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Název práce: Výpočetní fotografie ve světelném poli a aplikace na panoramatické 

snímky 

Autor: Jan Kučera 

Katedra (ústav): Kabinet software a výuky informatiky 

Vedoucí práce: Ing. Filip Šroubek, Ph.D. 

Abstrakt: Digitální fotografie se neustále snaží dohnat svůj analogový protějšek 

a zaznamenávání směru světla se v poslední době stalo předmětem 

tohoto úsilí. První a doposud stále jediný fotoaparát pro běžné 

uživatele, který zaznamenává světelné pole – Lytro – se na trhu objevil 

v roce 2011. Tato práce seznamuje čtenáře s teorií světelného pole a 

jeho zaznamenáváním se zvláštním důrazem na ilustraci zmiňovaných 

principů ve 2D, shrnuje současný hardware a probíhající výzkum 

v této oblasti a předkládá analýzu Lytro fotoaparátu samotného. 

Nabízí popis uzavřených souborových formátů a používaných 

protokolů, otvírajíc tak prostor pro využití fotoaparátu v dalším 

výzkumu. Důležitým přínosem práce je přenosná .NET knihovna pro 

vývojáře, a součástí je i na ní založený editor souborů a program pro 

bezdrátovou komunikaci s fotoaparátem. Nakonec je popsaná teorie 

využita k diskusi jejích důsledků pro registraci světelných polí a 

lineární panorama. 

Klíčová slova: světelné pole, výpočetní fotografie, registrace obrazu, mikročočky, 

Lytro 
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Title: Computational photography of light-field camera and application to 

panoramic photography 

Author: Jan Kučera 

Department: Department of Software and Computer Science Education 

Supervisor: Ing. Filip Šroubek, Ph.D. 

Abstract: The digital photography is still trying to catch-up with its analogous 

counterpart and recording light direction is one of the most recent 

area of interest. The first and still the only one light-field camera for 

consumers, the Lytro camera, has reached market in 2011. This work 

introduces the light-field theory and recording with special emphasis 

on illustrating the principles in 2D, gives an overview of current 

hardware and ongoing research in the area and analyses the Lytro 

camera itself, describing the closed file formats and protocols it uses 

so that further research can be conducted. An important contribution 

of the work is a .NET portable library for developers, supplemented by 

a file editor as well as an application for wireless communication with 

the camera based on the library. Finally, the theory is used to discuss 

implications for light-field registration and linear panoramas. 

Keywords: light field, computational photography, image registration, microlens, 

Lytro 
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Introduction 
When I was first reading through Ren Ng’s dissertation DIGITAL LIGHT FIELD 

PHOTOGRAPHY [1], I was astonished at the innovativeness of the idea contrasting the 

simplicity of physics behind it and the fact that anybody can easily convert their digital 

camera into a digital light field camera, given a piece of glass with small lenses. As 

repeated many times through the history, claims that no one would ever need sensors 

with more megapixels were proven wrong again.  

It turned out though, that the key piece of glass is extremely expensive, difficult to obtain 

and rarely reaching the dimensions required for this new application. Hence, I had to 

have one of the Ren Ng’s cameras, the Lytro camera. 

The Lytro camera is an affordable cutting-edge piece of hardware, but everything has its 

price — the platform is closed and the company is oriented towards consumer users. 

Lytro expressed their plans to “eventually provide open APIs for various parts of their 

picture experience”1 and even software with editing capabilities2 couple of months after 

the product release, but we still wait for this to happen. 

Also the ideas around light field turned out to be over hundred years old, spanning 

researchers from U. S. through Europe to Russia. The main contribution of the 

dissertation is processing the light fields in Fourier domain, generalization of the light 

field camera and solving technical but very important difficulties to move from a 

research idea to the commercial product. 

This thesis has two parts — theoretical and practical. In theory, it explains why things 

work the way they work, with strong emphasis on illustrative examples in 2D that should 

help understand the principles of light field to readers not skilled in the art. For the 

practical part, the aim was to try to understand the inner workings of Lytro camera and 

software so that the camera can be used for further research activities. The ultimate goal 

was to enable panoramic photography containing depth information of the scene. 

It would not be fair at this point to conceal the work of Bricklbauer et al. [2] who have 

very recently published a solution to the light field panorama problem for 360° scenes. 

Given that and the considerable success of revealing the details of Lytro camera, the work 

focuses more on the first two contributions. Nevertheless, the last chapter uses the 

theory to get an insight of how light fields would work with a different type of panoramas 

(restricted to translational movement of the camera) and suggests future applications. 

                                                             
1 http://support.lytro.com/entries/20552307 (originally posted on October 19, 2011) 
2 http://support.lytro.com/entries/20611761 (originally posted on October 27, 2011) 

http://support.lytro.com/entries/20552307
http://support.lytro.com/entries/20611761
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Disclaimer 
Neither myself personally nor the Charles University are affiliated with or endorsed by 

Lytro, Inc. company. The information herein presented is a result of reverse engineering 

the camera, its software, firmware and my understanding of related patents and is 

neither official nor confirmed. 

Using 3rd party software to communicate with the camera explicitly breaks its warranty3 

and can damage it irreversibly. Some of the commands presented in this work are not 

used in any official software and might be untested. Use at your own risk. 

 

 

                                                             
3 https://www.lytro.com/legal/warranty/ 

https://www.lytro.com/legal/warranty/
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Figure 1. Illustration from the 1903 patent application by F. E. Ives, one of the first 
ones exploiting the light field principles. 
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1.1. History 

The concept of light field photography, a recording of scene that contains not only 

intensity but also an information about the direction of individual rays, is over hundred 

years old. F. E. Ives, an U. S. invertor at Cornell University, patented his parallax 

stereogram in 1903. He uses vertical slivers to control which part of a photograph is 

viewed through which eye, allowing for an interleaved photograph to be percept as a 

three-dimensional image without any additional optical devices needed. The patent [3] 

also covers the process of making such stereograms based on the same principle, not 

unsimilar to the one used in present digital light field cameras (see Figure 1). It should 

be noted that stereograms were already popular at that time, but consisted of two side-

by-side images and required a special device, a stereoscope, to view them [4]. 

Many of us might have met light field photography in everyday life, be it early prints of 

3D postcards based on the very principle of F. E. Ives, lenticular sheets used in the more 

advanced xographs of 1970s, or ‘animated’ rulers and bookmarks for children still 

available today.4 One of the most prominent use of the direction of incoming light is the 

focusing process in photography. In classical 

photography, the split-screen and microprisms 

present on the focusing planes use light from 

different parts of the image to convert misfocus to 

spatial translation (shown on Figure 2), making it 

easier to focus correctly.5 Similar principle is used by 

the autofocus algorithms using phase detection, 

where image of the autofocus point hits from different 

directions a pair of single-line CCD or CMOS sensors and the relative shift of these images 

determines the amount of misfocus.6 

All the applications mentioned above, however, use only few directions to supply an 

additional feature, while this work focuses on directional information being a 

fundamental part of the image itself. It was Gabriel Lipmann in 1908 who first came with 

the idea that lots of small images from slightly different place, when summed, reconstruct 

the original scene, and he named this method integral imaging [5]. At that time the light 

                                                             
4 A comprehensive resource for postcard printing techniques and experiments through history 
would be the Metropolitan Postcard Club of New York City, particularly the Novelties chapter at 
http://www.metropostcard.com/techniques10.html. 
5 For more details on the optical background, see an article by Douglas A. Kerr available at 
http://dougkerr.net/Pumpkin/articles/Split_Prism.pdf.  
6 For interactive demonstration of this and other aspects of photography, check the applets of 
Stanford University available at http://graphics.stanford.edu/courses/cs178-10/applets. 

Figure 2. Split-screen and micro-
prisms on the focusing plane of 
classical camera. Source: YouTube 

http://www.metropostcard.com/techniques10.html
http://dougkerr.net/Pumpkin/articles/Split_Prism.pdf
http://graphics.stanford.edu/courses/cs178-10/applets/
https://www.youtube.com/watch?v=rnkib7FZ8S8
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field was being recorded on film and intended for viewing whole field by illuminating the 

film. Ives, Coffey, Dudnikov and others were later exploring and researching this idea 

further. This eventually led to the first digital light field camera in 1968 by Chutjian, 

seven years before the first classical digital camera by Kodak [6].7 A deep walkthrough 

of the history of integral imaging is beyond scope of this work and would be 

reduplicating the great work already done by others. Starting points for interested 

readers would be Todor Georgiev’s website8, archive of University of Maryland9 and 

INTEGRAL IMAGING slides by Stoykova & Sainov [7]. 

The Computer Science Department of Stanford University is pioneer in modern history 

of the light field, with Marc Levoy and Pat Hanrahan introducing the idea in their LIGHT 

FIELD RENDERING paper published in 1996 [8]. The rationale behind the paper is 

‘generating new views from arbitrary camera positions without depth information or 

feature matching, simply by combining and resampling the available images’ [8]. At that 

time, the light field was of interest to Microsoft Research as well, in whose paper it was 

called a Lumigraph [9]. Both defined the light field as a function of four parameters and 

couple of papers followed exploring the choices of the parameterisation. 

In 2006, Ren Ng submitted a Ph. D. dissertation to Stanford University titled DIGITAL 

LIGHT FIELD PHOTOGRAPHY [1], which is the basis for this thesis. In his work Ng suggests 

a simple model for the light field camera, analyses its performance and features. 

A microlenses array placed over standard digital camera sensor was used to build a 

working prototype of the camera and soon a start-up company, Lytro, Inc., was founded, 

producing the first light field cameras for consumer use. 

1.2. Light Field 

From physics point of view, different set of sources is usually cited referring to the light 

field. The major milestones would be Michael Faraday’s THOUGHTS ON RAY VIBRATIONS 

where he proposes that light should be too interpreted as a field [10], Gershun’s LIGHT 

FIELD, that introduces the term light field and formally defines it (although for the 

purposes of illuminating engineering) [11], and THE PLENOPTIC FUNCTION AND THE 

ELEMENTS OF EARLY VISION by Adelson and Bergen, which is a generic article defining a 

                                                             
7 Technically the recording layer was still a light sensitive emulsion, but the image was 
computer generated.  
8 http://www.tgeorgiev.net/ 
9 ftp://ftp.umiacs.umd.edu/pub/aagrawal/HistoryOfIntegralImaging/, most notable THE 

HISTORY OF INTEGRAL PRINT METHODS excerpt. 

http://www.tgeorgiev.net/
ftp://ftp.umiacs.umd.edu/pub/aagrawal/HistoryOfIntegralImaging/
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5D plenoptic function describing ‘everything that can be seen’ with references to 

psychophysical and physiological literature on vision [12]. 

For purposes of this thesis, however, light will be treated simply as a scalar value 

traveling along a ray, as is in the work of Ng. 

1.2.1. Definitions 
In all literature published so far, light field is explored in the context of a 4D space, which 

makes some principles difficult to illustrate and understand. For both educational and 

comprehensibility purposes, considerable attention will be paid to the light field in 2D 

space in this thesis too. 

Light Field in 2D 

As noted above, the light field photography is about recording direction from which the 

light is coming in addition to its intensity. Light field in 2D is therefore represented by 

one dimension for intensity and one for the direction. Based on the matrix methods in 

optics [13], the light ray hitting a plane is defined as 

𝑟 = [
𝑥
𝜃

], 

where 𝑥 is the distance from the optical axis and 𝜃 is the angle from that axis, measured 

counter-clockwise (ref. Figure 3). 

 

Figure 3. Light ray in 2D (angle parameterisation) 

The angle of a ray is also defined by two points on two different planes. There are two 

planes of special interest in a camera – the lens plane and the sensor plane. So any 

individual ray is also defined by 𝑢, the distance from optical axis at lens plane, and 𝑥, the 

distance from optical axis at sensor plane (see Figure 4). 

𝜃 

optical axis 

𝑥 

𝑟 

plane of interest 
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Figure 4. Light ray in 2D (planes parameterisation) 

It is easy to see that for a ray hitting the sensor plane, 

𝜃 = tan−1
𝑥 − 𝑢

𝑑
 

where 𝑑 is the distance between the lens plane and the sensor plane. 

Definition 1.1 (light field in 2D) 

Let 𝑈  and 𝑋  denote two planes intersecting an optical axis with nonzero distance 𝐹 

between them. The light field at the plane 𝑋 is defined as a function 𝐿𝐹(𝑥, 𝑢) giving the 

radiance of light ray coming through the plane 𝑈 at the distance 𝑢 from the optical axis 

and hitting the plane 𝑋 at the distance 𝑥 from the optical axis. 

Light Field in 4D 

The same principles apply to a 3D space with two dimensional planes intersecting the 

optical axis (cf. Figure 5). 

 

Figure 5. Light ray in 4D (planes parametrization) 

lens plane sensor plane 

𝑥 𝑢 

optical axis 

lens plane sensor plane 

optical axis 

𝑥 

𝑦 

𝑢 
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Therefore, the definition of light field in 4D is analogous to the Definition 1.1. 

Definition 1.2 (light field in 4D) 

Let 𝑈𝑉 and 𝑋𝑌 denote two planes intersecting an optical axis with nonzero distance 𝐹 

between them. The light field at the plane 𝑋𝑌  is defined as a function 𝐿𝐹(𝑥, 𝑦, 𝑢, 𝑣) 

giving the radiance of light ray coming through the plane 𝑈𝑉 at the distance (𝑢, 𝑣) from 

the optical axis and hitting the plane 𝑋𝑌 at the distance (𝑥, 𝑦) from the optical axis. 

Thin lens 

Thin lens approximation of camera and other lenses will often be used through this work, 

so for reference, its basic equations follow: 

 1

𝑠𝑜
+

1

𝑠𝑖
=

1

𝑓
 (Gaussian formula) 

 𝑥𝑜𝑥𝑖 = 𝑓2 (Newtonian formula) 

 𝑦𝑖

𝑦𝑜
= −

𝑠𝑖

𝑠𝑜
= −

𝑓

𝑥𝑜
= −

𝑥𝑖

𝑓
 (lateral magnification) 

where 

𝑠𝑜 is object distance from lens 

𝑠𝑖 is image distance from lens 

𝑓 is lens’ focal length 

𝑥𝑜 = 𝑠𝑜 − 𝑓 and 𝑥𝑖 = 𝑠𝑖 − 𝑓 

𝑦𝑜 is object distance from optical axis 

𝑦𝑖  is image distance from optical axis 

as depicted on Figure 6. 

 

Figure 6. Thin lens 

𝑦𝑜 

𝑦𝑖 

𝑓 𝑓 

𝑠𝑖 𝑠𝑜 

𝑥𝑜 𝑥𝑖 
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1.2.2. Image formation 
Let’s get some insight on how the light field looks inside. First, one might be interested 

how to render traditional image from it. In classical digital camera, where the direction 

of incoming light is not recorded, each pixel accumulates light from all directions. 

For one-dimensional sensor, this means 

𝐸𝐹(𝑥) = ∫ 𝐿𝐹(𝑥, 𝑢) 𝑑𝑢 

where 𝐸𝐹(𝑥) is the total irradiance of pixel 𝑥. 10 

Similarly for two-dimensional sensor, 

𝐸𝐹(𝑥, 𝑦) = ∬ 𝐿𝐹(𝑥, 𝑦, 𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 

where 𝐸𝐹(𝑥, 𝑦) is the total irradiance of pixel at (𝑥, 𝑦). 

1.2.3. Direction sampling 
One way how to record light in different directions is to use a classical camera with 

narrow field of view and capture it from different locations. Figure 7 shows a single point 

displayed by two cameras modelled as thin lenses. 

 

Figure 7. Single point from different locations 

Another option would be to place the cameras in circle around the point, so that the 

angles 𝜃𝑖 would stay constant and the point would be observed from all the directions. 

                                                             
10 Stroeber et al. shows that the image is in fact formed as 𝐸𝐹(𝑥) =

1

𝐹2 ∫ 𝐿𝐹(𝑥, 𝑢) cos4 𝜃 𝑑𝑢, but 

this is more a physical limitation. The cosine can either be absorbed into 𝐿𝐹  [1] or eliminated by 

pixel microlenses [25] common on today’s image sensors. The 
1

𝐹2 factor affects the overall image 

brightness only and is not interesting for the purposes of this work. 

𝜃2 

𝜃1 
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Although this approach is feasible for small objects and allows for their 3D models to be 

reconstructed [14], it is not available for everyday use in real-world photography. 

The next important difference is the displayed image itself. If cameras were placed in a 

circle, all would display exactly the same image, a single point in the centre of the sensor. 

However, as clearly visible from Figure 7, in the case where cameras are arranged on a 

line, the point is displayed on different places of the sensor. This can be formulated more 

precisely: If a point 𝑂 is at the distance 𝑦𝑜 from the optical axis and at the distance 𝑠𝑜 

from the lens, then the lateral magnification formula gives distance 

𝑦𝑖 = −
𝑠𝑖

𝑠𝑜
𝑦𝑜 = −

𝑓

𝑥𝑜
𝑦𝑜 

from the optical axis for point’s image 𝐼 on the sensor (assuming it is focused, i.e. the 

sensor is at distance 𝑠𝑖 from the lens). 

Now assume the point is fixed in space and only the camera is shifted in one direction. 

This offsets the point from optical axis of the camera in the opposite direction and 

therefore is equivalent to having the camera fixed and changing the point’s 𝑦𝑜 distance 

only. 

Figure 8 shows the relationship given by lateral magnification formula. 

 

Figure 8. Position of single point on sensor from different camera locations 

However, this gives us an important information about the point 𝑂. The sensor images 

allow us to compute the distance of point O from the camera. So given angle of the line 𝜑 

with horizontal axis and the line equation 𝑦 = 𝑘𝑥 + 𝑞  where 𝑘 = tan 𝜑 is slope of the 

line, we have 

𝜑 = tan−1 −
𝑠𝑖

𝑠𝑜
 

tan 𝜑 = −
𝑠𝑖

𝑠𝑜
 

𝑠𝑜 tan 𝜑 = −𝑠𝑖 

𝑦𝑖  (position of point’s image 𝐼 on sensor) 

𝑦𝑜 (camera shift) 

𝑦𝑖 = −
𝑠𝑖

𝑠𝑜

𝑦𝑜 
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𝑠𝑜 = −
𝑠𝑖

tan 𝜑
 

the desired distance. Note that this expression might be a bit misleading, since 𝑠𝑖 and 𝑠𝑜 

are in fact bound by the Gaussian formula and for a given lens, they cannot be 

manipulated independently. More clearly, for fixed 𝑓, 

𝑠𝑖

𝑠𝑜
=

𝑓

𝑠𝑜 − 𝑓
=

𝑠𝑖 − 𝑓

𝑓
 

and 

tan 𝜑 = −
𝑓

𝑠𝑜 − 𝑓
 

1

tan 𝜑
=

𝑓 − 𝑠𝑜

𝑓
 

𝑠𝑜 = 𝑓 −
𝑓

tan 𝜑
 . 

Alternatively, 

tan 𝜑 = −
𝑠𝑖 − 𝑓

𝑓
 

𝑓 tan 𝜑 = 𝑓 − 𝑠𝑖 

𝑠𝑖 = 𝑓 − 𝑓 tan 𝜑 

which gives us another important feature: if we want to move the sensor closer or farther 

to the lens (i.e. change 𝑠𝑖) it necessarily means a change to 𝜑. Moving the sensor in this 

way actually means changing the focus of camera, so obviously to get an image focused 

at a different distance, one needs to change the slope of the line — more on this 

fundamental feature of light field later. 

1.3. Acquisition Techniques 

Before processing the light field, we will describe some methods of its recording in 4D 

space, where more dimensions bring more possibilities to the capture process. 

1.3.1. Camera arrays 
The natural extension of the suggestion given in the previous chapter is to arrange 

cameras on a plane. Since calibration and knowledge of the cameras’ relative positions is 

important, this is much easier with multiple cameras fixed on a predefined grid. This 

configuration was used both by Stanford [8] and Microsoft Research [9]. An example of 

such camera array is depicted on Figure 9. 
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Figure 9. Stanford Multi-Camera Array. Photo by Eric Cheng. Source: [15] 

The outcome of the array is an array of traditional photos, each capturing the scene from 

slightly different location, as illustrated by Figure 10. This figure (as well as figures 12 

and 13) shows the complete 4D light field projected to 2D. In this case the outer axis is 

for the U and V dimensions (individual photos), while the inner axes show X and Y 

dimensions (pixels in each of the photos). 

Therefore the individual photos, also known as sub-aperture images, will be referred to 

as XY images. While the spatial discretization is determined by the resolution of 

individual sensors, the directional information is discretized by the number of cameras 

themselves. 

 

Figure 10. Output of the camera array. Sculpture in Forbidden City, Beijing, photo by author. 

𝑣 

𝑢 

𝑥 

𝑦 
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1.3.2. Microlens arrays 
The same result can be obtained by replacing the cameras with single lenses and scaling 

them down to eventually cover one sensor. A piece of glass or plastics with thousands of 

small lenses, either engraved, moulded or eventually glued is called a lenslet or a 

microlens array (an example is on Figure 11). 

 

Figure 11. Microlens array. Manufactured and photographied by Mats Wernersson, with permission. 

However, what if we wanted to sample the space the other way? What if, instead of all 

spatial information for one direction together, we wanted all directional information 

together for one quantum of spatial information? The trick to achieve this is to place the 

microlens array at the microlenses’ focal length distance from the sensor, at most.11 

This is the configuration chosen by Ren Ng. The overall image is still recognizable, but 

individual micro-images under each microlens can be observed (as seen on Figure 12). 

Here the outer axes denote X and Y dimensions (in hexagonal configuration in case of the 

Lytro camera) and the inner axes, within microlens images, U and V dimensions. 

                                                             
11 Ng shows that the amount of directional information increases as the sensor distance 
approaches the focal length of the microlenses, with placing it immediately on the microlenses 
being equivalent to classical camera [1]. 



 

 
21 

 

  

 

Figure 12. An enlargement of photo taken with hexagonal microlens array. A window at Cologne 
Cathedral, photo by author. 

These individual images will be referred to as UV images. In this case the spatial 

resolution is given by the number of microlenses, while the directional information 

depends on the size of microlenses (discretized by the resolution, resp. number of pixels 

on the sensor underneath the microlens). 

The relationship between UV images and XY images is rather simple and one can be 

easily converted to the other by simple transposition of pixels. The central XY image 

consists of central pixel under each microlens, the XY image right to the central one 

consists of pixel right to the central one under each microlens etc. 

Having four dimensions, it might also be interesting to combine them mutually, i.e. to 

observe UX and VY images. These are known as epipolar images [1] and a sample is 

shown below. 

𝑦 

𝑥 

𝑢 

𝑣 
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Figure 13. Cross-dimensional images. Lidl letterhead, photo by author. 

A part of the UX image is shown on top of the picture. The number of columns 

corresponds to the size of microlenses (number of pixels they cover) and the number of 

rows in each column is equal to the number of microlenses. Similarly, in a VY image, the 

number of rows corresponding to size of the microlenses and number of columns in each 

row corresponding to their count in horizontal direction. 

A detail of the UX image is bottom left and detail of a VY image bottom right. These 

individual rows and columns are 2D slices of the 4D space having one dimension spatial 

and one dimension directional just like it was introduced 

in the previous chapter. Note the changing slope of edges 

suggesting that different parts of the edge were at 

different distance from the camera, which is indeed the 

case due to the perspective composition (cf. Figure 14). 

𝑦 

𝑢 

𝑥 

𝑣 

Figure 14. Rendered view of 
Figure 13 
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1.3.3. Emerging methods 
The light field photography is currently experiencing boom in both consumer and 

academic communities and new technologies and techniques are being published 

monthly. 

The biggest problem for light field photography today is trading the spatial resolution 

for the directional resolution. For example, for a 20 Mpx sensor with resolution of 

5000×4000 pixels, which is above Canon’s flagship digital camera12, when directional 

resolution of 10 px is desired, it results in 500×400 pixels of spatial resolution, which is 

below the VGA standard and provides still only 10×10 pixels of directional information. 

Moreover, camera manufacturers basically stopped increasing the sensor resolution first 

because nobody needs that much and second because the lenses are actually at their 

resolution limits.13 

Therefore the main interest is in capturing light fields without this trade-off. There are 

two ideas in this field worth mentioning. First is the patent of Panasonic Corporation, 

LIGHT FIELD IMAGE CAPTURE DEVICE AND IMAGE SENSOR [16], which places the microlens 

array behind the photosensitive layer, see Figure 15 for its schema. ‘The  micro  lens  

layer  is arranged  so  that  light  that  has  been  transmitted  through  one  of the  

photosensitive cells  and  then  reflected  from  the  reflective layer  is  incident  on  the  

same photosensitive  cell  again.’ This allows the camera processor to associate depth 

information with the image, which, however, is 3D information only by definition, not a 

light field as defined in the field. On similar note, another patent uses electric voltage to 

adjust micolens focal length in order to turn them on and off, thus resulting again in two 

images, one full-resolution traditional photo and one low resolution in order to assign 

depth information to the individual pixels [16]. In order to achieve the refocusing effect, 

the processing software then needs to synthetically blur the part of images that shouldn’t 

be focused. Popularity of this rather consumer feature made HTC introduce a first 

smartphone with a dual sensor camera, having one sensor dedicated for the depth 

information only.14 

                                                             
12 Canon EOS-1D X has 18.1 Mpx as per Canon website. 
13 Resolving power of lens is out of scope of this work, some initial notes on this topic can be 
found e.g. at Michigan University’s Physics Lecture Notes at 
http://www.pa.msu.edu/courses/2000fall/PHY232/. The important lesson is that the 
diffraction limit is a fundamental limit that cannot be solved by manufacturing process.  
14 Notes and some reviews on HTC One M8 available at http://lightfield-forum.com/tag/dual-
camera/. 

http://www.pa.msu.edu/courses/2000fall/PHY232/
http://lightfield-forum.com/tag/dual-camera/
http://lightfield-forum.com/tag/dual-camera/
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Figure 15. Panasonic's light field sensor. Colorized and annotated by Markus Nolf, with permission. 

A slightly different approach was used by Boominathan et al. from Rice University to 

improve the spatial resolution [17] of captured light fields. They again use classical 

digital camera to capture high-resolution all-in-focus image of the same scene that was 

taken with low-resolution light-field camera, but in this case a pattern matching 

algorithm is used to replace the low-resolution pieces with those from the high-

resolution photo, so the original light-field features are preserved within some error. 

The second direction to be noted is called compressive light field photography and is 

developed by researchers at MIT Media Lab. 15  While the ideas above build on the 

Lippmann’s idea of microlenses, MIT chose the model of blocking light introduced by 

Ives. A more or less random pattern on semi-transparent mask is placed before the 

sensor that causes various shadows to be cast over it which allows for reconstruction of 

the light field [18]. The interesting factor with this method is that everybody can print 

the mask for a fraction of the price that microlens array costs, and apply it to the camera 

themself (like on Figure 16). 

                                                             
15 http://web.media.mit.edu/~gordonw/CompressiveLightFieldPhotography/ 

http://web.media.mit.edu/~gordonw/CompressiveLightFieldPhotography/
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Figure 16. A printed coded mask being applied to a standard Canon camera. Photo courtesy by Kshitij 
Marwah, with permission. 

The key observance here is that light field is highly redundant and can be decomposed 

into weighed sum of predefined base patches, much like how the cosine or Fourier 

transform works in image compression. So instead of recording the raw light field, only 

few coefficients for the directional information are recorded [19]. This approach has also 

further applications in processing, such as light field compression or denoising [18]. 

The Camera Culture Group to which this research belongs works on glasses-free 

3D displays, which requires “completely integrated pipeline from live-action shooting to 

editing to display” and the discussed light field camera design emerged as one of the 

technologies for that pipeline [19]. Like with Lytro Inc., a spin-off company Tesseract 

Imaging16 was started, with the design being named FOCII. 

                                                             
16 http://tesseract.in/ 

http://tesseract.in/
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1.4. Processing and Rendering 

Now when we know how to record the light field, we can proceed to rendering it. Since 

principles of the Lytro camera is major topic of the thesis and also the only one available 

to the author, we will adhere to the microlenses as used in the Lytro camera (for 

corresponding 2D model see Figure 17). 

Figure 17. Lytro microlenses configuration 

There are three planes of interest: 

the 𝑙𝑒𝑛𝑠 plane, which is a thin lens approximation of the main camera lens; 

the 𝑚𝑙𝑎 plane, which is a thin lens approximation of the microlens array; 

the 𝑠𝑒𝑛𝑠𝑜𝑟 plane. 

We will use 

𝑓𝑙𝑒𝑛𝑠 for the focal length of the lens; 

𝑓𝑚𝑙𝑎 for the focal length of the microlenses; 

𝑑 for the distance between the 𝑙𝑒𝑛𝑠 plane and the 𝑚𝑙𝑎 plane; 

Δ𝑚𝑙𝑎 for the height (pitch) of individual microlenses; 

Δ𝑝𝑥 for the height (pitch) of individual pixels on the sensor. 

The distance between the 𝑚𝑙𝑎 plane and the 𝑠𝑒𝑛𝑠𝑜𝑟 plane is fixed to 𝑓𝑚𝑙𝑎. 

In line with previous chapters, we introduce discrete indices 

𝑥 to identify single microlens, zero being the one at optical axis; 

𝑢 to identify single pixel under single microlens, zero being the centre one. 
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1.4.1. Rendering 
The images under individual microlenses can be arranged next to each other to form the 

UX image. For example, a single point at optical axis focused on the microlens array will 

fall on pixels under the microlens at optical axis (𝑥 = 0), as in Figure 18. 

 

Figure 18. Focused point, overall 2D view 

Note that in order to cover exactly all the pixels under given microlens, the following 

equation, where Δ𝑙𝑒𝑛𝑠 is height of the main lens, must hold: 

Δ𝑙𝑒𝑛𝑠

𝑑
=

Δ𝑚𝑙𝑎

𝑓𝑚𝑙𝑎
 

Putting the individual images next to each other will therefore result in a single vertical 

line as in Figure 19 top. 

↑
𝑢
↓

 

            

            

            

            

            

            

            

 ← 𝑥 →  

             

Figure 19. Focused point, UX view 

As discussed in chapter 1.2.2 Image formation, the original 1D image can be restored by 

integration light from all the directions, which corresponds to summing all the pixels 
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under individual microlenses, resulting in a single pixel representing the focused point 

(Figure 19 bottom). 17 

Similar in four dimensions, the original 2D image can be rendered by summing all the 

pixels under individual microlenses. 

We have already seen that the slope of the line corresponds to the distance of the point 

from the lens. An example of single misfocused point on the optical axis is shown on 

Figure 20. 

 

Figure 20. Misfocused point, overall 2D view 

The corresponding UX image is at the top of the Figure 21, which illustrates the 

properties derived in the previous chapter. 

↑
𝑢
↓

 

            

            

            

            

            

            

            

 ← 𝑥 →  

             

Figure 21. Misfocused point, UX view 

When rendered as described above, it results in a blurred image of the point like at the 

bottom of Figure 21, as expected for a point out of focus. 

                                                             
17 The sum must be normalized to fit into the sensor value range for further processing, which is 
equivalent to taking average value of the pixels under individual microlenses instead. 
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1.4.2. Sensor equations 
Although the fact that UX image displays points as rasterized lines is suggested in Ren 

Ng’s dissertation [1], we will take the steps to prove this critical feature. Two properties 

need to be proven – that the number of illuminated pixels under each microlens is equal 

and that such pixels under neighbouring microlenses are adjacent to each other. 

Figure 22 shows a point displayed through a single microlens in the array, modelled by 

a thin lens, and a sensor (red plane) at fixed distance from the microlens. 

 

Figure 22. Image formation on a sensor 

We denote 

Δ the height of the lens; 

𝑓 the focal length of the lens; 

𝑦𝑜 the distance of point from the optical axis; 

𝑠𝑜 the distance of point from the lens; 

𝑦𝑖  the distance of point’s image from the optical axis; 

𝑠𝑖 the distance of point’s image from the lens; 

𝜏𝑜 the angle between the optical axis and ray coming from the point through 

the top of the lens (i.e. at distance Δ 2⁄  from the optical axis); 

𝜏𝑖 the angle between the optical axis and ray coming from the top of the lens 

through the point’s image; 

𝛽𝑜 the angle between the optical axis and ray coming from the point through 

the bottom of the lens (i.e. at distance − Δ 2⁄  from the optical axis); 

𝛽𝑖 the angle between the optical axis and ray coming from the bottom of the 

lens through the point’s image; 

𝑦𝑜 

𝑦𝑖 

𝑠𝑠 𝑓 

𝑠𝑖 𝑠𝑜 

𝛽𝑖 
𝛽𝑜 

𝜏𝑜 

𝜏𝑖 

𝑦𝜏 
𝑦𝛽 

Δ

2
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𝑠𝑠 the distance of the sensor from the lens; 

𝑦𝜏 the distance from the optical axis where the ray coming from the top of the 

lens hits sensor; 

𝑦𝛽  the distance from the optical axis where the ray coming from the bottom of 

the lens hits sensor. 

Specially, if the sensor has the point in focus, 𝑠𝑜 = 𝑠𝑠 and 𝑦𝜏 = 𝑦𝛽 = 𝑦𝑖 . If not, the point 

causes a line segment of 𝑦𝜏 − 𝑦𝛽 length to appear on the sensor. 

We want to show where a point at distance 𝑦𝑜 from the optical axis and 𝑠𝑜 from the lens 

will appear on the sensor at the distance 𝑠𝑠 from the lens (i.e. find 𝑦𝜏 and 𝑦𝛽). 

First we will derive the generic thin lens ray transfer formula, that is, if a ray from an 

object hits the lens under angle 𝜑𝑜 at the distance 𝑦 from the optical axis, at what angle 

𝜑𝑖  will the ray leave the lens (like on Figure 23). 

 

Figure 23. Thin lens ray transfer 

It is easy to see that tan 𝜑𝑜 =
𝑦

𝑠𝑜
 and tan 𝜑𝑖 = −

𝑦

𝑠𝑖
 and the Gaussian formula gives us 

tan 𝜑𝑖 = −
𝑦

𝑓 𝑠𝑜
𝑠𝑜 − 𝑓

=
𝑦(𝑓 − 𝑠𝑜)

𝑓 𝑠𝑜
=

𝑦

𝑠𝑜
−

𝑦

𝑓
= tan 𝜑𝑜 −

𝑦

𝑓
 . 

We will demonstrate how to use these formulæ to arrive at 𝑦𝛽 . First, we note that 

−
Δ
2 − 𝑦𝑜

𝑠𝑜
= tan 𝛽𝑜 . 

Then, 

tan 𝛽𝑖 = tan 𝛽𝑜 −
−

Δ
2

𝑓
=

−
𝛥
2 − 𝑦𝑜

𝑠𝑜
+

Δ

2𝑓
 

and again by expressing 

𝑦 

𝜑𝑜 

𝜑𝑖 𝑠𝑜 𝑠𝑖 
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Δ
2

+ 𝑦𝛽

𝑠𝑠
= tan 𝛽𝑖 

we get 

𝑦𝛽 = 𝑠𝑠 tan 𝛽𝑖 −
Δ

2
= 𝑠𝑠 (

−
𝛥
2

− 𝑦𝑜

𝑠𝑜
+

Δ

2𝑓
) −

Δ

2
=

𝑠𝑠 (−
𝑓 (

𝛥
2 + 𝑦𝑜)

𝑠𝑜
+

Δ
2)

𝑓
−

Δ

2
 . 

Analogously for 𝑦𝜏 we get 

𝑦𝜏 = 𝑠𝑠 tan 𝜏𝑖 +
Δ

2
= 𝑠𝑠 (

Δ
2 − 𝑦𝑜

𝑠𝑜
−

Δ

2𝑓
) +

Δ

2
=

𝑠𝑠 (
𝑓 (

Δ
2

− 𝑦𝑜)

𝑠𝑜
−

Δ
2)

𝑓
+

Δ

2
 . 

The latter forms make it easy to evaluate the special cases of 𝑠𝑠 = 𝑓 and 𝑠𝑜 = 𝑓. 

Now the length of the line segment captured by the sensor is 

𝑦𝜏 − 𝑦𝛽 = 𝑠𝑠 (

Δ
2 − 𝑦𝑜

𝑠𝑜
−

Δ

2𝑓
) +

Δ

2
− 𝑠𝑠 (

−
𝛥
2 − 𝑦𝑜

𝑠𝑜
+

Δ

2𝑓
) +

Δ

2
= 

=
𝑠𝑠Δ

2𝑠𝑜
+

𝑠𝑠Δ

2𝑠𝑜
−

𝑠𝑠𝑦𝑜

𝑠𝑜
+

𝑠𝑠𝑦𝑜

𝑠𝑜
−

ssΔ

2𝑓
−

ssΔ

2𝑓
+

Δ

2
+

Δ

2
= 

=
𝑠𝑠Δ

𝑠𝑜
−

𝑠𝑠Δ

𝑓
+ Δ 

pixels. The important observation is that the length does not depend on 𝑦𝑜, the distance 

of the point from optical axis, which also means it does not depend on the microlens 

position. 

The centre of line segment is at distance 

𝑦𝑐 = 𝑦𝛽 +
𝑦𝜏 − 𝑦𝛽

2
= −

𝑠𝑠Δ

2𝑠𝑜
−

𝑠𝑠𝑦𝑜

𝑠𝑜
+

ssΔ

2𝑓
−

Δ

2
+

𝑠𝑠Δ
𝑠𝑜

−
𝑠𝑠Δ
𝑓

+ Δ

2
= −

𝑠𝑠

𝑠𝑜
𝑦𝑜 

from the optical axis (which is the same equation we arrived to in chapter 1.2.3 Direction 

sampling). 

Note that if a point is at the focal length distance from the lens (𝑠𝑜 = 𝑓), its image will be 

in infinity, and will cover all the pixels under the lens, regardless of how far the sensor is 

located, which is in agreement with 𝑦𝜏 − 𝑦𝛽 = Δ. 
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As described in the previous chapter, the Lytro camera has the sensor at the focal length 

distance (𝑠𝑠 = 𝑓), which further simplifies the equations: 

𝑦𝜏 =
𝑓 (

Δ
2 − 𝑦𝑜)

𝑠𝑜
 𝑦𝛽 = −

𝑓 (
Δ
2 + 𝑦𝑜)

𝑠𝑜
 𝑦𝜏 − 𝑦𝛽 =

𝑓Δ

𝑠𝑜
 𝑦𝑐 = −

𝑓

𝑠𝑜
𝑦𝑜 

In this case 𝑦𝑐 = −𝑦𝑜 for the point at focal length distance. 

What remains to be proven is that the top ray from one microlens hits the sensor at the 

same location as the bottom ray from the microlens above, in other words 𝑦𝜏 for given 

𝑦𝑜 is equal to 𝑦𝛽  for 𝑦𝑜 − Δ. But 

𝑦𝛽−Δ = −

𝑓 (
Δ
2

+ (𝑦𝑜 − Δ))

𝑠𝑜
= −

𝑓 (−
Δ
2 + 𝑦𝑜)

𝑠𝑜
=

𝑓 (
Δ
2 − 𝑦𝑜)

𝑠𝑜
= 𝑦𝜏 

So if we have a microlens array and put the sensor images from each microlens side by 

side, the line segments will never overlap and at the point the segment from one 

microlens ends, the line segment from neighbouring microlens starts. 18 

Together with the fact that each microlens will display the point using the same amount 

of pixels, it allows us to treat the resulting image as rasterization of a line going through 

the centres 𝑦𝑐 . 

1.4.3. Parallax 
The simplest view is to select one direction of interest and ignore light from all others, in 

our case that means to use data from single 𝑢 only, picking the same one pixel under each 

microlens, which is called sub-aperture image and illustrated on Figure 24.  

↑
𝑢
↓

 

            

↑
𝑢
↓

 

           

                       

                       

                       

                       

                       

                       

 ← 𝑥 →   ← 𝑥 → 

                         

Figure 24. Subaperture image, UX view 

                                                             
18 Assuming each mirolens has its own infinitely sized sensor. In practical embodiments, all 
microlens share a single sensor and care must be taken to ensure that rays from one microlens 
do not appear under another microlens. Apart from careful camera design this can be solved by 
mechanical barriers [25] or compensated in post processing [1]. 
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Intuitively, this will render the scene from that direction only, resulting in the rendered 

point being at different locations in the image. If we had two points of various distance 

in the scene, they would be represented by two differently slanted lines, like on Figure 

25. According to the theory, the red one (lighter) is nearer to the lens than the blue one 

(darker). 

Similar to two aligned objects viewed from distinct locations, the relative position of the 

two points depends on the direction the observer is looking. When the observer is in line 

with the objects, the nearer object occludes the farther as in the case of 𝑢 = 0 in the 

picture. This difference in the apparent position is known as parallax. 

↑
𝑢
↓

 

            

↑
𝑢
↓

 

           

                       

                       

                       

                       

                       

                       

 ← 𝑥 →   ← 𝑥 → 

                         

Figure 25. Subaperture image of two points, UX view 

Figure 26 shows this effect rendered from a 4D light field — difference between the two 

pictures is most obvious on framing of the reflector relative to the cabin in background. 

The parallax can be used to generate 3D images using extreme left and right views, which 

readers can see on Figure 26 by crossing their eyes to merge the two views into one 

image. 

 

Figure 26. Parallax in 4D, detail of 8275 bulldozer by LEGO®, photo by author. 
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1.4.4. Depth of field 
In traditional photography, the depth of field is controlled by the size of aperture. 

Reducing the aperture diameter effectively reduces the directional information coming 

through the camera. Smaller aperture in our model can be seen on Figure 27. 

 

Figure 27. Small aperture, overall view 

The corresponding UX view follows on Figure 28. Note that the total amount of light is 

decreased, too. 

↑
𝑢
↓

 

            

            

            

            

            

            

            

 ← 𝑥 →  

             

Figure 28. Small aperture, UX view 

Specially,  

𝑝𝑥𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 =
Δ𝑙𝑒𝑛𝑠𝑓𝑚𝑙𝑎

𝑑Δ𝑝𝑥
 

is the number of pixels that cover the image of aperture. Hence the light field can be 

rendered with smaller aperture by simply taking only corresponding subset of the 

directional data, as shown in Figure 29 left. 
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↑
𝑢
↓

 

            

↑
𝑢
↓

 

           

                       

                       

                       

                       

                       

                       

 ← 𝑥 →   ← 𝑥 → 

                         

Figure 29. Small aperture synthetised, UX view 

On the right side of Figure 29, the same process is applied to the misfocused point, where 

it helps to bring it into focus, as expected when using smaller aperture. 

This effect is well known in the 4D case, an example of extending the depth of field is 

depicted on Figure 30. 

 

Figure 30. Narrow and extended depth of field in 4D, sliver of car window, photo by author. 

Another observation is that while in classical photography the aperture size can be 

adjusted only in symmetrical way, with light field we can render it asymmetrical as well 

(e.g. using positive 𝑢 only, or even non-contiguous bands of  𝑢). 

1.4.5. Refocusing 
It is obvious from the picture of misfocused point that in order to bring the point back 

into focus, we could skew the UX image, like on Figure 31. 

This conforms to the theory developed in chapter 1.2.3 Direction sampling. More 

formally, the skewed imaging equation would have the form of  

𝐸𝑑𝑒𝑠𝑘𝑒𝑤𝑒𝑑(𝑥) = ∑ 𝐿𝑑 (𝑥 +
𝑢

𝑘
, 𝑢)

𝑢
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↑
𝑢
↓

 

              

              

              

              

              

              

              

 ← 𝑥 →  

               

Figure 31. Refocused point, UX view 

where 𝑘 is the skewing factor, equal to slope of the line and to the number of pixels that 

the point falls on as we have shown with the sensor equations. By similar triangles, we 

can find the focused image point, i.e. the distance 𝑠𝑖 from 𝑚𝑙𝑎 plane at which the point is 

focused: 

Δ𝑚𝑙𝑎 − Δ𝑝𝑥𝑘

𝑓
=

Δ𝑚𝑙𝑎

𝑠𝑖
  

Solving for 𝑘 yields 

𝑘 =
Δ𝑚𝑙𝑎 −

𝑓Δ𝑚𝑙𝑎
𝑠𝑖

Δ𝑝𝑥
 

and with the help of Gaussian formula we get the desired 𝑘 to bring the plane at 𝑑′ = 𝑑 −

𝑠𝑜 into focus: 

𝑘 =
𝛥𝑚𝑙𝑎 −

𝑓𝛥𝑚𝑙𝑎(𝑠𝑜 − 𝑓)
𝑓𝑠𝑜

𝛥𝑝𝑥
=

𝛥𝑚𝑙𝑎 −
𝛥𝑚𝑙𝑎𝑠𝑜

𝑠𝑜
+

Δ𝑚𝑙𝑎𝑓
𝑠𝑜

𝛥𝑝𝑥
=

𝑓Δ𝑚𝑙𝑎

𝑠𝑜Δ𝑝𝑥
 

The same relationships applies to 4D, where 

𝐸𝑑′(𝑥, 𝑦) = ∑ ∑ 𝐿𝑑 (𝑥 +
𝑢

𝑘
, 𝑦 +

𝑣

𝑘
, 𝑢, 𝑣)

𝑣𝑢

 . 

For an example of refocused images rendered from 4D data, see Figure 32. 

 

Figure 32. Refocusing in 4D, head unit by Pioneer, photo by author. 
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1.4.6. Depth map 
A popular application of light field data is getting the depth map of the scene. This feature 

is requested so much that new imaging devices with separate depth sensors are 

emerging as an intermediate step between traditional and light field photography (see 

next chapter for details). 

One of the easier methods to generate a depth map from the scene is taking the rendered 

pictures focused at different distances, and for each area of interest, determining the one 

that has the highest local contrast. An example of more sophisticated algorithm would 

be the one of Liang et al. using occlusion maps [20]. Figure 33 shows a depth map 

generated by Lytro software and using it to generate a 3D surface of the captured scene. 

Dark shades denote areas nearer to the camera, light shades the farther areas. 

 

Figure 33. 2D depth map (left) and spatial data mapped to 3D (right), a raspberry cake, photo by 
author. Rendered by software accompanying the thesis. 

Let me stress at this point that depth maps as researched in the field are an 

oversimplified problem. A scene can very easily contain points that can be focused at 

multiple depths, either due to translucent materials, or because of reflections, and 2D 

depth maps cannot cover these conditions, despite their everyday occurrence in the real 

world. 

While depth maps can be built even from stereo images [21], the light field allows 

reconstructing true volumetric depth information about the scene. Extending our 

previous method, the third dimension would simply be the value of local contrast itself 

rather than finding its maximum. Note that this cannot produce a 3D model of the scene 

(neither for transparent objects), as both refraction and reflection cause images to 

appear at different locations than they come from, but light field software could take 

advantage of this information, for example when determining the distances that can be 

rendered. 
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Figure 34. Daniel Reetz holding light field camera array they built together with Matti 
Kariluoma in 2009, with permission. Check www.futurepicture.org for more details on 
the camera. 
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Past couple of years, various commercial companies are announcing their interest in the 

light field technology for both recording and displaying, be it big established players like 

Adobe Systems or NVIDIA Corporation, fresh start-ups like Tesseract Imaging or Pelican 

Imaging or silicon vendors like Toshiba Corporation. It is impossible to give exhaustive 

and up-to-date listing here – interested readers can keep track of the technology on sites 

like www.lightfield-forum.com – but few noteworthy trends can be briefly discussed. 

2.1. Software Imitations 

The refocusing ability of light field photography is so popular that several phone 

manufactures decided to equip their devices with an imitation of software refocusing. 

Different vendors did it in different ways. Nokia Refocus19 captures couple of photos in 

fast succession, each focused at different plane and then offers refocusing by selecting 

the one frame of interest, or all-in-focus by blending all the frames. The main 

disadvantage of this solution is that each frame is captured at different time, so changes 

in the scene can be visible due to refocusing.20 New types of camera modules are being 

manufactured to bring refocusing times to minimum, such as mems|cam by DigitalOptics 

Corporation.21 

Another approach is to obtain depth information together with a single photo and then 

use it to synthetically blur parts of the image that are at different depth than the one to 

be focused. Toshiba Corporation has introduced a new dual camera module for this 

purpose22, while HTC started to engage their phones with a dedicated depth sensors.23 

Popular applications like separating the background from a photograph, applying 

different effects to the background and foreground or photographic collages are still 

possible with these solutions, but parallax view (that allows for 3D photography) or 

realistic out-of-focus appearance can’t be delivered without true light field data. 

2.2. Pelican Imaging 

In 2013 Pelican Imaging Corporation published their new camera array module 

targeting especially mobile devices [22], which has couple of interesting properties. A 

photo of the module is on Figure 35. 

                                                             
19 http://refocus.nokia.com/ 
20 see e.g. http://www.cnet.com/news/nokia-vs-lytro-the-refocusing-challenge/ 
21 http://www.memscam.com/ 
22 TCM9518MD 
23 e.g. HTC One M8 

http://www.lightfield-forum.com/
http://refocus.nokia.com/
http://www.cnet.com/news/nokia-vs-lytro-the-refocusing-challenge/
http://www.memscam.com/
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Most importantly it is a true camera 

array supplying 4D light field data. 

The directional resolution is 4×4, 

the native spatial resolution is 

1,000×750 pixels, increased by 

super resolution methods to 

3,264×2,448 pixels. 

This module is notable especially 

for the technological challenges it 

addresses. The smaller aperture 

lens allowed to reduce physical 

height of the module, aberration errors, and shortened hyperfocal distance. Finally, each 

camera in the array is optically isolated and records single colour only, which not only 

provides better colour fidelity than traditional Bayern filter pattern, but also allows for 

higher performance optics due to the reduced bandwidth they need to transfer. [22] 

2.3. Lytro 

All the recent boom of products and investment into light field technology for consumer 

market started with Lytro24 founded by Ren Ng after his Ph.D. research in 2006. Six years 

later they released first light field camera for consumers, called the Lytro camera. 

 

Figure 36. First generation Lytro camera, press release pohoto. 

                                                             
24 http://www.lytro.com/ 

Figure 35. PiCam monolithic camera array, press 
release photo. 

http://www.lytro.com/
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The camera (on Figure 36) has about 10×10 directional resolution and roughly 328×380 

pixels of spatial resolution in hexagonal configuration, increased by super resolution 

methods to 1080×1080 pixels. The release price was $499 for model with 16 GB memory 

and $399 for model with 8 GB memory. This camera came with 8× zoom with constant 

f/2.0 lens and is the main subject of chapter 3 in this work. 

The common critique of the camera was the low resolution and poor quality of the 

photographs in comparison to traditional contemporary digital cameras. In July 2014, 

Lytro has released a second generation camera to address these issues and move from 

hobbyists more to the professional photographers, the Lytro Illum camera. 

 

Figure 37. Lytro Illum camera, press release photo. 

The price tag for Lytro Illum camera (on Figure 37) is $1,599. It also features 8× zoom 

with constant f/2.0. Unfortunately at the time of writing this thesis, the camera was not 

yet released and further technical details are not available. 

2.4. RayTrix 

RayTrix25 is a company based in Germany, founded in 2008. They released their first 

camera in 2010, making it the first commercial light field camera on the market, called 

R11. 

                                                             
25 http://www.raytrix.de/ 

http://www.raytrix.de/
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However, RayTrix targets industrial segment in both features and prices. The release 

price of R11 camera (on Figure 38) was €30,00026 and comes with various lens mounts 

(Nikon/F-mount, M58, Canon), up to 10 FPS video output over GigE/CameraLink, and 

SDK for developers. The R11 model has 40,000 microlenses. 

 

Figure 38. Raytrix R11 camera, press release photo. 

Over the time new models were introduced: R5, an entry-level camera with lower 

resolution but higher speed video and C-mount (€5,00027), and R29 with high resolution. 

They also offer modifying an existing customer’s camera to become a light field one (RX). 

The company does custom microlens arrays design and ships monochrome, colour and 

near infra-red versions of the cameras. Their cameras do not do any light field processing 

itself, the processing is offloaded typically to a standalone, high-performant computer. 

The typical applications RayTrix is targeting is machine vision, surface and quality 

inspection, plant research, microscopy etc., most prominently 3D particle tracking. 

2.5. Light field in other applications 

Living photography and 3D reconstructions are not the only applications of light field. 

Other popular areas being researched include microscopy and light field displays. 

                                                             
26 http://www.dradio.de/dlf/sendungen/forschak/1132822/ 
27 ibid. 

http://www.dradio.de/dlf/sendungen/forschak/1132822/
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Again, Marc Levoy with his team at Stanford University are pioneering the area of light 

field microscopy. The microscopy has its own characteristic set of constraints. For 

example, microscope optics, being telecentric, produces only orthographic views, while 

light field allows to render new, perspective views of specimens. Being able to refocus or 

extended the depth of field from single capture makes it easy to inspect moving or light-

sensitive objects as well [23]. Interested readers can find more information on Stanford 

website at http://graphics.stanford.edu/projects/lfmicroscope/. 

As for light field displays, the break-through product is yet to come. The research is 

exploring several directions: NVIDIA attached microlens array to small displays in 

binocular configuration28, researchers from the Institute for Creative Technologies at the 

University of Southern California are using high frame rate projector and rotating mirror 

to create 360° 3D scene with proper occlusions, while Camera Culture Group at 

Massachusetts Institute of Technology are using their compressive light field technology 

with a projector to build a 3D screen of larger dimensions.29 Pamplona et al. suggested 

using light field displays to compensate for visual aberrations.30 

Other interesting application that comes to my mind would be using a single strip of 

microlenses on 2D sensors in flatbed scanners. Not only that could compensate for rough 

surfaces or focus on individual layers of transparent materials like films, but it also could 

recognize and record protective patterns like those used on banknotes. 

The biggest problem of getting light field technology into hands of students and 

researchers is the availability of microlens arrays. They are either too small (for example, 

Edmund Optics31 offers arrays up to 1×1 cm only) or extremely expensive (or both, the 

small ones from Edmund Optics are for $550). Mats Wernersson published a way how 

one can make microlens array of acceptable performance themself, but it is quite a non-

trivial task requiring equipment not everybody has access to. 32 

                                                             
28 https://research.nvidia.com/publication/near-eye-light-field-displays 
29 http://web.media.mit.edu/~gordonw/CompressiveLightFieldProjector/ 
30 http://tailoreddisplays.com/ 
31 http://www.edmundoptics.com/ 
32 http://cameramaker.se/microlenses.htm 

http://graphics.stanford.edu/projects/lfmicroscope/
https://research.nvidia.com/publication/near-eye-light-field-displays
http://web.media.mit.edu/~gordonw/CompressiveLightFieldProjector/
http://tailoreddisplays.com/
http://www.edmundoptics.com/
http://cameramaker.se/microlenses.htm
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Figure 39. Inside cut through the first generation Lytro camera as published and 
described on Lytro’s website [24]. Annotation mine. 
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All information in this chapter is based purely on my research of the camera, 

accompanying software and its behaviour. Lytro has neither supported nor confirmed 

any of the information herein presented. Use at your own risk. 

Special notation is introduced to denote various sources: 

SW for software analysis 

FW for firmware analysis 

FCC for Federal Communication Commission materials 

MET for metadata produced by camera 

PAT for patents 

3RD for 3rd party source (manufacturer of the component in question) 

3.1. Inside the Camera 

The first generation Lytro camera’s codename is FireflySW,33 and shipped in February 

2012. The official model number is A1 as marked on the hardware. 34  It is a small, 

41×41×112 mm camera with 8 GB or 16 GB of internal storage and couple of features not 

yet common on classical consumer cameras like wireless connectivity, touch screen and 

of course the microlens array. 

3.1.1. Hardware 
Having a wireless capabilities it had to be approved by Office of Engineering and 

Technology at Federal Communication Commission35, which assigned Lytro a grantee 

code of ZMQ.FCC The commission publishes its measurements as well as some of the 

documents, which also includes photos of the product teardown. 

Individual elements of the camera annotated on Figure 39 are described below. Photos 

with blue background come from the FCC exhibit, the ones with wooden background 

from my archive. 

S Sensor Board (as of revision A6) 

The sensor board contains a CMOS sensor with microlens 

array. The microlenses are arranged hexagonally, with 

rows being the major axis. All microlenses are of the same 

focal length, with the pitch of 13.89 μm and placed at 

25 μm in front of the sensor.MET 

                                                             
33 The codename for Lytro Illum camera is Blitzen.SW 
34 The model number of Lytro Illum camera is B5.FCC 

35 http://transition.fcc.gov/oet/ 

http://transition.fcc.gov/oet/
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The sensor is Aptina MT9F002 14.4 Mpx 1/2.3” sensor (effective imaging area 

6.14 × 4.6 mm) with 1.4 μm pixel size.MET,3RD,36 The output frame size is, however, 

cropped to 3,280 × 3,280 pixels which gives about 10.7 Mpx at 12‑bit resolution. 

There is a standard Bayer colour filter array (CFA) over the sensor to capture the 

colours with R,GR:GB,B pattern, blue being the top left pixel.MET 

Finally, a 3-axis accelerometer is on board.MET 

U USB Board (as of revision A6) 

The USB board contains a Micro USB female connector at 

the bottom, the shutter button at the top and a piezzo 

buzzer, not enabled at the time of writing. 

B Battery 

The battery model is DC-A950 by FORMOSA, 3.7V⎓ 2100mAh 7.77Wh Li-ion. The 

calibration measurements are:MET 

Working current: -0.2670 A 

Working voltage: 3.67 V 

Power Consumption: -990.8 mW 

Charge current: 1.0210 A 

Temperature: 27.4 C 

M Main Board (as of revision A6)FCC 

The main processing board of the camera. One the front side: 

SAMSUNG NAND FLASH memory (8/16 GB) 

 

On the back side: 

Zoran‘s Camera On A Chip 32-bit RISC digital image 

processor (ZORAN ZR364246BGLG) 

SK Hynix SDRAM memory 

Temperature sensor 

L LCD Board (as of revision A6) 

The LCD board hosts Marvell‘s Avastar 88W8787A16 SoCFCC offering WiFi 

802.11a/g/n, Bluetooth 3.0+HS, and FM radio with RDS and transmit capability on 

the back side.3RD At the time of writing, only WiFi functionality has been enabled. 

                                                             
36 http://www.aptina.com/products/image_sensors/ 

http://www.aptina.com/products/image_sensors/
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D Display 

The display is 1.52” back-lit LCD with resolution of 

128×128 pixels. There is a touch circuit on the back side 

of the display. 

C Cap Slider 

The zoom slider on top of the camera consists of 

5 capacitive sensors. 

O Lens 

The manufacturer of lens is not known. It has 8 elements 

in 5 groups and focal length equivalent to 43—344 mm 

with constant f/2.0.37 There is also a second temperature 

sensor on the lens.MET 

3.2. File Formats 

Lytro uses its own proprietary file format for their light field pictures. Its structure is 

divided into separate components laid one after other. The format of each component is 

described in Table 1. A software library that can parse and manipulate the light field 

picture format is part of this thesis. 

89 L  F  _  0D 0A 1A 0A VE VE VE VE CL CL CL CL (header, version, length) 

s  h  a  1  -  00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (name) 

__ __ __ __ __ __ __ __ __ __ __ __ 00 00 00 00 (data, padding) 
 

offset length notes 

0 8 Fixed header (magic number), the fourth byte determines the 
component type, which can be one of these: 

P (package) always the first component in the file 
M (metadata) always the second component in the file and 

always the only one 
C (component) any other component 

8 4 Version of the file formatSW, big endian integer. At the time of this 
work all Lytro files have 00 00 00 01 in the first (i.e. LFP) 
component. Other components must have 00 00 00 00.SW  

12 4 Length of data in the component, big endian integer. This value can 
be zero, in which case this is the end of the component and the next 

                                                             
37 https://www.lytro.com/camera/specs/gen1/ 

https://www.lytro.com/camera/specs/gen1/
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component follows immediately. Currently the LFP component has 
always zero length. 

16 80 Name of the component. The name can have up to 80 bytes, shorter 
names are padded with zeroes to the total length of 80. Several 
components can have the same name.SW 

97 length The actual data of the component. 

*  Every component is padded with zeros so that the total length of 
the component (i.e. header + version + data length + name + data + 
padding) is multiple of 16. If the sum without padding is already a 
multiple of 16, then no padding is added. 

Table 1. Light field component file format 

The files do not have any special opening or closing and the file extension is .LFP.  

When a Lytro camera is connected to the computer, the Lytro Desktop software is started 

and imports pictures from camera into the computer. During this process, several files 

per picture are created. 

3.2.1. Raw pictures (raw.lfp) 
Raw pictures correspond to RAW files in traditional cameras. They contain raw 

uncompressed sensor readings and need to be further processed. 

The package metadata of raw pictures contain the metadata version, references to all the 

below components and whether the picture was marked as favourite, as well as whether 

the image is a dark or modulation frame (only calibration images do have these set). 

Raw Sensor Data component 

The Lytro A01 camera generates 3,280px × 3,280px × 12-bit data. To save space, the pixel 

values are packed together instead of padded, so there are 2 pixels (24 bits) stored in 3 

bytes. Hence the length of this component in this case is always 16,137,600 bytes. 

For example, if you have one white pixel (FFF) followed by a black one (000), there will 

be FF F0 00 in raw data. Also, the values are stored in big endian order. So 12 34 56 

need to be decoded into 03 12 06 45. The first pixel is the top left one, continuing in 

rows. 

The resulting image is grayscale with Bayer colour filter over it, so it needs to be 

demosaiced to obtain the colour information. 

Frame Metadata component 

Frame metadata contain all information needed to reconstruct the image. That includes 

the way how the raw sensor data component is encoded (so that data from other 

cameras/applications can be processed), readings from sensors (time in Zulu zone, 
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temperatures of main board and lens, accelerometer, camera orientation), hardware 

configuration (parameters of sensor, microlenses, lens, camera maker and model), photo 

parameters (shutter, ISO, zoom, creative mode) and the firmware version. 

As all metadata, this component is in the JSON text format. 

Private Metadata component 

Imaging sensor serial number and camera serial number is the only information in the 

private metadata component. 

As all metadata, this component is in the JSON text format. 

3.2.2. Prerendered pictures (stack.lfp, stacklq.lfp) 
Since rendering the raw pictures is computationally very expensive and the files are 

large to share, the software generates files with some predefined views of the light field. 

It picks up to 12 depths and, if instructed, parallax or software filters and renders a stack 

of images that are small and easy to display. 

The package metadata contain the metadata version, reference to the lookup table and 

references to all the prerendered images with a depth or parallax position they 

represent, so that the viewers can just show the correct image. The only other metadata 

included is whether the image was marked as favourite (and dark/modulation, see 

above), specially, there is no information about when the picture was taken, the caption 

that it was given, its ISO, shutter speed etc. in these files. 

One or more prerendered images 

In the case of low quality (stacklq.lfp) files, the prerendered images are stored as simple 

JFIF images, focused at different depths or with perspective shift. They are of 330×330 

pixels resolution. 

The higher quality variation (stack.lfp) has the images in 1,080×1,080 pixels resolution 

encoded into a H.264 Annex B stream.38 

Depth Lookup Table component 

In addition to the prerendered images, the files also contain a depth lookup table, which 

is an array of doubles representing the depths at which the picture should be refocused 

if user clicks at the corresponding position. The first depth is the top left area, continuing 

in rows. 

                                                             
38 http://www.itu.int/rec/T-REC-H.264-201304-I/en 

http://www.itu.int/rec/T-REC-H.264-201304-I/en
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3.2.3. Depth maps (dm.lfp) 
The last file that is generated is a separate depth map, with two components only, depth 

lookup table and depth confidence table. 

Depth Lookup Table component 

The depth lookup table is the same component as in the case of prerendered pictures. 

Depth Confidence Table component 

The depth confidence table has the same structure as depth lookup table, but the double 

values express the confidence ranging from 0 (not confident) to 1 (confident) of the 

depth value located at the same place in the lookup table. The depth values are computed 

from the light field so the accuracy varies. 

3.2.4. Calibration files (data.C.#, *.calib) 
When camera is connected to the computer for the first time, all the calibration data are 

backuped to the computer. They are packed in couple of data.C.# packages acting 

basically as containers for other files. 

The package metadata contains list of file names present in the package and references 

to them, with an optional information which package file contains additional files. Then, 

the files themselves are the individual components of the package. 

On Windows, these files can be found at %LOCALAPPDATA%\Lytro\cameras. On Mac, 

they are in the package at Lytro.lytrolib\cameras. 

Calibration data for H.264 compression algorithm are stored in groups of bitmaps ibidem 

in *.calib files. 

3.3. On the Air 

Starting with camera firmware release v1.2, the on-board Wi-Fi is enabled. The 

connectivity is provided through Marvell's Avastar 88W8787A16 chip with MAC address 

in the range of Tayio Yuden Co., Ltd. (00:22:58). A software library that can communicate 

with the camera is part of this thesis. 

The wireless communication must be explicitly enabled by user on the camera itself. This 

causes a network with SSID lytro.camera.### (where ### are the last three numbers 

of its serial number) to be broadcasted. The network is WPA2-CCMP protected with fixed 

keyphrase consisting of 8 arabic digits. A new keyphrase is generated when the camera 

is soft reseted, either manually from settings menu or when it hangs and resets itself. 
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3.3.1. Available services 
Camera responds to ping messages. Wireless communication is power demanding and is 

turned off if not actively used for 5 minutes (even if a client is connected and the camera 

itself is being used). 

Available UDP services 

DHCP server, currently supporting one client at a time only (port 67). 

10.100.1.1 is IP address of the camera (gateway), 

10.100.1.100 receives the connecting client, 

255.255.255.0 is the subnet mask. 

DNS-Based Service Discovery, compatible with Multicast DNS (port 5353). 

This system uses PTR requests to discover services on the network. Also, the 

service types and instances are broadcasted at start-up. The Lytro camera uses 

a _lytro._tcp service in the local domain. The DNS response/broadcast 

contains these answers: 

 

PTR _services._dns-sd._udp.local 

 _lytro._tcp.local 

 (service type announcement) 

 

PTR _lytro._tcp._local 

 lytro-A#########._lytro._tcp.local 

 (service instance announcement) 

 

SRV lytro-A#########._lytro._tcp.local 

 lytro-A#########.local:5678 

 (service endpoint) 

 

TXT lytro-A#########._lytro._tcp.local 

 (empty) 

 (named attributes) 

 

A lytro-A#########.local 

 10.100.1.1 

 (camera IP) 
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NSEC lytro-A#########.local 

 lytro-A#########.local 

 (no more entries) 

Open TCP ports 

5677 (callback messages) 

Once a client connects to this port, camera automatically starts sending various 

events back. Data are UTF-8 encoded strings, each event on its line. Individual 

messages and their parameters are described in chapter 3.3.1. 

5678 and 5679 (Lytro service) 

These ports use the same protocol, the mobile application uses port 5678 for 

control requests and port 5679 for downloading pictures. Communication is 

based on binary request-response pairs. Individual commands and their 

payload format are discussed in chapter 3.3.3. 

3.3.2. Callback messages 
Callback messages are sent automatically as soon as a client connects to the camera's 

port 5677. Data are UTF-8 encoded strings, each event on its line, ending with CR LF and 

a null character. The callback name is enclosed in square brackets, followed by 

parameter(s) separated by space. 

 [CallbackName] param1 param2 ...\r\n\0 

HeartbeatTick 

Generated automatically approximately every 100 ms if no other callback occurs. 

Syntax: [HeartbeatTick] tick 

Parameters: 

parameter value description 

tick string always 'tick' 

Remarks: 

This message is used as a watchdog to detect whether camera is still connected 

and responding. Sufficient amount of other messages will prevent this message 

coming, so the watchdog should be reset on any message received. 

Examples: 

[HeartbeatTick] tick\r\n\0 
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SelfTimerTick 

Occurs every second during self-timer count-down. 

Syntax: [SelfTimerTick] state 

Parameters: 

parameter value description 

state integer 
-or- 
string 

number of seconds remaining to trigger the shutter 
-or- 
‘Canceled’ when the user cancels the timer  

Remarks: 

The SelfTimerTick sequence ends either with ShutterPressed callback or 

cancelled. 

Examples: 

[SelfTimerTick] 2\r\n\0 

[SelfTimerTick] Canceled\r\n\0 

ShutterPressed 

Occurs immediately after shutter is triggered. 

Syntax: [ShutterPressed] CLICK 

Parameters: 

parameter value description 

CLICK string always ‘CLICK’ 

Remarks: 

The shutter can be triggered either manually by taking a picture, or using the 

self-timer. This callback does not distinguish between the two.  

Examples: 

[ShutterPressed] CLICK\r\n\0 
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NewPictureAvailable 

Occurs when a picture taken is rendered and becomes available for download. 

Syntax: [NewPictureAvailable] id 

Parameters: 

parameter value description 

id string the id of picture available 

Remarks: 

A picture is not ready immediately when it is taken, it needs to be processed by 

the camera engine first. The id can be used to download the picture from the 

camera. 

Examples: 

[NewPictureAvailable] sha1-123456789012345678901234567890123 

4567890\r\n\0 

LikedChanged 

Occurs when a user marks or unmarks a picture as a favourite. 

Syntax: [LikedChanged] id liked 

Parameters: 

parameter value description 

id string the id of picture available 

liked integer ‘1’ if marked as favourite 
-or- 
‘0’ if unmarked as favourite 

Remarks: 

A picture is marked/unmarked as favourite by tapping the star icon. 

Examples: 

[LikedChanged] sha1-1234567890123456789012345678901234567890 

\r\n\0 
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PictureDeleted 

Occurs when a picture is deleted from the camera. 

Syntax: [PictureDeleted] id 

Parameters: 

parameter value description 

id string the id of picture deleted 

Examples: 

[PictureDeleted] sha1-12345678901234567890123456789012345678 

90\r\n\0 

AllPicturesDeleted 

Occurs when all pictures are deleted from the camera at once. 

Syntax: [AllPicturesDeleted] all deleted 

Parameters: 

parameter value description 

all string always ‘all’ 

deleted string always ‘deleted’ 

Remarks: 

This message is sent by the delete all command in the settings menu, regardless 

of the actual number of pictures deleted. Deleting the last picture individually 

does not send this message. 

Examples: 

[AllPicturesDeleted] all deleted\r\n\0 
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ZoomLevelChanged 

Occurs when camera zoom is changed. 

Syntax: [ZoomLevelChanged] zoom 

Parameters: 

parameter value description 

zoom float the zoom level, ranging ‘1.0’ to ‘8.0’ 

Remarks: 

This message is sent continuously as user swipes a finger to change the zoom 

factor, except when the General Control Dock is shown. In that case, the 

message is sent only once when the dock gets hidden again. 

The current shooting mode determines the possible range of zoom level. In 

standard mode, the range is ‘1.0’ to ‘5.4’ (the display shows 5.5x). In the Creative 

Mode, the zoom range is extended up to ‘8.0’. Switching between Everyday 

Mode and Creative Mode effectively changes the current zoom level, however, 

this does not result in any message. 

Examples: 

[ZoomLevelChanged] 2.0\r\n\0 

CreativeModeChanged 

Occurs when the current shooting mode changes. 

Syntax: [CreativeModeChanged] status 

Parameters: 

parameter value description 

status integer ‘1’ if the new mode is Creative Mode 
-or- 
‘0’ if the new mode is Everyday Mode 

Examples: 

[CreativeModeChanged] 1\r\n\0 
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ShutterSpeedChanged 

Occurs when the shutter speed setting changes. 

Syntax: [ShutterSpeedChanged] seconds 

Parameters: 

parameter value description 

seconds float the number of seconds the shutter is open 
-or- 
‘0.000000’ if the shutter speed is set to automatic 

Remarks: 

This message occurs when user changes the Shutter Speed under manual 

controls. The callback happens only at the moment the Shutter Speed setting is 

opened (with current settings) and closed (with new settings), i.e. not as user 

continuously changes the setting. Changes due to automatic setting do not 

result in callback. 

The shutter speed can be set manually to 8, 4, 6.4, 5, 4, 3.2, 2.5, 2, 1.6, 1.25, 1, 

1/1.25, 1/1.6, 1/2, 1/2.5, 1/3.2, 1/4, 1/5, 1/6.4, 1/8, 1/10, 1/12, 1/15, 1/20, 

1/25, 1/30, 1/40, 1/50, 1/60, 1/80, 1/100, 1/125, 1/160, 1/200 and 1/250 

seconds. However, note that the automatic setting is not limited to these values 

and when opening the Shutter Speed setting with an automatic value, it can be 

any arbitrary number. 

Switching to automatic control resets the shutter speed setting to automatic 

and causes this message to be sent, as soon as the checkbox in the menu is 

unchecked. Switching to manual control keeps the settings automatic, so no 

message sent in this case. 

Examples: 

[ShutterSpeedChanged] 0.000000\r\n\0 

[ShutterSpeedChanged] 0.008158\r\n\0 

[ShutterSpeedChanged] 0.008000\r\n\0 
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IsoSensitivityChanged 

Occurs when the ISO sensitivity setting changes. 

Syntax: [IsoSensitivityChanged] value 

Parameters: 

parameter value description 

value float the ISO setting divided by 50.0 
-or- 
‘0.000000’ if ISO sensitivity is set to automatic 

Remarks: 

This message occurs when user changes the ISO Sensitivity under manual 

controls. The callback happens only at the moment the ISO Sensitivity setting is 

opened (with current settings) and closed (with new settings), i.e. not as user 

continuously changes the setting. Changes due to automatic setting do not 

result in callback. 

The ISO sensitivity can be set manually to 3200, 2500, 2000, 1600, 1250, 1000, 

800, 640, 500, 400, 320, 250, 200, 160, 125, 100, 80 and 75 (corresponding to 

values 64.0 to 1.5). However, note that the automatic setting is not limited to 

these values and when opening the ISO Sensitivity setting with an automatic 

value, it can be any arbitrary number. Also note that the ISO Sensitivity of 75 is 

incorrectly reported as 80 on the display. 

Switching to automatic control resets the ISO Sensitivity setting to automatic 

and causes this message to be sent, as soon as the checkbox in the menu is 

unchecked. Switching to manual control keeps the settings automatic, so no 

message in this case. 

Examples: 

[IsoSensitivityChanged] 0.000000\r\n\0 

[IsoSensitivityChanged] 56.509144\r\n\0 

[IsoSensitivityChanged] 64.000000\r\n\0 
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NeutralDensityFilterChanged 

Occurs when the neutral density filter is turned on or off. 

Syntax: [NeutralDensityFilterChanged] status 

Parameters: 

parameter value description 

status integer ‘1’ if the filter was turned on 
-or- 
‘0’ if the filter was turned off 

Remarks: 

This message occurs when user changes the ND filter setting under manual 

controls. The callback happens only at the moment the user taps the setting on 

the display. Changes due to automatic setting do not result in callback (which 

includes switching to automatic control or setting either Shutter Speed or ISO 

Sensitivity to Auto). 

The ND filter has 4 stops.MET 

Examples: 

[NeutralDensityFilterChanged] 1\r\n\0 

Other messages 

The firmware suggests the following messages can be also generated but are not enabled 

at the time of this work.FW 

 BatteryLevelUpdated 

 ManualControlModeChanged 

 PictureCapacityUpdated 

 USBStateChanged 
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3.3.3. Commands reference 
The camera accepts connections on TCP ports 5678 and 5679. Both requests and 

responses contain 28 bytes of header, optionally followed by payload data (content). 

AF 55 AA FA LE LE LE LE FL FL FL FL CM CM (magic number, content/buffer 

length, flags, command) 

PA PA PA PA PA PA PA PA PA PA PA PA PA PA (parameters) 

__ __ __ __ __ __ __ __ __ __ __ __ __ __ (optional payload) 

All numbers are little endian. 

 length is 32-bit integer, representing either the numbers of bytes of payload 

attached, or the number of bytes of the receiving buffer (i.e. maximum allowed 

payload length of the response), depending on flags. 

 flags two LSB observed only: 

  xxxx xxx0 length is length of the payload 

  xxxx xxx1 length is length of the buffer, no payload in the request 

  xxxx xx0x message is request 

  xxxx xx1x message is response 

 command is 16-bit integer and determines the action the camera will execute 

and format of parameters and payload. Responses preserve the command and 

parameter values of requests. 

 Each command has different number of parameters, not necessarily aligned. 

Unused bytes are zero. 

 When payload is present, the length value contains its length in bytes. Format 

of the payload is different for each command. 

Follows description of the observed commands, parameters and payload formats. Names 

are guessed and empty payload details are of unknown meaning. 
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Load hardware info (C2 00 00) 

This command loads basic information about the camera. 

Load file (C2 00 01) 

This command loads a file from the camera storage. 

Parameters: 

offset size type contents 

0x00 1 byte load type (1 = file) 

Request payload: 

offset type contents 

0x0000 string path to the file, null terminated 

Response payload: 

offset type contents 

0x0000 string path to the file, null terminated (same as in the request) 

In case the requested file is not found, the response contains no payload. 

Download payload: 

Contents of the file. 

Load picture list (C2 00 02) 

This command loads a list of pictures available on the camera. 

Parameters: 

offset size type contents 

0x00 1 byte load type (2 = picture list) 

Request payload: 

None. 

Response payload: 

None. 
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Download payload: 

offset size type contents 

0x0000 4 int  

… … …  

0x0058 4 int  

then for each picture (128 bytes) 

0x00 8 string folder name postfix, right padded with zeroes 

0x08 8 string file name prefix, right padded with zeroes 

0x10 4 int folder number 

0x14 4 int file number 

0x18 4   

0x1C 4   

0x20 4   

0x24 4   

0x28 4 int liked, 1 if picture marked favourite, 0 otherwise 

0x2C 4 float last lambda (at which user focused image in 
camera) 

0x30 48 string picture id, right padded with zeroes 

0x60 24 string date picture taken, ISO 8601 format 

0x78 4   

0x7C 4 int binary encoded rotation, 6 = 270°, 3 = 180°, 
8 = 90°, 1 = 0° (counter-clockwise) 
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Load picture (C2 00 05) 

This command loads a picture from the camera storage. 

Parameters: 

offset size type contents 

0x00 1 byte load type (5 = picture) 

Request payload: 

offset type contents 

0x0000 string picture id followed by picture format digit, null 
terminated 

Response payload: 

offset type contents 

0x0000 string picture id followed by picture format digit, null 
terminated (same as in request) 

In case the requested picture is not found, the response contains no payload. 

Download payload: 

4 bytes for length (int) followed by that amount of bytes containing the picture 

data, depending on the value of picture format digit. 

When picture format = '0', data contains a single JPEG file. The camera shoots in 

RAW+JPEG configuration. This is the JPEG part of it with compressed, colour 

microlens image. Data is equivalent to downloading 

I:\DCIM\###PHOTO\IMG_####.JPG file. 

When picture format = '1', data contains a single RAW file. The camera shoots in 

RAW+JPEG configuration. This is the RAW part of it. Data is equivalent to 

downloading I:\DCIM\###PHOTO\IMG_###.RAW file, and to the Raw Sensor 

Data component in the raw.lfp file. 

When picture format = '2', data contains a single TXT file with metadata about 

the picture, including debug metadata which are otherwise inaccessible. Data is 

equivalent to downloading I:\DCIM\###PHOTO\IMG_###.TXT file. 

When picture format = '3', data contains a single thumbnail image with 

dimensions of 128×128 pixels. It is raw data, 16 bits per pixel, 4:2:2 YUY2 
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format. Data is equivalent to downloading I:\DCIM\###PHOTO\IMG_###.128 

file. 

When picture format = '4', data contains prerendered JPEG files with 

dimensions of 320×1280 pixels, each containing 4 frames of 320×320 pixels at 

different lambda. Data is equivalent to downloading 

I:\DCIM\###PHOTO\IMG_###.STK file and is laid as follows: 

offset size type contents 

0x0000 4 int total size of the file, including this field 

0x0004 4 int  

0x0008 4 int  

0x000C 4 int total number of frames 

0x0010 4 int total number of files 

0x0014 4 int width of frame 

0x0018 4 int height of frame 

then for each file 

0x0000 4 int length of the file 

0x0004 4  (file contents) 

Picture data are not guaranteed to exist even for valid picture IDs. In that case, 

payload for all picture formats contains only 4 bytes for the length (= 0). 

Load calibration data (C2 00 06) 

This command loads the calibration data minimum (set of files). 

Parameters: 

offset size type contents 

0x00 1 byte load type (6 = calibration data) 

Request payload: 

None. 

Response payload: 

None. 
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Download payload: 

offset size type contents 

for each file in the set 

0x0000 4 int length of the file 

0x0004 32 string path to the file (on camera), right padded with 
zeroes 

then for each file in the set, in the same order 

0x0000   (file contents) 

 

Load compressed raw picture (C2 00 07) 

This command loads a picture in the rawPackedJpegCompressed representation. 

Parameters: 

offset size type contents 

0x00 1 byte load type (7 = compressed raw picture) 

Request payload: 

offset type contents 

0x0000 string picture id, null terminated 

Response payload: 

offset type contents 

0x0000 string picture id followed, null terminated (same as in 
request) 

In case the requested picture is not found, the response contains no payload. 

Download payload: 

offset size type contents 

0x0000 4 int length of metadata 

0x0004 4 int (not quite length of data) 

0x0008   metadata of specified length followed by the data 
(a JPEG file) 
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Download (C4 00) 

This command retrieves the content loaded by a load command above. 

Parameters: 

offset size type contents 

0x00 1 byte (0 or 1) 

0x01 4 int offset 

Request payload: 

None. 

Response payload: 

Loaded content (see above commands for the data format), starting at specified 

offset. If content length is smaller than suggested buffer size, the response 

header contains the actual returned length. If it is larger, only the requested 

amount will be specified. The offset parameter can be used to retrieve the rest. 

Specifying offset larger than content length (or not loading any content ahead) 

will result in no payload in the response. You can get the total content length 

using the query command as described below. 

Requesting a buffer size that the camera cannot allocate will cause it to halt. 

Current software uses 2 MB buffer size.SW 

Upload (C5 00) 

This command writes content to the active target. 

Parameters: 

offset Size type contents 

0x00 1 byte (0) 

0x01 4 int offset 

Request payload: 

The content to be stored on the camera, starting at specified offset. Sending 

more data that the camera can allocate will cause it to halt. Current software 

uses 2 MB chunks.SW 

Response payload: 

None. 
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Query content length (C6 00 00) 

This command returns the loaded content length. 

Parameters: 

offset size type contents 

0x00 1 byte query type (0 = content length) 

Request payload: 

None. 

Response payload: 

offset size type contents 

0x0000 4 int content length 

If no content was loaded, the returned length is zero. 

Query camera time (C6 00 03) 

This command returns current camera time. 

Parameters: 

offset size type contents 

0x00 1 byte query type (3 = camera time) 

Request payload: 

None. 

Response payload: 

offset size type contents 

0x0000 2 short year 

0x0002 2 short month 

0x0004 2 short day 

0x0006 2 short hour 

0x0008 2 short minute 

0x000A 2 short second 

0x000C 2 short millisecond 

Milliseconds are currently not reported (the value is zero). 
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Query battery level (C6 00 06) 

This command returns current battery level (as percentage). 

Parameters: 

offset size type contents 

0x00 1 byte query type (6 = battery level) 

Request payload: 

None. 

Response payload: 

offset size type contents 

0x0000 4 float battery level (percentage) 

 

Take a picture (C0 00 00) 

This command triggers the camera shutter. 

Parameters: 

offset size type contents 

0x00 1 byte set type (0 = shutter) 

Request payload: 

None. 

Response payload: 

None. 

(C0 00 02) 

This command finalizes a firmware update. It might mean end of upload or apply 

firmware update. 

Request payload: 

None. 

Response payload: 

None. 
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Set camera time (C0 00 04) 

This command sets current camera time. 

Parameters: 

offset size type contents 

0x00 1 byte set type (4 = camera time) 

Request payload: 

offset size type contents 

0x0000 2 short year 

0x0002 2 short month 

0x0004 2 short day 

0x0006 2 short hour 

0x0008 2 short minute 

0x000A 2 short second 

0x000C 2 short millisecond 

Response payload: 

New camera time, same format as in the request. Using this command can be 

logged to I:\RTCERROR.LOG file on the camera. 

Milliseconds are currently not reported (the value is zero), but the written value 

is used.FW 

Write firmware (C1 00) 

This command initiates a firmware upload. In the command terminology, it selects 

firmware update as the active target. To be followed by the Upload (C5 00) command. 

Parameters: 

offset Size type contents 

0x00 1 byte (0) 

0x01 4 int firmware length 

Request payload: 

None. 

Response payload: 

None. 
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3.4. Lytro Compatible Library 

A Lytro compatible library is part of this thesis, providing access to the functionality 

described above. The overall structure of the library features can be seen on Figure 40. 

 

Figure 40. Structure of library features 

The library was created as a .NET Portable Class Library, allowing it to be referenced 

by .NET Framework 4.0, Windows Store and Universal applications, Silverlight 4, 

Windows Phone 7, Xbox 360 and higher projects (Profile 1) 39. This is rather limiting 

profile without support for asynchronous code, file paths, network sockets and other 

features that might be useful, so for these cases a full desktop library project is available, 

from which a subset of files is compiled as the portable library. 

For detailed class reference, see documentation on the accompanying media. Samples in 

this chapter contain little or no error checking for clarity. 

3.4.1. Working with files 
The core classes for working with the light field picture files are LightFieldComponent 

and LightFieldPackage deriving from it (their diagram is on Figure 41). We have seen 

in chapter 3.2 File Formats that the files are collections of named components, the first 

one of type P and being empty. The collection of components is hold by 

LightFieldPackage, which itself represents the P component and is the first one in the 

collection. To ensure maximum flexibility at this level and due to lack of the official 

                                                             
39 The profile’s metadata must be modified to allow targeting all these platforms together in 
Visual Studio 2013 and above, refer to the accompanying media for instructions. 
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documentation, its position and count is not enforced and developers are responsible for 

keeping the P component part of the component collection. 

 

Figure 41. Classes for working with files 

When the LightFieldPackage reads a stream of components (usually a file stream), 

their names are stored in a dictionary for fast lookup, and those of type M (metadata) are 

noted separately. Note that the components do not need to have unique name and there 

is no specification available limiting metadata components to single instance per package, 

so users must be able to consume a list of components for given name or type. 

The typical scenario called splitting that extracts all components into separate files can 

be carried out as in Listing 1. 

 

Listing 1. Splitting light field packages 

The ComponentCollection of LightFieldPackage is accessible through its 

Components property and is read-write.  The components can then be serialized again 

to a stream using the WriteTo method. 

string path = "IMG_0000.lfp"; 
LightFieldPackage package = new LightFieldPackage(File.OpenRead(path)); 
 
for (int i = 1; i < package.ComponentsCount; i++) 
    File.WriteAllBytes(path + "." + i, package.Components[i].Data); 
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The non-portable version can create LightFieldPackages from files obtained from 

camera storage using the static FromCameraFiles method, which allows downloading 

light field pictures from Lytro camera without physically attaching the camera to the 

computer. The communicator application utilizes this function. 

3.4.2. Working with metadata 
There are two levels of abstraction for metadata available in the library. The low-level 

structures directly reflecting metadata as written in the components are nested in the 

static Json class. Users can directly parse the metadata onto these structures or use them 

to generate JSON strings. A sample code checking popularity of a picture is shown in 

Listing 2. 

 

Listing 2. Accessing low-level metadata 

For easier access, metadata manipulation and better type safety, a higher level of 

abstraction for dealing with common metadata is available by means of 

PictureMetadata, FrameMetadata, FilesMetadata and DebugMetadata classes. 

The same information as above can be obtained using couple of lines of Listing 3. 

 

Listing 3. Accessing high-level metadata 

The higher-level classes use the lower JSON classes as backing storage. 

3.4.3. Working with images 
As described in chapter 3.2.1 Raw pictures (raw.lfp), the raw pictures are bit packaged, 

with Bayern filter superposed on it. The library offers classes to decode and interpret the 

images step by step, summarized in Figure 42. 

All image representations in the library derive from ISampled2D<T> or 

IContinuous2D<T> providing access to the underlying 2D data through indexer. The 

basic steps need to be done with the raw data are unpack → demodulate → interpolate. 

LightFieldComponent metadata = package.GetMetadata().First(); 
 
Json.Master packageMetadata = new Json.Master(); 
packageMetadata.LoadFromJson(metadata.GetDataAsString()); 
 
// assuming the property is always there and the first one 
bool isFavorite = (packageMetadata.Picture.ViewArray[0].VendorContent 
                   as Json.LytroStars).Starred; 
 

PictureMetadata pictureMetadata =  
                              new PictureMetadata(packageMetadata.Picture); 
 
isFavorite = pictureMetadata.IsStarred; 
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Figure 42. Classes for working with images 

The class structure reflects the process closely. The LightFieldComponent containing 

raw data is passed to the RawImage, which can be passed to the DemosaicedImage, 

which in turn can be used to initialize InterpolatedImage. 

To improve performance when only subset of pixels is needed, the demosaicing is 

performed lazily. The library implements high-quality linear interpolation algorithm by 

Malvar et al. [25], but can be recompiled to traditional averaging by undeclaring the 

USEFILTER preprocessor variable. If lazy evaluation is not desired, developers can use 

the Demosaic method to perform complete demosaicing in advance. Finally, 

interpolation uses standard bi-linear approach. 

Since working with the images is memory intensive (128 bits per pixel are used) and the 

scenario to get various stages progressively is common, the library features the high-

level FieldImage class to encompass the process, instantiating the chain of classes as 

required. Additionally, it provides access to the XY and UV images through the 

GetSubapertureImage and GetMicrolensImage methods, respectively. 
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The non-portable version then allows for converting the images into standard 

BitmapSources to be displayed in UI and used in common image processing. 

3.4.4. Accessors 
So far, the developer needs to process an arbitrary LightFieldPackage, get the 

metadata component, parse it and find the other components containing the data of 

interest. Classes deriving from the abstract PackageAccessor are intended to help with 

this technical and error-prone routine for packages with known structure, to get the 

developer directly to the data he needs. For example for the raw image files, one can use 

the RawFieldAccessor as suggested in Listing 4 to access common metadata and the 

central sub-aperture image. 

 

Listing 4. Using the accessors 

3.4.5. Communicating with camera 
We have learned in chapter 3.3 On the Air two interactions the camera allows using 

wireless networking – callback messages and commanding. The callbacks are exposed 

through the LytroCallbackSink class, while for bi-directional communication and 

commands, the LytroNetClientPortableBase would be the starting point. 

However, the portable class library does not support managing network connections and 

socket communication, which complicates design of these features. Therefore, for the 

portable case, developers need to establish the connection with the camera on their own 

and pass the network stream to the library. This is easy for the callbacks which are just 

streams of events, but the full Lytro networking client must ensure minimum robustness 

and integrity of the connection. 

Receiving callbacks 

The LytroCallbackSink class is designed for maximum performance, keeping in mind 

that once connected, the camera continuously sends messages at 100 ms rate (in the idle 

case), and optimized for the currently known callbacks in terms of buffer sizes, yet still 

adaptive for new challenges. 

string path = "IMG_0001.lfp"; 
LightFieldPackage package = new LightFieldPackage(File.OpenRead(path)); 
 
RawFieldAccessor raw = package.AccessRaw(); 
bool isFavorite = raw.GetPictureMetadata().IsStarred; 
 
XYImage central = raw.GetFieldImage().GetSubapertureImage(0, 0); 
BitmapSource centralBitmap = central.ToBitmapSource(); 
 



 

 
75 

 

  

The class offers strongly typed events for each of the callbacks documented above, such 

as NewPictureAvailable or ZoomChanged. The developer is expected to subscribe to 

the callbacks he is interested in and start processing the callback stream (or the other 

way, in which case some callbacks might be missed), as in Listing 5. 

 

Listing 5. Receiving callbacks in portable library 

In the portable scenario, processing the stream is a synchronous call. In order to stop it, 

the stream must be closed or the processing stopped via StopProcessing call from 

another thread. Note that processing is stopped co-operatively, i.e. the callback stream 

must return from the read request in order for the process to be stopped. If waiting for 

that to happen is not desired, users can use StopProcessingAsync method instead and 

check the IsProcessing property for the status.  The non-portable version then takes 

care of the connection and allows for asynchronous processing (Listing 6). 

 

Listing 6. Receiving callbacks in non-portable library 

The extra performance is gained by storing the callback handlers in a dictionary and 

most importantly by not parsing the callback parameters if there is no handler registered 

to receive it. There is a generic CallbackReceived event to record or pre-process all 

incoming callbacks and to handle callbacks that are not well-known. For complete 

description of the individual callbacks and usage remarks, see chapter 3.3.2 Callback 

messages. 

Sending commands 

The architecture of LytroNetClient is based on the principles of WebClient, built on 

the same layers of abstraction, so anyone familiar with the infrastructure for HTTP 

communication should be able to communicate with the camera with ease. Overview of 

the architecture is shown on Figure 43. 

LytroCallbackSink sink = new LytroCallbackSink(); 
sink.SelfTimerTick += (sender, c) =>  
                 Console.WriteLine("Smile, {0} seconds to go!", c.Seconds); 
 
sink.Process(stream); // connected network stream 

LytroCallbackSink sink = new  
                      LytroCallbackSink(LytroCallbackSink.DefaultEndPoint); 
 
sink.SelfTimerTick += (sender, c) =>  
                 Console.WriteLine("Smile, {0} seconds to go!", c.Seconds); 
 
// either  
sink.Process(); // the sink connects to the camera itself 
// or 
sink.ProcessAsync(CancellationToken.None);  // asynchronous calls available 
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Figure 43. LytroNetClient architecture 

At the top most level, there is the LytroNetClient class. As already noted, consumer of 

the portable library must supply the connection management. Listing 7 presents the 

most primitive implementation. A more polished version with connected/disconnected 

events is part of the non-portable version. 

 

Listing 7. Simple LytroNetClient implementation 

With the client, taking pictures is as easy as calling new LytroNetClient().TakePicture(). 

Most of the commands described in chapter 3.3.3 Commands reference are accessible 

through methods of the client, see Figure 44. 

LytroNetClient 

LytroRequest LytroResponse 

LytroRawMessage 

Stream 

WriteTo ReadFrom 

GetResponse 

public class LytroNetClient : LytroNetClientPortableBase 
{ 
    private Stream _stream; 
    private TcpClient _client; 
 
    protected override Stream GetStream() 
    { 
        if (_stream == null || !_stream.CanRead || !_stream.CanWrite) 
        { 
            _client = new TcpClient(); 
            _client.Connect("10.100.1.1", 5678); 
            _stream = _client.GetStream(); 
        } 
 
        return _stream; 
    } 
 
    protected override void OnException(Exception e, Stream stream) 
    { 
        if (_client != null) 
            _client.Close(); 
    } 
} 
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Figure 44. Classes for working wireless 

The client also reports progress whenever data is being downloaded or uploaded, as 

Listing 8 shows for the case of downloading files.40 

 

Listing 8. Downloading files with progress monitoring 

Underneath, the LytroNetClient uses LytroRequest and LytroResponses classes 

(corresponding to WebRequest and WebResponse). When working at this layer, 

developers need to create the request and then send it using GetResponse method over 

the stream. However, in contrast to the HTTP protocol, the request must contain 

expected length of the response content, so that must be passed in as well. Check the 

client’s source code for extensive use of requests and responses, a simple example of 

                                                             
40 See Appendix B for list of files that can be found on the Lytro camera. 

LytroNetClient lytro = new LytroNetClient(); 
lytro.DownloadBufferSize = 512; // only to demonstrate progress monitoring, 
                                   this is a small file! 
 
lytro.ProgressChanged += (sender, e) => Console.WriteLine( 
                       "{0:P0} % completed", 
                       (float)e.BytesTransferred / e.TotalBytesToTransfer); 
 
byte[] data = lytro.DownloadFile("A:\\VCM.TXT"); 
 
File.WriteAllBytes("VCM.TXT", data); // save to disk 
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querying current battery level is pointed out in Listing 9. Again, the non-portable version 

offers an asynchronous GetResponseAsync call. 

 

Listing 9. LytroRequest and LytroResponse example 

At the lowest level, both responses and requests work with the LytroRawMessage class, 

which represents the raw data being sent over network, and enables two additional, 

advanced scenarios. First one is constructing and observing commands that weren’t 

documented yet, and the other one is building the server side of the network service. The 

other noteworthy functionality of raw messaging are the static TraceHeader and 

TraceData events that can be subscribed to for diagnostic and logging purposes of the 

overall communication that is taking place. 

3.5. Supplementary Software 

Two desktop applications that build on top of the library are part of this thesis, the Lytro 

Compatible Viewer (Figure 45) and Lytro Compatible Communicator (Figure 46). 

 

Figure 45. Lytro Compatible Viewer 

LytroRequest request = LytroRequest.Create(LytroCommand.QueryBatteryLevel); 
LytroResponse response = request.GetResponse(stream, 4 
                                          /* expected response payload */); 
 
Debug.Assert(response.ContentLength == 4); 
 
return BitConverter.ToSingle(response.Content, 0); 
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Figure 46. Lytro Compatible Communicator 

The viewer can open and edit Lytro’s light field pictures and data contained in them, 

manipulate the individual components, render different views of the light field etc. It also 

provides shell integration so users can see picture thumbnails in the file explorer. 

The communicator utilizes most of the commands listed above, features downloading 

pictures from the camera without additional software, remotely triggering the shutter or 

raw communication terminal. 

Unfortunately implementation details of these applications are greatly out of topic of this 

work, but readers are welcome to study the enclosed source code in case of doubts about 

the library usage. User manuals are available on the media. 
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Figure 47. A Lytro camera mounted on panoramic tripod head designed and 3D 
printed at Johannes Kepler University, with permission. Source: [2] 
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While Lytro Desktop reveals the basics of light field features, only few image-processing 

algorithms are available in the field. For the panorama, i.e. merging slightly overlapping 

images, the trivial solution is taking individual images rendered at given focus planes and 

merging those using classical methods available for stitching 2D images. Institute of 

Computer Graphics at Johannes Kepler University in Linz41 first published results using 

this method in 2012 [26]. 

However, stitching prerendered images does not preserve the light field itself, i.e. the 

directional information captured in the pictures. This method suffers from all the 

problems the classical image stitching has and introduces new artefacts e.g. during 

refocusing [2]. The same authors recently published paper on true light field merging 

applied to 360° panorama with constant roll and pitch angles of the camera [2], for which 

they designed and published a panoramic tripod mount (Figure 47). 

Let us focus on how the light field behaves on linear panoramas, that is with the same 

constraints on roll and pitch angles, but with translating the camera along one axis. 

4.1. Motivation 

Imagine three points on the optical axis, at various distance from the main lens. From the 

theory in the first chapter, we know that the image on sensor will be similar to the one 

depicted on Figure 48. 

↑
𝑢
↓

 

            

            

            

            

            

            

            

 ← 𝑥 →  

Figure 48. Three points, base UX view 

Simulations show that if the sensor moves in the direction perpendicular to the optical 

axis (i.e. the distances between planes containing the points and the lens plane remain 

constant), a shifted images will be captured as shown on Figure 49. 

                                                             
41 http://www.jku.at/cg/ 

http://www.jku.at/cg/
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↑
𝑢
↓

 

            

↑
𝑢
↓

 

           

                       

                       

                       

                       

                       

                       

 ← 𝑥 →   ← 𝑥 → 

Figure 49. Three points, shifted UX view 

Standard methods such as cross-correlation could then be used to register the images 

together, the desired result being Figure 50. 

↑
𝑢
↓

 

                     

                     

                     

                     

                     

                     

                     

                     

                     

                     

                     

                     

                     

 ← 𝑥 → 

Figure 50. Three points, merged UX view 

Couple of interesting things are apparent from the merged view. The pixels at top right 

and bottom left cannot be obtained when moving the sensor as described. They 

represent rays coming from directions that would require either bigger aperture and/or 

sensor, or camera rotation. On one side, this could help reducing the space that needs to 

be searched when registering images, on the other side it limits what features will the 

merged light field offer. 

4.2. Derivation 

We have shown in chapter 1.2.3 Direction sampling that individual points in the scene 

form lines with constant slope and in chapter 1.4.2 Sensor equations that we can treat 

the image under micro lens array as rasterization of that line. Although the equation for 

line was derived for a point on the optical axis only, it immediately follows that for 

off-axes points, the line will be offset as well (for illustration see Figure 51). 
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Figure 51. Position of single off-axis point on sensor from different camera locations 

The fact that the UX view consists of overlapping lines whose relative position and slope 

does not depend on the camera translation in question makes registering the respective 

UX images a well-defined operation using translation transformation only. 

Imagine rays coming from infinity through the main lens (Figure 52). 

 

Figure 52. Rays from infinity 

All rays coming from infinity meet at focal point of the lens. This point is then imaged 

through the microlenses and we already know this results in a line in the UX view. 

Regardless of how the camera is moved in direction perpendicular to the optical axis, the 

rays from infinity still meet at the same point. Indeed, in traditional photography, if 

camera is being moved e.g. horizontally, objects near the camera move faster in the 

image than more distant objects, and eventually the scene at infinity stays identical all 

the time. 

𝑦𝑖  (position of point’s image 𝐼 on sensor) 

𝑦𝑜 (camera shift) 

𝑦𝑖 + 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 = −
𝑠𝑖

𝑠𝑜

𝑦𝑜 

𝑦𝑜𝑓𝑓𝑠𝑒𝑡 

𝑦𝑜𝑓𝑓𝑠𝑒𝑡 ⋅
𝑠𝑜

𝑠𝑖
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Back to our single point example, rays coming from infinity form the same line, with the 

same slope and same position, regardless the camera movement. It follows that if we 

want to register such two images, these lines must come aligned. Hence, in case of camera 

translation, all images must lie on this line of infinity, leaving only one dimension to 

search. For given camera parameters, we even know the line in advance: 

𝑘 = tan 𝜑 = −
𝑠𝑖

𝑠𝑜
= −

𝑓𝑚𝑙𝑎

𝑑 − 𝑓𝑙𝑒𝑛𝑠
 

It is also easy to see from Figure 51 that we can map the translation of camera 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 to 

the shift in images 𝑦𝑘  along the line using Pythagorean theorem, 

𝑦𝑘 = √𝑦𝑜𝑓𝑓𝑠𝑒𝑡
2 ⋅

𝑠𝑜

𝑠𝑖
+ 𝑦𝑜𝑓𝑓𝑠𝑒𝑡

2 = 𝑦𝑜𝑓𝑓𝑠𝑒𝑡√
𝑑 − 𝑓𝑙𝑒𝑛𝑠

𝑓𝑚𝑙𝑎
+ 1 . 

The above steps apply in 4D too, reducing the search space to one or two dimensions 

only, depending on whether we allow translations in horizontal or vertical directions 

only, or in both. 

4.3. Limitations 

For linear panoramic applications, the missing data restricts available rendering options 

of the complete scene.  

 

Figure 53. Linear panorama performance 

For example, the yellow lines on Figure 53 show a row needed for chosen parallax view 

(cf. Figure 25) for full light field data on the left and for the light field data of linear 

panorama on the right. The combined light field does not provide views of whole 

panorama from different directions, because the rays coming from acute angles were not 

captured.  

← 𝑥 → ← 𝑥 → 

↑
𝑢
↓

 
↑
𝑢
↓
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Similarly, we know the slope of line corresponds to the distance in front of camera. The 

blue lines denote the nearest and farthest distance at which the image can be focused 

without any loss of information. 

Note that if we were interested only in a subset of the panorama (e.g. user panning 

through it), full features might still be available, subject to size of the viewport. More 

interestingly, we have shown that the line of infinity depends on camera parameters, 

most notably on the distance between main lens and the microlens array. Therefore, if 

the camera allows changing this distance (either by choosing the initial focused distance 

or by zooming, both of which Lytro camera provides), we can obtain panorama with 

different slope and then register the two panoramas to cover some of the missing pieces, 

see Figure 54 for illustration of this principle.  

 

Figure 54. Registering multipe panoramas 

It is important to note that we have built the assumption of well-defined registration 

based on ideal optics and ray projections, while in real cameras, the UX grid will be non-

trivially deformed. See the Ren Ng’s work [1] for methods of correcting such errors. 

4.4. Super-resolution 

While the results render the linear panorama as less than ideal application, the super-

resolution algorithms could be applied to light fields with promising success. In 

traditional digital photography, super-resolution or super-resolution image 

reconstruction is a problem of obtaining a higher-resolution image from multiple low-

resolution images of the scene, with the key assumption that there is a shift between the 

low-resolution images and we are able to detect this shift with subpixel accuracy [27]. 

Formally, the observation model is defined as 

𝑦𝑘 = 𝑫𝑩𝑘𝑴𝑘�⃗� + �⃗⃗�𝑘    for  1 ≤ 𝑘 ≤ 𝑝 ,  

where �⃗�  is the ideal high-resolution image, modified by the warp matrix 𝐌𝑘 

(representing translation, rotation etc. of the camera), degraded by the blur matrix 𝐁𝑘 

(motion blur, optical errors etc.) and downsampled by the sensor as modelled by the 

matrix 𝐃. �⃗⃗�  represents an additive noise and 𝑘  denotes the individual low-resolution 
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images from the set of 𝑝 images available. The task is to find �⃗� given set of such equations 

for 1 ≤ 𝑘 ≤ 𝑝. An overview of various approaches for solving this problem is given in the 

IEEE Signal Processing magazine [27].42 

The light field photography, inherently capturing a scene from multiple directions, is a 

great candidate for increasing spatial resolution by means of the super-resolution 

methods, and already has been subject to an active research in the field [28]. Lytro must 

be also taking advantage of this technique, bringing 330 microlenses to the final 

resolution of 1080 pixels. 

To my knowledge though, no publication so far considered registering multiple light 

fields as suggested in the previous chapter, to increase both spatial and directional 

information. While improving the spatial resolution has well-known effect of providing 

more detail in the scene, increasing the directional resolution would allow finer control 

of the focused distance and enable further decrease of the depth of field. 

4.5. Future work 

Another not really well described area are the visual effects of lower resolution or less 

data in either spatial or directional domain but not in the other. If there are parts in the 

image with less or more information in one of the domains, what artefacts will appear in 

the image and when? Can microlens arrays with lenses of variable size, focal length and 

other parameters provide additional value?43 

Aberrations and other errors prevalent in real-world acquisition of light fields 

complicate theoretical research and reproducible experiments in the field. Synthetic 

light fields could help, but little options are currently available to public. For consuming 

light fields, the Stanford Computer Graphics Laboratory published its LFDisplay 

software.44 The MIT Media Lab made available couple of POV-Ray generated light field 

pictures45 but has not published the script itself. Implementing light field cameras in 

popular rendering engines would definitely be useful and challenging task. 

 

                                                             
42 The whole May 2003 issue of the magazine is dedicated to the topic of super-resolution. 
43 Lytro suggests some configurations in one of their patents [32] and Raytrix uses different 
focal lengths in their multi-focus plenoptic camera to extend the depth of field [33]. 
44 http://graphics.stanford.edu/software/LFDisplay/ 
45 http://web.media.mit.edu/~gordonw/SyntheticLightFields/ 
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Conclusion 
The aim of the work was to become familiar with the physics of light field photography 

and various rendering techniques needed to process the digital light field images. The 

work describes in detail how the light field looks like and proves that recording it 

through micro lens array is well defined and can be used the way that it is being used in 

other, advanced works. The most common rendering operations (refocusing, depth of 

field and parallax) are explained and illustrated. Overall, the work uses 2D cases where 

possible to demonstrate the topics discussed, which is also rarely seen in related works. 

Latest and emerging hardware was summarized as well as the ongoing research in other 

usages of the light field, with couple of novel ideas suggested, too. 

The main contribution of this work is the description of the Lytro camera, the file formats 

and communication protocols it uses, packaged into a .NET portable class library. Two 

desktop applications built on the library are included, the light field picture viewer with 

editing capabilities and the communicator to interact with the camera over WiFi, with 

the source code available on the accompanying media. 

This is the first time similar software and developer library for the Lytro camera is 

released. Some of the features (e.g. remotely triggering the shutter) are not available in 

the official software at all, despite their importance in research applications. Similarly, 

the camera’s firmware image was obtained and is for the first time available on the 

accompanying media for additional examination together with instructions for manual 

firmware update, which opens completely new area of possibilities. 

This work is the first step of enabling the use of consumer light field cameras in further 

research and the response and support from various universities and research 

institutions over the world so far suggests it is a welcome contribution. Readers can find 

up-to-date software, documentation and analysis at http://lytro.miloush.net/. 

Finally, the options of linear panoramas were analysed. It is apparent that the impact of 

light fields in these panoramas is limited. Still, considerable performance improvements 

are available for the registration, which calls for effective, multiple light field super-

resolution algorithms to be developed. 

Light field technology is currently experiencing boom in both consumer market and 

research. I hope that the hardware manufacturers will catch up soon and users will find 

value in the core essence of light fields – capturing as much information in the scene as 

possible – rather than celebrating cheap visual tricks like refocusing and depth maps.  

 

http://lytro.miloush.net/
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Appendix A. List of acquired MLA configurations 

The critical part when working with light field pictures is calibration – in the case of 

microlens arrays, determining the location of individual microlenses. Scientists having 

access to the camera can calibrate it manually by taking an image through white diffuser 

or of white scene, or using such images found in the Lytro calibration data set [29]. 

However, this approach is unavailable for processing images from unknown cameras, 

where the calibration data is not available, yet still the Lytro Desktop can render these 

images without noticeable loss of quality. The software that is part of this thesis 

therefore focused on interpreting the image metadata in a way that would allow to obtain 

microlens positions within reasonable accuracy. 

To verify the results, a test set of images from several Lytro users and few online sites 

were collected. The test set, anonymized, is available on the accompanying medium. A 

list of microlens array parameters as reported by the metadata follows: 

picture 
rotation 
[𝒎𝒓𝒂𝒅] 

offset [𝝁𝒎] pitch [𝝁𝒎] scale 
x y z lens pixel x y 

01.1 -6.0540 +3.6736 +2.3655 25 13.899 1.400 1 1.0004 
01.2 -6.0491 +3.6726 +2.3695 25 13.899 1.400 1 1.0005 
01.3 -6.0389 +3.6682 +2.3503 25 13.899 1.400 1 1.0004 
02 -4.8322 -1.3038 -4.6239 25 14.000 1.400 1 1.0002 
03 -2.6991 -2.0778 -11.221 25 13.899 1.400 1 1.0005 
04 -2.5191 -3.9254 -01.008 25 13.899 1.400 1 1.0004 
05 -1.9234 -1.5833 -13.640 25 14.000 1.400 1 1.0002 
06.1 -1.6539 -6.0344 -7.0080 25 13.899 1.400 1 1.0008 
06.2 -1.6539 -6.0344 -7.0080 25 13.899 1.400 1 1.0008 
07.1 -1.3552 +2.7154 -1.3819 25 14.000 1.400 1 1.0003 
07.2 -1.3335 +2.7641 -1.4393 25 14.000 1.400 1 1.0002 
08 -0.9115 +1.1833 +0.4784 25 14.000 1.400 1 1.0004 
09 -0.8710 -0.0093 -2.3828 25 13.899 1.400 1 1.0005 
10 -0.4326 +2.4290 -5.5333 25 13.899 1.400 1 1.0006 
11 -0.2843 -5.3041 -1.1149 25 14.000 1.400 1 1.0002 
12.1 -0.2815 -3.5040 -1.6299 25 13.899 1.400 1 1.0004 
12.2 -0.2815 -3.5040 -1.6299 25 13.899 1.400 1 1.0004 
12.3 -0.2712 -3.5089 -1.6371 25 13.899 1.400 1 1.0005 
12.4 -0.2607 -3.5433 -1.6147 25 13.899 1.400 1 1.0005 
13 -0.0542 -5.9970 -1.1573 25 13.899 1.400 1 1.0007 
14 +0.7737 +0.4470 -1.7432 25 13.899 1.400 1 1.0005 
15 +1.3410 -3.3231 +1.2399 25 13.899 1.400 1 1.0004 
16.1 +1.9291 -2.7139 +0.5660 25 13.899 1.400 1 1.0005 
16.2 +1.9291 -2.7139 +0.5660 25 13.899 1.400 1 1.0005 
16.3 +1.9391 -2.7125 +0.5629 25 13.899 1.400 1 1.0005 
16.4 +1.9391 -2.7125 +0.5629 25 13.899 1.400 1 1.0005 
17 +1.9927 -6.5979 +2.5568 23 13.899 1.400 1 1.0008 
18 +2.2094 -8.3793 +2.5161 25 13.899 1.400 1 1.0006 
19 +2.9010 -1.2626 -6.3853 25 13.899 1.400 1 1.0016 
20.1 +3.5985 +2.9764 -0.7565 25 14.000 1.400 1 1.0003 
20.2 +3.6050 +2.9653 -0.7697 25 14.000 1.400 1 1.0003 
21 +6.8376 -6.3311 -1.1998 25 14.000 1.400 1 1.0005 
22 +8.7578 -5.1163 -8.1219 25 14.000 1.400 1 1.0001 



 

 
92 

 

  

Pictures with the same major numbers come from the same camera. Different values for 

the same camera suggests that the metadata contains best-fit approximate generated on 

the fly rather than values obtained during the calibration process. 

Minimum and maximum values are highlighted. It is worth pointing out that the 

rotations of the microlens array relative to the sensor itself are spanning very large 

values and cannot be ignored. For example, a rotation of −0.006 radians of picture 01.1 

on 3,280 px resolution causes shift of 20 px, twice the size of the microlens. 

See the source code for MicroLensCollection for computation of the microlens 

centres used by the accompanying software. 
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Appendix B. List of files on Lytro camera 

The following files were discovered on the camera’s internal storage as of firmware 

version v1.2.2 (build v1.0a208). Not all files are present on all cameras (e.g. various log 

files) and the list might not be exhaustive as its source was firmware analysis rather than 

storage dump. Readers can download these files for further research with the help of 

supplied software over wireless connection. 

The storage uses FAT file system. 

A:\ for firmware’s internal use, USB descriptors and mounted media, media assets, 

camera model information, version compatibility 

 assets 

 📄 asset-atlas-deDE.img 

 📄 asset-atlas-deDE.txt 

 📄 asset-atlas-enUS.img 

 📄 asset-atlas-enUS.txt 

 📄 asset-atlas-frCA.img 

 📄 asset-atlas-frCA.txt 

 📄 assets.txt 

 📄 menus.txt 

 LUA 

 📄 CHARGETO.LUA 

 📄 MENU.LUA 

 MCU 

 📄 FIREFLY.TXT.BIN 

 media 

 📄 default.bin 

 MODELS 

 📄 MODEL.TXT 

📄 ADC.BIN 

📄 AE.BIN 

📄 AF.BIN 

📄 AVIMODELSTR.BIN 

📄 AVISTRLSTR.BIN 
 

📄 AVISTRNSTR.BIN 

📄 AWBCFG.BIN 

📄 AWBSETTINGS.BIN 

📄 BASENLGF0.BIN 

📄 BASENLGF2.BIN 

📄 COPMASKING.BIN 

📄 COPNMRLOOP1.BIN 

📄 COPQTTABLE.BIN 

📄 COPTRANSFORM.BIN 

📄 CTLUT1.BIN 

📄 DLUT.BIN 

📄 EPS_GCP0.BIN 

📄 Eps_XSCL.BIN 

📄 FIRMWARE.TXT 

📄 GAMMADDE1.BIN 

📄 GAMMALUT0.BIN 

📄 LCLUT0.BIN 

📄 MEDIAFORMAT.BIN 

📄 UsbDevDesc.BIN 

📄 UsbModeDesc.BIN 

📄 VCM.TXT 

📄 WAVEEXIF.BIN 

📄 YLUT.BIN 
 

 

B:\ operational storage, file system check logs, user settings, usage statistics 

 T2CALIB 

 📄 BIPOS.BIN 

 wifi 

 📄 settings.txt 

📄 ASERIAL.TXT 

📄 CALREFSHA1.TXT 
 

📄 FSCK.LOG 

📄 HWSERIAL.TXT 

📄 LENSODOMETER.TXT 

📄 SETTINGS.TXT 

📄 STATE.TXT 

📄 USER.TXT 
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C:\ calibration data, flat field images, partition read-only 

 B1CALIB 

 📄 TIMESTAMP.TXT 

 CALIB 

 📄 ACC.TXT 

 📄 BATTERY.TXT 

 📄 CAPSLIDER.TXT 

 📄 EMMC_INFO.TXT 

 📄 HISTORY.TXT 

 📄 HW_VERSION.TXT 

 📄 ITE_H.TXT 

 📄 ITE_V.TXT 

 📄 SENSORID.TXT 

 📄 THERMISTOR.TXT 

 📄 THROUGHPUT.TXT 

 📄 TOUCHPANEL.TXT 

 📄 WIFI_MAC_ADDR.TXT 

 L50CALIB 

 📄 MLACALIBRATION.TXT 

 media 

 📄 default.bin 

 MODELS 

 📄 MODEL.TXT 

📄 ADC.BIN 

📄 AE.BIN 

📄 AF.BIN 

📄 AVIMODELSTR.BIN 

📄 AVISTRLSTR.BIN 
 

 DEVICES 

 📄 ACCELEROMETER.TXT 

 📄 BOARDS.TXT 

 📄 CAPSLIDER.TXT 

 📄 COLOR.TXT 

 📄 EMMC.TXT 

 📄 GASGAUGE.TXT 

 📄 LENS.TXT 

 📄 MLA.TXT 

 📄 SENSOR.TXT 

 📄 THERMISTORS.TXT 

 📄 TOUCHPANEL.TXT 

 📄 WIFI.TXT 

 T1CALIB 

 📄 GCFN_ZZZZ_FFFF.BIN1 

 📄 MLACALIBRATION.TXT 

 📄 MOD_0000.RAW2 

 📄 MOD_0000.TXT2 

 T2CALIB 

 📄 BIPOS.TXT 

 📄 HOTPIXEL.BIN 

 📄 HOTPIXEL.RAW 

 📄 HOTPIXEL.TXT 

📄 DEFECTIVEPIXEL0.BIN 

📄 FSP.BIN 

📄 LSCLUT0.BIN 

📄 LSCLUT1.BIN 
 

 

1 ZZZZ is for zoom step, FFFF for focus step; an example set of combinations: 

0100 0115 0155 0230 0360 0490 0620 0740 0860 0982 

0835 0913 1067 1215 1219 1099 0957 0829 0713 0603 

1032 1080 1238 1311 1313 1253 1082 0904 0763 0653 

1229 1247 1409 1407 1407 1407 1207 0979   

1426 1414         

 
2 files range from 0000 through 0061 

 

I:\ user data (pictures), crash and error logs 

 DCIM 

  100PHOTO1 

  📄 IMG_0000.???1,2 
 

📄 CRASH000.LOG1 

📄 err.log 

📄 RTCERROR.LOG 
 

 
1 depending on the number of items, number might grow 
2 available extensions are 048, 128, 133, INF, JPG, RAW, STK, TXT 
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Appendix C. Accompanying media 

A DVD with the following structure complements this thesis: 

 Camera  

  Calibration Compression calibration data from two cameras. 

  Firmware Firmware version v1.0a208. This is a stream format including 
metadata, which can be directly uploaded to a camera. 

  Storage Files downloaded from internal storage of two cameras. 
One running firmware v1.0a208, includes full T1 calibration. 
Other one running firmware v1.0a204. 

 Literature Bibliography sources when available. 

 Pictures  

  Processed Sample pictures processed with the Lytro Desktop Software. 

  Raw Acquired raw light field pictures, see Appendix A for their 
metadata overview. Same numbers group pictures from the 
same camera. Files can be opened either using the supplied 
software or the Lytro Desktop software. 

 Software Includes binaries of the library (chapter 3.3.3), the 
accompanying software (Lytro Compatible Viewer and Lytro 
Compatible Communicator, ref. chapter 3.5) and their user 
manuals. 

  Source Source codes for the library and accompanying software. 

  Supplementary 2D light field raytracing software that generated illustrations 
in this thesis. 

  Support Microsoft .NET Framework 4.5.2 Offline Installer  
.NET Portable Class Library Profile1 

 

You might want to: 

💡 Try the Lytro Compatible Viewer 

► Ensure you have Microsoft .NET Framework 4.5 installed. 

If not, use the installer in Software\Support directory. 

► Run the viewer from Software directory. 

► Try opening some of the sample pictures in Pictures directory. 

► See the user manual in Software directory for detailed description of 

available features and user interface. 
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💡 Explore how the light field works 

► Ensure you have Microsoft .NET Framework 4.5 installed. 

If not, use the installer in Software\Support directory. 

► Run the LightFieldGeometry from Software\Supplementary directory. 

► Play with the camera parameters and see how it affects the captured image. 

💡 Control your Lytro camera wirelessly 

► Ensure you have Microsoft .NET Framework 4.5 installed. 

If not, use the installer in Software\Support directory. 

► Run the communicator from Software directory. 

► Follow the user manual in the same directory to connect to the camera and 

learn what the software can do. 

► See Appendix B on what files can be downloaded from the camera. 

💡 Check your software works with real-world pictures 

► Use the acquired set in Pictures\Raw directory. 

💡 Use the library to build your software 

► If you need to use the .NET Portable Class Library, add reference to the 

LytroCompatibleLibrary.dll assembly in the Software directory. 

► If you are building desktop software and want to take advantage of 

asynchronous methods and file system, add reference to the 

LytroCompatibleLibrary.Desktop.dll assembly instead. 

► Check the chapter 3.4 for documentation and examples for the library. You 

can also visit http://lytro.miloush.net/ for even more examples and newer 

releases of the library. 

http://lytro.miloush.net/
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💡 Build the supplied software yourself 

► Ensure you have Visual Studio 2013 or newer installed. 

If not, install it from www.visualstudio.com. 

► Note: If you want to build the .NET Portable Class Library for the original set 

of platforms, you need to overwrite the Profile1 directory in 

%PROGRAMFILES(X86)%\Reference Assemblies\Microsoft\Framewo

rk\.NETPortable\v4.0\Profile with the one in Software\Support 

directory. Otherwise, you would be asked to upgrade the portable library 

project and miss the ability to target Windows Phone 7, Silverlight 4 and 

Xbox 360. 

► If you are copying the source code of the media, make sure you include the 

InsertIcons.exe from Software\Support directory which is used 

during the build process. 

💡 Reveal further secrets about the Lytro camera 

► Study the enclosed firmware release under Camera\Firmware directory. 

► Publish your findings! 

 

 

 

 

 

http://www.visualstudio.com/
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Appendix D. Imprint 

 

Printed version of the thesis contains inserted copies of the following press articles: 

 

Inside the Lytro 

published on February 29, 2012 in New York Times 

http://www.nytimes.com/interactive/2012/03/01/business/inside-the-lytro.html 

 

Forget the autofocus: how Lytro cameras work 

published on June 15, 2012 in Wired magazine 

http://www.wired.co.uk/magazine/archive/2012/07/start/photos-in-full-focus 

 

New Thing in Photography 

published on May 24, 1908 in New York Times 

http://query.nytimes.com/mem/archive-

free/pdf?res=9D07E5D8143EE233A25757C2A9639C946997D6CF 

 

http://www.nytimes.com/interactive/2012/03/01/business/inside-the-lytro.html
http://www.wired.co.uk/magazine/archive/2012/07/start/photos-in-full-focus
http://query.nytimes.com/mem/archive-free/pdf?res=9D07E5D8143EE233A25757C2A9639C946997D6CF
http://query.nytimes.com/mem/archive-free/pdf?res=9D07E5D8143EE233A25757C2A9639C946997D6CF
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