
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Jan Kučera

Computational photography of light-field camera and application to

panoramic photography

Department of Software and Computer Science Education

Supervisor of the master thesis: Ing. Filip Šroubek, Ph.D.

Study programme: Computer Science, Software Systems

Specialization: Computer Graphics

Prague 2014

2

I would like to express my thanks to my supervisor, Ing. Filip Šroubek, for his skilled and

patient supervision of the thesis, to the Institute of South and Central Asia at Faculty of

Arts for their support and understanding, and to the Prague City Hall for allowing and

assisting me to take light field pictures from their premises. Finally, thanks to Pavel

Bánský from Microsoft and Gus Issa from GHI Electronics, without whom this work

would not happen, as they helped me to get the first Lytro camera into my hands.

St. Nicholas from the New City Hall, Prague

Photo by author, inspired by Jiří Turek

http://jiriturek.com/http:/jiriturek.com/

3

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this work

as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, 4th of April, 2014 Jan Kučera

4

Název práce: Výpočetní fotografie ve světelném poli a aplikace na panoramatické

snímky

Autor: Jan Kučera

Katedra (ústav): Kabinet software a výuky informatiky

Vedoucí práce: Ing. Filip Šroubek, Ph.D.

Abstrakt: Digitální fotografie se neustále snaží dohnat svůj analogový protějšek

a zaznamenávání směru světla se v poslední době stalo předmětem

tohoto úsilí. První a doposud stále jediný fotoaparát pro běžné

uživatele, který zaznamenává světelné pole – Lytro – se na trhu objevil

v roce 2011. Tato práce seznamuje čtenáře s teorií světelného pole a

jeho zaznamenáváním se zvláštním důrazem na ilustraci zmiňovaných

principů ve 2D, shrnuje současný hardware a probíhající výzkum

v této oblasti a předkládá analýzu Lytro fotoaparátu samotného.

Nabízí popis uzavřených souborových formátů a používaných

protokolů, otvírajíc tak prostor pro využití fotoaparátu v dalším

výzkumu. Důležitým přínosem práce je přenosná .NET knihovna pro

vývojáře, a součástí je i na ní založený editor souborů a program pro

bezdrátovou komunikaci s fotoaparátem. Nakonec je popsaná teorie

využita k diskusi jejích důsledků pro registraci světelných polí a

lineární panorama.

Klíčová slova: světelné pole, výpočetní fotografie, registrace obrazu, mikročočky,

Lytro

5

Title: Computational photography of light-field camera and application to

panoramic photography

Author: Jan Kučera

Department: Department of Software and Computer Science Education

Supervisor: Ing. Filip Šroubek, Ph.D.

Abstract: The digital photography is still trying to catch-up with its analogous

counterpart and recording light direction is one of the most recent

area of interest. The first and still the only one light-field camera for

consumers, the Lytro camera, has reached market in 2011. This work

introduces the light-field theory and recording with special emphasis

on illustrating the principles in 2D, gives an overview of current

hardware and ongoing research in the area and analyses the Lytro

camera itself, describing the closed file formats and protocols it uses

so that further research can be conducted. An important contribution

of the work is a .NET portable library for developers, supplemented by

a file editor as well as an application for wireless communication with

the camera based on the library. Finally, the theory is used to discuss

implications for light-field registration and linear panoramas.

Keywords: light field, computational photography, image registration, microlens,

Lytro

6

Contents

Contents .. 6

Introduction .. 8

Disclaimer .. 9

1. Light Field Photography ... 10

1.1. History ... 11

1.2. Light Field... 12

1.2.1. Definitions .. 13

1.2.2. Image formation .. 16

1.2.3. Direction sampling .. 16

1.3. Acquisition Techniques .. 18

1.3.1. Camera arrays ... 18

1.3.2. Microlens arrays .. 20

1.3.3. Emerging methods .. 23

1.4. Processing and Rendering ... 26

1.4.1. Rendering ... 27

1.4.2. Sensor equations ... 29

1.4.3. Parallax .. 32

1.4.4. Depth of field ... 34

1.4.5. Refocusing .. 35

1.4.6. Depth map .. 37

2. Commercial Products .. 38

2.1. Software Imitations .. 39

2.2. Pelican Imaging .. 39

2.3. Lytro ... 40

2.4. RayTrix .. 41

2.5. Light field in other applications .. 42

3. Lytro camera .. 44

3.1. Inside the Camera ... 45

3.1.1. Hardware .. 45

3.2. File Formats ... 47

3.2.1. Raw pictures (raw.lfp)... 48

3.2.2. Prerendered pictures (stack.lfp, stacklq.lfp) .. 49

3.2.3. Depth maps (dm.lfp) .. 50

3.2.4. Calibration files (data.C.#, *.calib) .. 50

7

3.3. On the Air.. 50

3.3.1. Available services .. 51

3.3.2. Callback messages ... 52

3.3.3. Commands reference ... 60

3.4. Lytro Compatible Library .. 70

3.4.1. Working with files ... 70

3.4.2. Working with metadata .. 72

3.4.3. Working with images ... 72

3.4.4. Accessors .. 74

3.4.5. Communicating with camera .. 74

3.5. Supplementary Software ... 78

4. Panoramic Applications ... 80

4.1. Motivation .. 81

4.2. Derivation ... 82

4.3. Limitations ... 84

4.4. Super-resolution .. 85

4.5. Future work ... 86

Conclusion .. 87

Bibliography .. 88

Appendix A. List of acquired MLA configurations ... 91

Appendix B. List of files on Lytro camera ... 93

Appendix C. Accompanying media ... 95

Appendix D. Imprint ... 98

8

Introduction
When I was first reading through Ren Ng’s dissertation DIGITAL LIGHT FIELD

PHOTOGRAPHY [1], I was astonished at the innovativeness of the idea contrasting the

simplicity of physics behind it and the fact that anybody can easily convert their digital

camera into a digital light field camera, given a piece of glass with small lenses. As

repeated many times through the history, claims that no one would ever need sensors

with more megapixels were proven wrong again.

It turned out though, that the key piece of glass is extremely expensive, difficult to obtain

and rarely reaching the dimensions required for this new application. Hence, I had to

have one of the Ren Ng’s cameras, the Lytro camera.

The Lytro camera is an affordable cutting-edge piece of hardware, but everything has its

price — the platform is closed and the company is oriented towards consumer users.

Lytro expressed their plans to “eventually provide open APIs for various parts of their

picture experience”1 and even software with editing capabilities2 couple of months after

the product release, but we still wait for this to happen.

Also the ideas around light field turned out to be over hundred years old, spanning

researchers from U. S. through Europe to Russia. The main contribution of the

dissertation is processing the light fields in Fourier domain, generalization of the light

field camera and solving technical but very important difficulties to move from a

research idea to the commercial product.

This thesis has two parts — theoretical and practical. In theory, it explains why things

work the way they work, with strong emphasis on illustrative examples in 2D that should

help understand the principles of light field to readers not skilled in the art. For the

practical part, the aim was to try to understand the inner workings of Lytro camera and

software so that the camera can be used for further research activities. The ultimate goal

was to enable panoramic photography containing depth information of the scene.

It would not be fair at this point to conceal the work of Bricklbauer et al. [2] who have

very recently published a solution to the light field panorama problem for 360° scenes.

Given that and the considerable success of revealing the details of Lytro camera, the work

focuses more on the first two contributions. Nevertheless, the last chapter uses the

theory to get an insight of how light fields would work with a different type of panoramas

(restricted to translational movement of the camera) and suggests future applications.

1 http://support.lytro.com/entries/20552307 (originally posted on October 19, 2011)
2 http://support.lytro.com/entries/20611761 (originally posted on October 27, 2011)

http://support.lytro.com/entries/20552307
http://support.lytro.com/entries/20611761

9

Disclaimer
Neither myself personally nor the Charles University are affiliated with or endorsed by

Lytro, Inc. company. The information herein presented is a result of reverse engineering

the camera, its software, firmware and my understanding of related patents and is

neither official nor confirmed.

Using 3rd party software to communicate with the camera explicitly breaks its warranty3

and can damage it irreversibly. Some of the commands presented in this work are not

used in any official software and might be untested. Use at your own risk.

3 https://www.lytro.com/legal/warranty/

https://www.lytro.com/legal/warranty/

10

Figure 1. Illustration from the 1903 patent application by F. E. Ives, one of the first
ones exploiting the light field principles.

Li
gh

t
Fi

e
ld

 P
h

o
to

gr
ap

h
y

1.

11

1.1. History

The concept of light field photography, a recording of scene that contains not only

intensity but also an information about the direction of individual rays, is over hundred

years old. F. E. Ives, an U. S. invertor at Cornell University, patented his parallax

stereogram in 1903. He uses vertical slivers to control which part of a photograph is

viewed through which eye, allowing for an interleaved photograph to be percept as a

three-dimensional image without any additional optical devices needed. The patent [3]

also covers the process of making such stereograms based on the same principle, not

unsimilar to the one used in present digital light field cameras (see Figure 1). It should

be noted that stereograms were already popular at that time, but consisted of two side-

by-side images and required a special device, a stereoscope, to view them [4].

Many of us might have met light field photography in everyday life, be it early prints of

3D postcards based on the very principle of F. E. Ives, lenticular sheets used in the more

advanced xographs of 1970s, or ‘animated’ rulers and bookmarks for children still

available today.4 One of the most prominent use of the direction of incoming light is the

focusing process in photography. In classical

photography, the split-screen and microprisms

present on the focusing planes use light from

different parts of the image to convert misfocus to

spatial translation (shown on Figure 2), making it

easier to focus correctly.5 Similar principle is used by

the autofocus algorithms using phase detection,

where image of the autofocus point hits from different

directions a pair of single-line CCD or CMOS sensors and the relative shift of these images

determines the amount of misfocus.6

All the applications mentioned above, however, use only few directions to supply an

additional feature, while this work focuses on directional information being a

fundamental part of the image itself. It was Gabriel Lipmann in 1908 who first came with

the idea that lots of small images from slightly different place, when summed, reconstruct

the original scene, and he named this method integral imaging [5]. At that time the light

4 A comprehensive resource for postcard printing techniques and experiments through history
would be the Metropolitan Postcard Club of New York City, particularly the Novelties chapter at
http://www.metropostcard.com/techniques10.html.
5 For more details on the optical background, see an article by Douglas A. Kerr available at
http://dougkerr.net/Pumpkin/articles/Split_Prism.pdf.
6 For interactive demonstration of this and other aspects of photography, check the applets of
Stanford University available at http://graphics.stanford.edu/courses/cs178-10/applets.

Figure 2. Split-screen and micro-
prisms on the focusing plane of
classical camera. Source: YouTube

http://www.metropostcard.com/techniques10.html
http://dougkerr.net/Pumpkin/articles/Split_Prism.pdf
http://graphics.stanford.edu/courses/cs178-10/applets/
https://www.youtube.com/watch?v=rnkib7FZ8S8

12

field was being recorded on film and intended for viewing whole field by illuminating the

film. Ives, Coffey, Dudnikov and others were later exploring and researching this idea

further. This eventually led to the first digital light field camera in 1968 by Chutjian,

seven years before the first classical digital camera by Kodak [6].7 A deep walkthrough

of the history of integral imaging is beyond scope of this work and would be

reduplicating the great work already done by others. Starting points for interested

readers would be Todor Georgiev’s website8, archive of University of Maryland9 and

INTEGRAL IMAGING slides by Stoykova & Sainov [7].

The Computer Science Department of Stanford University is pioneer in modern history

of the light field, with Marc Levoy and Pat Hanrahan introducing the idea in their LIGHT

FIELD RENDERING paper published in 1996 [8]. The rationale behind the paper is

‘generating new views from arbitrary camera positions without depth information or

feature matching, simply by combining and resampling the available images’ [8]. At that

time, the light field was of interest to Microsoft Research as well, in whose paper it was

called a Lumigraph [9]. Both defined the light field as a function of four parameters and

couple of papers followed exploring the choices of the parameterisation.

In 2006, Ren Ng submitted a Ph. D. dissertation to Stanford University titled DIGITAL

LIGHT FIELD PHOTOGRAPHY [1], which is the basis for this thesis. In his work Ng suggests

a simple model for the light field camera, analyses its performance and features.

A microlenses array placed over standard digital camera sensor was used to build a

working prototype of the camera and soon a start-up company, Lytro, Inc., was founded,

producing the first light field cameras for consumer use.

1.2. Light Field

From physics point of view, different set of sources is usually cited referring to the light

field. The major milestones would be Michael Faraday’s THOUGHTS ON RAY VIBRATIONS

where he proposes that light should be too interpreted as a field [10], Gershun’s LIGHT

FIELD, that introduces the term light field and formally defines it (although for the

purposes of illuminating engineering) [11], and THE PLENOPTIC FUNCTION AND THE

ELEMENTS OF EARLY VISION by Adelson and Bergen, which is a generic article defining a

7 Technically the recording layer was still a light sensitive emulsion, but the image was
computer generated.
8 http://www.tgeorgiev.net/
9 ftp://ftp.umiacs.umd.edu/pub/aagrawal/HistoryOfIntegralImaging/, most notable THE

HISTORY OF INTEGRAL PRINT METHODS excerpt.

http://www.tgeorgiev.net/
ftp://ftp.umiacs.umd.edu/pub/aagrawal/HistoryOfIntegralImaging/

13

5D plenoptic function describing ‘everything that can be seen’ with references to

psychophysical and physiological literature on vision [12].

For purposes of this thesis, however, light will be treated simply as a scalar value

traveling along a ray, as is in the work of Ng.

1.2.1. Definitions
In all literature published so far, light field is explored in the context of a 4D space, which

makes some principles difficult to illustrate and understand. For both educational and

comprehensibility purposes, considerable attention will be paid to the light field in 2D

space in this thesis too.

Light Field in 2D

As noted above, the light field photography is about recording direction from which the

light is coming in addition to its intensity. Light field in 2D is therefore represented by

one dimension for intensity and one for the direction. Based on the matrix methods in

optics [13], the light ray hitting a plane is defined as

𝑟 = [
𝑥
𝜃

],

where 𝑥 is the distance from the optical axis and 𝜃 is the angle from that axis, measured

counter-clockwise (ref. Figure 3).

Figure 3. Light ray in 2D (angle parameterisation)

The angle of a ray is also defined by two points on two different planes. There are two

planes of special interest in a camera – the lens plane and the sensor plane. So any

individual ray is also defined by 𝑢, the distance from optical axis at lens plane, and 𝑥, the

distance from optical axis at sensor plane (see Figure 4).

𝜃

optical axis

𝑥

𝑟

plane of interest

14

Figure 4. Light ray in 2D (planes parameterisation)

It is easy to see that for a ray hitting the sensor plane,

𝜃 = tan−1
𝑥 − 𝑢

𝑑

where 𝑑 is the distance between the lens plane and the sensor plane.

Definition 1.1 (light field in 2D)

Let 𝑈 and 𝑋 denote two planes intersecting an optical axis with nonzero distance 𝐹

between them. The light field at the plane 𝑋 is defined as a function 𝐿𝐹(𝑥, 𝑢) giving the

radiance of light ray coming through the plane 𝑈 at the distance 𝑢 from the optical axis

and hitting the plane 𝑋 at the distance 𝑥 from the optical axis.

Light Field in 4D

The same principles apply to a 3D space with two dimensional planes intersecting the

optical axis (cf. Figure 5).

Figure 5. Light ray in 4D (planes parametrization)

lens plane sensor plane

𝑥 𝑢

optical axis

lens plane sensor plane

optical axis

𝑥

𝑦

𝑢

𝑣

15

Therefore, the definition of light field in 4D is analogous to the Definition 1.1.

Definition 1.2 (light field in 4D)

Let 𝑈𝑉 and 𝑋𝑌 denote two planes intersecting an optical axis with nonzero distance 𝐹

between them. The light field at the plane 𝑋𝑌 is defined as a function 𝐿𝐹(𝑥, 𝑦, 𝑢, 𝑣)

giving the radiance of light ray coming through the plane 𝑈𝑉 at the distance (𝑢, 𝑣) from

the optical axis and hitting the plane 𝑋𝑌 at the distance (𝑥, 𝑦) from the optical axis.

Thin lens

Thin lens approximation of camera and other lenses will often be used through this work,

so for reference, its basic equations follow:

 1

𝑠𝑜
+

1

𝑠𝑖
=

1

𝑓
 (Gaussian formula)

 𝑥𝑜𝑥𝑖 = 𝑓2 (Newtonian formula)

 𝑦𝑖

𝑦𝑜
= −

𝑠𝑖

𝑠𝑜
= −

𝑓

𝑥𝑜
= −

𝑥𝑖

𝑓
 (lateral magnification)

where

𝑠𝑜 is object distance from lens

𝑠𝑖 is image distance from lens

𝑓 is lens’ focal length

𝑥𝑜 = 𝑠𝑜 − 𝑓 and 𝑥𝑖 = 𝑠𝑖 − 𝑓

𝑦𝑜 is object distance from optical axis

𝑦𝑖 is image distance from optical axis

as depicted on Figure 6.

Figure 6. Thin lens

𝑦𝑜

𝑦𝑖

𝑓 𝑓

𝑠𝑖 𝑠𝑜

𝑥𝑜 𝑥𝑖

16

1.2.2. Image formation
Let’s get some insight on how the light field looks inside. First, one might be interested

how to render traditional image from it. In classical digital camera, where the direction

of incoming light is not recorded, each pixel accumulates light from all directions.

For one-dimensional sensor, this means

𝐸𝐹(𝑥) = ∫ 𝐿𝐹(𝑥, 𝑢) 𝑑𝑢

where 𝐸𝐹(𝑥) is the total irradiance of pixel 𝑥. 10

Similarly for two-dimensional sensor,

𝐸𝐹(𝑥, 𝑦) = ∬ 𝐿𝐹(𝑥, 𝑦, 𝑢, 𝑣) 𝑑𝑢 𝑑𝑣

where 𝐸𝐹(𝑥, 𝑦) is the total irradiance of pixel at (𝑥, 𝑦).

1.2.3. Direction sampling
One way how to record light in different directions is to use a classical camera with

narrow field of view and capture it from different locations. Figure 7 shows a single point

displayed by two cameras modelled as thin lenses.

Figure 7. Single point from different locations

Another option would be to place the cameras in circle around the point, so that the

angles 𝜃𝑖 would stay constant and the point would be observed from all the directions.

10 Stroeber et al. shows that the image is in fact formed as 𝐸𝐹(𝑥) =

1

𝐹2 ∫ 𝐿𝐹(𝑥, 𝑢) cos4 𝜃 𝑑𝑢, but

this is more a physical limitation. The cosine can either be absorbed into 𝐿𝐹 [1] or eliminated by

pixel microlenses [25] common on today’s image sensors. The
1

𝐹2 factor affects the overall image

brightness only and is not interesting for the purposes of this work.

𝜃2

𝜃1

17

Although this approach is feasible for small objects and allows for their 3D models to be

reconstructed [14], it is not available for everyday use in real-world photography.

The next important difference is the displayed image itself. If cameras were placed in a

circle, all would display exactly the same image, a single point in the centre of the sensor.

However, as clearly visible from Figure 7, in the case where cameras are arranged on a

line, the point is displayed on different places of the sensor. This can be formulated more

precisely: If a point 𝑂 is at the distance 𝑦𝑜 from the optical axis and at the distance 𝑠𝑜

from the lens, then the lateral magnification formula gives distance

𝑦𝑖 = −
𝑠𝑖

𝑠𝑜
𝑦𝑜 = −

𝑓

𝑥𝑜
𝑦𝑜

from the optical axis for point’s image 𝐼 on the sensor (assuming it is focused, i.e. the

sensor is at distance 𝑠𝑖 from the lens).

Now assume the point is fixed in space and only the camera is shifted in one direction.

This offsets the point from optical axis of the camera in the opposite direction and

therefore is equivalent to having the camera fixed and changing the point’s 𝑦𝑜 distance

only.

Figure 8 shows the relationship given by lateral magnification formula.

Figure 8. Position of single point on sensor from different camera locations

However, this gives us an important information about the point 𝑂. The sensor images

allow us to compute the distance of point O from the camera. So given angle of the line 𝜑

with horizontal axis and the line equation 𝑦 = 𝑘𝑥 + 𝑞 where 𝑘 = tan 𝜑 is slope of the

line, we have

𝜑 = tan−1 −
𝑠𝑖

𝑠𝑜

tan 𝜑 = −
𝑠𝑖

𝑠𝑜

𝑠𝑜 tan 𝜑 = −𝑠𝑖

𝑦𝑖 (position of point’s image 𝐼 on sensor)

𝑦𝑜 (camera shift)

𝑦𝑖 = −
𝑠𝑖

𝑠𝑜

𝑦𝑜

18

𝑠𝑜 = −
𝑠𝑖

tan 𝜑

the desired distance. Note that this expression might be a bit misleading, since 𝑠𝑖 and 𝑠𝑜

are in fact bound by the Gaussian formula and for a given lens, they cannot be

manipulated independently. More clearly, for fixed 𝑓,

𝑠𝑖

𝑠𝑜
=

𝑓

𝑠𝑜 − 𝑓
=

𝑠𝑖 − 𝑓

𝑓

and

tan 𝜑 = −
𝑓

𝑠𝑜 − 𝑓

1

tan 𝜑
=

𝑓 − 𝑠𝑜

𝑓

𝑠𝑜 = 𝑓 −
𝑓

tan 𝜑
 .

Alternatively,

tan 𝜑 = −
𝑠𝑖 − 𝑓

𝑓

𝑓 tan 𝜑 = 𝑓 − 𝑠𝑖

𝑠𝑖 = 𝑓 − 𝑓 tan 𝜑

which gives us another important feature: if we want to move the sensor closer or farther

to the lens (i.e. change 𝑠𝑖) it necessarily means a change to 𝜑. Moving the sensor in this

way actually means changing the focus of camera, so obviously to get an image focused

at a different distance, one needs to change the slope of the line — more on this

fundamental feature of light field later.

1.3. Acquisition Techniques

Before processing the light field, we will describe some methods of its recording in 4D

space, where more dimensions bring more possibilities to the capture process.

1.3.1. Camera arrays
The natural extension of the suggestion given in the previous chapter is to arrange

cameras on a plane. Since calibration and knowledge of the cameras’ relative positions is

important, this is much easier with multiple cameras fixed on a predefined grid. This

configuration was used both by Stanford [8] and Microsoft Research [9]. An example of

such camera array is depicted on Figure 9.

19

Figure 9. Stanford Multi-Camera Array. Photo by Eric Cheng. Source: [15]

The outcome of the array is an array of traditional photos, each capturing the scene from

slightly different location, as illustrated by Figure 10. This figure (as well as figures 12

and 13) shows the complete 4D light field projected to 2D. In this case the outer axis is

for the U and V dimensions (individual photos), while the inner axes show X and Y

dimensions (pixels in each of the photos).

Therefore the individual photos, also known as sub-aperture images, will be referred to

as XY images. While the spatial discretization is determined by the resolution of

individual sensors, the directional information is discretized by the number of cameras

themselves.

Figure 10. Output of the camera array. Sculpture in Forbidden City, Beijing, photo by author.

𝑣

𝑢

𝑥

𝑦

20

1.3.2. Microlens arrays
The same result can be obtained by replacing the cameras with single lenses and scaling

them down to eventually cover one sensor. A piece of glass or plastics with thousands of

small lenses, either engraved, moulded or eventually glued is called a lenslet or a

microlens array (an example is on Figure 11).

Figure 11. Microlens array. Manufactured and photographied by Mats Wernersson, with permission.

However, what if we wanted to sample the space the other way? What if, instead of all

spatial information for one direction together, we wanted all directional information

together for one quantum of spatial information? The trick to achieve this is to place the

microlens array at the microlenses’ focal length distance from the sensor, at most.11

This is the configuration chosen by Ren Ng. The overall image is still recognizable, but

individual micro-images under each microlens can be observed (as seen on Figure 12).

Here the outer axes denote X and Y dimensions (in hexagonal configuration in case of the

Lytro camera) and the inner axes, within microlens images, U and V dimensions.

11 Ng shows that the amount of directional information increases as the sensor distance
approaches the focal length of the microlenses, with placing it immediately on the microlenses
being equivalent to classical camera [1].

21

Figure 12. An enlargement of photo taken with hexagonal microlens array. A window at Cologne
Cathedral, photo by author.

These individual images will be referred to as UV images. In this case the spatial

resolution is given by the number of microlenses, while the directional information

depends on the size of microlenses (discretized by the resolution, resp. number of pixels

on the sensor underneath the microlens).

The relationship between UV images and XY images is rather simple and one can be

easily converted to the other by simple transposition of pixels. The central XY image

consists of central pixel under each microlens, the XY image right to the central one

consists of pixel right to the central one under each microlens etc.

Having four dimensions, it might also be interesting to combine them mutually, i.e. to

observe UX and VY images. These are known as epipolar images [1] and a sample is

shown below.

𝑦

𝑥

𝑢

𝑣

22

Figure 13. Cross-dimensional images. Lidl letterhead, photo by author.

A part of the UX image is shown on top of the picture. The number of columns

corresponds to the size of microlenses (number of pixels they cover) and the number of

rows in each column is equal to the number of microlenses. Similarly, in a VY image, the

number of rows corresponding to size of the microlenses and number of columns in each

row corresponding to their count in horizontal direction.

A detail of the UX image is bottom left and detail of a VY image bottom right. These

individual rows and columns are 2D slices of the 4D space having one dimension spatial

and one dimension directional just like it was introduced

in the previous chapter. Note the changing slope of edges

suggesting that different parts of the edge were at

different distance from the camera, which is indeed the

case due to the perspective composition (cf. Figure 14).

𝑦

𝑢

𝑥

𝑣

Figure 14. Rendered view of
Figure 13

23

1.3.3. Emerging methods
The light field photography is currently experiencing boom in both consumer and

academic communities and new technologies and techniques are being published

monthly.

The biggest problem for light field photography today is trading the spatial resolution

for the directional resolution. For example, for a 20 Mpx sensor with resolution of

5000×4000 pixels, which is above Canon’s flagship digital camera12, when directional

resolution of 10 px is desired, it results in 500×400 pixels of spatial resolution, which is

below the VGA standard and provides still only 10×10 pixels of directional information.

Moreover, camera manufacturers basically stopped increasing the sensor resolution first

because nobody needs that much and second because the lenses are actually at their

resolution limits.13

Therefore the main interest is in capturing light fields without this trade-off. There are

two ideas in this field worth mentioning. First is the patent of Panasonic Corporation,

LIGHT FIELD IMAGE CAPTURE DEVICE AND IMAGE SENSOR [16], which places the microlens

array behind the photosensitive layer, see Figure 15 for its schema. ‘The micro lens

layer is arranged so that light that has been transmitted through one of the

photosensitive cells and then reflected from the reflective layer is incident on the

same photosensitive cell again.’ This allows the camera processor to associate depth

information with the image, which, however, is 3D information only by definition, not a

light field as defined in the field. On similar note, another patent uses electric voltage to

adjust micolens focal length in order to turn them on and off, thus resulting again in two

images, one full-resolution traditional photo and one low resolution in order to assign

depth information to the individual pixels [16]. In order to achieve the refocusing effect,

the processing software then needs to synthetically blur the part of images that shouldn’t

be focused. Popularity of this rather consumer feature made HTC introduce a first

smartphone with a dual sensor camera, having one sensor dedicated for the depth

information only.14

12 Canon EOS-1D X has 18.1 Mpx as per Canon website.
13 Resolving power of lens is out of scope of this work, some initial notes on this topic can be
found e.g. at Michigan University’s Physics Lecture Notes at
http://www.pa.msu.edu/courses/2000fall/PHY232/. The important lesson is that the
diffraction limit is a fundamental limit that cannot be solved by manufacturing process.
14 Notes and some reviews on HTC One M8 available at http://lightfield-forum.com/tag/dual-
camera/.

http://www.pa.msu.edu/courses/2000fall/PHY232/
http://lightfield-forum.com/tag/dual-camera/
http://lightfield-forum.com/tag/dual-camera/

24

Figure 15. Panasonic's light field sensor. Colorized and annotated by Markus Nolf, with permission.

A slightly different approach was used by Boominathan et al. from Rice University to

improve the spatial resolution [17] of captured light fields. They again use classical

digital camera to capture high-resolution all-in-focus image of the same scene that was

taken with low-resolution light-field camera, but in this case a pattern matching

algorithm is used to replace the low-resolution pieces with those from the high-

resolution photo, so the original light-field features are preserved within some error.

The second direction to be noted is called compressive light field photography and is

developed by researchers at MIT Media Lab. 15 While the ideas above build on the

Lippmann’s idea of microlenses, MIT chose the model of blocking light introduced by

Ives. A more or less random pattern on semi-transparent mask is placed before the

sensor that causes various shadows to be cast over it which allows for reconstruction of

the light field [18]. The interesting factor with this method is that everybody can print

the mask for a fraction of the price that microlens array costs, and apply it to the camera

themself (like on Figure 16).

15 http://web.media.mit.edu/~gordonw/CompressiveLightFieldPhotography/

http://web.media.mit.edu/~gordonw/CompressiveLightFieldPhotography/

25

Figure 16. A printed coded mask being applied to a standard Canon camera. Photo courtesy by Kshitij
Marwah, with permission.

The key observance here is that light field is highly redundant and can be decomposed

into weighed sum of predefined base patches, much like how the cosine or Fourier

transform works in image compression. So instead of recording the raw light field, only

few coefficients for the directional information are recorded [19]. This approach has also

further applications in processing, such as light field compression or denoising [18].

The Camera Culture Group to which this research belongs works on glasses-free

3D displays, which requires “completely integrated pipeline from live-action shooting to

editing to display” and the discussed light field camera design emerged as one of the

technologies for that pipeline [19]. Like with Lytro Inc., a spin-off company Tesseract

Imaging16 was started, with the design being named FOCII.

16 http://tesseract.in/

http://tesseract.in/

26

1.4. Processing and Rendering

Now when we know how to record the light field, we can proceed to rendering it. Since

principles of the Lytro camera is major topic of the thesis and also the only one available

to the author, we will adhere to the microlenses as used in the Lytro camera (for

corresponding 2D model see Figure 17).

Figure 17. Lytro microlenses configuration

There are three planes of interest:

the 𝑙𝑒𝑛𝑠 plane, which is a thin lens approximation of the main camera lens;

the 𝑚𝑙𝑎 plane, which is a thin lens approximation of the microlens array;

the 𝑠𝑒𝑛𝑠𝑜𝑟 plane.

We will use

𝑓𝑙𝑒𝑛𝑠 for the focal length of the lens;

𝑓𝑚𝑙𝑎 for the focal length of the microlenses;

𝑑 for the distance between the 𝑙𝑒𝑛𝑠 plane and the 𝑚𝑙𝑎 plane;

Δ𝑚𝑙𝑎 for the height (pitch) of individual microlenses;

Δ𝑝𝑥 for the height (pitch) of individual pixels on the sensor.

The distance between the 𝑚𝑙𝑎 plane and the 𝑠𝑒𝑛𝑠𝑜𝑟 plane is fixed to 𝑓𝑚𝑙𝑎.

In line with previous chapters, we introduce discrete indices

𝑥 to identify single microlens, zero being the one at optical axis;

𝑢 to identify single pixel under single microlens, zero being the centre one.

27

1.4.1. Rendering
The images under individual microlenses can be arranged next to each other to form the

UX image. For example, a single point at optical axis focused on the microlens array will

fall on pixels under the microlens at optical axis (𝑥 = 0), as in Figure 18.

Figure 18. Focused point, overall 2D view

Note that in order to cover exactly all the pixels under given microlens, the following

equation, where Δ𝑙𝑒𝑛𝑠 is height of the main lens, must hold:

Δ𝑙𝑒𝑛𝑠

𝑑
=

Δ𝑚𝑙𝑎

𝑓𝑚𝑙𝑎

Putting the individual images next to each other will therefore result in a single vertical

line as in Figure 19 top.

↑
𝑢
↓

 ← 𝑥 →

Figure 19. Focused point, UX view

As discussed in chapter 1.2.2 Image formation, the original 1D image can be restored by

integration light from all the directions, which corresponds to summing all the pixels

28

under individual microlenses, resulting in a single pixel representing the focused point

(Figure 19 bottom). 17

Similar in four dimensions, the original 2D image can be rendered by summing all the

pixels under individual microlenses.

We have already seen that the slope of the line corresponds to the distance of the point

from the lens. An example of single misfocused point on the optical axis is shown on

Figure 20.

Figure 20. Misfocused point, overall 2D view

The corresponding UX image is at the top of the Figure 21, which illustrates the

properties derived in the previous chapter.

↑
𝑢
↓

 ← 𝑥 →

Figure 21. Misfocused point, UX view

When rendered as described above, it results in a blurred image of the point like at the

bottom of Figure 21, as expected for a point out of focus.

17 The sum must be normalized to fit into the sensor value range for further processing, which is
equivalent to taking average value of the pixels under individual microlenses instead.

29

1.4.2. Sensor equations
Although the fact that UX image displays points as rasterized lines is suggested in Ren

Ng’s dissertation [1], we will take the steps to prove this critical feature. Two properties

need to be proven – that the number of illuminated pixels under each microlens is equal

and that such pixels under neighbouring microlenses are adjacent to each other.

Figure 22 shows a point displayed through a single microlens in the array, modelled by

a thin lens, and a sensor (red plane) at fixed distance from the microlens.

Figure 22. Image formation on a sensor

We denote

Δ the height of the lens;

𝑓 the focal length of the lens;

𝑦𝑜 the distance of point from the optical axis;

𝑠𝑜 the distance of point from the lens;

𝑦𝑖 the distance of point’s image from the optical axis;

𝑠𝑖 the distance of point’s image from the lens;

𝜏𝑜 the angle between the optical axis and ray coming from the point through

the top of the lens (i.e. at distance Δ 2⁄ from the optical axis);

𝜏𝑖 the angle between the optical axis and ray coming from the top of the lens

through the point’s image;

𝛽𝑜 the angle between the optical axis and ray coming from the point through

the bottom of the lens (i.e. at distance − Δ 2⁄ from the optical axis);

𝛽𝑖 the angle between the optical axis and ray coming from the bottom of the

lens through the point’s image;

𝑦𝑜

𝑦𝑖

𝑠𝑠 𝑓

𝑠𝑖 𝑠𝑜

𝛽𝑖
𝛽𝑜

𝜏𝑜

𝜏𝑖

𝑦𝜏
𝑦𝛽

Δ

2

30

𝑠𝑠 the distance of the sensor from the lens;

𝑦𝜏 the distance from the optical axis where the ray coming from the top of the

lens hits sensor;

𝑦𝛽 the distance from the optical axis where the ray coming from the bottom of

the lens hits sensor.

Specially, if the sensor has the point in focus, 𝑠𝑜 = 𝑠𝑠 and 𝑦𝜏 = 𝑦𝛽 = 𝑦𝑖 . If not, the point

causes a line segment of 𝑦𝜏 − 𝑦𝛽 length to appear on the sensor.

We want to show where a point at distance 𝑦𝑜 from the optical axis and 𝑠𝑜 from the lens

will appear on the sensor at the distance 𝑠𝑠 from the lens (i.e. find 𝑦𝜏 and 𝑦𝛽).

First we will derive the generic thin lens ray transfer formula, that is, if a ray from an

object hits the lens under angle 𝜑𝑜 at the distance 𝑦 from the optical axis, at what angle

𝜑𝑖 will the ray leave the lens (like on Figure 23).

Figure 23. Thin lens ray transfer

It is easy to see that tan 𝜑𝑜 =
𝑦

𝑠𝑜
 and tan 𝜑𝑖 = −

𝑦

𝑠𝑖
 and the Gaussian formula gives us

tan 𝜑𝑖 = −
𝑦

𝑓 𝑠𝑜
𝑠𝑜 − 𝑓

=
𝑦(𝑓 − 𝑠𝑜)

𝑓 𝑠𝑜
=

𝑦

𝑠𝑜
−

𝑦

𝑓
= tan 𝜑𝑜 −

𝑦

𝑓
 .

We will demonstrate how to use these formulæ to arrive at 𝑦𝛽 . First, we note that

−
Δ
2 − 𝑦𝑜

𝑠𝑜
= tan 𝛽𝑜 .

Then,

tan 𝛽𝑖 = tan 𝛽𝑜 −
−

Δ
2

𝑓
=

−
𝛥
2 − 𝑦𝑜

𝑠𝑜
+

Δ

2𝑓

and again by expressing

𝑦

𝜑𝑜

𝜑𝑖 𝑠𝑜 𝑠𝑖

31

Δ
2

+ 𝑦𝛽

𝑠𝑠
= tan 𝛽𝑖

we get

𝑦𝛽 = 𝑠𝑠 tan 𝛽𝑖 −
Δ

2
= 𝑠𝑠 (

−
𝛥
2

− 𝑦𝑜

𝑠𝑜
+

Δ

2𝑓
) −

Δ

2
=

𝑠𝑠 (−
𝑓 (

𝛥
2 + 𝑦𝑜)

𝑠𝑜
+

Δ
2)

𝑓
−

Δ

2
 .

Analogously for 𝑦𝜏 we get

𝑦𝜏 = 𝑠𝑠 tan 𝜏𝑖 +
Δ

2
= 𝑠𝑠 (

Δ
2 − 𝑦𝑜

𝑠𝑜
−

Δ

2𝑓
) +

Δ

2
=

𝑠𝑠 (
𝑓 (

Δ
2

− 𝑦𝑜)

𝑠𝑜
−

Δ
2)

𝑓
+

Δ

2
 .

The latter forms make it easy to evaluate the special cases of 𝑠𝑠 = 𝑓 and 𝑠𝑜 = 𝑓.

Now the length of the line segment captured by the sensor is

𝑦𝜏 − 𝑦𝛽 = 𝑠𝑠 (

Δ
2 − 𝑦𝑜

𝑠𝑜
−

Δ

2𝑓
) +

Δ

2
− 𝑠𝑠 (

−
𝛥
2 − 𝑦𝑜

𝑠𝑜
+

Δ

2𝑓
) +

Δ

2
=

=
𝑠𝑠Δ

2𝑠𝑜
+

𝑠𝑠Δ

2𝑠𝑜
−

𝑠𝑠𝑦𝑜

𝑠𝑜
+

𝑠𝑠𝑦𝑜

𝑠𝑜
−

ssΔ

2𝑓
−

ssΔ

2𝑓
+

Δ

2
+

Δ

2
=

=
𝑠𝑠Δ

𝑠𝑜
−

𝑠𝑠Δ

𝑓
+ Δ

pixels. The important observation is that the length does not depend on 𝑦𝑜, the distance

of the point from optical axis, which also means it does not depend on the microlens

position.

The centre of line segment is at distance

𝑦𝑐 = 𝑦𝛽 +
𝑦𝜏 − 𝑦𝛽

2
= −

𝑠𝑠Δ

2𝑠𝑜
−

𝑠𝑠𝑦𝑜

𝑠𝑜
+

ssΔ

2𝑓
−

Δ

2
+

𝑠𝑠Δ
𝑠𝑜

−
𝑠𝑠Δ
𝑓

+ Δ

2
= −

𝑠𝑠

𝑠𝑜
𝑦𝑜

from the optical axis (which is the same equation we arrived to in chapter 1.2.3 Direction

sampling).

Note that if a point is at the focal length distance from the lens (𝑠𝑜 = 𝑓), its image will be

in infinity, and will cover all the pixels under the lens, regardless of how far the sensor is

located, which is in agreement with 𝑦𝜏 − 𝑦𝛽 = Δ.

32

As described in the previous chapter, the Lytro camera has the sensor at the focal length

distance (𝑠𝑠 = 𝑓), which further simplifies the equations:

𝑦𝜏 =
𝑓 (

Δ
2 − 𝑦𝑜)

𝑠𝑜
 𝑦𝛽 = −

𝑓 (
Δ
2 + 𝑦𝑜)

𝑠𝑜
 𝑦𝜏 − 𝑦𝛽 =

𝑓Δ

𝑠𝑜
 𝑦𝑐 = −

𝑓

𝑠𝑜
𝑦𝑜

In this case 𝑦𝑐 = −𝑦𝑜 for the point at focal length distance.

What remains to be proven is that the top ray from one microlens hits the sensor at the

same location as the bottom ray from the microlens above, in other words 𝑦𝜏 for given

𝑦𝑜 is equal to 𝑦𝛽 for 𝑦𝑜 − Δ. But

𝑦𝛽−Δ = −

𝑓 (
Δ
2

+ (𝑦𝑜 − Δ))

𝑠𝑜
= −

𝑓 (−
Δ
2 + 𝑦𝑜)

𝑠𝑜
=

𝑓 (
Δ
2 − 𝑦𝑜)

𝑠𝑜
= 𝑦𝜏

So if we have a microlens array and put the sensor images from each microlens side by

side, the line segments will never overlap and at the point the segment from one

microlens ends, the line segment from neighbouring microlens starts. 18

Together with the fact that each microlens will display the point using the same amount

of pixels, it allows us to treat the resulting image as rasterization of a line going through

the centres 𝑦𝑐 .

1.4.3. Parallax
The simplest view is to select one direction of interest and ignore light from all others, in

our case that means to use data from single 𝑢 only, picking the same one pixel under each

microlens, which is called sub-aperture image and illustrated on Figure 24.

↑
𝑢
↓

↑
𝑢
↓

 ← 𝑥 → ← 𝑥 →

Figure 24. Subaperture image, UX view

18 Assuming each mirolens has its own infinitely sized sensor. In practical embodiments, all
microlens share a single sensor and care must be taken to ensure that rays from one microlens
do not appear under another microlens. Apart from careful camera design this can be solved by
mechanical barriers [25] or compensated in post processing [1].

33

Intuitively, this will render the scene from that direction only, resulting in the rendered

point being at different locations in the image. If we had two points of various distance

in the scene, they would be represented by two differently slanted lines, like on Figure

25. According to the theory, the red one (lighter) is nearer to the lens than the blue one

(darker).

Similar to two aligned objects viewed from distinct locations, the relative position of the

two points depends on the direction the observer is looking. When the observer is in line

with the objects, the nearer object occludes the farther as in the case of 𝑢 = 0 in the

picture. This difference in the apparent position is known as parallax.

↑
𝑢
↓

↑
𝑢
↓

 ← 𝑥 → ← 𝑥 →

Figure 25. Subaperture image of two points, UX view

Figure 26 shows this effect rendered from a 4D light field — difference between the two

pictures is most obvious on framing of the reflector relative to the cabin in background.

The parallax can be used to generate 3D images using extreme left and right views, which

readers can see on Figure 26 by crossing their eyes to merge the two views into one

image.

Figure 26. Parallax in 4D, detail of 8275 bulldozer by LEGO®, photo by author.

34

1.4.4. Depth of field
In traditional photography, the depth of field is controlled by the size of aperture.

Reducing the aperture diameter effectively reduces the directional information coming

through the camera. Smaller aperture in our model can be seen on Figure 27.

Figure 27. Small aperture, overall view

The corresponding UX view follows on Figure 28. Note that the total amount of light is

decreased, too.

↑
𝑢
↓

 ← 𝑥 →

Figure 28. Small aperture, UX view

Specially,

𝑝𝑥𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 =
Δ𝑙𝑒𝑛𝑠𝑓𝑚𝑙𝑎

𝑑Δ𝑝𝑥

is the number of pixels that cover the image of aperture. Hence the light field can be

rendered with smaller aperture by simply taking only corresponding subset of the

directional data, as shown in Figure 29 left.

35

↑
𝑢
↓

↑
𝑢
↓

 ← 𝑥 → ← 𝑥 →

Figure 29. Small aperture synthetised, UX view

On the right side of Figure 29, the same process is applied to the misfocused point, where

it helps to bring it into focus, as expected when using smaller aperture.

This effect is well known in the 4D case, an example of extending the depth of field is

depicted on Figure 30.

Figure 30. Narrow and extended depth of field in 4D, sliver of car window, photo by author.

Another observation is that while in classical photography the aperture size can be

adjusted only in symmetrical way, with light field we can render it asymmetrical as well

(e.g. using positive 𝑢 only, or even non-contiguous bands of 𝑢).

1.4.5. Refocusing
It is obvious from the picture of misfocused point that in order to bring the point back

into focus, we could skew the UX image, like on Figure 31.

This conforms to the theory developed in chapter 1.2.3 Direction sampling. More

formally, the skewed imaging equation would have the form of

𝐸𝑑𝑒𝑠𝑘𝑒𝑤𝑒𝑑(𝑥) = ∑ 𝐿𝑑 (𝑥 +
𝑢

𝑘
, 𝑢)

𝑢

36

↑
𝑢
↓

 ← 𝑥 →

Figure 31. Refocused point, UX view

where 𝑘 is the skewing factor, equal to slope of the line and to the number of pixels that

the point falls on as we have shown with the sensor equations. By similar triangles, we

can find the focused image point, i.e. the distance 𝑠𝑖 from 𝑚𝑙𝑎 plane at which the point is

focused:

Δ𝑚𝑙𝑎 − Δ𝑝𝑥𝑘

𝑓
=

Δ𝑚𝑙𝑎

𝑠𝑖

Solving for 𝑘 yields

𝑘 =
Δ𝑚𝑙𝑎 −

𝑓Δ𝑚𝑙𝑎
𝑠𝑖

Δ𝑝𝑥

and with the help of Gaussian formula we get the desired 𝑘 to bring the plane at 𝑑′ = 𝑑 −

𝑠𝑜 into focus:

𝑘 =
𝛥𝑚𝑙𝑎 −

𝑓𝛥𝑚𝑙𝑎(𝑠𝑜 − 𝑓)
𝑓𝑠𝑜

𝛥𝑝𝑥
=

𝛥𝑚𝑙𝑎 −
𝛥𝑚𝑙𝑎𝑠𝑜

𝑠𝑜
+

Δ𝑚𝑙𝑎𝑓
𝑠𝑜

𝛥𝑝𝑥
=

𝑓Δ𝑚𝑙𝑎

𝑠𝑜Δ𝑝𝑥

The same relationships applies to 4D, where

𝐸𝑑′(𝑥, 𝑦) = ∑ ∑ 𝐿𝑑 (𝑥 +
𝑢

𝑘
, 𝑦 +

𝑣

𝑘
, 𝑢, 𝑣)

𝑣𝑢

 .

For an example of refocused images rendered from 4D data, see Figure 32.

Figure 32. Refocusing in 4D, head unit by Pioneer, photo by author.

37

1.4.6. Depth map
A popular application of light field data is getting the depth map of the scene. This feature

is requested so much that new imaging devices with separate depth sensors are

emerging as an intermediate step between traditional and light field photography (see

next chapter for details).

One of the easier methods to generate a depth map from the scene is taking the rendered

pictures focused at different distances, and for each area of interest, determining the one

that has the highest local contrast. An example of more sophisticated algorithm would

be the one of Liang et al. using occlusion maps [20]. Figure 33 shows a depth map

generated by Lytro software and using it to generate a 3D surface of the captured scene.

Dark shades denote areas nearer to the camera, light shades the farther areas.

Figure 33. 2D depth map (left) and spatial data mapped to 3D (right), a raspberry cake, photo by
author. Rendered by software accompanying the thesis.

Let me stress at this point that depth maps as researched in the field are an

oversimplified problem. A scene can very easily contain points that can be focused at

multiple depths, either due to translucent materials, or because of reflections, and 2D

depth maps cannot cover these conditions, despite their everyday occurrence in the real

world.

While depth maps can be built even from stereo images [21], the light field allows

reconstructing true volumetric depth information about the scene. Extending our

previous method, the third dimension would simply be the value of local contrast itself

rather than finding its maximum. Note that this cannot produce a 3D model of the scene

(neither for transparent objects), as both refraction and reflection cause images to

appear at different locations than they come from, but light field software could take

advantage of this information, for example when determining the distances that can be

rendered.

38

Figure 34. Daniel Reetz holding light field camera array they built together with Matti
Kariluoma in 2009, with permission. Check www.futurepicture.org for more details on
the camera.

C
o

m
m

e
rc

ia
l P

ro
d

u
ct

s

2.

http://www.futurepicture.org/

39

Past couple of years, various commercial companies are announcing their interest in the

light field technology for both recording and displaying, be it big established players like

Adobe Systems or NVIDIA Corporation, fresh start-ups like Tesseract Imaging or Pelican

Imaging or silicon vendors like Toshiba Corporation. It is impossible to give exhaustive

and up-to-date listing here – interested readers can keep track of the technology on sites

like www.lightfield-forum.com – but few noteworthy trends can be briefly discussed.

2.1. Software Imitations

The refocusing ability of light field photography is so popular that several phone

manufactures decided to equip their devices with an imitation of software refocusing.

Different vendors did it in different ways. Nokia Refocus19 captures couple of photos in

fast succession, each focused at different plane and then offers refocusing by selecting

the one frame of interest, or all-in-focus by blending all the frames. The main

disadvantage of this solution is that each frame is captured at different time, so changes

in the scene can be visible due to refocusing.20 New types of camera modules are being

manufactured to bring refocusing times to minimum, such as mems|cam by DigitalOptics

Corporation.21

Another approach is to obtain depth information together with a single photo and then

use it to synthetically blur parts of the image that are at different depth than the one to

be focused. Toshiba Corporation has introduced a new dual camera module for this

purpose22, while HTC started to engage their phones with a dedicated depth sensors.23

Popular applications like separating the background from a photograph, applying

different effects to the background and foreground or photographic collages are still

possible with these solutions, but parallax view (that allows for 3D photography) or

realistic out-of-focus appearance can’t be delivered without true light field data.

2.2. Pelican Imaging

In 2013 Pelican Imaging Corporation published their new camera array module

targeting especially mobile devices [22], which has couple of interesting properties. A

photo of the module is on Figure 35.

19 http://refocus.nokia.com/
20 see e.g. http://www.cnet.com/news/nokia-vs-lytro-the-refocusing-challenge/
21 http://www.memscam.com/
22 TCM9518MD
23 e.g. HTC One M8

http://www.lightfield-forum.com/
http://refocus.nokia.com/
http://www.cnet.com/news/nokia-vs-lytro-the-refocusing-challenge/
http://www.memscam.com/

40

Most importantly it is a true camera

array supplying 4D light field data.

The directional resolution is 4×4,

the native spatial resolution is

1,000×750 pixels, increased by

super resolution methods to

3,264×2,448 pixels.

This module is notable especially

for the technological challenges it

addresses. The smaller aperture

lens allowed to reduce physical

height of the module, aberration errors, and shortened hyperfocal distance. Finally, each

camera in the array is optically isolated and records single colour only, which not only

provides better colour fidelity than traditional Bayern filter pattern, but also allows for

higher performance optics due to the reduced bandwidth they need to transfer. [22]

2.3. Lytro

All the recent boom of products and investment into light field technology for consumer

market started with Lytro24 founded by Ren Ng after his Ph.D. research in 2006. Six years

later they released first light field camera for consumers, called the Lytro camera.

Figure 36. First generation Lytro camera, press release pohoto.

24 http://www.lytro.com/

Figure 35. PiCam monolithic camera array, press
release photo.

http://www.lytro.com/

41

The camera (on Figure 36) has about 10×10 directional resolution and roughly 328×380

pixels of spatial resolution in hexagonal configuration, increased by super resolution

methods to 1080×1080 pixels. The release price was $499 for model with 16 GB memory

and $399 for model with 8 GB memory. This camera came with 8× zoom with constant

f/2.0 lens and is the main subject of chapter 3 in this work.

The common critique of the camera was the low resolution and poor quality of the

photographs in comparison to traditional contemporary digital cameras. In July 2014,

Lytro has released a second generation camera to address these issues and move from

hobbyists more to the professional photographers, the Lytro Illum camera.

Figure 37. Lytro Illum camera, press release photo.

The price tag for Lytro Illum camera (on Figure 37) is $1,599. It also features 8× zoom

with constant f/2.0. Unfortunately at the time of writing this thesis, the camera was not

yet released and further technical details are not available.

2.4. RayTrix

RayTrix25 is a company based in Germany, founded in 2008. They released their first

camera in 2010, making it the first commercial light field camera on the market, called

R11.

25 http://www.raytrix.de/

http://www.raytrix.de/

42

However, RayTrix targets industrial segment in both features and prices. The release

price of R11 camera (on Figure 38) was €30,00026 and comes with various lens mounts

(Nikon/F-mount, M58, Canon), up to 10 FPS video output over GigE/CameraLink, and

SDK for developers. The R11 model has 40,000 microlenses.

Figure 38. Raytrix R11 camera, press release photo.

Over the time new models were introduced: R5, an entry-level camera with lower

resolution but higher speed video and C-mount (€5,00027), and R29 with high resolution.

They also offer modifying an existing customer’s camera to become a light field one (RX).

The company does custom microlens arrays design and ships monochrome, colour and

near infra-red versions of the cameras. Their cameras do not do any light field processing

itself, the processing is offloaded typically to a standalone, high-performant computer.

The typical applications RayTrix is targeting is machine vision, surface and quality

inspection, plant research, microscopy etc., most prominently 3D particle tracking.

2.5. Light field in other applications

Living photography and 3D reconstructions are not the only applications of light field.

Other popular areas being researched include microscopy and light field displays.

26 http://www.dradio.de/dlf/sendungen/forschak/1132822/
27 ibid.

http://www.dradio.de/dlf/sendungen/forschak/1132822/

43

Again, Marc Levoy with his team at Stanford University are pioneering the area of light

field microscopy. The microscopy has its own characteristic set of constraints. For

example, microscope optics, being telecentric, produces only orthographic views, while

light field allows to render new, perspective views of specimens. Being able to refocus or

extended the depth of field from single capture makes it easy to inspect moving or light-

sensitive objects as well [23]. Interested readers can find more information on Stanford

website at http://graphics.stanford.edu/projects/lfmicroscope/.

As for light field displays, the break-through product is yet to come. The research is

exploring several directions: NVIDIA attached microlens array to small displays in

binocular configuration28, researchers from the Institute for Creative Technologies at the

University of Southern California are using high frame rate projector and rotating mirror

to create 360° 3D scene with proper occlusions, while Camera Culture Group at

Massachusetts Institute of Technology are using their compressive light field technology

with a projector to build a 3D screen of larger dimensions.29 Pamplona et al. suggested

using light field displays to compensate for visual aberrations.30

Other interesting application that comes to my mind would be using a single strip of

microlenses on 2D sensors in flatbed scanners. Not only that could compensate for rough

surfaces or focus on individual layers of transparent materials like films, but it also could

recognize and record protective patterns like those used on banknotes.

The biggest problem of getting light field technology into hands of students and

researchers is the availability of microlens arrays. They are either too small (for example,

Edmund Optics31 offers arrays up to 1×1 cm only) or extremely expensive (or both, the

small ones from Edmund Optics are for $550). Mats Wernersson published a way how

one can make microlens array of acceptable performance themself, but it is quite a non-

trivial task requiring equipment not everybody has access to. 32

28 https://research.nvidia.com/publication/near-eye-light-field-displays
29 http://web.media.mit.edu/~gordonw/CompressiveLightFieldProjector/
30 http://tailoreddisplays.com/
31 http://www.edmundoptics.com/
32 http://cameramaker.se/microlenses.htm

http://graphics.stanford.edu/projects/lfmicroscope/
https://research.nvidia.com/publication/near-eye-light-field-displays
http://web.media.mit.edu/~gordonw/CompressiveLightFieldProjector/
http://tailoreddisplays.com/
http://www.edmundoptics.com/
http://cameramaker.se/microlenses.htm

44

Figure 39. Inside cut through the first generation Lytro camera as published and
described on Lytro’s website [24]. Annotation mine.

Ly
tr

o
 c

am
e

ra

3.

L
e

n
s

T
h

e
 L

y
tr

o
 L

ig
h
t
F

ie
ld

 C
a
m

e
ra

 s
ta

rt
s
 w

it
h
 a

n
 8

X

o
p
ti
c
a
l
z
o
o
m

,
f/
2
 a

p
e
rt

u
re

 l
e

n
s
.
T

h
e
 a

p
e
rt

u
re

 i
s

c
o
n
s
ta

n
t

a
c
ro

s
s
 t

h
e
 z

o
o
m

 r
a
n
g
e
 a

llo
w

in
g
 f

o
r

u
n
h
e
a
rd

 o
f

lig
h
t
c
a
p
tu

re
.

L
ig

h
t

F
ie

ld
 E

n
g

in
e
 1

.0

T
h

e
 L

ig
h
t
F

ie
ld

 E
n
g
in

e
 r

e
p
la

c
e
s
 t

h
e
 s

u
p
e
rc

o
m

p
u
te

r
fr

o
m

 t
h
e
 l
a

b
 a

n
d
 p

ro
c
e
s
s
e
s

th
e
 l
ig

h
t
ra

y
 d

a
ta

 c
a
p
tu

re
d

 b
y
 t

h
e
 s

e
n
s
o
r.

 T

h
e
 L

ig
h
t
F

ie
ld

 E
n
g
in

e
 t
ra

v
e
ls

 w
it
h
 e

v
e
ry

 l
iv

in
g
 p

ic
tu

re
 a

s
 i
t

is
 s

h
a
re

d
,
le

tt
in

g

y
o
u
 r

e
fo

c
u
s
 p

ic
tu

re
s
 r

ig
h
t
o
n
 t

h
e
 c

a
m

e
ra

,
o
n
 y

o
u
r

d
e
s
k
to

p
 a

n
d
 o

n
lin

e
.

L
ig

h
t

F
ie

ld
 S

e
n

s
o

r
F

ro
m

 a
 r

o
o
m

fu
l
o
f
c
a
m

e
ra

s
 t
o
 a

 m
ic

ro
-l
e

n
s
 a

rr
a
y

s
p
e
c
ia

lly
 a

d
h
e
re

d
 t

o
 a

 s
ta

n
d
a
rd

 s
e
n
s
o
r,

 t
h
e
 L

y
tr

o
's

L
ig

h
t

F
ie

ld
 S

e
n
s
o
r

c
a
p
tu

re
s
 1

1
 m

ill
io

n
 l
ig

h
t
ra

y
s
.

D

L

M

B

U

S

C

O

45

All information in this chapter is based purely on my research of the camera,

accompanying software and its behaviour. Lytro has neither supported nor confirmed

any of the information herein presented. Use at your own risk.

Special notation is introduced to denote various sources:

SW for software analysis

FW for firmware analysis

FCC for Federal Communication Commission materials

MET for metadata produced by camera

PAT for patents

3RD for 3rd party source (manufacturer of the component in question)

3.1. Inside the Camera

The first generation Lytro camera’s codename is FireflySW,33 and shipped in February

2012. The official model number is A1 as marked on the hardware. 34 It is a small,

41×41×112 mm camera with 8 GB or 16 GB of internal storage and couple of features not

yet common on classical consumer cameras like wireless connectivity, touch screen and

of course the microlens array.

3.1.1. Hardware
Having a wireless capabilities it had to be approved by Office of Engineering and

Technology at Federal Communication Commission35, which assigned Lytro a grantee

code of ZMQ.FCC The commission publishes its measurements as well as some of the

documents, which also includes photos of the product teardown.

Individual elements of the camera annotated on Figure 39 are described below. Photos

with blue background come from the FCC exhibit, the ones with wooden background

from my archive.

S Sensor Board (as of revision A6)

The sensor board contains a CMOS sensor with microlens

array. The microlenses are arranged hexagonally, with

rows being the major axis. All microlenses are of the same

focal length, with the pitch of 13.89 μm and placed at

25 μm in front of the sensor.MET

33 The codename for Lytro Illum camera is Blitzen.SW
34 The model number of Lytro Illum camera is B5.FCC

35 http://transition.fcc.gov/oet/

http://transition.fcc.gov/oet/

46

The sensor is Aptina MT9F002 14.4 Mpx 1/2.3” sensor (effective imaging area

6.14 × 4.6 mm) with 1.4 μm pixel size.MET,3RD,36 The output frame size is, however,

cropped to 3,280 × 3,280 pixels which gives about 10.7 Mpx at 12‑bit resolution.

There is a standard Bayer colour filter array (CFA) over the sensor to capture the

colours with R,GR:GB,B pattern, blue being the top left pixel.MET

Finally, a 3-axis accelerometer is on board.MET

U USB Board (as of revision A6)

The USB board contains a Micro USB female connector at

the bottom, the shutter button at the top and a piezzo

buzzer, not enabled at the time of writing.

B Battery

The battery model is DC-A950 by FORMOSA, 3.7V⎓ 2100mAh 7.77Wh Li-ion. The

calibration measurements are:MET

Working current: -0.2670 A

Working voltage: 3.67 V

Power Consumption: -990.8 mW

Charge current: 1.0210 A

Temperature: 27.4 C

M Main Board (as of revision A6)FCC

The main processing board of the camera. One the front side:

SAMSUNG NAND FLASH memory (8/16 GB)

On the back side:

Zoran‘s Camera On A Chip 32-bit RISC digital image

processor (ZORAN ZR364246BGLG)

SK Hynix SDRAM memory

Temperature sensor

L LCD Board (as of revision A6)

The LCD board hosts Marvell‘s Avastar 88W8787A16 SoCFCC offering WiFi

802.11a/g/n, Bluetooth 3.0+HS, and FM radio with RDS and transmit capability on

the back side.3RD At the time of writing, only WiFi functionality has been enabled.

36 http://www.aptina.com/products/image_sensors/

http://www.aptina.com/products/image_sensors/

47

D Display

The display is 1.52” back-lit LCD with resolution of

128×128 pixels. There is a touch circuit on the back side

of the display.

C Cap Slider

The zoom slider on top of the camera consists of

5 capacitive sensors.

O Lens

The manufacturer of lens is not known. It has 8 elements

in 5 groups and focal length equivalent to 43—344 mm

with constant f/2.0.37 There is also a second temperature

sensor on the lens.MET

3.2. File Formats

Lytro uses its own proprietary file format for their light field pictures. Its structure is

divided into separate components laid one after other. The format of each component is

described in Table 1. A software library that can parse and manipulate the light field

picture format is part of this thesis.

89 L F _ 0D 0A 1A 0A VE VE VE VE CL CL CL CL (header, version, length)

s h a 1 - 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (name)

__ __ __ __ __ __ __ __ __ __ __ __ 00 00 00 00 (data, padding)

offset length notes

0 8 Fixed header (magic number), the fourth byte determines the
component type, which can be one of these:

P (package) always the first component in the file
M (metadata) always the second component in the file and

always the only one
C (component) any other component

8 4 Version of the file formatSW, big endian integer. At the time of this
work all Lytro files have 00 00 00 01 in the first (i.e. LFP)
component. Other components must have 00 00 00 00.SW

12 4 Length of data in the component, big endian integer. This value can
be zero, in which case this is the end of the component and the next

37 https://www.lytro.com/camera/specs/gen1/

https://www.lytro.com/camera/specs/gen1/

48

component follows immediately. Currently the LFP component has
always zero length.

16 80 Name of the component. The name can have up to 80 bytes, shorter
names are padded with zeroes to the total length of 80. Several
components can have the same name.SW

97 length The actual data of the component.

* Every component is padded with zeros so that the total length of
the component (i.e. header + version + data length + name + data +
padding) is multiple of 16. If the sum without padding is already a
multiple of 16, then no padding is added.

Table 1. Light field component file format

The files do not have any special opening or closing and the file extension is .LFP.

When a Lytro camera is connected to the computer, the Lytro Desktop software is started

and imports pictures from camera into the computer. During this process, several files

per picture are created.

3.2.1. Raw pictures (raw.lfp)
Raw pictures correspond to RAW files in traditional cameras. They contain raw

uncompressed sensor readings and need to be further processed.

The package metadata of raw pictures contain the metadata version, references to all the

below components and whether the picture was marked as favourite, as well as whether

the image is a dark or modulation frame (only calibration images do have these set).

Raw Sensor Data component

The Lytro A01 camera generates 3,280px × 3,280px × 12-bit data. To save space, the pixel

values are packed together instead of padded, so there are 2 pixels (24 bits) stored in 3

bytes. Hence the length of this component in this case is always 16,137,600 bytes.

For example, if you have one white pixel (FFF) followed by a black one (000), there will

be FF F0 00 in raw data. Also, the values are stored in big endian order. So 12 34 56

need to be decoded into 03 12 06 45. The first pixel is the top left one, continuing in

rows.

The resulting image is grayscale with Bayer colour filter over it, so it needs to be

demosaiced to obtain the colour information.

Frame Metadata component

Frame metadata contain all information needed to reconstruct the image. That includes

the way how the raw sensor data component is encoded (so that data from other

cameras/applications can be processed), readings from sensors (time in Zulu zone,

49

temperatures of main board and lens, accelerometer, camera orientation), hardware

configuration (parameters of sensor, microlenses, lens, camera maker and model), photo

parameters (shutter, ISO, zoom, creative mode) and the firmware version.

As all metadata, this component is in the JSON text format.

Private Metadata component

Imaging sensor serial number and camera serial number is the only information in the

private metadata component.

As all metadata, this component is in the JSON text format.

3.2.2. Prerendered pictures (stack.lfp, stacklq.lfp)
Since rendering the raw pictures is computationally very expensive and the files are

large to share, the software generates files with some predefined views of the light field.

It picks up to 12 depths and, if instructed, parallax or software filters and renders a stack

of images that are small and easy to display.

The package metadata contain the metadata version, reference to the lookup table and

references to all the prerendered images with a depth or parallax position they

represent, so that the viewers can just show the correct image. The only other metadata

included is whether the image was marked as favourite (and dark/modulation, see

above), specially, there is no information about when the picture was taken, the caption

that it was given, its ISO, shutter speed etc. in these files.

One or more prerendered images

In the case of low quality (stacklq.lfp) files, the prerendered images are stored as simple

JFIF images, focused at different depths or with perspective shift. They are of 330×330

pixels resolution.

The higher quality variation (stack.lfp) has the images in 1,080×1,080 pixels resolution

encoded into a H.264 Annex B stream.38

Depth Lookup Table component

In addition to the prerendered images, the files also contain a depth lookup table, which

is an array of doubles representing the depths at which the picture should be refocused

if user clicks at the corresponding position. The first depth is the top left area, continuing

in rows.

38 http://www.itu.int/rec/T-REC-H.264-201304-I/en

http://www.itu.int/rec/T-REC-H.264-201304-I/en

50

3.2.3. Depth maps (dm.lfp)
The last file that is generated is a separate depth map, with two components only, depth

lookup table and depth confidence table.

Depth Lookup Table component

The depth lookup table is the same component as in the case of prerendered pictures.

Depth Confidence Table component

The depth confidence table has the same structure as depth lookup table, but the double

values express the confidence ranging from 0 (not confident) to 1 (confident) of the

depth value located at the same place in the lookup table. The depth values are computed

from the light field so the accuracy varies.

3.2.4. Calibration files (data.C.#, *.calib)
When camera is connected to the computer for the first time, all the calibration data are

backuped to the computer. They are packed in couple of data.C.# packages acting

basically as containers for other files.

The package metadata contains list of file names present in the package and references

to them, with an optional information which package file contains additional files. Then,

the files themselves are the individual components of the package.

On Windows, these files can be found at %LOCALAPPDATA%\Lytro\cameras. On Mac,

they are in the package at Lytro.lytrolib\cameras.

Calibration data for H.264 compression algorithm are stored in groups of bitmaps ibidem

in *.calib files.

3.3. On the Air

Starting with camera firmware release v1.2, the on-board Wi-Fi is enabled. The

connectivity is provided through Marvell's Avastar 88W8787A16 chip with MAC address

in the range of Tayio Yuden Co., Ltd. (00:22:58). A software library that can communicate

with the camera is part of this thesis.

The wireless communication must be explicitly enabled by user on the camera itself. This

causes a network with SSID lytro.camera.### (where ### are the last three numbers

of its serial number) to be broadcasted. The network is WPA2-CCMP protected with fixed

keyphrase consisting of 8 arabic digits. A new keyphrase is generated when the camera

is soft reseted, either manually from settings menu or when it hangs and resets itself.

51

3.3.1. Available services
Camera responds to ping messages. Wireless communication is power demanding and is

turned off if not actively used for 5 minutes (even if a client is connected and the camera

itself is being used).

Available UDP services

DHCP server, currently supporting one client at a time only (port 67).

10.100.1.1 is IP address of the camera (gateway),

10.100.1.100 receives the connecting client,

255.255.255.0 is the subnet mask.

DNS-Based Service Discovery, compatible with Multicast DNS (port 5353).

This system uses PTR requests to discover services on the network. Also, the

service types and instances are broadcasted at start-up. The Lytro camera uses

a _lytro._tcp service in the local domain. The DNS response/broadcast

contains these answers:

PTR _services._dns-sd._udp.local

 _lytro._tcp.local

 (service type announcement)

PTR _lytro._tcp._local

 lytro-A#########._lytro._tcp.local

 (service instance announcement)

SRV lytro-A#########._lytro._tcp.local

 lytro-A#########.local:5678

 (service endpoint)

TXT lytro-A#########._lytro._tcp.local

 (empty)

 (named attributes)

A lytro-A#########.local

 10.100.1.1

 (camera IP)

52

NSEC lytro-A#########.local

 lytro-A#########.local

 (no more entries)

Open TCP ports

5677 (callback messages)

Once a client connects to this port, camera automatically starts sending various

events back. Data are UTF-8 encoded strings, each event on its line. Individual

messages and their parameters are described in chapter 3.3.1.

5678 and 5679 (Lytro service)

These ports use the same protocol, the mobile application uses port 5678 for

control requests and port 5679 for downloading pictures. Communication is

based on binary request-response pairs. Individual commands and their

payload format are discussed in chapter 3.3.3.

3.3.2. Callback messages
Callback messages are sent automatically as soon as a client connects to the camera's

port 5677. Data are UTF-8 encoded strings, each event on its line, ending with CR LF and

a null character. The callback name is enclosed in square brackets, followed by

parameter(s) separated by space.

 [CallbackName] param1 param2 ...\r\n\0

HeartbeatTick

Generated automatically approximately every 100 ms if no other callback occurs.

Syntax: [HeartbeatTick] tick

Parameters:

parameter value description

tick string always 'tick'

Remarks:

This message is used as a watchdog to detect whether camera is still connected

and responding. Sufficient amount of other messages will prevent this message

coming, so the watchdog should be reset on any message received.

Examples:

[HeartbeatTick] tick\r\n\0

53

SelfTimerTick

Occurs every second during self-timer count-down.

Syntax: [SelfTimerTick] state

Parameters:

parameter value description

state integer
-or-
string

number of seconds remaining to trigger the shutter
-or-
‘Canceled’ when the user cancels the timer

Remarks:

The SelfTimerTick sequence ends either with ShutterPressed callback or

cancelled.

Examples:

[SelfTimerTick] 2\r\n\0

[SelfTimerTick] Canceled\r\n\0

ShutterPressed

Occurs immediately after shutter is triggered.

Syntax: [ShutterPressed] CLICK

Parameters:

parameter value description

CLICK string always ‘CLICK’

Remarks:

The shutter can be triggered either manually by taking a picture, or using the

self-timer. This callback does not distinguish between the two.

Examples:

[ShutterPressed] CLICK\r\n\0

54

NewPictureAvailable

Occurs when a picture taken is rendered and becomes available for download.

Syntax: [NewPictureAvailable] id

Parameters:

parameter value description

id string the id of picture available

Remarks:

A picture is not ready immediately when it is taken, it needs to be processed by

the camera engine first. The id can be used to download the picture from the

camera.

Examples:

[NewPictureAvailable] sha1-123456789012345678901234567890123

4567890\r\n\0

LikedChanged

Occurs when a user marks or unmarks a picture as a favourite.

Syntax: [LikedChanged] id liked

Parameters:

parameter value description

id string the id of picture available

liked integer ‘1’ if marked as favourite
-or-
‘0’ if unmarked as favourite

Remarks:

A picture is marked/unmarked as favourite by tapping the star icon.

Examples:

[LikedChanged] sha1-1234567890123456789012345678901234567890

\r\n\0

55

PictureDeleted

Occurs when a picture is deleted from the camera.

Syntax: [PictureDeleted] id

Parameters:

parameter value description

id string the id of picture deleted

Examples:

[PictureDeleted] sha1-12345678901234567890123456789012345678

90\r\n\0

AllPicturesDeleted

Occurs when all pictures are deleted from the camera at once.

Syntax: [AllPicturesDeleted] all deleted

Parameters:

parameter value description

all string always ‘all’

deleted string always ‘deleted’

Remarks:

This message is sent by the delete all command in the settings menu, regardless

of the actual number of pictures deleted. Deleting the last picture individually

does not send this message.

Examples:

[AllPicturesDeleted] all deleted\r\n\0

56

ZoomLevelChanged

Occurs when camera zoom is changed.

Syntax: [ZoomLevelChanged] zoom

Parameters:

parameter value description

zoom float the zoom level, ranging ‘1.0’ to ‘8.0’

Remarks:

This message is sent continuously as user swipes a finger to change the zoom

factor, except when the General Control Dock is shown. In that case, the

message is sent only once when the dock gets hidden again.

The current shooting mode determines the possible range of zoom level. In

standard mode, the range is ‘1.0’ to ‘5.4’ (the display shows 5.5x). In the Creative

Mode, the zoom range is extended up to ‘8.0’. Switching between Everyday

Mode and Creative Mode effectively changes the current zoom level, however,

this does not result in any message.

Examples:

[ZoomLevelChanged] 2.0\r\n\0

CreativeModeChanged

Occurs when the current shooting mode changes.

Syntax: [CreativeModeChanged] status

Parameters:

parameter value description

status integer ‘1’ if the new mode is Creative Mode
-or-
‘0’ if the new mode is Everyday Mode

Examples:

[CreativeModeChanged] 1\r\n\0

57

ShutterSpeedChanged

Occurs when the shutter speed setting changes.

Syntax: [ShutterSpeedChanged] seconds

Parameters:

parameter value description

seconds float the number of seconds the shutter is open
-or-
‘0.000000’ if the shutter speed is set to automatic

Remarks:

This message occurs when user changes the Shutter Speed under manual

controls. The callback happens only at the moment the Shutter Speed setting is

opened (with current settings) and closed (with new settings), i.e. not as user

continuously changes the setting. Changes due to automatic setting do not

result in callback.

The shutter speed can be set manually to 8, 4, 6.4, 5, 4, 3.2, 2.5, 2, 1.6, 1.25, 1,

1/1.25, 1/1.6, 1/2, 1/2.5, 1/3.2, 1/4, 1/5, 1/6.4, 1/8, 1/10, 1/12, 1/15, 1/20,

1/25, 1/30, 1/40, 1/50, 1/60, 1/80, 1/100, 1/125, 1/160, 1/200 and 1/250

seconds. However, note that the automatic setting is not limited to these values

and when opening the Shutter Speed setting with an automatic value, it can be

any arbitrary number.

Switching to automatic control resets the shutter speed setting to automatic

and causes this message to be sent, as soon as the checkbox in the menu is

unchecked. Switching to manual control keeps the settings automatic, so no

message sent in this case.

Examples:

[ShutterSpeedChanged] 0.000000\r\n\0

[ShutterSpeedChanged] 0.008158\r\n\0

[ShutterSpeedChanged] 0.008000\r\n\0

58

IsoSensitivityChanged

Occurs when the ISO sensitivity setting changes.

Syntax: [IsoSensitivityChanged] value

Parameters:

parameter value description

value float the ISO setting divided by 50.0
-or-
‘0.000000’ if ISO sensitivity is set to automatic

Remarks:

This message occurs when user changes the ISO Sensitivity under manual

controls. The callback happens only at the moment the ISO Sensitivity setting is

opened (with current settings) and closed (with new settings), i.e. not as user

continuously changes the setting. Changes due to automatic setting do not

result in callback.

The ISO sensitivity can be set manually to 3200, 2500, 2000, 1600, 1250, 1000,

800, 640, 500, 400, 320, 250, 200, 160, 125, 100, 80 and 75 (corresponding to

values 64.0 to 1.5). However, note that the automatic setting is not limited to

these values and when opening the ISO Sensitivity setting with an automatic

value, it can be any arbitrary number. Also note that the ISO Sensitivity of 75 is

incorrectly reported as 80 on the display.

Switching to automatic control resets the ISO Sensitivity setting to automatic

and causes this message to be sent, as soon as the checkbox in the menu is

unchecked. Switching to manual control keeps the settings automatic, so no

message in this case.

Examples:

[IsoSensitivityChanged] 0.000000\r\n\0

[IsoSensitivityChanged] 56.509144\r\n\0

[IsoSensitivityChanged] 64.000000\r\n\0

59

NeutralDensityFilterChanged

Occurs when the neutral density filter is turned on or off.

Syntax: [NeutralDensityFilterChanged] status

Parameters:

parameter value description

status integer ‘1’ if the filter was turned on
-or-
‘0’ if the filter was turned off

Remarks:

This message occurs when user changes the ND filter setting under manual

controls. The callback happens only at the moment the user taps the setting on

the display. Changes due to automatic setting do not result in callback (which

includes switching to automatic control or setting either Shutter Speed or ISO

Sensitivity to Auto).

The ND filter has 4 stops.MET

Examples:

[NeutralDensityFilterChanged] 1\r\n\0

Other messages

The firmware suggests the following messages can be also generated but are not enabled

at the time of this work.FW

 BatteryLevelUpdated

 ManualControlModeChanged

 PictureCapacityUpdated

 USBStateChanged

60

3.3.3. Commands reference
The camera accepts connections on TCP ports 5678 and 5679. Both requests and

responses contain 28 bytes of header, optionally followed by payload data (content).

AF 55 AA FA LE LE LE LE FL FL FL FL CM CM (magic number, content/buffer

length, flags, command)

PA PA PA PA PA PA PA PA PA PA PA PA PA PA (parameters)

__ __ __ __ __ __ __ __ __ __ __ __ __ __ (optional payload)

All numbers are little endian.

 length is 32-bit integer, representing either the numbers of bytes of payload

attached, or the number of bytes of the receiving buffer (i.e. maximum allowed

payload length of the response), depending on flags.

 flags two LSB observed only:

 xxxx xxx0 length is length of the payload

 xxxx xxx1 length is length of the buffer, no payload in the request

 xxxx xx0x message is request

 xxxx xx1x message is response

 command is 16-bit integer and determines the action the camera will execute

and format of parameters and payload. Responses preserve the command and

parameter values of requests.

 Each command has different number of parameters, not necessarily aligned.

Unused bytes are zero.

 When payload is present, the length value contains its length in bytes. Format

of the payload is different for each command.

Follows description of the observed commands, parameters and payload formats. Names

are guessed and empty payload details are of unknown meaning.

61

Load hardware info (C2 00 00)

This command loads basic information about the camera.

Load file (C2 00 01)

This command loads a file from the camera storage.

Parameters:

offset size type contents

0x00 1 byte load type (1 = file)

Request payload:

offset type contents

0x0000 string path to the file, null terminated

Response payload:

offset type contents

0x0000 string path to the file, null terminated (same as in the request)

In case the requested file is not found, the response contains no payload.

Download payload:

Contents of the file.

Load picture list (C2 00 02)

This command loads a list of pictures available on the camera.

Parameters:

offset size type contents

0x00 1 byte load type (2 = picture list)

Request payload:

None.

Response payload:

None.

62

Download payload:

offset size type contents

0x0000 4 int

… … …

0x0058 4 int

then for each picture (128 bytes)

0x00 8 string folder name postfix, right padded with zeroes

0x08 8 string file name prefix, right padded with zeroes

0x10 4 int folder number

0x14 4 int file number

0x18 4

0x1C 4

0x20 4

0x24 4

0x28 4 int liked, 1 if picture marked favourite, 0 otherwise

0x2C 4 float last lambda (at which user focused image in
camera)

0x30 48 string picture id, right padded with zeroes

0x60 24 string date picture taken, ISO 8601 format

0x78 4

0x7C 4 int binary encoded rotation, 6 = 270°, 3 = 180°,
8 = 90°, 1 = 0° (counter-clockwise)

63

Load picture (C2 00 05)

This command loads a picture from the camera storage.

Parameters:

offset size type contents

0x00 1 byte load type (5 = picture)

Request payload:

offset type contents

0x0000 string picture id followed by picture format digit, null
terminated

Response payload:

offset type contents

0x0000 string picture id followed by picture format digit, null
terminated (same as in request)

In case the requested picture is not found, the response contains no payload.

Download payload:

4 bytes for length (int) followed by that amount of bytes containing the picture

data, depending on the value of picture format digit.

When picture format = '0', data contains a single JPEG file. The camera shoots in

RAW+JPEG configuration. This is the JPEG part of it with compressed, colour

microlens image. Data is equivalent to downloading

I:\DCIM\###PHOTO\IMG_####.JPG file.

When picture format = '1', data contains a single RAW file. The camera shoots in

RAW+JPEG configuration. This is the RAW part of it. Data is equivalent to

downloading I:\DCIM\###PHOTO\IMG_###.RAW file, and to the Raw Sensor

Data component in the raw.lfp file.

When picture format = '2', data contains a single TXT file with metadata about

the picture, including debug metadata which are otherwise inaccessible. Data is

equivalent to downloading I:\DCIM\###PHOTO\IMG_###.TXT file.

When picture format = '3', data contains a single thumbnail image with

dimensions of 128×128 pixels. It is raw data, 16 bits per pixel, 4:2:2 YUY2

64

format. Data is equivalent to downloading I:\DCIM\###PHOTO\IMG_###.128

file.

When picture format = '4', data contains prerendered JPEG files with

dimensions of 320×1280 pixels, each containing 4 frames of 320×320 pixels at

different lambda. Data is equivalent to downloading

I:\DCIM\###PHOTO\IMG_###.STK file and is laid as follows:

offset size type contents

0x0000 4 int total size of the file, including this field

0x0004 4 int

0x0008 4 int

0x000C 4 int total number of frames

0x0010 4 int total number of files

0x0014 4 int width of frame

0x0018 4 int height of frame

then for each file

0x0000 4 int length of the file

0x0004 4 (file contents)

Picture data are not guaranteed to exist even for valid picture IDs. In that case,

payload for all picture formats contains only 4 bytes for the length (= 0).

Load calibration data (C2 00 06)

This command loads the calibration data minimum (set of files).

Parameters:

offset size type contents

0x00 1 byte load type (6 = calibration data)

Request payload:

None.

Response payload:

None.

65

Download payload:

offset size type contents

for each file in the set

0x0000 4 int length of the file

0x0004 32 string path to the file (on camera), right padded with
zeroes

then for each file in the set, in the same order

0x0000 (file contents)

Load compressed raw picture (C2 00 07)

This command loads a picture in the rawPackedJpegCompressed representation.

Parameters:

offset size type contents

0x00 1 byte load type (7 = compressed raw picture)

Request payload:

offset type contents

0x0000 string picture id, null terminated

Response payload:

offset type contents

0x0000 string picture id followed, null terminated (same as in
request)

In case the requested picture is not found, the response contains no payload.

Download payload:

offset size type contents

0x0000 4 int length of metadata

0x0004 4 int (not quite length of data)

0x0008 metadata of specified length followed by the data
(a JPEG file)

66

Download (C4 00)

This command retrieves the content loaded by a load command above.

Parameters:

offset size type contents

0x00 1 byte (0 or 1)

0x01 4 int offset

Request payload:

None.

Response payload:

Loaded content (see above commands for the data format), starting at specified

offset. If content length is smaller than suggested buffer size, the response

header contains the actual returned length. If it is larger, only the requested

amount will be specified. The offset parameter can be used to retrieve the rest.

Specifying offset larger than content length (or not loading any content ahead)

will result in no payload in the response. You can get the total content length

using the query command as described below.

Requesting a buffer size that the camera cannot allocate will cause it to halt.

Current software uses 2 MB buffer size.SW

Upload (C5 00)

This command writes content to the active target.

Parameters:

offset Size type contents

0x00 1 byte (0)

0x01 4 int offset

Request payload:

The content to be stored on the camera, starting at specified offset. Sending

more data that the camera can allocate will cause it to halt. Current software

uses 2 MB chunks.SW

Response payload:

None.

67

Query content length (C6 00 00)

This command returns the loaded content length.

Parameters:

offset size type contents

0x00 1 byte query type (0 = content length)

Request payload:

None.

Response payload:

offset size type contents

0x0000 4 int content length

If no content was loaded, the returned length is zero.

Query camera time (C6 00 03)

This command returns current camera time.

Parameters:

offset size type contents

0x00 1 byte query type (3 = camera time)

Request payload:

None.

Response payload:

offset size type contents

0x0000 2 short year

0x0002 2 short month

0x0004 2 short day

0x0006 2 short hour

0x0008 2 short minute

0x000A 2 short second

0x000C 2 short millisecond

Milliseconds are currently not reported (the value is zero).

68

Query battery level (C6 00 06)

This command returns current battery level (as percentage).

Parameters:

offset size type contents

0x00 1 byte query type (6 = battery level)

Request payload:

None.

Response payload:

offset size type contents

0x0000 4 float battery level (percentage)

Take a picture (C0 00 00)

This command triggers the camera shutter.

Parameters:

offset size type contents

0x00 1 byte set type (0 = shutter)

Request payload:

None.

Response payload:

None.

(C0 00 02)

This command finalizes a firmware update. It might mean end of upload or apply

firmware update.

Request payload:

None.

Response payload:

None.

69

Set camera time (C0 00 04)

This command sets current camera time.

Parameters:

offset size type contents

0x00 1 byte set type (4 = camera time)

Request payload:

offset size type contents

0x0000 2 short year

0x0002 2 short month

0x0004 2 short day

0x0006 2 short hour

0x0008 2 short minute

0x000A 2 short second

0x000C 2 short millisecond

Response payload:

New camera time, same format as in the request. Using this command can be

logged to I:\RTCERROR.LOG file on the camera.

Milliseconds are currently not reported (the value is zero), but the written value

is used.FW

Write firmware (C1 00)

This command initiates a firmware upload. In the command terminology, it selects

firmware update as the active target. To be followed by the Upload (C5 00) command.

Parameters:

offset Size type contents

0x00 1 byte (0)

0x01 4 int firmware length

Request payload:

None.

Response payload:

None.

70

3.4. Lytro Compatible Library

A Lytro compatible library is part of this thesis, providing access to the functionality

described above. The overall structure of the library features can be seen on Figure 40.

Figure 40. Structure of library features

The library was created as a .NET Portable Class Library, allowing it to be referenced

by .NET Framework 4.0, Windows Store and Universal applications, Silverlight 4,

Windows Phone 7, Xbox 360 and higher projects (Profile 1) 39. This is rather limiting

profile without support for asynchronous code, file paths, network sockets and other

features that might be useful, so for these cases a full desktop library project is available,

from which a subset of files is compiled as the portable library.

For detailed class reference, see documentation on the accompanying media. Samples in

this chapter contain little or no error checking for clarity.

3.4.1. Working with files
The core classes for working with the light field picture files are LightFieldComponent

and LightFieldPackage deriving from it (their diagram is on Figure 41). We have seen

in chapter 3.2 File Formats that the files are collections of named components, the first

one of type P and being empty. The collection of components is hold by

LightFieldPackage, which itself represents the P component and is the first one in the

collection. To ensure maximum flexibility at this level and due to lack of the official

39 The profile’s metadata must be modified to allow targeting all these platforms together in
Visual Studio 2013 and above, refer to the accompanying media for instructions.

I/O metadata networking images

low-level
JSON

parsed
metadata

ca
ll

b
ac

k
s

co
m

m
an

d
s

components

accessors

demosaicing
unpacking

field image

helpers (JSON de/serialization, general structures, …)

71

documentation, its position and count is not enforced and developers are responsible for

keeping the P component part of the component collection.

Figure 41. Classes for working with files

When the LightFieldPackage reads a stream of components (usually a file stream),

their names are stored in a dictionary for fast lookup, and those of type M (metadata) are

noted separately. Note that the components do not need to have unique name and there

is no specification available limiting metadata components to single instance per package,

so users must be able to consume a list of components for given name or type.

The typical scenario called splitting that extracts all components into separate files can

be carried out as in Listing 1.

Listing 1. Splitting light field packages

The ComponentCollection of LightFieldPackage is accessible through its

Components property and is read-write. The components can then be serialized again

to a stream using the WriteTo method.

string path = "IMG_0000.lfp";
LightFieldPackage package = new LightFieldPackage(File.OpenRead(path));

for (int i = 1; i < package.ComponentsCount; i++)
 File.WriteAllBytes(path + "." + i, package.Components[i].Data);

72

The non-portable version can create LightFieldPackages from files obtained from

camera storage using the static FromCameraFiles method, which allows downloading

light field pictures from Lytro camera without physically attaching the camera to the

computer. The communicator application utilizes this function.

3.4.2. Working with metadata
There are two levels of abstraction for metadata available in the library. The low-level

structures directly reflecting metadata as written in the components are nested in the

static Json class. Users can directly parse the metadata onto these structures or use them

to generate JSON strings. A sample code checking popularity of a picture is shown in

Listing 2.

Listing 2. Accessing low-level metadata

For easier access, metadata manipulation and better type safety, a higher level of

abstraction for dealing with common metadata is available by means of

PictureMetadata, FrameMetadata, FilesMetadata and DebugMetadata classes.

The same information as above can be obtained using couple of lines of Listing 3.

Listing 3. Accessing high-level metadata

The higher-level classes use the lower JSON classes as backing storage.

3.4.3. Working with images
As described in chapter 3.2.1 Raw pictures (raw.lfp), the raw pictures are bit packaged,

with Bayern filter superposed on it. The library offers classes to decode and interpret the

images step by step, summarized in Figure 42.

All image representations in the library derive from ISampled2D<T> or

IContinuous2D<T> providing access to the underlying 2D data through indexer. The

basic steps need to be done with the raw data are unpack → demodulate → interpolate.

LightFieldComponent metadata = package.GetMetadata().First();

Json.Master packageMetadata = new Json.Master();
packageMetadata.LoadFromJson(metadata.GetDataAsString());

// assuming the property is always there and the first one
bool isFavorite = (packageMetadata.Picture.ViewArray[0].VendorContent
 as Json.LytroStars).Starred;

PictureMetadata pictureMetadata =
 new PictureMetadata(packageMetadata.Picture);

isFavorite = pictureMetadata.IsStarred;

73

Figure 42. Classes for working with images

The class structure reflects the process closely. The LightFieldComponent containing

raw data is passed to the RawImage, which can be passed to the DemosaicedImage,

which in turn can be used to initialize InterpolatedImage.

To improve performance when only subset of pixels is needed, the demosaicing is

performed lazily. The library implements high-quality linear interpolation algorithm by

Malvar et al. [25], but can be recompiled to traditional averaging by undeclaring the

USEFILTER preprocessor variable. If lazy evaluation is not desired, developers can use

the Demosaic method to perform complete demosaicing in advance. Finally,

interpolation uses standard bi-linear approach.

Since working with the images is memory intensive (128 bits per pixel are used) and the

scenario to get various stages progressively is common, the library features the high-

level FieldImage class to encompass the process, instantiating the chain of classes as

required. Additionally, it provides access to the XY and UV images through the

GetSubapertureImage and GetMicrolensImage methods, respectively.

74

The non-portable version then allows for converting the images into standard

BitmapSources to be displayed in UI and used in common image processing.

3.4.4. Accessors
So far, the developer needs to process an arbitrary LightFieldPackage, get the

metadata component, parse it and find the other components containing the data of

interest. Classes deriving from the abstract PackageAccessor are intended to help with

this technical and error-prone routine for packages with known structure, to get the

developer directly to the data he needs. For example for the raw image files, one can use

the RawFieldAccessor as suggested in Listing 4 to access common metadata and the

central sub-aperture image.

Listing 4. Using the accessors

3.4.5. Communicating with camera
We have learned in chapter 3.3 On the Air two interactions the camera allows using

wireless networking – callback messages and commanding. The callbacks are exposed

through the LytroCallbackSink class, while for bi-directional communication and

commands, the LytroNetClientPortableBase would be the starting point.

However, the portable class library does not support managing network connections and

socket communication, which complicates design of these features. Therefore, for the

portable case, developers need to establish the connection with the camera on their own

and pass the network stream to the library. This is easy for the callbacks which are just

streams of events, but the full Lytro networking client must ensure minimum robustness

and integrity of the connection.

Receiving callbacks

The LytroCallbackSink class is designed for maximum performance, keeping in mind

that once connected, the camera continuously sends messages at 100 ms rate (in the idle

case), and optimized for the currently known callbacks in terms of buffer sizes, yet still

adaptive for new challenges.

string path = "IMG_0001.lfp";
LightFieldPackage package = new LightFieldPackage(File.OpenRead(path));

RawFieldAccessor raw = package.AccessRaw();
bool isFavorite = raw.GetPictureMetadata().IsStarred;

XYImage central = raw.GetFieldImage().GetSubapertureImage(0, 0);
BitmapSource centralBitmap = central.ToBitmapSource();

75

The class offers strongly typed events for each of the callbacks documented above, such

as NewPictureAvailable or ZoomChanged. The developer is expected to subscribe to

the callbacks he is interested in and start processing the callback stream (or the other

way, in which case some callbacks might be missed), as in Listing 5.

Listing 5. Receiving callbacks in portable library

In the portable scenario, processing the stream is a synchronous call. In order to stop it,

the stream must be closed or the processing stopped via StopProcessing call from

another thread. Note that processing is stopped co-operatively, i.e. the callback stream

must return from the read request in order for the process to be stopped. If waiting for

that to happen is not desired, users can use StopProcessingAsync method instead and

check the IsProcessing property for the status. The non-portable version then takes

care of the connection and allows for asynchronous processing (Listing 6).

Listing 6. Receiving callbacks in non-portable library

The extra performance is gained by storing the callback handlers in a dictionary and

most importantly by not parsing the callback parameters if there is no handler registered

to receive it. There is a generic CallbackReceived event to record or pre-process all

incoming callbacks and to handle callbacks that are not well-known. For complete

description of the individual callbacks and usage remarks, see chapter 3.3.2 Callback

messages.

Sending commands

The architecture of LytroNetClient is based on the principles of WebClient, built on

the same layers of abstraction, so anyone familiar with the infrastructure for HTTP

communication should be able to communicate with the camera with ease. Overview of

the architecture is shown on Figure 43.

LytroCallbackSink sink = new LytroCallbackSink();
sink.SelfTimerTick += (sender, c) =>
 Console.WriteLine("Smile, {0} seconds to go!", c.Seconds);

sink.Process(stream); // connected network stream

LytroCallbackSink sink = new
 LytroCallbackSink(LytroCallbackSink.DefaultEndPoint);

sink.SelfTimerTick += (sender, c) =>
 Console.WriteLine("Smile, {0} seconds to go!", c.Seconds);

// either
sink.Process(); // the sink connects to the camera itself
// or
sink.ProcessAsync(CancellationToken.None); // asynchronous calls available

76

Figure 43. LytroNetClient architecture

At the top most level, there is the LytroNetClient class. As already noted, consumer of

the portable library must supply the connection management. Listing 7 presents the

most primitive implementation. A more polished version with connected/disconnected

events is part of the non-portable version.

Listing 7. Simple LytroNetClient implementation

With the client, taking pictures is as easy as calling new LytroNetClient().TakePicture().

Most of the commands described in chapter 3.3.3 Commands reference are accessible

through methods of the client, see Figure 44.

LytroNetClient

LytroRequest LytroResponse

LytroRawMessage

Stream

WriteTo ReadFrom

GetResponse

public class LytroNetClient : LytroNetClientPortableBase
{
 private Stream _stream;
 private TcpClient _client;

 protected override Stream GetStream()
 {
 if (_stream == null || !_stream.CanRead || !_stream.CanWrite)
 {
 _client = new TcpClient();
 _client.Connect("10.100.1.1", 5678);
 _stream = _client.GetStream();
 }

 return _stream;
 }

 protected override void OnException(Exception e, Stream stream)
 {
 if (_client != null)
 _client.Close();
 }
}

77

Figure 44. Classes for working wireless

The client also reports progress whenever data is being downloaded or uploaded, as

Listing 8 shows for the case of downloading files.40

Listing 8. Downloading files with progress monitoring

Underneath, the LytroNetClient uses LytroRequest and LytroResponses classes

(corresponding to WebRequest and WebResponse). When working at this layer,

developers need to create the request and then send it using GetResponse method over

the stream. However, in contrast to the HTTP protocol, the request must contain

expected length of the response content, so that must be passed in as well. Check the

client’s source code for extensive use of requests and responses, a simple example of

40 See Appendix B for list of files that can be found on the Lytro camera.

LytroNetClient lytro = new LytroNetClient();
lytro.DownloadBufferSize = 512; // only to demonstrate progress monitoring,
 this is a small file!

lytro.ProgressChanged += (sender, e) => Console.WriteLine(
 "{0:P0} % completed",
 (float)e.BytesTransferred / e.TotalBytesToTransfer);

byte[] data = lytro.DownloadFile("A:\\VCM.TXT");

File.WriteAllBytes("VCM.TXT", data); // save to disk

78

querying current battery level is pointed out in Listing 9. Again, the non-portable version

offers an asynchronous GetResponseAsync call.

Listing 9. LytroRequest and LytroResponse example

At the lowest level, both responses and requests work with the LytroRawMessage class,

which represents the raw data being sent over network, and enables two additional,

advanced scenarios. First one is constructing and observing commands that weren’t

documented yet, and the other one is building the server side of the network service. The

other noteworthy functionality of raw messaging are the static TraceHeader and

TraceData events that can be subscribed to for diagnostic and logging purposes of the

overall communication that is taking place.

3.5. Supplementary Software

Two desktop applications that build on top of the library are part of this thesis, the Lytro

Compatible Viewer (Figure 45) and Lytro Compatible Communicator (Figure 46).

Figure 45. Lytro Compatible Viewer

LytroRequest request = LytroRequest.Create(LytroCommand.QueryBatteryLevel);
LytroResponse response = request.GetResponse(stream, 4
 /* expected response payload */);

Debug.Assert(response.ContentLength == 4);

return BitConverter.ToSingle(response.Content, 0);

79

Figure 46. Lytro Compatible Communicator

The viewer can open and edit Lytro’s light field pictures and data contained in them,

manipulate the individual components, render different views of the light field etc. It also

provides shell integration so users can see picture thumbnails in the file explorer.

The communicator utilizes most of the commands listed above, features downloading

pictures from the camera without additional software, remotely triggering the shutter or

raw communication terminal.

Unfortunately implementation details of these applications are greatly out of topic of this

work, but readers are welcome to study the enclosed source code in case of doubts about

the library usage. User manuals are available on the media.

80

Figure 47. A Lytro camera mounted on panoramic tripod head designed and 3D
printed at Johannes Kepler University, with permission. Source: [2]

P
an

o
ra

m
ic

 A
p

p
lic

ati
o

n
s

4.

81

While Lytro Desktop reveals the basics of light field features, only few image-processing

algorithms are available in the field. For the panorama, i.e. merging slightly overlapping

images, the trivial solution is taking individual images rendered at given focus planes and

merging those using classical methods available for stitching 2D images. Institute of

Computer Graphics at Johannes Kepler University in Linz41 first published results using

this method in 2012 [26].

However, stitching prerendered images does not preserve the light field itself, i.e. the

directional information captured in the pictures. This method suffers from all the

problems the classical image stitching has and introduces new artefacts e.g. during

refocusing [2]. The same authors recently published paper on true light field merging

applied to 360° panorama with constant roll and pitch angles of the camera [2], for which

they designed and published a panoramic tripod mount (Figure 47).

Let us focus on how the light field behaves on linear panoramas, that is with the same

constraints on roll and pitch angles, but with translating the camera along one axis.

4.1. Motivation

Imagine three points on the optical axis, at various distance from the main lens. From the

theory in the first chapter, we know that the image on sensor will be similar to the one

depicted on Figure 48.

↑
𝑢
↓

 ← 𝑥 →

Figure 48. Three points, base UX view

Simulations show that if the sensor moves in the direction perpendicular to the optical

axis (i.e. the distances between planes containing the points and the lens plane remain

constant), a shifted images will be captured as shown on Figure 49.

41 http://www.jku.at/cg/

http://www.jku.at/cg/

82

↑
𝑢
↓

↑
𝑢
↓

 ← 𝑥 → ← 𝑥 →

Figure 49. Three points, shifted UX view

Standard methods such as cross-correlation could then be used to register the images

together, the desired result being Figure 50.

↑
𝑢
↓

 ← 𝑥 →

Figure 50. Three points, merged UX view

Couple of interesting things are apparent from the merged view. The pixels at top right

and bottom left cannot be obtained when moving the sensor as described. They

represent rays coming from directions that would require either bigger aperture and/or

sensor, or camera rotation. On one side, this could help reducing the space that needs to

be searched when registering images, on the other side it limits what features will the

merged light field offer.

4.2. Derivation

We have shown in chapter 1.2.3 Direction sampling that individual points in the scene

form lines with constant slope and in chapter 1.4.2 Sensor equations that we can treat

the image under micro lens array as rasterization of that line. Although the equation for

line was derived for a point on the optical axis only, it immediately follows that for

off-axes points, the line will be offset as well (for illustration see Figure 51).

83

Figure 51. Position of single off-axis point on sensor from different camera locations

The fact that the UX view consists of overlapping lines whose relative position and slope

does not depend on the camera translation in question makes registering the respective

UX images a well-defined operation using translation transformation only.

Imagine rays coming from infinity through the main lens (Figure 52).

Figure 52. Rays from infinity

All rays coming from infinity meet at focal point of the lens. This point is then imaged

through the microlenses and we already know this results in a line in the UX view.

Regardless of how the camera is moved in direction perpendicular to the optical axis, the

rays from infinity still meet at the same point. Indeed, in traditional photography, if

camera is being moved e.g. horizontally, objects near the camera move faster in the

image than more distant objects, and eventually the scene at infinity stays identical all

the time.

𝑦𝑖 (position of point’s image 𝐼 on sensor)

𝑦𝑜 (camera shift)

𝑦𝑖 + 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 = −
𝑠𝑖

𝑠𝑜

𝑦𝑜

𝑦𝑜𝑓𝑓𝑠𝑒𝑡

𝑦𝑜𝑓𝑓𝑠𝑒𝑡 ⋅
𝑠𝑜

𝑠𝑖

84

Back to our single point example, rays coming from infinity form the same line, with the

same slope and same position, regardless the camera movement. It follows that if we

want to register such two images, these lines must come aligned. Hence, in case of camera

translation, all images must lie on this line of infinity, leaving only one dimension to

search. For given camera parameters, we even know the line in advance:

𝑘 = tan 𝜑 = −
𝑠𝑖

𝑠𝑜
= −

𝑓𝑚𝑙𝑎

𝑑 − 𝑓𝑙𝑒𝑛𝑠

It is also easy to see from Figure 51 that we can map the translation of camera 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 to

the shift in images 𝑦𝑘 along the line using Pythagorean theorem,

𝑦𝑘 = √𝑦𝑜𝑓𝑓𝑠𝑒𝑡
2 ⋅

𝑠𝑜

𝑠𝑖
+ 𝑦𝑜𝑓𝑓𝑠𝑒𝑡

2 = 𝑦𝑜𝑓𝑓𝑠𝑒𝑡√
𝑑 − 𝑓𝑙𝑒𝑛𝑠

𝑓𝑚𝑙𝑎
+ 1 .

The above steps apply in 4D too, reducing the search space to one or two dimensions

only, depending on whether we allow translations in horizontal or vertical directions

only, or in both.

4.3. Limitations

For linear panoramic applications, the missing data restricts available rendering options

of the complete scene.

Figure 53. Linear panorama performance

For example, the yellow lines on Figure 53 show a row needed for chosen parallax view

(cf. Figure 25) for full light field data on the left and for the light field data of linear

panorama on the right. The combined light field does not provide views of whole

panorama from different directions, because the rays coming from acute angles were not

captured.

← 𝑥 → ← 𝑥 →

↑
𝑢
↓

↑
𝑢
↓

85

Similarly, we know the slope of line corresponds to the distance in front of camera. The

blue lines denote the nearest and farthest distance at which the image can be focused

without any loss of information.

Note that if we were interested only in a subset of the panorama (e.g. user panning

through it), full features might still be available, subject to size of the viewport. More

interestingly, we have shown that the line of infinity depends on camera parameters,

most notably on the distance between main lens and the microlens array. Therefore, if

the camera allows changing this distance (either by choosing the initial focused distance

or by zooming, both of which Lytro camera provides), we can obtain panorama with

different slope and then register the two panoramas to cover some of the missing pieces,

see Figure 54 for illustration of this principle.

Figure 54. Registering multipe panoramas

It is important to note that we have built the assumption of well-defined registration

based on ideal optics and ray projections, while in real cameras, the UX grid will be non-

trivially deformed. See the Ren Ng’s work [1] for methods of correcting such errors.

4.4. Super-resolution

While the results render the linear panorama as less than ideal application, the super-

resolution algorithms could be applied to light fields with promising success. In

traditional digital photography, super-resolution or super-resolution image

reconstruction is a problem of obtaining a higher-resolution image from multiple low-

resolution images of the scene, with the key assumption that there is a shift between the

low-resolution images and we are able to detect this shift with subpixel accuracy [27].

Formally, the observation model is defined as

𝑦𝑘 = 𝑫𝑩𝑘𝑴𝑘�⃗� + �⃗⃗�𝑘 for 1 ≤ 𝑘 ≤ 𝑝 ,

where �⃗� is the ideal high-resolution image, modified by the warp matrix 𝐌𝑘

(representing translation, rotation etc. of the camera), degraded by the blur matrix 𝐁𝑘

(motion blur, optical errors etc.) and downsampled by the sensor as modelled by the

matrix 𝐃. �⃗⃗� represents an additive noise and 𝑘 denotes the individual low-resolution

86

images from the set of 𝑝 images available. The task is to find �⃗� given set of such equations

for 1 ≤ 𝑘 ≤ 𝑝. An overview of various approaches for solving this problem is given in the

IEEE Signal Processing magazine [27].42

The light field photography, inherently capturing a scene from multiple directions, is a

great candidate for increasing spatial resolution by means of the super-resolution

methods, and already has been subject to an active research in the field [28]. Lytro must

be also taking advantage of this technique, bringing 330 microlenses to the final

resolution of 1080 pixels.

To my knowledge though, no publication so far considered registering multiple light

fields as suggested in the previous chapter, to increase both spatial and directional

information. While improving the spatial resolution has well-known effect of providing

more detail in the scene, increasing the directional resolution would allow finer control

of the focused distance and enable further decrease of the depth of field.

4.5. Future work

Another not really well described area are the visual effects of lower resolution or less

data in either spatial or directional domain but not in the other. If there are parts in the

image with less or more information in one of the domains, what artefacts will appear in

the image and when? Can microlens arrays with lenses of variable size, focal length and

other parameters provide additional value?43

Aberrations and other errors prevalent in real-world acquisition of light fields

complicate theoretical research and reproducible experiments in the field. Synthetic

light fields could help, but little options are currently available to public. For consuming

light fields, the Stanford Computer Graphics Laboratory published its LFDisplay

software.44 The MIT Media Lab made available couple of POV-Ray generated light field

pictures45 but has not published the script itself. Implementing light field cameras in

popular rendering engines would definitely be useful and challenging task.

42 The whole May 2003 issue of the magazine is dedicated to the topic of super-resolution.
43 Lytro suggests some configurations in one of their patents [32] and Raytrix uses different
focal lengths in their multi-focus plenoptic camera to extend the depth of field [33].
44 http://graphics.stanford.edu/software/LFDisplay/
45 http://web.media.mit.edu/~gordonw/SyntheticLightFields/

87

Conclusion
The aim of the work was to become familiar with the physics of light field photography

and various rendering techniques needed to process the digital light field images. The

work describes in detail how the light field looks like and proves that recording it

through micro lens array is well defined and can be used the way that it is being used in

other, advanced works. The most common rendering operations (refocusing, depth of

field and parallax) are explained and illustrated. Overall, the work uses 2D cases where

possible to demonstrate the topics discussed, which is also rarely seen in related works.

Latest and emerging hardware was summarized as well as the ongoing research in other

usages of the light field, with couple of novel ideas suggested, too.

The main contribution of this work is the description of the Lytro camera, the file formats

and communication protocols it uses, packaged into a .NET portable class library. Two

desktop applications built on the library are included, the light field picture viewer with

editing capabilities and the communicator to interact with the camera over WiFi, with

the source code available on the accompanying media.

This is the first time similar software and developer library for the Lytro camera is

released. Some of the features (e.g. remotely triggering the shutter) are not available in

the official software at all, despite their importance in research applications. Similarly,

the camera’s firmware image was obtained and is for the first time available on the

accompanying media for additional examination together with instructions for manual

firmware update, which opens completely new area of possibilities.

This work is the first step of enabling the use of consumer light field cameras in further

research and the response and support from various universities and research

institutions over the world so far suggests it is a welcome contribution. Readers can find

up-to-date software, documentation and analysis at http://lytro.miloush.net/.

Finally, the options of linear panoramas were analysed. It is apparent that the impact of

light fields in these panoramas is limited. Still, considerable performance improvements

are available for the registration, which calls for effective, multiple light field super-

resolution algorithms to be developed.

Light field technology is currently experiencing boom in both consumer market and

research. I hope that the hardware manufacturers will catch up soon and users will find

value in the core essence of light fields – capturing as much information in the scene as

possible – rather than celebrating cheap visual tricks like refocusing and depth maps.

http://lytro.miloush.net/

88

Bibliography

[1] R. Ng, Digital Light Field Photography, Stanford University, 2006.

[2] C. Birklbauer and O. Bimber, “Panorama Light-Field Imaging,” in Eurographics

2014 Proceedings, Strasbourg, 2014.

[3] F. E. Ives, “Parallax stereogram and process of making same”. United States of

America Patent 725567, 14 April 1903.

[4] J. Spoel, Artist, Damesgezelschap bekijkt stereoscoopfoto's. [Art]. Rijksmuseum

Amsterdam, 1868.

[5] G. Lippman, “Épreuves réversibles. Photographies intégrales.,” Comptes Rendus de

l'Académie des Sciences, vol. 9, no. 146, pp. 446-451, 2 March 1908.

[6] T. Georgiev, “100 Years Light-Field,” 2008. [Online]. Available:

http://www.tgeorgiev.net/Lippmann/100_Years_LightField.pdf.

[Accessed 27 May 2014].

[7] E. Stoykova and V. Sainov, “Institute of Optical Materials and Technologies,”

[Online]. Available: http://www.clf.bas.bg/page_06/Integral_Imaging.pdf.

[Accessed 6 May 2014].

[8] M. Levoy and P. Hanrahan, “Light Field Rendering,” in SIGGRAPH '96, 1996.

[9] S. J. Gortler, R. Grzeszczuk, R. Szeliski and M. F. Cohen, “The Lumigraph,” in

SIGGRAPH '96, 1996.

[10] M. Faraday, “Thoughts on Ray-vibrations,” The London, Edinburgh and Dublin

Philosophical Magazine and Journal of Science, vol. 28, no. 188, pp. 345-350, May

1846.

[11] A. Gershun, The Light Field, Moscow, 1939.

[12] E. H. Adelson and J. R. Bergen, “The Plenoptic Function and the Elements of Early

Vision,” Computational Models of Visual Processing, pp. 3-20, 1991.

[13] A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics, Wiley Series

in Pure and Applied Optics ed., London: J. Wiley, 1975.

89

[14] J. Košecká, Y. Ma, S. Soatto and R. Vidal, Multiple-View Geometry for Image-Based

Modeling, Los Angeles: Siggraph Course #23, 2004.

[15] Lytro, Inc., “The Science Inside Living Pictures,” 5 December 2011. [Online].

Available: http://blog.lytro.com/post/57720255142/the-science-inside-living-

pictures. [Accessed 30 May 2014].

[16] M. Hiramoto, Y. Ishii and Y. Monobe, “Light Field Image Capture Device and Image

Sensor”. United States of America Patent US 2014/0078259, 20 March 2014.

[17] V. Boominathan, K. Mitra and A. Veeraraghavan, “Improving Resolution and

Depth-of-Field of Light Field Cameras Using Hybrid Imaging System,” in IEEE

International Conference on Computational Photography, Santa Clara, 2014.

[18] K. Marwah, G. Wetzstein, Y. Bando and R. Raskar, “Compressive Light Field

Photography using Overcomplete Dictionaries and Optimized Projections,” in

SIGGRAPH 2013 Conference Proceedings, New York, 2013.

[19] L. Hardesty, “Multiview 3-D photography made simple,” MIT News Office, 19 June

2013. [Online]. Available: http://newsoffice.mit.edu/2013/multiview-3d-

photography-made-simple-0619. [Accessed 27 May 2014].

[20] C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu and H. H. Chen, “Programmable Aperture

Photography: Multiplexed Light Field Acquisition,” ACM Transactions on Graphics,

vol. 27, no. 3, 2008.

[21] J. Sun, N.-N. Zheng and H.-Y. Shum, “Stereo Matching Using Belief Propagation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp.

787-800, 2003.

[22] K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R.

Mullis and S. Nayar, “PiCam: An Ultra-Thin High Performance Monolithic Camera

Array,” in SIGGRAPH 2013 Conference Proceedings, Hong Kong, 2013.

[23] M. Levoy, R. Ng, A. Adams, M. Footer and M. Horowitz, “Light Field Microscopy,” in

SIGGRAPH 2006 Conference Proceedings, Boston, 2006.

[24] Lytro Inc, “Science Inside | Lytro,” [Online]. Available:

http://www.lytro.com/science_inside. [Accessed 27 4 2012].

90

[25] H. S. Malvar, L.-W. He and R. Cutler, “High-Quality Linear Interpolation for

Demosaicing of Bayer-Patterned Color Images,” in International Conference of

Acoustic, Speech and Signal Processing, 2004.

[26] C. Birklbauer and O. Bimber, “Panorama light-field imaging,” in ACM SIGGRAPH

2012 Talks, Los Angeles, 2012.

[27] S. C. Park, M. K. Park and M. G. Kang, “Super-Resolution Image Reconstruction: A

Technical Overview,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21-36,

2003.

[28] T. Georgiev, G. Chunev and A. Lumsdaine, “Superresolution with the Focused

Plenoptic Camera,” in SPIE Electronic Imaging, San Francisco, 2011.

[29] D. G. Dansereau, O. Pizarro and S. B. Williams, “Decoding, Calibration and

Rectification for Lenselet-Based Plenoptic Cameras,” in Computer Vision and

Pattern Recognition (CVPR), IEEE Conference on, Portland, 2013.

[30] H. Choi, S.-W. Min, S. Jung, J.-H. Park and B. Lee, “Multiple-viewing-zone integral

imaging using a dynamic barrier array for three-dimensional displays,” Optics

Express, vol. 11, no. 8, pp. 927-932, 2003.

[31] M. Rose, M. Baierl, A. Koch and K. Bobey, “Compact Digital Pinhole Camera,” in

Deutschen Gesellschaft für angewandte Optik Proceedings 2012, 2012.

[32] Y.-R. Ng, P. M. Manrahan, M. S. Levoy and M. A. Horowitz, “Imaging arrangements

and methods therefor”. United States of America Patent US 7,936,392 B2, 3 May

2011.

[33] C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,”

in Proceedings SPIE 8291, Human Vision and Electronic Imaging XVII, 829108,

California, 2012.

91

Appendix A. List of acquired MLA configurations

The critical part when working with light field pictures is calibration – in the case of

microlens arrays, determining the location of individual microlenses. Scientists having

access to the camera can calibrate it manually by taking an image through white diffuser

or of white scene, or using such images found in the Lytro calibration data set [29].

However, this approach is unavailable for processing images from unknown cameras,

where the calibration data is not available, yet still the Lytro Desktop can render these

images without noticeable loss of quality. The software that is part of this thesis

therefore focused on interpreting the image metadata in a way that would allow to obtain

microlens positions within reasonable accuracy.

To verify the results, a test set of images from several Lytro users and few online sites

were collected. The test set, anonymized, is available on the accompanying medium. A

list of microlens array parameters as reported by the metadata follows:

picture
rotation
[𝒎𝒓𝒂𝒅]

offset [𝝁𝒎] pitch [𝝁𝒎] scale
x y z lens pixel x y

01.1 -6.0540 +3.6736 +2.3655 25 13.899 1.400 1 1.0004
01.2 -6.0491 +3.6726 +2.3695 25 13.899 1.400 1 1.0005
01.3 -6.0389 +3.6682 +2.3503 25 13.899 1.400 1 1.0004
02 -4.8322 -1.3038 -4.6239 25 14.000 1.400 1 1.0002
03 -2.6991 -2.0778 -11.221 25 13.899 1.400 1 1.0005
04 -2.5191 -3.9254 -01.008 25 13.899 1.400 1 1.0004
05 -1.9234 -1.5833 -13.640 25 14.000 1.400 1 1.0002
06.1 -1.6539 -6.0344 -7.0080 25 13.899 1.400 1 1.0008
06.2 -1.6539 -6.0344 -7.0080 25 13.899 1.400 1 1.0008
07.1 -1.3552 +2.7154 -1.3819 25 14.000 1.400 1 1.0003
07.2 -1.3335 +2.7641 -1.4393 25 14.000 1.400 1 1.0002
08 -0.9115 +1.1833 +0.4784 25 14.000 1.400 1 1.0004
09 -0.8710 -0.0093 -2.3828 25 13.899 1.400 1 1.0005
10 -0.4326 +2.4290 -5.5333 25 13.899 1.400 1 1.0006
11 -0.2843 -5.3041 -1.1149 25 14.000 1.400 1 1.0002
12.1 -0.2815 -3.5040 -1.6299 25 13.899 1.400 1 1.0004
12.2 -0.2815 -3.5040 -1.6299 25 13.899 1.400 1 1.0004
12.3 -0.2712 -3.5089 -1.6371 25 13.899 1.400 1 1.0005
12.4 -0.2607 -3.5433 -1.6147 25 13.899 1.400 1 1.0005
13 -0.0542 -5.9970 -1.1573 25 13.899 1.400 1 1.0007
14 +0.7737 +0.4470 -1.7432 25 13.899 1.400 1 1.0005
15 +1.3410 -3.3231 +1.2399 25 13.899 1.400 1 1.0004
16.1 +1.9291 -2.7139 +0.5660 25 13.899 1.400 1 1.0005
16.2 +1.9291 -2.7139 +0.5660 25 13.899 1.400 1 1.0005
16.3 +1.9391 -2.7125 +0.5629 25 13.899 1.400 1 1.0005
16.4 +1.9391 -2.7125 +0.5629 25 13.899 1.400 1 1.0005
17 +1.9927 -6.5979 +2.5568 23 13.899 1.400 1 1.0008
18 +2.2094 -8.3793 +2.5161 25 13.899 1.400 1 1.0006
19 +2.9010 -1.2626 -6.3853 25 13.899 1.400 1 1.0016
20.1 +3.5985 +2.9764 -0.7565 25 14.000 1.400 1 1.0003
20.2 +3.6050 +2.9653 -0.7697 25 14.000 1.400 1 1.0003
21 +6.8376 -6.3311 -1.1998 25 14.000 1.400 1 1.0005
22 +8.7578 -5.1163 -8.1219 25 14.000 1.400 1 1.0001

92

Pictures with the same major numbers come from the same camera. Different values for

the same camera suggests that the metadata contains best-fit approximate generated on

the fly rather than values obtained during the calibration process.

Minimum and maximum values are highlighted. It is worth pointing out that the

rotations of the microlens array relative to the sensor itself are spanning very large

values and cannot be ignored. For example, a rotation of −0.006 radians of picture 01.1

on 3,280 px resolution causes shift of 20 px, twice the size of the microlens.

See the source code for MicroLensCollection for computation of the microlens

centres used by the accompanying software.

93

Appendix B. List of files on Lytro camera

The following files were discovered on the camera’s internal storage as of firmware

version v1.2.2 (build v1.0a208). Not all files are present on all cameras (e.g. various log

files) and the list might not be exhaustive as its source was firmware analysis rather than

storage dump. Readers can download these files for further research with the help of

supplied software over wireless connection.

The storage uses FAT file system.

A:\ for firmware’s internal use, USB descriptors and mounted media, media assets,

camera model information, version compatibility

 assets

 📄 asset-atlas-deDE.img

 📄 asset-atlas-deDE.txt

 📄 asset-atlas-enUS.img

 📄 asset-atlas-enUS.txt

 📄 asset-atlas-frCA.img

 📄 asset-atlas-frCA.txt

 📄 assets.txt

 📄 menus.txt

 LUA

 📄 CHARGETO.LUA

 📄 MENU.LUA

 MCU

 📄 FIREFLY.TXT.BIN

 media

 📄 default.bin

 MODELS

 📄 MODEL.TXT

📄 ADC.BIN

📄 AE.BIN

📄 AF.BIN

📄 AVIMODELSTR.BIN

📄 AVISTRLSTR.BIN

📄 AVISTRNSTR.BIN

📄 AWBCFG.BIN

📄 AWBSETTINGS.BIN

📄 BASENLGF0.BIN

📄 BASENLGF2.BIN

📄 COPMASKING.BIN

📄 COPNMRLOOP1.BIN

📄 COPQTTABLE.BIN

📄 COPTRANSFORM.BIN

📄 CTLUT1.BIN

📄 DLUT.BIN

📄 EPS_GCP0.BIN

📄 Eps_XSCL.BIN

📄 FIRMWARE.TXT

📄 GAMMADDE1.BIN

📄 GAMMALUT0.BIN

📄 LCLUT0.BIN

📄 MEDIAFORMAT.BIN

📄 UsbDevDesc.BIN

📄 UsbModeDesc.BIN

📄 VCM.TXT

📄 WAVEEXIF.BIN

📄 YLUT.BIN

B:\ operational storage, file system check logs, user settings, usage statistics

 T2CALIB

 📄 BIPOS.BIN

 wifi

 📄 settings.txt

📄 ASERIAL.TXT

📄 CALREFSHA1.TXT

📄 FSCK.LOG

📄 HWSERIAL.TXT

📄 LENSODOMETER.TXT

📄 SETTINGS.TXT

📄 STATE.TXT

📄 USER.TXT

94

C:\ calibration data, flat field images, partition read-only

 B1CALIB

 📄 TIMESTAMP.TXT

 CALIB

 📄 ACC.TXT

 📄 BATTERY.TXT

 📄 CAPSLIDER.TXT

 📄 EMMC_INFO.TXT

 📄 HISTORY.TXT

 📄 HW_VERSION.TXT

 📄 ITE_H.TXT

 📄 ITE_V.TXT

 📄 SENSORID.TXT

 📄 THERMISTOR.TXT

 📄 THROUGHPUT.TXT

 📄 TOUCHPANEL.TXT

 📄 WIFI_MAC_ADDR.TXT

 L50CALIB

 📄 MLACALIBRATION.TXT

 media

 📄 default.bin

 MODELS

 📄 MODEL.TXT

📄 ADC.BIN

📄 AE.BIN

📄 AF.BIN

📄 AVIMODELSTR.BIN

📄 AVISTRLSTR.BIN

 DEVICES

 📄 ACCELEROMETER.TXT

 📄 BOARDS.TXT

 📄 CAPSLIDER.TXT

 📄 COLOR.TXT

 📄 EMMC.TXT

 📄 GASGAUGE.TXT

 📄 LENS.TXT

 📄 MLA.TXT

 📄 SENSOR.TXT

 📄 THERMISTORS.TXT

 📄 TOUCHPANEL.TXT

 📄 WIFI.TXT

 T1CALIB

 📄 GCFN_ZZZZ_FFFF.BIN1

 📄 MLACALIBRATION.TXT

 📄 MOD_0000.RAW2

 📄 MOD_0000.TXT2

 T2CALIB

 📄 BIPOS.TXT

 📄 HOTPIXEL.BIN

 📄 HOTPIXEL.RAW

 📄 HOTPIXEL.TXT

📄 DEFECTIVEPIXEL0.BIN

📄 FSP.BIN

📄 LSCLUT0.BIN

📄 LSCLUT1.BIN

1 ZZZZ is for zoom step, FFFF for focus step; an example set of combinations:

0100 0115 0155 0230 0360 0490 0620 0740 0860 0982

0835 0913 1067 1215 1219 1099 0957 0829 0713 0603

1032 1080 1238 1311 1313 1253 1082 0904 0763 0653

1229 1247 1409 1407 1407 1407 1207 0979

1426 1414

2 files range from 0000 through 0061

I:\ user data (pictures), crash and error logs

 DCIM

 100PHOTO1

 📄 IMG_0000.???1,2

📄 CRASH000.LOG1

📄 err.log

📄 RTCERROR.LOG

1 depending on the number of items, number might grow
2 available extensions are 048, 128, 133, INF, JPG, RAW, STK, TXT

95

Appendix C. Accompanying media

A DVD with the following structure complements this thesis:

 Camera

 Calibration Compression calibration data from two cameras.

 Firmware Firmware version v1.0a208. This is a stream format including
metadata, which can be directly uploaded to a camera.

 Storage Files downloaded from internal storage of two cameras.
One running firmware v1.0a208, includes full T1 calibration.
Other one running firmware v1.0a204.

 Literature Bibliography sources when available.

 Pictures

 Processed Sample pictures processed with the Lytro Desktop Software.

 Raw Acquired raw light field pictures, see Appendix A for their
metadata overview. Same numbers group pictures from the
same camera. Files can be opened either using the supplied
software or the Lytro Desktop software.

 Software Includes binaries of the library (chapter 3.3.3), the
accompanying software (Lytro Compatible Viewer and Lytro
Compatible Communicator, ref. chapter 3.5) and their user
manuals.

 Source Source codes for the library and accompanying software.

 Supplementary 2D light field raytracing software that generated illustrations
in this thesis.

 Support Microsoft .NET Framework 4.5.2 Offline Installer
.NET Portable Class Library Profile1

You might want to:

💡 Try the Lytro Compatible Viewer

► Ensure you have Microsoft .NET Framework 4.5 installed.

If not, use the installer in Software\Support directory.

► Run the viewer from Software directory.

► Try opening some of the sample pictures in Pictures directory.

► See the user manual in Software directory for detailed description of

available features and user interface.

96

💡 Explore how the light field works

► Ensure you have Microsoft .NET Framework 4.5 installed.

If not, use the installer in Software\Support directory.

► Run the LightFieldGeometry from Software\Supplementary directory.

► Play with the camera parameters and see how it affects the captured image.

💡 Control your Lytro camera wirelessly

► Ensure you have Microsoft .NET Framework 4.5 installed.

If not, use the installer in Software\Support directory.

► Run the communicator from Software directory.

► Follow the user manual in the same directory to connect to the camera and

learn what the software can do.

► See Appendix B on what files can be downloaded from the camera.

💡 Check your software works with real-world pictures

► Use the acquired set in Pictures\Raw directory.

💡 Use the library to build your software

► If you need to use the .NET Portable Class Library, add reference to the

LytroCompatibleLibrary.dll assembly in the Software directory.

► If you are building desktop software and want to take advantage of

asynchronous methods and file system, add reference to the

LytroCompatibleLibrary.Desktop.dll assembly instead.

► Check the chapter 3.4 for documentation and examples for the library. You

can also visit http://lytro.miloush.net/ for even more examples and newer

releases of the library.

http://lytro.miloush.net/

97

💡 Build the supplied software yourself

► Ensure you have Visual Studio 2013 or newer installed.

If not, install it from www.visualstudio.com.

► Note: If you want to build the .NET Portable Class Library for the original set

of platforms, you need to overwrite the Profile1 directory in

%PROGRAMFILES(X86)%\Reference Assemblies\Microsoft\Framewo

rk\.NETPortable\v4.0\Profile with the one in Software\Support

directory. Otherwise, you would be asked to upgrade the portable library

project and miss the ability to target Windows Phone 7, Silverlight 4 and

Xbox 360.

► If you are copying the source code of the media, make sure you include the

InsertIcons.exe from Software\Support directory which is used

during the build process.

💡 Reveal further secrets about the Lytro camera

► Study the enclosed firmware release under Camera\Firmware directory.

► Publish your findings!

http://www.visualstudio.com/

98

Appendix D. Imprint

Printed version of the thesis contains inserted copies of the following press articles:

Inside the Lytro

published on February 29, 2012 in New York Times

http://www.nytimes.com/interactive/2012/03/01/business/inside-the-lytro.html

Forget the autofocus: how Lytro cameras work

published on June 15, 2012 in Wired magazine

http://www.wired.co.uk/magazine/archive/2012/07/start/photos-in-full-focus

New Thing in Photography

published on May 24, 1908 in New York Times

http://query.nytimes.com/mem/archive-

free/pdf?res=9D07E5D8143EE233A25757C2A9639C946997D6CF

http://www.nytimes.com/interactive/2012/03/01/business/inside-the-lytro.html
http://www.wired.co.uk/magazine/archive/2012/07/start/photos-in-full-focus
http://query.nytimes.com/mem/archive-free/pdf?res=9D07E5D8143EE233A25757C2A9639C946997D6CF
http://query.nytimes.com/mem/archive-free/pdf?res=9D07E5D8143EE233A25757C2A9639C946997D6CF

	Contents
	Introduction
	Disclaimer
	1.1. History
	1.2. Light Field
	1.2.1. Definitions
	Light Field in 2D
	Light Field in 4D
	Thin lens

	1.2.2. Image formation
	1.2.3. Direction sampling

	1.3. Acquisition Techniques
	1.3.1. Camera arrays
	1.3.2. Microlens arrays
	1.3.3. Emerging methods

	1.4. Processing and Rendering
	1.4.1. Rendering
	1.4.2. Sensor equations
	1.4.3. Parallax
	1.4.4. Depth of field
	1.4.5. Refocusing
	1.4.6. Depth map

	2.1. Software Imitations
	2.2. Pelican Imaging
	2.3. Lytro
	2.4. RayTrix
	2.5. Light field in other applications
	3.1. Inside the Camera
	3.1.1. Hardware

	3.2. File Formats
	3.2.1. Raw pictures (raw.lfp)
	Raw Sensor Data component
	Frame Metadata component
	Private Metadata component

	3.2.2. Prerendered pictures (stack.lfp, stacklq.lfp)
	One or more prerendered images
	Depth Lookup Table component

	3.2.3. Depth maps (dm.lfp)
	Depth Lookup Table component
	Depth Confidence Table component

	3.2.4. Calibration files (data.C.#, *.calib)

	3.3. On the Air
	3.3.1. Available services
	Available UDP services
	Open TCP ports

	3.3.2. Callback messages
	HeartbeatTick
	SelfTimerTick
	ShutterPressed
	NewPictureAvailable
	LikedChanged
	PictureDeleted
	AllPicturesDeleted
	ZoomLevelChanged
	CreativeModeChanged
	ShutterSpeedChanged
	IsoSensitivityChanged
	NeutralDensityFilterChanged
	Other messages

	3.3.3. Commands reference
	Load hardware info (C2 00 00)
	Load file (C2 00 01)
	Load picture list (C2 00 02)
	Load picture (C2 00 05)
	Load calibration data (C2 00 06)
	Load compressed raw picture (C2 00 07)
	Download (C4 00)
	Upload (C5 00)
	Query content length (C6 00 00)
	Query camera time (C6 00 03)
	Query battery level (C6 00 06)
	Take a picture (C0 00 00)
	(C0 00 02)
	Set camera time (C0 00 04)
	Write firmware (C1 00)

	3.4. Lytro Compatible Library
	3.4.1. Working with files
	3.4.2. Working with metadata
	3.4.3. Working with images
	3.4.4. Accessors
	3.4.5. Communicating with camera
	Receiving callbacks
	Sending commands

	3.5. Supplementary Software
	4.1. Motivation
	4.2. Derivation
	4.3. Limitations
	4.4. Super-resolution
	4.5. Future work

	Conclusion
	Bibliography
	Appendix A. List of acquired MLA configurations
	Appendix B. List of files on Lytro camera
	Appendix C. Accompanying media
	Appendix D. Imprint

