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Chapter 1

Introduction

In the globalized world we live in, there is a need for translating from one human
language to another. The translation itself is often not easy even for people.
They have to be trained for that and well paid. There is therefore a very high
demand for cheap and high-quality machine translation. A lot of researchers and
companies try to satisfy this demand and constantly improve their translation
systems. One of the most important thing when improving your system is that
you know how to measure the improvement.

There are a lot of situations in which you need to evaluate machine translation.
If you are a customer who would like to buy a machine translation system you
want to buy the system which will best suit you. There are many criteria of
MT systems (speed, price, memory consumption, scalability, etc.) but the most
important criterion is usually the machine translation quality. Therefore, you
would like to evaluate this quality on a sample of documents you are going to
translate.

If you are a developer of a machine translation system you need to evaluate
your system during various phases of the development process. Let us go through
the phases which need an evaluation in reversed order. From time to time, you
have a ready-to-use system and you would like to have a comparison to systems
of your competitors or another researchers. You can evaluate your system your-
self in a way that the obtained score is comparable to other scores, or you can
participate in a shared evaluation campaign, for instance NIST OpenMT1 or at
Workshop on Statistical Machine Translation2 (WMT). During the day-to-day
development process of your system, you try various configuration, new compo-
nents and features. You have to evaluate your system with every change to know
how much the change improved (or sometimes worsened) the translation quali-
ty. Recently, new automatic methods which tune parameters of your system to
directly optimize an evaluation measure emerged.

Unlike other applications of natural language processing, for instance speech
recognition, the evaluation in machine translation is not easy at all. The main
reason for that is that when translating an average sentence, there is no single cor-
rect solution, in fact there are hundreds of thousands correct translations (Bojar
et al., 2013).

There are two fundamental approaches in the machine translation evaluation:

1http://www.nist.gov/itl/iad/mig/openmt12.cfm
2http://www.statmt.org/wmt14/translation-task.html
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a manual evaluation and an automatic evaluation (Bojar, 2012). In the manual
evaluation, human judges assess the quality of each sentence manually. The most
widely used methodology in the past was to assign values from two five point scales
representing fluency and adequacy. However, it was shown that a) people had
difficulties with separating these two aspects of translation and b) there was a very
small inter-annotator agreement, since each annotator had different expectation
of a good translation. In later evaluation campaigns started by Callison-Burch
et al. (2007), annotators ranked translations relatively to each other.

In the automatic evaluation, an output of a machine translation system is
compared to a reference translation. However, unlike other machine learning
problems, you cannot simply compute the proportion of translated sentences
which match the reference translation. If a translated sentence is not identical to
its reference counterpart it does not have to be a bad translation because there
is the very large number of correct translations. Automatic metrics3 are used
to measure the similarity between the candidate and reference translations. The
more similar they are, the better the translation is considered.

As you can see, the evaluation of machine translation is very important and at
the same time, very difficult. We explore both manual and automatic evaluation
in this thesis.

1.1 Motivation and Goals

Manual evaluation is of course considered as the only source of truth which met-
rics try to approximate. However, it suffers from many disadvantages. Since it
includes manual labour, it is very costly and slow. Moreover, manual evaluation
is not reproducible; human judges have different criteria for comparing candidates
and even an individual judge is not consistent with himself in time. Human evalu-
ation is therefore most often used in shared evaluation campaigns and sometimes
used when you want to evaluate a new component of your system. It is definitely
not feasible to directly use human evaluation in an automatic method for tuning
your model’s parameters because these methods require to evaluate millions of
sentences.

Automatic metrics, on the other hand, are fast, reproducible and cost almost
nothing. However, they are only proxies to human evaluation and their correla-
tion to human judgments varies a lot. The first goal of this thesis is therefore to
conduct a large-scale comparison of available automatic metrics in the terms of
correlation with human judgments. For this purpose, we have organized Metrics
Shared Task within Workshop on Statistical Machine Translation in two consec-
utive years 2013 (Macháček and Bojar, 2013) and 2014 (Macháček and Bojar,
2014). We also compare the metrics in other more subjective criteria.

It would be very useful if we have an evaluation method which would take
advantages from both manual and automatic evaluations. Recently, there actually
emerged such methods on the boundary of manual and automatic evaluation.
These methods usually require a large manual annotation effort at the beginning

3Automatic metrics for machine translation evaluation are not actually metrics according
to the mathematical definition. For example, the triangle inequality usually does not hold and
some metrics are not even symmetric. However, we are going to use this traditional term in
this thesis.
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to create a database and then they use the collected database in an automatic
way during evaluation. The second goal of this thesis is to propose a method
which could be used to manually evaluate a set of systems and the database
collected during this manual evaluation could be later reused to automatically
evaluate new, unseen systems and to tune a system. This goal includes, besides
proposing the method, also developing an annotation application, conducting a
real evaluation experiment and experiment with reusing the collected database.

1.2 Outline

The thesis is organized as follows. In Chapter 2 we propose the manual evaluation
method and report the annotation experiment we have conducted. We explore the
possibility of reusing the collected database to evaluate new systems and to tune
a system in Chapter 3. In this chapter, we also analyze the results in more details
and try to explain them. The automatic metrics are described, compared and
evaluated in terms of correlation with human judgments in Chapter 4. Related
work is summarized in Chapter 5. We conclude our work in Chapter 6.

There are three appendices, all of them relate to the contents of the attached
DVD-ROM. In Appendix A, you can find the documentation of the metrics task
package which is used to compute the metrics task results. In Appendix B, you
can find the user documentation of the annotation application called SegRanks
which is used in the annotation experiment. You can find the development doc-
umentation of this application in Appendix C.
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Chapter 2

SegRanks: Manual Evaluation
Based on Short Segments

In the following two chapters, we propose a novel manual evaluation method in
which we create a database of human annotations. This database could be reused
later to automatically evaluate similar but unseen translations or even to tune
systems. This method therefore lies on the boundary of automatic and manual
evaluation methods.

The proposed method consists of two parts, which we describe and experi-
ment with in the following two chapters. In this chapter, we describe the way of
collecting the database of human judgements and report the human annotation
experiment which we conducted using the proposed method. In the following
chapter, we present some methods which exploit the collected database: be-
sides the evaluation of annotated systems, we experiment with extrapolating the
database to evaluate unseen translations and with tuning a machine translation
system using the database.

In the WMT official human evaluation, humans judge whole sentences. They
get five candidate translations of a given source sentence and their task is to
rank these candidates relatively to one another (ties are allowed). One of the
disadvantages of this method is that the sentences are quite long and therefore
quite hard to remember for the judge to compare them. Also, when comparing
longer sentences, there are many more aspects in which one sentence can be better
or worse than another, and therefore it is more difficult for judges to choose the
better of the candidates.

To avoid these disadvantages, we propose the following method. Instead of
judging whole sentences, we extract short segments1 from candidates and give
them to judges to rank them. In order to extract meaningful segments with the
same meaning from all candidates, we do the following procedure: First, we parse
the source sentence and then recursively descend the parsed tree and find nodes
which cover source segments of a given maximum length. This is described exactly
in Algorithm 1. Finally, we project these extracted source segments to their
counterpart segments in all candidate sentences using an automatic alignment.
You can find the whole process illustrated in Figure 2.1. This extraction method
is inspired by Zaidan and Callison-Burch (2009) and by the WMT07 manual

1The term ‘segment’ is sometimes used in the literature to refer a sentence. In this thesis,
we will use the term ‘segment’ for a phrase of few words.
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Algorithm 1 Short Segment Extraction From Source Side Parse Tree

1: function ExtractSegments(treeNode,minLength,maxLength)
2: extractedSegments ← list()
3: leaves ← treeNode.leaves()
4: if length(leaves) ≤ maxLength then
5: if lenth(leaves) ≥ minLength then
6: extractedSegments.append(leaves)

7: else
8: for node in treeNode.children() do
9: segments←ExtractSegments(child,minLength,maxLength))

10: extractedSegments.extend(segments)
return extractedSegments

evaluation (Callison-Burch et al., 2007).
In the segment evaluation in (Callison-Burch et al., 2007), these extracted

segments are only highlighted and shown to judges together with the rest of the
sentence. Judges are asked to rank the highlighted segments in the context of the
whole candidate sentences.

We use a different approach here which is more similar to that used by Zaidan
and Callison-Burch (2009). We show the extracted segments without any context
and ask judges to rank them. The only additional information provided to anno-
tators is the whole source sentence with the source segment highlighted. Judges
are told that they can imagine the rest of the sentence in which the ranked seg-
ment fits best. They are instructed to penalize only those segments for which
they cannot imagine any appropriate rest of the sentence.

While we are aware that this approach has some disadvantages (which we
summarize below) there is one significant advantage: it is much more likely that
two systems produce the same translation of a short segment than that they
would produce the same translation of a whole sentence. Because we do not show
the sentence context to annotators, we can merge identical segment candidates
into one, so the annotators have fewer candidate segments to rank. This also
allows us to reuse already collected human judgements later to evaluate a new
system which was not in the set of annotated systems or to tune parameters of a
system.

The following list summarizes disadvantages of this method, which we are
aware of. However, we believe that the advantages still outweight the problems
and that our method is worth exploration.

• A system could translate shorter segments quite well but it can fail to com-
bine them properly when creating the whole sentence translation. For in-
stance, a system may fail to preserve the subject – verb agreement, which is
very important in the Czech language. In their paper, Zaidan and Callison-
Burch (2009) suggest to go up the parse tree and extract also the longer
segments which consist of already extracted shorter segments. However, if
we use this approach the amount of annotation work would multiply several
times. Furthermore, the longer segments are more difficult to rank and the
chance that systems’ candidates will be identical (so that we can merge
them for annotation) is lower.

7
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NP VP

DT JJ NNS VBP ADVP VP

RB VBN PRT ADVP

RP RB

The prepaid mobiles are then thrown away afterwards

Předplacené mobilní telefony jsou pak vyhozeny později

Parse tree

Source

Candidate

Alignment

Figure 2.1: An illustration of candidate segments extraction process. For a given
MT system, two segments were extracted from this sentence. The maxLength

constant was set to the value 4 here, to illustrate that not all of the words are
always covered by the extracted segments.

• Annotators do not see the whole context of annotated short segments. They
are instructed to imagine any suitable context of the segment. However,
they can fail to imagine a suitable context even if there exists one and
wrongly penalize the segment. To partially remedy this disadvantage we
give all extracted short segments to annotators to judge at once, so they
can at least imagine the context.

• Extracted short segments do not cover the whole sentence. For example in
Figure 2.1, the words ‘jsou’ and ‘pak’ are not part of any extracted segment.
We would avoid this problem if we set the variable minLength to zero. This,
however, would generate a high number of short segments to annotate.

• Some segment candidates are much more important to convey the meaning
of a sentence than others, and therefore should not have equal weights when
being interpreted. When an annotator ranks system A better than system
B in two of three ranked segments, and system B better than system A
in the third segment, it does not always mean that he would have ranked
system A better than system B when ranking whole sentences. The third
segment could be much more important for the quality of translation than
the first two. We are afraid that it is not possible to easily avoid this
problem. However, we also believe that this problem is not so severe and
that possible differences in the importance of individual segments cancel
out.
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2.1 Data and Segment Preparation

We have conducted an annotation experiment using the proposed method. In
this section, we describe what data we have used and how we prepared it for the
annotation experiment.

We used English to Czech part of the WMT14 (Bojar et al., 2014) test set.
We chose this data set to be able to compare experiments’ results with the official
WMT14 human evaluation.

The testset consists of 3003 sentences (68866 tokens). It contains both source
sentences and reference translations. Roughly a half of the sentences were orig-
inally in Czech and were translated by human translators into English. The
second half of the sentences was translated in the opposite direction. Besides the
source and reference translations, we also used candidate translations of 10 sys-
tems which participated in the WMT14 translation task. All systems are listed
in Table 2.1.

ID Type Team

cu-depfix hybrid

Charles University, Prague (Tamchyna et al., 2014)
cu-bojar hybrid
cu-funky hybrid
cu-tecto hybrid

uedin-phrase statistical
University of Edinburgh (Durrani et al., 2014)

uedin-uncnstr statistical

commercial-1 rule-based
Commercial machine translation systems

commercial-2 rule-based

online-a statistical
Online statistical machine translation systems

online-b statistical

Table 2.1: The machine translation systems participating in the WMT14 transla-
tion task in English-Czech direction which were used in the annotation experiment

Source sentences and all candidate translations were tokenized using the script
tokenizer.perl. Unicode punctuation characters were normalized using the
script replace-unicode-punctuation.perl. (Both scripts are included in the
Moses toolkit).

The source sentences were parsed using the Stanford parser. We used lexical-
ized englishFactored model (Klein and Manning, 2003b) which is distributed
with the parser. We also tried unlexicalized englishPCFG (Klein and Manning,
2003a) and compared the segments extracted using the both parsers on a small
random sample of sentences. The englishFactored model yielded subjectively
better segments.

We constructed an alignment between the source sentences and the candidate
translations using Giza++ (Och and Ney, 2003). Since the alignment algorithm
is unsupervised and the amount of all candidate translations is relatively small
(10×3003), we introduced more data by concatenating all candidate translations
with 646,605 sentences taken from the Europarl parallel corpus (Koehn, 2005)
and with 197,053 sentences taken from the CzEng parallel corpus (Bojar et al.,
2012). The concatenated parallel corpus was lowercased before the alignment
computation.

9



We extracted short segments from the parsed source trees using Algorithm 1.
The constant minLength was set to the value 3 to filter out very short segments
which are hard to judge without context. This also helped reduce the number
of extracted segments to be annotated. The constant maxLength was set to the
value 6 so the extracted segments were not too long to judge and at the same time
it was more likely that two candidate translations of a segment were equal and
therefore there would be fewer items to rank (our aim was to make annotations as
easy and fast as possible). We have experimented with various settings of these
two constants and the final settings seemed to generate a reasonable number of
meaningful segments.

From the 3003 source sentences, we have extracted 8485 segments of length 3
to 6 tokens. That is approximately 2.83 segments per sentence on average. By
projecting the source segments to the candidate sentences using the computed
alignments, we got 10 × 8485 = 84850 candidate segments. However, after the
merging of equal segments, only 50011 candidate segments were left. This rep-
resents 58.9 % of the original candidate segments, or in other words, after the
merging we got 5.89 (instead of original 10) candidate segments to be ranked
for each source segment on average. These prepared candidate segments were
inserted into the database to be ranked by annotators.

2.2 Ranking of Segments

We have developed a new annotation application called SegRanks for this an-
notation experiment.2 Please see Appendix B for the user documentation and
Appendix C for the development documentation.

You can find an example screen shot of this application in Figure 2.2. Anno-
tation instructions were displayed on each annotation screen. This is the English
translation of these instructions:

A number of segments are extracted from the annotated sentence.
You are shown a few candidate translations for each of these seg-
ments. Your task is to distinguish acceptable candidate translations
(the meaning of the segment can be guessed despite a few or more
errors) from unacceptable ones (the meaning is definitely not possible
to guess from the candidate segment). Also please rank the accept-
able candidate translations relatively from the best ones to the worst
ones. Please place better candidate translations higher and the worse
ones lower. You can place candidates of the same quality on the same
rank. We ask that you place unacceptable candidates to the position
“Garbage”

Please note that source segments and their candidate translations
are chosen automatically and do not have to be perfect. Consider
them only as approximate clues. If a candidate segment contains

2It would be probably possible to customize and use an existing annotation application,
for example Appraise (Federmann, 2012). However, since the ranking of short segments is
quite specific it would require a lot of customization. We therefore decided to develop our own
light-weight web application which would suit our needs perfectly and allow us to optimize the
efficiency of annotation.

10



Figure 2.2: A screenshot of the annotation application. Annotators rank the
candidate segments by dragging and dropping them into the ranks. Annotators
see all annotated segments of a sentence on a single screen.
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an extra word, which does not correspond to the source segment but
otherwise could be in the translated sentence, you do not have to rank
such candidate any worser. If something is missing in the candidate
translation you should consider it an error.

Our goal was to make the annotation as efficient and user friendly as possible.
Annotators rank all the source segments of a sentence on a single screen (so
that they have to read the whole source sentence and reference translation only
once). For each annotated segment they see the source sentence repeated, with
the annotated segment highlighted. Annotators rank the segment candidates
by dragging and dropping them to appropriate rank positions. When all the
candidates of all the source segments of the sentence are ranked, annotators
are allowed to submit their annotations to the server. The web interface has a
responsive design, so it is displayed correctly on smaller screens, and the drag-
and-drop works also on touch screens. Annotators were therefore able to rank
segments on a tablet.

The very annotation experiment was conducted during May/June 2014 and
it lasted exactly one month. During this time, 17 annotators ranked segments of
2765 sentences, which is more than 92 % of the prepared English-Czech test set.

2.2.1 Annotator Agreements

To measure the reliability and robustness of the proposed annotation method,
we have computed intra- and inter-annotator agreements. A reasonable degree of
these agreements supports the suitability of this method for machine translation
evaluation.

We measured the agreements using Cohen’s kappa coefficient (κ) (Cohen,
1960). Let P (A) be the proportion of times the annotators agree and P (E) be
the proportion of time that they would agree by chance. Then the Cohen’s κ is
computed using the following formula:

κ =
P (A)− P (E)

1− P (E)

Simply put, κ is the proportion of times the annotators agrees of all the times
they would not agree by chance. Note that κ is a normalized version of P (A); it
considers how difficult it is to agree without knowing anything about the task.
Values of κ can be therefore compared in principle across various annotation
experiments. The maximum value is 1 which would mean that annotators always
agree. A value of zero would mean that annotators agree as often as they would
by chance.

In our case, P (A) and P (E) are computed in the context of pairwise compar-
isons. Approximately 5 % of the annotated sentences were annotated twice by
two different annotators (for the inter-annotator agreement). Another 5 % of the
sentences were annotated twice by the same annotator (for the intra-annotator
agreement). From all the segments of these double annotated sentences, we ex-
tracted pairwise comparisons of candidate segments. Then we computed P (A)
as the proportion of pairwise comparisons in which annotations match.

We computed the expected agreement by chance as

P (E) = P (A > B)2 + P (A = B)2 + P (A < B)2
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our method Bojar et al. (2014)
intra-annotator κ 0.593 0.448
inter-annotator κ 0.397 0.360

Table 2.2: κ scores measuring intra-annotator and inter-annotator agreements.
We also report corresponding κ scores from official WMT translation task for
comparison. Please see Table 2.3 for the annotator agreements computed for
individual annotators

where P (A > B), P (A = B) and P (A < B) were computed empirically as the
relative frequencies of cases where the two segments A, B are ranked >, =, or <
respectively, across all annotations of the pair A, B, regardless the sentence or
annotator. The value of P (E) in our experiment is 0.394, which means that the
probability of the outcomes A > B, A = B and A < B is not uniform.

The final values of inter-annotator and intra-annotator κ can be found in Ta-
ble 2.2 You can also compare them to the corresponding κ values from WMT14
translation task (Bojar et al., 2014), which were computed similarly on the same
testset. The exact interpretation of the Kappa coefficient is difficult, but accord-
ing to Landis and Koch (1977), 0 – 0.2 is slight, 0.2 – 0.4 is fair, 0.4 – 0.6 is
moderate, 0.6 – 0.8 is substantial and 0.8 – 1.0 is almost perfect. You can see
that we get both κ scores better than those of WMT14. However, they are still
quite low and we expected them to be higher, since the annotation task was de-
signed to be much simpler than the ranking full segments in the official WMT
human evaluation.

We also computed the agreements κ for individual annotators and report them
in Table 2.3. As you can see, these scores are varying a lot. Based on these scores,
we could filter out unreliable annotators. However, we do not do that in order to
maintain comparability to the WMT14 experiment.
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ID nsent nseg t t
nseg

κintra κinter

1 78 232 4:53:43 75 0.838 0.495
4 87 248 5:00:46 74 0.283 0.145
6 378 1160 16:53:13 52 0.657 0.453
7 243 663 11:16:26 62 0.763 0.417
8 6 20 0:21:06 63
9 12 50 0:45:58 55 0.686
10 98 274 5:04:45 66 0.673 0.320
12 3 7 0:15:03 129 0.281
13 424 1260 1 day, 2:26:14 75 0.459 0.308
15 106 282 5:17:58 67 0.611 0.401
16 224 627 5:00:11 28 0.655 0.614
17 26 74 2:40:44 130 0.734 0.269
18 83 234 7:02:10 111 0.676 0.385
19 15 50 1:31:52 110
21 483 1443 1 day, 13:44:37 94 0.663 0.383
22 117 338 6:00:36 64 0.714 0.431
23 477 1371 22:07:35 58 0.376 0.363

Total 2773 8333 6 days, 14:22:57 68 0.593 0.397

Table 2.3: The list of annotators and their statistics. The annotators are
anonymized using their ID. The table contains the number of annotated sentences
nsent, the number of annotated source segments nseg (this is not the number of
ranked segment candidates), the time spent annotating t, the average time in sec-
onds spent annotating one source segment t

nseg
, the normalized intra-annotator

agreement κintra and the normalized inter-annotator agreement κinter.
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Chapter 3

Using Short Segments in MT
Development

In this chapter, we describe several experiments with the collected database of
annotations.

3.1 Overall Ranking of Annotated Systems

In the first experiment, we would like to show that the proposed method can
be used to produce overall ranking of the annotated systems which will be very
similar to the official human evaluation in WMT.

The obtained database contains a list of annotations for each extracted source
segment from each source sentence. The list can be empty (not all of the sentences
were annotated), it can contain more than one annotation (some segments were
annotated twice by an annotator, some segments were annotated by multiple
annotators), but most of the time it contains only one annotation.

An annotation is a mapping from the set of candidate segments to the set
of ranks 1 . . . N + 1, where N is the count of unique candidate segments. (To
discriminate the relative quality of all segments, annotators had available N ranks
which could be all occupied when there were no ties. The rank N + 1 represents
the “garbage” category from the annotation application. However in all of our
experiments reported in this thesis we consider this category simply as one more
rank, the worst one). A lower rank of a segment means that the candidate segment
was ranked better. This is an example segment annotation of a source segment
“the huge volume”:

{

’velkému objemu’ : 1,

’obrovské hlasitosti’ : 5,

’obrovský objem’ : 2,

’obrovské množstvı́’ : 2,

}

We expanded these segment annotations with the information about the sys-
tems which produced the segments. The ranks in the annotations are now indexed
by the system names. If more systems translated a source segment as the same
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candidate segment, the candidate segment’s rank is copied to all the systems. At
this point we take advantage of ranking short segments which are often translat-
ed identically. The following is the system annotation after expansion of the
above segment annotation:

{

’uedin-unconstrained’ : 2,

’commercial1’ : 5,

’commercial2’ : 2,

’CU-TectoMT’ : 1,

’onlineB’ : 2,

’onlineA’: 2,

’cu-funky’ : 2,

’cu-bojar’ : 2,

’uedin-wmt14’: 2,

’cu-depfix’: 2

}

These rankings are now very similar to those obtained in the official WMT
human evaluation. These annotations are mostly interpreted as pairwise systems’
comparisons (for each combination of size 2 of all systems we have a pairwise
comparison), where the absolute values of the ranks and their absolute differences
between them are not considered. From the above system annotation, the
following pairwise comparisons are extracted (only a few extracted pairwise
comparisons are listed here for the sake of brevity, generally N × (N − 1)/2
pairwise comparisons are extracted, where N is number of all systems):

[

’uedin-unconstrained’ < ’commercial1’,

’uedin-unconstrained’ = ’commercial2’,

’uedin-unconstrained’ > ’CU-TectoMT’,

...

’commercial1’ > ’commercial2’,

’commercial1’ > ’CU-TectoMT’,

...

]

The interpretation of these pairwise comparisons has changed several times
during the WMT workshops. Here, we use Ratio of wins (ignoring ties)
method, which was introduced by Bojar et al. (2011) and used in WMT12 work-
shop (Callison-Burch et al., 2012). This method is based on a method used in
several WMT workshops before WMT12 and it is quite easy to compute and
interpret results.

For a given set C of segment-level extracted pairwise comparisons (s1, s2, c),
where

c =


win if rank(s1) < rank(s2)

loss if rank(s1) > rank(s2)

tie if rank(s1) = rank(s2)
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System Score
cu-depfix 0.5777
onlineB 0.5642
uedin-unconstrained 0.5626
cu-bojar 0.5606
cu-funky 0.5566
uedin-wmt14 0.5498
onlineA 0.5007
CU-TectoMT 0.4485
commercial1 0.3992
commercial2 0.3492

(a) Short segments judgements

System Score
cu-depfix 0.6101
cu-bojar 0.6011
uedin-unconstrained 0.5967
cu-funky 0.5823
onlineB 0.5439
uedin-wmt14 0.5285
onlineA 0.5039
CU-TectoMT 0.4473
commercial1 0.3617
commercial2 0.2780

(b) Official WMT14 judgements

Table 3.1: Overall rankings of systems according to Ratio of wins (ignoring
ties) score. You can see the results computed on short segments judgements and
the results computed on the official WMT14 human judgements side by side to
compare the differences.

we define for each system s the total number of wins, losses and ties:

win(s) := |{(s, s̄, c) ∈ C; c = win}|+ |{(s̄, s, c) ∈ C; c = loss}|
loss(s) := |{(s, s̄, c) ∈ C; c = loss}|+ |{(s̄, s, c) ∈ C; c = win}|
ties(s) := |{(s, s̄, c) ∈ C; c = tie}|+ |{(s̄, s, c) ∈ C; c = tie}|

Then the Ratio of wins (ignoring ties) for a given system s is computed
using the following formula:

Ewin(s) =
win(s)

win(s) + loss(s)

3.1.1 Results

The overall ranking of systems which participated in WMT14 Translation Task
in English-Czech direction, according to the Ratio of wins (ignoring ties)
computed on the short segments judgements, is reported in Table 3.1a.

To compare our method with the classic method of judging whole sentences,
we have also computed the Ratio of wins (ignoring ties) on the judgements
collected during WMT14 manual evaluation. You can see these results in Ta-
ble 3.1b. The Pearson correlation coefficient between the short segments score
and official human scores is 0.978 (please see Section 4.3 for details of how we
computed this correlation).

You can notice that the range of scores computed on the short segments
judgements is much more narrow (0.35 — 0.58) than the range of scores computed
on the sentence judgements (0.28 — 0.61). This can be explained by the following:
if system A beats system B in a sentence-level judgement of a particular sentence
it does not necessarily mean that in segment-level judging system A will be better
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than system B on all segments of the sentence. System A will be probably better
on a majority of the segments (but even that does not have to be always true).
When computing the ratio of wins on the sentence-level judgements, system A
gets one win and system B gets one loss. However, when computing the ratio
of wins on the segment-level system A gets for instance two wins and one loss,
system B one win and two losses. It should be clear now that computing expected
wins on the sentence-level judgements is coarser while our method is more fine-
grained.

The overall rankings of the systems obtained by both of the methods are
very similar. However, there are two changes when comparing to the sentence-
level judgments results: system online-B is better and system cu-bojar is worse
according to the segments-level judgments results. We try to explain this in
Section 3.1.2 below.

3.1.2 Analysis

To see the difference between the segment-level judgements and sentence-level
judgements, we have computed Kendall tau rank correlation coefficient, also
known as Kendall’s τ , between segment-level pairwise comparisons and sentence-
level pairwise comparisons. This coefficient is used to measures how often a set of
pairwise rankings agrees with another set of pairwise rankings. The basic formula
for Kendall’s τ is:

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant|

where Concordant is the set of pairwise combination where both sets of pairwise
rankings agrees with each other and Discordant is the set of pairwise combination
where the sets do not agree in pairwise ranking. We will discuss the Kendall’s τ
in more detail in chapter 4. Here, we computed |Concordant| as the number of
pairwise segment-level judgments which agrees with the corresponding sentence-
level judgment. Similarly, |Discordant| is the number of those which do not
agree with the corresponding sentence-level judgment. In this section, we do not
consider any tied pairwise comparisons.

The computed correlations are given in Table 3.2. The order of the systems in
Table 3.2a is quite similar to the order of systems in the overall rankings (Table
3.1); better systems have higher correlation than worse systems. This is somehow
expected: Better systems, which were more often ranked better in the sentence-
level judgements are also more likely to be ranked better in the segment-level
judgments. You can also read the table in the following way: If a sentence of
system cu-funky was ranked better on sentence-level, it is very likely (71%) that
the segments of the sentence were ranked better also. On the other hand, if
system commercial2 was ranked better on sentence-level only a little more than
half of the segments were ranked better also. Table 3.2b is similar but in reversed
order.

The influence of a system’s quality should be canceled out in Table 3.2c. You
can see that systems cu-bojar and onlineB have the Kendall’s τ lower (although
not the lowest). This, together with the fact that both systems lie in a cluster
of systems of very similar quality, is consistent with their change in the overall
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System τ
cu-funky 0.428
cu-depfix 0.405
onlineB 0.398
cu-bojar 0.394
uedin-uncon. 0.390
uedin-wmt14 0.363
onlineA 0.312
CU-TectoMT 0.270
commercial1 0.166
commercial2 0.123

(a) Better systems

System τ
commercial2 0.492
commercial1 0.441
CU-TectoMT 0.385
onlineA 0.328
uedin-uncon. 0.260
uedin-wmt14 0.257
cu-funky 0.230
cu-bojar 0.227
cu-depfix 0.225
onlineB 0.225

(b) Worse systems

System τ
commercial2 0.394
cu-funky 0.348
commercial1 0.345
uedin-uncon. 0.341
cu-depfix 0.335
CU-TectoMT 0.333
cu-bojar 0.328
onlineB 0.321
onlineA 0.320
uedin-wmt14 0.317

(c) All systems

Table 3.2: Kendall’s τ correlations between the segment-level and sentence-level
judgments. For a given system we computed the correlation on all pairwise com-
parisons including the given system. Table 3.2a contains correlations computed
on sentence-level judgments where the given system was better, the Table 3.2b is
computed on sentence-level comparisons where the given system was worse. Fi-
nally, Table 3.2c was computed on all pairwise comparisons including the system.
The systems are sorted by the correlation in reverse order.

ranking of systems.
For the explanation of the differences between the overall rankings computed

on sentence-level and segment-level judgments we have to look into the data. We
want to find candidate translations for which the sentence judgments disagree as
much as possible with the segment judgments. To quantify this property we have
defined disagreement quotient:

qd(s, n) =
winseg(s, n)/(winseg(s, n) + lossseg(s, n))

winsent(s, n)/(winsent(s, n) + losssent(s, n))

where s is a system, n is a sentence number, winseg(s, n) is the number of segment-
level comparisons where the n-th candidate sentence translated by system s won
and losssent(s, n) being the number of comparisons in which the candidate sen-
tence loses. Finally, winsent(s, n) and losssent(s, n) are defined similarly for the
sentence-level comparisons.

Using this measure we have found candidate sentence translations which
were ranked high by segment-level judgments but ranked low by the sentence-
level judgments. We have listed candidate sentences with the highest disagree-
ment quotient and tried to analyze the cause of the disagreement between the
sentence-level and segment-level judgments. In the following, we present some of
these sentences with comments. The extracted segments which were ranked are
in bold.
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Source: Airlines began charging for the first and second checked
bags in 2008.

Candidate: Letecké linky začaly nab́ıjeńı pro prvńı a druhý
odbavených zavazadel v roce 2008.
(Sentence 715, online-B)

The translation of the segment is relatively good, the case of the noun phrase is
wrong but the meaning could be understood. The reason why the whole sentence
was ranked poorly is probably the word “nab́ıjeńı” (“Charging a battery” in En-
glish), which is obviously a wrong lexical choice of the MT system. Unfortunately
this word is not covered by the only ranked segment. A similar problem is also
in the following sentence:

Source: I want to fulfil my role of dad and husband.
Candidate: Chci, aby splnil svou roli táty a manžela.

(Sentence 559, cu-bojar)

The translation of the segment is perfect but the subject of the candidate trans-
lation is wrongly expressed as the third person. The whole sentence is therefore
correctly ranked as a poor translation. And again, this is not covered by the
extracted segments.

Source: Samsung, Huawei and HTC all manufacture phones that
operate on Google’s Android operating system, which
competes fiercely with Apple and Microsoft mobile
products.

Candidate: Samsung, Huawei a HTC všechny výrobńı telefony, které
pracuj́ı android operačńı systém Google, který konkuruje
zuřivě a Applu Microsoftu mobilńım produkt̊um.
(Sentence 484, CU-TectoMT)

The problem here is again in the predicate. The verb “manufacture” is wrong-
ly translated as the adjective “výrobńı” (“manufactured” in English).

In all the previous examples, a predicate was wrongly translated but unfor-
tunately it was not covered in the extracted segments and therefore reflected in
segment-level judgments. This seems to be the main disadvantage of this method,
extracted segments sometimes do not cover predicates which are very important
for annotator when judging the overall quality of the sentence.

We have also listed candidate translations with the lowest disagreement
quotient (a candidate was highly ranked by sentence-level judgments but ranked
low by system-level judgments). However, these candidates were not so interesting
and we cannot see any general pattern there. We feel that the sentences which are
ranked much better in segment-level judgments than in sentence-level judgments
are a much more severe problem.

3.2 Evaluating New Systems

Machine translation systems often translate a given short source segment iden-
tically. This was one of our main motivations for ranking translations of short
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segments. As you saw in the previous section, evaluating the annotated systems
using the short segments annotations works reasonably well (despite there are
some shortcomings as described above). It would be very useful if we could use
the database of annotations to evaluate also unseen systems. The more annotated
systems we have in the database the more likely it is that an unseen MT system
produces a translation of a short segment which is already in the database. We
will call this situation a hit. If the translated segment is not already annotated,
we will call it a miss.

Because we didn’t have any spare systems which were not annotated, we did
the following trick: in each step, we choose one system and removed its segments
from the database of annotations. Then we consider this system as unseen and
tried to match the system’s segments with the segments left in the database. We
call this trick leave-one-out. In essence, it is very similar to standard cross
validation.

3.2.1 Exact Matching of candidate segments

The most obvious way to evaluate an unseen translation is to compute the Ra-
tio of wins (ignoring ties) of all the systems (including the unseen one) only
on the hit segments. We extracted the pairwise comparisons from all the seg-
ment annotations where the segment of the unseen system was hit and computed
the Ratio of wins (ignoring ties) only on such extracted comparisons. We
performed this experiment for all the systems using the leave-one-out trick.

You can see the results of this experiment in Table 3.3. We also report hit
rate, which is the ratio of hits to all relevant segments (miss + hits).

The average hit rate is 58.8 % which is above our expectations. However, as
you can see, the hit rate varies a lot across the systems that were left out. This
is caused by the fact that some systems are very similar; they use the same tools
and/or training data. For example all the systems cu-bojar, cu-depfix, cu-funky
are based on the Moses SMT toolkit and their hit rates are very high (0.74 —
0.93).

As you can see, the obtained orderings of the systems are not very good.
The winning system in each of the tables is the one that was left out, which
is obviously wrong. Besides that, systems similar to the left-out one get also a
much better rank. For example, when the left-out system is one of the systems
cu-bojar, cu-depfix and cu-funky, the other two of this group are right below
the left-out system. This could be explained by the following statement: MT
systems are more likely to agree on a good translation of a segment than on a
bad translation.

To support this statement we have performed an analysis of some sentences
from the test set. In the following examples of sentences, we have marked the hit
segments by green and the missed segments by red:
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system score
uedin-uncnstr. 0.633
cu-depfix 0.580
uedin-wmt14 0.576
onlineB 0.571
cu-bojar 0.564
cu-funky 0.560
onlineA 0.499
CU-TectoMT 0.425
commercial1 0.377
commercial2 0.329

(a) uedin-uncnstr., hits: 0.67

system score
commercial1 0.581
uedin-uncnstr. 0.557
onlineB 0.552
uedin-wmt14 0.540
cu-depfix 0.535
cu-funky 0.525
cu-bojar 0.523
onlineA 0.472
CU-TectoMT 0.422
commercial2 0.346

(b) commercial1, hits: 0.28

system score
commercial2 0.570
onlineB 0.552
uedin-uncnstr. 0.548
cu-depfix 0.535
cu-bojar 0.529
cu-funky 0.524
uedin-wmt14 0.523
onlineA 0.457
CU-TectoMT 0.423
commercial1 0.386

(c) commercial2, hits: 0.28

system score
CU-TectoMT 0.649
cu-depfix 0.600
cu-bojar 0.584
cu-funky 0.575
onlineB 0.528
uedin-uncnstr. 0.522
uedin-wmt14 0.502
onlineA 0.450
commercial1 0.373
commercial2 0.339

(d) CU-TectoMT, hits: 0.45

system score
onlineB 0.689
uedin-uncnstr. 0.584
cu-depfix 0.578
cu-funky 0.567
cu-bojar 0.567
uedin-wmt14 0.564
onlineA 0.511
CU-TectoMT 0.406
commercial1 0.360
commercial2 0.320

(e) onlineB, hits: 0.52

system score
onlineA 0.649
onlineB 0.584
uedin-uncnstr. 0.577
uedin-wmt14 0.568
cu-depfix 0.566
cu-bojar 0.555
cu-funky 0.546
CU-TectoMT 0.411
commercial1 0.365
commercial2 0.318

(f) onlineA, hits: 0.47

system score
cu-funky 0.630
cu-depfix 0.600
cu-bojar 0.582
uedin-uncnstr. 0.559
onlineB 0.557
uedin-wmt14 0.542
onlineA 0.491
CU-TectoMT 0.446
commercial1 0.378
commercial2 0.331

(g) cu-funky, hits: 0.74

system score
cu-bojar 0.588
cu-depfix 0.582
cu-funky 0.564
onlineB 0.562
uedin-uncnstr. 0.559
uedin-wmt14 0.545
onlineA 0.498
CU-TectoMT 0.449
commercial1 0.392
commercial2 0.346

(h) cu-bojar, hits: 0.88

system score
cu-depfix 0.587
cu-bojar 0.570
cu-funky 0.566
onlineB 0.562
uedin-uncnstr. 0.561
uedin-wmt14 0.548
onlineA 0.498
CU-TectoMT 0.449
commercial1 0.394
commercial2 0.345

(i) cu-depfix, hits: 0.93

Table 3.3: The results of evaluating unseen systems using the exact matching and
the leave-one-out trick. Each subtable is marked by the left-out system. You
can also see the hit rates. The table for the system uedin-wmt14 is omitted for
the sake of brevity.
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Source: So, still no Words With Friends, the online Scrabble-
type game that actor Alec Baldwin was playing on his
smartphone in 2011 when he was famously booted off
an American Airlines jet for refusing to turn off the device
while the plane was parked at the gate.

Candidate: Takže stále žádná slova s přáteli, online hra Scrabble
typ že herec Alec Baldwin si hrál na jeho smartphone
v roce 2011, kdy mu byl slavně spuštěn z American
Airlines jet za odmı́tnut́ı vypněte zař́ızeńı, zat́ımco letadlo
bylo zaparkováno u brány.
(Sentence 2976, onlineA)

You can see that the green hits are translated relatively correctly and are under-
standable. We cannot say the same about the missed segments.

Source: Amongst other things, it showed that the Americans even
monitored the mobile phone of German Chancellor An-
gela Merkel.

Candidate: Kromě jiných věćı ukázalo, že Američané i sledovali mo-
bilńı telefon Germana kancléře Angely Merkelové.
(Sentence 2945, CU-TectoMT)

The missed segment “Kromě jiných věćı” in this sentence is translated quite well
(so the above statement does not hold here). However, the only hit segment here
“mobilńı telefon” is translated correctly and the missed segment “Germana kan-
cléře Angely Merkelové” is not translated correctly. Judging how easy a segment
is to translate, is even more difficult than judging the translations. Neverthe-
less you may agree with us that the hit segment “the mobile phone” is easy to
translate and the missed segment “of German Chancellor Angela Merkel” is much
more difficult to translate. We can see this also in the last example:

Source: They had searched frantically for their missing dog and
posted appeals on social networking sites after she had
ran into the quarry following the minor accident.

Candidate: Měli zoufale hledal své chyběj́ıćı psa a odvoláńı na so-
ciálńıch śıt́ıch poté, co se dostal do lomu po drobné ne-
hody.
(Sentence 77, uedin-wmt14)

Both of the hit segments are translated very well and we can say that they
are also very easy to translate. On the other hand, the missed segments are
understandable but not perfect. Compared to the green segment, they are also
more difficult to translate.

Following the manual analysis we can conclude that MT systems are much
more likely to agree on the better translations. This however prevents us from
matching the segments exactly, because it gives us very overestimated scores for
the unseen candidates.
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3.2.2 Matching the Closest Segment by Edit Distance

We would like to compute the scores on all the annotated segments to avoid the
problem stated in the previous subsection. A natural way to approximate the
“correct” ranks of unseen segments is to use the rank of the segment from the
database with the closest edit distance. We use the character based Levenshtein
distance which is defined as the minimum number of insertions, deletions and
substitutions of characters required to transform a given string to another:

lev(a, b) = min
e∈E(a,b)

(D(e) + S(e) + I(e))

where E(a, b) denotes a set of all sequences of edit operations which transform
the string a to the string b, and D(e), S(e), I(e) denote number of deletions,
substitutions and insertions respectively in the sequence s. If more segments
in the database have the same minimal distance to the “unseen” segment, we
compute the average of their ranks.

Similarly to the previous experiment we extracted the pairwise comparisons
and computed the Ratio of wins (ignoring ties). You can see the results
tabulated in Table 3.4. For each left-out system, we also report the average edit
distance (AED) of the unseen segments to the closest segments in the database.

The overall rankings of the systems are much more reasonable compared to the
exact matching, although they are still not perfect. The scores of systems which
were left out are not always the best in the obtained rankings but they are still
heavily overestimated. This shows not only that systems are more likely to agree
on the better translations than on the worse ones, but also that they produce
translations which are closer to better translations than to other translations of
similar quality. Our notion of that idea is that a good translation is a point in
a high-dimensional space and candidate translations are points around the good
translation. Now, let’s have a few points around the good translation representing
the translations in the database. When we get a new point it is quite likely in
this high-dimensional space that the closest point will be the good translation.
You can see an illustration of this situation in two dimensions in Figure 3.1. If we
do not have enough candidates in the database it is quite likely that for a given
unseen candidate the closest candidate is the good translation and not any other
candidate translation of similar quality.

The average edit distances vary a lot. Systems cu-bojar, cu-depfix and cu-
funky have very low AED (0.2 — 1.7), because they are very similar to each
other. Systems CU-TectoMT, onlineA and onlineB are in the middle of the AED
range (3.1 — 3.9) and since they are quite solitary in the set of ranked systems
we can consider their AEDs as representative values. Systems commercial1 and
commercial2 have the highest AEDs. This could be explained by the fact that
both of the systems are rule based and produce dissimilar translations to those
generated by the statistical based systems. It is interesting, however, that their
translations are not even similar to each other. You can see the distribution of the
absolute counts with respect to the edit distance to the closest segment plotted
in Figure 3.2.

To support the above statement (that the closest segment to an unseen can-
didate is more likely to be of better quality) we have performed the following
analysis: For each left-out system we computed how often the closest segment
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system score
uedin-uncnstr. 0.592
cu-depfix 0.576
onlineB 0.562
cu-bojar 0.558
cu-funky 0.555
uedin-wmt14 0.548
onlineA 0.498
CU-TectoMT 0.446
commercial1 0.397
commercial2 0.347

(a) uedin-uncnstr., AED: 2.0

system score
cu-depfix 0.566
onlineB 0.553
uedin-uncnstr. 0.551
cu-bojar 0.548
cu-funky 0.545
uedin-wmt14 0.537
commercial1 0.495
onlineA 0.488
CU-TectoMT 0.433
commercial2 0.334

(b) commercial1, AED: 5.4

system score
cu-depfix 0.559
onlineB 0.549
uedin-uncnstr. 0.546
cu-bojar 0.541
cu-funky 0.539
uedin-wmt14 0.533
commercial2 0.484
onlineA 0.483
CU-TectoMT 0.430
commercial1 0.379

(c) commercial2, AED: 5.7

system score
cu-depfix 0.566
CU-TectoMT 0.557
onlineB 0.554
uedin-uncnstr. 0.552
cu-bojar 0.548
cu-funky 0.545
uedin-wmt14 0.539
onlineA 0.489
commercial1 0.387
commercial2 0.337

(d) CU-TectoMT, AED: 3.9

system score
onlineB 0.614
cu-depfix 0.574
uedin-uncnstr. 0.559
cu-bojar 0.556
cu-funky 0.552
uedin-wmt14 0.546
onlineA 0.496
CU-TectoMT 0.444
commercial1 0.395
commercial2 0.345

(e) onlineB, AED: 3.1

system score
onlineA 0.581
cu-depfix 0.570
onlineB 0.556
uedin-uncnstr. 0.555
cu-bojar 0.553
cu-funky 0.549
uedin-wmt14 0.542
CU-TectoMT 0.441
commercial1 0.391
commercial2 0.341

(f) onlineA, AED: 3.4

system score
cu-funky 0.597
cu-depfix 0.575
onlineB 0.561
uedin-uncnstr. 0.559
cu-bojar 0.557
uedin-wmt14 0.546
onlineA 0.497
CU-TectoMT 0.445
commercial1 0.396
commercial2 0.346

(g) cu-funky, AED: 1.7

system score
cu-bojar 0.580
cu-depfix 0.576
onlineB 0.562
uedin-uncnstr. 0.561
cu-funky 0.555
uedin-wmt14 0.548
onlineA 0.499
CU-TectoMT 0.447
commercial1 0.398
commercial2 0.348

(h) cu-bojar, AED: 0.4

system score
cu-depfix 0.579
onlineB 0.564
uedin-uncnstr. 0.563
cu-bojar 0.561
cu-funky 0.556
uedin-wmt14 0.550
onlineA 0.501
CU-TectoMT 0.448
commercial1 0.399
commercial2 0.349

(i) cu-depfix, AED: 0.2

Table 3.4: The results of evaluating unseen systems using the edit distance match-
ing and leave-one-out trick. Each subtable is marked by the left-out system.
The abbreviation AED stands for average edit distance which is computed across
all segments. The table for the system uedin-wmt14 is omitted for the sake of
brevity.
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Unseen candidate

Closest distance

Figure 3.1: An example of a good translation with only a few candidate trans-
lations around it. If the number of dimensions is higher than the number of
candidates, it is intuitively quite likely that the closest point to the new unseen
candidate is the good translation.
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Figure 3.2: Absolute counts of segments with respect to the edit distance to the
closest segment
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Unseen system Worse Equal Better
commercial1 28.0 % 18.2 % 53.8 %
commercial2 23.4 % 16.8 % 59.8 %
cu-bojar 22.8 % 30.5 % 46.7 %
cu-depfix 34.2 % 31.4 % 34.4 %
cu-funky 29.3 % 22.9 % 47.8 %
CU-TectoMT 26.2 % 17.8 % 56.0 %
onlineA 28.7 % 19.1 % 52.2 %
onlineB 33.5 % 19.9 % 46.6 %
uedin-unconstrained 32.8 % 21.5 % 45.7 %
uedin-wmt14 32.1 % 21.9 % 46.0 %
All 28.5 % 19.7 % 51.9 %

Table 3.5: Comparisons of the unseen and the closest segments’ ranks. This
table shows how often the rank of the closest segment in the database was worse,
equal or better than the original rank of the “unseen” segment. These relative
frequencies were computed only on the missed segments (which weren’t already
in the database).

0 2 4 6 8 10 12 14 16 18
Edit distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e 

fre
qu

en
cy

Equal
Better
Worse

Figure 3.3: Comparisons of the unseen and the closest segments’ ranks with
respect to the edit distance. The results in this figure are computed on all of the
systems.
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Unseen segment Closest segment D C
s dokumenty upřednostňuj́ıćım
doprovodem hradu

se dokumenty favorizovat do-
provod hradu

18 W

ze 120 domova m2 z 120 m2 domova 7 B
vaše ústa ohř́ıvá protein vaše ústa zahř́ıváńı b́ılkovin 10 B
videokonference videokonferenci 1 B
popřel už́ıváńı kokainu a popřela už́ıváńı kokainu a 1 W
přibližně šedesát- drah kilo-
metru

přibližně šedesát-dráha kilo-
metru

3 E

v Liverpoolském porotńım
soudu

Liverpool Korunńıho soudu 11 B

je nesmysl v gravitaci filmu Je nesmysl ve filmu gravitace 15 B
Pak 64,23 % oprávněných
volič̊u

pak 64,23 % oprávněných
volič̊u

1 B

podle DPA agentury podle DPA agentury té 3 W

Table 3.6: Example candidates and the closest segments. The second last column
(D) stands for distance and contains distances of the unseen candidates to the
closest segments. The last column (C) stands for comparison; the closest segment
is either worse (W), equally good (E) or better (B) than the original unseen
segment.

has better, equal or worse rank than the “unseen” segment (We can actually do
that, because we know the true rank of the segment removed from the database).
We computed these relative frequencies only on the missed segments (the closest
segment was not the same segment). You can see this analysis performed for the
individual systems in Table 3.5. In total, more than a half of the closest segments
have a better rank than the original segments and only 20.6 % of the segments
have the same rank. This is very poor because it means that our approximation
method which ranks unseen translations has the accuracy of only 20.6 %. This ac-
curacy does not differ much for individual systems but there is an expected trend
of similar systems (cu-bojar, cu-depfix) having this accuracy slightly higher.

You can also see how these relative frequencies vary with the change of the edit
distance in Figure 3.3. As you can see, the relative number of closest systems
which are ranked better grows quite significantly with the edit distance. The
relative number of the worse segments is quite stable (around 0.3) and does
not change significantly with the edit distance. The relative number of closest
segments which are equally ranked as the source segment is decreasing with the
edit distance. For example, for the segments whose edit distance to the closest
segment is 17, only 10 percent of the closest segments is equally ranked, which is
very poor.

We also listed a few example candidate segments in Table 3.6 together with
the corresponding closest segments from the database and their distances. We
also report whether the closest segment was ranked better, equal or worse than
the “unseen” one.

We have to unfortunately conclude, that the proposed method, which reuses
the database for evaluating unseen translations, does not work. We analyzed the
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System Score
cu-depfix 0.305
cu-funky 0.302
uedin-unconstrained 0.302
cu-bojar 0.300
uedin-wmt14 0.296
onlineB 0.289
onlineA 0.259
CU-TectoMT 0.225
commercial1 0.176
commercial2 0.160

(a) SegRanksBLEU, correlation:
0.9745

System Score
cu-depfix 0.221
cu-bojar 0.221
cu-funky 0.221
uedin-unconstrained 0.220
uedin-wmt14 0.215
onlineB 0.207
onlineA 0.187
CU-TectoMT 0.157
commercial1 0.114
commercial2 0.102

(b) BLEU, correlation: 0.9751

Table 3.7: Overall system ranking according to SegRanksBLEU and BLEU
scores. Please see Chapter 4 for the details of computation of the reported cor-
relations.

results and the main cause of this failure seems to be that the systems tend to
agree on better translations and their translations tend to be more similar to
better translations in the database so we cannot predict their rank accurately.

3.2.3 Enhancing Reference Translation

Following the conclusions from the previous two subsections, it seems that errors
in machine translation are very unique. Any database of bad examples (bad
translations) is therefore very sparse. It is a very well known fact that the number
of possible correct translations is very high (Bojar et al., 2013). It seems, however,
that the number of bad translations is much higher and therefore it makes more
sense to use a database of good translations.

In the following experiment, we therefore use only the good candidate seg-
ments from the annotated database. The approach used here is, however, dif-
ferent from the previous experiments. We would like to measure how similar
candidates are to the good translations from the database. This is very similar
to what automatic metrics do when measuring similarity between a candidate
and reference translations. We have therefore decided to use one of the standard
metrics – BLEU – to measure this similarity. First, we are going to introduce
the metric and then we are going to customize it for our experiment.

Metric BLEU was developed by Papineni et al. (2002) and it is the most used
metric in the machine translation evaluation. It is defined as the geometric mean
of n-gram precisions for n ∈ {1 . . . N}, where N is usually 4. More precisely, for
a candidate c and reference translations ri where i ∈ I, let the clipped count of
an n-gram g be defined as follows:

countclip(g, c, r) = min

(
count(g, c), max

i∈I
(count(g, ri))

)
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where count(g, s) denotes the count of n-gram g in the sentence s. The modified
precision pn is then defined as:

pn =

∑
g∈n-grams(c) countclip(g, c, r)∑

g∈n-grams(c) count(g, c)

Using the computed n-gram precisions, we can compute the final BLEU score:

BLEU = BP · exp

(
1

N

N∑
i=1

log pn

)
where BP is the brevity penalty (meant to penalize short outputs, to discourage
improving precision at the expense of recall) defined as follows:

BP =

{
1 if |c| > |r|
exp(1− |r|/|c|) if |c| ≤ |r|

where |c| and |r| are the lengths of the candidate and reference translations re-
spectively. In the case of multiple reference translations, |r| could be the average
length, the maximum length or the length closest to the candidate c.

This experiment consists of two steps. In the first step we select good seg-
ment translations from the short segments database. In the second step we use
the selected good segment translations to enhance reference translations when
computing BLEU.

Since the assigned ranks in the database are relative, we cannot know which
segments are really good in terms of the absolute quality. We have to assume that
there is at least one good candidate translation among the ranked candidates and
consider all candidate segments with the best rank as the good translations. We
select these candidate segments for each source segment for each sentence.

Finally, we use the selected good segments as the reference translations in
addition to the original reference sentence translated by a human expert. Since
the new references are only short segments and do not cover a whole sentence, we
use only the length of the original reference sentence in the computation of the
brevity penalty. To distinguish this method from the standard BLEU with the
single official reference translation, we will call this method SegRanksBLEU.

Please note, that introducing the new reference translations, which do not
change the brevity penalty, can only increase the clipped counts of n-grams oc-
curring in the short segments. Candidates will be rewarded for having n-grams
which are also in the good segment translations in the database.

You can see the overall rankings of the evaluated systems as given by Seg-
RanksBLEU and BLEU in Table 3.7. As expected, the SegRanksBLEU
scores are indeed much higher than BLEU. However, the reported system level
correlations of these two metrics are almost equal (correlation of SegRanks-
BLEU is even a little bit lower).

3.3 Tuning Systems

Automatic metrics are not used only for evaluating already developed systems on
test sets. They are also often used when tuning a system to choose the parameters
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of a model which gives the best metric score computed on a development test set.
One of the methods utilizing automatic metrics for system tuning is Minimum
Error Rate Training (MERT). We will describe the theory behind MERT in the
following subsection a then we will experiment with it using the short segments
rank database.

3.3.1 Minimum Error Rate Training

Most of the statistical machine translation systems model the posterior proba-
bility of producing a sentence translation e given a source sentence f using a
log-linear model (Och and Ney, 2002):

P (e | f) =
exp

(∑M
m=1 λmhm(e, f)

)
∑

e′ exp
(∑M

m=1 λmhm(e′, f)
) =

exp (λ · h(e, f))∑
e′ exp (λ · h(e′, f))

(3.1)

where the vector h(e, f) = {h1(e, f), h2(e, f), . . . , hM(e, f)} is a feature vector
and the vector λ = {λ1, λ2, . . . , λM} is a feature weight vector. It can be easi-
ly shown that when searching for the best candidate ebest, the above log-linear
formula can be simplified to the following:

ebest = arg max
e

{P (e | f)} = arg max
e

{λ · h(e, f)} (3.2)

Now the problem with this log-linear model is how to find the weight vector
λ which would give the best translations. And this is what the MERT method
solves.

Let F = {fi; i ∈ I} be a held out corpus in the source language and R =
{ri; i ∈ I} be a corresponding reference translation. Traditionally, the best
weight vector λ can be found using the maximum likelihood principle:

λ̂ = arg max
λ

{∏
i∈I

Pλ(ei | fi)

}
(3.3)

This optimization problem has some very nice properties: there is one global
optimum and there are algorithms which converge to this optimum. Och (2003),
however, argues that that there is no proof that this method gives the best weights
with respect to the translation quality.

He suggested to choose the weight vector λ which produces the best transla-
tion of the heldout data. We can measure the quality of the translation using an
automatic metric m(E,R), where E is the set of candidate translations produced
by the MT system and R is a set of reference translation. We are therefore going
to minimize the score (or minimize it in the case the metric is error based and
returns lower scores for better translations) of the metric:

λ̂ = arg max
λ

{
m(Ê(F,λ), R)

}
(3.4)

where Ê(F,λ) is the corpus F translated with the weights λ and ê(f,λ) is the
translation of a sentence f with weights λ:
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Ê(F,λ) = {ê(fi,λ); i ∈ I} (3.5)

ê(f,λ) = arg max
e

{λ · h(e, f)} (3.6)

The criterion (3.4) is, however, not so easy to optimize. It contains an argmax
operation and therefore it is not smooth and it is not possible to use a gradient
based method. It has also a lot of local maxima. Och (2003) therefore suggested
to use Powell’s algorithm (Powell, 1964) which does not need gradient to optimize
a function.

In each step, Powell’s algorithm starts at a point from which it goes in several
directions (possibly also in random directions) and optimizes the function along
the lines which originate at the start point using a given line optimization method.
The most optimal point found on the lines is then used as the new starting point
in the next step.

The Powell’s algorithm depends on an efficient line optimization method. Och
proposed a method which takes advantage of log-linear model properties. In the
following we limit the space of the optimization problem to a line defined by the
following equation:

λ(γ) = λ′ + γd (3.7)

where λ′ defines a starting point and the vector d defines a direction of the line.
Now, we can reformulate the limited optimization problem:

γ̂ = arg max
γ∈R

{
m(Ê(F,λ(γ)), R)

}
(3.8)

When we apply the line equation 3.7 in the argmax operator which chooses
the best translation in the equation 3.6, we get the following.

ê(f,λ(γ)) = arg max
e

{λ(γ) · h(e, f)} (3.9)

= arg max
e

{λ′ · h(e, f) + γd · h(e, f)} (3.10)

= arg max
e

{t(e, f) + γ ·m(e, f)} (3.11)

where the scalars t(e, f) and m(e, f) are constant for a given candidate e. This
means that each candidate e specifies a line given by the equation x = t(e, f) +
γ ·m(e, f), which computes the candidate score for the parameter γ. The argmax
operator in the equation (3.11) then chose the candidate whose line is the highest
in a given γ. You can see this situation illustrated in Figure 3.4. The line opti-
mization method finds all the intersections of the lines where the best candidate
(with the highest model score) changes. The intersections found for each sentence
in the heldout data are then merged to obtain intervals of γ in which the γ does
not change the set of the highest score candidates. For each interval, the metric
score is computed and the optimal γ is chosen from the interval with the highest
metric score. Since the metrics are often computed from sentence decomposable
statistics, we can easily update the metric’s score in each interval boundary by
subtracting the old sentence’s statistics and adding the new sentence’s statistics.
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Figure 3.4: An illustration of the line optimization in MERT. You can see two
sentences and their candidate translations represented by the lines. The best
candidate in each interval is marked by the red line. The bottom part of the
figure illustrates how the metric score depends on γ.
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The last difficulty in the MERT method is that we cannot easily enumerate
all the candidate sentences. For that reason the n-best list approximation is
used: the decoder produces n best translations for each sentence and only these
n translations are considered during the optimization. A problem arises when
the optimal weight vector found during the optimization gets too far from the
weight vector used to produce the initial n-best list. For that reason a new n-best
list is produced with the new weights; it is merged with previous n-best lists
and the optimization process is run again in new a MERT iteration. When the
optimal weight vector converges or a maximum number of iterations is reached,
the MERT method ends.

3.3.2 Experiments with MERT

The MERT method is most often used with BLEU metric even though it does
not have the best correlation with human judgments (see Chapter 4 for more
details). However, there are a lot of experiments being done utilizing also other
automatic metrics in recent time. In WMT11 (Callison-Burch et al., 2011), there
was a shared task in which participants tuned a common system with different
metrics. The tuned systems were then evaluated by humans and some of them
outperformed the baseline system tuned with BLEU.

It is not feasible to employ any sort of human evaluation directly in the MERT
process. On one hand, human evaluation is very slow and expensive, on the other
hand, MERT requires to evaluate very long n-best list in each iteration. There
are some suggestions to do the manual evaluation in a clever way and lower the
amount of manual work. For example Zaidan and Callison-Burch (2009) noticed
that a lot of short segments are repeated in a n-best list and therefore suggest to
extract these short segments from a n-best list in each MERT iteration and let
humans rank them. (Actually our short segment extraction method was partially
inspired by this work). However they did not try this method in an actual MERT
run yet for lack of resources.

We believe that a much less expensive way to introduce an element of human
evaluation in the MERT method is to use some sort of semi-automatic metric in
which a certain amount of manual work is needed at the beginning and then the
metric evaluates translations automatically. In this subsection, we therefore ex-
periment with previously introduced metrics which rely on the collected database
of short segment ranks.

Tuned System

The system we tried to tune is the system cu-bojar (Tamchyna et al., 2014),
which we also used in previous sections as one of the evaluated systems. This
system is Moses-based and combines several different approaches:

• factored phrase-based Moses model

• domain-adapted language model

• deep-syntactic MT system TectoMT
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The parallel data used to train the phrase tables consist of 14.83 million par-
allel sentences taken from the CzEng corpus (Bojar et al., 2012) and 0.65 million
of sentences taken from the Europarl corpus (Koehn, 2005). The monolingual
data used to train language models consist of 215.93 million sentences taken from
the Czech side of the CzEng corpus and from 5 sources of a news domain.

Authors of the system used their baseline systems to translate WMT test
sets from years 2012–2014. These translations were then used to retrieve similar
Czech sentences using information retrieval techniques which were then used to
train the domain-adapted language model.

The deep-syntactic MT system TectoMT was used to translate WMT test
sets from years 2007–2014. These new synthetic parallel training data were then
used to train an additional phrase table.

Please note that both the domain-adapted language model and the TectoMT
phrase table were also trained on the data we use as development set and test set
so that tuning can assign appropriate weights to them.

There are 15 component weights to tune in total. Tamchyna et al. (2014) of
course tuned their system cu-bojar when participating in the translation shared
task, but we use their system in the state it was before the tuning to tune it
ourselves.

We used the implementation of MERT which is distributed with Moses toolk-
it1. It is implemented in C++ and new metrics are created by subclassing the base
Scorer class. Since the annotated database is stored in Python data structures
and since a development in Python is much easier and faster, we have implement-
ed new PythonScorer which is a universal wrapper around an arbitrary Python
scorer class, implemented using the Python C API.

Metric Variants

Our original idea was that we will use the alignment produced by the Moses
decoder when translating the n-best list to project the extracted short source
segments to the target side to have candidates which would be extracted the
same way as the ranked segments in the database. Unfortunately the alignment
produced by the Moses decoder is very sparse and unreliable (which may be
caused by a bug in the code) so we had to get along without the alignment.

The naive approximation is to just test whether the ranked candidate segments
from the database also occur in evaluated sentences. The first metric we use in
the MERT experiment is therefore very similar to the Exact Matching method
in Section 3.2.1. For each ranked source segment we test if any of its candidate
segment occurs in the evaluated sentence. If it does, we extract all the pairwise
comparisons from the matched segment. If more candidate segments occur in the
evaluated translation, we choose the longest segment (assuming that the shorter
segments are just substrings of the longest one). The final score is then computed
as Ratio of wins (ignoring ties). We call this metric ExactMatch in the
following.

Even if the hit rate (percentage of segment candidates which are already
ranked in the database) computed on a whole n-best list would be 100 %, the
ExactMatch metric still does not evaluate whole sentences and could be too

1http://www.statmt.org/moses/
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coarse and harsh. Moreover, if the hit rate drops during the tuning, the metric
score would be computed on a very small percentage of the development set and
it would be very unstable. To ensure that the tuning is stable, we interpolate
all the metrics in this section (if not said otherwise) together with BLEU with
equal weights. We also tried to tune using the ExactMatch metric solely but
the tuned system translated very badly and the hit rate dropped very low during
the tuning. We could explain this by that the system was tuned to translate a
few ranked segments well (so these segments were hits) but other segments were
missed and translated badly. The optimal metric score was therefore computed
on a very small fraction of the development set and did not reflect the overall
quality of the translation.

Since we do not have the alignment and cannot extract the candidate segments
exactly, we unfortunately cannot use the method introduced in Subsection 3.2.2
which matches the closest segment in the database by edit distance. To avoid
the shortcomings of the ExactMatch metric (the metric is not computed on all
the extracted source segments and an unseen system is more likely to cause a hit
in the database with better translations), we propose another variant called Pe-
nalizeUnknown. This variant differs from ExactMatch in that it considers
all missed segments as the worst translations. We agree that the assumption that
all unseen and unranked segments are wrong is not correct, but this approach
could increase the hit rate. The question is then, whether we prefer to have a
system which produces a lot of segments which were already ranked (even badly)
or a system which produces a lot of unranked segments which we hope to be of
better quality.

The last variant we experiment with is SegRanksBLEU metric introduced
in Subsection 3.2.3. Because this metric is already based on BLEU metric (and
use the reference translation) we do not interpolate it with BLEU anymore.

Results and Analysis

You can see the results of the tuned system in Table 3.8. We used the tuned
systems to translate the test set (newstest2012) and then we evaluated these
translations automatically and manually. For the automatic evaluation we used
metrics BLEU (Papineni et al., 2002) and CDER (Leusch et al., 2006). We have
also conducted a small scale manual evaluation. For each evaluated system, we
randomly sampled 100 sentences which were translated differently2 to the baseline
and by the evaluated system. Then we compared manually the sampled sentences
with the corresponding translations produced by the baseline system. The task
was to choose which sentence is better or whether they are of the same quality.
We report how many of the sampled sentences were better and how many of them
were worse than the corresponding baseline translation.

You can see that none of the metric variants outperformed the baseline system
tuned solely to BLEU in the automatic evaluation. This was expected, since the
best performing system according to BLEU should be the one which was tuned
by BLEU. However, you can see that the system tuned by PenalizeUnknown
has both the BLEU and CDER scores only a little bit lower.

258.6 % of all test set sentences were translated differently to the baseline by SegRanks-
BLEU, 62.4 % by PenalizeUnknown and 83.4 % by ExactMatch
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#Mert Automatic Manual
iter- Evaluation Evaluation

Tunable metric ations BLEU CDER Better Worse
BLEU (baseline) 11 0.1782 0.3855 — —

ExactMatch 20 0.1637 0.3674 22 % 38 %
PenalizeUnknown 8 0.1772 0.3850 34 % 25 %

SegRanksBLEU 8 0.1753 0.3835 29 % 49 %

Table 3.8: Results of systems which were optimized to a SegRanks based metric.
The items in the first column specify the metric which was used when tuning
the system on the development test. The columns BLEU and CDER contain
just scores of these metrics computed on the test set translated with the tuned
weights. The last two columns contain percentages of better and worse sentences
compared to the baseline system in the manual evaluation.

In the manual evaluation, the only system which translated more better sen-
tences than worse sentences compared to the baseline system is the system tuned
to PenalizeUnknown. This means that forcing the system to produce known
and evaluated segments when translating development set helps to chose better
weights. This, however, also means that we discouraged the tuned system to pro-
duce unknown and maybe better translations. The best hypothetical translation
according to the optimized metric which the tuned system can produce during
MERT consists of the best ranked segments from the database. However, there
certainly exist better translations.

We should say here, that this experiment should be performed more precisely
to obtain reliable results. The problem with MERT is that it is not deterministic
in two aspects: First, MERT method can converge to only a local optimum, this
depends on the point it started. Second, the used implementation of Powell’s
algorithm optimize the metric value along the axis and also along random lines.
Two MERT runs with different random seed can therefore find different weights.
The fact that system tuned to PenalizeUnknown was better than baseline
could be therefore caused only by a chance. To do it more precisely, we would
have to run the MERT process more times starting at different points and with
different random seeds (but with the same starting conditions for each optimized
metric). However, we did not do that this way, because we would have to manually
evaluate each of the MERT runs a we did not have enough resources for that.

To see the differences between ExactMatch and PenalizeUnknown, we
have plotted the values of hit rates computed in each MERT iteration in Figure
3.5. You can see that PenalizeUnknown gets to the hit rate of 0.7 very quickly
(in the sixth iteration) and it’s growth is quite stable. This is however expected,
since the objective function also indirectly optimizes the hit rate. The hit rate in
ExactMatch also grows but much more slowly. It stabilizes around the of value
0.5. It is good that the final value is quite high so the ExactMatch is computed
on a nonnegligible amount of data. However, it takes many more iterations for
ExactMatch to get to the value of 0.5 that it takes for PenalizeUnknown
to get to the value of 0.7.
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Chapter 4

Evaluation and Comparison of
Automatic Metrics

Automatic machine translation metrics play a very important role in the devel-
opment of MT systems and their evaluation. There are many different metrics
of diverse nature and one would like to assess their quality. For this reason, the
Metrics Shared Task is held annually at the Workshop of Statistical Machine
Translation1, starting with Koehn and Monz (2006) and following up to Bojar
et al. (2014). In WMT13, we took over the organization of the task (Macháček
and Bojar, 2013) and continued to do that also in WMT14 (Macháček and Bojar,
2014). In this chapter, we present the results of WMT14 metrics shared task with
some additional information and comments.

In this task, we asked metric developers to score the outputs of WMT14
Shared Translation Task (Bojar et al., 2014). We have collected the computed
metrics’ scores and use them to evaluate the quality of the metrics. There are
actually two subtasks: a system-level task and a sentence-level task.

• System-level task. In this subtask, participants compute one score for
the whole test set, as translated by each of the systems. We then measure
the correlation of those scores with the systems’ official human scores. The
goal of metrics in this subtask is to give an overall ranking of the systems
as close as possible to the official ranking according to human scores in each
direction.

• Sentence-level task. In this subtask, participants compute one score for
each sentence of each system’s translation. We then measure the correlation
of these scores with pairwise human judgements. The goal of metrics in this
subtask is to compare two candidate sentences in the same way as humans
would.

In the previous years, a lot of metrics performed very well in the system-level
task. In some of the translation directions, they predicted the overall ranking of
systems almost perfectly. However, there is still space for metrics to improve. In
contrast to the system-level task, the sentence-level task is much more difficult.
The correlations in previous years were very low. It is therefore very interesting
to see whether metrics perform better this year.

1http://www.statmt.org/wmt13
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The systems’ outputs, human judgements and evaluated metrics are summa-
rized in Section 4.1. In Section 4.2, we describe the participated metrics in more
detail. The quality of the metrics in terms of system-level correlation is report-
ed in Section 4.3. The sentence-level correlations with a detailed discussion and
a slight change in the calculation compared to the previous year is reported in
Section 4.4.

4.1 Data

We used the translations of MT systems involved in WMT14 Shared Translation
Task together with reference translations as the test set for the Metrics Task.
This dataset consists of 110 systems’ outputs and 10 reference translations in
10 translation directions (English from and into Czech, French, German, Hindi
and Russian). For most of the translation directions each system’s output and
the reference translation contain 3003 sentences. For more details please see the
WMT14 overview paper (Bojar et al., 2014).

4.1.1 Manual MT Quality Judgements

During the WMT14 Translation Task, a large scale manual annotation was con-
ducted to compare the systems. We used these collected human judgements for
the evaluation of the automatic metrics.

The participants in the manual annotation were asked to evaluate the system
outputs by ranking translated sentences relative to each other. For each source
sentence that was included in the procedure, the annotator was shown the outputs
of five systems to which he or she was supposed to assign ranks. Ties were allowed.

These collected rank labels for each five-tuple of systems were then interpreted
as 10 pairwise comparisons of systems and used to assign each system a score that
reflects how high that system was usually ranked by the annotators. Please see
the WMT14 overview paper for details on how this score is computed. You can
also find inter- and intra-annotator agreement estimates there.

4.1.2 Participants of the Metrics Shared Task

Table 4.1 lists the participants of WMT14 Shared Metrics Task, along with their
metrics. We have collected 23 metrics from a total of 12 research groups.

In addition to that we have computed the following two groups of standard
metrics as baselines:

• Mteval. The metrics BLEU (Papineni et al., 2002) and NIST (Dodding-
ton, 2002) were computed using the script mteval-v13a.pl2 which is used
in the OpenMT Evaluation Campaign and includes its own tokenization.
We run mteval with the flag --international-tokenization since it per-
forms slightly better (Macháček and Bojar, 2013).

• Moses Scorer. The metrics TER (Snover et al., 2006), WER, PER and
CDER (Leusch et al., 2006) were computed using the Moses scorer which

2http://www.itl.nist.gov/iad/mig//tools/
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Metric Participant

AMBER National Research Council of Canada (Chen and Kuhn, 2011)
APAC Hokkai-Gakuen University (Echizen’ya, 2014)
BEER ILLC – University of Amsterdam (Stanojevic and Sima’an, 2014)

BLEU-NRC National Research Council of Canada (Chen and Cherry, 2014)
DiscoTK-* Qatar Computing Research Institute (Guzman et al., 2014)

ELEXR University of Tehran (Mahmoudi et al., 2013)
LAYERED IIT, Bombay (Gautam and Bhattacharyya, 2014)

Meteor Carnegie Mellon University (Denkowski and Lavie, 2014)
Parmesan Charles University in Prague (Baranč́ıková, 2014)

RED-* Dublin City University (Wu and Yu, 2014)
tBLEU Charles University in Prague (Libovický and Pecina, 2014)

UPC-IPA Technical University of Catalunya (Gonzàlez et al., 2014)
UPC-STOUT Technical University of Catalunya (Gonzàlez et al., 2014)

VERTa-EQ University of Barcelona (Comelles and Atserias, 2014)
VERTa-W University of Barcelona (Comelles and Atserias, 2014)

Table 4.1: Participants of WMT14 Metrics Shared Task

is used in the Moses model optimization. To tokenize the sentences we used
the standard tokenizer script as available in the Moses toolkit.

We have normalized all metrics’ scores such that better translations get higher
scores.

4.2 Descriptions of the Metrics

In this section, we present short descriptions of some interesting metrics which
participated in the shared task. Please see the cited papers for more details
about the metrics. Note that the description of the BLEU metric has been
already presented in Subsection 3.2.3.

4.2.1 AMBER

Metric AMBER is developed by Chen and Kuhn (2011). The abbreviation
stands for “A Modified Bleu, Enhanced Ranking metric”. This metric is based
on BLEU metric because, as the authors explain, BLEU

• is language independent,

• can be computed quickly (important for tuning),

• seems to be the best tuning metric.

They want to improve the correlation with human judgments while preserving
the advantages which make BLEU so popular. The basic formula for this metrics
follows:

AMBER = score · penalty
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where penalty is a weighted geometric average of 10 various penalty measures
and score is given by:

score = θ1 · AvgP + θ2 · Fmean+ θ3 · AvgF

where AvgP is a geometric average of n-gram precisions (this is the same as in
BLEU), Fmean is the F-measure computed on the average n-gram precision
and average n-gram recall (averages are computed across n ∈ {1, . . . , N}) and
AvgF is an average (across n ∈ {1, . . . , N}) of F-measures computed on n-gram
precision and n-gram recall for given n.

This is the basic computation but the authors propose many more enhance-
ments, for example they propose 8 different preprocessing (normalization and to-
kenization) methods which are used to compute AMBER metric on each method
separately and then return the average of scores computed after applying all the
methods. All free parameters of this metric were manually tuned on a develop-
ment set.

While we agree that the authors managed to preserve the key properties of
BLEU mentioned above, we think that one of the most popular properties of
BLEU is its implementation simplicity which is definitely not preserved in AM-
BER.

4.2.2 BEER

This metric is proposed by Stanojevic and Sima’an (2014). The abbreviation
stands for “BEtter Evaluation as Ranking”. Their metric model can employ vari-
ous features which measure the similarity of candidate and reference translations
from various aspects. Individual features are then combined using a simple linear
interpolation of feature functions:

score(h, r) =
∑
i

wi · φi(h, r) = w · φ(h, r)

They propose two groups of features. For adequacy features, they use pre-
cision, recall and F1-score features for each of the following entities: function
words, content words, all words and character n-grams for n ∈ {1, . . . , 6}. The
total number of all adequacy features is 27.

The second group of features are ordering features. They represent order-
ings as permutations. One of the ordering features is Kendall’s tau distance to
monotone permutation. Other 5 ordering features are based on permutation trees
introduced by Zhang and Gildea (2007).

They tune the feature weights to get the best correlation with human sentence-
level judgments. Let hgood and hbad be two hypothesis translations of a source
sentence with reference translation r and, let hgood be ranked better than hbad by
human judgments. Given that the metric’s model is linear, one can derive:

score(hgood, r) > score(hbad, r) ⇔ w · φ(hgood, r) > w · φ(hbad, r)

⇔ w · φ(hgood, r)−w · φ(hbad, r) > 0

⇔ w · (φ(hgood, r)− φ(hbad, r)) > 0
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Using the last equation, a binary classification problem can be formulated.
For each human pairwise comparison we have one positive training instance with
the feature vector φ(hgood, r)−φ(hbad, r) and one negative training instance with
the feature vector φ(hbad, r)− φ(hgood, r). A regression is then used to train the
weight vector w.

Please note that once the weight vector is trained, there is no need to classify
a pair of hypothesis when evaluating. A score of a single evaluated hypothesis h
is computed as w · φ(h, r).

There are two properties of this metric we really like. First, except for the
lists of function words, the metric is language independent and requires almost
no language resources. Therefore it participated in all the language directions.
Second, the weights training method is, unlike other methods, very elegant. Most
of the parametrized metrics we know about either do not tune parameters at all
(UPC-STOUT and UPC-IPA), tune them manually (AMBER, VERT*) or
use generic optimization techniques like hill climbing which does not have to find
the optimum (METEOR).

4.2.3 BLEU-NRC

The original BLEU is not very suitable for evaluating single sentences. It can
easily happen that for higher values of n, no n-gram from the candidate matches
the reference translation. The precision is then zero and since the BLEU score is
computed as the geometric average, it is also zero. A lot of sentences therefore get
zero scores and even they can be meaningful. There is also a problem with very
short sentences for which the precisions of higher n values could be undefined.
To compute BLEU on sentence level, one has to smooth the precision values.

Let mn be the clipped count of n-grams occurring in both the reference and
candidate translations, and let ln be the total count of n-grams in the candidate.
In the original BLEU, the precision is computed as pn = mn/ln. When smooth-
ing, a modified clipped count m′n is computed and then the precision is computed
as pn = m′n/ln.

Chen and Cherry (2014) compare various smoothing methods and choose the
method which correlates best with sentence-level judgments. Their best perform-
ing smoothing method is a combination of two methods. They compute first
modified counts m′n and based on them, they compute second modified counts
m′′n.

The first modified counts are computed using the following algorithm:

1: invcnt ← 1
2: for n in 1 in N do
3: if mn = 0 then
4: invcnt ← invcnt · K

ln(len(c))

5: m′n ← 1/invcnt
6: else
7: m′n ← mn

where K is set empirically (they use K = 5). The assignment in line 4 means that
for shorter sentences, the smoothed clipped counts are smaller. The motivation
for this is the fact that the denominator in the precision computation is smaller
for shorter sentences and therefore the numerator should be also smaller so that
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Figure 4.1: An example of WER alignment grid

precisions for shorter sentences are not inflated. However, we think that this
allows to game the metric by producing very long sentences with no n-gram
matched: if len c > eK , than the variable invcnt will decrease and the clipped
counts m′n will therefore increase. For each positive real number, there exists a
sentence length which would ensure the metric score to be higher than the given
number. We, however, do not consider this as a serious problem.

The second smoothing technique is used on top of the first method, and is
inspired by the intuition that matched counts for similar values of n should be
similar. This method therefore computes the modified matched counts as an
average of neighbouring clipped counts. The authors define m′′0 = m′1 + 1 and
calculate m′′n for n > 0 as follows:

m′′n =
m′′n−1 +m′n +m′n+1

3

Finally, the n-gram precisions and the BLEU score are computed from the
modified clipped counts m′′n.

For completeness we also report how the BLEU metric is smoothed in the
Moses MERT implementations since it is used for computing a baseline metric
sentBLEU in the sentence-level results. To both the numerator and denomina-
tor in the precision computation, a one is added:

pn =
mn + 1

ln + 1

4.2.4 WER

Word Error Rate metric is based on an edit distance. It is similar to the Lev-
enshtein distance but the edit operations work with tokens instead of characters
and the edit distance is normalized by the length of the reference r:
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Figure 4.2: An example of CDER alignment grid with long jumps

WER(c, r) =
mine∈E(c,r) (D(e) + S(e) + I(e))

|r|
where E(c, r) denotes a set of all sequences of edit operations which transform
the candidate c to the reference r, and D(e), S(e), I(e) denote the number of
deletions, substitutions and insertions of tokens respectively in the sequence s.

The minimal sequence can be easily computed using a dynamic programing
algorithm. This computation can be visualized with an alignment grid which you
can see in Figure 4.1.

4.2.5 CDER

The abbreviation of this metric stands for “Cover Disjoint Error Rate” and it
was developed by Leusch et al. (2006). This metric is similar to WER in that it
is also an edit distance based metric. In addition to the insertions, substitutions
and deletions, CDER also allows long jumps. The long jump is an operation in
which we move in an alignment grid to any position in the candidate (we can get
to any position in the current row of the alignment grid for a unit price). This
simulates movements of blocks (longer sequences of tokens) and it is motivated by
that block movements should not be penalized so harsh. The CDER is computed
as follows:

CDER(c, r) =
mine∈E(c,r) (D(e) + S(e) + I(e) + LJ(e))

|r|
where E(c, r) denotes a set of all sequences of edit operations which transform
the candidate c to the reference r, and D(e), S(e), I(e), LJ(e) denote the number
of deletions, substitutions, insertions and long jumps respectively in the sequence
s. You can see an example of an alignment grid with long jumps in Figure 4.2.
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4.2.6 DiscoTK

DiscoTK metric family was developed by Guzman et al. (2014). Its abbreviation
stands for “Discourse Tree Kernel”. The basic principle is that both reference
and candidate translations are parsed to discourse parse trees which are then
compared using convolution tree kernels. There are 5 different discourse tree
representations; all of them are compared and normalized kernels scores are then
averaged with uniform weights to get the DiscoTK-light score. Please see the
paper for more details.

One of the weaknesses of the above discourse-based metrics is that they use
unigram lexical information, which does not capture reordering. To make a more
robust metric, Guzman et al. (2014) combined the above five measures with
twelve more metrics implemented by Giménez and Màrquez (2010) in the Asiya
toolkit.3. The 17 measures in total are then averaged with uniform weights to get
DiscoTK-party score. The second variant of this metric, DiscoTK-party-
tuned, averages the measures with tuned weights.

4.2.7 LAYERED

LAYERED was developed by Gautam and Bhattacharyya (2014). Its name
comes from combining metrics on various linguistic layers:

• Lexical Layer. The authors decided to use ordinary BLEU from this
layer.

• Syntactic Layer. LAYERED employs three metrics working on this
layer, all of them are permutation based metrics and therefore consider only
reordering of words. Permutations are constructed from source-candidate
and source-reference alignments. The first two metrics are designed by
Birch and Osborne (2011).

The first metric is Hamming Score (HAMMING), which is a normalized
Hamming distance defined as the number of disagreements between two
permutations: |{i ∈ {1 . . . n} | π(i) 6= σ(i)}|.
The second metric is Kendall’s τ distance (KTD), which measures the
minimum number of transpositions of two adjacent symbols necessary to
transform one permutation into another.

The last metric is Spearman rank correlation coefficient (SPEARMAN),
which measures how much the permutation between the candidate and the
reference is monotone. (We also use Spearman rank correlation coefficient
for the metrics evaluation. You can find the exact definition later in this
chapter).

• Semantic Layer. There are two metrics working on this layer. Both of
them compute precision and recall of matched dependencies in candidate
and reference parse trees and then average them to get a single score.4 The

3http://nlp.lsi.upc.edu/asiya/
4A question is why the authors do not use F-measure which is usually used to combine

precision and recall. They do not even use the terms precision and recall and instead define the
concepts of precision and recall using a textual entailment concept.
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first metric (SHALLOW) uses the Stanford dependency parser (de Marn-
effe et al., 2006) to generate the dependencies. The second metric (DEEP)
uses the UNL dependency graph generator to construct the dependencies.

All the metrics from all the layers are then linearly combined (using tuned
weights) to get a final LAYERED score:

LAY ERED = 0.26 ·BLEU + 0.13 ·HAMMING+ 0.03 ·KTD
+ 0.04 · SPEARMAN + 0.28 · SHALLOW + 0.26 ·DEEP

4.2.8 Meteor

Meteor (Denkowski and Lavie, 2014) evaluates candidate translations in two
phases. In the first phase, it aligns a candidate translation to a reference trans-
lation. In the second phase, a sentence-level similarity score is computed using
the constructed alignment.

When aligning the candidate and the reference translations, the words (some-
times phrases) in the candidate are matched to the words (phrases) in the refer-
ence using the following matchers:

• Exact: Matches words if their surface forms are identical.

• Stem: Matches words if their stem is identical. A language appropriate
stemmer is used.

• Synonym: Matches words if both of them are in any synonym set according
to the WordNet database.

• Paraphrase: Matches phrases if they are listed in a language appropri-
ate paraphrase table. These tables can be automatically extracted from
ordinary phrase tables used in statistical machine translation.

Since there could be more possible alignments, the final alignment is then
resolved as the largest subset of all matches which meets the following criteria:

1. Each word in each sentence has to be covered by zero or one match.

2. The total number of matched words in each sentence is maximal.

3. The number of chunks is minimal (chunk is a contiguous sequence of can-
didate words which is monotonically mapped to a contiguous sequence of
reference words).

4. An alignment with a smaller total sum of absolute distances between the
positions of aligned words is preferred.

The METEOR for an aligned sentence is then computed as follows. Let
hc and hf be content words and function words respectively in the hypothesis
(candidate translation), and similarly let rc and rf be content and function words
in the reference. For each of the matchers mi defined above, let mi(hc), mi(hf ) be
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the counts of matched content and function words in the hypothesis and similarly
let mi(rc), mi(rf ) be the counts of matched content and function words in the
reference. Finally a weighted precision and recall are computed:

P =

∑
iwi · (δ ·mi(hc) + (1− δ) ·mi(hc))

δ · |hc|+ (1− δ) · |hf |

R =

∑
iwi · (δ ·mi(rc) + (1− δ) ·mi(rc))

δ · |rc|+ (1− δ) · |rf |
where w1 . . . wn are weights of the matchers and δ is a weight controlling the
importance of content words over function words. Using the computed precision
and recall, a F mean is computed:

Fmean =
P ·R

α · P + (1− α) ·R

Finally, the Meteor score is computed as follows:

METEOR = (1− Pen) · Fmean
where Pen is a fragmentation penalty calculated as

Pen = γ ·
(
ch

m

)β
where ch is the number of chunks (as defined above) and m is the total number
of matched words. All the parameters α, β, γ, δ and w1 . . . wn are tuned to
maximize the correlation with human judgments.

Some of the Meteor components need language specific resources. While
some of the resources are limited to one or a few languages, other resources
can be easily trained from bilingual or monolingual data. For example, the list
of function words consists of all words with relative frequency above a certain
treshold. Paraphrase tables are constructed with a simple method from a phrase
table. The weights are tuned for each language direction independently, however
developers of Meteor have also tuned a universal set of weights which can be
used for any language direction. This is the case, for example, for directions from
Russian and Hindi. The results for these directions are also very poor.

4.2.9 UPC-STOUT and UPC-IPA

Gonzàlez et al. (2014) combine various metrics implemented in the Asiya toolk-
it.5. The set of the metrics they use contains 6 lexical based metrics (WER, PER,
TER, METEOR-exact, etc.), 2 shallow parsing based metrics, 5 constituen-
cy parsing based metrics, 5 dependency parsing based metrics, 4 semantic roles
based metrics, 1 explicit-semantic metric, 3 alignment metrics and 5 source-based
metrics.

One of the interesting metrics is the explicit-semantic metric ESA. It requires
large collection of Wikipedia articles W . For both the candidate and reference

5http://nlp.lsi.upc.edu/asiya/
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translations, the cosine similarity (borrowed from the field of Information Re-
trieval) between the translation and each Wikipedia article is computed:

r = (sim(r, w);∀w ∈ W )

c = (sim(c, w);∀w ∈ W )

The ESA score is then computed as the cosine similarity of these two vectors:

ESA = sim(r, c)

The first variant, UPC-STOUT, is defined as the uniformly weighted linear
interpolation of the best performing metrics (measured on previous years metrics
data). The second variant, UPC-IPA is a light version of UPC-STOUT. It
considers only the metrics which require no or little language resources.

4.3 System-Level Metric Analysis

When evaluating metrics on the system level, we would like to reward metrics
which predict the ordering of the systems as similar as possible to the ordering
given by the human scores.

While the Spearman’s ρ correlation coefficient was used traditionally as the
main measure of system-level metrics’ quality in the past, we have decided to use
Pearson correlation coefficient as the main measure this year. We give reasons
for this change in the next subsection.

Pearson correlation coefficient is a metaevaluation metric which measures how
much two variables are linearly correlated. In our case, the first variable is the
human score and the second variable is the metric score. We use the following
formula to compute the Pearson’s r for each metric and translation direction:

r =

∑n
i=1(Hi − H̄)(Mi − M̄)√∑n

i=1(Hi − H̄)2
√∑n

i=1(Mi − M̄)2
(4.1)

where H is the vector of human scores of all the systems translating in the given
direction and M is the vector of the corresponding scores as predicted by the
given metric. H̄ and M̄ are their means respectively.

The Pearson’s r ranges from -1 to 1. A value of 1 implies that a linear equation
describes the relationship between the human scores and the metric scores and
the metric score increases as the human score increases. A value of -1 also implies
a linear relationship but this time the metric score decreases as the human score
decreases. A value of 0 implies that there is no relationship between the human
scores and the metric scores.

Since we have normalized all metrics such that better translations get a higher
score, we consider metrics with values of Pearson’s r closer to 1 as better.

For the sake of completeness and for the possibility to compare the results
to previous years, we also report Spearman’s rank correlation coefficient in the
tables. This metaevaluation metric measures how much the human score and
the metric score are mononotonically related. This measure does not consider
the absolute differences between the values so the relationship between the two
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variables is not penalized for not being linear. To compute Spearman’s ρ, we
must first transform the variables to ranks. If there are some equal values, we
assign to them an average of corresponding ranks. Once we have the ranks, we
can compute Spearman’s ρ as the Pearson correlation coefficient between the
rankings. Since there are no tied scores, we use the following simplified formula:

ρ = 1− 6
∑
d2i

n(n2 − 1)

where di is the difference between the human rank and metric’s rank for system i
and n is number of the systems. The possible values of ρ range between 1 and -1.
A value of 1 implies that the metric scores give the same ranking of the systems
as the official human scores. A value of -1 implies that the metric scores give a
reversed ranking.

The reported empirical confidence intervals of system-level correlations were
obtained through bootstrap resampling of 1000 samples (confidence level of 95 %).

4.3.1 Reasons for Pearson Correlation Coefficient

In the translation task, there are often similar systems with human scores very
close to each other. It can therefore easily happen that even a good metric com-
pares two similar systems differently from humans. We believe that the penalty
incurred by the metric for such a swap should somehow reflect that the systems
were hard to separate.
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Since the Spearman’s ρ converts both human and metric scores to ranks and
therefore disregards the absolute differences in the scores, it does exactly what
we feel is not fair. The Pearson correlation coefficient does not suffer from this
problem. We are aware of the fact that Pearson correlation coefficient also reflects
whether the relation between manual and automatic scores is linear (as opposed
to e.g. quadratic). We don’t think this would be negatively affecting any of the
metrics since overall, the systems are of a comparable quality and the metrics are
likely to behave linearly in this small range of scores.

You can see an example situation in Figure 4.3. There is a cluster of very
similar systems in upper right corner. In this cluster, some systems are not ranked
correctly by the metric. For instance, the swap of the uedin-wmt14 and onlineB
systems is not penalized so harsh in the Pearson score. However in Spearman
score, it is penalized just the same as a swap of very distant systems would be
penalized, for instance commercial1 and CU-TectoMT.

Moreover, the general agreement to adopt Pearson instead of Spearman’s
correlation coefficient was already apparent during the WMT12 workshop. This
change just did not get through for WMT13.

4.3.2 Results

You can find the system-level correlations for translations into English in Table 4.2
and for translations out of English in Table 4.3. Each row in the tables contains
correlations of a metric in each of the examined translation directions. The
metrics are sorted by average Pearson correlation coefficient across the translation
directions. The best results in each direction are in bold.

Into-English Results Analysis

As in previous years, a lot of metrics outperformed BLEU in system level corre-
lation. In into-English directions, the metric DiscoTK-party-tuned has the
highest correlation in two language directions and it is also the best correlat-
ed metric on average according to both Pearson and Spearman’s coefficients.
The second best correlated metric on average (according to Pearson) is LAY-
ERED which is also the single best metric in Hindi-to-English direction. Metrics
REDSys and REDSysSent are quite unstable, they win in French-to-English
and Czech-to-English directions respectively but they perform very poorly in oth-
er directions.

You can see that the metrics which combine many features or many metrics
on different linguistic layers perform generally much better than other metrics
(the first six metrics in directions into English are of this type). Most of the
lexical based metrics (NIST, TER, WER, PER) perform very poorly. However,
DiscoTK-light which combines only parsing based metrics also performs very
poorly. This suggest that a good metric has to combine features on various
linguistic layers. The tuning of parameters is very important as you can see in
the case of metrics DiscoTK-party-tuned and DiscoTK-party.

Except Meteor, none of the participants took part in the last year’s metrics
task. We can therefore compare current and last year’s results only for Meteor
and baseline metrics. Meteor, the winner last year, performs generally well

51



C
o
rr

e
la

ti
o
n

co
e
ffi

ci
e
n
t

P
e
a
rs

o
n

C
o
rr

e
la

ti
o
n

C
o
e
ffi

ci
e
n
t

S
p

e
a
rm

a
n
’s

D
ir

e
ct

io
n

fr
-e

n
d
e
-e

n
h
i-

e
n

cs
-e

n
ru

-e
n

A
v
e
ra

g
e

A
v
e
ra

g
e

C
o
n

si
d

e
re

d
S
y
st

e
m

s
8

13
9

5
13

D
is
c
o
T
K
-p
a
r
t
y
-t
u
n
e
d

.9
77
±
.0

09
.9

4
3
±

.0
2
0

.9
56
±
.0

07
.9

75
±
.0

31
.8

7
0
±

.0
2
2

.9
4
4
±

.0
1
8

.9
1
2
±

.0
4
3

L
A
Y
E
R
E
D

.9
73
±
.0

09
.8

93
±
.0

26
.9

7
6
±

.0
0
6

.9
41
±
.0

45
.8

54
±
.0

23
.9

27
±
.0

22
.8

94
±
.0

47
D
is
c
o
T
K
-p
a
r
t
y

.9
70
±
.0

10
.9

21
±
.0

24
.8

62
±
.0

15
.9

83
±
.0

25
.8

56
±
.0

23
.9

18
±
.0

19
.8

56
±
.0

46
U
P
C
-S
T
O
U
T

.9
68
±
.0

10
.9

15
±
.0

25
.8

98
±
.0

13
.9

48
±
.0

40
.8

37
±
.0

24
.9

13
±
.0

22
o.

90
1
±
.0

45
V
E
R
T
a
-W

.9
59
±
.0

11
.8

67
±
.0

29
.9

20
±
.0

11
.9

34
±
.0

50
.8

48
±
.0

24
.9

06
±
.0

25
.8

68
±
.0

45
V
E
R
T
a
-E

Q
.9

59
±
.0

11
.8

54
±
.0

31
.9

27
±
.0

10
.9

38
±
.0

48
.8

42
±
.0

24
.9

04
±
.0

25
.8

57
±
.0

46
t
B
L
E
U

.9
52
±
.0

12
.8

32
±
.0

34
.9

54
±
.0

07
.9

57
±
.0

40
.8

03
±
.0

27
.9

00
±
.0

24
.8

41
±
.0

56
B
L
E
U
-N

R
C

.9
53
±
.0

12
.8

23
±
.0

35
.9

59
±
.0

07
.9

46
±
.0

44
.7

87
±
.0

28
.8

94
±
.0

25
o.

85
5
±
.0

56
B
L
E
U

.9
52
±
.0

12
.8

32
±
.0

34
.9

56
±
.0

07
.9

09
±
.0

54
.7

89
±
.0

27
.8

88
±
.0

27
.8

33
±
.0

58
U
P
C
-I
P
A

.9
66
±
.0

10
.8

95
±
.0

27
.9

14
±
.0

10
.8

24
±
.0

73
.8

12
±
.0

26
.8

82
±
.0

29
o.

85
8
±
.0

44
C
D
E
R

.9
54
±
.0

12
.8

23
±
.0

34
.8

26
±
.0

16
.9

65
±
.0

35
.8

02
±
.0

27
.8

74
±
.0

25
.8

07
±
.0

50
A
P
A
C

.9
63
±
.0

10
.8

17
±
.0

34
.7

90
±
.0

16
.9

82
±
.0

26
.8

16
±
.0

26
.8

74
±
.0

22
.8

07
±
.0

49
R
E
D
S
y
s

.9
8
1
±

.0
0
8

.8
98
±
.0

26
.6

76
±
.0

22
.9

89
±
.0

21
.8

14
±
.0

26
.8

72
±
.0

21
.7

86
±
.0

47
R
E
D
S
y
sS

e
n
t

.9
80
±
.0

08
.9

10
±
.0

24
.6

44
±
.0

23
.9

9
3
±

.0
1
8

.8
07
±
.0

27
.8

67
±
.0

20
.7

71
±
.0

43
N
IS

T
.9

55
±
.0

11
.8

11
±
.0

35
.7

84
±
.0

16
.9

83
±
.0

25
.8

00
±
.0

27
.8

67
±
.0

23
o.

82
4
±
.0

55
D
is
c
o
T
K
-l
ig
h
t

.9
65
±
.0

11
.9

35
±
.0

22
.5

57
±
.0

25
.9

54
±
.0

38
.7

91
±
.0

27
.8

40
±
.0

24
.7

74
±
.0

46
M
e
t
e
o
r

.9
75
±
.0

09
.9

27
±
.0

22
.4

57
±
.0

27
.9

80
±
.0

29
.8

05
±
.0

26
.8

29
±
.0

23
o.

78
8
±
.0

46
T
E
R

.9
52
±
.0

12
.7

75
±
.0

38
.6

18
±
.0

21
.9

76
±
.0

31
.8

09
±
.0

27
.8

26
±
.0

26
.7

46
±
.0

57
W

E
R

.9
52
±
.0

12
.7

62
±
.0

38
.6

10
±
.0

21
.9

74
±
.0

33
.8

09
±
.0

27
.8

21
±
.0

26
.7

36
±
.0

58
A
M
B
E
R

.9
48
±
.0

12
.9

10
±
.0

26
.5

06
±
.0

26
.7

44
±
.0

95
.7

97
±
.0

27
.7

81
±
.0

37
.7

28
±
.0

51
P
E
R

.9
46
±
.0

13
.8

67
±
.0

31
.4

11
±
.0

25
.8

83
±
.0

63
.7

99
±
.0

28
.7

81
±
.0

32
.6

98
±
.0

47
E
L
E
X
R

.9
71
±
.0

09
.8

57
±
.0

31
.5

35
±
.0

26
.9

45
±
.0

44
−
.4

04
±
.0

45
.5

81
±
.0

31
.6

52
±
.0

46

T
ab

le
4.

2:
S
y
st

em
-l

ev
el

co
rr

el
at

io
n
s

of
au

to
m

at
ic

ev
al

u
at

io
n

m
et

ri
cs

an
d

th
e

offi
ci

al
W

M
T

h
u
m

an
sc

or
es

w
h
en

tr
an

sl
at

in
g

in
to

E
n
gl

is
h
.

T
h
e

sy
m

b
ol

“o
”

in
d
ic

at
es

w
h
er

e
th

e
S
p

ea
rm

an
’s
ρ

av
er

ag
e

is
ou

t
of

se
q
u
en

ce
co

m
p
ar

ed
to

th
e

m
ai

n
P

ea
rs

on
av

er
ag

e.

52



C
o
rr

e
la

ti
o
n

co
e
ffi

ci
e
n
t

P
e
a
rs

o
n

C
o
rr

e
la

ti
o
n

C
o
e
ffi

ci
e
n
t

S
p

e
a
rm

a
n
’s

D
ir

e
ct

io
n

e
n

-f
r

e
n
-h

i
e
n
-c

s
e
n
-r

u
A

v
e
ra

g
e

e
n
-d

e
A

v
e
ra

g
e

C
o
n

si
d

e
re

d
S
y
st

e
m

s
13

12
10

9
18

(e
x
cl

.
en

-d
e)

N
IS

T
.9

41
±
.0

22
.9

81
±
.0

06
.9

85
±
.0

06
.9

27
±
.0

12
.9

5
9
±

.0
1
2

.2
00
±
.0

46
.8

5
0
±

.0
3
0

C
D
E
R

.9
49
±
.0

20
.9

49
±
.0

10
.9

82
±
.0

06
.9

38
±
.0

11
.9

55
±
.0

12
.2

78
±
.0

45
.8

40
±
.0

36
A
M
B
E
R

.9
28
±
.0

23
.9

9
0
±

.0
0
4

.9
72
±
.0

08
.9

26
±
.0

12
.9

54
±
.0

12
.2

41
±
.0

45
.8

17
±
.0

41
M
e
t
e
o
r

.9
41
±
.0

21
.9

75
±
.0

07
.9

76
±
.0

07
.9

23
±
.0

13
.9

54
±
.0

12
.2

63
±
.0

45
.8

06
±
.0

39
B
L
E
U

.9
37
±
.0

22
.9

73
±
.0

07
.9

76
±
.0

07
.9

15
±
.0

13
.9

50
±
.0

12
.2

16
±
.0

46
o.

80
9
±
.0

36
P
E
R

.9
36
±
.0

23
.9

31
±
.0

11
.9

8
8
±

.0
0
5

.9
4
1
±

.0
1
1

.9
49
±
.0

13
.1

90
±
.0

47
o.

82
3
±
.0

37
A
P
A
C

.9
50
±
.0

20
.9

40
±
.0

11
.9

73
±
.0

08
.9

29
±
.0

12
.9

48
±
.0

13
.3

46
±
.0

44
.7

99
±
.0

41
t
B
L
E
U

.9
32
±
.0

23
.9

68
±
.0

08
.9

73
±
.0

08
.9

12
±
.0

13
.9

46
±
.0

13
.2

39
±
.0

46
o.

80
5
±
.0

39
B
L
E
U
-N

R
C

.9
33
±
.0

22
.9

71
±
.0

07
.9

74
±
.0

08
.9

01
±
.0

14
.9

45
±
.0

13
.2

05
±
.0

46
o.

80
9
±
.0

39
E
L
E
X
R

.8
85
±
.0

29
.9

62
±
.0

09
.9

79
±
.0

07
.9

38
±
.0

11
.9

41
±
.0

14
.2

60
±
.0

44
.7

68
±
.0

36
T
E
R

.9
54
±
.0

19
.8

29
±
.0

17
.9

78
±
.0

07
.9

31
±
.0

12
.9

23
±
.0

14
.3

24
±
.0

45
.7

45
±
.0

35
W

E
R

.9
6
0
±

.0
1
8

.5
16
±
.0

26
.9

76
±
.0

07
.9

32
±
.0

11
.8

46
±
.0

16
.3

5
7
±

.0
4
5

.6
96
±
.0

37
P
a
r
m
e
sa

n
n
/a

n
/a

.9
62
±
.0

09
n
/a

.9
62
±
.0

09
n
/a

.9
15
±
.0

48
U
P
C
-I
P
A

.9
40
±
.0

21
n
/a

.9
69
±
.0

08
.9

21
±
.0

13
.9

43
±
.0

14
.2

85
±
.0

45
.7

85
±
.0

50
R
E
D
S
y
sS

e
n
t

.9
41
±
.0

21
n
/a

n
/a

n
/a

.9
41
±
.0

21
.2

08
±
.0

45
o.

96
2
±
.0

38
R
E
D
S
y
s

.9
40
±
.0

21
n
/a

n
/a

n
/a

.9
40
±
.0

21
.2

08
±
.0

45
.9

62
±
.0

38
U
P
C
-S
T
O
U
T

.9
40
±
.0

21
n
/a

.9
38
±
.0

11
.9

19
±
.0

13
.9

33
±
.0

15
.3

01
±
.0

44
.7

13
±
.0

40

T
ab

le
4.

3:
S
y
st

em
-l

ev
el

co
rr

el
at

io
n
s

of
au

to
m

at
ic

ev
al

u
at

io
n

m
et

ri
cs

an
d

th
e

offi
ci

al
W

M
T

h
u
m

an
sc

or
es

w
h
en

tr
an

sl
at

in
g

ou
t

of
E

n
gl

is
h
.

T
h
e

sy
m

b
ol

“o
”

in
d
ic

at
es

w
h
er

e
th

e
S
p

ea
rm

an
’s
ρ

av
er

ag
e

is
ou

t
of

se
q
u
en

ce
co

m
p
ar

ed
to

th
e

m
ai

n
P

ea
rs

on
av

er
ag

e.

53



in some directions but it suffers horribly when evaluating translations from non-
Latin script (Russian and especially Hindi). For the baseline metrics the results
are quite similar across the years. In both years BLEU performs best among
baseline metrics, closely followed by CDER. NIST is in the middle of the list
in both years. The remaining baseline metrics TER, WER and PER perform
significantly worse.

Out-of-English Results Analysis

The results into German are markedly lower and have broader confidence intervals
than the results in other directions. This could be explained by a very high
number (18) of participating systems of similar quality. Both human judgements
and automatic metrics are negatively affected by these circumstances. To preserve
the reliability of overall metrics’ performance across languages, we decided to
exclude English-to-German direction from the average Pearson and Spearman’s
correlation coefficients.

In other out-of-English directions, the best correlated metric on average ac-
cording to Pearson coefficient is NIST, even though it does not win in any single
direction. CDER is the second best according to Pearson and the best metric
according to Spearman’s. Again it does not win in any single direction. The
metrics PER and WER are quite unstable. Each of them wins in two directions
but performs very badly in others.

Compared to the last year results, the order of metrics participating in both
years is quite similar: NIST and CDER performed very well both years, followed
by BLEU. The metrics TER and WER are again at the end of the list. An
interesting change is that PER performs much better this year.

4.4 Sentence-Level Metric Analysis

We measure the quality of metrics’ sentence-level scores using Kendall’s τ rank
correlation coefficient. In this type of evaluation, the metric is expected to predict
the result of the manual pairwise comparison of two systems. Note that the golden
truth is obtained from a compact annotation of five systems at once, while an
experiment with text-to-speech evaluation techniques by Vazquez-Alvarez and
Huckvale (2002) suggests that a genuine pairwise comparison is likely to lead to
more stable results.

In the past, slightly different variations of Kendall’s τ computation were used
in the Metrics Tasks. Also some of the participants have noticed a problem with
ties in the WMT13 method. Therefore, we discuss several possible variants in
detail in this thesis.

4.4.1 Notation for Kendall’s τ Computation

The basic formula for Kendall’s τ is:

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant|

(4.2)
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where Concordant is the set of all human comparisons for which a given metric
suggests the same order and Discordant is the set of all human comparisons for
which a given metric disagrees. For an example of Kendall’s τ computation, let
us have the following comparisons:

Human Metric
A < B A < B
C > A C > A
C > B C < B

There are two concordant comparisons and one discordant:

τ =
2− 1

2 + 1
=

1

3

In the original Kendall’s τ , comparisons with human or metric ties are consid-
ered neither concordant nor discordant. However in the previous Metrics Tasks
(Callison-Burch et al. (2012) and earlier), comparisons with human ties were con-
sidered as discordant. To easily specify which pairs are counted as concordant
and which as discordant, we have developed the following tabular notation. This
is, for example, the WMT12 method:

Metric
WMT12 < = >

H
u
m

an < 1 -1 -1
= X X X
> -1 -1 1

Given such a matrix Ch,m where h,m ∈ {<,=, >}6 and a metric we compute
the Kendall’s τ the following way: We insert each extracted human pairwise
comparison into exactly one of the nine sets Sh,m according to human and metric
ranks. For example the set S<,> contains all comparisons where the left-hand
system was ranked better than right-hand system by humans and it was ranked
the other way round by the metric in question. To compute the numerator of
Kendall’s τ , we take the coefficients from the matrix Ch,m, use them to multiply
the sizes of the corresponding sets Sh,m and then sum them up. We do not include
sets for which the value of Ch,m is X. To compute the denominator of Kendall’s
τ , we simply sum the sizes of all the sets Sh,m except those where Ch,m = X. To
define it formally:

τ =

∑
h,m∈{<,=,>}
Ch,m 6=X

Ch,m|Sh,m|

∑
h,m∈{<,=,>}
Ch,m 6=X

|Sh,m|

For an example of WMT12 computation, let us have the following compar-
isons:

6Here the relation < always means “is better than” even for metrics where the better system
receives a higher score.
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Human Metric
A < B A < B
A < B A < B
A > B A = B
A = B A > B

The Kendall’s τ score is then computed in the following way:

τ =
2− 1

2 + 1
=

1

3

4.4.2 Discussion on Kendall’s τ Computation

In 2013, we thought that metric ties should not be penalized and we decided to
excluded them like the human ties. We will denote this method as WMT13:

Metric
WMT13 < = >

H
u
m

an < 1 X -1
= X X X
> -1 X 1

It turned out, however, that it was not a good idea: metrics could game the
scoring by avoiding hard cases and assigning lots of ties. A natural solution is
to count the metrics ties also in the denominator to avoid the problem. We will
denote this variant as WMT14:

Metric
WMT14 < = >

H
u
m

an < 1 0 -1
= X X X
> -1 0 1

The WMT14 variant does not allow for gaming the scoring like the WMT13
variant does. Compared to WMT12 method, WMT14 does not penalize ties.

We also considered getting human ties involved. The most natural variant
would be the following variant denoted as HTIES:

Metric
HTIES < = >

H
u
m

an < 1 0 -1
= 0 1 0
> -1 0 1

Unfortunately this method allows for gaming the scoring as well. The least risky
choice for metrics in hard cases would be to assign a tie because it cannot worsen
the Kendall’s τ and there is quite a high chance that the human rank is also a tie.
Metrics could be therefore tuned to predict ties often but such metrics are not
very useful. For example, the simplistic metric which assigns the same score to
all candidates (and therefore all pairs would be tied by the metric) would get the
score equal to the proportion of ties in all human comparisons. It would become
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one of the best performing metrics in WMT13 even though it is not informative
at all.

We have decided to use WMT14 variant as the main evaluation measure this
year, however, we are also reporting average scores computed by other variants.

4.4.3 Kendall’s τ Results

The final Kendall’s τ results are shown in Table 4.4 for directions into English
and in Table 4.5 for directions out of English. Each row in the tables contains
correlations of a metric in given directions. The metrics are sorted by the average
correlation across translation directions. The highest correlation in each column
is in bold. Table 4.6 and Table 4.7 contain average Kendall’s τ computed by
other variants including the variant WMT13 used last year. Metrics which did
not compute scores in all directions are at the bottom of the tables. The possible
values of τ range between -1 (a metric always predicted a different order than
humans did) and 1 (a metric always predicted the same order as humans did).
Metrics with a higher τ are better.

We also computed empirical confidence intervals of Kendall’s τ using boot-
strap resampling. We varied the “golden truth” by sampling from human judg-
ments. We have generated 1000 new sets and report the average of the upper and
lower 2.5 % empirical bound, which corresponds to the 95 % confidence interval.

Analysis

In directions into English (Table 4.4), the strongest correlated sentence-level
metric on average is DiscoTK-party-tuned followed by BEER. Unlike the
system-level correlation, the results are much more stable here. DiscoTK-
party-tuned has the highest correlation in 4 of 5 language directions. Generally,
the ranking of metrics is almost the same in each direction.

The only two metrics which also participated in last year metrics task are
Meteor and sentBLEU. In both years, Meteor performed quite well unlike
sentBLEU which was outperformed by most of the metrics.

The metric DiscoTK-light-kool is worth mentioning. It is deliberately
designed to assign the same score for all systems for most of the sentences. It
obtained scores very close to zero (i.e. totally uninformative) in the WMT14
variant. In WMT13 though, it reached the highest score.

In directions out of English (Table 4.5), the metric with highest correlation
on average across all directions is Beer, followed by Meteor.

The trends in the sentence level are quite similar to the trends in the sys-
tem level. The metrics which combine features on various linguistic layers are
much better than metrics which do not. The metrics which tune their weights
(DiscoTK-party-tuned, BEER, RED* and Meteor) are significantly bet-
ter better than metrics which do not (UPC-*, VERTa-*). An interesting con-
trast is between the DiscoTK-party-tuned and DiscoTK-party metrics,
which differ only in the tuning. It shows that the tuning is very important. Com-
paring DiscoTK-party to DiscoTK-light shows that discourse tree based
metrics are not very useful in MT evaluation.
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Metric WMT14 WMT12 WMT13 HTIES

DiscoTK-party-tuned .386 ± .013 .386 ± .013 .386± .013 .306± .010
BEER .362± .013 .358± .013 .363± .013 o .318 ± .011

REDcombSent .356± .013 .346± .013 .360± .013 .317± .011
REDcombSysSent .356± .013 .346± .013 .359± .013 .316± .010

Meteor .354± .013 .341± .013 .359± .013 o .317± .010
REDSysSent .346± .013 .335± .013 .350± .013 .309± .010

REDSent .345± .013 .334± .013 .349± .013 .308± .010
UPC-IPA .342± .013 o .340± .014 .343± .014 .300± .011

UPC-STOUT .338± .013 .336± .013 .339± .013 .294± .011
VERTa-W .337± .014 .320± .014 o .342± .014 o .304± .011
VERTa-EQ .336± .013 o .323± .013 .341± .013 .302± .011

DiscoTK-party .332± .013 o .332± .013 .332± .013 .263± .011
AMBER .316± .013 .302± .013 .321± .014 o .286± .011

BLEU-NRC .294± .013 .267± .014 .303± .014 .271± .011
sentBLEU .285± .013 .258± .014 .293± .014 .264± .011

APAC .279± .013 .243± .014 .290± .014 .261± .011
DiscoTK-light .234± .014 .234± .014 .234± .014 .184± .011

DiscoTK-light-kool .002± .001 −.996± .001 o .676 ± .256 o .211± .005

Table 4.6: This table contains average sentence-level Kendall’s τ computed by
other variants in directions into English. The average correlation of WMT14
variant is repeated in the first column. The symbol “o” indicates where the
averages of other variants are out of sequence compared to the WMT14 variant.

Metric WMT14 WMT12 WMT13 HTIES

BEER .319 ± .011 .314 ± .011 .320 ± .011 .272± .009
Meteor .306± .011 .283± .011 .313± .011 o .273 ± .008
AMBER .295± .011 .269± .011 .303± .011 .266± .009

BLEU-NRC .277± .011 .235± .011 .289± .011 .256± .009
APAC .269± .011 .217± .011 .285± .011 .252± .008

sentBLEU .269± .011 o .232± .011 .280± .011 .246± .009

UPC-STOUT .305± .011 .300± .010 .306± .011 .256± .008
UPC-IPA .304± .011 .292± .011 o .308± .011 o .259± .008
REDSent .267± .010 .246± .010 .273± .011 .257± .008

REDcombSysSent .267± .010 o .249± .010 .272± .010 .256± .008
REDcombSent .266± .010 .248± .010 .271± .011 .256± .008
REDSysSent .264± .010 .235± .010 o .273± .010 o .257± .008

Table 4.7: This table contains average sentence-level Kendall’s τ computed by
other variants in directions out of English. The average correlation of WMT14
variant is repeated in the first column. The symbol “o” indicates where the
averages of other variants are out of sequence compared to the WMT14 variant.
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Chapter 5

Related Work

This chapter surveys related work on the boundary of automatic and manual
evaluation. At the end, we also report related work to the automatic metric
evaluation.

5.1 Feasibility of Human Evaluation in MERT

The work of Zaidan and Callison-Burch (2009) was the main inspiration for our
SegRanks method. They develop a new metric called Rypt to use it primarily
in the MERT method. This metric takes human judgments into account, but re-
quires manual labour only at the beginning to build a database that can be reused
later to evaluate unseen candidates. The core idea is to extract segments from
source parsed tree and then using an alignment produced by a decoder project
these source side segments to segments in n-best list candidates. The target side
segments are then evaluated by humans and stored to a database, which is used
later when scoring n-best list. The authors claim that this evaluation is done
only once before the first iteration of MERT, however they do not specify how
new, unseen segments from n-best lists produced in later MERT iterations would
be evaluated.

Despite the Rypt metric is designed to be used in the MERT method, Zaidan
and Callison-Burch (2009) actually have not done any experiment with MERT
for a lack of resources. Only a pilot study is reported in the paper. They tried the
method only on a relatively small sample of sentences from n-best list produced
with already tuned weights. The reason why we could afford to do the experi-
ment with MERT with comparable resources is that we do not extract candidate
segments from the whole n-best list.

From their paper, we adopted mainly the short segment candidate extraction
process. The annotation process, scoring the candidates and conducted experi-
ments are, however, quite different to our work. The main difference is that they
extract the short segments for evaluation directly from an n-best list, while we
extract them from the evaluated systems’ translations and hope that they will
cover also the n-best list. The difference in the annotating short segments is
that annotators in the paper of Zaidan and Callison-Burch (2009) do not rank
candidate segments relatively to each other, but they use absolute labels YES, NO
and NOT SURE to judge whether a candidate segment is an acceptable translation.
The next difference is in the scoring, while we compute Ratio of wins (ignoring
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ties), they compute the proportion of short segments labeled YES. We decided
to do these changes in our method to have the annotation more similar to the
official WMT human evaluation.

5.2 Extrapolating Score from Similar Sentences

Nießen et al. (2000) have developed a tool for manual evaluation. Annotators
select for each evaluated sentence a rank from an absolute point scale. Each eval-
uated sentence is then stored to a database with its rank. The authors use their
tool for everyday evaluating of new variants of their system which often translate
differently only a small percentage of a development test set1. Identically trans-
lated sentences are therefore not evaluated again and are automatically assigned
a rank from the database. Only the new translations are evaluated by humans
and stored into the database with their rank.

When the database is large enough, there is an option to evaluate new transla-
tions automatically by extrapolating ranks of candidates from the database. For
an evaluated candidate sentence, the rank of the closest sentence by edit distance
is assigned. If there is more sentences in the database with equal edit distance,
the average rank is used. This is similar to the matching the closest segment
which we do in Section 3.2.2.

The authors present a few statistics related to their database, such as an
average of absolute differences between the real score and the extrapolated score
computed using the method similar to our leave-one-out trick. However, they
do not show how good the extrapolated scores are and if they also do not suffer
from overestimation. One of their collected database contains 42.9 candidate
translations per a source sentence on average. This is much higher than in our
database (the maximum number of candidates for one source segment is 10), so we
could speculate that their space of candidates is much more dense and therefore
may not be so affected by the overestimation.

5.3 Scratching the Surface of Possible Transla-

tions

The work by Bojar et al. (2013) is quite different to the previous two works.
Their longterm goal is to improve automatic evaluation by significantly enlarging
the set of reference translations. Any metric that can compare a candidate to
multiple references can be then used for evaluation. The idea is that if we have
a very large set of references, then there will be higher chance that either the
evaluated candidate will be in the reference set, or there will be a reference very
similar to the candidate. In both of the cases, an automatic metric will predict
the quality much more accurately.

To systematically construct the very large set of reference translations, Bojar
et al. (2013) propose compact representation in which annotators create many
translations of smaller units, called bubbles, and specify conditions under which

1This paper was actually published before the MERT method was introduced. When it is
used, it changes most of the translations.
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the translated bubbles can combine together to create the whole reference trans-
lation. All possible combinations are generated and added to the set of reference
translations. A single annotator could for a given source sentence produce hun-
dreds of thousands reference translations using this method in two hours of work.

The authors show that BLEU computed on a test set of 50 sentences with all
the produced references achieves better correlation with human judgments than
BLEU computed on a test set of 3003 sentences with single reference translation.
It would be interesting to experiment with many references when tuning a system
using MERT method.

5.4 Metaevaluation

Metrics Shared Task (also sometimes called Evaluation Task) is held annually
within Workshop on Statistical Machine Translation starting by Callison-Burch
et al. (2008). Until the year 2012, the tasks’ results used to be reported in the
main overview paper. In the years 2013 and 2014, it was organized by Macháček
and Bojar (2013) and Macháček and Bojar (2014) and reported in dedicated
papers.

Besides the shared task within WMT, there were also MetricsMATR evalua-
tion campaign in years 20082 and 20103.

2http://www.itl.nist.gov/iad/mig/tests/metricsmatr/2008/
3The task was joint with the WMT task this year, http://www.nist.gov/itl/iad/mig/

metricsmatr10.cfm
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Chapter 6

Conclusion

6.1 Manual and Semiautomatic Evaluation

In this thesis, we proposed a new method for manual evaluation, called Seg-
Ranks, in which annotators rank short segments (up to six words) of a trans-
lated sentence relatively to each other. The ranking of short segments is easier
for annotators, since they do not have to read and remember whole sentences
at once. The most promising benefit of this method is that short segments are
often translated identically. We can take advantage of this in two ways: First,
annotators are shown identical segments only once so that they do not have to
rank them multiple times. Second, the evaluated segments can be stored together
with their ranks in a database, which can be used later to automatically evaluate
unseen sentences or to tune a system’s parameters. We also discussed disadvan-
tages of this method. The most severe ones are that the extracted segments do
not always cover the whole sentence and that the segments are evaluated without
their sentence context.

We developed an easy-to-use and modern annotation interface and conducted
a manual evaluation experiment using the proposed method. We evaluated the
systems which participated in the English-Czech direction in WMT Translation
Task. The measured inter- and intra-annotator κ scores (the normalized agree-
ments) are higher than the corresponding values in the WMT manual evaluation,
which means that our evaluation method is more robust.

To get a final score for each system’s translation, we computed how often the
segments of the system were ranked better than other segments (in the context of
the pairwise comparisons). The results of the evaluated systems are quite similar
to the results obtained by the official WMT judgments. However, our method
is not able to correctly distinguish some systems with very similar quality. We
manually analyzed the sentences which were ranked high in the short segment
judgments but ranked low in the official WMT judgments to explain the differ-
ence. In most of these sentences, there was a badly translated part which was,
however, not covered with the evaluated short segments. The uncovered parts
often contained verbs which have a significant impact on the translation quality.

To explore the possibility of reusing the collected database to evaluate unseen
translations, we have performed several experiments. In the first one, we evalu-
ated unseen translations using only the ranks of the segments which were in the
database. This, however, did not work as expected, because the obtained scores
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of unseen systems were significantly overestimated. During the manual analy-
sis, we identified that the evaluated systems are more likely to agree on better
translations than on worse translations.

To avoid evaluating unseen translations only on a not-representative subset
of short segments, we proposed another method. In this method, we evaluated
unseen translations on all the extracted segments. To approximate the rank of an
unseen segment, we took the rank of the closest segment by edit distance. This
method, however, didn’t work as well. The approximated rank was predicted
correctly using the closest segment only in 19.7 % cases. In 51.9 % of the cases,
the predicted rank was better than the original rank. The final scores of the
unseen systems were thus overestimated again.

In another experiment, we extracted the best ranked segments from the col-
lected database and considered them as good translations. We used them as
additional reference translations for BLEU. However, it did not perform better
than original BLEU with single reference.

In the last experiment with the collected database, we tried to use the database
to tune a machine translation system using the MERT method. We proposed
several variants of SegRanks based metrics adapted for the MERT tuning. The
tuned systems were evaluated by humans against the baseline system tuned by
BLEU. We were able to improve the tuning of the system using a technique
which considered unseen segments as bad and therefore pushed the system to
produce known and already evaluated segments.

Although most of the proposed methods exploiting the collected database did
not work, we tried to identify and analyze root causes of the failures. The main
cause seems to be the fact that errors in machine translation are unique and that
segments produced by more than one system are likely to be of better quality.
This is also related with the fact that translations are more likely to be closer to
better translations than to equally good or worse translations. Maybe, if we had
a more dense database (many more than 10 evaluated systems), these phenomena
would not influence the results so adversely.

6.2 Automatic Evaluation

In the second part of this thesis, we summarized the results of the WMT14
Metrics Shared Task which we ran. The shared task assesses the quality of various
automatic machine translation metrics. Judgements collected in the WMT14
human evaluation served as the golden truth and we checked how well the metrics
predicted the judgements at the level of individual sentences (sentence-level task)
as well as at the level of the whole test set (system-level task).

In the system-level task, we discussed differences between Spearman’s rank
correlation coefficient and Pearson correlation coefficient and decided to choose
Pearson coefficient instead of Spearman’s rank coefficient as being fairer. In
the sentence-level task, we introduced a new notation which exactly specifies
the details on Kendall’s τ computation. We also discussed several variants of
Kendall’s τ used in the past and proposed and used a new variant which does
not suffer from shortcomings of other variants.

We observed two general trends: First, the metrics which employ features on
various linguistic layers are better than other metrics. Second, the metrics which
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tune their parameters or weights are also better than other metrics.
We have implemented scripts for metrics evaluation and published them in a

package together with human judgments1. Anyone can therefore reproduce the
results and use it to evaluate his or her metric on the WMT14 data.

6.3 Future Work

The SegRanks method could be improved in several ways to hopefully avoid its
shortcomings. Short segments should be extracted in a way that they cover either
all words in a sentence or the most important parts, for example predicates. To
avoid data sparseness, we should evaluate more systems or extract segments from
the n-best list directly in the case of tuning. An application of machine learning
techniques to predict quality of unseen short segments should be also examined.

For the evaluation of automatic metrics, the basic principle of the metrics task
will very probably not change. We will also try not to change any metaevaluation
measures again (like we did in WMT13 and WMT14), so that participants can
rely on fixed rules and that results can be more comparable across years. We
expect that new metrics will emerge to be examined in the task. There are two
possible enhancements of the task we think of. First, automatic metrics should
be also evaluated in terms of tuning a system’s parameters. There was already
Tunable Metrics Task organized at WMT11 and we should consider it again.
Second, the confidence intervals are now computed by bootstrapping only the
human judgments. It would be better if we could bootstrap new test sets and
compute a metric score for each sampled test set. This would, however, require
participants to compute their metric score for each of the sampled test sets.

1http://www.statmt.org/wmt14/wmt14-metrics-task.tar.gz
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Appendix A

WMT14 Metrics Task Package
Documentation

The wmt14-metrics-task directory located in the attached DVD-ROM contains
scripts and data behind the results of WMT14 Metrics Task. The makefile in this
directory is used to generate all the results. The command make all creates the
following files which contain the results:

• system.correlations.toEn

• system.correlations.fromEn

• segment.correlations.toEn

• segment.correlations.fromEn

If you want to reproduce also the confidence intervals, change the following vari-
ables in Makefile:

COMPUTE_CONFIDENCE = true

SEGMENT_BOOTSTRAP_SAMPLES = 1000

You can use this package to evaluate your metric(s) on wmt14 data and compare
it with other metrics. Create a subdirectory in submissions/ and put there your
metrics data files in the submission format as described at http://www.statmt.
org/wmt14/metrics-task/. The file names have to end with *.sys.score or
*.seg.score file extensions.

The scripts in this package have the following requirements:

• The baselines/Makefile requires a path to a compiled Moses, set the
MOSESROOT env. variable.

• Scripts require Python 3 with scipy and tabulate packages installed.

Important content of this package:

• metrics-task-paper.pdf - the published paper with WMT14 metrics task
results
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• submissions/ - the metrics data submitted by the task participants

• baselines/ - the computation of the baseline metrics

• compute-segment-correlations - see ./compute-segment-correlations
--help

• compute-system-correlations - see ./compute-segment-correlations

--help

• judgements-2014-05-14.csv - the raw human judgements

• human-2014-05-16.scores - the official system-level human scores (TrueSkill)

• human-2014-05-16.folded/ - the human scores computed on generated
folds
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Appendix B

SegRanks Application
User Documentation

The segranks directory located in the attached DVD-ROM contains SegRanks,
the annotation application which is used for ranking short segments of machine
translation.

B.1 Installing and Running the Application

SegRanks is a Django web application written in Python and requires Python 2.7
and some additional Python dependencies. They are listed in requirements.txt

and you can easily install them to a new virtual environment using the following
command:

$ virtualenv /path/to/new/environment

$ . /path/to/new/environment/bin/activate

$ pip install -r requirements.txt

If you want to run the application locally, an sqlite3 database is used. To initialize
it and apply all database migrations, run:

$ ./manage.py syncdb

$ ./manage.py migrate

The database is now initialized and you can start the local web server

$ ./manage.py runserver

and open the application in your browser (usually http://127.0.0.1:8000/).
However, the list of annotation project will be empty. You need to create a
project and upload extracted segments. This is described in Section B.2.

The application is also ready to be deployed to Heroku cloud. To do that,
you need in essence to create a new Heroku application, initialize a Git reposi-
tory with SegRanks, add Heroku as a remote and push your commits there. It
will automatically install all the dependencies. The application is configured to
automatically set the database when deployed to Heroku. Please see Heroku
documentation for more details.
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B.2 Creating a New Annotation Project

To create a new annotation project, you need to have a file with extracted seg-
ments. The file has one row for each segment with the following tab separated
fields:

1. sentence ID

2. tokenized source sentence

3. tokenized reference sentence translation

4. tokenized source segment

5. tokenized candidate segment

6. zero based indices of source segment words separated by a space (used for
highlighting the segment in source sentence)

You can use the attached file extracted.segments, which contains segments
extracted for the experiment in my thesis. To create a project, run:

$ ./manage.py create_project extracted.segments \

"<Project Name>" "<Project Description>"

B.3 Annotating

Annotating in the application is very easy. Before you start, you need to be
registered and signed in. To start annotating, select an annotation project you
want to work on. You will be then shown annotation instructions and an anno-
tated sentence. For each annotated segment, drag and drop segment candidates
into the rank positions. When all the segment candidates are placed in the rank
positions, the submit button is enabled and you can submit your annotation to
the server. A new sentence is displayed to be annotated.

B.4 Printing Annotation Statistics

You can list annotators with various statistics (number of annotated segments,
time spent annotating, agreements, etc.) with the following command:

$ ./manage.py statistics <project_id>

To get list of available projects with their IDs, run the command without the
argument.
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B.5 Exporting the Database

To export segments with their ranks in JSON or in Python Pickle format, use
one of the following commands:

$ ./manage.py export_project <project_id> <out_file> json

$ ./manage.py export_project <project_id> <out_file> pickle

Both formats store a dictionary indexed by tuples of sentence IDs and source
segments. The values of this dictionary are lists of rank dictionaries. The rank
dictionary is indexed by candidate segments and its values are assigned ranks.
The following listing is an example JSON output:

{

"2386,Writing books saved me .": [

{

"Knihy psanı́ uložily mě .": 5,

"Napsané knihy ušetřily mě .": 4,

"Psanı́ knih mě zachránil .": 1,

"Psanı́ knihy mě zachránil .": 2,

"Psanı́ knihy mě zachránily .": 2,

"Pı́semné knihy mě zachránily .": 5

}

],

"2755,At each station": [

{

"Na každé stanici": 1,

"U každé stanice": 2,

"V každé stanici": 2

}

],

}

You can also find all the annotated segments from experiments in my thesis in
the file annotated.segments.
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Appendix C

SegRanks Application
Development Documentation

SegRanks is a Django web application which follows the standard Django’s struc-
ture and guidelines. It uses Model-View-Controller (MVC) pattern, although in
Django, views are called templates and controllers are called views. We will use
the Django’s terminology here.

The model describes the representation of the data stored in the database.
Views prepare the data that gets presented to the user and also process user
requests and updates the data. Templates describe how the presented data will
look.

C.1 Model

The Django’s object-relational mapping (ORM) is used to access the data in the
database. It allows to manipulate with data using an object interface. There is
no need to write SQL queries manually, all manipulations with data objects are
translated to SQL automatically on background.

The database model is implemented in segranks/model.py using the Djan-
go’s model API. You can see the model illustrated in Figure C.1.

Annotation projects are stored in table RankProject. Each project contains a
number of sentences stored in table Sentence, together with reference translations.

All extracted segments of a sentence are stored in table Segment. This table
has two important fields. The first is candidates str, which stores tab separat-
ed strings of all candidate translations of the segment. Although this is not a
normalized design, it makes a lot of things much simpler (all the candidates are
ranked at once anyway). The second field is segment indexes which stores the in-
dices of words of the segment in the source sentence. This is used for highlighting
the segment in the interface.

Finally, each segment has zero or more annotations stored in Annotation table.
When an annotation is submitted to the server, a new row for each segment in
the sentence is created in this table. The most important field in this table is
ranks which stores ranks of the segment candidates separated by tabs as a string.
The reason for breaking the database normalization is the same as before. There
are convenient getters and setters for these unnormalized data, so this is only an
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        RankProject    

    id         AutoField     
    created         DateTimeField    
    description        TextField     
    name        CharField    

        Sentence    

    id         AutoField     
    project        ForeignKey (id)     
    reference_str         TextField     
    sentence_id        IntegerField    
    source_str         TextField     

project (sentences)

        Segment    

    id         AutoField     
    sentence         ForeignKey (id)     
    candidates_str        TextField     
    segment_indexes        TextField     
    segment_str         TextField     

sentence (segments)

        Annotation    

    id         AutoField     
    annotated_segment        ForeignKey (id)     
    annotator         ForeignKey (id)     
    created         DateTimeField    
    ranks_str         TextField     
    time_in_seconds        IntegerField    

annotated_segment (annotations)

  User   

annotator (annotation)

Figure C.1: Database model
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implementation detail, hidden from the rest of the application. The table also
stores some metadata (who created the annotation, how long did it take, etc.).

Because there were some changes of the database model during the develop-
ment, we use South to track the database changes and easily migrate the data.

C.2 Views

Application URLs are mapped to individual views in file segranks/urls.py. All
views are implemented as classes in file segranks/views.py. There are three
important views.

The simplest one is ProjectListView, which lists all available annotation projects.
It is implemented as a subclass of Django’s generic ListView class and does not
implement any method.

AnnotateView chooses a sentence to be annotated. This view is implemented
as a subclass of generic DetailView class which renders a single object. The only
implemented method here is get object which returns a Sentence object to be
rendered. This method ensures that annotators are sometimes shown already
annotated sentences (for the computation of agreements). In most of the cases,
it simply choose a random unannotated sentence.

The last view is SubmitView. This view processes annotated sentences sub-
mitted by annotators back to server. The ranks and other data are extracted
from the POST data and Annotation instances are created for each annotated
segment. After that, the user is redirected to AnnotateView to get a new sentence
to annotate.

There are also views which handle user registrations and logins, however these
views are part of the django-registration library.

C.3 Templates

All templates are located in directory segranks/templates. The base.html

template contains all the elements which are common for all templates (HTML
head with links to client scripts and cascade styles, common navigation bar) and
other templates derive from it. Other templates contain HTML code specific to
views which they render.

The templates use Twitter Bootstrap framework to easily build a simple and
responsive user interface. We also use jQuery for easy element selection and
manipulation and for event handling. The drag-and-drop feature is implemented
using jQuery UI Sortable widget.
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