADM mass or the Bondi mass in the limit of the large spheres near spatial or null
infinity [25].

M. Scholtz
Department of Applied Mathematics, Na Florenci 25, Prague, Czech Republic,
E-mail: scholtz@fd.cvut.cz

L. Holka
Institute of Theoretical Physics, V Holešovičkách 2, Prague, Czech Republic,
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2 Martin Scholtz, Lukáš Holka

Standard expression for the Bondi energy-momentum of electro-vacuum spacetimes in the Newman-
Penrose formalism has the form

PAA′
=−

∮

S

(
Ψ (0)

2 +σ (0) σ̇ (0)
)

ωA
0 ωA′

0 dS,

where Ψ (0)
2 is the leading O

(
r−3

)
term in the asymptotic expansion of the Ψ2-component of the Weyl

spinor, σ (0) is the asymptotic shear of Newman and Penrose, ω0
A and ω1

A are asymptotic spinors [25]
and ωA

0 = ωA
A oA, where oA is the element of GHP spinor dyad [10]. The dot means the derivative with

respect to (retarded) time u. In [4] we have shown that this result remains true for the spacetimes with
conformally invariant scalar field sources. In the presence of the massless Klein-Gordon scalar field,
however, the scalar field contributes to the Bondi energy and the correct expression for the Bondi mass
(energy) is (in the conventions used in this paper)

MB =− 1
2
√

π

∮

S

(
Ψ (0)

2 +σ (0) σ̇ (0)+
1
6

∂u(φ (0) φ (0))

)
dS, (1)

where φ (0) is now the leading O
(
r−1

)
term in the asymptotic expansion of the scalar field.

A crucial property of the Bondi energy is that it should decrease whenever the system emits gravi-
tational (or another) radiation. As we have shown in [4], in the case of massless Klein-Gordon field the
mass-loss formula acquires the form

ṀB =− 1
2
√

π

∮ (
σ̇ (0) σ̇ (0)+ φ̇ (0) φ̇ (0)

)
dS, (2)

so that the Bondi mass is a non-increasing function of time u. For the conformally invariant scalar field,
resulting “mass-loss” formula is indefinite and reads

ṀB =− 1
2
√

π

∮

S

(
σ̇ (0) σ̇ (0)+2(φ̇ (0))2 −φ (0) φ̈ (0)

)
dS. (3)

Hence, in this case the Bondi mass is not a monotonic function of time, which can be traced back to the
fact that the energy-momentum tensor for the conformally invariant scalar field does not obey the energy
condition Tablanb ≥ 0 for any future null vectors la and na.

In this paper we investigate the natural generalization of these calculations and we calculate the Bondi
mass of the spacetimes with interacting electromagnetic and scalar fields. The purpose is twofold. It seems
that the analysis of the Bondi mass of Maxwell-Klein-Gordon spacetimes in the Newman-Penrose for-
malism is missing (see, however, [7,14] for some results on the scalar field in the Hamiltonian formalism).
Hence, our first goal is to fill this gap.

The Penrose mass has been calculated for a wide class of spacetimes in [28,26,27], but the spacetimes
with scalar field sources are not included. In fact, only a very few exact solutions of coupled Einstein-
Maxwell-Klein-Gordon equations are known, e.g. [9]. On the other hand, there is a chance that at least
some properties of the Penrose mass can be understood without having an exact solution. The idea is
to apply standard 3+1 decomposition of the spacetime with electromagnetic and scalar field sources and
analyse the constraints which must be satisfied on the initial Cauchy hypersurface. The 2-surface S can
be chosen to lie in this initial hypersurface and one can hope that the constraints will be easier to solve
than the full set of equations. In this context, the present paper is a preliminary work: the Penrose mass
calculated by the analysis sketched in this paragraph can be examined to have the correct large sphere
limit.
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The paper is organized as follows. In the section 2 we introduce standard equations governing the
system of coupled gravitational, electromagnetic and scalar fields and translate them into the spinor for-
malism. In the appendix A we present the Newman-Penrose projections of these equations. Next we con-
sider an asymptotically flat spacetime with the electromagnetic and scalar field sources which is analytic
at the future null infinity I +. The asymptotic behaviour of the Newman-Penrose quantities describing
the gravitational, scalar and electromagnetic fields is investigated in the section 3. In the next section 4
we present the asymptotic solution of Einstein-Maxwell-Klein-Gordon equations and finally in the sec-
tion 5 we calculate the Bondi mass of the spacetime and find corresponding mass-loss formula which is
presented both in terms of the four-potential and in the gauge invariant form.

2 Field equations

In this section we introduce field equations of interacting electromagnetic, scalar and gravitational fields
in the spinor form. Resulting system of equations will be referred to as the Einstein-Maxwell-Klein-
Gordon equations and corresponding spacetime will be called electro-scalar spacetime for the sake of
brevity.

The gauge invariant Lagrangian of the coupled scalar and electromagnetic fields can be written in the
form [12]

L = (Daφ)(Daφ)−m2 φ φ − 1
4

Fab Fab , (4)

where φ is a scalar field with charge e, φ its complex conjugate with charge −e, m is the mass of the
scalar field and Fab is standard Faraday 2-form. When acting on the uncharged fields, the gauge covariant
derivative Da coincides with the usual covariant derivative ∇a, otherwise its action on an arbitrary tensor
field T a..b

c..d with the charge e is defined by [20]

D f T a..b
c..d = ∇ f T a..b

c..d + i eA f T a..b
c..d , (5)

with Aa being the four-potential. The Lagrangian (4) yields, through the standard Euler-Lagrange equa-
tions, familiar field equations
(
DaD

a +m2)φ = 0,
(
DaD

a +m2)φ = 0, ∇aFab = i e
(
φDbφ −φDbφ

)
. (6)

Next we wish to rewrite these equations as a system of first-order spinorial equations. Electromagnetic
spinor φAB is related to the potential Aa by

φAB = ∇X ′(AAX ′
B). (7)

We reduce the gauge freedom imposing standard Lorenz condition ∇aAa = 0, so that the equation (7)
simplifies to

∇A′
A ABA′ =−φAB . (8)

Because we prefer our equations to be of the first order, we retain both φAB and AAA′ in future formulae
and equation (8) will be regarded as a dynamical equation for the potential Aa. Spinor form of (6) then
implies the equation for φAB:

∇A
B′φAB =

ie
2
(
φDbφ −φDbφ

)
=

ie
2
(
φ ϕb −φ ϕb

)
− e2 φ φ Ab. (9)
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In order to derive first-order equations for the scalar field, we introduce notation (cf. [4])

ϕa = ∇aφ and ϕAA′ = ∇AA′φ (10)

which eliminates formally the second derivatives of the scalar field φ that are present in the equations (6).
These equations are equivalent to the wave equation

�φ =−2 i eAa ϕa +
(
e2 Aa Aa −m2)φ (11)

and its complex conjugate. At this point we could employ the Newman-Penrose formalism and express
�φ with the help of only the first derivatives of ϕa and the spin coefficients. However, it is more conve-
nient to decompose spinor ∇A

A′ϕAB′ into its symmetric and antisymmetric parts,

∇A
A′ϕAB′ = ∇A

(A′ϕB′)A +
1
2

εA′B′ ∇A
X ′ϕX ′

A =−�A′B′φ − 1
2

εA′B′ �φ ,

and use �A′B′φ = 0. (Commutator �AB =∇X ′(A∇X ′
B) annihilates scalar quantities.) Now the scalar equation

(11) is equivalent to the spinor equation

∇A
A′ϕAB′ = i eAcϕc εA′B′ +

1
2
(
m2 − e2 AcAc

)
φ εA′B′ . (12)

If, on the other hand, we apply the procedure of spinor decomposition to covariant derivatives Da =DAA′

in the Klein-Gordon equation (6), we arrive at somewhat more elegant formula

DX ′
A DBX ′φ =

1
2

m2 φ εAB − i eφ φAB. (13)

Here, the Lorenz condition has not been imposed and equation (13) is manifestly gauge-invariant.
Now we turn our attention to equations of gravitational field which is described by the Newman-

Penrose spin coefficients, the Weyl spinor ΨABCD, the Ricci spinor ΦABA′B′ and the scalar curvature Λ =
R/24. Equations for the spin coefficients follow from the spinorial form of the Ricci identities [22]

�CDξA =ΨABCD ξ B −2Λ εA(C ξD), �C′D′ξA = ΦABC′D′ ξ B, (14)

where ξA is chosen to be one of the basis spinors oA and ιA. The Weyl spinor and the Ricci spinor satisfy
the Bianchi identities

∇D
A′ΨABCD = ∇B′

(AΦBC)A′B′ , ∇BB′
ΦABA′B′ =−3∇AA′Λ . (15)

Moreover, the Ricci spinor and the scalar curvature are related to the energy-momentum tensor by the
Einstein equations [3]

ΦABA′B′ = 4π T(AB)(A′B′), 3Λ = π TXY ′XY ′
. (16)

In order to obtain the energy-momentum tensor Tab we vary the action of the electro-scalar field with the
Lagrangian (4) with respect to the metric gab. This yields (cf. [12])

Tab =
1

4π

[(
D(aφ

)(
Db)φ

)
− 1

2
Fac F c

b − 1
2

gab L

]

=
1

4π

[(
D(aφ

)(
Db)φ

)
+φAB φ A′B′ − 1

2
gab (Dcφ)

(
Dcφ

)
+

1
2

m2 gab φφ
]
. (17)
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where the factor (4π)−1 has been included for convenience. Using the Einstein equations (16) we find
that the Ricci spinor and the scalar curvature are given by relations

ΦABA′B′ =
(
D(A(A′φ

)(
DB′)B)φ

)
+φAB φ A′B′ , Λ =

1
12

[
−(Daφ)

(
Daφ

)
+2m2 φ φ

]
. (18)

To summarize, the unknown variables representing the matter fields are the potential Aa governed
by equation (8), the electromagnetic spinor φAB governed by (9) and the scalar field satisfying (13).
Corresponding Newman-Penrose projections are summarized in the appendix A, equations (73), (76) and
(78). The components of the Ricci spinor and the scalar curvature are given by (18) and their are listed
explicitly in the Newman-Penrose form in the appendix A, equations (79) and (80). The Weyl spinor and
the Ricci spinor satisfy the Bianchi identities (15). Corresponding Newman-Penrose equations [20,22]
are listed in the appendix for the reference purposes.

3 Asymptotic behaviour of the fields

We are interested in a weakly asymptotically simple solution of the Einstein-Maxwell-Klein-Gordon
equations which is analytic1 in the neighbourhood of the future null infinity I +. We employ the notation
(M̂, ĝab) for the unphysical spacetime and (M,gab) for the physical one, where, by assumption of weak
asymptotic simplicity, the two metrics are related by conformal rescaling

ĝab = Ω 2gab. (19)

To proceed further we need to establish a coordinate system and the Newman-Penrose null tetrad
in a neighbourhood of I +. In accordance with [22] we introduce coordinates xµ = (u,r,x2,x3), where
xI , I = 2, 3, are arbitrary coordinates on the 2-sphere, u is an affine parameter along null generators of
I + and r is an affine parameter along null hypersurfaces intersecting I + in cuts u = constant. Vector la

is chosen to be tangent to these null hypersurfaces and orthogonal to the cuts of constant (both) u and r.
Null vectors ma and ma are chosen so as to span the tangent space of these cuts. Resulting null tetrad has
the following properties.

– la and na are real and null vectors normalized by lana = 1. Vector ma and its complex conjugate
ma are null and complex, satisfying the condition mama = −1. Remaining scalar products between
these four vectors are all zero. Their components with respect to the basis induced by the coordinates
(u,r,x2,x3) read

lµ = (0,1,0,0), nµ = (1,H,C2,C3), mµ = (0,0,P2,P3), mµ = (0,0,P2
,P3

). (20)

– There exists a spin basis (oA, ιA) such that

la = oAoA′
, na = ιAιA′

, ma = oAιA′
, ma = ιAoA′

. (21)

– Functions H, CI and PI are subject to the frame equations :

DH =−γ − γ, (22a)

DCI = 2πPI +2πPI
, (22b)

DPI = ρPI +σPI
, (22c)

∆PI −δCI = (γ − γ −µ)PI −λPI
, (22d)

δH =−ν , (22e)

δPI −δPI
= (α −β )PI +(β −α)PI

, (22f)

1 In order to calculate the Bondi mass, the analyticity is not necessary and weaker assumptions on the differentiability of the
solution could be imposed. In what follows we use the analyticity to argue that the mass of the Klein-Gordon field must be zero.
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where we have used the standard Newman-Penrose notation

la∇a = D, na∇a = ∆ , ma∇a = δ , ma∇a = δ . (23)

– Some of the spin coefficients get simplified:

ε = 0, κ = 0, µ = µ, ρ = ρ, π = τ = α +β . (24)

– In accordance with (19) we choose a spin basis in the unphysical spacetime

ôA = Ω−1 oA, ι̂A = ιA, ôA = oA, ι̂A = Ω ιA. (25)

Associated unphysical null tetrad then reads

l̂a = Ω−2 la, n̂a = na, m̂a = Ω−1 ma. (26)

We assume that unphysical spinors ôA and ι̂A are regular on I + which implies that physical spinor
oA = Ω ôA vanishes on I + while the spinor ιA remains non-vanishing there.

– In the neighbourhood of I + we can use the conformal factor Ω as a coordinate instead of r by setting
dΩ/dr =−Ω 2. The Newman-Penrose operators (acting on scalars) then read

D =−Ω 2∂Ω , ∆ = ∂u −Ω 2 H ∂Ω +CI∂I , δ = PI∂I . (27)

In particular, we have

DΩ =−Ω 2, ∆Ω =−Ω 2 H, δΩ = δΩ = 0. (28)

In addition, by (25) we have

CI = O (Ω) , PI = O (Ω) . (29)

Next we establish the asymptotic behaviour of the spin coefficients under the assumption that unphys-
ical spin coefficients are regular on I +, i.e. they are of order O (1). Under the conformal rescaling, the
spin coefficients transform as

κ = Ω 3 κ̂, τ = Ω τ̂ + δ̂Ω , σ = Ω 2 σ̂ , ρ = Ω 2 ρ̂ +Ω D̂Ω ,

ε = Ω 2 ε̂, γ = γ̂ +Ω−1∆̂Ω , β = Ω β̂ , α = Ω α̂ + δ̂Ω , (30)

π = Ω π̂ − δ̂Ω , ν = Ω−1 ν̂ , µ = µ̂ −Ω−1 ∆̂Ω , λ = λ̂ .

These relations have been derived using the definitions of spin coefficients, the rule for the transformation
of the covariant derivative [21,22] and the behaviour of the spin basis (25). Derivatives with the hats
are operators associated with the unphysical spin basis ôA and ι̂A. We assume the order O (1) for all
unphysical quantities.

In the tetrad introduced above, coefficients ε and κ vanish and thus, by (30), their unphysical coun-
terparts ε̂ and κ̂ vanish as well. Moreover, by (28) we have

τ = Ωτ̂ = O (Ω) , π = Ωπ̂ = O (Ω) , α = Ωα̂ = O (Ω) , β = Ωβ̂ = O (Ω) .

For the coefficients γ,µ and λ we find

γ = γ̂ −Ω H = O (1) , µ = µ̂ +Ω H = O (1) , λ = λ̂ = O (1) . (31)

The coefficient ν is apparently divergent on I −,

ν = Ω−1 ν̂ = O
(
Ω−1) , (32)
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because of (25), but we will show that in fact ν = O
(
Ω 2

)
. The coefficient σ is of the order

σ = Ω 2 σ̂ = O
(
Ω 2) . (33)

Finally, for the coefficient ρ we have (see [22])

ρ = Ω 2 ρ̂ −Ω =−Ω +O
(
Ω 3) .

Let us now turn to the asymptotic behaviour of the matter fields. Appropriate conformal transforma-
tion of the four-potential Aa is Âa = Aa, so that the unphysical electromagnetic spinor φ̂AB is

φ̂AB = ∇̂X ′(AÂX ′
B) = Ω φAB.

Assuming that the unphysical quantities are of the order O (1) near I +, for the Newman-Penrose com-
ponents of the potential we obtain

A0 = Aala = O
(
Ω 2) , A1 = Aama = O (Ω) , A1 = Aama = O (Ω) , A2 = Aana = O (1) . (34)

Similarly, for the electromagnetic spinor we find standard asymptotic behaviour in the form

φ0 = φABoAoB = O
(
Ω 3) , φ1 = φABoAιB = O

(
Ω 2) , φ2 = φABιAιB = O (Ω) . (35)

The spinor form of the Klein-Gordon equation (12) is genuinely not conformally-invariant and so we
have to prescribe the conformal behaviour of the scalar field on the physical grounds. Natural requirement
[4] is that the physical scalar field vanishes at infinity, so we postulate

φ = Ω φ̂ = O (Ω) , (36)

assuming that φ̂ is regular on I +. Components of the gradient ϕa = ∇aφ then behave according to the
formulae (recall (27) and (29))

ϕ0 = O
(
Ω 2) , ϕ1 = O

(
Ω 2) , ϕ1 = O

(
Ω 2) , ϕ2 = O (Ω) , (37)

where the Newman-Penrose components of the field ϕa are defined by (75).
The Weyl spinor is conformally invariant with zero weight2:

ΨABCD = Ψ̂ABCD.

Under certain weak assumptions it is possible to show [22] that Ψ̂ABCD vanishes on I + so that smoothness
shows it is of order O (Ω). Hence, for the Weyl tensor we obtain usual asymptotic behaviour

Ψ0 = O
(

Ω 5
)
, Ψ1 = O

(
Ω 4) , Ψ2 = O

(
Ω 3) , Ψ3 = O

(
Ω 2) , Ψ4 = O (Ω) . (38)

Asymptotic behaviour of the components of the Ricci spinor can be found from Einstein’s equations (79):

Φ00 = O
(
Ω 4) , Φ01 = O

(
Ω 4) , Φ11 = O

(
Ω 2) ,

Φ02 = O
(
Ω 4) , Φ12 = O

(
Ω 3) , Φ22 = O

(
Ω 2) .

Behaviour of the scalar curvature Λ is found from (18) to be

Λ = O
(
Ω 2) . (39)

This completes the discussion of the conformal behaviour of physical and geometrical quantities used in
the calculation.

2 This depends on the conventions used. What is convention-independent is the behaviour of the Weyl tensor Cabcd =
ΨABCDεA′B′εC′D′ . In the non-abstract index formalism, components of tensors are related to components of spinors via van der
Waerden symbols σAA′

a which can have a conformal weight and thus they affect the conformal weight of ΨABCD, as in, e.g. [18].
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4 Asymptotic solution

In this section we present the asymptotic solution of Einstein-Maxwell-Klein-Gordon equations intro-
duced in the section 2. Let X be any Newman-Penrose scalar quantity which is of the order O (Ω n).
Then, assuming analyticity of the solution, we expand this quantity into the series in coordinate Ω in the
neighbourhood of I :

X =
∞

∑
k=0

X (k) Ω n+k. (40)

Expanding all Newman-Penrose quantities3 in this way and using the field equations we find the coeffi-
cients X (0),X (1), . . . in the leading terms of expansions (40).

At the first stage we employ the Ricci identities (81a), (81b), (81c), (81d) and (81r) and the frame
equation (22f) which yield the following expansions of the spin coefficients ρ,σ ,α and β :

ρ =−Ω −
(

σ (0)σ (0)+φ (0)φ (0)
)

Ω 3 −
(

φ (0) φ (1)+φ (1) φ (0)
)

Ω 4 +O
(

Ω 5
)
, (41a)

σ = σ (0) Ω 2 +

(
σ (0)2 σ (0)− 1

2
Ψ (0)

0 +σ (0) φ (0) φ (0)
)

Ω 4 +O
(

Ω 5
)
, (41b)

α = aΩ +
(
ðσ (0)+aσ (0)

)
Ω 2 +O

(
Ω 3) , (41c)

β =−aΩ −aσ (0) Ω 2 +O
(
Ω 3) , (41d)

π = τ = (ðσ (0))Ω 2 +O
(
Ω 3) , (41e)

where σ (0) is the asymptotic shear of Newman and Penrose [1,17] and

a =−cotθ
2
√

2
.

Operators ð and ð are defined by relations [22]

ðη = δ̂η +2waη , ðη = δ̂η −2waη , (42)

when acting on the scalar η of the spin weight w.
Now, the O

(
Ω 2

)
terms in the Ricci identity (81g) give

m2 φ (0) φ (0) = 0,

where m is the mass of the scalar field. The coefficient φ (0) is the leading term in the asymptotic expansion
of the scalar field and in fact represents the radiative component of the field. If we do not want to exclude
the presence of the scalar radiation which is expected to contribute to the Bondi mass-loss formula, we
are forced to set m = 0. This is in agreement with the fact that massive fields do not extend to I +, see
[29,13,4]. Hence, in what follows we will consider only the massless scalar field.

Assuming now m = 0 and φ (0) 6= 0 and using all Ricci identities (81a)–(81r) and the frame equations
(22a)–(22f) we find the asymptotic expansion of remaining spin coefficients:

3 By the Newman-Penrose quantities we mean five components Ψm, m = 0, . . .4, six independent components Φmn, m,n = 0,1,2,
twelve spin coefficients, three electromagnetic components φm, m = 0,1,2, four components of the potential Am, m = 0,1,1,2, and
the scalar field φ .
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λ = σ̇ (0) Ω +

(
1
2

σ (0)−ððσ (0)
)

Ω 2 +O
(
Ω 3) , (43a)

µ =−1
2

Ω −
(
ð2σ (0)+σ (0)σ̇ (0)+Ψ (0)

2 +
1
6

∂u(φ (0)φ (0))

)
Ω 2 +O

(
Ω 3) , (43b)

γ =

(
aðσ (0)−aðσ (0)− 1

2
Ψ (0)

2 +
1
6

∂u(φ (0)φ 0)

)
Ω 2 +O

(
Ω 3) , (43c)

ν = O
(
Ω 2) . (43d)

Components of the metric tensor with respect to the coordinates (u,r,θ ,φ) are given in terms of the
metric functions H,CI and PI satisfying the frame equations (22). Their asymptotic expansions read

H =−1
2
+

(
1
3

∂u(φ (0)φ (0))− 1
2

Ψ (0)
2 − 1

2
Ψ (0)

2

)
Ω +O

(
Ω 2) , (44a)

C2 =− 1√
2

(
ðσ (0)+ðσ (0)

)
Ω 2 +O

(
Ω 3) , (44b)

C3 =
i√

2sinθ

(
ðσ (0)−ðσ (0)

)
Ω 2 +O

(
Ω 3) . (44c)

Similar expansions can be obtained for the components of the Ricci tensor and the Ricci scalar,

Φ00 = φ (0) φ (0) Ω 4 +2
(

φ (1) φ (0)+φ (0) φ (1)
)

Ω 5 +O
(

Ω 6
)
, (45a)

Φ01 =−1
2
ð(φ (0) φ (0))Ω 4 +O

(
Ω 5

)
, (45b)

Φ02 =
(
−φ (0)

0 Ȧ(0)
1 +(ðφ (0)+ ieA(0)

1 φ (0))(ðφ (0)− ieA(0)
1 φ (0))

)
Ω 4 +O

(
Ω 5

)
, (45c)

Φ11 =− 1
4

∂u
(
φ 0φ 0)Ω 3 +O

(
Ω 4) , (45d)

Φ12 =

(
−φ (0)

1 Ȧ(0)
1 +

1
2

φ̇ (0)(ðφ (0)+ ieA(0)
1 φ (0))+

1
2

φ̇ (0)(ðφ (0)− ieA(0)
1 φ (0))

)
Ω 3 +O

(
Ω 4) , (45e)

Φ22 =
(

Ȧ(0)
1 Ȧ(0)

1
+ φ̇ (0) φ̇ (0)

)
Ω 2 +O

(
Ω 3) , (45f)

Λ =
1
12

∂u
(
φ 0φ 0)Ω 3 +O

(
Ω 4) , (45g)

and for the components of the Weyl spinor,

Ψ0 =Ψ (0)
0 Ω 5 +Ψ (1)

0 Ω 6 +O
(
Ω 7) , (46a)

Ψ1 =Ψ (0)
1 Ω 4 +Ψ (1)

1 Ω 5 +O
(

Ω 6
)
, (46b)

Ψ2 =Ψ (0)
2 Ω 3 +O

(
Ω 4) , (46c)

Ψ3 =Ψ (0)
3 Ω 2 +O

(
Ω 3) , (46d)

Ψ4 =Ψ (0)
4 Ω +Ψ (1)

4 Ω 2 +O
(
Ω 3) , (46e)
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where

Ψ (0)
3 =−ðσ̇ (0), Ψ (0)

4 =−σ̈0, Ψ (1)
4 = ððσ̇0 (47a)

Ψ (0)
1 =−2σ (0)ðσ (0)+2aσ (0) σ (0)+(ð+a)(φ (0) φ (0)), (47b)

Ψ (1)
1 = 3φ (0)

0 φ (0)
1 −ðΨ (0)

0 −σ (0)ð(φ (0) φ (0))+
1
2

(
φ (0)ðφ (1)+φ (0)ðφ (1)

)
+

1
2

σ (0)ð(φ (0) φ (0))

−
(

φ (1)ðφ (0)+φ (1)ðφ (0)
)
+φ (0) φ (0)

(
3e2 A(0)

0 A(0)
1 −ðσ (0)

)

+
3
2

i e
[
A(0)

0 φ (0)
(
ðφ (0)−φ (1)

)
−A(0)

1 φ (0)
(
ðφ (0)−φ (1)

)]
, (47c)

Ψ̇ (0)
2 =

2
3

φ̇ (0) φ̇ (0)+φ (0)
2 φ (0)

2 +ðΨ (0)
3 − 1

6

(
φ̈ (0) φ (0)+ φ̈ (0) φ (0)

)
+σ (0)Ψ (0)

4 + e2 (A(0)
2 )2 φ (0) φ (0)

+ i eA2
(0)

(
φ (0) φ̇ (0)− φ̇ (0) φ (0)

)
. (47d)

For the components of electromagnetic spinor we find the following expansions:

φ0 = φ (0)
0 Ω 3 +φ (1)

1 Ω 4 +O
(

Ω 5
)
, (48a)

φ1 = φ (0)
1 Ω 2 +φ (1)

1 Ω 3 +O
(
Ω 4) , (48b)

φ2 = φ (0)
2 Ω +φ (1)

2 Ω 2 +O
(
Ω 3) , (48c)

where

φ (0)
0 =−σ (0) A(0)

1
−ðA(0)

0 , (49a)

φ (0)
1 =−ðA(0)

1
, (49b)

φ (0)
2 = ðA(0)

2 − Ȧ(0)
1
. (49c)

5 Bondi mass

In this section we finally construct the expression for the Bondi mass. We adopt the approach based on
the asymptotic twistor equation as described in [22,15]. The twistor equation reads

∇A′ (AωB) = 0. (50)

Spinor ωA can be written as a linear combination of the basis spinors,

ωA = ω0 oA +ω1 ιA.

In the following we assume that the components

ω0 =−ιA ωA and ω1 = oA ωA

are regular on I +. Null vector ma has the spin weight 1 which, assuming εAB has the spin weight zero,
implies that the spin weights of oA and ιA are 1/2 and −1/2, respectively. Consequently, the components
ω0 and ω1 have spin weights −1/2 and 1/2.

Twistor equation is conformally invariant if the spinor ωA has conformal weight zero, i.e.

ωA = ω̂A.
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In order to obtain explicit form of the twistor equation (50), we project it onto the spin basis and arrive at

Dω1 = κ ω0 + ε ω1, ∆ω0 =−γ ω0 −ν ω1, (51a)

δω0 =−α ω0 −λ ω1, δω1 = σ ω0 +β ω1, (51b)

Dω0 −δω1 =−(ε +ρ)ω0 − (α +π)ω1, ∆ω1 −δω0 = (β + τ)ω0 +(γ +µ)ω1. (51c)

In general spacetimes, these equations do not possess a non-trivial solution. Thus, since we are interested
in the Bondi mass which is defined at null infinity, we restrict the twistor equation to I in what follows.

Quantities ω0 and ω1 are regular by assumption and hence can be expanded in the neighbourhood of
I into the series of the form

ω0 = ω0
0 +ω0

1 Ω +O
(
Ω 2) , ω1 = ω1

0 +ω1
1 Ω +O

(
Ω 2) . (52)

Using expansions of the spin coefficients and the Newman-Penrose operators, we find that leading terms
ω0

0 and ω1
0 satisfy relations

ðω1
0 = 0, ðω1

0 =−ω0
0 , ω̇1

0 = 0, ω1
1 = 0, (53)

where the dot denotes differentiation with respect to the variable u.
Next we define the symmetric spinor [24,23]

uAB =
1
2

(
ω(A∇C′

B)ωC′ −ωC′∇C′
(AωB)

)
, (54)

and the associated two form

Fab = uAB εA′B′ +uA′B′ εAB. (55)

Now, following [22], we choose a null hypersurface Σ which extends to I + and define S(Ω) to be the
two surface Ω = constant in Σ . Hence, the hypersurface Σ intersects I + at the two sphere S(0). In
addition, we define

I(Ω) =
∮

S(Ω)

Fab lanb dS

and

I0 = lim
Ω→0

I(Ω) (56)

if the limit exists. The Bondi four-momentum Pa is then defined by the equation

I0 = Paka,

where ka = ωAωA′
.

The induced volume form on the two surface S(Ω) is

(2)εcd = nalbεabcd = i(εC′D′oCιD − εCDoC′ ιD′) = O
(
Ω−2) .

Thus, in order to show that the limit I0 exists we have to show that the integrand behaves as

Fablanb = O
(
Ω 2) .

Direct calculation shows

Fablanb = ρ ω0 ω0 +µ ω1 ω1 +ℜ
(

π ω1 ω0 +ω1 δω0 −ω0δω1
)
.
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Using expansions (41) and (52) we find

Fablanb = Ω ℜ
[
−ω0

0 ω0
0 −

1
2

ω1
0 ω1

0 +ω1
0ðω0

0 −ω0
0ðω1

0

]
+O

(
Ω 2) . (57)

By (53) we have

−ω0
0ðω1

0 = ω0
0 ω0

0

and so

Fablanb = Ω ℜ
[
−1

2
ω1

0 ω1
0 +ω1

0ðω0
0

]
+O

(
Ω 2) . (58)

Using the commutator

[ð,ð]ω1
0 =−1

2
ω1

0

and asymptotic twistor equation (53) we find

ðω0
0 =−ððω1

0 =−ððω1
0 +

1
2

ω1
0

which implies

Fablanb = O
(
Ω 2)

and hence the limit I0 in (56) exists.
Expanding the quantity Fablanb further we arrive at

Fablanb = Ω 2 ℜ
[
−2ω0

0 ω0
1 −ω1

0 ω1
1 +µ1 ω1

0 ω1
0 +(ðσ (0))ω1

0 ω0
0 +σ (0) ω0

0ðω1
0

−σ (0) ω1
0ðω0

0 +ω1
1ðω0

0 +ω1
0ðω0

1 −ω0
1ðω1

0 −ω0
0ðω1

1

]
+O

(
Ω 3) . (59)

Imposing (53) this simplifies to

Fablanb = Ω 2 ℜ
[
−ω0

0 ω0
1 +µ1 ω1

0 ω1
0 +(ðσ (0))ω1

0 ω0
0 −σ (0) ω1

0ðω0
0 +ω1

0ðω0
1

]
+O

(
Ω 3) . (60)

Next we have

ℜ
[
−ω0

0 ω0
1 +ω1

0ðω0
1
]
= ℜ

[
(ðω1

0 )ω
0
1 +ω1

0ðω0
1
]
= ℜ

[
ω1

0ðω1
0 +ω1

0ðω0
1
]
= ℜ

[
ð(ω0

1 ω1
0)
]

which vanishes on integration,
∮

ð(ω0
1 ω1

0)dŜ = 0,

because quantity ω0
1 ω1

0 has the spin weight −1. Thus,

I0 =
∮

ℜ
[
µ1ω1

0 ω1
0 −σ (0) ω1

0ðω0
0 +ω1

0 ω0
0ðσ (0)

]
dŜ. (61)

Let us use equation (53) again to rearrange the third term of the integrand (61),
∮

ω1 ω0
0ðσ (0) dŜ =−

∮
ð
(

ω1
0 σ (0)ðω1

0

)
dŜ+

∮
σ (0) ω1

0 ð
(
ðω1

0
)

dŜ,
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where the first integral on the right hand side vanishes because of the spin weight of the argument of the
ð operator. Next we expand quantity ω1

0 of the spin weight 1/2 into the series in spin-weighted spherical
harmonics,

ω1
0 =

∞

∑
l=0

l

∑
m=−l−1

alm 1
2
Yl+ 1

2 , m+ 1
2
,

where the coefficients almare time-independent by (53). Since the operator ð (ð) acts as the spin raising
(lowering) operator, we can write

ðsYlm = cslm s+1Ylm, ðsYlm = dslm s−1Ylm,

where particular form of coefficients cslm and dslm is not important. Applying ð on ω1
0 and imposing (53)

yields

ðω1
0 =

∞

∑
l=0

l

∑
m=−l−1

alm c 1
2 lm 3

2
Yl+ 1

2 , m+ 1
2
= 0.

Functions 3
2
Y1

2 m vanish by definition while the orthogonality of spin-weighted spherical harmonics im-
plies

alm = 0 for l > 0.

The quantity ω1
0 then acquires the form

ω1
0 = a 1

2
Y1

2 , − 1
2
+b 1

2
Y1

2 ,
1
2
. (62)

Application of ð2 to this expansion immediately yields

ð2ω1
0 = ã− 3

2
Y1

2 , − 1
2
+ b̃− 3

2
Y1

2 ,
1
2
= 0. (63)

Hence,
∮

ω1
0 ω0

0ðsdŜ = 0.

Finally, the last vanishing term in (61) is
∮

σ (0) ω1
0ðω0

0 dŜ =−
∮

σ (0) ω1
0ð

2ω1
0 dŜ = 0

by (53) and (63).
Thus, we have found that the integral I0 exists and reduces to

I0 = ℜ
∮

µ1 ω1
0 ω1

0dŜ, (64)

where µ1 is O
(
Ω 2

)
term in (43b) so that the integral reads

I0 =
∮ (

Ψ 0
2 +σ (0) σ̇ (0)+

1
6

∂
∂u

(φ 0 φ 0)

)
ω1

0 ω1
0 dŜ, (65)

where we have used
∮

ð2sdŜ = 0.
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Now, (62) implies that the spin weight zero quantity ω1
0 ω1

0 can be expanded as

ω1
0 ω1

0 = α Y00 +
1

∑
m=1

βm Y1m (66)

for some coefficients α and βm. Since the Bondi mass is a zeroth component of the four-momentum,
we set βm = 0 and α = 1 which corresponds to the timelike direction. With this choice, we arrive at the
expression for the Bondi mass of electro-scalar spacetimes in the form

MB =
1

2
√

π

∮ (
Ψ 0

2 +σ (0) σ̇ (0)+
1
6

∂
∂u

(φ 0 φ 0)

)
dŜ. (67)

Corresponding mass-loss formula is found by taking the derivative of (67) with respect to variable u and
using equations (47d) and (47a):

ṀB =− 1
2
√

π

∮ [
σ̇ (0) σ̇ (0)+φ 0

2 φ 0
2 + φ̇ 0 φ̇ 0 + i eA0

2

(
φ 0 φ̇ 0 − φ̇ 0 φ 0

)
+ e2 A0

2 A0
2 φ 0 φ 0

]
dŜ. (68)

Clearly, the first three terms represent the mass-loss by gravitational, electromagnetic and scalar radiation,
while remaining terms represent the mass-loss by interactions between electromagnetic and scalar fields.

The Bondi mass-loss formula can be brought into simpler form when we define

Duφ (0) = ∂uφ (0)+ i eA0
2 φ (0), Duφ (0) = ∂uφ (0)− i eA0

2 φ (0),

so that Du is the projection of the gauge covariant derivative naDa restricted to I . In terms of the operator
Du, the Bondi mass-loss formula reads

ṀB =− 1
2
√

π

∮ [
σ̇ (0) σ̇ (0)+φ 0

2 φ 0
2 +

(
Duφ (0)

)(
Duφ (0)

)]
dŜ. (69)

This expression is manifestly gauge invariant and negative semi-definite. Hence, unlike the conformal
scalar field with indefinite “mass-loss” formula (3), in the case of interacting electromagnetic and mass-
less Klein-Gordon fields, the Bondi mass is either constant or decreasing function of time. Alternatively,
expression (69) can be rewritten in terms of the four-potential Aa using the relation (49c):

ṀB =− 1
2
√

π

∮ [
σ̇ (0) σ̇ (0)+ Ȧ(0)

1 Ȧ(0)
1

+ φ̇ (0) φ̇ (0)
]

dŜ. (70)

In the absence of electromagnetic field, formulae (67) and (69) reduce to expressions (1) and (2) found
in [4] for the massless Klein-Gordon field.

6 Conclusion

In this paper we have derived the spinor equations for the system of coupled gravitational, electromagnetic
and scalar fields and found the asymptotic solution of this system in the neighbourhood of the future null
infinity. The asymptotic solution reduces to the well-known expansions for electrovacuum spacetimes [21,
17] and our previous results on spacetimes with the scalar field sources [4]. Using this solution and the
solution of asymptotic twistor equation, we have arrived at the expression for the Bondi mass of resulting
electro-scalar spacetime, equation (67). This expression coincides with (1).

The Bondi mass-loss formula has been derived and expressed in terms of the four-potential (70) and
in the gauge invariant form (69) which is manifestly negative semi-definite. This last result shows that in
the case of electro-scalar spacetimes, the Bondi mass is a non-increasing function of time.
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A Field equations in the Newman-Penrose formalism

Four-potential Aa = AAA′ is a real vector field and its components with respect to the spin basis will be denoted by

A0 = AXX ′oX oX ′
, A1 = AXX ′oX ιX ′

, (71a)

A1 = AXX ′ ιX oX ′
, A2 = AXX ′ ιX ιX ′

. (71b)

Similarly we introduce the Newman-Penrose components of electromagnetic spinor φAB by

φ0 = φAB oA oB, φ1 = φAB oA ιB, φ2 = φAB ιA ιB. (72)

Potential Aa is governed by equation (8),

∇A′
A ABA′ =−φAB.

Projections of this equation onto the spin basis are

DA1 −δA0 = (π −α −β )A0 +(ε − ε +ρ)A1 +σA1 −κA2 +φ0, (73a)

DA2 −δA1 =−µA0 +πA1 +(π −α +β )A1 +(ρ − ε − ε)A2 +φ1, (73b)

∆A0 −δA1 = (γ + γ −µ)A0 +(β −α − τ)A1 − τA1 +ρA2 −φ1, (73c)

∆A1 −δA2 = νA0 −λA1 +(γ − γ −µ)A1 +(α +β − τ)A2 −φ2. (73d)

The Lorenz condition ∇aAa = 0 in the Newman-Penrose formalism acquires the form

DA2 −∆A0 −δA1 −δA1 = (γ + γ −µ −µ)A0 +(π −α +β − τ)A1 +(π −α +β − τ)A1 +(ρ +ρ − ε − ε)A2 = 0. (74)

Projections of the gradient ϕAA′ = ∇AA′φ will be denoted by

ϕ0 = Dφ , ϕ2 = ∆φ , ϕ1 = δφ , ϕ1 = δφ ,

ϕ0 = Dφ , ϕ2 = ∆φ , ϕ1 = δφ , ϕ1 = δ φ
(75)

Now we can complete equations for electromagnetic field. Equation (9),

∇A
B′φAB =

ie
2
(
φ ϕb −φ ϕb

)
− e2 φ φ Ab,

is the spinor version of Maxwell’s equations with four-current ja on the right hand side. Projections of this equation onto the spin
basis follow:

Dφ1 −δφ0 = (π −2α)φ0 +2ρφ1 −κφ2 +
ie
2
(
φϕ0 −φϕ0

)
+ e2φφA0, (76a)

Dφ2 −δφ1 =−λφ0 +2πφ1 +(ρ −2ε)φ2 +
ie
2
(
φϕ1 −φϕ1

)
+ e2φφA1, (76b)

∆φ0 −δφ1 = (2γ −µ)φ0 −2τφ1 +σφ2 +
ie
2
(
φϕ1 −φϕ1

)
− e2φφA1, (76c)

∆φ1 −δφ2 = νφ0 −2µφ1 +(2β − τ)φ2 +
ie
2
(
φϕ2 −φϕ2

)
− e2φφA2. (76d)

Dynamical equation for the gradient ϕAA′ is provided by equation (12)

∇A
A′ϕAB′ = i eAcϕc εA′B′ +

1
2
(
m2 − e2 AcAc

)
φ εA′B′ . (77)

Projected on the spin basis, this equation is equivalent to any of the following four scalar equations:

Dϕ1 −δϕ0 = (π −α −β )ϕ0 +σϕ1 +(ρ + ε − ε)ϕ1 −κϕ2, (78a)

Dϕ2 −δϕ1 =−µϕ0 +(π −α +β )ϕ1 +πϕ1 +(ρ − ε − ε)ϕ2 −φ m2/2+ e2φ
(
A0A2 −A1A1

)
+ ie

(
A1ϕ1 +A1ϕ1 −A0ϕ2 −A2ϕ0

)
,

(78b)

∆ϕ0 −δϕ1 = (γ + γ −µ)ϕ0 − τϕ1 +(β −α − τ)ϕ1 +ρϕ2 −φ m2/2+ e2φ
(
A0A2 −A1A1

)
+ ie

(
A1ϕ1 +A1ϕ1 −A0ϕ2 −A2ϕ0

)
,

(78c)

∆ϕ1 −δϕ2 = νϕ0 +(γ − γ −µ)ϕ1 −λϕ1 +(α +β − τ)ϕ2. (78d)
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The Ricci spinor is related to the electro-scalar fields by Einstein’s equations (16) and is given by formula (18). The Newman-
Penrose components of the Ricci spinor read:

Φ00 = φ0 φ 0 +(D0φ)
(
D0φ

)
= φ0φ 0 +ϕ0ϕ0 + e2A2

0φφ + ieA0
(
φϕ0 −φϕ0

)
, (79a)

Φ01 = φ0 φ 1 +
(
D(0φ

)(
D1)φ

)
= φ0φ 1 +ϕ(0ϕ1)+ e2φφA0A1 + ieφA(0ϕ1)− ieφA(0ϕ1), (79b)

Φ11 = φ1 φ 1 +
1
2

[(
D(0φ

)(
D2)φ

)
+
(
D(1φ

)(
D1)φ

)]
(79c)

= φ1 φ 1 +
1
2

[
ϕ(0ϕ2)+ϕ(1ϕ1)+ ieφ

(
A(0ϕ2)+A(1ϕ1)

)
− ieφ

(
A(0ϕ2)+A(1ϕ1)

)
+ e2φφ

(
A0A2 −A1A1

)]
, (79d)

Φ02 = φ0φ 2 +(D1φ)
(
D1φ

)
= φ0φ 2 +ϕ1ϕ1 + e2φφA2

1 + ie
(
φA1ϕ1 −φA1ϕ1

)
, (79e)

Φ12 = φ1φ 2 +
(
D(1φ

)(
D2)φ

)
= φ1φ 2 +ϕ(1ϕ2)+ e2φφA1A2 + ie

(
φA(2ϕ1)−φA(2ϕ1)

)
, (79f)

Φ22 = φ2φ 2 +(D2φ)
(
D2φ

)
= φ2φ 2 +ϕ2 ϕ2 + e2φφA2

2 + ieA2
(
φϕ2 −φϕ2

)
. (79g)

6Λ = ϕ(1ϕ1)−ϕ(0ϕ2)+ ieφ
(

A(0ϕ2)−A(1ϕ1)

)
+ ieφ

(
A(1ϕ1)−A(0ϕ2)

)
+ e2φφ

(
A1A1 −A0A2

)
+m2φφ . (80)

The Ricci identities in the tetrad introduced in section 3 simplify to the following set of equations.

Dρ = ρ2 +σ σ +Φ00, (81a)

Dσ = 2ρ σ +Ψ0, (81b)

Dα = ρ α +β σ +ρ π +Φ10, , (81c)

Dβ = (α +π)σ +ρ β +Ψ1, (81d)

Dγ = 2π α +2π β +π π +Ψ2 −Λ +Φ11, (81e)

Dλ −δπ = ρ λ +µ σ +2α π +Φ20, (81f)

Dµ −δπ = ρ µ +σ λ +2β π +Ψ2 +2Λ , (81g)

Dν −∆π = 2π µ +2π λ +(γ − γ)π +Ψ3 +Φ21, (81h)

Dτ = 2π ρ +2π σ +Ψ1 +Φ01, (81i)

∆ρ −δτ = (γ + γ −µ)ρ −σ λ −2α τ −Ψ2 −2Λ , (81j)

∆σ −δτ =−(µ −3γ + γ)σ −λ ρ −2β τ −Φ02, (81k)

∆λ −δν =−(2 µ +3γ − γ)λ − (3α +β )ν , (81l)

∆α −δγ = ρ ν − (β + τ)λ +(γ −µ)α +(β − τ)γ −Ψ3, (81m)

∆β −δγ =−µ τ +σ ν +(γ − γ −µ)β −α λ −Φ12, (81n)

∆ µ −δν =−(µ + γ + γ)µ −λ λ +ν π +2β ν −Φ22, (81o)

δα −δβ = µ ρ −λ σ +α α +β β −2α β −Ψ2 +Λ +Φ11, (81p)

δλ −δ µ = π µ +(α −3β )λ −Ψ3 +Φ21, , (81q)

δρ −δσ = (α +β )ρ − (3α −β )σ −Ψ1 +Φ01. (81r)
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