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Introduction

“The effort to understand the Universe is one of the very few things
which lifts human life a little above the level of farce and gives it some
of the grace of tragedy.”

– Steven Weinberg

The fundamental structure of matter has always been one of the most chal-
lenging questions of physics. The birth of the quantum field theory followed by
the development of gauge theories can be viewed as one of the cornerstones of
this endeavour. Consequently, the concept of continuous symmetry and the re-
lated theory of Lie algebras began to play a significant role in models of particle
physics. These efforts resulted in the formulation of the current most complete
theory of matter, the Standard Model of fundamental particles and interaction.
Although all of these theories provided a number of outstanding results, there
remained an intention to formulate a more general theory connecting together
all the information contained in the particular gauge theories, thus resolving the
issues of the Standard Model and revealing a more fundamental physics hidden
beyond it. One of the paths of that quest was the attempt to formulate a universal
unifying gauge theory, the so-called Grand Unified Theory.

Although the research on Grand Unified Theories (GUTs) flourished in the
eighties and although this ”golden era” has already passed, the GUTs still deserve
significant attention because they can provide a number of testable predictions
and they are related to a number of other fields of physics.

This thesis will focus specifically on the grand unification theory based on the
SO(10) gauge group. Namely, we will be interested in the minimal nonsupersym-
metric versions of this theory. Despite the fact that these scenarios were among
the earliest that were discussed and, thus, it may seem a hopeless task to find
anything new to say in this context, the reality is surprisingly different. The point
is that these minimal models were abandoned in early eighties because of their
apparent ”tachyonic instability” excluding the realistic symmetry breaking pat-
terns. However, it was recently shown that this problematic behaviour is rather
an artifact of the tree-level approximation than a serious problem of the theory.
As a result, the minimal SO(10) models were revived and they became again a
subject of common interest.

The purpose of this thesis is to provide a detailed insight into the quantum
structure of the scalar sector of the minimal nonsupersymmetric SO(10) models
and, in particular, to provide a method to compute the one-loop corrections to
the scalar masses, which are central to the resurrection of these scenarios.

In the first chapter of the thesis a brief review is provided into the field of
Grand Unified Theories, and a description of the main features in a number of
models developed during several decades of research. In addition, an attempt
is made to illustrate the interesting details of the minimal nonsupersymmetric
SO(10) scenarios based on the 45-dimensional representation.

The second chapter recapitulates the salient elements of the SO(10) represen-
tation theory and the embedding of the Standard Model subgroup within it. It
then describes the minimal nonsupersymmetric 45 ⊕ 16 model, its spontaneous
symmetry breaking pattern and its tree level scalar spectrum. At that stage it
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also explains why this model has been ignored for such a long time. In the second
part of this chapter a brief theoretical introduction is provided about the effective
potential method.

The third chapter then deals with the calculation of the full leading radiative
corrections to the masses of the problematic (i.e., potentially tachyonic at the
tree level) pseudo-Goldstone bosons of the 45⊕ 16 model. First, the full leading
corrections including the leading logarithmic terms are computed using the ef-
fective potential approach. In the second part of this chapter the diagrammatic
calculation of the leading polynomial terms of these corrections is provided using
the standard perturbative theory approach.

Finally, the fourth chapter outlines the structure and the main features of
a more realistic 45 ⊕ 126 model. This framework focuses on the diagrammatic
calculation of the SO(10)-invariant term of the leading one-loop scalar corrections
to the masses of the potentially tachyonic pseudo-Goldstone bosons of the 45⊕126
model.
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1. Theoretical and historical
context

Most of our current knowledge of the structure of matter is encoded in the Stan-
dard Model of Particle Interactions. It includes the SU(3)C colour gauge theory
of strong interactions and the Glashow-Salam-Weinberg electroweak theory based
on a direct product of groups SU(2)L ⊗ U(1)Y [1, 2, 3, 4]. Despite the fact that
it is the best theory of matter we have, experimental results show that it is not
complete. A typical signal leading ”beyond the Standard Model” is the non-
zero neutrino mass representing one of the principal challenges for contemporary
particle physics.

Moreover, there are many hints that the Standard Model is not the ultimate
theory of matter. Above all, the Standard Model is quite complicated and arbi-
trary since the strong, weak and electromagnetic interactions are to a great extent
independent of each other. This statement is supported by the well-known fact
that the complete gauge group of the Standard Model is the direct product of
three Lie groups SU(3)C ⊗SU(2)L⊗U(1)Y and consequently, one has also three
different gauge couplings. In addition, there are other problems or ’unexplained
features’ of the Standard Model, for instance, the anomaly cancellation, which
appears to be a consequence of a more general theory. Another difficulty is the
pattern of fermions - the existence of fermion families cannot be explained, as
well as the parity violation in case of the weak interactions, while the parity of
the strong interactions remains intact. The Standard Model has many free pa-
rameters; i.e., even if one assigns the groups, representations and electric charges,
there are many observable quantities (mixing angles, fermion masses, etc.) that
remain undetermined.

In order to get a more general theory, which would solve at least some of the
problems, it is necessary somehow to constrain the arbitrariness of the Standard
Model. One possibility is to consider a model with greater symmetry. Therefore,
it seems obvious to try to find a gauge theory based on a simple group G with
single gauge coupling constant gU containing the gauge group of the Standard
Model as a subgroup. Such theories that intend to unify all three fundamental
interactions are called Grand Unified Theories (GUTs).

In addition to the problems of the Standard Model there is a further very
significant hint in favour of the grand unification: the running of the gauge cou-
plings within the Standard Model show approximate convergence close to the
energy of 1015GeV (see Fig. 1.1). Therefore, it encourages a conclusion that all
three corresponding interactions have a common origin.

In fact, the grand unification theories represent an improved narrative of al-
ready existing concepts. To be more specific, it is currently thought that our
low-energy world is in a broken phase invariant under SU(3)C ⊗ U(1)QED and
most of the low-energy phenomena can be described by the theory of strong in-
teractions and effective 4-fermi contact interaction. At higher energies one can
observe new degrees of freedom of a new dynamics, which can be described by a
renormalizable SU(2)L ⊗ U(1)Y gauge theory, which is spontaneously broken to
U(1)QED. Similarly, as we moved from U(1)QED to SU(2)L ⊗ U(1)Y we can now
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Figure 1.1: One-loop evolution of the Standard Model running gauge couplings.
As usual we chose the SU(5) compatible normalization of the U(1) gauge cou-
pling.

assume that the Standard Model gauge group is embedded into a simple group
G. On the contrary, to get from the higher symmetry to the broken phase we
implement a chain of spontaneous symmetry breaking. The concept of GUTs
is similar to the Glashow-Salam-Weinberg electroweak theory. However, there is
one significant difference, namely the fact that although we mostly speak about
”electroweak unification”, it is not a unification in the usual sense since instead of
a single coupling constant there are still two distinct couplings e and g connected
by the well-known ”unification relation” [5]

e

g
= sin θW ,

where θW (electroweak mixing angle) is unfortunately a free parameter of the
theory. Thus, within the electroweak theory we still deal with several different
interactions.

The ”Golden era of GUTs” was the period between years 1980 and 1986,
when the foundations of these theories were given and the principal results were
calculated. Above all, the first theoretical estimate of the proton lifetime was
determined as τp ∼ 1031 years [6], which was at that time very close to the
experimental bound (∼ 1030 years)[7].

Nevertheless, the pioneering idea of GUTs was first proposed by S. L. Glashow
and H. Georgi even earlier, in 1974 [8]. Their unifying gauge theory was based
on the gauge group SU(5). The corresponding Lie algebra is the smallest simple
algebra containing the algebra corresponding to the gauge group of the Standard
Model. The rank of the SU(5) group is equal to the rank of the Standard Model,
but there are more degrees of freedom. In general, GUTs always bring new
interactions into play; in other words, they predict the existence of additional
gauge bosons residing in the coset of the corresponding gauge groups. Therefore,
unified theories predict new phenomena, which can be correlated with the known
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ones. There are several model-independent predictions that are common to all
unifications.

Probably the most striking prediction of GUTs is the instability of matter.
The current experimental lower bound for proton lifetime is very large, about 1034

years [9]. As a result, the baryon number started to be considered as an exact
symmetry of the Standard Model Lagrangian [10] and it is a global, anomalous
symmetry within the Standard Model. However, a theory going beyond the
Standard Model can naturally introduce the baryon number violation. Although
there exist more hypotheses describing mechanisms of baryon number violation,
the great thing about GUTs is that they provide a convenient framework and the
predictions of proton lifetime are close to the experimental bounds. Explicitly,
the proton lifetime τp can be roughly estimated as

τp ∼
1

αu

M4

m5
p

,

where mp is the mass of proton and the relevant baryon number violating process
is mediated by gauge boson of mass M . For 1

αu
∼ 40 and τproton ∼ 1034 we get

M ∼ 1015 GeV, which is remarkably close to the intersection in Fig. 1.1.
The next general prediction of grand unification is magnetic monopoles [11, 12]

because when the symmetry of a certain simple gauge group G is broken down to
a subgroup containing a U(1) factor, topologically nontrivial configurations of the
Higgs and gauge fields can be found. Depending on the vacuum homotopy, stable
monopole solutions of the gauge potential can exist. The monopoles appearing in
GUTs have masses that are too big to be produced by accelerators. However, it
is likely that they were produced during the symmetry breaking phase transition
in the early universe thanks to the so-called Kibble mechanism [13].

Except for the matter instability and magnetic monopoles, the charge quanti-
zation is also a model independent prediction of grand unification. Nevertheless,
if one focuses on a specific GUT model, other new physical topics can be inspect-
ed. For instance, the non-zero neutrino masses can be explained, which will be
discussed later.

1.1 SU(5) grand unified theory

As we have already mentioned, the Georgi-Glashow model is the first and the
simplest phenomenologically viable GUT because its generators belong to the
smallest simple algebra containing the algebra of the Standard Model. In the
following paragraphs we outline the basic structure, principal results and highlight
the problems of this theory [14].

The unification scale of the SU(5) theory is quite low, as it lies approximately
around 1015 GeV [15]. The breaking of the SU(5) symmetry down to the sym-
metry of our low-energy world is achieved by introducing two Higgs multiplets.
The first of them belongs to the 24-dimensional irreducible representation and
the second to the 5-dimensional representations. Hence, the chain of symmetry
breakdown reads

SU(5)→ SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)QED.
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Next we describe the ordering of elementary fields in the SU(5) represen-
tations. The fermion families are within the framework of the SU(5) theory
accommodated in a reducible 5 + 10-dimensional representation. These represen-
tations can be decomposed with respect to the SU(3)C × SU(2)L×U(1)Y group
as follows

5 =
(
3, 1, 1

2

)
⊕
(
1, 2,−1

2

)
,

10 =
(
3, 1,−2

3

)
⊕
(
3, 2, 1

6

)
⊕ (1, 1, 1).

Hence, the fields corresponding to quarks and leptons are placed together in these
two representations. However, there is no place for neutrino mass because there
is neither right-handed neutrino, nor a suitable Higgs field. In fact, this proper-
ty of the SU(5) theory was initially considered as an advantage. Nevertheless,
observation of neutrino oscillations at the turn of the 21th century showed that
neutrinos are massive and this fact should be accounted for in any viable beyond
Standard Model theory. As a result, papers considering minimal extended mod-
els, which can fix the mentioned constrained, were published just a few years ago
[16, 17].

Let us now comment on the quantization of the electric charge in the SU(5)
GUT. The operator associated with this physical quantity is one of the SU(5)
generators, which means its trace is equal to zero. In consequence, the charges
of the particles in each multiplet have to cancel. For instance, applying this
condition on the electric charge operator expressed in the 5 representation we
find that 3Qdc + Qe = 0. Thus, Qd = 1

3
Qe and the meaning of the factor 3 is, of

course, the number of colours.
The 24 generators of the SU(5) group correspond to 24 gauge bosons accom-

modated in the adjoint representation that can be decomposed with respect to
SU(3)C × SU(2)L × U(1)Y as

24 = (8, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 0)⊕
(
3, 2,−5

6

)
⊕
(
3, 2, 5

6

)
.

Obviously, the first multiplet represents the gluon octet Gα
β , the second multiplet

is the weak triplet and the third term of the sum is nothing else than the Abelian
field B. The last two terms are multiplets of new gauge bosons. These twelve new
fields relate the SU(2) and colour quantum numbers and they mediate baryon
number violating processes.

An important example of a process violating the baryon number in case of
the SU(5) GUT is the decay of the proton into a positron and a neutral pion [18]

p→ e+ + π0.

Unfortunately, the SU(5) theory has a very significant problem: it does not
unify. It was shown that the running couplings of the SU(5) theory in fact do
not meet. Consequently, this theory does not unify the three interactions, which
is the basic condition for a GUT that is required to be satisfied.

Another inconvenience of the SU(5) theory is that the fermions of a single
family cannot belong to a single fermion multiplet (irreducible representation) and
the family structure of fermions is not described in a satisfactory way. Moreover,
the SU(5) theory does not provide any deeper explanation for the so called left-
right asymmetry (the dominance of V-A currents over V+A currents) that is
observed in Nature [19, 20, 21].
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1.2 SO(10) GUT

Although the SU(5) theory is revealed to be quite problematic and eventually
wrong, since it yields results which contradict experiments, it is by no means the
end of the unification quest. The next candidate gauge group for grand unification
is the special orthogonal group SO(10). This gauge theory was proposed by H.
Fritsch and P. Minkowski in 1975 [22, 23]. SO(10) has rank 5; therefore, there
are typically more intermediate stages along the physically interesting symmetry
breaking chains.

Among the most significant virtues of the SO(10) theory (when compared
with the SU(5)) is the fact that all fermions of a single family including the de-
sired right-handed neutrinos can be assigned to a single 16-dimensional spinorial
representation [24]. Similarly, as in the case of SU(5), it is possible to quantize
the charges of fermions using the appropriate combination of Cartan operators
of the SO(10) group. However, it remains unexplained why the fermion families
repeat. Anyway, the SO(10) model satisfactorily describes a complete spectrum
of the known elementary particles.

As we know, at the renormalizable level in the Standard Model neutrinos are
strictly massless because of the absence of their right-handed components, which
would allow the neutrino Dirac mass terms come into play. However, in the
SO(10) grand unified theory, it is possible to include naturally both Dirac and
Majorana neutrino mass terms, which can consequently imply the existence of
very massive right-handed neutrinos along with their already present and almost
massless left-handed partners. Explicitly, the addition of the singlet Majorana
mass term corresponding to a right-handed neutrino implies that all the neutrino
mass terms can be expressed in a compact matrix form

L 3
(
νTL (νcL)T

)
C−1

(
03×3

(
mD
ν

)
3×3(

mD
ν

)T
3×3

(
mM
ν

)T
3×3

)(
νL
νcL

)
,

where mD
ν is the 3× 3 matrix corresponding to Dirac mass terms and mM

ν is the
3 × 3 matrix corresponding to Majorana mass terms. After the diagonalization
we get the famous relation for the neutrino mass

mν ∼ −mDT
ν (mM

ν )−1mD
ν = −v2Y T

ν (mM
ν )−1Yν ,

where Yν denotes the neutrino Yukawa coupling constant and v is the electroweak
scale. It is anticipated that the neutrino Yukawa couplings have a similar size to
other Standard Model Yukawas. Therefore, if one wants to get the right value of
the light neutrino mass (∼ 0.1eV), it is necessary to take mM

ν ≈ 1014GeV, which
means that there is a new large physical scale. It lies suspiciously close to the
scale at which the Standard Model gauge couplings converge.

This so-called see-saw mechanism [25], which introduces and describes the
neutrino mass generation, is naturally included in the SO(10) theory. The pres-
ence of this feature means a significant improvement in comparison with the
SU(5) theory. Since it is already known that left-handed neutrinos have tiny
masses, the concept of the right-handed neutrino becomes very attractive. Its
natural occurrence in the SO(10) theory is a very pleasant feature, which started
to be appreciated especially during the ”neutrino revolution” in the late nineties,
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when oscillations of atmospheric [26] and solar [27] neutrinos were first observed
and on the basis of those experiments the non-zero neutrino mass was confirmed
[28, 29, 30, 31].

Moreover, besides the gauge bosons responsible for proton decay, in the SO(10)
theory there are also gauge bosons mediating the baryon number processes and
bosons mediating the lepton number processes (independently). Within the frame
of the SO(10) theory we can also study the CP violation.

The SO(10) group theory is discussed in Appendix A.

1.2.1 Flipped SU(5)

The research of the SO(10) GUT led also to the formulation of another model
based on the SU(5) group - the so-called flipped SU(5) model first contemplated
by S. Barr in 1982 [32] and two years later by J. Derendinger, J. Kim and D.
Nanopoulos [33]. The gauge group of this model is SU(5) ⊗ U(1)X , where the
”flipped” embedding of the Standard Model hypercharge is considered instead of
the ”standard” one. Obviously, it is not a fully unified model because the gauge
group is not simple.

The two-fold nature of the SU(5) group springs from the fact that it is possi-
ble to embed the Standard Model hypercharge into the corresponding algebra in
two different ways. While the ”standard” embedding means we take Y = T24

(T24 is the generator of SU(5)), in the ”flipped” case the hypercharge reads
Y = 1

5
(X − T24). This assignment in fact interchanges νc ↔ ec, uc ↔ dc etc.

with respect to the ”standard” field identification. As a result, the right-handed
neutrino belongs to the 10-dimensional representation and the VEV of the scalar
version of the multiplet (10, 1) can spontaneously break the SU(5)⊗U(1)X sym-
metry down to the Standard Model.

This model has the following virtues. First, there is no problem with unifica-
tion of gauge couplings as it was in ”standard” SU(5), because now we require
just the two non-Abelian couplings of the Standard Model to unify. Therefore,
in contrast to the ”standard” SU(5) model the gauge coupling does not need
the ”help” of the TeV-scale supersymmetry. Second, relations between fermion
masses predicted by the Yukawa sector do not contradict the observed flavour
structure (which is the case of the ”standard” SU(5)). Third, as the large-scale
VEV fall into the 10-dimensional scalar representation, we cannot couple it to
the pair of gauge field tensors Fµν . Hence, there is no problem with shifts of the
effective gauge couplings caused by the Planck scale effects, which also implies a
more accurate determination of the unification scale [34].

The interesting aspect of this model is the fact that SU(5) ⊗ U(1) is a sub-
group of the SO(10) group and the above representations can be obtained as a
decomposition of the 16-dimensional spinorial representation of SO(10)

16→ 5⊕ 10⊕ 1.

The major shortcoming of the flipped SU(5) model is probably the absence
of a convenient mechanism of the Majorana neutrino mass term generation. One
way is the inclusion of the 50-dimensional scalar field (50,−2). This however leads
to an unpleasant reduction of the effective Planck scale [35, 36]. In addition, it
does not provide us with any insight into the neutrino mass generation.
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1.3 Supersymmetry

Despite the promising predictions of GUTs published in eighties neither proton
decay, nor magnetic monopoles were observed since then. As a result, the ”Golden
era of GUTs” was followed by a big depression of the research focused on grand
unification.

Nevertheless, it did not mean the end of the GUTs. Another significant theo-
retical concept, which has much to do with the grand unification, is supersymme-
try (SUSY). For instance, the convergence of running couplings of the Standard
Model becomes perfect once supersymmetry is employed. To be more specific, in
a supersymmetric framework new states occurring around the TeV scale, espe-
cially the so called higgsinos and gauginos, the supersymmetric partners of the
Higgs scalars and gauge bosons, contribute to the beta-functions of the Standard
Model so that all of the three gauge couplings meet at approximately 1016GeV.

Consequently, at the beginning of nineties when the new data coming from
the Large Electron-Positron Collider (LEP) indicated that the low-energy super-
symmetry could be the right cure for the gauge coupling unification, it attracted
attention of many theorists again. In the framework of supersymmetry the boson-
ic and fermionic degrees of freedom are treated as two sides of one fundamental
object called superfield. This concept was supposed not only to unify matter and
interactions, but it could be also very promising for solving other drawbacks of
the Standard Model.

For all of the reasons mentioned in the last paragraphs, supersymmetry has
always been closely related to unifications and from the early nineties on, almost
all of the theorists’ attention was paid to supersymmetric GUTs. Hence, in this
section we will comment on particular SUSY GUTs and describe their principal
features as well as the main differences with respect to the non-SUSY GUTs.

1.3.1 Minimal Supersymmetric Standard Model

Let us start with the minimal supersymmetric extension of the Standard Model,
which represents an essential part of the historical development of supersymmetric
models - so called Minimal Supersymmetric Standard Model (MSSM) [37, 38],
which was first proposed in 1981. One of the nice features of this model is that it
shows that supersymmetry can help resolve the hierarchy problem. This problem
consists in the fact that the gauge symmetry does not protect the electroweak
scale from receiving big radiative corrections. However, in the supersymmetric
framework we have for each fermionic field its bosonic partner having similar mass
and vice versa. Hence, the big contributions from the fermionic and bosonic loop
factors vanish.

Another nice feature supporting the MSSM was the gauge coupling unifica-
tion. If the superpartners of the Standard Model fields were around TeV scale,
the unification of the gauge coupling at high energies would be very accurate -
specifically, the accuracy is about 1%. This fact supported indirectly not only
the MSSM but also the SUSY GUTs.

Yet another great theoretical motivation of the MSSM is that it introduces
the R-parity to explain the proton stability. Naturally, in the MSSM the baryon
and lepton numbers are no longer conserved by the renormalizable couplings.
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However, the experiments show that these couplings have to be very small, as
we still have not observed any processes violating the conservation of baryon or
lepton number. Hence, the concept of R-parity is shown in the addition of the Z2

symmetry acting on the MSSM fields, which ensures that the couplings allowing
the baryon or lepton number violation are forbidden.

Moreover, the lightest superparticle of this model is a stable and weakly in-
teracting massive particle (it does not interact via electromagnetic or strong in-
teractions), which makes it a suitable cold dark matter candidate.

Except for that, a class of supersymmetrized extensions of the Standard Model
including the MSSM can explain the spontaneous breakdown of the SU(3)C ⊗
SU(2)L ⊗ U(1)Y symmetry at the electroweak level.

Although the MSSM is a nice SUSY extension of the Standard Model, its
position is quite questionable. Apart from the fact that it suffers from several
drawbacks, there is an absence of any evidence for supersymmetry at the Large
Hadron Collider (LHC).

1.3.2 SUSY SU(5)

The simplest SUSY GUT is the minimal supersymmetric SU(5) theory first pro-
posed by S. Dimopoulos and H. Georgi in 1981 [39]. The Higgs sector of the
minimal SUSY SU(5) model comprises a 24-dimensional superfield and two sets
of superfields belonging to both 5- and 5-dimensional supermultiplets in order to
give both the down and the up quark masses. These two Higgs fields are also
important for the cancellation of the gauge anomalies. All of the other fields
are just supersymmetric generalizations of the appropriate fields present in the
non-SUSY SU(5) theory. Using all the relevant superfields the superpotenital of
the theory can be constructed, which should give a realistic breaking of the full
symmetry down to the Standard Model and, consequently, to SU(3)c×U(1)QED
group.

As well as the non-supersymmetric GUTs, the SUSY SU(5) also predicts the
proton decay. However, an important outcome of the supersymmetry is that the
dominant decay mode differs from that of the non-SUSY SU(5) theory since the
preferred reaction is

p→ K+ + ν.

The reason is that usually new 5-dimensional baryon and lepton number violating
operators can be constructed using the new coloured scalars required by super-
symmetry, namely, the proton decay is in this case mediated by the Higgs colour
triplets of the 5- and 5-dimensional representations. As a result, the proton decay
amplitudes are significantly bigger than in the non-SUSY model, where operators
of dimension d = 6 contribute.

Although some predictions about proton lifetimes have been made in the
past, they contradict current experimental data. However, the uncertainties of
the predicted numbers are always huge. Moreover, some later works on this
topic show that if we employ the effective operators or we take into account the
effects of GUT scale ”Yukawa mismatch” [40], then it is still possible to find
a model that does not violate the experimental limits. Consequently, although
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the minimal SUSY SU(5) theory gives quite fast proton decay, it cannot be
completely excluded on the basis of this prediction.

Anyway, the next large difficulty of the minimal SUSY SU(5) theory is also the
fact (similarly as it was in case of the non-supersymmetric SU(5)) that there is no
natural mechanism for generating neutrino masses within this model. Although
there have been several suggestions how to achieve this goal by adding the effective
operators corresponding to the R-parity violating interactions, the required tiny
couplings would still have to be put in by hand.

1.3.3 SUSY SO(10)

In the same way as the SU(5) model was supersymmetrically extended the su-
persymmetrization can be applied also to the SO(10) theory. The first papers on
the minimal supersymmetric SO(10) theory were published in the early eighties
by Clark, Kuo and Nakagawa [41] and Aulakh and Mohapatra [42]. Within the
framework of this model there are just 7 free parameters when no constraints are
imposed; hence, the SUSY SO(10) theory is very predictive. The supersymmetry
is again involved to achieve the proper gauge unification pattern and to avoid the
gauge hierarchy problem.

In a realistic SUSY SO(10) model there should be at least three different Hig-
gs multiplets in order to get the proper spontaneous symmetry breaking chain
down to the SU(3)c × U(1)QED symmetry of our low-energy world. The impor-
tant building block of the Higgs sector which singles out a class of economical
SO(10) models is the 126-dimensional representation. It is capable of break-
ing the GUT-scale symmetries and together with 10-dimensional representation
it also gives the renormalizable Yukawa couplings. However, to get the minimal
renormalizable SUSY SO(10) GUT the 126- and 210-dimensional representations
have to be added. While the 126-dimensional representation is necessary to can-
cel the D-term driving the SUSY breakdown generated by GUT-scale VEV of the
126-dimensional representation, the 210-dimensional representation triggers the
spontaneous SO(10) symmetry breaking and allows (after electroweak symmetry
breaking) a realistic fermion spectrum by mixing of the weak doublet compo-
nents of the 10- and 126-dimensional representations. Hence, the minimal SUSY
SO(10) model possesses the Higgs sector of the form 10⊕ 126⊕ 126⊕ 210.

In contrast to the non-SUSY SO(10) scenarios, the requirement of zero F-
terms do not allow us to use solely (on top of the 126S representation and its
conjugate) the adjoint 45-dimensional representation to break SO(10) through
the left-right groups, thus avoiding the SU(5) intermediate step [43]. In other
words, the 45S alone does not develop a SUSY-preserving VEV; hence, usually
the pair 45S ⊕ 54S is considered. The alternative for this choice is the above-
mentioned 210-dimensional representation.

The description of the proton decay in the minimal SUSY SO(10) model
is technically similar to that in the minimal SUSY SU(5) theory. The biggest
difference is the fact that now the SU(3)c ⊗ SU(2)L ⊗ U(1)Y coloured Higgs
triplets, thanks to which the new set of d = 5 baryon and lepton number violating
operators can be constructed, can mix, when the GUT-scale symmetry is broken.
This can consequently lead to suppression of the proton decay rate. In other
words, properly adjusted mixing can cause the rise of the predicted proton lifetime
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above the experimental bound.
As for the neutrino masses, the SUSY SO(10) represents a significant im-

provement in comparison with the minimal SUSY SU(5). Although the minimal
SUSY SU(5) model has 21 free parameters, when we add the neutrino Majorana
terms, this number of parameters is approximately doubled [44]. In contrast,
within the minimal SUSY SO(10) model we deal only with 26 free parameters
and the right-handed neutrino is naturally included. For this reason the minimal
SUSY SO(10) model got the label of the simplest viable grand unified theory.
Moreover, the R-parity is automatically conserved along with all of the symme-
try breaking chains in this model. Hence, for the model with 126-dimensional
representation the lightest supersymmetric particle is stable and it is a good cold
dark matter candidate.

Despite all the nice features of the minimal renormalizable SUSY SO(10)
model we have described, it is already known that it does not represent a viable
realistic unification theory. In 2006 it was shown by S. Bertolini, M. Malinsky
and T. Schwetz [45] and by C. Aulakh and S. Garg [46] that the minimal renor-
malizable SUSY SO(10) model with the Higgs sector 10⊕ 126⊕ 126⊕ 210 is not
consistent with available data. If it is required that the proton decay experimental
bounds are respected it is possible to identify a very limited area in the parameter
space of the model, where all fermion data are consistently reproduced. As was
found out, in all of these cases the gauge coupling unification is strongly affected
by lighter than GUT states, which are present in the model. Hence, the minimal
supersymmetric SO(10) scenario does not work.

1.4 Motivation for the 45⊕ 16 model

Within the previous sections a rather sketchy outline of the pros and cons of the
most discussed grand unified theories was provided and we saw there are possibly
viable models as well as some no-go scenarios. The current situation is not very
clear. The critical thing, which would certainly help to clarify the standing of
particular theories, is the observation of the proton decay and other phenomena
revealing the physics beyond the Standard Model. Unfortunately, there is no
experimental evidence of such a desired phenomenon so far.

Despite the scarcity of the restrictive data, one can still assume certain theo-
retical requirements which should be met by a possibly realistic model and which
could consequently show the right direction one should choose and focus on. Of
course, there is no definite guarantee in the sense of a formal proof that these
assumptions are completely necessary; however, it is possible to justify them by
a number of reasonable arguments.

The main guiding principle in the field of unification models is the already
mentioned ”minimality”, which is usually translated as simplicity, predictivity
or tractability. On grounds of minimality we can compare the models or even
eliminate some of them. Although there is no direct experimental motivation
for this conception, we do not posses any better restrictions. Moreover, physical
experience has taught us many times that the successful and realistic theories
and models are simple and elegant rather than complicated and cumbersome.

As may be inferred from the previous paragraphs, the term of minimality is
quite vague and although GUTs have been around for forty years, there is still
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no solid, widely accepted explication. One of the possible interpretations is the
minimality in sense of the rank of the group and therefore (to some extent) also
of the number of degrees of freedom. This was evidently one of the main clues
that led to the pioneering model proposed by Georgi and Glashow, since it is
well-known that the SU(5) group is the minimal and the only simple group of
rank 4 with complex representations, which contains the group of the Standard
Model as a subgroup.

Another possible criterion to judge on the minimality of particular model,
is its predictivity. The potentially realistic model should not provide too much
freedom and it should offer an elegant and viable description of the observed
reality. In this respect, the SO(10) unification represents a suitable choice. The
nice feature that all the fermions of one family (inclusive of the desired right-
handed neutrino) appears in a single spinor representation constrains the Yukawa
sector of this model much more than in the case of the SU(5) gauge group.

Although all of the matter fields fit perfectly into three 16-dimensionl spinor
representations of SO(10), one still has to deal with the Higgs sector of the theory,
which does not share such a uniqueness. The structure of the symmetry-breaking
sector is for most of the GUTs, including the SO(10) theory, the biggest source of
arbitrariness. The reason is that large higher-dimensional Higgs representations
usually have to be considered so that it is possible to break spontaneously the
gauge symmetry down to the Standard Model. The exception from this rule is
the SUSY flipped SU(5), which we outlined a few pages back. However, it is
not a typical GUT because the gauge group is not simple and it still suffers from
several problems.

In what follows we will focus on the non-SUSY SO(10) unification and cor-
responding models. First, let us discuss the Higgs sector and suggest its possible
realizations on grounds of minimality.

To achieve the full breaking of SO(10) to the Standard Model at least two
Higgses are employed.

• Either 16S, or 126S representation is necessary for reduction of the SO(10)
rank.

• One of the representations 45S, 54S and 210S must be considered to break
the symmetry down to small groups containing Standard Model group,
which are different from SU(5)× U(1).

The minimal possibility from the 45S, 54S and 210S representations is the
first one. The 16S and 126S representations relates to the Yukawa sector and we
always have to choose the convenient one in dependence on a particular model.
As a result, the 45S representation, in combination with either 16S, or 126S, can
form the minimal non-SUSY SO(10) model.

At first, it was observed [47, 48, 49, 50] that the phenomenologically viable
breaking chains

SO(10)→ SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L → Standard Model,

SO(10)→ SU(4)C ⊗ SU(2)L ⊗ U(1)R → Standard Model

are allowed by the gauge coupling unification. The first breaking is controlled by
the 45S VEVs, while the following breakdown to the Standard Model is driven
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by the 16S (or 126S) VEV. Additionally, one of the 45S VEVs can contribute also
to the second symmetry breaking.

Nevertheless, in the early eighties a series of studies [51, 52, 53, 54] indicated
that the scalar sector dynamics allows just the SU(5)× U(1) intermediate stage
for dominant 〈45S〉 and SU(5) intermediate stage for leading 〈16S〉. Since the
unification constraints (even without proton decay) do not allow any SU(5)-
symmetric intermediate scale, the simplest (minimal) Higgs sectors responsible
for the breaking of the SO(10) symmetry down to the Standard Model were
excluded from any realistic considerations.

Surprisingly, two decades later these minimal models were revived. It was
shown that ignoring these minimal scenarios was wrong since the minimal non-
SUSY SO(10) models can be cured if the quantum aspects of these scenarios are
taken into account [55].

Within this thesis we will reproduce some of these calculations. Particularly,
the one-loop quantum corrections of the certain pseudo-Goldstone bosons con-
tained by the scalar spectrum of the 45 ⊕ 16 model will be computed using the
effective potential approach. Later on, we will calculate these corrections using
standard perturbative theory approach. The main motivation for this work re-
lates to the more complicated minimal SO(10) model with Higgs sector composed
of the 45S⊕126S representations. The point is that the gauge coupling unification
within the 45⊕ 126 model can be (in contrast to the 45⊕ 16 model) compatible
with the neutrino data [56]. However, one can hardly apply the effective potential
approach to the 45⊕126 model, as it is very complicated to construct the effective
potential for such a big algebraic object. As a result, a more elegant and simple
way of calculation of the scalar radiative corrections would be extremely useful.
Consequently, the standard perturbative theory approach applied to the 45⊕ 16
model, which is the principal goal of this thesis, can represent a great way how
to determine the one-loop corrections in case of the 45⊕ 126 model.
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2. Model description and
technical preliminaries

In this chapter we will focus on the technical preliminaries needed for the calcu-
lations presented in the rest of the thesis. First, we will comment on the model of
our interest, i.e., the minimal model with scalar potential spanned on 45S ⊕ 16S
scalar representations. After that, we will get acquainted with the effective po-
tential approach describing its relation to the standard diagrammatic methods of
calculation of quantum corrections.

The SO(10) group theory is provided in Appendix A.

2.1 Embedding of the Standard Model

The generators relevant to a certain gauge theory enter the corresponding La-
grangian most obviously in the covariant derivatives. As known, the covariant
derivative term of any gauge theory Lagrangian determines the dynamics of the
corresponding gauge fields describing their interaction with other objects. In case
of the SO(10) theory, the covariant derivative reads

D(φ)
µ = ∂µ − igAijµ (x)T ijφ .

To find in the dynamics encoded in the covariant derivatives the familiar
Standard Model structures it is necessary to find such linear combination of the
SO(10) generators, whose form allows us to distinguish the blocks of irreducible
representations corresponding to the Standard Model subgroup. In other words,
one has to pass from the SO(10) irreducible representation of generators to a
different one, which is reducible under the Standard Model gauge group. This
step is essential for all the following calculations since it is essential to label the
physical fields present in the SO(10) theory by quantum numbers of the Standard
Model.

The best generators to start with are those belonging to the complete set of
commuting operators of SO(10), i.e., the Cartan operators. The rank of SO(10),
defined as dimension of the Cartan subalgebra, is 5. Taking into account the
SO(10) commutation relations (A.1) it is possible to show that the set of simul-
taneously commuting generators can be chosen for instance as

T12, T34, T56, T78, T90. (2.1)

Although this choice is very straightforward, for further development it would be
suitable to construct the Cartan operators with eigenvalues corresponding to the
quantum numbers of the Standard Model. We know that the Standard Model
group is a subgroup of SO(10) and thus it must be possible to find the generators
with the familiar eigenvalues as a linear combination of the SO(10) generators.
However, since the rank of SO(10) is 5 (while the Standard Model gauge group
has rank 4) it is necessary to consider a subgroup with equal rank (instead of the
Standard Model subgroup) to cover all of the coordinates. Hence, it is convenient
to consider a subgroup with rank 5 similar to the Standard Model gauge group.
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A suitable choice is the left-right group SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L,
in which the identification of the Standard Model multiplets is trivial as can be
seen from the following decompositions of the SO(10) representations.

2.1.1 Decompositions of the SO(10) representations

The weak hypercharge operator reads

Y = T 3
R +

1

2
(B − L),

where T 3
R is the Cartan operator corresponding to the SU(2)R group and B and

L denote the baryon and lepton numbers, respectively. These numbers we define
in standard way, i.e., B = 1

3
for quarks and L = 1 for leptons.

The defining vector 10-dimensional representation of SO(10) decomposes un-
der the subgroup SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L as

10 = (3, 1, 1,−2
3
)⊕ (3, 1, 1,+2

3
)⊕ (1, 2, 2, 0). (2.2)

The submultiplets on the right hand side of the equation (2.2) can be decom-
posed under the Standard Model gauge group as

(3, 1, 1,−2
3
) = (3, 1,−1

3
),

(3, 1, 1,+2
3
) = (3, 1,+1

3
),

(1, 2, 2, 0) = (1, 2,+1
2
)⊕ (1, 2,−1

2
).

The adjoint 45-dimensional representation can be decomposed under the sub-
group SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L of SO(10) as

45 = (1, 1, 3, 0)⊕ (1, 3, 1, 0)⊕ (3, 2, 2,−2
3
)⊕ (3, 2, 2,+2

3
)

⊕ (1, 1, 1, 0)⊕ (3, 1, 1,+4
3
)⊕ (3, 1, 1,−4

3
)⊕ (8, 1, 1, 0)

and these multiplets then decompose into the submultiplets of the Standard Mod-
el as

(1, 1, 3, 0) = (1, 1,+1)⊕ (1, 1, 0)⊕ (1, 1,−1),

(1, 3, 1, 0) = (1, 3, 0),

(3, 2, 2,−2
3
) = (3, 2,+1

6
)⊕ (3, 2,−5

6
),

(3, 2, 2,+2
3
) = (3, 2,−1

6
)⊕ (3, 2,+5

6
),

(1, 1, 1, 0) = (1, 1, 0),

(3, 1, 1,+4
3
) = (3, 1,+2

3
),

(3, 1, 1,−4
3
) = (3, 1,−2

3
),

(8, 1, 1, 0) = (8, 1, 0).

The decomposition of the 16-dimensional spinor representation under the sub-
group SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L reads

16 = (3, 2, 1,+1
3
)⊕ (1, 2, 1,−1)⊕ (3, 1, 2,−1

3
)⊕ (1, 1, 2,+1)
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and these can be decomposed under the Standard Model group as

(3, 2, 1,+1
3
) = (3, 2,+1

6
),

(1, 2, 1,−1) = (1, 2,−1
2
),

(3, 1, 2,−1
3
) = (3, 1,+1

3
)⊕ (3, 1,−2

3
),

(1, 1, 2,+1) = (1, 1,+1)⊕ (1, 1, 0).

2.1.2 SO(10) Cartan operators in the vector and adjoint
representations

Let us now look for the set of Cartan operators of SU(3)C ⊗SU(2)L⊗SU(2)R⊗
U(1)B−L. They can be denoted as

T 3
C , T

8
C , T

3
L, T

3
R, TB−L,

where the first two operators correspond to SU(3)C , while the next three opera-
tors correspond to SU(2)L, SU(2)R and U(1)B−L, respectively.

To construct these Cartan operators, it is useful consider the SO(6)⊗ SO(4)
maximal subalgebra of SO(10). Furthermore, the local isomorphisms

SO(4) ∼ SU(2)⊗ SU(2),

SO(6) ∼ SU(4)

can be employed.
Therefore we can work with group SU(4)C ⊗ SU(2)L ⊗ SU(2)R. Moreover,

one can use the relation

SU(3)C ⊗ U(1)B−L ⊂ SU(4)C .

Using these facts a convenient 10-dimensional representation of the five SO(10)
Cartan operators can be constructed.

The generators relevant to the SU(3)⊗U(1)B−L can be represented by 6× 6
matrices as one can verify from the above decomposition of the 10-dimensional
SO(10) representation. Hence, these generators can be built as block matrices
with two 3 × 3 blocks formed by the Gell-Mann matrices and their complex
conjugates multiplied by factor (−1). Both these sets of 3 × 3 matrices have to
be transformed to the basis in which they are purely imaginary. Taking the two
commuting matrices from the constructed set and completing them by zeros to
10-dimensional matrices we get the first two SO(10) Cartan operators.

On the other hand, the SU(2)L ⊗ SU(2)R part can be represented by 4 × 4
matrices obtained in a similar fashion as one usually constructs the corresponding
irreducible representation of the Lorentz algebra. Again, chosing two mutually
commuting and purely imaginary matrices (one corresponding to the SU(2)L
group and one respective to the SU(2)R group) and completing them by zeros
to 10-dimensional matrices we have two more SO(10) Cartan operators, which
obviously do commute with the first two.

The last SO(10) Cartan operator corresponding to U(1)B−L can be built as
a properly normalized diagonal 6 × 6 matrix commuting with the two Cartans
constructed from the Gell-Mann matrices. After it is transformed to the new
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basis, so that it has a purely imaginary form, we complete it trivially to 10× 10
matrix getting the fifth Cartan operator of the SO(10) group in its 10-dimensional
representation.

For decomposition of the SO(10) representation to the irreducible represen-
tations of the Standard Model group it is helpful to construct also the Casimir
operators. Summing squares of the generators in the 6 × 6 sector we get the
CC . Likewise, we can construct two Casimir operators, which are non-zero just
in the 4×4 sector (CL for the SU(2)L group and CR for the SU(2)R group). The
concrete realization of the Cartan and Casimir operators of the SO(10) group in
the 10-dimensional representation is printed in the Appendix B.

Using these definitions it is already easy to construct their 10 ⊗ 10 versions
since

T = (T 10 ⊗ 1) + (1⊗ T 10).

2.1.3 SO(10) Cartan operators in the spinor representa-
tion

In the 16-dimensional spinor representation (and its conjugate) the SO(10) Car-
tan operators can be written in the 3C2L2R1B−L basis as follows

TC3 = T̃C3 =
1

4
(σ12 − σ34) , (2.3)

TC8 = T̃C8 =
1

4
√

3
(σ12 + σ34 − 2σ56) , (2.4)

TB−L = T̃B−L = −2

6
(σ12 + σ34 + σ56) , (2.5)

TR3 =
1

4
(σ78 + σ910) , T̃R3 =

1

4
(σ78 − σ910) (2.6)

TL3 =
1

4
(σ78 − σ910) , T̃R3 =

1

4
(σ78 + σ910) . (2.7)

The T -operators act on spinor χ, while the T̃ -operators act on its conjugate χC .

2.1.4 Compatibility of bases

The important thing to mention is that the basis, in which we express the Car-
tan operators in the 16-dimensional spinor representation must be ”compatible”
with the basis of the adjoint 45-dimensional representation (or equivalently the
basis of the 10-dimensional representation we discussed above). To ensure this
”compatibility” let us consider the contraction

∑10
i=1 χ

CΓiχφi, which represents
the Standard Model singlet (for definition of the Γ-matrices see Appendix A).

By derivation of the contraction with respect to chosen pairs of fields we al-
ways get a combination of components φi. This combination then always has
to represent the physical vector of the 10-dimensional physical basis labelled by
quantum numbers, which cancel out, when summed together with the quantum
numbers of the fields with respect to which we took the derivative of the con-
traction. Hence, if we express this 10-dimensional physical vector in terms of
φi-components of the defining basis using the transformation matrix between the
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defining and the physical bases of the 10-dimensional representation, we get a
set of equations relating components φi. Solving this system we found out that
the solution is trivial - some of the components remained unchanged and some of
them just interchanged. Therefore, to make the basis of the 16-dimensional rep-
resentation compatible with the basis of the 10-dimensional representation (and
thus also with that of the adjoint representation), it is enough to relabel mutually
some of the Γ-matrices.

Applying this relabelling to the Cartan operators (2.3)-(2.7) one obtains a
new (”tensor-compatible”) definition

T ′C3 = T̃ ′C3 =
1

4
(σ21 − σ43) ,

T ′C8 = T̃ ′C8 =
1

4
√

3
(σ21 + σ43 − 2σ56) ,

T ′B−L = T̃ ′B−L = −2

6
(σ21 + σ43 + σ56) ,

T ′R3 =
1

4
(σ98 + σ107) , T̃ ′R3 =

1

4
(σ98 − σ107) ,

T ′L3 =
1

4
(σ98 − σ107) , T̃ ′R3 =

1

4
(σ98 + σ107) .

2.2 The Higgs sector

In the previous chapter we have already highlighted the most interesting features
of the SO(10) theory, among which we emphasized the elegant embedding of the
Standard Model matter content - especially that all the elementary fields nicely
fit into 16-dimensional spinor representation. Unfortunately, this great unifica-
tion aspect must be compensated by more complicated spontaneous symmetry-
breaking pattern.

As we have already mentioned, the Higgs sector brings quite a lot of arbitrari-
ness to the model building and to choose the most convenient possibility usually
represents a challenging problem. Although there are also other ways to attain
the desired result [57], the Higgs mechanism is the simplest possibility that we
shall stick to.

In the previous chapter we have explained the concept of minimality, which can
serve as a convenient criterion for construction of the Higgs sector. Based on that
we concluded that the best way is to break the symmetry down to the Standard
Model using the 45-dimensional representation plus the 16-dimensional spinor
representation. Although this model has been disregarded for a long time, a recent
paper [55] revived its fortunes. An important fact is that the revivification applies
not only to the 45 ⊕ 16 model but to every non-SUSY SO(10) model with the
adjoint 45S representation responsible for the first symmetry-breaking step. The
only extra thing we need is one additional scalar representation to reduce the rank.
Hence, for instance, the 126-dimensional tensor representation can be considered
instead of the 16-dimensional one. The selected spontaneous symmetry-breaking
patterns including the possible intermediate symmetries between the SO(10) and
the Standard Model gauge symmetry SU(3)C ⊗ SU(2)L ⊗ U(1)Y are depicted in
Fig. 2.1.
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SU(3) SU(2) SU(2) U(1)C L R B-LÄ Ä Ä

SU(3) SU(2) U(1)C L YÄ Ä

SU(3) SU(2) U(1) U(1)C L R B-LÄ Ä Ä

SU(3) U(1)C QÄ

SU(5)

45, 210

54, 210

45, 210

45

45, 210

45, 210

45, 54, 210

16, 126

16, 126

16, 126

16, 126

144

10, 16, 120, 126, 144, 210

45

45

Figure 2.1: SO(10) breaking patterns with representations up to 210 are depicted
in this figure. The SU(5) ⊗ U(1) represents either the standard, or the flipped
realization. In the former case either 16, or 126 representation breaks it down to
SU(5). In the latter case it is broken into the SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Another possibility how to break the SO(10) down to the Standard Model in
a single step is to employ the 144-dimensional Higgs representation. However,
this option is not really minimal, as it requires an extension of the matter sector.
Hence, to break the symmetry using the 144 representation and to guarantee
the realistic masses and mixing of the Standard Model fermions, an extra 120-
dimensional representation would have to be included except for the 45F multiplet
[58, 59], which is quite an unpleasant fact.

As a result, it seems that the convenient realistic non-SUSY SO(10) models
include either the 45S ⊕ 16S, or the 45S ⊕ 126S representations. Therefore, the
phenomenologically preferable breaking patterns allowed by the gauge unification
are the two following scenarios

SO(10)
MU−−→ 3C2L2R1B−L

MI−−→ 3C2L1R1B−L
MB−L−−−→ 3C2L1Y

SO(10)
MU−−→ 4C2L1R

MI−−→ 3C2L1R1B−L
MB−L−−−→ 3C2L1Y ,

where we have denoted SU(3)C , SU(2)L,R and U(1)B−L,Y by a more compact
notation, i.e., by 3C , 2L,R and 1B−L respectively. The first two breaking stages
MU and MI are controlled by VEVs of the 45S and the last breaking from the
intermediate scale MB−L down to the Standard Model is driven by VEV of the
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16S. The gauge unification yields the following relation of the particular scales

MU �MI > MB−L.

In this thesis we will focus especially on the study of the non-SUSY SO(10)
model with the 45 ⊕ 16 Higgs sector. The symbol φ will be used for the fields
belonging to the 45-dimensional adjoint Higgs representation. Similarly, the fields
belonging to the 16-dimensional spinor Higgs representation will be denoted by
χ; consequently, the relevant multiplets transforming as positive and negative
chirality components of the 32-dimensional SO(10) spinor will be denoted by χ+

and χ−, respectively.

2.3 The tree level scalar potential

Following to [60, 61] the most general renormalizable SO(10) invariant tree level
scalar potential for one 45S and one 16S ⊕ 16S representation can be written as

V = Vφ + Vφχ + Vχ, (2.8)

where

Vφ = −µ
2

2
TrΦ2 +

a1

4

(
TrΦ2

)2
+
a2

4
TrΦ4, (2.9)

Vφχ = α(χ†χ)TrΦ2 + β
(
χ†Φ2χ

)
+ τ

(
χ†Φχ

)
, (2.10)

Vχ = −ν
2

2
χ†χ+

λ1

4

(
χ†χ
)2

+
λ2

4

(
χ†+Γjχ−

)(
χ†−Γjχ+

)
, (2.11)

where the definition Φ =
φijσij

4
(see Appendix A) was used. All the constants

and masses are real because of hermiticity. As can be seen, there are no linear
and cubic terms in φ since the matrices of the SO(10) adjoint representation are
antisymmetric (φij = −φji).

2.4 The symmetry breaking

With the scalar potential at hand we can start to discuss the vacuum structure
of the model.

2.4.1 Standard Model singlets

Generally, in the 45 ⊕ 16 model there are three Standard Model singlets in the
scalar representations - two of them reside in the 45S and one in 16S. If we
label the fields by the 3C2L2R1B−L quantum numbers, the singlets of the 45-
dimensional representation reside in the (1, 1, 1, 0) and (1, 1, 3, 0) submultiplets,
while the singlet accommodated in the 16-dimensional representation resides in
the (1, 1, 2,+1) submultiplet. For the relevant VEVs of these fields we will use
the following notation

ωR ≡ 〈(1, 1, 0, 0)(1,1,1,0)〉, (2.12)

ωY ≡ 〈(1, 1, 0, 0)(1,1,3,0)〉, (2.13)

χR ≡ 〈
(
1, 1,−1

2
,+1

)
(1,1,2,+1)

〉, (2.14)
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where the subscripts indicate the relevant submultiplets. The VEVs ωR and
ωY are real and the VEV χR can be also taken as real if the phase of the 16S
representation is redefined.

The symmetry breaking patterns of the SO(10) theory varies for different
VEV configurations. For different settings of the vacuum expectation values the
symmetry breaks to different subgroups. If we set χR = 0, these possibilities are
following

ωR = 0, ωY 6= 0→ 3C2L2R1B−L, (2.15)

ωR 6= 0, ωY = 0→ 4C2L1R, (2.16)

ωR 6= 0, ωY 6= 0→ 3C2L1R1B−L, (2.17)

ωR = −ωY 6= 0→ flipped 5′1Z′ , (2.18)

ωR = ωY 6= 0→ standard 51Z , (2.19)

where 5′1Z′ and 51Z represent the ”flipped” and the ”standard” embedding of
the SU(5) group into SO(10), respectively. For χR 6= 0 the first four options
of the intermediate scale are broken down to the Standard Model gauge group,
just the last one maintains the whole SU(5) subgroup unbroken. The vacuum
configurations depend on the phase conventions used for the parametrization of
the subspace corresponding to the Standard Model singlets.

2.4.2 The breaking chains

In the section dedicated to the Higgs sector of SO(10) we already presented the
two phenomenologically viable breaking patterns. These can be related to the
corresponding settings of the VEVs of the 45⊕ 16 model as follows

• ωY � ωR > χR

⇒ SO(10)
MU−−→ 3C2L2R1B−L

MI−−→ 3C2L1R1B−L
MB−L−−−→ 3C2L1Y ,

• ωR � ωY > χR

⇒ SO(10)
MU−−→ 4C2L1R

MI−−→ 3C2L1R1B−L
MB−L−−−→ 3C2L1Y .

If we consider that one of the 45S VEVs (either ωR, or ωY ) equals to zero, a
really two-step SO(10) symmetry breaking pattern can be obtained [62]. Howev-
er, the settings when ωR < χR or ωY < χR imply the effective two-step breaking,
for which a different set of scalars survive at the intermediate scale.

2.5 The tree-level vacuum

Before we start with the calculation of the quantum corrections needed for the
local vacuum stability, it is convenient to recapitulate also the tree level results.
In particular, we will compute and discuss the tree level scalar spectrum of the
45⊕16 model, which will be needed for the construction of the effective potential
later on.
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2.5.1 The stationarity conditions

The physical masses corresponding to the particular fields can be obtained as the
second derivatives of the scalar potential shifted into the asymmetric vacuum of
the model. Hence, at first, we have to compute the stationarity condition deter-
mining the minimum on the vacuum manifold. Luckily, it is not needed to take
all the 45 derivatives of the scalar potential with respect to all the fields residing
in the adjoint representation and to solve this large system of equations because
we are interested in the vacuum form of these conditions. In other words, the
stationarity conditions are the first derivatives expressed in the vacuum; there-
fore, there are just three nontrivial equations corresponding to the three non-zero
VEVs. All of the other fields have zero VEVs and thus they do not affect the
calculations. Hence, there is much less work to do, as it is enough to calculate
the three derivatives of the vacuum expectation value of the scalar potential with
respect to the three non-zero vacuum expectation values.

Expressing the scalar potential (2.8) in terms of the physical fields and sub-
stituting the non-zero VEVs of the relevant fields by (2.12)-(2.14) (other vacuum
expectation values are zero), we get the formula representing the vacuum manifold

〈V0〉 =− 2µ2
(
2ω2

R + 3ω2
Y

)
+ 4a1

(
2ω2

R + 3ω2
Y

)2

+
1

4
a2

(
8ω4

R + 36ω2
Rω

2
Y + 21ω4

Y

)
− 1

2
ν2χ2

R +
1

4
λ1χ

4
R

+ 4αχ2
R

(
2ω2

R + 3ω2
Y

)
+

1

4
βχ2

R

(
2ω2

R + 3ω2
Y

)2 − 1

2
τχ2

R (2ωR + 3ωY )

Now we can take the first derivative of the potential (2.8) with respect to the
three fields with non-zero VEVs (2.12)-(2.14). In fact, these derivatives are in
this case equivalent to the derivatives of the vacuum manifold with respect to the
VEVs themselves. Therefore, the three stationarity conditions read

0 =
∂〈V0〉
∂ωR

= 2ωR
(
4µ2 + 32a1ω

2
R + 48a1ω

2
Y + 4a2ω

2
R + 9a2ω

2
Y + 8αχ2

R

)
− χ2

R(2βωR + 3βωY + τ), (2.20)

0 =
∂〈V0〉
∂ωY

= 2ωY
(
4µ2 + 32a1ω

2
R + 48a1ω

2
Y + 6a2ω

2
R + 6a2ω

2
R + 7a2ω

2
Y

+8αχ2
R

)
− χ2

R (2βωR + 3βωY + τ) , (2.21)

0 =
∂〈V0〉
∂χR

= χR
(
−2ν2 + 2λ1χ

2
R − 32αω2

R − 48αω2
Y + 4βω2

R + 9βω2
Y

+12βωRωY + 4τωR + 6τωY ) . (2.22)

The first two conditions can be re-expressed in a more suitable form, which
factors out the vacuum configuration ωR = ωY leading to the intermediate scale
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containing the ”standard” SU(5) group

0 =
1

8

(
∂〈V0〉
∂ωR

− 2

3

∂〈V0〉
∂ωY

)
= (ωR − ωY )

(
− µ2 + 4a1

(
2ω2

R + 3ω2
Y

)
+

1

4
a2

(
4ω2

R + 7ω2
Y − 2ωRωY

)
+ 2αχ2

R

)
(2.23)

0 = ωY

(
∂〈V0〉
∂ωR

)
− ωR

2

3

(
∂〈V0〉
∂ωY

)
= (ωR − ωY ) (4a2(ωR + ωY )ωRωY

+ βχ2
R

(
2ωR + 3ωY − τχ2

R

)
(2.24)

It is not difficult to see that for χR = 0 the conditions (2.23) and (2.24) allow
for the vacuum settings (2.15)-(2.19). However, it will be revealed that the first
two options of the vacuum configurations in fact are not the tree level minima
since at the three level these scenarios suffer from tachyonicity.

2.5.2 The tree level scalar spectrum and constraints on
the scalar potential parameters

The scalar spectrum at the tree level is given by the second derivatives of the
scalar potential (2.8) with respect to the physical fields and into the resulting
expressions the stationarity conditions calculated above must be substituted. The
full scalar spectrum for the the Standard Model vacuum configuration (the case
when either all of the three VEVs, or at least χR and one of the omegas are
non-zero) is calculated in Appendix D.

For what follows the most important elements of the scalar spectrum are the
45S submultiplets transforming as (8, 1, 0) and (1, 3, 0) under the Standard Model
gauge group. The corresponding squared masses are given by

M2(8, 1, 0) = 2a2 (ωR − ωY ) (ωR + 2ωY ) , (2.25)

M2(1, 3, 0) = 2a2 (ωY − ωR) (ωY + 2ωR) . (2.26)

Obviously, these tightly correlated masses can be negative, i.e., tachyonic. This
fact implies that the theory does not lie in the local minimum, or, in other words,
the stationary points do not represent the physical minima. Hence, the corre-
sponding vacuum is unstable and the VEVs occurring in the above expressions
must be constrained in order to avoid the tachyonicity and to satisfy the require-
ment of boundedness. As a result, the following constraints on the potential
parameters can be obtained

a2 < 0 and − 2 <
ωY
ωR

< −1

2
. (2.27)

Moreover, it is possible to show that for τ = 0 the combination of restrictions
yielded by equations (2.24), (2.25), (2.26) and the mass eigenvalues of the (1, 1, 1)
and (3, 2, 1

6
) fields the constraint on ωY /ωR is even more restrictive and reads

[51, 52, 53, 54]

−1 <
ωY
ωR

< −2

3
. (2.28)
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If χR = 0, the only vacuum configuration allowed by equation (2.24) and
by the constraints (2.27), (2.28) is the one that leads to the breaking to the
51Z subgroup. For χ 6= 0, it is possible to fine-tune the parameters so that
ωY /ωR ∼ −1 and χR is fixed at an intermediate scale. However, this setting does
not reproduce the Standard Model couplings [62]. For ωY ∼ ωR ∼ χR ∼MG and
for χR � ωR,Y analogical conclusions can be obtained.

As a result, it was concluded in 1980s that the minimal SO(10) models con-
taining the adjoint Higgs representation are not realistic. The major problem
is the fact that the large hierarchy between the adjoint VEVs cannot be set to
allow a phenomenologically viable breaking. Nevertheless, we will see that the
situation is significantly improved at the quantum level.

2.5.3 ”Tachyonic” masses revis(it)ed

The explicit form of the masses corresponding to the (8, 1, 0) and (1, 3, 0) sub-
multiplets of the representation 45S is quite suspicious, as it depends only on a
single potential parameter a2. It is clear that there are no terms proportional
to λ2 or τ since they simply cannot contribute to these masses at the tree level.
However, the χ2

R-dependent contribution proportional to the parameter β could
be expected. The relevant term of the potential reads

β

16
χ2
Rσijσklφijφkl, (2.29)

but after the defining fields are projected onto directions corresponding to the
physical states labelled as (8, 1, 0) or (1, 3, 0), these potential contributions vanish.
This can be seen from a more general point of view. The term (2.29) resembles the
structure of the gauge boson mass term. Since the gauge bosons residing in the
submultiplets (8, 1, 0)G and (1, 3, 0)G do not get their masses at the SU(5)⊗U(1)
level, neither do their scalar counterparts. Hence, the tree level mass β-dependent
contribution to all scalars belonging to the adjoint representation and labelled by
quantum numbers of the standard SU(5) is zero.

Let us explain also the fact that the masses of the fields accommodated in the
submultiplets (8, 1, 0) and (1, 3, 0) are proportional to the potential parameter a2.
It can be observed that if a2 = 0, the potential (2.8) exhibits an enhanced global
symmetry O(45). Hence, the a2-dependent term of the scalar potential explicitly
breaks this accidental global symmetry and the fields belonging to (8, 1, 0) and
(1, 3, 0) are the corresponding pseudo-Goldstone bosons.

To sum up, although the β and τ couplings do not contribute to the masses
(2.25)-(2.26) at the tree level, one can still anticipate their contribution of order
O(MG/4π) at the quantum level. Except for these scalar couplings also the gauge
interactions will contribute to the ”problematic” masses.

2.6 Coleman-Weinberg effective potential

The effective potential technique was introduced by J. Goldstone, A. Salam, S.
Weinberg [63] and by G. Jona-Lasinio [64] as a method for treating spontaneous
symmetry breaking within the quantum field theory. It was further developed
by S. Coleman and E. Weinberg [65], whose contribution will be mainly reported
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in this section. We will recapitulate the salient features of this method, describe
its formalism, meaning, application and also correspondence to the classical dia-
grammatic framework.

2.6.1 The effective potential formalism

For the sake of simplicity let us assume that we have a theory of a single scalar
field φ with dynamics given by the Lagrange density L (φ, ∂µφ) = ∂µφ∂

µφ−V (φ).
Let us consider a c-number function of space and time representing an external
source J(x). This source is coupled linearly to φ and added to the Lagrange
density, i.e.,

L (φ, ∂µφ)→ L + J(x)φ(x).

The transition amplitude from the vacuum asymptotic state |0−〉 in the far past
to the vacuum asymptotic state 〈0+| in the far future when the source J(x) is
present defines the connected generating functional W (J) as

〈0+|0−〉J = exp(iW (J)).

This functional can be expanded in a functional Taylor series

W =
∑
n

1

n!

∫
d4x1 . . . xnG

(n) (x1, . . . , xn) J(x1) . . . J(xn), (2.30)

where G(n) (x1, . . . , xn) are the Green’s functions of the theory corresponding to
the sum of all connected Feynman diagrams with n external lines.

The classical field φc is defined as

φc(x) =
δW

δJ(x)
=

(
〈0+|φ(x)|0−〉
〈0+|0−〉

)
J

. (2.31)

The defining relation for the effective action Γ(φc) reads

Γ(φc) = W (J)−
∫

d4xφc(x)J(x),

which is in fact just a Legendre transformation of the generating functional and
it easily implies

J(x) = − δΓ

δφc(x)
. (2.32)

We will see that this relation is very important for the study of spontaneous
symmetry breaking. In the same way as we expanded the generating functional
in equation (2.30) we can expand also the effective action, i.e.,

Γ =
∑
n

1

n!

∫
d4x1 . . . d

4xnΓ(n) (x1, . . . , xn)φc (x1) . . . φc (xn) , (2.33)

where the coefficients (one-point irreducible Green’s functions called sometimes
”proper vertices”) can be shown to be the sum of all the one-particle-irreducible
Feynman diagrams with n external lines.
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While in equation (2.33) the effective action was expanded in powers of the
classical field φc, it is also possible to write the expansion alternatively in terms
of momentum around the point where are all the external momenta zero. Such
an expansion in position space explicitly reads

Γ =

∫
d4x

(
−V (φc) +

1

2
(∂µφc)Z (φc) + . . .

)
, (2.34)

where the ordinary function V (φc), the so called effective potential, represents the
quantum version of the classical scalar potential V (φ). The derivative of order n
of the effective potential V is in fact the sum of all one-particle irreducible graphs
with n vanishing external momenta. It is straightforward to see that at the tree
level the effective potential equals to the ordinary scalar potential.

Using the functions in the expansion of the effective action the usual renor-
malization condition of the perturbation theory can be formulated; therefore, if
m2 denotes the scalar field squared running mass in the MS scheme, it holds that

m2 =
d2V

dφ2
c

∣∣∣∣∣
0

(2.35)

and similarly if we consider the well-known example of the scalar interaction λφ4,
then the running coupling λ can be obtained as

λ =
d4V

dφ4
c

∣∣∣∣∣
0

. (2.36)

The normalization of the field is in this case ensured by the condition

Z(0) = 1. (2.37)

After all these definitions we now apply the formalism of the effective potential
to the spontaneous symmetry breaking. Let us assume a Lagrange density with
a certain internal symmetry. If the quantum field φ has a non-zero vacuum
expectation value, it triggers the spontaneous symmetry breakdown even in case
that the external source J(x) equals to 0. Taking into account the equations
(2.31) and (2.32) this situation appears when

δΓ

δφc
= 0,

which, assuming translational invariance, can be simplified to

δV

δφc
= 0.

The minimum arises for certain value of φc, which is denoted by 〈φ〉 - the expec-
tation value of φ in the new, asymmetric minimum.

As usual, we shift the field φ by its vacuum expectation value φ in order to
get new field φ′ with zero VEV, i.e.,

φ′ = φ− 〈φ〉
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and this redefinition implies also the change of the classical field

φ′c = φc − 〈φ〉.

Consequently, the new masses, coupling constants, etc. can be calculated from
relations analogous to (2.35) and (2.36). The only difference is that now the
derivatives have to be evaluated at point 〈φ〉 rather than at zero.

Although we have seen that the theoretical derivation of the effective poten-
tial approach is quite straightforward, the explicit construction of the effective
potential corresponding to specific model may be rather difficult. The calculation
of the effective potential is in fact an infinite sum of Feynman diagrams.

However, an approximation method for V can be derived. To be specific, the
loop expansion can be used. It means that we sum all the tree graphs, then all
graphs with one closed loop, etc. This expansion corresponds to the expansion in
a parameter multiplying the total Lagrange density. In other words, if we denote
such a parameter as a and we define

L (φ, ∂µφ, a) = a−1L (φ, ∂µφ) ,

it can be shown that the loop expansion is equivalent to a power-series expansion
in a. Therefore, the Lagrange density remains unaffected by any shifts of fields
as well as by different divisions of the Lagrangian into free and interacting parts.
Naturally, the first term in the effective potential expansion is the classical scalar
potential representing the sum of all nonderivative terms present in the scalar
Lagrange density.

2.6.2 Sample application

Let us now assume a simple model of a single scalar field with Lagrange density

L =
1

2
(∂µφ)2 − U(φ), (2.38)

where U denotes the classical potential and we assume it to be polynomial. The
zero loop approximation then gives

V = U (φc) .

Furthermore, we can assume that the free part of the Lagrange density (2.38)
is just the first term 1

2
(∂µφ)2, while the interacting part is the whole rest given

by the potential U(φ). All graphs contributing to the one-loop effective potential
of this theory are

�
+

�
+

�
+ . . . , (2.39)

where each dot stands for a sum of terms with zero, one, two, etc. external lines,
which arise from the terms in U of the second, third, fourth, etc. order in φ. All
the external lines carry φc with a zero external momentum. Pictorially,

� =� +�
φc

+�
φc

φc

+ . . .
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and this vertex can expressed as

i
d2U

dφ2

∣∣∣∣∣
φ=φc

= iU ′′ (φc) .

Each line between two vertices represents the massless propagator, i.e.,

i

k2 + iε
.

where k is the loop momentum.
Performing the summation in (2.39) one obtains

(2.39) = i

∫
d4k

1

(2π)4

+∞∑
n=1

1

2n

(
U ′′ (φc)

k2 + iε

)n
, (2.40)

where the i at the beginning is from the definition of the generating functional
and the prefactor 1

2n
in the sum comes from the factorial in Dyson’s formula and

the fact that a rotation and a reflection of the n-point graph does not lead to a
new contraction in the Wick’s expansion.

The sum above can be easily evaluated, while the result

V = U +
1

2

∫
d4k

(2π)4
ln
(
k2 + U ′′ (φc)− iε

)
, (2.41)

where the rotation of the integral into the Euclidean space was performed for
convenience.

Obviously, the integral (2.40) diverges. Imposing an integration momentum
cutoff Λ the last formula can be rewritten as

V = U +
Λ2

32π2
U ′′ +

(U ′′)2

64π2

(
ln

(
U ′′ − iε

Λ2

)
− 1

2

)
. (2.42)

Naturally, the behaviour of the resulting formula depends on the fact whether the
interaction is renormalizable. If U is a polynomial of up to fourth order, then the
cut-off dependence of the equation (2.42) can be absorbed into a counterterm.
On the other hand, if the considered theory possesses a potential U of higher than
fourth order, the counterterms have to be of yet higher order and so on, which
results in the drawbacks characteristic for non-renormalizable theories.

The important implication of the above calculation, is that even when the
spontaneous symmetry breakdown is included, no extra counterterms than those
required by the theory without symmetry breaking are needed. Hence, the sponta-
neous symmetry breakdown cannot affect the structure of the divergences present
in a renormalizable field theory.

2.6.2.1 Explicit computation in the simplest case

Let us present a more specific computation of the one-loop effective potential in
the simplest possible case of the theory of a massless, self-interacting meson field
given by the Lagrange density

L =
1

2
(∂µφ)2 − λ

4!
φ4 +

1

2
A(∂µφ)2 − 1

2
Bφ2 − 1

4!
Cφ4,
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where A, B and C denote the wave-function, mass and coupling renormalization
counterterms, respectively. Imposing the definitions of the scale of the renormal-
ized field, the renormalized mass and the renormalized coupling these countert-
erms will be determined order by order in the expansion. Although we are dealing
with the massless theory, the mass counterterm is present since there is no sym-
metry that would guarantee that the bare mass vanishes when the renormalized
mass goes to zero.

In the tree approximation of the considered theory we get

V =
λ

4!
φ4
c .

At one-loop level we have to sum the infinite series of the polygon graphs plus
the contributions from the mass and the coupling counterterms, i.e.,

V =
λ

4!
φ4
c −

1

2
Bφ2

c −
1

4!
Cφ4

c + i

∫
d4k

(2π)4

∞∑
n=1

1

2n

(
1

2

λφ2
c

k2 + iε

)n
. (2.43)

The prefactor of i in front of the integral is from the definition of the generating
functional W , the factor of 1

2
in the integrand represents the Bose statistics factor

and the factor of 1
2n

is the combination of the 1
n!

factor in Dyson’s formula and
the combinatoric factor generated by the fact that the rotation (or reflection) of
the n-sided polygon does not lead to a new graph.

The formula (2.43) is infrared divergent, but by summing the series we get an
improved expression

V =
λ

4!
φ4
c −

1

2
Bφ2

c −
1

4!
Cφ4

c +
1

2

∫
d4k

(2π)4
log

(
1 +

λφ2
c

2k2

)
. (2.44)

The integral in the above equation was rotated into Euclidean space and the
factor of iε in the denominator of the integrand was dropped. Obviously, the
infrared divergence was transformed into a logarithmic singularity at φc = 0. The
equivalent behaviour we would get if tried to compute the radiative correction to
the propagator in this theory.

However, the integral in (2.44) is still ultraviolet divergent. Considering the
cut off at k2 = Λ2 we obtain

V =
λ

4!
φ4
c +

1

2
Bφ2

c +
1

4!
Cφ4

c + λ
Λ2

64π2
φ2
c + λ2 Λ2

256π2

(
log

λ2φ4
c

2Λ2
− 1

2

)
,

where the terms going to zero for big Λ2 were omitted. Now we can already
express the renormalization counterterms. Applying the equation (2.35) we get

d2V

dφ2
c

∣∣∣∣
0

= 0,

which implies

B = −λ Λ2

32π2
.

However, to determine the renormalized coupling the equation (2.36) cannot
be used since the fourth derivative of V does not exist in the origin because of
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the infrared divergence. To avoid this trouble we can define the coupling λ at a
point away from the singularity, i.e., we can write

d4V

dφ4
c

∣∣∣∣
M

= λ,

where M denotes an arbitrary scalar with dimension of a mass. Imposing this
condition it is obtained

C = − 3λ2

32π2

(
log

λM2

2Λ2
+

11

3

)
.

The infrared divergence affects also the standard condition for defining the
scale of the field (2.37), but we can avoid it in the same way as we did above, i.e.,

Z(M) = 1.

As a result, substituting the derived expressions into the original potential we
get the final formula for the one-loop effective potential

V =
λφ4

c

4!
+

λ2φ2
c

256π2

(
log

φ2
c

M2
− 25

6

)
.

2.6.3 The physical meaning of the effective potential

As we have seen, the effective potential in fact represents a quantum analogue of
the classical potential; therefore, its physical meaning is analogical as well. The
ordinary potential U(φ) appearing in the classical field theory is physically an
energy density, i.e., the energy per unit volume for the state, in which the field
has the value φ. Similarly, it is obvious in quantum field theory that the effective
potential V (φc) is also an energy density. Namely, it is the expectation value of
the energy per unit volume in a state, in which the field has the expectation value
φc. Consequently, if the effective potential has more than just one local minimum,
then the real ground state of the theory (that is the state of the lowest energy)
has energy density of the the global (absolute) minimum of V .

Let us now prove the above statements using a beautiful quantum-mechanical
analogy. Expanding W (J) in a similar fashion as the effective action Γ in (2.34)
it is obtained

W =

∫
d4x

(
−E (J) +

1

2
(∂µJ)X (J) + . . .

)
, (2.45)

where J = J(x) is again the external source. Let us assume that this source is
during a time T constant within a certain finite volume V . This constant will
be denoted J and we will assume that the value of J(x) goes smoothly to zero
outside the boundary of the region defined by T and V . Consequently, the term
E in intergral on the right hand side of the equation (2.45) becomes dominant
and we can write

exp(iW ) = 〈0+|0−〉 ≈ exp(−iV TE(J)).
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This can be physically described as a departure from the original Hamiltonian
density H to a new one which is smoothly changed by a small perturbation as

H → H− Jφ.

Hence, the ground state of the theory within the volume defined by parameters
V and T can be expected to go adiabatically to the ground state of the theory,
whose Hamiltonian density contains the additional term. Naturally, the time
development of the ground state is driven by the Schrödinger equation; hence,
this state develops a certain phase. If we subsequently turn the perturbation
down, the perturbed ground state returns back to the unperturbed one; however,
it keeps the generated phase. Therefore, the quantity E(J) represents the energy
per unit volume of the ground state corresponding to the perturbed theory.

Now we turn to the quantum mechanics providing a derivation, which will be
possible to generalize easily to the field case and thus complete the proof. Let us
consider a stationary state |o〉 of the quadratic form

〈o|H|o〉,

assuming

〈o|o〉 = 1.

To find such a state the standard method of Lagrange multipliers can be used. If
the Lagrange multiplier is denoted as E and the following form is varied

〈o| (H − E) |o〉,

we get the equation

(H − E) |o〉 = 0.

Now we will assume an extra constraint

〈o|O|o〉 = o,

where we defined a Hermitian operator O with eigenvalue o. As a result, we will
now have to use two Lagrange multipliers denoted as E ′ and J . Again, varying
the form

〈o| (H − E ′ − Jo) |o〉

we obtain the equation

(H − E ′ − Jo) |o〉 = 0.

Obviously, on grounds of the last equation we can define the perturbed Hamil-
tonian as H − Jo, whose eigenstate |o〉 corresponds to the energy E ′. Hence, the
eigenvalue o can be expressed as

o = 〈o|O|o〉 = −dE ′

dJ
,
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which allows us to express the form 〈o|H|o〉 as

〈o|H|o〉 = E ′ + Jo = E ′ − J dE ′

dJ
.

If we now substitute the quantities according to the following ”dictionary”
relating the quantum mechanics with the effective potential

Quantum Mechanics ↔ Effective Potential

Hamiltonian H ↔ Hamiltonian density H
energy E ↔ energy density E
source J ↔ source density J

operator O ↔ field φ

stationary state |o〉 ↔ vacuum |0〉
eigenvalue o↔ classical field (VEV) φc

we find that the line of arguments above matches exactly the formulas we went
through when defining the effective potential. Hence, the physical meaning of the
effective potential can be easily inferred from the resulting relation

V (φc) = 〈o|H|o〉,

where |o〉 is the state, for which

δ〈o|H|o〉 = 0

and the constraints

〈o|o〉 = 1,

〈o|φ|o〉 = φc

are satisfied.
The physical interpretation given above can be explained also by another

argument. If we consider just one-dimensional space, the Lagrange density can
be substituted by the Lagrangian corresponding to a particle with a unit mass.
Similarly, φ becomes x and consequently U(φ) is substituted by the potential
U(x), which influences the motion of the particle. Consequently, the equation
(2.41) can be rewritten as

V = U +
1

2

∫
dω

2π
log
(
ω2 + U ′′ − iε

)
= U +

1

2
(U ′′ − iε)

1
2 , (2.46)

which can be interpreted as follows: While in the classical case the particle is
situated in the potential minimum having the energy equal to U in this minimum,
in the quantum case the potential has to be approximated around the minimum by
the potential of the harmonic oscillator and the particle energy must be increased
by the value of the ground state energy of the harmonic oscillator (the second
term in equation (2.46)).
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3. The 45⊕ 16 model at the
quantum level

As we have described in detail in the first part of the previous chapter, the mini-
mal SO(10) models with Higgs sector formed either by 45S⊕16S, or by 45S⊕126S
representation were for a long time considered to be excluded by the phenomenol-
ogy [51, 52, 53, 54] since it was acknowledged that just the inconsistent symmetry
breaking patterns in these scenarios were allowed. However, recently it was shown
that these models can be revived [55] if the radiative corrections to the scalar mass
spectrum are calculated.

In this chapter we will first reproduce the calculations of the full one-loop
scalar mass corrections to the potentially tachyonic pseudo-Goldstone bosons us-
ing the effective potential approach from section 2.6. Except for the computation
itself, we will present also the behaviour of the results in interesting limits.

Later on, we will use the standard diagrammatic methods for the calculation
of the leading polynomial one-loop corrections to the masses of the problematic
pseudo-Goldstone bosons. This approach will turn out to be very smart and
particularly much easier than the effective potential machinery.

3.1 Effective potential and its applications

The main purpose of this part is to understand the quantum structure of the
45⊕ 16 Higgs model. We will therefore mostly reproduce the calculations of the
recently published results [55].

3.1.1 One-loop scalar spectrum of the 45⊕ 16 model

Let us first focus on the calculation of the full scalar corrections of the masses
corresponding to the potentially tachyonic states labelled as (8, 1, 0) and (1, 3, 0)
in the basis 3C2L1Y .

Since the vacuum expectation value χR is not important for the production of
significant mass corrections, it does not influence the viability of the phenomeno-
logically viable breaking chains at the quantum level. Thanks to this fact it is
possible to set χR = 0 and perform the one-loop level calculations in this limit.
The zero value of the χR decouples the mass matrices of the 45S and the 16S
sectors, which are used in the effective potential approach. Consequently, in the
following text we will focus only on vacuum configurations

χR = 0, ωR = 0, ωY 6= 0→ 3C2L2R1B−L,

χR = 0, ωR 6= 0, ωY = 0→ 4C2L1R,

χR = 0, ωR = −ωY 6= 0→ flipped 5′1Z′ .

Vanishing χR means that the condition (2.22) is trivially satisfied and the tree-
level scalar spectrum also changes in this limit. However, to obtain the scalar
spectrum for χR = 0 it is not enough to send this VEV to zero in the expressions
corresponding to the fully general spectrum. The calculation of the spectrum has
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to be performed anew. Nevertheless, the potentially tachyonic states (8, 1, 0) and
(1, 3, 0), in which we are interested, do not change.

3.1.2 The effective potential at the one-loop level

Now, we are ready to start the calculation of the scalar quantum corrections to the
potentially tachyonic masses M2(8, 1, 0) and M2(1, 3, 0) employing the effective
potential approach. The one-loop effective potential of the minimal 45⊕16 model
can be written as

Veff = V + ∆Vscalar + ∆Vgauge + ∆Vfermion, (3.1)

where V is the scalar potential at the tree level, while the terms ∆Vscalar, ∆Vgauge
and ∆Vfermion denote the one-loop quantum corrections corresponding to scalars,
gauge bosons and fermions in the loop, respectively. Using the Landau gauge and
the dimensional regularization with the modified minimal subtraction MS, the
one-loop corrections to the tree-level potential read

∆Vscalar (φ, χ, µ) =
ζ

64π2
Tr

[
M4 (φ, χ)

(
log

(
M2 (φ, χ)

µ2

)
− 3

2

)]
, (3.2)

∆Vgauge (φ, χ, µ) =
3

64π2
Tr

[
M4 (φ, χ)

(
log

(
M2 (φ, χ)

µ2

)
− 3

2

)]
,

∆Vfermion (φ, χ, µ) =
η

64π2
Tr

[
M 4 (φ, χ)

(
log

(
M 2 (φ, χ)

µ2

)
− 3

2

)]
,

where the coefficient ζ equals to 1 or 2 for real or complex scalars, respectively,
while the coefficient η is equal to 2 or 4 for Weyl or Dirac spinors, respectively.
The M, M, M represent the functional mass matrices of scalars, gauge bosons
and fermions. In this thesis we are interested especially in the scalar spectrum of
the 45⊕ 16 model; hence, let us now build the functional mass matrix M2(φ, χ)
corresponding to the scalars. Given the basis of 45+(2×16) fields, the dimension
of the matrix M2(φ, χ) is 77. This matrix is hermitian and the relevant term in
the Lagrangian reads

L 3 1

2
ψ†M2(φ, χ)ψ,

where we accommodated all the fields into a single vector ψ = (φ, χ, χ∗). There-
fore, M2(φ, χ) is a block matrix of the form

M2(φ, χ) =

 Vφφ Vφχ Vφχ∗
Vχ∗φ Vχ∗χ Vχ∗χ∗
Vχφ Vχχ Vχχ∗

 , (3.3)

where the particular blocks contain the derivatives of the scalar potential V with
respect to the fields denoted by the corresponding subscripts; for instance, Vφχ∗

stands for ∂2V
∂φ∂χ∗

and so on.
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3.1.3 The stationarity conditions at one loop

As in the tree level case we first have to calculate the stationarity conditions
given the new, quantum-level potential. In what follows we shall focus on the
calculation of the scalar corrections eqrefscalcor; consequently, just the relevant
part of the effective potential (3.1) will be used, namely with V + ∆Vscalar. Let
us therefore take the derivative of ∆Vscalar with respect to the field component
ψi. The following expression is obtained

∂∆Vscalar
∂ψi

=
1

64π2
Tr

[
M2M2

ψi
+ {M2

ψi
,M2}

(
log

(
M2

µ2

)
− 3

2

)]
, (3.4)

where we used the shorthand notation M2
ψi

= ∂M2(φ,χ)
∂ψi

. In case of the gauge
bosons or fermions we could proceed in the same way.

Using the scalar spectrum computed in the previous chapter the matrixM2 (φ, χ)
and its derivatives can be calculated quite easily. They are not presented here
explicitly because they are too large. The most important thing they imply is
that the corrected condition allow for the same vacuum settings as the tree-level
conditions did.

3.1.4 The one-loop scalar mass corrections

Having expressed the stationarity condition, we can now turn to the mass correc-
tion itself. Taking the second derivative of the ∆Vscalar a much more complicated
formula than was the case of the first derivative (3.4) emerges

∂2∆Vscalar
∂ψi∂ψj

=
1

64π2
Tr
[
M2

ψi
M2

ψj
+M2M2

ψj

+
(
{M2,M2

ψiψj
}+ {M2

ψi
,M2

ψj
}
)

log

(
M2

µ2
− 3

2

)
+

+∞∑
n=1

(−1)n+1

n

n∑
k=1

(
n
k

)
{M2,M2

ψi
}

×
[
M2, . . .

[
M2,M2

ψj

]
. . .
] (
M2 − 1

)n−k]
, (3.5)

where the series in the last line involves (k − 1) nested commutators descending
from the commutation properties of the M2 matrix with its derivatives. Ob-
viously, the situation is now more complicated than it was in case of the first
derivative (3.4). There were no nested commutators since the trace properties
allowed to avoid them. Hence, the formula was obtained in quite a simple form
independently on commutation properties of M2 with its derivative. It is worth
mentioning that the right hand side of the above equation is really symmetric in
subscripts ψi and ψj.

3.1.5 From the running to the pole mass

Evaluating the equation (3.5) in the vacuum of the potential one finds that the
numerators of the arguments of certain logarithms equal exactly to the tree sta-
tionarity condition (i.e., equation obtained as the first derivative of the tree-level
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scalar potential). Hence, the infrared singularities occur once the stationarity
condition is substituted into (3.5).

This instabilities has the origin in the fact that the effective potential is rep-
resented by the first term in the momentum expansion of the effective action
around zero momentum [66]. Hence, the expression

m2
ij =

〈
∂2Veff
∂ψi∂ψj

〉
(3.6)

does not represent the physical (i.e., pole) mass corresponding to a massive scalar.
In general, the physical mass is in any renormalization scheme S given by the
root of the renormalized inverse propagator

Γ
(2)
S (p2) ≡ p2 − µ2

S − ΣS(p2) = 0,

where µ2
S represents the renormalized mass, while ΣS(p2) is the self-energy cor-

responding to the momentum p.
The masses (3.6) given by the second derivatives of the (dimensionally regu-

larized MS) effective potential correspond to
(
Γ

(2)

MS
(0)
)
ij

, i.e.,

m2
ij = −

(
µ2
MS

)
ij
− (ΣMS(0))ij . (3.7)

Consequently, the physical mass can be obtained as solution of the secular
equation of the relevant eigenvalue problem

det
[
δijp

2 −m2
ij −

(
ΣMS(p2)

)
ij

+ (ΣMS(0))ij

]
= 0, (3.8)

where m2
ij is the zero-momentum mass matrix given by (3.6) and ΣMS stands for

the matrix of the scalar self-energies.
From the above expression it is obvious why the instabilities cannot occur in

the Goldstone sector. For zero p2-eigenvalues the self-energies cancel out from
the equation (3.8) and, thus, there are no extra contributions.

In case that the physical mass m2
i is small when compared to the GUT-scale

fields contributing to Σ(0), then the corresponding correction ∆Σ ≡ Σ(p2)−Σ(0)

is of the order of O
(
m4

i

M2
G

)
and the running mass (3.6) contains the leading gauge

independent corrections.

3.1.6 The scalar mass corrections to the tree-level tachy-
onic masses

The analysis of the tree level scalar spectrum showed that the masses correspond-
ing to the fields (8, 1, 0) and (1, 3, 0) depend just on a single potential parameter
a2 and they turn out to be tachyonic for the viable symmetry breaking patterns.
Nevertheless, also the terms proportional to τ and β could be expected. Although
they do not contribute at the tree level, they could give a significant contribu-
tion at the quantum level. As we have also argued, the corrections dependent
on χR are negligible. Therefore, the one-loop mass correction can be calculated
in the limit χR = 0 in which the matrix (3.3) has a block diagonal form as the
45S and 16S sectors effectively decouple. Moreover, the relevant leading one-loop
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corrections are determined by the block Vχ∗χ, which significantly simplifies the
calculation.

Another fact which makes the calculation of the corrections to the masses of
(8, 1, 0) and (1, 3, 0) easier is that for χR = 0 the matrix M2(φ, χ) and its first
derivative with respect to these pseudo-Goldostone-boson states do commute. As
a result, the complicated series containing the nested commutators vanish (except
the first term of the series corresponding to k = 1) and the relevant formula is
thus much simpler.

3.1.6.1 Full leading corrections and the SU(5) limit

Now we can finally perform the explicit calculation of the leading scalar one-loop
corrections ∆M2(8, 1, 0) and ∆M2(1, 3, 0). The full stationarity equations we get
by merging the tree (2.20)-(2.22) and one-loop (3.4) stationarity conditions. Sim-
ilarly, the corrected mass then can be obtained as a sum of the tree (2.25)-(2.26)
and the one-loop (3.5) parts. Moreover, the cumbersome part containing the se-
ries with the nested operators can be omitted since for the interesting potentially
tachyonic submultiplets (8, 1, 0) and (1, 3, 0), the commutation [M2,M2

ψi
] = 0 is

satisfied. Hence, the relevant formula reads

∂2 (V + ∆Vscalar)

∂ψi∂ψj
=

∂2V

∂ψi∂ψj
+

1

64π2
Tr

[
M2

ψi
M2

ψj
+M2M2

ψj

+
(
{M2,M2

ψiψj
}+ {M2

ψi
,M2

ψj
}
)

log

(
M2

µ2
− 3

2

)
+ {M2,M2

ψi
}
]
, (3.9)

where the derivatives are taken with respect to the submultiplets (8, 1, 0) and
(1, 3, 0) of the 45S.

Remarkably, to determine the leading one-loop mass corrections it is not nec-
essary to take the full second derivative (3.9) and substitute into it the full sta-
tionarity condition. In fact, after explicit computation of the equations (3.9) and
(3.4) we find that they both consist of a tree-level part, a leading polynomial
one-loop part, a leading logarithmic one-loop part and a subleading logarithmic
part. Inspecting the explicit forms of the stationarity conditions and the one-loop
masses it turns out that to get the leading loop correction it is enough to substi-
tute the tree-level parts of the stationarity conditions (2.20) and (2.21) into the
leading one-loop parts of the mass formula (3.5) and the leading one-loop part
of the stationarity condition (3.4) into the tree-level term plus into the leading
one-loop parts of the mass formula (3.5).

Let us now present the resulting quantum-level leading order expressions (in-
cluding the leading logarithmic terms) for the masses of (8, 1, 0) and (1, 3, 0).
Although they are quite complicated, we will write them here and use them to
show a beautiful cross-check consisting in the calculation of the SU(5) limit.
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The leading part of the one-loop mass of the submultiplet (8, 1, 0) reads

M2
full(8, 1, 0) =

1

16π(ωR − ωY )
[ 4(ωR − ωY )(τ 2 + β2(ω2

R − ωRωY + 3ω2
Y ) (3.10)

+ 8a2π(ωR − ωY )(ωR + 2ωY ))

+ (τ + βωR)(ωR + 3ωY )(τ − 3βωY ) logµ[2(τ + βωR)(ωR + 3ωY )]

+ (−τ 2(ωR + 3ωY ) + 2βτ(−2ω2
R + 3ωRωY + 3ω2

Y )

+ β2(4ω3
R + 3ωRω

2
Y + 5ω3

Y )) logµ[4(ωR + ωY )(τ + βωY )]

− 2ωR(τ + 3βωY )(τ − 2βωR + 3βωY ) logµ[4ωR(τ + 3βωY )]

+ (τ 2ωR + 4βτω2
R + 4β2ω3

R + 3τ 2ωY + 6βτωRωY

+ 6βτω2
Y + 9β2ωRω

2
Y − β2ω3

Y ) logµ[4ωY (τ + β(2ωR + ωY ))]

+ (τ 2(ωR − 3ωY ) + β2(−4ω3
R − 9ω2

RωY + 3ωRω
2
Y + 4ω3

Y )

− βτ(5ω2
R + 3ω2

Y )) logµ[2(ωR + ωY )(τ + β(ωR + 2ωY ))] ] .

Similarly, the leading order quantum-level mass of (1, 3, 0) reads

M2
full(1, 3, 0) =

1

16π(ωR − ωY )
[ 4(ωR − ωY )(τ 2 + β2(2ω2

R − ωRωY (3.11)

+ 2ω2
Y ) + 8a2π(−2ω2

R + ωRωY + ω2
Y ))

+ (2τ 2(ωR + ωY )− βτ(ω2
R + 10ωRωY − 3ω2

Y )− β2(2ω3
R

+ 7ω2
RωY − 6ωRω

2
Y + 9ω3

Y )) logµ[2(τ + βωR)(ωR + 3ωY )]

+ 2(ωR + ωY )(τ + βωY )(−τ + β(2ωR + ωY ))

× logµ[4(ωR + ωY )(τ + βωY )]

− 2ωR(τ + 3βωY )(τ − 2βωR + 3βωY ) logµ[4ωR(τ + 3βωY )]

+ 4ωY ((τ + 2βωR)2 − β2ω2
Y ) logµ[4ωY (τ + β(2ωR + ωY ))]

+ (2τ 2(ωR − 2ωY ) + βτ(−7ω2
R + 2ωRωY − 3ω2

Y )

+ β2(−6ω3
R − 13ω2

RωY + 6ωRω
2
Y + 7ω3

Y ))

× logµ[2(ωR + ωY )(τ + β(ωR + 2ωY ))] ] .

In both results (3.10) and (3.11) the redefined logarithm

logµ(x) ≡ log

(
x

µ2

)
was used.

As expected, these expressions (3.10) and (3.11) depend on potential parame-
ters τ and β and they contribute significantly to the potentially tachyonic masses
of the (8, 1, 0) and (1, 3, 0) pseudo-Goldstone bosons. Therefore, on grounds of
the above results, the symmetry breaking patterns which seemed to be forbidden
at the tree level can be revived at the quantum level.

Let us note that both these multiplets should remain massless in the SU(5)
limit ωR → ωY because at the SU(5) level they are massless Goldstone bosons
belonging to the (24, 0) representation. Indeed, the complicated expressions pre-
sented above really reduce to zero

lim
ωR→ωY

M2
full(8, 1, 0) = 0, (3.12)

lim
ωR→ωY

M2
full(1, 3, 0) = 0, (3.13)
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which can be viewed as a nice consistency check of the obtained results.
In the SU(5) limit we could also simply replace the redefined logarithm logµ by

the standard log because the prefactors of logarithms log(µ2) cancel for ωR = ωY
as can be easily verified. Vanishing of remaining logarithms is more complicated
since they have different arguments. Hence, for their complete vanishing in the
SU(5) limit the leading polynomial part of the corrections is essential.

3.1.6.2 The leading polynomial terms

Although the full leading one-loop masses of the submultiplets (8, 1, 0) and (1, 3, 0)
were presented above, for our further proceeding the leading polynomial one-loop
corrections to these masses are the most interesting parts. As usually, the leading
nonlogarithmic corrections are of higher order than the logarithmic ones.

The leading polynomial one-loop corrections to the masses of the fields (8, 1, 0)
and (1, 3, 0) can be written as

∆M2(8, 1, 0) =
τ 2 + β2 (ω2

R − ωRωY + 3ω2
Y )

4π2
+ . . . , (3.14)

∆M2(1, 3, 0) =
τ 2 + β2 (2ω2

R − ωRωY + 2ω2
Y )

4π2
+ . . . . (3.15)

Therefore, the masses of the potentially tachyonic pseudo-Goldstone bosons
including the nonlogarithmic parts of the quantum corrections read

M2(8, 1, 0) = 2a2 (ωR − ωY ) (ωR + 2ωY )

+
τ 2 + β2 (ω2

R − ωRωY + 3ω2
Y )

4π2
+ . . . , (3.16)

M2(1, 3, 0) = 2a2 (ωY − ωR) (ωY + 2ωR)

+
τ 2 + β2 (2ω2

R − ωRωY + 2ω2
Y )

4π2
+ . . . . (3.17)

3.1.6.3 Potentially tachyonic masses in various limits

Just for a later convenience we now rewrite here the above results (3.16) and (3.17)
in the three limits corresponding to the three interesting vacuum configurations.
These expressions will be important particularly for comparison with the results
yielded by the diagrammatic method of calculation of the leading polynomial
quantum corrections.

First, for the setting with χR = 0, ωR = 0, ωY 6= 0 the intermediate breaking
scale is 3C2L2R1B−L and the mass corrections in this limit are

M2(8, 1, 1, 0) = −4a2ω
2
Y +

τ 2 + 3β2ω2
Y

4π2
+ . . . ,

M2(1, 3, 1, 0) = 2a2ω
2
Y +

τ 2 + 2β2ω2
Y

4π2
+ . . . .

In the case of the χR = 0, ωR 6= 0, ωY = 0 configuration the intermediate
symmetry is 4C2L1R and the mass corrections have the form

M2(15, 1, 0) = 2a2ω
2
R +

τ 2 + β2ω2
R

4π2
+ . . . ,

M2(1, 3, 0) = −4a2ω
2
R +

τ 2 + 2β2ω2
R

4π2
+ . . . .
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Finally, let us consider the vacuum setting with χR = 0, ω ≡ ωR = −ωY 6= 0
corresponding to the flipped SU(5) symmetry. In this case one has

M2(24, 0) = −4a2ω
2 +

τ 2 + 5β2ω2

4π2
+ . . . .

There is just a single expression valid for both submultiplets (8, 1, 0) and (1, 3, 0)
because they are both contained in the (24, 0) multiplet of the flipped SU(5).

3.1.7 Gauge corrections

For the sake of completeness, let us make a brief mention of the gauge correc-
tions. Although we have described just the calculation of the scalar corrections
to the masses of the pseudo-Goldstone bosons labelled by (8, 1, 0) and (1, 3, 0),
the relevant leading gauge corrections can be also calculated, as we already have
all the prerequisities at hand. Hence, according to [55] the total one-loop mass
corrections of the potentially tachyonic fields read

∆M2(8, 1, 0) =
1

4π2

[
τ 2 + β2

(
ω2
R − ωRωY + 3ω2

Y

)
(3.18)

+g4
(
16ω2

R + ωRωY + 19ω2
Y

)]
+ . . . ,

∆M2(1, 3, 0) =
1

4π2

[
τ 2 + β2

(
2ω2

R − ωRωY + 2ω2
Y

)
(3.19)

+g4
(
13ω2

R + ωRωY + 22ω2
Y

)]
+ . . . .

It is easy to determine how these corrections change for various vacuum settings
as we did it just for the scalar corrections.

3.1.8 Necessary conditions for the local vacuum stability

Let us now proceed similarly as in case of the scalar potential at the tree level
in the previous chapter and look at the conditions of the local vacuum stability.
Considering the equations (3.18) and (3.19) in various limits we can get relations
among the potential parameters a2, β, τ and g at the scale µ = MG.

If the 45S VEVs have the values ωR = 0, ωY 6= 0 (χR is still zero), which
implies the spontaneous breaking of the full symmetry down to 3C2L2R1B−L, the
condition on the coefficient a2 is obtained

a2 > −
1

8π2

(
τ 2 1

ω2
Y

+ 2β2 + 19g4

)
.

In case that the vacuum is set as ωR = 0, ωY 6= 0, the resulting condition is
quite similar, explicitly

a2 > −
1

8π2

(
τ 2 1

ω2
R

+ β2 + 13g4

)
.

For the vacuum configuration ωR = −ωY corresponding to the intermediate
scale with the flipped 5′1Z′ symmetry the same condition reads

a2 < 0.

Numerically, if we assume τ ∼ ωR,Y as indicated by naturalness, we get

|a2| < 10−2.
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3.2 Diagrammatic calculation of the leading one-

loop mass corrections

In the previous chapter we performed a calculation of the quantum corrections to
the scalar masses using the technique of the effective potential. In this chapter we
will show how to recalculate most of these results by means of the standard per-
turbative theory, thus demonstrating their connection to the Coleman-Weinberg
approach. First, we will focus on the Abelian Higgs model. Later we will apply
the same methods to the 45 ⊕ 16 model to get the leading polynomial terms of
the radiative corrections to the scalar masses of our interest.

3.2.1 Abelian Higgs Model

Let us consider the Lagrangian

L = (∂µφ)†(∂µφ)− V

describing a single complex scalar field charged under U(1) gauge group with a
selfinteraction given at the classical level by the scalar potential

V = m2|φ|2 + λ|φ|4. (3.20)

As usual, we denote 〈φ〉 = v; with that at hand one can substitute φ with ϕ,
for which 〈ϕ〉 = 0, explicitly

φ =
1√
2

(ϕ+ v) eiρ.

The potential (3.20) can then be rewritten as

L =
1

2
∂µϕ∂

µϕ+
1

2
(ϕ+ v)∂µρ∂

µρ+
1

2
m2v2 +

1

4
λv4 +

(
m2v + λv3

)
ϕ

+

(
1

2
m2 +

3

2
λv2

)
ϕ2 + λvϕ3 +

1

4
λϕ4, (3.21)

where

V =
1

2
m2v2 +

1

4
λv4 +

(
m2v + λv3

)
ϕ

+

(
1

2
m2 +

3

2
λv2

)
ϕ2 + λvϕ3 +

1

4
λϕ4, (3.22)

where the standard λϕ4-like terms

1

2
m2ϕ2 +

1

4
λϕ4

can be found.
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3.2.1.1 Calculation of the tree-level mass of the field ϕ

Let us start with the mass given by

m′2 =

〈
∂2V

∂ϕ2

〉
,

where V is the tree-level potential of the theory. However, to get the right mass
corresponding to the field ϕ we have to shift to the new asymmetric minimum.
The mass of the field ϕ is therefore given by

m2
ϕ =

〈
∂2V

∂ϕ2

〉∣∣∣∣∣
〈 ∂V
∂ϕ
〉=0

.

In other words, we are looking for the value of 〈∂2V
∂ϕ2 〉 in the minimum of the

potential.
Given 〈ϕ〉 the tree-level stationarity condition (SC) 〈∂V

∂ϕ
〉 = 0 in the case of

potential (3.22) reads

m2v +
(
λv3
)

= 0, (3.23)

which can be rewritten as

m2 = −1

v

(
λv3
)
. (3.24)

The second derivative of the potential (3.22) expressed in vacuum explicitly
reads 〈

∂2V

∂ϕ2

〉
= m2 + 3λv2. (3.25)

Therefore, by substitution of the stationarity condition (3.24) into the equa-
tion (3.25) the squared tree-level mass m2

ϕ is obtained

m2
ϕ = 3λv2 − 1

v

(
λv3
)
.

3.2.1.2 Diagrammatic form of the calculation

Let us now rewrite the presented calculation in terms of diagrams. The basic
λϕ4-terms can be defined as

� ≡ 1

2
m2, � ≡ 1

4
λ. (3.26)

The terms with two or three contracted legs can be depicted as

� ≡ 3

2
λv2, � ≡ λv3. (3.27)
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The mass term correspoding to the field ϕ will be diagrammatically repre-
sented as

� ≡ 1

2
m2
ϕ. (3.28)

To distinguish the relations valid at the one-loop level from the tree-level
expressions the label

∣∣
tree/1-loop

will be used.

Therefore, the expression (3.24) implied by the stationarity condition can be
expressed diagramatically as

�
∣∣
tree

= − 1

2v� .

The mass of the field ϕ at the tree level obtained as the second derivative of
the potential (3.22) has the following diagrammatic form

m2
ϕ

∣∣
tree

= 2�
∣∣
tree

=

(
2�

∣∣
tree

+ 2�

)∣∣∣∣∣
tree SC

,

where the extra factor of 2 in front of the diagrams have to be added here in
order to keep the calculation consistent with the above definitions (3.26)-(3.28).

After substitution of the tree-level stationarity condition we get the explicit
diagrammatic equation for the tree-level mass of the field ϕ

m2
ϕ

∣∣
tree

= 2�
∣∣
tree

= 2� − 1

v� .

3.2.1.3 One-loop level mass of the field ϕ

To calculate the mass of ϕ at the one-loop level, the relevant radiative corrections
have to be taken into account. For that sake, our diagramatic formula can be
extended as follows

m2
ϕ

∣∣
1-loop

= 2�
∣∣
1-loop

=

(
2�

∣∣
1-loop

+ 2� + 2�
)∣∣∣∣∣

1-loop SC

.

The stationarity condition at the one-loop level has the form

�
∣∣
1-loop

= − 1

2v� − 1

2v�
Consequently, the one-loop level mass term can be schematically written as

m2
ϕ

∣∣
1-loop

= 2�
∣∣
tree
− 1

v�+

(
2�

)∣∣∣∣∣
1-loop SC

. (3.29)
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The one point irreducible diagrams we are interested in look like

Γ(1) =� +� +� + . . . . (3.30)

As for the two point irreducible graphs we have to sum contributions repre-
sented by the diagrams of form

Γ(2) = 2� + 2� + 2� + 2� + . . . . (3.31)

Obviously, we do not have to take into account the one point reducible graphs
since we are calcaulating the loop correction to mass, i.e., we are interested in
the p2-independent part of one particle irreducible two point Green’s function
Γ(2)(p2).

Let us now outline how to calculate the contribution from Γ(1). The propaga-
tors in tadpole diagrams can be always constructed out of r massive propagators
corresponding to 1

2
m2 (first diagram in (3.26)) and s second order interaction

vertices of the form 3
2
λv2 (first diagram in (3.27)). Therefore, all the contributing

diagrams can be sorted out into sets labelled as (r, s)1 (the subscript 1 labels that
we are interested in 1-point irreducible graphs) and to get the total contribution
one has to sum the ”series of series”

(0, s)1 3� +� +� + . . . (3.32)

+ + +

(1, s)1 3� +� +� + . . . (3.33)

+ + +

(2, s)1 3� + �+	 + . . . (3.34)

+ + +

...
...

...

However, to calculate the contribution from the diagrams containing both
types of the terms (1

2
m2 and 3

2
λv2) all the possible permutations of these terms

have to be taken into account. The above diagrammatic ”series of series” is
just schematical since there are not displayed all these permutations. There is
always just one diagram of each type (r, s)1 representing all the possible graphs
containing various permutations of the included terms.

As a result, to calculate the complete contribution from Γ(1) would be very
difficult. However, let us for a later convenience calculate just the leading poly-
nomial contribution given by the first series (0, s)1 without any mass term in the
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propagator. The important thing to notice is that the series (0, s)1 is a geometric
series. Therefore, to calculate its sum one has to determine the first term and
the quotient. The first diagram of the series (0, s)1, i.e., diagram (0, 0)1, equals
to the expression

�
= 3λv

∫
d4k

(2π)4

1

k2 + iε
.

The second diagram of the (o, s) series, i.e. diagram (0, 1), will contribute as

� = 9λ2v3

∫
d4k

(2π)4

(
1

k2 + iε

)2

and similarly one could evaluate the following diagrams from the (0, s) series.
Consequently, the contribution to the mass of the field ϕ given by the (0, s) series
reads

i∆m2
ϕ ((o, s)1) =

∫
dk4

(2π)4

(
3λv

1

k2 + iε
+ 9λ2v3

(
1

k2 + iε

)2

+ . . .

)

=

∫
dk4

(2π)4

3λv 1
k2+iε

1− 3λv2 1
k2+iε

= − i

16π2
9λ2v3

[
CUV + 1− log

(
9λ2v3

µ2

)]
,

where the well-known formula for the sum of the infinite geometric series was
used. Taking into account the factor of 1 in the square bracket of the resulting
expression the factor standing in front of the square bracket corresponds to the
polynomial contribution of the series (3.32).

The contribution from Γ(2) could be depicted similarly as the above ”series
of series” corresponding to Γ(1). Each diagram would have two ”free legs” (i.e.,
two legs without VEVs) instead of one, which was the case of Γ(1). Consequently,
there would be more different diagrams than in case of Γ(1) because one has to
take into account graphs with various positions of the two free legs (see the second
and the third diagram in the equation (3.31)). Additionally, the overall factor of
2 would appear for the permutation of these two free legs (similarly as in (3.31)).
Anyway, it would be very complicated to determine the complete contribution
from Γ(2).

However, for a later convenience we can again calculate the leading polynomial
contribution given by the corresponding (0, s)2 series (the subscript 2 denotes that
the set contains the 2-point irreducible graphs), i.e., by the following diagrams

(0, s)2 3 2� + 2� + 2� (3.35)

+ 2� + 2� + 2� + . . . . (3.36)
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Since we are interested just in the leading polynomial mass corrections, just
the diagrams of the seagull type will contribute. Hence, the two ”free legs” must
be attached to the same vertex. This statement can be simply clarified if we
calculate the following type of graph

�
∝
∫

ddp

(2π)d
1

(p2 −m2)

= − i

16π2
m2

[
CUV + 1− log

(
m2

µ2

)]
, (3.37)

where

CUV =
1

ε
− γ + log(4π).

Hence, only the above diagrams will contribute to the desired leading polynomial
(nonlogarithmic) terms, since they contain the constant factor 1 in the bracket
(3.37).

On the other hand, diagrams of type

� ∝
∫

ddp

(2π)d
1

(p2 −m2) [(p− k)2 −m2]

=
i

16π2

[
CUV −

∫ 1

0

dx log

(
m2 − q2x(1− x)

µ2

)]
cannot contribute to the terms of our interest, as they consist only of divergent
and logarithmic parts.

As a result, to calculate the leading polynomial contribution from Γ(2) one
does not have to consider all the diagrams in (3.36). The relevant contribution
will be determined just by the following diagrams

(0, s)2 3 2� + 2� + 2� + . . . . (3.38)

The first diagram in (3.38), i.e., the diagram (0, 0), gives the contribution

2
�

= 3λ

∫
d4k

(2π)4

1

k2 + iε
.

The second diagram of the series (3.38), i.e. diagram (0, 1)2, will give the
contribution

2� = 9λ2v2

∫
d4k

(2π)4

(
1

k2 + iε

)2

and similarly one could evaluate the following diagrams in the (0, s)2 series. Con-
sequently, the leading polynomial correction to the mass of the field ϕ given by
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the (0, s)2 series reads

i∆m2
ϕ ((o, s)2) =

∫
dk4

(2π)4

(
3λ

1

k2 + iε
+ 9λ2v2

(
1

k2 + iε

)2

+ . . .

)

=

∫
dk4

(2π)4

3λ 1
k2+iε

1− 3λv2 1
k2+iε

= − i

16π2
9λ2v2

[
CUV + 1− log

(
9λ2v2

µ2

)]
.

As a result, the leading polynomial correction to the mass of the field ϕ given
by the (0, s)1 and (0, s)2 series can be calculated. Taking into account the general
formula (3.29), the leading polynomial correction to the mass of the field ϕ given
by the (0, s)1,2 series of diagrams reads

∆m2
ϕ ((o, s)1,2)polynomial = − 1

16π2

(
−1

v
9λ2v3 + 9λ2v2

)
= 0,

which agrees with the results in [66].
Of course, we have not calculated the complete leading polynomial correction

to the mass of the field ϕ because we have omitted a large number of diagrams
containing further polynomial contributions. Hence, if we calculated also the ge-
ometric series of diagrams containing the massive propagator (i.e., diagrams of
type (3.33), (3.34), etc.), we would get also the term 4m2 of the leading polyno-
mial correction, which appears in formula for one-point Green’s function in [66].
However, also this contribution would be cancelled by equivalent term occuring
in Γ(2) (see [66]).

3.2.2 The 45⊕ 16 Higgs Model

Let us now focus on the main point of our interest, i.e., the 45⊕ 16 Higgs model.
In the following, we will try to proceed similarly as in the simple Abelian Higgs
model case and to determine diagramatically the leading polynomial (nonloga-
rithmic) parts of the radiative corrections to the scalar mass spectrum of the
45 ⊕ 16 model, namely, the masses M2(8, 1, 0) and M2(1, 3, 0) of the interesting
multiplets (8, 1, 0) and (1, 3, 0). Since we are interested just in the leading poly-
nomial mass corrections, we need to inspect only the loop diagrams giving such
terms. Therefore, similarly as in case of the Abelian Higgs model, just the seagull
type of diagrams (3.37) will contribute.

As we have mentioned in previous chapter, in case of the 45⊕ 16 Higgs model
the tree level potential can be written as V = Vφ+Vφχ+Vχ, where the individual
components are give by (2.9), (2.10) and (2.11), respectively.

At the moment just the first two parts Vφ and Vφχ of the potential are of our
interest since they include the vertices that can be used for construction of the
seagulls, i.e.,

�φ φ ∼ µ2, �
χ

χ

φ ∼ τ (ΓΓ) , (3.39)
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�
φ

φ

φ

φ

∼ β (ΓΓΓΓ) . (3.40)

Hence, we will take into account just tadpole diagrams built up from vertices
corresponding to feynman rules with τ and β.

The important aspect that makes things more complicated in comparison with
the Abelian model is the fact that now we have two different VEVs. However,
to determine just the leading corrections we can do the following trick: We can
calculate the contributions in three defferent limits

• ωR = 0, ωY 6= 0, χR = 0,

• ωR 6= 0, ωY = 0, χR = 0,

• ωR = −ωY , χR = 0 (SU(5) limit).

Taking into account the Feynman rules (3.39) and (3.40), the non-logarithmic
radiative corrections will include polynomials with terms proportional to ω2

R,
ωRωY or ω2

Y . Consequently, matching the three results calculated in the three
mentioned limits will allow us to reconstruct the corrections in a complete form.

3.2.2.1 The τ 2 term

First, we try to reproduce the ”simple” correction proportional to τ 2, which does
not depend on any VEV and, as such, contributes uniformly to the masses of
both (8, 1, 0) and (1, 3, 0). It is easy to see that it emerges from the trilinear
interaction depicted above (3.39).

Let us rewrite the potential similarly as in the Abelian case using substitution

φij →
(
φ′ij + 〈φij〉

)
,

where 〈φij〉 are the VEVs of the fields φij and φ′ij are fields with zero VEVs.
Hence, the relevant part of the potential reads

Vτ = µ2
(
φ′ij + 〈φij〉

) (
φ′ji + 〈φji〉

)
+
τ

4

(
χ†σijχ

) (
φ′ij + 〈φij〉

)
. (3.41)

In consequence, to obtain the relevant part of the stationarity condition one
should take the first derivative of Vτ with respect to any of the Standard Model
singlets and express it in the vacuum of the theory. However, from the calcula-
tion of the tree-level scalar spectrum we know that the Standard Model singlets
belonging to the physical basis project onto the states φ12, φ34, φ56, φ78 and φ910

from the defining basis. Hence, the first derivative of (3.41) can be taken with
respect to one of these fields because it will be equal to the first derivative of
(3.41) with respect to any of the Standard Model singlet up to an overall factor,
which does not influence the resulting stationarity condition.
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Let us therefore choose the field φ12 and perform the first derivative of (3.41)
with respect to it. The resulting relation reads〈

∂Vτ
∂φ12

〉
= −2µ2〈φ12〉+

τ

4
〈
(
χ†σ12χ

)
〉. (3.42)

Consequently, the following stationarity condition is obtained

µ2 =
τ

4

1

2〈φ12〉
〈
(
χ†σ12χ

)
〉. (3.43)

As can be checked, its form is very similar to that of the stationarity condition
(3.24) calculated in case of the Abelian Higgs model.

To get the τ 2-dependent mass correction corresponding to pseudo-Goldstone
bosons (8, 1, 0) and (1, 3, 0) it is necessary to calculate the vacuum expectation
value of the second derivative of (3.41) with respect to the appropriate field.
Hence, it is necessary to substitute in (3.41) for the fields φij the physical fields
45aphys (where a = 1, . . . , 45) defined in Appendix C. The defining basis φij can
be obtained from the physical one using the relation

φij = Ca
ij45aphys,

where Ca
ij is the matrix of the corresponding unitary transformation. As a result,

the equation (3.41) can be rewritten as

Vτ = µ2Ca
ijC

b∗
ji

(
45aphys + 〈45aphys〉

) (
45b∗phys + 〈45b∗phys〉

)
+
τ

4
Ca
ij

(
χ†σijχ

) (
45aphys + 〈45aphys〉

)
.

The second derivative of the above expression with respect to the physical
field of our interest reads〈

∂2Vτ
∂45aphys∂45a∗phys

〉
= Ca

ijC
a∗
ji µ

2 = −2µ2,

where the unitarity of the matrix Cij was used (
∑10

i,j=1 C
a
ijC
∗b
ij = 2δab).

By substitution of the stationarity condition (3.43) into this simple result the
formula for the tree-level τ -dependent mass term is obtained

m2(τ)
∣∣
tree

= − τ

4〈φ12〉
〈
(
χ†σ12χ

)
〉. (3.44)

Diagrammatic form

Similarly as we proceeded in the case of the Abelian Higgs model, we can now
express the performed calculation using corresponding Feynman diagrams. Let
us therefore define

� ≡ µ2, � ≡ τ

4
〈
(
χ†σ12χ

)
〉.
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The mass term m2
τ proportional to τ will be diagrammatically represented as

� ≡ m2(τ).

Again, to distinguish the relations valid at the one-loop level from the tree-
level expressions the label

∣∣
tree/1-loop

will be used.

Employing these definitions, the stationarity condition can be expressed pic-
torially as

�
∣∣
tree

=
1

〈φ12〉

(
�

)

and the numerical result (3.44) in the diagrammatic form reads

�
∣∣
tree

= − 1

〈φ12〉

(
�

)
. (3.45)

One-loop extension

In analogy with the calculation performed for the Abelian Higgs model, the above
diagrammatic equation can be extended to get their one-loop-level form.

Since τ appears just in the trilinear interaction, the only kind of diagram that
will contribute to the τ 2 term is

� 3� +� +� + . . . . (3.46)

As a result, the equation (3.45) can be rewritten simply in the one-loop-level
form as

� ∣∣
1-loop

= − 1

〈φ12〉

(
�+�

)
(3.47)

and equivalently

� ∣∣
1-loop

=� ∣∣
tree
− 1

〈φ12〉

(
�

)
. (3.48)

The resulting relation for the τ -dependent scalar mass correction is obviously
very similar to the one obtained for the Abelian Higgs model (3.29). The differ-
ence between current calculations and those performed for the case of the Abelian
Higgs model is that the ϕ field in the loop was massive, while now the loop field
χ is massless. One could object to the fact that since we take χ = 0, the ν2

parameter plays the role of the mass corresponding to the field χ. Although this
consideration is correct, it is not exactly our case, as we assume that χ is turned
on; however, it is very small, so one can neglect it.
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The series of diagrams on the right hand side of the equation (3.46) is in fact
a geometric series that can be summed up into a single one-point diagram with a
massive propagator with the mass ∝ τ 2ω similarly as we demonstrated in case of
the Abelian Higgs Model. Technically, to determine this resulting mass one just
has to calculate the quotient of this series; in other words, we have to calculate
just the prefactor of the contribution given by the following diagram

�φ

χ

〈φ〉
χ

. (3.49)

This quotient then plays the role of the mass of the massive propagator in the
resulting (obtained by summation of the geometric series) one-point diagram (see
the calculation of the leading polynomial mass corrections in case of the Abelian
model). The mass of this massive propagator then corresponds exactly to the
polynomial terms in the resulting mass correction obtained by integration (see
the general formula for the integration of the seagull diagram (3.37)).

Therefore, the mass correction proportional to τ 2 reads

∆m2(τ) = − 1

〈φ12〉

(
�

)
. (3.50)

Obviously, this correction will be the same for both the submultiplets (8, 1, 0) and
(1, 3, 0) since the performed calculation do not depend on these fields. Hence, this
mass contribution is SO(10)-invariant.

As we have already mentioned, instead of the diagram on the right hand side
of (3.50) it is enough to focus on the quotient of these series, i.e., our aim is to
calculate the expression

− 1

〈φ12〉
Q ≡ − 1

〈φ12〉

(
�

)
. (3.51)

Hence, the relevant term of the second order of the perturbation theory reads

1

2!
L2 3 1

2!

(τ
4

(
χ†r(σij)rsχs

)
φij

)(τ
4

(
χ†u(σkl)uvχv

)
φkl

)
, (3.52)

where the well-known overall factor 1
2!

comes from the Dyson series and the indi-
cated contractions give the propagator of the massless scalar field

〈0|T
(
χ(x)χ†(y)

)
|0〉 =

∫
dk4

(2π)4

i

k2 + iε
e−ik(x−y).

However, to get the relevant mass contribution it is enough to determine the
prefactor of the momentum-dependent integral as one could see in case of the
Abelian Higgs model. At the leading order the τ 2 mass term (3.51) equals to the
expression

− 1

〈φ12〉
Q = − 1

〈φ12〉
2

[
1

2!

τ

4

τ

2
Tr [σ12σkl] 〈φkl〉

] ∫
dk4

(2π)4

(
i

k2 + iε

)2

,
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where we again took the only ”free leg” of the diagram (3.49) to be the component
φ12 corresponding to the direction in the defining basis onto which the Standard
Model singlet is projected. One additional factor of 1

2
was dropped since now we

sum just over the indices k, l = 1, . . . , 10. The extra overall factor of 2 in front of
the square bracket reflects the fact that the VEV 〈φ12〉 can be taken also in place
of the field φkl instead of φij. Hence, there are in result two equal contributions.

To get the mass correction (3.50) we could repeat the calculation we performed
in case of the Abelian Higgs model (3.35). Hence, the resulting mass correction
will equal to the prefactor of the quotient of the corresponding geometric series
multiplied by factor of

(
− i

16π2

)
coming from the integration. Thus, explicitly, the

mass correction ∆m2(τ) reads

i∆m2(τ) =
i

16π2

1

〈φ12〉

(
τ 2

8
〈φkl〉

)
Tr[σ12σkl]

=
i

8π2

1

〈φ12〉
(
τ 2δ1[kδ2l]

)
〈φkl〉 = i

τ 2

4π2
,

where the relation (A.8) was used. The above τ 2 term of the mass correction is
in agreement with our previous results (3.14), (3.15).

3.2.2.2 The β2 terms

While the tau term did not include any VEV and, thus, it was the same for
both multiplets, the β2 terms depend on ωR and ωY and they differ for different
fields. However, the derivation of the general formula for the β2-dependent leading
polynomial correction is formally same as in case of the τ 2 term in the previous
section. However, now both one-point and two-point irreducible Green functions
will be involved. The resulting relation will be analogous to the one we found in
case of the Abelian model.

The relevant part of the scalar potential reads

Vβ =µ2
(
φ′ij + 〈φij〉

) (
φ′ji + 〈φji〉

)
(3.53)

+
β

16

(
χ†σijσklχ

) (
φ′ij + 〈φij〉

)
(φ′kl + 〈φkl〉)

On grounds of the same arguments we used in the calculation of the τ 2 term
let us take the first derivative of this part of the potential with respect to φ′12〈

∂Vβ
∂φ12

〉
= −2µ2〈φ12〉+

β

8
〈
(
χ†σ12σklχ

)
〉〈φkl〉 (3.54)

and this stationarity condition implies the following formula

µ2 =
1

2〈φ12〉

(
β

8

(
χ†σ12σklχ

)
〈φkl〉

)
. (3.55)

To calculate the second derivative of the equation (3.53) with respect to the
fields (8, 1, 0) and (1, 3, 0) it is again necessary to substitute for the fields φij the
physical fields 45aphys (where a = 1, . . . , 45) defined in Appendix C, i.e.,

Vβ =µ2Ca
ijC

b∗
ji

(
45aphys + 〈45aphys〉

) (
45b∗phys + 〈45b∗phys〉

)
(3.56)

+
β

16
Ca
ijC

b∗
kl

(
χ†σijσklχ

) (
45aphys + 〈45aphys〉

) (
45b∗phys + 〈45b∗phys〉

)
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Therefore, the second derivative of the above expression with respect to a
physical field 45aphys yields〈

∂2Vβ
∂45aphys∂45a∗phys

〉
= −µ2Ca

ijC
a∗
ij +

β

16
Ca
ijC

a∗
kl 〈
(
χ†σijσklχ

)
〉

= −2µ2 +
β

16
Ca
ijC

a∗
kl 〈
(
χ†σijσklχ

)
〉.

By the substitution of the stationarity condition (3.55) into the last equation
one gets the tree-level β-dependent mass term

〈
∂2Vβ

∂45aphys∂45a∗phys

〉
=

β

16
Ca
ijC

a∗
kl 〈
(
χ†σijσklχ

)
〉 − 1

〈φ12〉
β

8
〈
(
χ†σ12σklχ

)
〉〈φkl〉. (3.57)

Diagrammatic form

Let us now again express the calculation in terms of Feynman diagrams. For mass
terms we will use the same diagrams as we did in case of the τ 2 term calculation.
However, instead of the trilinear interaction we now deal with the quadrilinear
one. Hence, we define

� ≡ β

8
〈
(
χ†σ12σklχ

)
〉〈φkl〉,

� ≡ β

16
Ca
ijC

a∗
kl 〈
(
χ†σijσklχ

)
〉.

Employing these definitions, the stationarity condition (3.55) can be expressed
as

�
∣∣
tree

=
1

2〈φ12〉

(
�

)
(3.58)

and the resulting formula (3.57) in the diagrammatic form reads

�
∣∣
tree

=

(
� − 1

〈φ12〉�
)
. (3.59)

One-loop level

As usually, the next step is the extension of the diagrammatic equations (3.58)
and (3.59) to the one-loop level. The stationarity condition then reads

�
∣∣
tree

=
1

2〈φ12〉

(
� +�

)
(3.60)
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and the formula (3.59) can be extended as

�
∣∣
tree

=

[(
� +�

)

− 1

〈φ12〉

(
� +�

)]
. (3.61)

Hence, the β-dependent terms of the mass correction are given by the dia-
grammatic equation

∆m2(β) =�− 1

〈φ12〉�. (3.62)

Two point graphs contributing to the first term in the above expression are

� 3� +� +� . . . . (3.63)

Since we are interested just in seagulls, the two free legs (those without VEVs)
of the graph have to be attached to the same vertex. Hence, the last diagram in
the above equation may be dropped from the series.

Analogically, one-point graphs that contribute to the second diagram in figure
(3.62) can be depicted as

� 3� +� + . . . . (3.64)

Obviously, the diagrams on the right hand side of equations (3.63) and (3.64)
represent similarly as in case of tau term a geometric series. Therefore, we are
again interested just in the relevant quotients. For two point graphs we define

Q2 ≡� .

For one point graphs we have

Q1 ≡� .

As a result, the relevant formula necessary for the calculation of the β-
dependent leading polynomial scalar mass correction has the following form(
� − 1

〈φ12〉�
)
≡
(
Q2 −

1

〈φ12〉
Q1

)
. (3.65)

57



Now we apply the derived diagrammatic expressions to the fields of our inter-
est, i.e., to a component M from one of the multiplets (8, 1, 0) and (1, 3, 0). In
other words, we will calculate two point diagrams of type

�χ χ

φ φ

M M

(3.66)

rather than generic

�χ χ

φ φ

φij φkl

,

because we want to calculate the contributions to the masses of the physical fields
transforming as (8, 1, 0) and (1, 3, 0) and we can use the knowledge of the transfer
matrix C connecting the physical basis with the defining one.

The relevant term of the second order of the perturbative theory is

1

2!
L2 3 1

2!

(
β

16
χ†σijσklχφijφkl

)(
β

16
χ†σmnσopχC

M
mn45MphysC

M∗
op 45M∗phys

)
, (3.67)

where the upper index M stands for the number corresponding to the field ei-
ther from (8, 1, 0), or from (1, 3, 0) submultiplet. Therefore, the two free legs
CM
mn45Mphys and CM∗

op 45M∗phys represent the field transforming either as (8, 1, 0), or as
(1, 3, 0) projected onto vectors of the defining basis φij = Ca

ij45aphys. The indicated
contractions again produce the propagators of the massless scalar field.

Similarly as in case of the Abelian Higgs model or in case of the calculation
of the τ 2 term, the leading polynomial correction is given by the geometric series
(3.63) equals to the prefactor of the quotient of the series times the factor gener-
ated by integration. The contribution corresponding to the series (3.63) therefore
reads

− i

16π2
Q2 = − i

16π2
2

1

2!

(
β

16

)2

Tr [σijσklσmnσop] 〈φij〉〈φkl〉CM
mn45MphysC

M∗
op 45M∗phys,

where the factor of
(
− i

16π2

)
comes (as before) from integration. The extra over-

all factor of 2 reflects the fact that the fields CM
mn45Mphys and CM∗

op 45M∗phys can be
attached to the second vertex (in place of the fields φij and φkl). In other words,
instead of the two VEVs 〈φij〉 and 〈φkl〉 there would be VEVs of the fields φmn
and φop. Hence, there are two equivalent contributions.
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Analogically, in case of one point graphs we will evaluate

�χ χ

φ φ

φsinglet

, (3.68)

where the only free leg represents a Standard Model singlet field.
Similarly as before, the relevant term of the second order of the perturbative

theory reads

1

2!
L2 3 1

2!

(
β

16
χ†σijσklχφijφkl

)(
β

16
χ†σmnσopχφmnC

S
op45Sphys

)
. (3.69)

As well as in the previous case we projected the singlet field 45Sphys onto the
defining basis φij obtaining the contribution of our interest.

Hence, the contribution corresponding to the series (3.64) equals to

− i

16π2
Q1 = − i

16π2
4

1

2!

(
β

16

)2

Tr [σijσklσmnσop] 〈φij〉〈φkl〉〈φmn〉CS
op45Sphys,

where the factor of
(
− i

16π2

)
comes again from integration. The extra overall

factor of 4 in the front reflects the fact that the Standard Model singlet CS
op45Sphys

can be inserted also in place of the fields φij, φkl, or φmn. Consequently, there
are four equivalent contributions.

Let us finally apply the derived relations and formulae to the particular fields
getting concrete results. At first, we focus on radiative corrections of M2(8, 1, 0),
then we repeat the same proceeding for M2(1, 3, 0). All the presented results
were calculated using Wolfram Mathematica.

3.2.2.3 Leading one-loop β2-dependent correction to M2(8, 1, 0)

To reproduce the full radiative correction proportional to β2 it is convenient to
calculate the contributions in the three limits mentioned at the beginning of this
section (3.2.2) and consequently fit a polynom of second order in ωR and ωY using
the obtained results.

Limit ωR = 0

First, let us consider the limit ωR = 0. In such a case the diagramatic formula
(3.65) has the form

i∆m2
β2(ωR = 0) = − i

16π2

(
�

ωY ωY

− 1

ωY�
ωY

ωY

ωY )

≡ − i

16π2

(
Q2(ωY )− 1

ωY
Q1(ωY )

)
(3.70)
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and performing the calculations in Mathematica it is obtained

Q1(ωY ) = 14β2ω3
Y for (1, 1, 1, 0),

Q2(ωY ) = 2β2ω2
Y for (8, 1, 1, 0).

In consequence, the β2-correction in this limit equals

i∆m2
β2(ωR = 0) = − i

4π2

(
1

2
β2ω2

Y −
1

ωY

7

2
β2ω3

Y

)
= i

3β2ω2
Y

4π2
.

Limit ωY = 0

Second, let us determine the correction in the limit ωY = 0, i.e., we have to
evaluate

i∆m2
β2(ωY = 0) = − i

16π2

(
�

ωR ωR

− 1

ωR�
ωR

ωR

ωR )

≡ − i

16π2

(
Q2(ωR)− 1

ωR
Q1(ωR)

)
. (3.71)

In this limit we get

Q1(ωR) = 4β2ω3
R for (1, 1, 0),

Q2(ωR) = 8β2ω2
R for (15, 1, 0).

Therefore, the β2-correction for ωY = 0 reads

i∆m2
β2(ωY = 0) = − i

4π2

(
β2ω2

R −
1

ωY
2β2ω3

R

)
= i

β2ω2
R

4π2
.

Limit ωR = −ωY
We have found the two corrections quadratic in ωR and ωY ; however, there can
be also a mixed term proportional to ωRωY . Thus we need to get some more
information about the β2 correction and a convenient way how to achieve this
is the calculation of the correction in the SU(5) limit, i.e., for ωY = −ωR ≡ ω.
Consequently, we compute the following contribution

i∆m2
β2(ωY = −ωR) = − i

16π2

(
�
ω ω

− 1

ω�
ω

ω

ω )

≡ − i

16π2

(
Q2(ω)− 1

ω
Q1(ω)

)
. (3.72)

In this limit we get

Q1(ω) = 26π2β2ω3
R for (1, 0),

Q2(ω) = 6π2β2ω2
R for (24, 0).
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Hence, the β2-correction in the SU(5) limit is

i∆m2
β2(ωY = −ωR) = − i

4π2

(
3

2
β2ω2 − 1

ω

13

2
β2ω3

)
= i

5β2ω2

4π2
.

Finally, using the results obtained for the three limits we can reconstruct the
complete β2 correction appropriate to M2(8, 1, 0). The mixed term can be easily
determined thanks to the knowledge of the SU(5) limit. The resulting formula
for the β-dependent part of the leading correction therefore reads

∆m2
β2(8, 1, 0) =

β2 (ω2
R − ωRωY + 3ω2

Y )

4π2
.

3.2.2.4 Leading one-loop β2-dependent correction to M2(1, 3, 0)

Let us now proceed in the same way for M2(1, 3, 0).

Limit ωR = 0

Again, first the limit ωR = 0 is considered. The diagramatic formula (3.65) has
the same form as in equation (3.70). Performing the calculations of relevant
quotients using our Mathematica code we obtain

Q1(ωY ) = 14β2ω3
Y for (1, 1, 1, 0),

Q2(ωY ) = 6β2ω2
Y for (1, 3, 1, 0).

Therefore, the β2-correction in the ωR = 0 limit is

i∆m2
β2(ωR = 0) = − i

4π2

(
3

2
β2ω2

Y −
1

ωY

7

2
β2ω3

Y

)
= i

2β2ω2
Y

4π2
.

Limit ωY = 0

To calculate the correction in the limit ωY = 0 we reuse the equation (3.71). The
quotients equal to

Q1(ωR) = 8β2ω3
R for (1, 1, 0),

Q2(ωR) = 0 for (1, 3, 0).

Consequently, the β2 correction reads

i∆m2
β2(ωY = 0) = − i

4π2

(
0− 1

ωY
2β2ω3

R

)
= i

β2ω2
R

4π2
.

Limit ωR = −ωY
Lastly, let us determine the β-dependent contribution to the leading correction
in the SU(5) limit using the formula (3.72). For ωR = −ωY limit our code yields
the following values of quotients

Q1(ω) = 26β2ω3
R for (1, 0),

Q2(ω) = 6β2ω2
R for (24, 0).
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Therefore, the leading β2-correction in the SU(5) limit equals to

i∆m2
β2(ωY = −ωR) = − i

4π2

(
3

2
β2ω2 − 1

ω

13

2
β2ω3

)
= i

5β2ω2

4π2
.

Eventually, using the results presented in the above paragraphs for the three
limits we can reproduce the complete β2 correction appropriate to M2(1, 3, 0).
The resulting formula for the β dependent part of the leading correction is

∆m2
β2(1, 3, 0) =

β2 (2ω2
R − ωRωY + 2ω2

Y )

4π2
.

3.2.2.5 Complete leading polynomial scalar corrections

To conclude, with the results derived in previous subsections we can rewrite the
leading polynomial one loop mass scalar corrections to the masses of (8, 1, 0) and
(1, 3, 0) in the form

∆M2(8, 1, 0) =
τ 2 + β2 (ω2

R − ωRωY + 3ω2
Y )

4π2
, (3.73)

∆M2(1, 3, 0) =
τ 2 + β2 (2ω2

R − ωRωY + 2ω2
Y )

4π2
. (3.74)

As one can easily check, these formulae are the same as those found using the
effective potential approach in previous chapter ((3.14) and (3.15)). Consequent-
ly, the described method of calculation of the leading radiative corrections can
represent a convenient alternative for the effective potential approach in mod-
els for which the construction of the effective potential would be technically too
complicated.

The leading polynomial gauge corrections, which were mentioned in the first
section of this chapter could be also calculated using the standard perturbative
theory approach. However, as we outline in Appendix E, such a calculation would
be very complicated.
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4. The quantum level of the
45⊕ 126 Higgs model

So far we have been studying the minimal 45 ⊕ 16 Higgs model. However, as
we have already mentioned, it was shown that this model is not realistic [56]
since it is disfavoured by neutrino oscillation and cosmology data. The simplest
potentially viable alternative is the minimal 45⊕ 126 model, which can be set to
be compatible with the available experimental data.

We have already shown that the 45⊕16 can be revived computing the quantum
corrections to the masses of the problematic pseudo-Goldstone bosons first using
the effective potential approach and after that using the standard perturbative
theory approach. Although the mass corrections to the masses of the problematic
pseudo-Goldstone bosons in the 45 ⊕ 126 model could be principally calculated
also using the effective potential, in practice one finds out that the computation
becomes too difficult.

4.1 Why the 45⊕ 126 model?

As we have already claimed, both variants of the SO(10) minimal model with
scalar sectors formed by either 45⊕16, or 45⊕126 representations can be revived
because the spurious tachyonic instabilities which had been believed to exist for
more than thirty years, can be shown to be just an artifact of the tree-level
calculation.

However, for a realistic model building there are other criteria which have
to be fulfilled. According to the renormalization group studies [62, 48, 49, 50]
the B − L breaking scale has to be smaller than 1012 GeV in case of the 45⊕ 16
model and below 1010 GeV for the 45⊕126 model. The problem with these values,
however, is that they are at variance with the experimental data. Namely, they
are in disagreement with neutrino masses data from the β-decay and cosmology.

Let us first focus on the 45 ⊕ 16 model and explain the problem in more
detail. The non-zero VEV of the 16S representation causes the breaking of B−L
symmetry by 1 unit; hence, there should be two VEV insertions to give rise to the
∆(B −L) = 2 seesaw operator. To achieve it at the renormalizable level one can
attempt to apply the Witten’s radiative mechanism [67, 68, 69]. Alternatively, if
one does not demand renormalizability (at the expense of the model predictivity),
the d = 5 operator can be employed instead. Anyway, both these possibilities
lead to the situation when the effective ∆(B − L) = 2 seesaw scale is further
suppressed with respect to the scale of the B − L breaking. As a result, the
masses of the light neutrinos are too big (by many orders of magnitude) and thus
unrealistic.

On the other hand, in case of the 45⊕126 model the B−L symmetry is broken
by two units. Consequently, the right-handed neutrinos get their masses via
the renormalizable Yukawa interaction 16F16F126∗S yet at the tree level [70, 71].
Nevertheless, the limit on the 126S VEV mentioned above still implies too high
masses of light neutrinos.

The situation described in the last paragraphs is not insoluable. The minimal
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SO(10) realistic unification can be saved if an extensive fine-tuning is used in the
seesaw formula.

Obviously, the minimal non-SUSY SO(10) models are rather different with re-
spect to the SUSY SO(10) scenarios since in the minimal supersymmetric models
the neutrino masses are typically predicted to be lower than one would need. The
reason is as follows: because of the rigidity of the Higgs potential in the minimal
SUSY SO(10) models there happen to be extra pseudo-Goldstone bosons much
below the GUT scale (in case with more than one-stage spontaneous symmetry
breaking [45, 46]) and, as a result, the unification in the Minimal Supersymmetric
Standard Model is destroyed.

It is important to say that the bounds on the scale of the B − L breaking
obtained for the non-SUSY SO(10) scenarios are based on the so called minimal
survival hypothesis. Specifically, these bounds were derived under the assumption
that just the minimal number of necessary intermediate fields is dusted around
the scale of the corresponding symmetry breaking. However, this assumption
does not have to be fulfilled in general; hence, the B−L scale can be in principle
much higher than the bounds quoted above. This could, consequently, make the
unification compatible with the experimental data. In addition, a ”big” Higgs
sector like 45S⊕126S possesses more room for the violation of the minimal survival
hypothesis. Moreover, another great feature favouring the 45⊕ 126 model is that
the renormalizable seesaw mechanism constrains the Yukawa sector of the theory,
which makes it potentially testable in the future.

As was recently shown [56], there are, indeed, several domains in the paramet-
ric space of this minimal non-SUSY model allowing consistent unification with
B − L scale as high as 1014 GeV without occurrence of any tachyonic instabili-
ties or problems related to the proton lifetime. This is made possible thanks to
an accidentally light multiplet appearing in the unification desert that influences
conveniently the unification picture.

To be more specific, there turn out to be two classes of the viable solutions.
The first one includes an intermediate-scale multiplet transforming as (6, 3, 1

3
)

with respect to the Standard Model gauge group and it supports the break-
ing of the SO(10) symmetry down to the Standard Model via the SU(3)C ⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L intermediate symmetry. The second solution in-
volves a relatively light (8, 2, 1

2
) multiplet and supports the SO(10) breakdown

via the SU(4)C ⊗ SU(2)L ⊗ U(1)R intermediate stage. It is welcome that in all
the interesting cases the predicted unification scale lies quite close to the current
proton lifetime lower bound set by Super-Kamiokande. A detailed study of the
minimal non-SUSY SO(10) unification including the light colour octet (8, 2, 1

2
)

was performed quite recently [72]. This scenario is particularly interesting since
the unification constraints allow for the existence of a coloured scalar octet near
the electroweak scale, which can be appealing for the collider physics. In addition,
the mass of the scalar octet is anticorrelated with the masses of the GUT-scale
vector bosons mediating the d = 6 proton decay. Consequently, from the lower
bound of the proton lifetime an upper bound for the mass of the coloured scalar
octet can be derived.

To sum up, the revived minimal realistic SO(10) models open a large space
for further model building providing a number of predictions which could be
testable in the near-future experiments. In particular, the up-coming large volume
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facilities such as Hyper-Kamiokande could seek through the physically interesting
region of the parameter space of the considered class of models.

4.2 The 45⊕ 126 model in a nutshell

Before we start any calculations, let us first introduce the minimal non-SUSY
45⊕ 126 model.

4.2.1 The tree-level scalar potential

The scalar potential of the minimal 45 ⊕ 126 Higgs model is analogical to the
scalar potential of the minimal 45 ⊕ 16 Higgs model (2.8). Again, the most
general renormalizable scalar potential can be written as a sum of three terms

V = Vφ + VφΣ + VΣ,

which

Vφ = −µ
2

2
(φijφij) +

a0

4
(φijφij) (φijφij) +

a2

4
(φijφkl) (φijφkl) ,

VφΣ =
iτ

4!
φij (ΣΣ∗)2 +

α

2(5!)
(φijφij) (ΣΣ∗)0 +

β4

4(3!)
(φijφkl) (ΣΣ∗)4

+
β′4
3!

(φijφkl) (ΣΣ∗)4′ +
γ2

4!
(φijφik) (ΣΣ)2 +

γ∗2
4!

(φijφik) (Σ∗Σ∗)2 ,

VΣ = −ν
2

5!
(ΣΣ∗)0 +

λ0

(5!)2
(ΣΣ∗)0 (ΣΣ∗)0 +

λ2

(4!)2
(ΣΣ∗)2 (ΣΣ∗)2

+
λ4

(3!)2(2!)2
(ΣΣ∗)4 (ΣΣ∗)4 +

λ′4
(3!)2

(ΣΣ∗)4′ (ΣΣ∗)4′

+
η2

(4!)2
(ΣΣ)2 (ΣΣ)2 +

η∗2
(4!)2

(Σ∗Σ∗)2 (Σ∗Σ∗)2 ,

where φ was used for components of the adjoint 45-dimensional representation
while Σ denotes the components of the 126-dimensional representation.
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The contractions of the Σ components are defined as follows

ΣΣ∗ ≡ ΣijklmΣ∗ijklm,

φij(ΣΣ∗)2 ≡ φijΣklmniΣ
∗
klmnj,

φijφij(ΣΣ∗)0 ≡ φijφijΣklmnoΣ
∗
klmno,

φijφkl(ΣΣ∗)4 ≡ φijφklΣmnoijΣ
∗
mnokl,

φijφkl(ΣΣ∗)4′ ≡ φijφklΣmnoikΣ
∗
mnojl,

φijφik(ΣΣ)2 ≡ φijφikΣlmnojΣ
∗
lmnok,

φijφik(Σ
∗Σ∗)2 ≡ φijφikΣ

∗
lmnojΣ

∗
lmnok,

(ΣΣ∗)0(ΣΣ∗)0 ≡ ΣijklmΣ∗ijklmΣnopqrΣ
∗
nopqr,

(ΣΣ∗)2(ΣΣ∗)2 ≡ ΣijklmΣ∗ijklnΣopqrmΣ∗opqrn,

(ΣΣ∗)4(ΣΣ∗)4 ≡ ΣijklmΣ∗ijknoΣpqrlmΣ∗pqrno,

(ΣΣ∗)4′(ΣΣ∗)4′ ≡ ΣijklmΣ∗ijknoΣpqrlnΣ∗pqrmo,

(ΣΣ)2(ΣΣ)2 ≡ ΣijklmΣijklnΣopqrmΣopqrn,

(Σ∗Σ∗)2(Σ∗Σ∗)2 ≡ Σ∗ijklmΣ∗ijklnΣ∗opqrmΣ∗opqrn.

Let us note that the couplings η2 and γ2 present in the scalar potential are
complex, all the other coefficients are real.

4.2.2 The Standard Model singlets

As in case of the minimal 45⊕16 Higgs model there are in general three Standard
Model singlets in the reducible 45S ⊕ 126S representation of the SO(10) group.
If we again use the standard labelling with respect to the 3C2L2R1B−L subgroup
of SO(10), the two singlets belonging to the 45S are the submultiplets (1, 1, 1, 0)
and (1, 3, 1, 0) while the third singlet belongs to the (1, 1, 3,+2) submultiplet of
126S. As before, we shall denote the vacuum expectation values of these singlets
as

ωY ≡ 〈(1, 1, 0, 0)(1,1,1,0)〉,
ωY ≡ 〈(1, 1, 0, 0)(1,1,3,0)〉,
σ ≡ 〈(1, 1,−1,+2)(1,1,3,+2)〉.

The first two VEVs ωY and ωR are real. The σ VEV can be made real using a
phase redefinition of 126S.

4.2.3 The symmetry breaking patterns

Different vacuum configurations lead to different symmetry breaking patterns,
which reduce the original full SO(10) symmetry into its various subgroups. For
σ = 0 we distinguish the same vacuum settings and the corresponding breakings
as we did in case of the minimal 45⊕ 16 model, namely, (2.15)-(2.19).
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For σ 6= 0 the intermediate symmetries (2.15)-(2.18) are further broken down
to the Standard Model gauge group. Only the vacuum configuration (2.19) cor-
responding to intermediate scale containing the SU(5) subgroup is not affected
by the non-zero value of σ; therefore, this vacuum configuration does not trig-
ger a full breaking of the SO(10) down to the Standard Model. As a result,
again, only the four vacuum settings and intermediate symmetries (2.15)-(2.18)
are physically interesting.

4.2.4 The tree level scalar spectrum

Defining the 297-dimensional basis formed by the fields belonging to the Higgs
representations as ψ = (φ,Σ∗,Σ), the Lagrangian mass term can be written as

L 3 1

2
ψTM2(φ,Σ,Σ∗)ψ,

where the matrix M2(φ,Σ,Σ∗) represents the functional scalar mass matrix eval-
uated on the Standard Model vacuum. This matrix can be obtained by taking the
second derivatives of the scalar potential with respect to the 297 fields assigned
to the vector ψ. Therefore, it can be schematically expressed in the following
block form

M2(φ,Σ,Σ∗) =

 Vφφ VφΣ VφΣ∗

VΣ∗φ VΣ∗Σ VΣ∗Σ∗

VΣφ VΣΣ VΣΣ∗

 , (4.1)

where the subscripts of V denote the fields, with respect to which the second
derivative is taken in the relevant block.

Applying a unitary transformation on the vacuum expectation value of this
matrix we can express it in a block-diagonal form in the Standard Model basis.

The important aspect of the tree-level scalar spectrum is that there is again
(as in case of the minimal 45⊕16 model) the pair of the pseudo-Goldstone bosons
whose tree-level masses are proportional solely to the a2 parameter, namely,

M2(8, 1, 0) = 2a2 (ωR − ωY ) (ωR + 2ωY ) , (4.2)

M2(1, 3, 0) = 2a2 (ωY − ωR) (ωY + 2ωR) . (4.3)

As a result, at the tree level the tachyonic masses are again generated if the
fraction ωY

ωR
lies outside the interval [−2,−1

2
]. This fact then again excludes the

physically interesting patterns of spontaneous symmetry breakdown correspond-
ing to either ωY � ωR, or ωY � ωR.

An important aspect of the formulae (4.2) and (4.3) is that they do not contain
any contributions proportional to the β parameter. This may seem analogous to
the 45 ⊕ 16 model; however, the number of possible contractions φ2ΣΣ∗ is now
much larger than it was in case of the 45 ⊕ 16 model. Hence, the analogous
behaviour of the models does not have to be so obvious. Anyway, the absence of
the σ-dependence in relations (4.3) and (4.2) can be explained as follows. The
tensors of type (ΣΣ∗) always posses the SU(5) symmetry (it does not matter how
many indices of the Σ’s are contracted). The index structure of both φ’s to Σ’s
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have the same form. In consequence, the pair of φ’s look like quadratic covariant-
derivative term for the fields with the Standard Model gluon and A-field quantum
numbers. However, at the SU(5) level these fields are massless.

As before, the tachyonic behaviour of the submultiplets (8, 1, 0) and (1, 3, 0)
can be fixed at the quantum level, which again revives the forbidden realistic
symmetry breaking patterns as in case of the 45⊕ 16 model.

4.2.5 (In)effective potential

While in case of the minimal 45 ⊕ 16 model we used the effective potential ap-
proach to calculate the quantum corrections to the M2(8, 1, 0) and M2(1, 3, 0)
masses, the minimal 45 ⊕ 126 model is more difficult to be treated in the same
way. This fact can be quite easily understood if we look at the structure of the
scalar potential of the 45 ⊕ 126 model. It contains contractions of tensors with
five indices, which makes the tree-level calculations themselves more complicated,
let alone the calculation of the one-loop effective potential.

While in case of the 45 ⊕ 16 model we worked with a 77-dimensional matrix
M2(φ, χ, χ∗) now, to compute the quantum correction to the tree-level scalar
potential in the 45 ⊕ 126 model, we have to deal with a matrix M2(φ,Σ,Σ∗)
which is 297-dimensional. As a result, the explicit evaluation of the radiative
corrections to the scalar masses becomes very cumbersome.

Consequently, it would be very desirable to have an easier method for the
calculation of the scalar mass corrections in order to confirm the viability of
the realistic spontaneous symmetry breaking patterns in this scenario. In the
following section we will therefore apply the standard diagrammatic methods on
the scalar sector of the minimal 45⊕ 16 model and we will try to figure out the
desired one-loop mass corrections to set the stage for performance of analogous
calculations in more complicated cases.

4.3 Diagrammatic calculation of the leading poly-

nomial scalar mass corrections

Finally, we can try to calculate diagrammatically part of the leading polynomial
correction of the potentially tachyonic masses appearing in the scalar spectrum
of the realistic minimal non-SUSY 45 ⊕ 126 model. It is quite predictable that
the mass corrections will contain a uniform term proportional to τ 2 as well as
it was in case of the 45 ⊕ 16 model. The great thing about this term is that in
fact we do not need to know the explicit form of the matrix of transformation
from the defining basis to the physical one and the whole derivation of this term
is not much different from the way we proceeded in case of the simpler 45 ⊕ 16
model. On the other hand, even this single uniform term is enough to prove the
viability of the minimal non-SUSY 45⊕126 model. Hence, within this section we
will determine this term to serve our needs. Unfortunately, the calculation of the
further terms of the leading polynomial corrections turned out to be beyond the
time possibilities of this thesis. Nevertheless, they will be very likely the subject
of our further work.
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4.3.1 The τ 2 term

As we will see, the calculation of this term in case of the 45⊕ 126 model is very
analogical to the computation we performed for the 45⊕ 16 model. The relevant
part of the Lagrangian reads

Vτ 3 −
µ2

2

(
φ′ij + 〈φij〉

) (
φ′ij + 〈φij〉

)
+
iτ

4!
ΣmnopiΣ

∗
mnopj

(
φ′ij + 〈φij〉

)
, (4.4)

where we substituted the fields φ with non-zero VEVs for the fields φ′ with zero
vacuum expectation values.

The corresponding Feynman rule thus can be depicted as

�
Σ

Σ

φ ∼ iτ

4!
. (4.5)

Given the arguments used in the calculation of the τ -dependent term in the
previous chapter let us take the first derivative of (4.4) with respect to φ′12〈

∂Vτ
∂φ12

〉
= −µ2〈φ12〉+

iτ

4!
Σmnop1Σ∗mnop2 (4.6)

and this stationarity condition implies the formula for the parameter µ2

µ2 =
1

〈φ12〉

(
iτ

4!
Σmnop1Σ∗mnop2

)
. (4.7)

To determine the second derivative of the equation (4.4) with respect to the
pseudo-Goldstone bosons from submultiplets (8, 1, 0) and (1, 3, 0) it is again nec-
essary to transform the defining fields φij to the physical fields 45aphys (where
a = 1, . . . , 45), i.e.,

Vτ = −µ
2

2
Ca
ijC

b∗
ij

(
45aphys + 〈45aphys〉

) (
45b∗phys + 〈45b∗phys〉

)
+
iτ

4!
Ca
ijΣmnopiΣ

∗
mnopj

(
45aphys + 〈45aphys〉

)
. (4.8)

The second derivative of this expression with respect to a physical field 45aphys
reads 〈

∂2Vτ
∂45aphys∂45a∗phys

〉
= −µ

2

2
Ca
ijC

a∗
ij = −µ2.

By the substitution of the stationarity condition (4.7) into the above equation
one gets the tree-level τ -dependent mass term

m2(τ) = − 1

〈φ12〉
iτ

4!
〈Σmnop1Σ∗mnop2〉 (4.9)
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To express the above calculation in terms of Feynman diagrams the same steps
as in case of the 45⊕ 16 model can be followed since the structures of these two
models are analogous. Let us define

� ≡ µ2, � ≡ m2(τ),

� ≡ iτ

4!
〈Σmnop1Σ∗mnop2〉.

To avoid the repetition of the formulae already presented in the previous
chapter, let us now skip to the resulting formula for the one-loop-level mass term
proportional to τ 2 of the 45S ⊕ 126S scenario, which reads

� ∣∣
1-loop

=� ∣∣
tree
− 1

〈φ12〉

(
�

)
, (4.10)

The only diagram contributing to the leading polynomial mass correction
proportional to τ 2 is again

� 3� +� + . . .

To sum the series on the right-hand side of the above equation it is enough to
compute the following diagram

�φ

Σ

〈φ〉
Σ

, (4.11)

which represents the quotient of the series. Hence, our aim is to calculate the
expression

− 1

〈φ12〉
Q = − 1

〈φ12〉

(
�

)
.

Consequently, the relevant term in the second order of the perturbation theory
reads

1

2!
L2 3 1

2!

(
iτ

4!
ΣmnopiΣ

∗
mnopjφij

)(
iτ

4!
ΣefghkΣ

∗
efghlφkl

)
. (4.12)

The only free outer leg in diagram (4.11) is a Standard Model singlet. As we
have already argued when computing the leading τ -dependent mass term in case
of the 45⊕ 16 model, this singlet field can be substituted for instance by the field
φ12. Therefore, to determine the desired leading τ -dependent mass correction it
is necessary to calculate the formula

− 1

〈φ12〉
Q = − 1

〈φ12〉

[
2

1

2!
2

(
iτ

4!
Σmnop1Σ∗mnop2

)(
iτ

4!
ΣefghkΣ

∗
efghl〈φkl〉

)]
. (4.13)

70



There are two extra factors of 2 inside the square bracket. The first is present
because before choosing i = 1 and j = 2 the sum ran over all indices i, j =
1, . . . , 10. Hence, in the sum there must have been two terms of type (4.13).
The second extra overall factor of 2 reflects the fact that the VEV 〈φ12〉 can be
taken also in place of the field φkl instead of φij. Hence, again one gets two equal
contributions.

To evaluate the above expression one has to sum all the non-zero contractions
of the Σ tensors. The only non-zero contractions we can get if we set k = 2
and l = 1. This statement can be justified in the following way: in case that
k = 1 and l = 2, the indices e, f, g and h must have values from {3, 4, . . . , 10}.
However, then the 126∗efgh2 can hardly contract with 126mnop1. Similarly, all the
other values of k and l can be excluded except for the already mentioned case
(kl) = (21), when one gets

− 1

〈φ12〉
Q = − 1

〈φ12〉

[
2

(
iτ

4!
Σmnop1Σ∗mnop2

)(
iτ

4!
Σefgh2Σ∗efgh1〈φ21〉

)]
,

where the indices a, b, c, d and e, f, g, h can take on values from the set {3, 4, . . . , 10}.
Moreover, it is quite easy to see that all the possible contractions are not only
non-zero but also positive. Since the signs of permutations (mnop1) and (mnop2)
are the same, the resulting sign of contraction Σmnop1Σ∗mnop2 will be always pos-
itive. Naturally, for the permutations (efgh2) and (efgh1) the same arguments
can be used. As a result, the only thing we have to do is to determine the num-
ber of all the possible contractions. At first, there are 4! possible permutations
of indices mnop and efgh. Furthermore, although the permutations (mnop) and
(efgh) have to contain the same numbers, we can still choose them from the set
{3, 4, . . . , 10}; consequently, we get the factor

(
8
4

)
. Taking into account all these

facts and the factor
(
− i

16π2

)
coming from integration (see e.g. the calculation of

τ 2 term in case of the 45⊕ 16 model), the resulting expression for the τ 2 term of
the mass correction reads

i∆m2(τ) = − i

16π2

(
− 1

〈φ12〉
Q

)
= − i

16π2

[
4!4!

(
8

4

)
1

〈φ12〉
2
( τ

4!

)2

〈φ21〉
]

= − i

8π2

[
4!4!

(
8

4

)( τ
4!

)2 1

〈φ12〉
(−〈φ12〉)

]
= i

35

4π2
τ 2. (4.14)

Although the computation of this term of the leading mass corrections appears
to be straightforward, the calculation of other terms depending on β2 would be
much less trivial. Similarly as we saw in the case of the 45⊕ 16 model, we would
have to determine the explicit form of the matrix transforming from the defining
basis to the physical one, etc.

However, the τ 2 term that we have just calculated proves that the realistic
spontaneous symmetry breaking patterns of the 45⊕ 126 can be safely revived.
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Conclusions and Outlook

In this thesis we have studied the SO(10) grand unified theories with emphasis
on their quantum aspects. The grand unifications based on the SO(10) gauge
group are attractive for a number of reasons. The first of them is the minimality,
which in general translates as simplicity and predictivity of the particular model.
There are SO(10) scenarios having (at least to certain extent) all of these desired
features. For instance, the seesaw mechanism essential for the neutrino mass
generation can be successfully implemented into most SO(10) scenarios. Next,
the proton lifetime calculated within by these models is typically close to the
current experimental bounds, which represents a promising beyond-Standard-
Model prediction. Apart from that, there is enough room for cosmological aspects
in SO(10) theories. For example, they typically contain a suitable cold dark
matter candidate.

Despite the fact that the grand unified theories based on SO(10) gauge group
have been studied for decades and various scenarios have been proposed, no ”hot”
candidate on ”the” theory emerged. As we described in more detail in previous
chapters the models preferred by the criteria of minimality were quite soon ruled
out because of the supposed tachyonic behaviour.

The development of supersymmetry gave rise to a number of SUSY SO(10)
models. Nevertheless, the concept of supersymmetry was significantly impaired
by the lack of any SUSY evidence at the LHC and the reasonable minimal super-
symmetric SO(10) scenario was definitely buried on grounds of phenomenological
requirements [45, 46].

Given this, it seemed that the minimal SO(10) unifications were excluded
from any realistic considerations; however, quite surprisingly, the situation has
recently changed. After years of oblivion the minimal nonsupersymmetric SO(10)
scenarios were put back into play.

Therefore, motivated by the recent progress in the field of the minimal non-
SUSY SO(10) models we focussed in particular on the study of the one-loop
scalar spectrum and its connection with the local vacuum stability of the 45S ⊕
16S model. The main goal of this work was to calculate the scalar radiative
corrections to the masses of problematic pseudo-Goldstone bosons transforming
as (8, 1, 0) and (1, 3, 0) under the Standard Model gauge group (i.e., those with
tachyonic tree-level behaviour) using the standard perturbative theory methods.
This calculation was motivated especially by a possible application of analogical
methods to the more realistic (but also more complicated) model with a Higgs
sector formed by the 45S⊕126S representation. Hence, we first calculated the tree-
level scalar spectrum of the 45S⊕16S model (see Appendix D) and the full leading
one-loop corrections to the masses of (8, 1, 0) and (1, 3, 0) using the effective
potential approach (equations (3.10) and (3.11)). Besides that, we demonstrated
the trivial behaviour of the corrected one-loop masses corresponding to these
potentially tachyonic pseudo-Goldstone bosons in the SU(5) limit (see (3.12) and
(3.13)) that constitutes a highly nontrivial consistency check of our results.

After that, we performed the calculation of the leading polynomial corrections
to the masses of (8, 1, 0) and (1, 3, 0) using the standard perturbative theory
approach, which was first applied (for a better comprehension) to the Abelian
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Higgs model. A smart trick based on the behaviour of the mass corrections in the
flipped SU(5) limit was employed to determine the leading polynomial corrections
to the masses of (8, 1, 0) and (1, 3, 0) in their complete form (equations (3.73) and
(3.74)). The results obtained by the diagrammatic calculation were found to be
in agreement with the results computed by the effective potential approach.

Finally, the minimal 45S ⊕ 126S model was introduced. The experience ac-
quainted in the 45S ⊕ 16S model was consequently used for the calculation of the
SO(10)-invariant τ 2-proportional term of the leading polynomial corrections to
the masses of (8, 1, 0) and (1, 3, 0) in the 45S⊕126S model (equation (4.14)). This
is a novel result that has never been calculated in detail before. Therefore, the
stage was set for the calculation of the β2-dependent terms of the leading scalar
corrections in this model, which is to be the subject of our future work.

This knowledge may be useful for several reasons. In particular, it would allow
us to recalculate the phenomenological results presented in [72] and thus get more
accurate results. In this sense, the calculation of the β2-dependent terms in the
45S ⊕ 126S model is important especially because the minimal SO(10) scenario
allows one to make relatively accurate predictions of the proton lifetime, one of
the quantities of main interest for the upcoming generation of the megaton-scale
experimental facilities.
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A. Group theory of SO(10)

In general, the SO(10) represents the special orthogonal group of rotations in
a 10-dimensional vector space. The defining representation of this Lie group
consists of 10 × 10 matrices M , which preserve the norm of arbitrary vector v
from the 10-dimensional vector space V , on which they act. This explicitly means

‖Mv‖ = (Mv)T (Mv) = vTv = ‖v‖ for ∀v ∈ V =⇒ MTM = I

and, hence, the matrix M is orthogonal. In addition, just matrices with detM = 1
are considered, which is why the group is called ”special”. In fact, this condition
ensures that each element of the group is continuously connected with the identity
element (i.e., the group is connected). As every orthogonal group also the SO(10)
is simply connected, which means that it can be covered by exponential map.
Therefore, the matrices belonging to this group can be written in the following
form

M = exp

(
1

2
αijTij

)
,

where Tij stands for the set of 45 generators (i = 0, 1, . . . , 9 and j = i, . . . , 9) of
the corresponding Lie algebra so(10) and αij are the parameters characterizing
the transformation.

The standard defining basis of the generators reads

Tij = −i(δi[jδkl])ab,

where all the indices run from 0 to 9 and the square brackets denote the anti-
symmetrization. These generators satisfy the following commutation relation

[Tij, Tkl] = i (δikTjl + δjlTik − δilTjk − δjkTil) . (A.1)

The conditions mentioned above, MTM = 1 and detM = 1, imply the exis-
tence of two invariant operators. The first of them is the Kronecker tensor δij,
which is transformed as

Mii′Mjj′δi′j′ = Mij′Mjj′ = δij,

where, obviously, the condition MTM = 1 was used. The second invariant oper-
ator is the Levi-Civita tensor with ten indices εijklmnopqr obeying

detMεijklmnopqr = Mii′Mjj′Mkk′Mll′Mmm′Mnn′Moo′Mpp′Mqq′Mrr′εi′j′k′l′m′n′o′p′q′r′

and, taking into account the condition detM = 1, we see that the transformation
is trivial, indeed.

Let us now discuss the irreducible representations of the SO(10) group. To
begin with, we distinguish two different kinds of the irreducible SO(10) represen-
tations: single-valued and double-valued representations. The first type denom-
inates the representations, which transform simply in the same way as standard
vectors in the 10-dimensional real vector space and in the symmetrized and an-
tisymmetrized direct products of such spaces. On the other hand, the double-
values representations are spinor representations transforming like spinors in the
10-dimensional space.
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A.1 Tensor representations of the SO(10) group

We start with the tensor representations of the SO(10) group, which can be con-
structed as a tensor product of n fundamental vectors φi transforming according
to the rule

φj
M−→ φi = Mijφj.

The tensor product of two of them can be decomposed into symmetric, antisym-
metric and scalar part as

φi ⊗ φj =
1

2
(φi ⊗ φj − φj ⊗ φi) +

1

2
(φi ⊗ φj + φj ⊗ φi)−

1

10
δij (φk ⊗ φk)

+
1

10
δij (φk ⊗ φk) ,

where the antisymmetric, symmetric and scalar parts can be distinguished

φantisymij ≡ 1

2
(φi ⊗ φj − φj ⊗ φi) ,

φsymij ≡ 1

2
(φi ⊗ φj + φj ⊗ φi)−

1

10
δij (φk ⊗ φk) ,

φscalarij ≡ 1

10
δij (φk ⊗ φk) .

These three types of tensors obviously cannot transform into each other since
the symmetry properties of the tensors under permutation of the indices are not
touched by the group transformations. Hence, antisymmetric and symmetric
tensors, together with the scalar, form three separate subspaces. As a result,
these three kinds of tensors form the irreducible representations of the SO(10)
group. Their dimensionalities are

• dimension of the subspace of the antisymmetric tensors is dA = n(n−1)
2

= 45

• dimension of the subspace of the symmetric tensors is dS = n(n+1)
2
− 1 = 54

• the remaining one dimension corresponds to a singlet

In the same way, taking tensor products of more vectors the representations with
higher dimensions could be built.

The 126-dimensional representation needed for the construction of the Higgs
sector of the most promising minimal non-SUSY SO(10) model can be obtained
using 5-index tensors. The invariant Levi-Civita tensor with 10 indices εijklmnopqr
allows to write the following duality map

φijklm
dual map−−−−−→ φ̃ijklm ≡ −

i

5
εijklmnopqrφnopqr.

Thanks to this map the tensor φijklm can be separated into the self-dual and
antiself-dual parts defined as

Λijklm = Λ̃ijklm ≡
1√
2

(vijklm + ṽijklm) ,

Λ̄ijklm = − ˜̄Λijklm ≡
1√
2

(vijklm − ṽijklm) .

75



The property of duality, again, cannot be changed by the application of the
group transformation; consequently, the tensors Λijklm and Λ̄ijklm form irreducible
representations of SO(10). Their dimension is naturally given by 1

2

(
n
k

)
for n = 10

and k = 5, i.e., 126.

A.2 Spinor representations of the SO(10) group

The SO(10) group is defined as a group of transformations acting on the 10-
dimensional space V described by coordinates x1, x2, . . . , x10, which leave the
norm of every vector φ ∈ V intact. In other words, the quadratic form x2

1 + x2
2 +

· · ·+ x2
10 is preserved.

Following the standard construction, the quadratic form can be expressed as
a square of a certain linear form

x2
1 + x2

2 + · · ·+ x2
10 = (Γ1x1 + Γ2x2 + · · ·+ Γ10x10)2 .

Hence, we conclude that the coefficients Γi of the coordinates have to satisfy the
anticommutation relation

{Γi,Γj} = 2δij,

which is called the Clifford algebra of dimension d = 10 and the coefficients Γi,
apparently, have to be matrices. Moreover, it can be easily proved that this
relation implies that the dimension of these matrices has to be even.

The Γi matrices generate the basis Sij of the spinor representation. If we
consider a rotation of the coordinates x′i = Rijxj, it implies the transformation
of the Γi matrices

Γ′i = RijΓj,

i.e., they transform as vectors. Obviously, this transformation does not affect the
Clifford algebra

{Γ′i,Γ′j} = RikRjl{Γk,Γl} = 2δij

and there must exist a similarity transformation relating the new set of Γ′ matrices
to the old one as

Γ′i = RijΓj = S(R)ΓiS
−1(R). (A.2)

The matrix of the similarity transformation corresponding to the rotation group
is its 2n-dimensional spinor representation and any quantity transforming as

Ξ′i = Sij(R)Ξj

is a spinor.
To derive the relation between Γi and Sij an infinitesimal rotation

Rij = δij + αij,
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with αij = −αji can be considered. It induces an infinitesimal similarity trans-
formation

S(R) = 1 +
1

2
iSijαij.

By substitution of last two relations into the formula (A.2) we get

i [Sij,Γk] = (Γjδki − Γkδkj) .

The Sij satisfying the equation above can be written as

Sij =
1

4i
[Γi,Γj] (A.3)

and it can be easily shown that S(R(4π)) = 1, which means that S(R) is a
double-valued representation.

Furthermore, it can be checked that the Sij matrices satisfy the commutation
relation

[Sij, Skl] = i (δikSjl + δjlSik − δilSjk − δjkSil) ,

from which it is obvious that they form the SO(10) representation.
Generally, all the SO(n) groups have spinorial representations. For n = 1

the matrices Γn=1
i are simply the Pauli matrices σi, which naturally satisfy the

anticommutation formula

{σi, σj} = 2δij.

If we take

Γn=1
1 ≡ σ1 =

(
0 1
1 0

)
and Γn=1

2 ≡ σ2 =

(
0 −i
i 0

)
then we can iteratively build also the ”gammas” of higher dimensions using the
tensor product. The rank of the resulting representation is increased by each
added tensor product by one and the size of the matrix representation is doubled.
The ranks of SO(2n) and SO(2n+ 1) are equal and they share also the spinorial
basis produced by n iterations. The difference is that the basis of SO(2n + 1)
includes one more Γ matrix. Moreover, while the spinorial representation of
SO(2n+1) is irreducible, the one of SO(2n) is reducible into two 2n−1-dimensional
parts. The irreducible spinor is real, self-conjugated and it transforms under a
matrix representation with size 2n. The two parts of the irreducible spinor are
real and self-conjugate for n even. On the other hand, if n is odd, both parts of
these reducible spinors are complex and conjugate to each other - they are called
chiral or Weyl spinors.

So called chiral projection operators can be defined as

Γ∗ = (−i)
n
2 Γ1Γ2 · · ·Γn.

This operator has dimension 2n and it can be block-reducible; hence, it can
be represented as

Γ∗ =

(
−I2n−1 0

0 I2n−1

)
, (A.4)
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where I2n−1 is the identity matrix of dimension 2n−1.
If a spinor Ξ transforms as Ξ′i = S(R)ijΞj, the irreducible chiral spinors can

be defined as

χ+ ≡ Π+Ξ =
1

2
(I2n + Γ∗) Ξ,

χ− ≡ Π−Ξ =
1

2
(I2n − Γ∗) Ξ,

where we defined projectors Π± = 1
2

(I32 ∓ Γ∗). The corresponding representa-
tions, under which the chiral spinors transform, read

S+ ≡
1

2
(I2n + Γ∗)S and S− ≡

1

2
(I2n − Γ∗)S.

If we derive the Γ∗ from a particular basis and it has the form (A.4), then Ξ
and S attain the following form

Ξ =

(
χ
χC

)
, S =

(
S+ 0
0 S−

)
,

where χC = C(χ∗), i.e., the chiral components are related by charge conjugation
(see below).

The explicit representation of the Γi matrices we work with is

Γ0 =

(
0 I16

I16 0

)
, Γr =

(
0 isr
−isr 0

)
,

where I16 denotes the 16-dimensional identity matrix and the submatrices sr for
r = 1, . . . , 9 are defined as

sk = µkτ3, sk+3 = νkτ1, sk+6 = ρkτ2,

where k = 1, 2, 3 and the matrices µk, νk, ρk and τk equal to

µk = I2 ⊗ I2 ⊗ I2 ⊗ σk,
νk = I2 ⊗ I2 ⊗ σk ⊗ I2, (A.5)

ρk = I2 ⊗ σk ⊗ I2 ⊗ I2,

τk = σk ⊗ I2 ⊗ I2 ⊗ I2,

and σk are standard Pauli matrices.
Let us define

spq =
1

2i
[sp, sq]

for p, q = 1, . . . , 9. Hence, the albegra (A.3) can be expressed as

Sp0 =
1

2

(
sp 0
0 −sp

)
, Spq =

1

2

(
spq 0
0 spq

)
. (A.6)

In the current notation the Cartan subalgebra can be spanned over the ma-
trices S03, S12, S45, S78 and S69; hence, the Γ∗ matrix can be expressed as

Γ∗ = 2−5S03S12S45S78S69 =

(
−I16 0

0 I16

)
.
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Obviously, it obeys Γ2
∗ = I32 and {Γi,Γ∗} = 0 for any i. Consequently, the

16-dimensional chiral spinors χ± = Π±Ξ mentioned above can be defined as

χ+ =

(
χ
0

)
and χ− =

(
0
χC

)
.

If we use the relations [Sij,Π
±] = 0, (Π±)

2
= Π± and Π+ + Π− = I32, the Sij

representation can be expressed in the form

Sij = Π+SijΠ
+ + Π−SijΠ

− ≡ 1

2

(
σij 0
0 σ̃ij

)
, (A.7)

where the σij and σ̃ij are 16× 16 matrices with normalization

1

4
Trσijσkl =

1

4
Trσ̃ijσ̃kl = 4δi[kδjl]. (A.8)

By comparison of matrices (A.6) with the equation (A.7) one gets

σp0 = sp, σpq = spq, σ̃p0 = −sp, σ̃pq = spq.

In the invariants built off the adjoint representation it is convenient to trace
out the σ-matrices using the definition

Φ ≡ σijφij
4

.

The traces of two and four σ-matrices then read

TrΦ2 = −2Trφ2,

TrΦ4 = −3

4

(
Trφ2

)2 − Trφ4.

A.3 Charge conjugation

Using the above notation, the spinor and its complex conjugate obey the following
transformations

χ→ χ− i

4
λijσijχ,

χ∗ → χ∗ +
i

4
λijσ

T
ijχ
∗.

Hence, the charge conjugated spinor χC transforms as

χC → χC − i

4
λijσ̃ijχ

C ,

where the charge conjugation matrix C must satisfy

C−1σ̃ijC = −σTij.
Employing the formula (A.5) it can be found that

C = µ2ν2ρ2τ2,

which implies the explicit form

C = antidiag (1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1,−1, 1) .

It is not difficult to see that

C = C∗ = C−1 = CT = C†.
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B. Mutually commuting
operators

B.1 Cartan operators in the 10S representation

The concrete realization, which we used for the five Cartan operators of the
SO(10) group expressed in the 10-dimensional vector representation reads

TC3 =



0 i
2

0 0 0 0 0 0 0 0
− i

2
0 0 0 0 0 0 0 0 0

0 0 0 − i
2

0 0 0 0 0 0
0 0 i

2
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

TC8 =



0 i
2
√

3
0 0 0 0 0 0 0 0

− i
2
√

3
0 0 0 0 0 0 0 0 0

0 0 0 i
2
√

3
0 0 0 0 0 0

0 0 − i
2
√

3
0 0 0 0 0 0 0

0 0 0 0 0 − i√
3

0 0 0 0

0 0 0 0 i√
3

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

TBL =



0 −2i
3

0 0 0 0 0 0 0 0
2i
3

0 0 0 0 0 0 0 0 0
0 0 0 −2i

3
0 0 0 0 0 0

0 0 2i
3

0 0 0 0 0 0 0
0 0 0 0 0 −2i

3
0 0 0 0

0 0 0 0 2i
3

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,
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TR3 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − i

2
0 0

0 0 0 0 0 0 i
2

0 0 0
0 0 0 0 0 0 0 0 0 − i

2

0 0 0 0 0 0 0 0 i
2

0


,

TL3 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i

2
0 0

0 0 0 0 0 0 − i
2

0 0 0
0 0 0 0 0 0 0 0 0 − i

2

0 0 0 0 0 0 0 0 i
2

0


.

B.2 Casimir operators in the 10S representation

The concrete realization of the three Casimir operators of the SO(10) group
expressed in the 10-dimensional vector representation can be written as

CC =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 4

3
0 0 0 0 0

0 0 0 0 0 4
3

0 0 0 0
0 0 0 0 0 0 4

3
0 0 0

0 0 0 0 0 0 0 4
3

0 0
0 0 0 0 0 0 0 0 4

3
0

0 0 0 0 0 0 0 0 0 4
3


,
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CR =



3
4

0 0 0 0 0 0 0 0 0
0 3

4
0 0 0 0 0 0 0 0

0 0 3
4

0 0 0 0 0 0 0
0 0 0 3

4
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

CL =



3
4

0 0 0 0 0 0 0 0 0
0 3

4
0 0 0 0 0 0 0 0

0 0 3
4

0 0 0 0 0 0 0
0 0 0 3

4
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.
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C. Physical basis of the adjoint
representation

The vectors 45aphys for a = 1, . . . , 45 are defined as follows

451
phys ≡ (3, 1

2
,−
√

3
2
, 0, 0, 0, 0, 0) = 1

2
φ35 + 1

2
iφ36 − 1

2
iφ45 + 1

2
φ46,

452
phys ≡ (3,−1

2
,
√

3
2
, 0, 0, 0, 0, 0) = 1

2
φ35 − 1

2
iφ36 + 1

2
iφ45 + 1

2
φ46,

453
phys ≡ (3, 0, 0, 0, 0, 0, 0, 0) =

√
2
3
φ12 − 1√

6
φ34 − 1√

6
φ56,

454
phys ≡ (3, 0, 0, 0, 0, 0, 0, 0) = 1√

2
φ34 − 1√

2
φ56,

455
phys ≡ (3, 1, 0, 0, 0, 0, 0, 0) = −1

2
iφ13 − 1

2
φ14 + 1

2
φ23 − 1

2
iφ24,

456
phys ≡ (3,−1, 0, 0, 0, 0, 0, 0) = 1

2
iφ13 − 1

2
φ14 + 1

2
φ23 + 1

2
iφ24,

457
phys ≡ (3, 1

2
,
√

3
2
, 0, 0, 0, 0, 0) = 1

2
φ15 − 1

2
iφ16 + 1

2
iφ25 + 1

2
φ26,

458
phys ≡ (3,−1

2
,−
√

3
2
, 0, 0, 0, 0, 0) = 1

2
φ15 + 1

2
iφ16 − 1

2
iφ25 + 1

2
φ26,

459
phys ≡ (4

3
, 1

2
, 1

2
√

3
, 2

3
, 0, 0, 0, 0) = −1

2
φ35 + 1

2
iφ36 + 1

2
iφ45 + 1

2
φ46,

4510
phys ≡ (4

3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
,−1

2
) = −1

2
φ39 − 1

2
iφ310 − 1

2
iφ49 + 1

2
φ410,

4511
phys ≡ (4

3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 3

4
,−1

2
) = −1

2
φ37 − 1

2
iφ38 − 1

2
iφ47 + 1

2
φ48,

4512
phys ≡ (4

3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 3

4
, 1

2
) = 1

2
φ39 − 1

2
iφ310 + 1

2
iφ49 + 1

2
φ410,

4513
phys ≡ (4

3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
, 1

2
) = 1

2
φ37 − 1

2
iφ38 + 1

2
iφ47 + 1

2
φ48,

4514
phys ≡ (4

3
,−1

2
,− 1

2
√

3
,−2

3
, 0, 0, 0, 0) = −1

2
φ35 − 1

2
iφ36 − 1

2
iφ45 + 1

2
φ46,

4515
phys ≡ (4

3
, 1

2
,− 1

2
√

3
, 1

3
, 3

4
,−1

2
, 3

4
,−1

2
) = 1

2
φ39 + 1

2
iφ310 − 1

2
iφ49 + 1

2
φ410,

4516
phys ≡ (4

3
, 1

2
,− 1

2
√

3
, 1

3
, 3

4
, 1

2
, 3

4
,−1

2
) = 1

2
φ37 + 1

2
iφ38 − 1

2
iφ47 + 1

2
φ48,

4517
phys ≡ (4

3
, 1

2
,− 1

2
√

3
, 1

3
, 3

4
, 1

2
, 3

4
, 1

2
) = −1

2
φ39 + 1

2
iφ310 + 1

2
iφ49 + 1

2
φ410,

4518
phys ≡ (4

3
, 1

2
,− 1

2
√

3
, 1

3
, 3

4
,−1

2
, 3

4
, 1

2
) = −1

2
φ37 + 1

2
iφ38 + 1

2
iφ47 + 1

2
φ48,

4519
phys ≡ (4

3
,−1

2
, 1

2
√

3
, 2

3
, 0, 0, 0, 0) = −1

2
φ15 + 1

2
iφ16 + 1

2
iφ25 + 1

2
φ26,

4520
phys ≡ (4

3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
,−1

2
) = −1

2
φ19 − 1

2
iφ110 − 1

2
iφ29 + 1

2
φ210,

4521
phys ≡ (4

3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 3

4
,−1

2
) = −1

2
φ17 − 1

2
iφ18 − 1

2
iφ27 + 1

2
φ28,

4522
phys ≡ (4

3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 3

4
, 1

2
) = 1

2
φ19 − 1

2
iφ110 + 1

2
iφ29 + 1

2
φ210,

4523
phys ≡ (4

3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
, 1

2
) = 1

2
φ17 − 1

2
iφ18 + 1

2
iφ27 + 1

2
φ28,

4524
phys ≡ (4

3
, 1

2
,− 1

2
√

3
,−2

3
, 0, 0, 0, 0) = −1

2
φ15 − 1

2
iφ16 − 1

2
iφ25 + 1

2
φ26,

4525
phys ≡ (4

3
,−1

2
,− 1

2
√

3
, 1

3
, 3

4
,−1

2
, 3

4
,−1

2
) = 1

2
φ19 + 1

2
iφ110 − 1

2
iφ29 + 1

2
φ210,

4526
phys ≡ (4

3
,−1

2
,− 1

2
√

3
, 1

3
, 3

4
, 1

2
, 3

4
,−1

2
) = 1

2
φ17 + 1

2
iφ18 − 1

2
iφ27 + 1

2
φ28,

4527
phys ≡ (4

3
,−1

2
,− 1

2
√

3
, 1

3
, 3

4
, 1

2
, 3

4
, 1

2
) = −1

2
φ19 + 1

2
iφ110 + 1

2
iφ29 + 1

2
φ210,

4528
phys ≡ (4

3
,−1

2
,− 1

2
√

3
, 1

3
, 3

4
,−1

2
, 3

4
, 1

2
) = −1

2
φ17 + 1

2
iφ18 + 1

2
iφ27 + 1

2
φ28,

4529
phys ≡ (4

3
, 0, 1√

3
,−2

3
, 0, 0, 0, 0) = −1

2
φ13 − 1

2
iφ14 − 1

2
iφ23 + 1

2
φ24,
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4530
phys ≡ (4

3
, 0,− 1√

3
, 2

3
, 0, 0, 0, 0) = −1

2
φ13 + 1

2
iφ14 + 1

2
iφ23 + 1

2
φ24,

4531
phys ≡ (0, 0, 0, 0, 0, 0, 0, 0) = 1√

3
φ12 + 1√

3
φ34 + 1√

3
φ56,

4532
phys ≡ (4

3
, 0, 1√

3
, 1

3
, 3

4
,−1

2
, 3

4
, 1

2
) = −1

2
φ57 + 1

2
iφ58 + 1

2
iφ67 + 1

2
φ68,

4533
phys ≡ (4

3
, 0, 1√

3
, 1

3
, 3

4
, 1

2
, 3

4
, 1

2
) = −1

2
φ59 + 1

2
iφ510 + 1

2
iφ69 + 1

2
φ610,

4534
phys ≡ (4

3
, 0, 1√

3
, 1

3
, 3

4
, 1

2
, 3

4
,−1

2
) = 1

2
φ57 + 1

2
iφ58 − 1

2
iφ67 + 1

2
φ68,

4535
phys ≡ (4

3
, 0, 1√

3
, 1

3
, 3

4
,−1

2
, 3

4
,−1

2
) = 1

2
φ59 + 1

2
iφ510 − 1

2
iφ69 + 1

2
φ610,

4536
phys ≡ (4

3
, 0,− 1√

3
,−1

3
, 3

4
,−1

2
, 3

4
, 1

2
) = 1

2
φ57 − 1

2
iφ58 + 1

2
iφ67 + 1

2
φ68,

4537
phys ≡ (4

3
, 0,− 1√

3
,−1

3
, 3

4
, 1

2
, 3

4
, 1

2
) = 1

2
φ59 − 1

2
iφ510 + 1

2
iφ69 + 1

2
φ610,

4538
phys ≡ (4

3
, 0,− 1√

3
,−1

3
, 3

4
, 1

2
, 3

4
,−1

2
) = −1

2
φ57 − 1

2
iφ58 − 1

2
iφ67 + 1

2
φ68,

4539
phys ≡ (4

3
, 0,− 1√

3
,−1

3
, 3

4
,−1

2
, 3

4
,−1

2
) = −1

2
φ59 − 1

2
iφ510 − 1

2
iφ69 + 1

2
φ610,

4540
phys ≡ (0, 0, 0, 0, 2, 0, 0, 0) = 1√

2
φ78 − 1√

2
φ910,

4541
phys ≡ (0, 0, 0, 0, 2, 1, 0, 0) = −1

2
φ79 + 1

2
iφ710 − 1

2
iφ89 − 1

2
φ810,

4542
phys ≡ (0, 0, 0, 0, 2,−1, 0, 0) = −1

2
φ79 − 1

2
iφ710 + 1

2
iφ89 − 1

2
φ810,

4543
phys ≡ (0, 0, 0, 0, 0, 0, 2, 0) = 1√

2
φ78 + 1√

2
φ910,

4544
phys ≡ (0, 0, 0, 0, 0, 0, 2, 1) = 1

2
iφ79 + 1

2
φ710 + 1

2
φ89 − 1

2
iφ810,

4545
phys ≡ (0, 0, 0, 0, 0, 0, 2,−1) = −1

2
iφ79 + 1

2
φ710 + 1

2
φ89 + 1

2
iφ810,

where the numbers labelling these vectors correspond to the eigenvalues of the
Cartan and Casimir operators in the adjoint representation. Hence, the physical
vectors are labelled by these numbers in the following order

(C45
C , TC3, TC8,

1

2
TBL, CL, TL3, C

45
R , TR3),

where T and C are just 10⊗10 versions of the 10-dimensional operators presented
in Appendix B. Moreover, we also expressed here the physical vectors in terms of
the vectors from the defining basis.
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D. Tree-level scalar spectrum of
the 45⊕ 16 model

Within this appendix we present the explicit form of the tree-level scalar spectrum
of the 45⊕16 model. In the following we will denote the vectors using the quantum
numbers corresponding to the eight mutually commuting generators (printed in
the Appendix A) in this order: (CC , TC3, TC8,

1
2
TBL, CR3, TR3, CL3, TL3). Since we

are breaking the SO(10) symmetry down to the Standard Model, we should find
(and we will check this) altogether 45− 12 = 33 Goldstone bosons.

Let us start with the problematic pseudo-Goldstone states, whose masses we
have already presented in the main text of the thesis. The submultiplet (1, 3, 0)
is spanned over the basis formed by vectors

{(0, 0, 0, 0, 2,−1, 0, 0), (0, 0, 0, 0, 2, 0, 0, 0), (0, 0, 0, 0, 2, 1, 0, 0)}

and the 3× 3 mass submatrix contains three real degrees of freedom with mass

2a2(ωR − ωY )(2ωR + ωY ).

Likewise, the submultiplet (8, 1, 0) is spanned over the basis formed by vectors

{(3, 0, 0, 0, 0, 0, 0, 0), (3,−1, 0, 0, 0, 0, 0, 0), (3, 0, 0, 0, 0, 0, 0, 0),

(3, 1, 0, 0, 0, 0, 0, 0), (3,−1
2
,−
√

3
2
, 0, 0, 0, 0, 0), (3, 1

2
,−
√

3
2
, 0, 0, 0, 0, 0),

(3,−1
2
,
√

3
2
, 0, 0, 0, 0, 0), (3, 1

2
,
√

3
2
, 0, 0, 0, 0, 0)}

and the 8× 8 mass submatrix contains eight real degrees of freedom with mass

−2a2(ωR − ωY )(ωR + 2ωY ).

Next massive degrees of freedom are assigned to the multiplet (1, 2,−1
2
)+h.c.

are spanned over the couple of vectors

{(0, 0, 0, 1, 3
4
, 1

2
, 0, 0), (0, 0, 0, 1, 3

4
,−1

2
, 0, 0)}

and the corresponding mass submatrix contains the mass

−(ωR + 3ωY ) (τχRχ
∗
RωR + 3τχRχ

∗
RωY + 4a2ω

3
RωY + 4a2ω

2
Rω

2
Y )

χRχ∗R(2ωR + 3ωY )

Obviously, this submatrix stands for four real degrees of freedom in spinors.
Another massive fields are accomodated within the submultiplet (3, 1,+1

3
) +

h.c., which is spanned over the basis

{(4
3
, 1

2
, 1

2
√

3
, 1

3
, 0, 0, 3

4
,−1

2
), (4

3
,−1

2
, 1

2
√

3
, 1

3
, 0, 0, 3

4
,−1

2
), (4

3
, 0,− 1√

3
, 1

3
, 0, 0, 3

4
,−1

2
)}

and the mass submatrix contains the mass

−4(ωR + ωY )2 (τχRχ
∗
R + 2a2ωRω

2
Y )

χRχ∗R(2ωR + 3ωY )
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In this case there are six real degrees of freedom in spinors.
From now on we will deal with Goldstone bosons. The submultiplet (3, 2,+5

6
)+

h.c. is spanned over the set of vectors

{(4
3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
,−1

2
), (4

3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
,−1

2
),

(4
3
, 0,− 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
,−1

2
), (4

3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 3

4
,−1

2
),

(4
3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 4

3
,−1

2
), (4

3
, 0,− 1√

3
,−1

3
, 3

4
, 1

2
, 4

3
,−1

2
)}

and the corresponding mass submatrix is trivial 6× 6 zero matrix, which means
that all the 12 degrees of freedom hidden in this sector are massless and thus they
represent the Goldstone bosons of the theory.

The sector (1, 1,+1) + h.c. spans over the couple of vectors

{(0, 0, 0, 0, 0, 0, 2, 1), (0, 0, 0, 1, 0, 0, 3
4
, 1

2
)}.

The relevant mass submatrix then reads − τχRχ
∗
R+6a2ω2

Y (ωR+ωY )

2ωR+3ωY

2ωR(τχRχ
∗
R+6a2ω2

Y (ωR+ωY ))
χ∗R(2ωR+3ωY )

2ωR(τχRχ
∗
R+6a2ω2

Y (ωR+ωY ))
χR(2ωR+3ωY )

−4ω2
R(τχRχ

∗
R+6a2ω2

Y (ωR+ωY ))
χRχ

∗
R(2ωR+3ωY )

 .

This sector covers four degrees of freedom and it is obvious that every other of
them is massless.

Next submultiplet can be denoted as (3, 1,+2
3
) + h.c.. It spans over the basis

{(4
3
, 1

2
, 1

2
√

3
, 2

3
, 0, 0, 0, 0), (4

3
, 1

2
, 1

2
√

3
, 1

3
, 0, 0, 3

4
, 1

2
),

(4
3
,−1

2
, 1

2
√

3
, 2

3
, 0, 0, 0, 0), (4

3
,−1

2
, 1

2
√

3
, 1

3
, 0, 0, 3

4
, 1

2
),

(4
3
, 0,− 1√

3
, 2

3
, 0, 0, 0, 0), (4

3
, 0,− 1√

3
, 1

3
, 0, 0, 3

4
, 1

2
)}

and the respective mass submatrix has three blocks of the form − τχRχ
∗
R+2a2ωR(2ω2

R+3ωRωY +ω2
Y )

2ωR+3ωY

2iωY (τχRχ
∗
R+2a2ωR(2ω2

R+3ωRωY +ω2
Y ))

χR(2ωR+3ωY )

−2iωY (τχRχ
∗
R+2a2ωR(2ω2

R+3ωRωY +ω2
Y ))

χ∗R(2ωR+3ωY )
−4ω2

Y (τχRχ
∗
R+2a2ωR(2ω2

R+3ωRωY +ω2
Y ))

χRχ
∗
R(2ωR+3ωY )

 .

Obviously, every other of these four degrees of freedom is massless.
The submultiplet (3, 2,+1

6
) + h.c. is spanned over the set of vectors

{(4
3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 3

4
, 1

2
), (4

3
, 1

2
, 1

2
√

3
, 1

3
, 3

4
, 1

2
, 0, 0),

(4
3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
, 1

2
, 3

4
, 1

2
), (4

3
,−1

2
, 1

2
√

3
, 1

3
, 3

4
, 1

2
, 0, 0),

(4
3
, 0,− 1√

3
,−1

3
, 3

4
, 1

2
, 3

4
, 1

2
), (4

3
, 0,− 1√

3
, 1

3
, 3

4
, 1

2
, 0, 0),

(4
3
, 1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
, 1

2
), (4

3
, 1

2
, 1

2
√

3
, 1

3
, 3

4
,−1

2
, 0, 0),

(4
3
,−1

2
, 1

2
√

3
,−1

3
, 3

4
,−1

2
, 3

4
, 1

2
), (4

3
,−1

2
, 1

2
√

3
, 1

3
, 3

4
,−1

2
, 0, 0),

(4
3
, 0,− 1√

3
,−1

3
, 3

4
,−1

2
, 3

4
, 1

2
), (4

3
, 0,− 1√

3
, 1

3
, 3

4
,−1

2
, 0, 0)}

and the mass submatrix of this fields possesses six blocks of the form(
− τχRχ

∗
R+4a2ωRωY (ωR+2ωY )

2ωR+3ωY

(ωR+ωY )(τχRχ
∗
R+4a2ωRωY (ωR+2ωY ))

χ∗R(2ωR+3ωY )
(ωR+ωY )(τχRχ

∗
R+4a2ωRωY (ωR+2ωY ))

χR(2ωR+3ωY )
− (ωR+ωY )2(τχRχ

∗
R+4a2ωRωY (ωR+2ωY ))

χRχ
∗
R(2ωR+3ωY )

)
.
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Again, on grounds of the form of the mass submatrix, every other of the degrees
of freedom is massless.

Lastly, the sector (1, 1, 0) spans over the basis

{(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 2, 0), (0, 0, 0, 1, 0, 0, 3
4
,−1

2
),

(0, 0, 0,−1, 0, 0, 3
4
, 1

2
)}

and the obtained mass submatrix has the following form
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ,

where

a11 =
−3τχRχ

∗
R − 192a1ω

2
Y (2ωR + 3ωY )

4ωR + 6ωY

− 4a2 (2ω3
R + 2ω2

RωY + 14ωRω
2
Y + 21ω3

Y )

4ωR + 6ωY
,

a12 = a21 =

√
6(τχRχ

∗
R + 4ωRωY (32a1ωR + 5a2ωR + 48a1ωY + 8a2ωY ))

4ωR + 6ωY
,

a13 = a31 = a−
2
√

3ωY (−4αχRχ
∗
R + a2ωR(ωR + ωY ))

χ∗R
,

a14 = a41 = −2
√

3ωY (−4αχRχ
∗
R + a2ωR(ωR + ωY ))

χR
,

a22 = −τχRχ
∗
R + 64a1ω

2
R(2ωR + 3ωY )

2ωR + 3ωY

− 2a2 (8ω3
R + 12ω2

RωY + 3ωRω
2
Y + 3ω3

Y )

2ωR + 3ωY
,

a23 = a32 =
2
√

2ωR(−4αχRχ
∗
R + a2ωY (ωR + ωY ))

χ∗R
,

a24 = a42
2
√

2ωR(−4αχRχ
∗
R + a2ωY (ωR + ωY ))

χR
,

a33 =
λ1χRχ

∗
R

2
,

a34 = a43 =
λ1(χR)2

2
,

a44 =
λ1χRχ

∗
R

2
.

In case we assume that χR is very small, then a33 = a34 = a43 = a44 = 0. Hence,
it is not difficult to see that there are four degrees of freedom in this sector and
just one of them is massless.

It ca be easily verified, the total number of Goldstone bosons (massless degrees
of freedom) is indeed 33 as we supposed before our calculation.
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E. Leading polynomial gauge
corrections in the 45⊕ 16 model

In the first section of the third chapter we mentioned that using the effective
potential approach it is possible to calculate also the gauge corrections corre-
sponding to the submultiplets (8, 1, 0) and (1, 3, 0). Therefore, one could suggest
that similarly as we computed the scalar mass corrections of these submultiplets
using the standard diagrammatic methods we could diagrammatically determine
also the gauge mass corrections. However, the calculation of these contributions
turns out to be much more complicated since there are many more diagrams
contributing to the mass corrections.

Naturally, all the contributing one-point functions are tadpoles; therefore,
each of them now contributes as in the case of scalar corrections. However, there
are still many types of diagrams, which have to be taken into account. Particular-
ly, there are two basic independent series of graphs, which can be schematically
depicted as

� 3�
massive

+�
massive

(E.1)

The concrete types of diagrams forming these two series can be illustrated in
the following way: the first diagram on the right hand side of the equation (E.1)
represents the sum of the series

�g2
+�

g2

g2

+�g2

(E.2)

−→−→−→�
massive

(E.3)

and the second diagram on the right hand side of the equation (E.1) can be
obtained as

�
g g

+�g g

g

+�g g

g g

(E.4)

−→−→−→�
massive

. (E.5)
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Likewise, we can now draw the series contributing to the two-point functions.
While in the scalar case just the seagull type of the two-point functions yielded
the polynomial terms, in the gauge case there much more options how to produce
a nonlogarithmic correction by a two-point function, namely, we have to deal with
three series of diagrams, which can be schematically expressed as

�3�
massive

+�
massive

+�
massive

(E.6)

Again, the concrete types of diagrams forming the three series can be illus-
trated diagrammatically: the first diagram on the right hand side of the equation
(E.6) we can get as

�g2
+�

g2

g2

+�g2

(E.7)

−→−→−→�
massive

. (E.8)

The second diagram on the right hand side of the equation (E.6) can be calculated
as the sum of the series

�
g g

+�g g

g

+�g g

g g

(E.9)

−→−→−→�
massive

. (E.10)

Eventually, the last diagram on the right hand side of the equation (E.6) repre-
sents the resulting contribution of the following series

�g2 g2 +�g g2
g

+�g g

g g
(E.11)

−→−→−→�
massive

. (E.12)
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Moreover, we would have to consider also other diagrams containing Goldstone
bosons and ghosts. In consequence, to compute the gauge corrections of the
desired masses we would obviously have to calculate a big number of diagrams.
The best way would be to calculate directly the ”massive” graphs, i.e., to sum the
series. Therefore, the gauge corrections to the masses of (8, 1, 0) and (1, 3, 0) turn
out to be too demanding to be calculated easily using the standard diagrammatic
methods and, as such, they are beyond the scope of this thesis. Anyway, they
offer an interesting direction of further research.
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