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Abstract:
In this work we thoroughly analyze Bornholdt’s version of Ising model of ferro-
magnetism, with emphasis on its ability to mimic some basic stylized facts of
financial series. Initially, we provide a breakdown of model definition and anal-
ysis of underlying dynamics. Subsequently, we examine and confirm model’s
ability to mimic stylized facts of financial series. To examine robustness of this
ability to parameter change, we conduct simulations over a set of parameter
combinations. We conclude that there is a wide set of combinations that yields
acceptable simulation results. We also note that the seemingly best results are
obtained at parameter values close to border of this set.
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Abstrakt:
Tato práce se zabývá zevrubnou analýzou Bornholdtovy verze Isingova modelu
feromagnetu se zaměřením na schopnost modelu imitovat vlastnosti finančních
časových řad. Model nejprve podrobujeme analýze jak z hlediska definice, tak
z hlediska vnitřní dynamiky. Následně zkoumáme a potvrzujeme schopnost mo-
delu imitovat vlastnosti finančních časových řad. Abychom otestovali robustnost
této schopnosti vůči změně ve vstupních parametrech, provádíme simulace přes
různé jejich kombinace. Docházíme k závěru, že existuje široká množina kom-
binací, pro něž dostáváme simulace uspokojivých vlastností. Závěrem pozna-
menáváme, že zdánlivě nejlepších výsledků dosahuje model na hranici zmíněné
množiny.
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1 Introduction
Various financial series, such as market indices, exchange rates, commodities,
and their respective derivatives have been a subject of numerous studies for
at least half a century. It was only in the last decade or two, however, that
widespread availability of financial data together with unprecedented computa-
tional power at hand made it possible to adopt a systematic data-based approach
(Cont, 2001). Independent studies reported some general properties that seemed
to apply to a wide range of financial series, regardless of the type, time period
or market of origin. These properties became known as “stylized (empirical)
facts”.

The same circumstances that led to new analytical approaches in economics
made it possible to apply methods developed in physics to study the financial
data. Statistical mechanics is a branch of physics widely used to study economic
phenomena. Using probability theory, it infers macroscopic behavior of systems
from interaction of large number of elements governed by simple mechanical
laws at microscopic level. The parallel with financial markets is straightforward;
price movements are macroscopic phenomena driven by interaction of countless
microscopic individuals. Even though each of these individuals might exhibit
complex behavior, it is plausible that few simple rules approximate their actions
on the market closely enough for macroscopic patterns to emerge.

One distinct group of models that aim to mimic behavior of financial series
are those based on a model of ferromagnet introduced by Ising [1925]. Among
those, modification by Bornholdt [2001] is widely used as a reference model that
is further augmented (e.g. by Sieczka and Holyst, 2008, Sornette and Zhou, 2006,
Denys et al., 2013).

This model will be a primary subject of our analysis for several reasons.
Firstly, its similarity to the original two-dimensional Ising model makes it pos-
sible to draw parallels between the two and examine to what extent the original
model is relevant to the study of financial series.

Secondly, model’s relative simplicity allows to describe inner dynamics in
detail and examine the roots of the patterns it exhibits, which is far from
common in the relevant literature. Typically, only model definition together
with rationale behind it are presented, followed by analysis of resulting series.
Even though the dynamics can be inferred from the definitions, the stochastic-
ity makes it very hard to do so without actually constructing and running the
simulation of the model.

Thirdly, with only two tunable parameters, we can simulate the model for
relatively exhaustive set of parameters and observe the changes in resulting
series. We can subsequently determine what combination yields the results
most alike to financial data and whether the model requires a fine-tuning to
generate series with required characteristics.

The thesis is structured as follows: In Section 2 we present overview of
commonly accepted stylized facts. A brief rationale behind each is provided
together with measures employed to assess its presence in data. In Section 3 we
analyze three different types of financial series to get a representative picture
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of the market. Section 4 introduces the Bornholdt’s model in the context of
its physical predecessor. It also provides descriptions of model’s rules with
detailed discussion of their implications and behavioral patterns that they are
supposed to represent. In Section 5 we present results of our simulations. After
description of model’s dynamics, the presence of stylized facts in a simulated
series is assessed. Impact of a change in input parameters is then examined via
simulation over a wide range of parameter combinations. Section 6 provides
summary of our results and concludes.

The simulations as well as analysis presented in this work are conducted
using Wolfram Mathematica. Unless stated otherwise, own calculations are
sources of data in tables and figures

2 Stylized facts about financial series
Financial time series studied in economics comprise a wide range of assets -
company stocks, various commodities, foreign exchange rates and many more.
Most of them even have several versions because of related financial derivatives.
But despite all the differences these series share a number of nontrivial statistical
properties as was shown in numerous empirical studies (e.g. Lux [2008] and Cont
[2001]). This common denominator of properties is called stylized (empirical)
facts. Before we discuss them, we need to define a logarithmic return, that we
will further work with. For price p(t) and time-scale ∆t the log return at scale
∆t is

r(t, ∆t) = ln p(t+ ∆t)− ln p(t).

When we work with returns, we will implicitly assume ∆t = 1 in appropriate
units, i.e. days in our daily data, unless stated otherwise.

2.1 Dependence in returns
One empirical feature of financial series is absolutely crucial for a vast majority
of theoretical models and is a cornerstone of Efficient market hypothesis : the
martingale property of financial prices. It states that currently observed value
is the best estimate of the next value while knowledge of past observations does
not allow for better prediction.

Consequently, correlation between values ρ(τ) = corr(r(t), r(t + τ)) of the
returns series at different time lags τ is assumed to be zero for most economic
purposes. The reasoning behind this assumption is very simple. Possibility to
identify a significant correlation exploitable through a trading strategy would al-
low for a so called statistical arbitrage. As Mandelbrot [1971] puts it, “arbitrage
tends to whiten the spectrum of price changes.”

It should be noted that in financial series one can often find some marginally
significant autocorrelations at the first few lags. Moreover, for fine scales (for τ
representing minutes or even smaller timeframe) one might find first few lags to
be significant. These autocorrelations are believed to result from microstructure
noise and, though statistically significant, they cannot be exploited through
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a pertinent trading strategy. They are thus not considered to pose a strong
evidence against efficient market hypothesis (Lux, 2008). On the contrary, an
overall absence of autocorrelation is often used to support the hypothesis (Fama
and Malkiel, 1970).

2.1.1 Autocorrelation of returns

To assess whether there is a correlation in returns, we run a Ljung-Box test
and examine the autocorrelation function (ACF). Under the null of the Ljung-
Box test (for details, see Ljung and Box [1978]), returns are independently
distributed and no autocorrelation is present. The autocorrelation function is
defined as

ρ(τ) =

∑T−τ
t=1 (rt − r̄)(rt+τ − r̄)∑T

t=1(rt − r̄)2
(2.1)

where r is return, τ is a time lag, T is a number of observations and r̄ = 1
T

∑T
1 rt

is an average value of returns.

2.1.2 Autocorrelation of absolute returns

Absolute returns (possibly of higher powers than 1) exhibit significant posi-
tive autocorrelation as a result of volatility clustering. This phenomenon was
first described by Mandelbrot [1963] as “large changes tend to be followed by
large changes – of either sign – and small changes tend to be followed by small
changes.” To quantify persistence in volatility, we use autocorrelation of absolute
returns

ρAbs(τ) =

∑T−τ
t=1 (|rt| − |r̄|)(|rt+τ | − |r̄|)∑T

t=1(|rt| − |r̄|)2
(2.2)

where variables correspond to those of Equation 2.1. Various higher powers
of absolute returns are often used, but we will employ simple absolute return
of power 1 as these should be relatively more predictable (Granger and Ding,
1994).

It has been found by number of works (e.g. Harvey, 2002, Muller et al., 1990)
that decay in autocorrelation of absolute returns can be fitted with a power-law
decay

ρAbs(τ) v
A

τα
(2.3)

with exponent α ranging from 0.2 to 0.4 (Cont, 2001) or 0.1 to 0.4 (Chakraborti
et al., 2011 ). The exponent captures a long-range dependence and the low
values might thus indicate a slow decay in volatility.

Short-range correlation, on the other hand, decays exponentially (Meyers,
2009) and ACF function with autoregressive process should thus decay with

ρAbs(τ) v
B

eτβ
. (2.4)
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2.1.3 Heteroscedasticity of returns

To further capture dependence in volatility we employ the General Autore-
gressive Conditionally Heteroscedasticity (GARCH) model by Bollerslev [1986].
This tool accommodates stylized facts such as leptokurtic distribution and per-
sistence of volatility.

If the return process rt has zero mean and no trend, it can be modeled as:

rt = et
√
ht

where et is a white noise with N(0,1) and ht = Var(εt|Ft−1) is conditional
variance dependent on information set Ft−1. We use GARCH (1,1), under
which the variance is given by

ht = γ0 + γ1r
2
t−1 + δ1ht−1

where γ0, γ1, and δ1 are parameters that satisfy γ0 > 0; γ1 ≥ 0; δ1 ≥ 0 and
γ1 + δ1 < 1.

Parameter γ1 is a measure of an extent to which current shock feeds into
the next period (Campbell et al., 1997). Its values typically vary between 0.05
for stable market and 0.1 for volatile market (Alexander, 2008). Persistence
parameter δ1 usually ranges between 0.85 and 0.98 and, in combination with
γ1, measures how fast the shock dies out. If our restriction γ1 + δ1 < 1 did
not hold, the volatility would be persistent and the series of r2

t non-stationary
(Chan, 2011).

2.1.4 ARFIMA model parameters

To further examine dependence in a way that is easy to compare across many
time series, we determine some parameters of Autoregressive fractionally inte-
grated moving average (ARFIMA) model for both absolute and normal returns.
To capture a short-range dependence we estimate a first-order autocorrelation,
i.e. a simple AR(1) model

rt = φrt−1 + εt

where φ is estimated parameter and εt is a white noise series.
The long-range dependence will be examined via estimating fractional inte-

gration parameter d of ARFIMA model using a local Whittle estimator. This
semi-parametric maximum likelihood estimator focuses on only a part of a se-
ries’ spectrum near the origin. This means that only low frequencies are taken
into consideration which makes the estimator resistant to short-term memory
bias (Kristoufek and Vosvrda, 2014). To estimate the spectrum of series {rt},
we use a periodogram defined as

I(λj) =
1

T

T∑
t=1

exp(−2πitλj) rt

where λj = 2πj
T are Furrier frequencies with j = 1, 2, . . . ,m. Parameter m

reduces the number of considered frequencies and must satisfy m ≤ T
2 ; in this
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work, we use m = 0.2T . The local Whittle estimator is defined according to
Shao and Wu [2007] as a minimizer of local objective function R(d), i.e.

d̂ = arg min
−0.5<d<∞

R(d)

with

R(d) = log

 1

m

m∑
j=1

λ2d
j I(λj)

− 2d

m

m∑
j=1

log λj .

Fractional integration parameter d can take real values ranging from −0.5 to
infinity. When − 1

2 < d < 0, the ARFIMA (0, d, 0) process has a short memory
and is antipersistent, i.e. it reverses itself more often than a random series
would. For d = 0 the process is a white noise and thus is mean-reverting in a
short time and shock effects diminish quickly. When 0 < d < 1

2 , the process
is stationary with long memory. Border values d = ± 1

2 as well as d > 1
2 are

also possible but are of marginal interest here. For further information on the
parameter, see Hosking [1981].

2.2 Distribution of returns
Given the stochasticity of returns, it is quite natural to assume that aggregate re-
turns obey the Central Limit Law. Mandelbrot [1963] has shown, however, that
normal distribution fits financial data rather poorly. Though only marginally
correlated, asset returns are not independent and identically distributed stochas-
tic processes. Independence implies that any nonlinear transformation of returns
should not exhibit autocorrelation either (Cont, 2001). This property, however,
is violated by absolute or squared returns.

2.2.1 Heavy tails and peakedness

Compared to normal distribution, the empirical ones have more probability mass
in their center and tails. Fluctuations in empirical series are thus predominantly
smaller than under normal distribution, though with higher occurrence of ex-
treme events. For instance, an event exceeding the sample standard deviation
fivefold would be a rare phenomenon in Gaussian market but can be observed
regularly in the real data. Tail weight and peakedness (width of peak) is mea-
sured by kurtosis - the standardized fourth moment. Throughout this work, we
will use excess kurtosis defined as

κ =
1

N

N∑
t=1

(
rt − r̄
σ

)4

− 3 (2.5)

where r̄ is the mean value of returns and σ the standard deviation of the sample.
For normal distribution κ = 0, while for empirical data it virtually always holds
that κ > 0, i.e. the distribution is leptokurtic or fat-tailed. The tails tend to
lose some but not all of its heaviness even after correcting returns for volatility
clustering (e.g. by GARCH family models).
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2.2.2 Asymmetry of distribution

Distribution of financial data is often found to be asymmetric. Because of
positive trend in data, normal every-day returns tend to be positive which shifts
the distribution’s peak to the right. Mainly due to leverage effect (Bouchaud
and Potters, 2001), reaction to negative price movement is found to be stronger
than to positive one and large negative changes are more likely to occur. This
results in relatively more mass under the left tail of the distribution. Both
of these effects account for negative skewness which is the third standardized
moment

γ =
1

N

N∑
t=1

(
rt − r̄
σ

)3

. (2.6)

2.2.3 Aggregate normality

It has been shown by Kullmann et al. [1999] that as one increases the time
scale ∆t of returns the heavy tails and sharp peak become less pronounced. For
very large scales (e.g. a month) the distribution of returns closely resembles
the normal distribution (Chakraborti et al., 2011). The change of distribution
with ∆t suggests that the underlying structure of prices must be of non-trivial
nature

3 Analysis of financial series
To assess how Bornholdt’s model mimics stylized facts, we analyze three finan-
cial series of different types. S&P 500 is chosen to represent stock market since
it covers large portion of U.S. market and is very diverse in constituency. Ex-
change rates will be represented by British Pound Sterling per U.S. Dollar rate
for which long data series are available, as opposed to for example Euro rates.
Finally, gold is chosen to represents commodities since it should by highly liq-
uid as a consequence of being used as an investment vehicle for hedging against
inflation (Narayan et al., 2010).

3.1 S&P 500
S&P 500 is a market-capitalization weighted index of 500 stocks listed on the
American Stock Exchange (AMEX), New York Stock Exchange (NYSE) and
National Association of Security Dealers Automated Quotation system (NAS-
DAQ). The index is updated with every new recorded transaction in any of the
500 underlying stocks. Although the index is only updated every 15 seconds
and thus might not entirely capture a microstructure noise, at a scale of days it
can be considered extremely liquid (Huang et al., 2007). This, combined with
the fact that it covers about 75% of American equity market, makes it a popular
choice for financial researches.
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Figure 3.1: S&P 500: Daily closing prices and standardized returns from Jan-
uary 4, 1950 to July 8, 2014

We use daily data obtained from Wolfram Mathematica database1 that span
from January 4, 1950 to July 8, 2014 counting 16232 observations in total. Fig-
ure 3.1a shows price development over the period which clearly reflects all major
events that took place on financial markets. Following a steep rise during the
dot-com bubble period in the late 1990s, the prices plummeted at an unprece-
dented pace. Subsequent recovery ends in an even more spectacular crash of
the 2008 crisis followed by a steady increase until recent days.

3.1.1 Distribution of returns

Standardized log returns in Figure 3.1b, with obvious volatility clusters and
occasional spikes of 5σ to 10σ (standard deviations), likely deviate from the
normal distribution. In our analysis of distribution, we will firstly focus on
“usual” returns of lag 1 and subsequently examine whether the statistics change
with increasing lag.

Table (3.1) presents several descriptive statistics of the series along with
result of Jarque-Bera test (Jarque and Bera, 1980). It reveals that returns
are strongly leptokurtic and skewed2 to the left. This means that compared
to normal distribution, the empirical distribution has more mass around the
central part and fatter tails. The middle peak is inclined to the right and the
left tail is heavier than the right one. The peakedness is well observable in a
plot of empirical probability density function (PDF) based on a smooth kernel
density estimate (Figure 3.2), while the fat tails are well illustrated by a quantile
plot (Figure 3.3). In practical financial terms, usual everyday returns tend to
be positive but extreme losses are more likely than extreme gains. As expected,

1Wolfram uses finance.yahoo.com and Xignite as their main financial data sources.
2There is no definitive threshold value regarding skewness but as a general rule of thumb,

skewness of absolute value greater than 1 means a substantially asymmetric distribution.
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Lag Mean St. D. Min. Max. Skew. Kurt. JBT (p-val.) N
1 0.000 0.010 -23.55 11.22 -1.03 27.72 522867.5 (0.00) 16231
4 0.001 0.019 -8.37 6.43 -0.47 5.13 4615.1 (0.00) 4057
8 0.002 0.027 -7.27 5.54 -0.51 3.83 1337.4 (0.00) 2028
16 0.005 0.037 -8.68 3.19 -1.14 6.48 2024.8 (0.00) 1014
64 0.019 0.073 -4.22 2.51 -0.69 1.91 62.2 (0.00) 253
128 0.037 0.104 -3.46 2.10 -0.49 0.57 7.6 (0.04) 126

Table 3.1: Descriptive statistics and Jarque-Bera test results for S&P 500 re-
turns at different lags
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Figure 3.2: S&P 500: Empirical distribution of returns for different values of
lag. Normal distribution (dashed line) is added for comparison
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Figure 3.3: S&P 500: Quantile plot return distribution for two different values
of lag
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Figure 3.4: S&P 500: Autocorrelation function of daily returns

Jarque-Bera (JB) test strongly rejects its null hypothesis of normality of the
data.3

We will now see whether the empirical distribution does approach normal
with increasing lags or not. Table 3.1 shows that while there is no clear down-
ward trend in skewness, the kurtosis rapidly decreases with lag. The change in
peakedness is again well noticeable in Figure 3.2 whilst Figure 3.3 shows at lag
16 tails very much alike those of normal distribution. This is reflected also in
lower scores of JB test even though its null is rejected in all cases on at least 5%
significance level. Nonetheless, our data seem to support aggregate normality,
though only at a scale of several months.

3.1.2 Dependence in returns

To assess autocorrelation of returns, we run a Ljung-Box test and examine an
autocorrelation function. With a test statistic of 56.4, the Ljung-Box rejects
its null at any reasonable level of significance. The ACF along with a 95%
confidence interval band is plotted in Figure 3.4. It is marginally significant
especially in the region of the first 40 lags. A fairly low yet highly significant
AR(1) parameter φ = 0.028 indicating a weak autoregressive process. Local
Whittle estimate of fractional integration parameter is d = −0.019, indicating
no long-range dependence or weak antipersistence in the series.

3.1.3 Dependence in absolute returns

Autocorrelation function of absolute returns (Figure 3.5) reveals a correlation
that remains fairly high and positive throughout the whole studied region of the
first 120 lags. This indicates presence of memory in the process, i.e. current

3To be more precise, JB tests null is a joint hypothesis of the skewness and excess kurtosis
both being zero.
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Figure 3.5: S&P 500: Log-normal plot of autocorrelation function of absolute
returns with power and exponential functions fitted

value of volatility is largely dependent on the past values and volatility clusters
are likely to form. A very gentle decline of the ACF at high τ could hint at
presence of a long-range dependence in the process.

Furthermore, Figure 3.5 features fitted exponential and power-law functions.
Since the power law is supposed to fit the ACF only asymptotically, values
for τ < 40 were omitted in the estimation. The estimated parameters are
A = 0.186, α = 0.127 and B = 0.241, β = 0.009 for power-law and exponential
functions, respectively. As expected, exponential function seems to approximate
the ACF better for lower values of τ , until around τ = 90. For higher τ the
power-law function fits more accurately. Neither of the functions provides a
particularly good fit overall, however.

First-order autocorrelation parameter of 0.254 is highly significant and con-
firms an autoregressive process in the series. Local Whittle estimate of fractional
integration parameter d = 0.269 indicates presence of long-range dependence.

Parameters of GARCH model, γ1 = 0.088 and δ1 = 0.867, are both highly
significant and indicate that the series is rather volatile. Nevertheless, both are
well within range of values usually observed in finance.

3.2 British Pound Sterling per U.S. Dollar exchange rate
For analysis of GBP/USD exchange rate we use daily data obtained from Quan-
dle database that span from January 1, 1990 to July 8, 2014 with 6396 obser-
vations in total. Figure 3.6a shows the development of value of 1 U.S. Dollar in
UK Pound Sterlings over the said period, with two occurrences of GBP abrupt
depreciation standing out. First is a Black Wednesday on which George Soros
famously earned about 1 billion GBP by shorting the currency. This event forced
British government to withdraw from European Exchange Rate Mechanism; it
was not until a decade later that the rate reached its pre-Black Wednesday val-
ues. Another dent in the value of GBP followed the 2008 financial crisis with
currency’s depreciation reaching one of the highest rates to-date. An all-time
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Figure 3.6: GBP/USD: Daily closing prices and standardized returns from Jan-
uary 1, 1990 to July 8, 2014

Lag Mean St. D. Min. Max. Skew. Kurt. JBT (p-val.) N
1 0.000 0.004 -7.39 9.15 -0.47 5.12 7252.1 (0.00) 6396
4 0.000 0.011 -4.44 7.00 -0.61 4.03 1190.3 (0.00) 1599
8 0.000 0.016 -3.07 6.14 -0.64 2.67 298.6 (0.00) 799
16 0.000 0.024 -3.46 5.44 -0.95 3.40 262.4 (0.00) 399
64 0.001 0.051 -1.76 4.65 -1.63 6.13 230.5 (0.00) 99
128 0.000 0.071 -1.87 3.49 -0.99 2.24 24.1 (0.01) 49

Table 3.2: Descriptive statistics and Jarque-Bera test results for GBP/USD
exchange rate returns at different lags

low exchange rate with U.S. Dollar occurred on January 23, 2009 at $0.72 per
₤1.

3.2.1 Distribution of returns

Standardized log returns in Figure 3.6b again exhibit clear volatility clusters
that are, however, lower in number than in the case of S&P 500. Spikes of
extreme values rarely exceed 5σ and while these would be very unlikely to occur
under normal distribution, the series is again very moderate compared to the
market index. As in previous case, we will begin with analysis of returns of lag
1 and subsequently examine whether the statistics change with its higher value.

Table (3.2) presents descriptive statistics and Jarque-Bera test results of the
series. Returns are leptokurtic and skewed to the left. The histogram in Figure
3.7 shows that the empirical distribution has higher peak with no apparent
inclination and only the left tail is clearly heavier than the ones of normal
distribution. Quantile plot in Figure 3.8 reveals that even right tail is heavier
but not as much as the opposite one. Because of the lack of peak inclination,
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Figure 3.7: GBP/USD: Empirical distribution of returns for different values of
lag. Normal distribution (dashed line) is added for comparison
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Figure 3.9: GBP/USD: Autocorrelation function of daily returns

the left skewness seems to come predominantly from the left tail being fatter
than the right one. The normality of the data overall is strongly rejected by
Jarque-Bera test.

The distribution characteristics of the exchange rate returns resemble those
of S&P 500, albeit the non-normality is slightly less pronounced. The peaked-
ness and heaviness of the tails reflect high occurrence of average low returns
with real possibility of extreme events which is quite in line with expectations.
Heavier left tail suggesting higher probability of extreme negative losses, is how-
ever far from natural. In case of asset returns, higher probability of negative
extreme events can be explained by the leverage effect (Bouchaud and Potters,
2001). But due to positive return on GBP/USD rate being negative on the
inverse rate, a more or less symmetrical distribution could be expected. What
we observe means that traders with a long position in Pound can expect some
extreme gains more often than extreme losses.

As we increase the lag of returns, the series approaches normality as shown
by decreasing JB test scores in Table 3.2. The score is driven down mainly by
decreasing kurtosis as there is not a clear downward trend in skewness. Figure
3.7 shows a clear difference between peakedness at lag 1 and at higher lags
but hardly any among higher lags as a group. Despite approaching normal
distribution at a scale of months, the series still bears some distinct features of
financial data.

3.2.2 Dependence in returns

With a test statistic of 1401 (25 times higher than in the case of S&P 500), the
Ljung-Box strongly rejects its null of no autocorrelation. The ACF along with a
95% confidence interval band is plotted in Figure 3.9. Some marginally signifi-
cant lags in the whole plotted region resemble ACF of the S&P 500. What differs
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Figure 3.10: GBP/USD: Log-normal plot of autocorrelation function of absolute
returns with power and exponential functions fitted

and truly stands out, however, is an extremely significant value at the first lag.
This is reflected by fairly high and significant AR(1) parameter φ = 0.463. Lo-
cal Whittle estimate of fractional integration parameter is d = 0.061, indicating
a possibility of weak long-range correlation even in the series of returns.

3.2.3 Dependence in absolute returns

Autocorrelation function of absolute returns (Figure 3.10) again shows a high
correlation at the first lag and slow linear decrease on a log-normal scale. This
indicates that current value of volatility is dependent on a few previous val-
ues and does not provide a hint of long-range dependence. Due to linear de-
cline in autocorrelation throughout the plotted range, the exponential function
provides a very good fit as opposed to power-law function, which again indi-
cates that short-range process dominates here. The estimated parameters are
A = 0.160, α = 0.138 and B = 0.177, β = 0.008 for power-law and exponential
functions, respectively.

Parameter of AR(1) at φ = 0.349 is significant and fairly high and confirms
presence of autoregressive process in the series. Although fractional integration
parameter d = 0.200 provides evidence for some long-range dependence, it is
weaker than in case of S&P’s absolute returns.

Low persistence is also shown by GARCH model parameters, γ1 = 0.300
and δ1 = 0.112, that are far from usual values. Volatility feeds strongly from
one period to the next one as already indicated by high AR parameter φ and
first lag of ACF. Conversely, low δ1 confirms that long-range persistence is very
weak.

3.3 Gold
We analyze daily data of prices of gold obtained from Quandl database spanning
from January 4, 1968 to July 7, 2014 with 11701 observations in total. Figure
3.11a shows closing prices and logarithmic returns over the period.
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Figure 3.11: Gold: Daily closing prices and standardized returns from January
4, 1968 to July 8, 2014

Lag Mean St. D. Min. Max. Skew. Kurt. JBT (p-val.) N
1 0.000 0.013 -9.69 12.44 -0.07 13.29 86301.7 (0.00) 11701
4 -0.001 0.026 -8.32 7.69 -0.37 11.35 15845.0 (0.00) 2925
8 -0.002 0.035 -7.12 6.43 -0.41 7.81 3796.4 (0.00) 1462
16 -0.005 0.051 -7.48 5.14 -0.83 6.98 1604.4 (0.00) 731
64 -0.019 0.112 -4.98 2.96 -0.87 3.79 144.1 (0.00) 182
128 -0.038 0.163 -4.84 1.99 -1.8 6.53 246.8 (0.00) 91

Table 3.3: Descriptive statistics and Jarque-Bera test results for gold returns at
different lags

3.3.1 Distribution of returns

Standardized log returns in Figure 3.11b show number of clusters and a large
number of spikes often higher than 5σ with some exceeding 10σ. Table 3.3
presents descriptive statistics and Jarque-Bera test results of the series. Returns
are leptokurtic with κ = 13.2 being between the values of the exchange rate and
S&P 500. High peakedness with hardly any skew is well observable in histogram
(Figure 3.12) while quantile plot (Figure 3.13) reveals heavy, yet symmetric tails.

JB test score’s decrease in higher lags can be again primarily attributed to
lowering kurtosis as the trend in skewness is quite the opposite.

3.3.2 Dependence in returns

Ljung-Box test again strongly rejects its null but the score of 34.3 indicates that
autocorrelation is not as strong as in previous cases. The ACF in Figure 3.14
shows some marginally significant lags in the whole plotted region. Negative first
lag of ACF and AR parameter φ = −0.039 both indicate negative correlation
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Figure 3.12: Gold: Empirical distribution of returns for different values of lag.
Normal distribution (dashed line) is added for comparison.
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Figure 3.13: Gold: Quantile plot return distribution for two different values of
lag
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Figure 3.14: Gold: Autocorrelation function of daily returns
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Figure 3.15: Gold: Log-normal plot of autocorrelation function of absolute
returns with power and exponential functions fitted

in the series. Fractional integration parameter is d = 0.014, indicating that
long-range dependence is very weak, if present at all.

3.3.3 Dependence in absolute returns

Autocorrelation function of absolute returns in Figure 3.15 shows a steep de-
crease within the first 20 or 30 lags with flatter decrease thereafter. The
autoregressive process can thus be strong yet limited to first few lags whilst
at higher lags a long-range persistence prevails. A poor fit of exponential
function (A = 0.187, α = 0.065 ) and a very well fitting power-law function
(B = 0.242, β = 0.006 ) support this.

A significant parameter of AR(1) at φ = 0.3495 and fractional integration
parameter d = 0.312 confirm presence of autoregressive process and strong long-
range dependence, respectively.

GARCH model parameters, γ1 = 0.173 and δ1 = 0.753, indicate above all
a strong feed in volatility from last value to the current. This is in line with
unusually high number of spikes in return series

4 Model overview
In this work, we primarily focus on model of Bornholdt [2001] and it’s ability to
mimic behavior of financial series that we examined above. Bornholdt’s model is
based on a physical model of ferromagnetism first described in Ising [1925]. We
first briefly introduce econophysics in general to show that looking for parallels
between economics and physics is a meaningful effort that has a long history.
We then define the physical model, describe the phenomena that it mimics,
examine the dynamics using simulated data and show how the model workings
transcend into the study of financial markets.

This will bring us to Bornholdt’s model itself. While defining the model we
will look into the behavioral patterns that it is based on and will try to assess
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whether they primarily reflect human nature or rather help achieve desired
behavior of the model.

Most of the works on this and related topics limit themselves to definition of
a model and presentation of resulting series. This makes understanding of inner
dynamics of the model very difficult, especially for those without a background
statistical mechanics or similar fields. Throughout this and subsequent section
we will try to provide detailed description of model’s components and their effect
on model’s dynamics.

4.1 A brief primer on econophysics
Econophysics is a very young discipline. Even though the first attempts to
examine parallels between statistical laws in physics and social sciences can be
traced as far as early 1940’s, it was not until 1990’s (Chakraborti et al., 2011)
that the effort became truly systematic. With immense computational power
at hand, physicists started to examine one of the largest records of human
activity - financial time series. According to Roehner [2002], the first article
on financial series analysis that was published in physics journal was Mantegna
[1991] and the first conference on the topic was held six years later. Ever since,
the number of articles has grown rapidly with most physics journals publishing
works on finance on a regular basis.

Still, almost two decades after the term “Econophysics” was first used by H.
E. Stanley only few economists have heard of it and even fewer of the concepts
that it comprises. Most of those who have would probably doubt that physical
theories developed to describe world in terms of particles can be applied to study
complex man-made systems such as financial markets.

One can object that physical models provide precise description and pre-
diction of physical phenomena based on a few simple universal properties. As
such, these models seem unable to grasp the unpredictable nature of man. It
is possible, though, that there are a few simple properties that can be univer-
sally attributed to human beings and that under certain conditions infer more
complex patterns.

The branch of physics that is typically used to study social phenomena is
called statistical mechanics and it “aims to predict and explain the measurable
properties of macroscopic systems on the basis of the properties and behavior of
the microscopic constituents of those systems.”4

We can take the Brownian motion as an example. It is possible to set up a
simple stochastic model of ideal balls that are initially assigned some random
motion vectors and then let to bounce off each other. Even if we disregard some
properties of real particles (e.g. friction or elasticity) we obtain a model that
on macroscopic level exhibits most empirically observed properties.5

4Encyclopædia Britannica. Retrieved September 11. 2013. from britannica.com
5Despite having an important role in finance, Brownian motion is still primarily perceived

as physical model of motion of particles. Interestingly, when the concept was first proposed,
the Paris Bourse price fluctuations were used to demonstrate its properties (Bachelier [1900],
Chakraborti et al. [2011]).
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Similarly, we can construct a stochastic model with a large number of traders
that follow a few simple rules and subsequently observe complex phenomena
at macroscopic level. The question of crucial importance is, however, what
level of microscopic detail we have to maintain to still infer desired macroscopic
patterns.

Due to econophysics being still such a young discipline, it provides a great
opportunity for original research. There are also certain drawbacks, however.
Most importantly, some authors argue that the universal principles that should
apply to both natural and financial phenomena often result from lack of rigor
in statistical analysis.

4.2 Ising model of ferromagnet
Ising model was first described by Ernst Ising in his doctoral thesis (Ising, 1925).
This work primarily focuses on a solution of one-dimensional version which,
however, lacks most of the properties we are interested in. The dynamics of
two-dimensional version which is typically used today was analytically solved
almost two decades later by Onsager [1944]. Before we define the model and
describe its dynamics, let us briefly review real-world (physical) phenomena that
it attempts to mimic.

4.2.1 Magnetism, ferromagnetism, paramagnetism

Following paragraphs are based on Hook and Hall [2013] and Guinier et al.
[1989].

Magnetism origins from electric current and fundamental magnetic moments
of elementary particles also called spins. If we disregard the current induced
magnetism, we can study magnetism of materials as a sum of their spins. Never-
theless, this is far from trivial as values of the spins are not necessarily aligned.
Depending on material, they can order themselves through a variety of mecha-
nisms but we will only consider the two most typical ones - ferromagnetism and
paramagnetism.

Through ferromagnetism, permanent magnets are formed by certain mate-
rials such as iron. The spins align themselves with each other, thus generating
a significant total magnetic field. Under paramagnetism, however, order is not
self-organized but only takes place if external magnetic field is applied. In ev-
eryday terms, ferromagnet is what we usually call magnet while paramagnet
could be a piece of iron that is not magnetic by itself but becomes magnetic if
attached to a magnet.

Interestingly, ferromagnetism is not innate to a material but is subject to
material’s temperature. It is only present when the temperature is below cer-
tain value called critical or Curie temperature (TC). Above this point, high
energy leads to fundamental particles becoming magnetically disorganized and
the material becoming paramagnetic.
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Figure 4.1: Heat-bath dynamics

4.2.2 Model definition

The two-dimensional Ising model of ferromagnet is constructed as a lattice of
atoms which act as simple magnets (or spins) and can interact with each other.
The lattice is of dimensions k × k where each node constitutes a spin. We
denote Si(t) the spin value of i-th position at time t, where i ∈ (1, . . . , k2) and
t ∈ (1, . . . , T ). The force exerted on spin Si(t) is given by its local field

hi(t) =
∑
<i,j>

JijSj(t) (4.1)

where
∑
<i,j> denotes6 a sum over the set of agent i’s neighbors. Jij is a measure

of neighboring spin Sj(t)’s influence on spin Si(t). Typically, neighbors of Si(t)
are the four spins adjacent from each side but other configurations are also
possible. The actual spin value is updated according to heat-bath dynamics. In
physics, Boltzman distribution or Metropolis algorithm are often used, but for
our purposes a heat-bath dynamics used by Bornholdt [2001] is fully sufficient.
The spin value is defined as

Si(t+ 1) = +1with probability p =
1

1 + exp (−2βhi(t))

Si(t+ 1) = −1with probability 1− p
(4.2)

and is in effect a probability density function over hi(t). Figure 4.1 shows
shapes of the function for different values of β = 1

T . This parameter is called
inverse temperature and is of crucial importance since it controls responsiveness

6The names and notation of variables are not that used by Ising [1925]. Instead, in all
Ising-type models throughout this work we follow a notation of Bornholdt [2001]. This is so
because Bornholdt’s model is a cornerstone of our further analysis and with common notation,
parallels between models will be easier to comprehend.
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of the probability of spin value Si(t) to local field hi(t). Because the tem-
perature enters the model via β, it determines whether general regime of the
system is paramagnetic or ferromagnetic. For under-critical β < βC = 1

TC
(i.e.

over-critical T > TC), the model behaves erratically as paramagnet while for
over-critical β > βC = 1

TC
(i.e. under-critical T < TC) it behaves as a ferromag-

net and converges to stable state over time. For two-dimensional Ising model,
Kramers and Wannier [1941] analytically found the critical temperature to be
Tc = 2

ln(1+
√

2)
≈ 2.269 which translates to βC = 1

Tc
≈ 0.441. For the sake of

clarity, we will further refer to under- and over-critical values solely in terms
of β and not T . For instance, some simulations at high temperature yielding
paramagnetic behavior will be referred to as under-critical since β < βC .

In physics, Ising model can be used to study a wide variety of problems
including movement of gas molecules or even neuron activity. Number of prop-
erties, that can be studied within each problem, is large as well but most often
the model is used to study dynamics of a convergence to stable state. We will
define a stable state as a state of no or little change in total magnetisation which
is defined as

M =
1

k2

k2∑
i=1

Si (4.3)

whereM(t) ∈ [−1, 1]. WhenM(t) = 0 there is the same amount of positive and
negative spins and their individual magnetisations cancel each other out. This
typically happens as a result of disorganization, which does not necessarily hold
true for other (economic) versions. Conversely, whenM(t) is close to either side
of the interval, the system is highly ordered with spins forming large blocks of
identical magnetisation.

4.2.3 Model dynamics

As mentioned above, the model has two main regimes: disordered paramagnetic
when β < βC = 1

TC
and ordered paramagnetic when β > βC = 1

TC
.

The paramagnetic regime comes as a result of relatively flat heat-bath dy-
namics function as shown in Figure 4.1. The probability of spin value Si(t)
depends only weakly on the local field hi(t) which carries the information of
neighboring spins. Local interactions therefore lose their influence with decreas-
ing β. For β → 0 (note that this implies infinite temperature T ) the probability
of each state of Si(t) is the same regardless of hi(t), thus making the spin value
random. This is illustrated by Figure 4.2 that presents results of Ising model
simulation at under-critical β = 0.3. Even though some short-range spatial or-
der is present, neither of the spin values dominates at any time and the system
fluctuates around M(t) = 0.

Ferromagnetic regime starts to dominate as β grows beyond βC . Changes
in the local field can now influence probability of a spin value and local inter-
action thus becomes stronger. This leads to formation of large clusters of the
same spins. One of the clusters eventually dominates over the other, system
becomes ordered and total magnetisation reaches border-value (|M(t)| → 1).
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(a) Magnetisation. Vertical grid-lines represent time instances of snap-shots.

(b) Lattice state at
t = 1850

(c) Lattice state at
t = 3800

(d) Lattice state at
t = 6100

(e) Lattice state at
t = 7500

Figure 4.2: Underlying dynamics of Ising model at under-critical β. Four snap-
shots of lattice state at different times are shown. Spin values Si(t) = 1 and
Si(t) = −1 are represented by black and white, respectively.

This is illustrated by Figure 4.3 that presents results of Ising model simulation
at over-critical β = 0.5. From an initial state of randomized lattice (not shown),
the system develops evident clusters of the same spins (Figure 4.3b). In this
particular simulation, negative spins dominate and the cluster of positive val-
ues gradually diminishes (Figures 4.3c,d). The model eventually converges to a
stable state atM(t) = −1 where only local and short-lasting clusters of positive
spins occur (Figure 4.3e). Note that convergence to M(t) = 1 is just as likely
and its dynamics are identical.

4.3 Economic interpretation of Ising model
The construct can be converted into economic terms - the whole lattice k × k
can be interpreted as a market, individual spins Si(t) as traders (or agents) who
can either buy (Si(t) = 1) or sell (Si(t) = −1) some asset. The local field in
Equation 4.1 forces agent to adjust their value to their neighbors’ thus inducing
herding behavior. Local fields of most financial versions contain other terms
that often have opposite impact than the basic Ising term and are designed to
simulate other behavioral patterns than herding and, as we shall see, to prevent
model from convergence.

Total magnetisation of the system can be interpreted as a deviation of market
price p(t) from fundamental price p∗(t) or simply as a price p(t) itself (if we
assume p∗(t) = 0, ∀t and allow for p(t) < 0).
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(a) Magnetisation. Vertical grid-lines represent time instances of snap-shots.

(b) Lattice state at
t = 200

(c) Lattice state at
t = 600

(d) Lattice state at
t = 1300

(e) Lattice state at
t = 2500

Figure 4.3: Underlying dynamics of Ising model at over-critical β. Four snap-
shots of lattice state at different times are shown. Spin values Si(t) = 1 and
Si(t) = −1 are represented by black and white, respectively.

When the size of buyer and seller groups is equal and M(t) = 0, the market
is in its equilibrium. However, if large areas of the lattice become identically
magnetised and |M(t)| → 1, there is a speculative bubble on the market.

Variable of interest from economic perspective is predominantly return r(t)
which is derived from total magnetisation of the system (Equation 4.3). Given
that M(t) will take negative values just as likely as positive, the returns of such
a series is calculated as

r(t)∆ = M(t)−M(t−∆) (4.4)

where ∆ is a value of lag. Kaizoji et al. [2002] demonstrate that this is, under
certain assumptions, equivalent to a logarithmic return of financial series. For
details, see Section 4.4.2.

4.4 Bornholdt’s model
For our research we opted for a version of the model as defined by Bornholdt
[2001] for which we have two main reasons:

Firstly, Bornholdt’s model is relatively similar to the physical 2D Ising. For
certain parameter values (α = 0 in Equation 4.6) these two models are equiv-
alent. We can therefore test to what extent some basic characteristics of the
physical model are carried over to our model. For instance, we will be interested
in the effect of critical temperature for α > 0.

Secondly, the simplicity of the model allows for analytical tractability that
is far from common in complex agent simulations. With only two tunable pa-
rameters, we can run simulations over relatively exhaustive set of parameter
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combinations. We can then assess whether the model requires fine-tuning or
generates acceptable results over a wide range of parameter values. This is
important as necessity of fine tuning indicates low general applicability to real
phenomena. Even though this does not render a concept wrong, it is a sign that
its explanatory power is limited (de Carlos and Casas, 1993). If similarity be-
tween generated and real-world data is obtained in the large, we can then assess
how certain statistics change with respective parameters and what parameter
combination yields results most alike to financial time series.

In the following paragraphs we first present and discuss original paper Born-
holdt [2001] and then subsequent paper Kaizoji et al. [2002] that provides a
different derivation of simplified version of Bornholdt’s model. While the for-
mer work is crucially important for understanding of the subsequent sections,
the later is not.

For the sake of clarity, other literature not directly related to Bornholdt’s
model is omitted this section. To provide context and comparison, and to show
possibilities of Ising-based models, review of three other works can be found in
Section A.1 of Appendix.

4.4.1 Model definition

Bornholdt [2001] proposes a relatively simple model that is much alike to the
physical Ising model. It works with k×k square lattice of k2 spins with orienta-
tions Si(t) = ±1. The value of a spin depends on a local field hi and is updated
with a heat-bath dynamics as we defined it in Ising model:

Si(t+ 1) = +1with probability p =
1

1 + exp (−2βhi(t))

Si(t+ 1) = −1with probability 1− p
. (4.5)

The local field hi is different in that it has a second term added. It is specified
as

hi(t) =
∑
<i,j>

JijSj(t)− αCi(t)M(t). (4.6)

The first term (which comes from the original Ising model) induces ferromag-
netic order (herding behavior, in economic interpretation) by aligning agent i
with its neighbors. The second term represents a global coupling to the system
magnetisation where α is coupling constant. Ci = ±1 is the strategy spin of
agent i and M(t) = 1

k2

∑k2

i=1 Si(t) is the total magnetisation.
The value and dynamics of Ci greatly influences the dynamics of the whole

system. Ci = −1 induces ferromagnetic order and aligns the agents with the
total magnetisation. Agents with such strategy are called chartists and tend
to follow a trend given by a sign of M(t). In contrast, agents with Ci = 1 or
fundamentalists tend to join the minority and thus oppose the sign of M(t).7

7This is a motivation similar to that found in a minority game (see Galla et al. [2006])
where agent tends to align with minority of the spins.
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Still, the first term of the equation introduces a certain level of ferromagnetic
noise trading even in case of fundamentalist.

Let us first assume that Ci(t) = 1, ∀i, t. The second term then induces an
anti-ferromagnetic coupling to the total magnetisation and if the second term
is not outweighed by the first then the global magnetisation is brought to a
near-vanishing point. For Ci(t) = −1, ∀i, t, the second term becomes a global
equivalent of the first term that induces local herding. In such case, either
positive or negative spin quickly dominates the whole system and |M(t)| → 1.

If we allow the agents to choose their strategy, the dynamics of the system
become non-trivial and interesting. Bornholdt [2001] defines a rule for strategy
spin change as

Ci(t+ 1) = −Ci(t) if αSi(t)Ci(t)M(t) < 0. (4.7)

Therefore, agent will always choose Ci(t) = 1 if he is in the majority and
Ci(t) = 1 if he is in the minority.8

To fully grasp the effect of this rule, let us imagine that all agents comply
with the rule before each round of trading (as we shall see later, this is not far
from reality and is the case in the simplified model). Then the second term of
local field (Equation 4.6) of all majority agents (who are Ci(t) = 1) has sign
opposite to that of total magnetisation and prompts them to swap. Inversely,
second term of minority agents’ (who are Ci(t) = −1) local field will have the
same sign as total magnetisation and and thus prompts them to swap as well.
Because M(t) is a part of the second term, the general tendency to swap will
grow stronger with M(t)’s deviation from zero. The further M(t) deviates the
more agents will tend to oppose it and the stronger will be their tendency to
oppose. Such behavior has above all a very practical implication for the model;
it eliminates inherent tendency of original Ising model to converge to either of
the border states.

Author provides a rationale behind this behavior: An agent in majority will
often switch in order to avoid loss resulting from future reversion of current
trend. This tendency grows stronger with absolute magnetisation as space for
further growth in current direction becomes smaller. Conversely an agent who is
in minority and possibly expects future returns, might become unsatisfied with
current returns the more so, the larger the majority group. As a consequence,
he also tends to switch at higher magnetisation.

While majority agent acts rationally, the minority agent clearly does not.
This does not render the model wrong; after all, bounded rationality is a frequent
subject of econophysical models. Still, we cannot help the feeling that avoiding
model’s convergence is the primary motivation of this rule, whilst the proposed
behavioral patterns are an ex-post rationalization.

8To illustrate, let us consider a chartist (Ci(t) = −1) buyer (Si(t) = 1) in a market
with positive total magnetisation (M(t) > 0). As a chartist in a majority, he does not
satisfy the rule. But because for positive α the expression αSi(t)Ci(t)M(t) is negative
(α × 1 × (−1) × 1 < 0), the agent will change his strategy (Ci(t + 1) = −Ci(t)) and comply
with the rule.
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If the assumptions we made for our illustration are stated explicitly as in-
stant strategy adjustment, the strategy spin drops out and we obtain following
simplified definition of local field:

hi(t) =

N∑
j=1

JijSj(t)− αSi(t) |M(t)| (4.8)

In this case, the second term always prompts an agent to change its spin
value and this tendency grows stronger with |M(t)|.

4.4.2 Kaizoji’s alternative derivation of simplified model

Kaizoji et al. [2002] focus on the simplified version of Bornholdt’s model and
significantly expand the derivation and the interpretation of parameters that is
rather brief in the original Bornholdt [2001] paper. Authors again define two
types of traders - fundamentalists and chartists (here called interacting traders).

The fundamentalists are assumed to know the fundamental price of a
stock p?(t). If the actual price p(t) drops below its fundamental price, the funda-
mentalist tends to buy the undervalued stock and vice versa. Fundamentalists’
buying/selling order is then defined as

xF (t) = am (ln p?(t)− ln p(t)) (4.9)

where a is a parameter denoting the strength of a reaction to price deviation and
m is a number of fundamentalists. Note that this definition of fundamentalists
has no apparent link to above-mentioned lattice model. We will see, however,
that the concept is important for derivation of price and volume parameters.

The chartists are organized in a lattice and represented by their invest-
ment attitude Si(t) as defined by Bornholdt [2001]. Si(t) changes according to
heat-bath dynamics shown in Equation 4.5.

We assume that chartists base their decisions upon two sources of infor-
mation - local and global. While local information depends on the actions of
close neighbors, global information depends on the total magnetisation M(t).
It is universally known, regardless of agent’s position within lattice and affil-
iation with buyers/sellers or minority/majority group. The difference in size
of majority and minority is measured by the absolute value of magnetisation
|M(t)|.

Let us now examine the profit-maximizing strategies of the chartist agents.
To gain profit an agent must be in majority group which, in addition, must
grow in size during the next trading period. The majority group cannot grow
indefinitely, however, and the larger is the absolute magnetisation |M(t)|, the
smaller is the space available for further expansion. In order to avoid capital
loss as a result of crash the chartists in the majority group tend to switch to
minority. A chartist in the minority also tends to switch groups, in this case in
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order to gain capital. Therefore, with increasing magnetisation the chartists in
the majority become more risk averse while those in minority become more risk
seeking. This behavior is reminiscent of that of Bornholdt, 2001 and also seems
to be a justification of a convenient mathematical rule, rather than a real-world
pattern to be reflected by the model.

These interactions are contained in Bornholdt’s simple version of local field
hi(t) as stated in Equation 4.8. The first term induces the imitation of close
neighbors and the second produces the increase in propensity to switch with
rising magnetisation.

It is further assumed that chartists’ excess demand is approximated by

xC(t) = b nM(t) (4.10)

where n is the number of chartists and b is a fixed amount of stock they are
able to trade in each trading period.

Derivation of price and volume It is assumed that price is adjusted by
a market maker to its market clearing price. We can write the balance of supply
and demand

xF (t) + xC(t) = am (ln p?(t)− ln p(t)) + b nM(t) = 0. (4.11)

Hence the price is

ln p(t) = ln p?(t) + λM(t), λ =
b n

am
(4.12)

and volume
V (t) = bn

1 + |M(t)|
2

. (4.13)

There are three possible situations at the market as follows from Equation 4.12:

• M(t) = 0: the market price is equal to the fundamental price.

• M(t) > 0: the market price is above the fundamental price (bull regime).

• M(t) < 0: the market price is bellow the fundamental price (bear regime).

Using again the Equation 4.12 the logarithmic return of a share is

ln p(t)− ln p(t− 1) = ln p?(t)− ln p?(t− 1) + λ (M(t)−M(t− 1)) . (4.14)

Most works, including Bornholdt [2001] and Kaizoji et al. [2002], use a con-
stant fundamental price p?(t) in which case only the last term of Equation 4.14
remains and the log-return thus depends solely on magnetisation
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5 Simulations of the model
This section presents results of simulations and subsequent analysis of sim-
ulated series. In all of our simulations, we run Bornholdt’s model (with or
without strategy spin) on a 32 × 32 lattice with 106 rounds. Because in each
round only one randomly chosen agent can act and only very limited change in
magnetisation can thus occur, state of the model is not reported for all calcu-
lated instances. Instead, variables are recorded after every 100 rounds to allow
for more complex patterns to emerge. This reflects real-world situation where
a number of transactions takes place during each time period. The simulated
series of total magnetisation M(t) therefore have observations at 104 time in-
stances t. Due to the fact that initially the lattice values are randomized and
as such are not determined by the system itself, we allow for a warm-up period
at t ∈ {1, . . . , 2000} and use only the remaining data further. As a result, we
report and analyze series consisting of 8000 observations.

We will define neighbors of agent Si as sites directly adjacent to Si both
vertically and horizontally. If Si is next to one of the borders of the lattice, spin
opposite to the given borderline segment will serve as a neighbor as illustrated
in Figure 5.1. This concept is called periodic boundary condition and helps to
approximate a very large system by relatively small lattice.

Figure 5.1: Periodic boundary conditions. Source: Dvorak [2012]

We will begin with description of dynamics of Bornholdt’s simplified model
because it well illustrates the top-level dynamics without a need to delve into
complex inner workings. The complex inner dynamics of model with strategy
will be described subsequently. We will then assess how well our models mimic
the real-world data. Firstly, one simulated series will be analyzed in detail in
manner similar to Section 3. Secondly, we will analyze multiple series simulated
for various combinations of model’s parameters to see how model’s behavior
changes with its parameters.

28



5.1 Inner dynamics of simplified model
Because of its relative simplicity we first simulate Bornholdt’s simplified model
(without a strategy spin), meaning that we use local field
hi(t) =

∑
<i,j> JijSj(t) − αSi(t) |M(t)|. We choose α = 10 and β = 1.5. Note

that β is above the critical value βC of the Ising model.
Figure 5.2a shows the development of key variables. On the top there is a

plot of total magnetisation M(t), followed by a plot of relative sizes of buyers
(Si(t) = 1) and sellers (Si(t) = −1). Returns r(t), shown in the third plot, do
not influence the system per se but we include them because they show different
levels of volatility more clearly than theM(t) series. Moreover, they are primary
subject in further analysis.

Figures 5.2b to 5.2e depict snapshots of the lattice at four different instances
t with pie-charts showing relative sizes of each group at those times. These
values of t are also indicated by four vertical grid lines in the plots above. In
the snapshots as well as in the plot of agent groups, red and blue color represent
buyer and seller, respectively.

The model has two basic modes - stable organized phase and intermittent
phase of high turbulence.

The stable phase occurs in the periods of M(t) ≈ 0, when the second term
of agent’s local field is negligible and thus the herding behavior induced by
the first term prevails (local ferromagnetic behavior). During the stable phase
neighbor interactions play a substantial role and agents organize themselves into
large clusters of identical spin. This is the case in snapshots 5.2b, e. Note how
separate areas of single color connect through the periodic boundary condition
and in fact form one continuous strip.

Then, observing the basic mechanism of physical Ising model, one of the
clusters dominates and the total magnetisation deviates from zero. The further
it deviates the higher is the tendency to change spin value (global antiferromag-
netic behavior) induced by the second term of agent’s local field. At some point
the antiferromagnetic tendency dominates and some agents change their spins
regardless of the neighbors (Figure 5.2c). This, in turn, decreases uniformity
within a cluster and further reduces the influence of the first term. These two
effects might eventually lead to a complete disintegration of the clusters and an
intermittent phase (such as one shown in Figure 5.2d) takes place. The behavior
at that time is highly erratic and large price changes occur until M(t) reaches
vicinity of 0 and stable agent clusters appear again. The most stable cluster
configuration, that is typical for long periods of low absolute magnetisation, is
naturally one with shortest possible border such as one depicted in Figure 5.2e.

5.2 Inner dynamics of model with strategy
Our second simulation employs Bornholdt’s model with strategy spin. That is,
we use local field hi(t) =

∑
<i,j> JijSj(t)−αCi(t)M(t) where the strategy of an

agent is updated according to the rule Ci(t+1) = −Ci(t) if αSi(t)Ci(t)M(t) < 0.
We choose under-critical setting α = 10 and β = 1.5 as in previous simulation.
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(a) magnetisation, relative sizes of trader groups, and returns.

(b) Lattice state at
t = 3720

(c) Lattice state at
t = 3900

(d) Lattice state at
t = 4630

(e) Lattice state at
t = 4760

Figure 5.2: Underlying dynamics of Bornholdt’s model with strategy spin



Figure 5.3a presents development of key variables in the same manner as
above. This time, however, we need to distinguish agents both according to the
value of their spin (buyer: Si(t) = 1 and seller: Si(t) = −1 ) and according to
their strategy (fundamentalist: Ci(t) = 1 and chartist: Ci(t) = −1).

There are again two basic modes - stable, where local interactions lead to
large clusters, and intermittent, where clusters disintegrate as a result of high
magnetisation. Although at a high level the dynamics is the same as in the
simplified model, the underlying mechanism is more complex. To show the
difference, we need to examine the role of strategy changes in the model.

Whereas the spin value Si(t) is driven by a probability density function,
there is a strict deterministic rule for a change of agent’s strategy Ci(t). Let
us observe a theoretical agent who by some system development has recently
become a minority trader and who is supposed to take action at this time instant.
As an ex-majority trader, he is likely to be fundamentalist and as such would
tend to oppose magnetisation by keeping his current spin. This is, however, far
from certain as neighbors can also influence his local field hi which in turn is
only a parameter of heat-bath probability density function (Equation 4.5) that
drives the actual change of spin. In contrast, there is no such ambiguity in case
of agent’s strategy Ci(t). As a part of minority, he will be a chartist for purpose
of the next round.

This is well illustrated by the difference between Figures 5.3b and 5.3c that
correspond to the first two vertical grid lines in the plots in 5.3a. Plot of
magnetisation shows that a change in sign of M(t) has occurred between these
two snapshots. Notwithstanding the sign change, the difference in value of
M(t) is negligible. The two snapshots exhibit hardly any change in terms of
spin values Si(t) (red/blue areas). Conversely, there has been almost a complete
swap of strategy values C(i) (light/dark areas). At a time-scale of t (i.e. 100
rounds per 1 period) the swap happens almost instantaneously.9 This change
will certainly leave a mark in the plot of group sizes, but does not affect returns
in any way.

We have shown in Section 4.4.1 that with sufficiently fast strategy adjust-
ment, the further M(t) deviates, the more agents will tend to oppose it and
the stronger will be their tendency to oppose. In previous paragraphs we have
illustrated that change in strategy is in fact “quite” fast and both versions of
the model should thus behave “very” similarly. And indeed, looking at Figure
5.3, the dynamics would be hard to distinguish from the simplified version. But
because the difference is subtle if any at all, it is problematic to assess it on
the grounds of single realization of each version. The difference will, therefore,
be examined in Section 5.4 where results of multiple realizations are taken into
account.

Note that stable and intermittent periods differ substantially for Ising’s and
for Bornholdt’s model. As we described above, the stable phases of Bornholdt’s
model occur around M(t) = 0 when two opposing clusters of similar size form.

9Obviously with number of agents being 322 a theoretical minimum is a little more than
∆t = 10, i.e. 1000 rounds.
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(a) magnetisation, relative sizes of trader groups, and returns.

(b) Lattice state at
t = 2720

(c) Lattice state at
t = 2800

(d) Lattice state at
t = 2960

(e) Lattice state at
t = 3400

Figure 5.3: Underlying dynamics of Bornholdt’s model with strategy spin



The intermittent phase occurs only after one of the clusters dominates, |M(t)|
grows higher, the second term becomes relevant, and induces switching of spins.

In the Ising model discussed in Section 4.2.3, stable phases occur as a result
of convergence to one of the border states. In such case, most spins are of the
same value and |M(t)| → 1. The intermittent phases last only temporarily
around M(t) = 0 before formation of large clusters and consequent convergence
to one of the border states. These clusters around M(t) = 0 are similar in both
nature and origin to those of Bornholdt’s stable phase. They, however, tend not
to last long as |M(t)| is not bound by the second term of local field.

At under-critical β < βC the influence of local field hi(t) is equally dimin-
ished for both versions of Bornholdt’s model as well as for Ising’s model. Because
the models differ only in definition of the local field, the dynamics of all three
models at under-critical setting are quite similar.

5.3 Detailed characteristics of simulated time series
Analogical analysis was conducted for both versions of Bornholdt’s model (sim-
ulated over the same parameters) but only results for the strategy model are
presented. The reason is that the series exhibited very similar behavior. The
only exceptions were some of the correlation indicators but the differences were
still too subtle to infer a conclusion based on comparison of only two realizations.

Simulated series of the strategy model are shown in Figure 5.4 along with
their real-world equivalents. Without a doubt, the two pairs resemble each other
especially in case of returns. The simulated series exhibits volatility clusters
similar to those of S&P 500, even though the distinction between periods of
high and low volatility is somewhat clearer than in the real-world data.

5.3.1 Distribution of returns

Standardized returns in Figure 5.4b with clear volatility clusters will likely de-
viate from the normal distribution even though the extreme spikes are less pro-
nounced than in case of the market index. The spikes rarely exceed 5σ which is
a value unlikely to appear under normal distribution but commonly encountered
in financial series.

With skewness of 0.07 and excess kurtosis of 5.00, Jarque-Berra test rejects
its null of normal distribution at any reasonable level of significance. The right
skew is only marginal and as we shall see in Section 5.4.1 is a result of a chance
rather than a rule. In contrast, the kurtosis is quite substantial, roughly at a
level of GBP/USD exchange rate or S&P 500 returns at lag 4. The peakedness
as well as heavy tails are well observable in a plot of empirical probability density
function in Figure 5.5.

5.3.2 Dependence in returns

To assess autocorrelation of returns, we run a Ljung-Box test and examine an
autocorrelation function. Test statistic of the Ljung-Box at 46.4 is similar to that
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Figure 5.4: Magnetisation and returns from Bornholdt’s model with strategy
spin. S&P 500 equivalents added for comparison.



-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.5: Empirical distribution of returns. Normal distribution (dashed line)
is added for comparison.

of S&P 500 and the test strongly rejects its null of no autocorrelation. The ACF
along with a 95% confidence interval band is plotted in Figure 5.6. Marginally
significant correlations are infrequent but present until about τ = 100. Low yet
highly significant AR(1) parameter φ = 0.029 is almost identical to that of S&P
500. Local Whittle estimate of fractional integration parameter is d = −0.028,
indicating some antipersistence in the series.

5.3.3 Dependence in absolute returns

Autocorrelation function of absolute returns (Figure 5.7) is fairly high for low
τ but follows a clear linear downward trend on a log-normal scale. Some short-
range correlation therefore seems to be present in the process and current value
of volatility thus depends on the past values. At high τ the ACF still seems to
steadily decline and thus does not indicate presence of long memory.

The estimated parameters for fitted power-law and exponential functions
are A = 0.186, α = 0.127 and B = 0.241, β = 0.009, respectively. In this case
exponential function undoubtedly provides a better fit for the whole examined
range of τ .

First-order autocorrelation parameter φ = 0.254 is highly significant and
confirms an autoregressive process in the series. Despite little evidence of long-
range dependence so far, local Whittle estimate of fractional integration param-
eter d = 0.276 indicates its presence in the series. These values are again almost
identical to those of S&P500 (φ = 0.245, d = 0.269).
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Figure 5.7: Log-normal plot of autocorrelation function of absolute returns with
power and exponential functions fitted



5.3.4 Overall similarity to financial data

As far as distribution of returns is concerned, simulated series clearly deviate
from normality in a manner similar to financial series. The deviation is usually
not that pronounced, especially in case of skewness and occurrence of extreme
values. The kurtosis, however, is similar to financial data; it is close to that of
GBP/USD or S&P 500 at lag 4.

In terms of dependence in returns series, the model mimics financial data
well, exhibiting some marginal correlation, which leads to Ljung-Box test reject-
ing its null. In this particular simulation, there appears to be a weak positive
autoregressive process and weak long-range antipersistence This is a pattern
commonly described in literature (Meyers, 2009) and encountered for example
in S&P 500. The values are, however, close to zero and need to be interpreted
carefully because, as we shall see in Section 5.4, are not robust to certain changes
in model set-up.

For absolute return series, both AR parameter and difference parameter are
virtually identical to S&P 500. The other two financial series do not dramatically
differ from S&P 500 in this regard and are, therefore, also mimicked well by the
model. ACF and two fitted functions are reminiscent of GBP/USD exchange
rate in that the decay seems to be predominantly exponential. The values of
fitted functions are in the general vicinity of values encountered in all financial
series. This, however, might not be a good indicator of similarity since neither
of the functions provided a good fit of ACF decay for all three financial series.

5.4 Simulation of model with strategy for various (α, β)

Here we present results of Bornholdt’s model simulations over a set of parameter
combinations (α, β). We examine how the parameters influence characteristics
of standardized returns from the simulated series. Simulations are conducted
over 31 values of parameter β ranging from 0 to 3 with a step of 0.1 and 4 values
of parameter α ranging from 0 to 30 with a step of 10. For every parameter
combination, 32 simulations are carried out and only series that do not converge
are considered for further analysis. Parameter combinations with less than a
quarter of series being non-convergent are dropped from analysis altogether to
avoid bias from low number of observations.

Given characteristic is calculated for each individual non-convergent simu-
lation and an average of results along with its 95% confidence level margin of
error is reported in Tables A.2 to A.36 of Appendix. For more convenient and il-
lustrative in-text reference, the average results are also plotted in contour plots.
Note that while the plots have the same color scale, the values it represents are
unique to each plot.

Figure 5.8 shows number of non-convergent series within each parameter
combination. Some of the combinations are dropped altogether, which is the
case of β ∈ [1.5, 3] for α = 0 and β ∈ [2.5, 3] for α = 10. The corresponding
regions in plots are left white and in tables marked “×”. Note that there are
parameter combinations that are considered for analysis despite a non-negligible
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Figure 5.8: Number of non-convergent series. For numerical values refer to
Table A.1.

number of convergent series. This is especially of concern in case of β ∈ [0.8, 1.4]
for α = 0 and β ∈ [2.2, 2.4] for α = 1. Whatever results are obtained for those
(α, β), they need to be interpreted with the convergence rate in mind.

To make comparison with financial series easier, their values of examined
characteristics are presented in Table 5.1. Before we delve into examination of
individual characteristics, let us observe some common high-level patterns in
Figures 5.9 to 5.17d. In a large number of plots a distinctive region is apparent
for all values of α and values of β lower than 0.4 or 0.5. We will refer to this
general region as under-critical since β < βC ≈ 0.44. Naturally, the rest will be
referred to as over-critical with possible distinction between over-critical Ising
(α = 0) and over-critical Bornholdt (α ≥ 10) region.

5.4.1 Distributon of returns

Bornholdt’s model is symmetric in terms of magnetisation sign and thus both
mean and skewness should be negligible. Moreover, maxima and minima should
be of about equal absolute value for a given parameter combination. Even before
standardization, mean was indeed effectively zero in all cases with no apparent
pattern and the values are thus not presented. While skewness is also close to
zero in all cases, it deviates (to either side) slightly more with increasing β as
Table A.2 shows.

The maxima and minima are mostly symmetrical as expected, and for this
reason only absolute maxima are presented in Figure 5.9. Given that we work
with standardized returns, the plot presents the absolute maxima as multiples
of standard deviations (σ). The under-critical region of β < 0.5 shows maxima
around just over 4 standard deviations. Under normal distribution, a 3.5σ
event (one outside µ ± 3.5σ range) happens with frequency of about 1 per
2100 while a 4σevent with frequency of about 1 per 15800. If we assumed a
normal distribution, with 8000 observations slightly lower maxima would be
expected. Nonetheless, observed values do not differ dramatically from the
normal distribution. As we move to β > 0.5, an area of about 6σ maxima
starts at (α, β) = (0, 0.7) and seems to continue linearly upwards to about

38



S&P 500 GBP/USD Gold

Max of |rt| 23.55 9.15 12.44

Kurtosis 27.72 5.12 13.30

Skewness -1.03 -0.47 -0.07

JB test (p-val) 522867.5 (0.00) 7252.1 (0.00) 86301.7 (0.00)

log of JB test 13.17 8.89 11.36

LB test (p-val) 56.50 (0.00) 1401.88 (0.00) 34.28 (0.00)

AR(1) (p-val) 0.028 (0.00) 0.463 (0.00) -0.039 (0.00)

Whittle of rt -0.019 0.061 0.014

AR(1) of |rt| (p-val) 0.245 (0.00) 0.349 (0.00) 0.345 (0.00)

Whittle |rt| 0.269 0.200 0.312

GARCH α (p-val) 0.088 (0.00) 0.300 (0.00) 0.174 (0.00)

GARCH β (p-val) 0.867 (0.00) 0.112 (0.00) 0.752 (0.00)

Table 5.1: Overview of characteristics to be compared

Figure 5.9: Maximum of absolute magnetisation |M(t)|. For numerical values
refer to Table A.3.



Figure 5.10: Kurtosis of return series. For numerical values refer to Table A.4.

(30, 1.1). For α = 30 similar values can then be found for all β > 1.1. Values
that are highest and thus closest to real-world data, can be found in the series
that exhibit some tendency to converge. Values around 9 that are comparable
to GBP/USD exchange rate are in the region of α = 10 and β ∈ [2.0, . . . , 2.4]
where, however, more than half of simulated series converged.

In terms of excess kurtosis κ, Figure 5.10 suggests a relatively normal-like
behavior for an under-critical region of about β ≤ 0.6 for which κ = 0 falls within
κ’s 95% confidence interval. In the Bornholdt’s (α > 0) over-critical region κ
grows with β to about 4 or 5 which is a value encountered in GBP/USD series.
Albeit values as high as 13 can be found at α = 10 and β ∈ [1.9, 2.4], if we take
into account their margins of error, we cannot say there is a value higher than 7
at 95% confidence level. None of the parameter combinations thus comes close
to kurtosis values of S&P 500 (27.7) and gold (13.3).

Jarque-Bera test statistics are shown in Figure 5.11a but since it does not
provide a clear picture for some lower values of β, logarithms of the statistics
are added below. JBT tests a joint hypothesis of no skewness and no excess
kurtosis, where the first one is likely to hold for our data. Therefore, information
that both plots of test statistics provide is very similar to that given by excess
kurtosis in Figure 5.10. P-value shown in Figure 5.11c makes the distinction
between under-critical and over-critical regions very clear. Regardless of α, the
null hypothesis of normality is by far not rejected up to β = 0.4 which is just
below βC ≈ 0.44. Just above, at β = 0.5, the null is rejected generally at 5% but
not 1% level of significance. For β ≥ 0.6 the null is rejected at any reasonable
level with few marginal exceptions in Ising case.

5.4.2 Dependence in returns

Figure 5.12, which presents test statistics and p-value of Ljung-Box test applied
to returns, does not follow the same pattern as previously examined statistics.
Characteristics change primarily with β but not simply along the critical value
of βC . Instead, the series with autocorrelation are (in terms of β) on both sides
of the normal-like region of little autocorrelation.
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(a) Test statistic

(b) Logarithm of test statistic

(c) P-value

Figure 5.11: Result of Jarque-Berra test of returns series. For numerical values
of test statistics and p-values refer to Tables A.5 and A.6 respectively.



(a) Test statistics

(b) P-values

Figure 5.12: Results of Ljung-Box test of returns series. For numerical values
of test statistics and p-values refer to Tables A.7 and A.8 respectively.



(a) Parameter values

(b) P-value of parameter

Figure 5.13: AR(1) model parameter and its p-value for returns series. For
numerical values of the parameter and p-value refer to Tables A.9 and A.10
respectively.

For α = 0 the null of no autocorrelation is not rejected at 10% significance
level in case of β ∈ [0.2, 0.6]. For every increment of 10 in α the β interval of
no autocorrelation shifts roughly 0.2 towards higher values and the upper limit
becomes less distinct. This results into two distinct groups of combinations
(α, β) that exhibit autocorrelation - one with higher β (β > 1.1 for α = 10 and
β > 1.4 for α ≥ 20 ) and one with very low β (β ≤ 0.2 for ∀α).

The autocorrelation in the region of higher β seems to stem from short-
range as well as long-range dependence, both of which have positive values that
are low but significant at least at 10% level in most cases (Figures 5.13 and
5.14). These parameter combinations exhibited some features of financial series
previously and some marginal autocorrelation therefore comes as no surprise.

Because at β ≤ 0.2 spin updates are random or close to random and the
resulting series seemingly resemble white noise, it is rather peculiar to detect
significant autocorrelation. Both AR parameter and Whittle estimate of d are
significant and show negative correlation with magnitude more than comparable
to the series of high β. Long-range dependence is strongest at β = 0, where the
value of d indicates a strong anti-persistence; this might come as a result of the
small size of our lattice that allows only limited deviation in either direction.
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Figure 5.14: Local Whittle estimate of fractional difference parameter d of re-
turns. For numerical values refer to Table A.11.

5.4.3 Dependence in absolute returns

For absolute returns, detailed results of Ljung-Box test are omitted as the cor-
relation is more palpable in plots of AR parameter φ and Whittle estimate of d
(Figures 5.15 and 5.16 respectively).

AR parameters of under-critical region (β ≤ 0.4) are insignificant without an
exception, while over-critical Ising results (α = 0) are mixed but generally also
insignificant. Bornholdt’s over-critical combinations (α ≥ 10) are significant at
5% level for β = 0.5 and at 1% level for higher β. Values of the significant
parameters can be as low as 0.05 for some lower β but in most cases range from
0.2 to slightly above 0.3, which is exactly what we observed in financial series
(Table 5.1).

Whittle estimate of d for over-critical Bornholdt’s model grows with β and
ranges from 0.1 to 0.3. Values encountered in financial series were between 0.2
and 0.3 which are values found at β ≥ 0.7. In terms of both short- and long-
range memory, financial series are thus mimicked well by a wide set of parameter
combinations of Bornholdt’s model.

Significance of both GARCH parameters, γ1 and δ1, shown in Figure 5.17
is almost identical to that of AR parameters discussed just above, i.e. they
are significant for over-critical Bornholdt’s combinations. For these, value of γ1

ranges from 0.05 for lower αs and βs, and grows in both α and β to values just
over 0.9. Parameter δ1 complements γ1 in that the sum γ1 +δ1 lies between 0.97
and 0.99 for all the significant combinations. The volatility in the series is thus
fairly persistent but not to an extent that would render r2

t non-stationary. This
behavior is perfectly in-line with theoretical values suggested by literature (see
Subsection 2.1.3 for details). Out of three analyzed financial series, however,
only S&P 500 behaves according to the literature and thus is the only series
well mimicked by Bornholdt’s model.

5.4.4 Overall similarity to financial data

Before we assess the ability of the model to mimic financial series in terms of
individual characteristics, let us observe some high-level patterns.
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(a) Parameter values

(b) P-value of parameter

Figure 5.15: AR(1) model parameter and its p-value for absolute returns series.
For numerical values of the parameter and p-value refer to Tables A.12 and A.13
respectively.

Figure 5.16: Local Whittle estimate of fractional difference parameter d for
absolute returns. For numerical values refer to Table A.14.



(a) Values of parameter γ1

(b) P-values of parameter γ1

(c) Values of parameter δ1

(d) P-values of parameter δ1

Figure 5.17: GARCH (1,1) model parameters and their p-values. For numerical
values of the parameter γ1 and corresponding p-values refer to Tables A.15 and
A.16 respectively. For numerical values of the parameter δ1 and corresponding
p-values refer to Tables A.15 and A.16 respectively.



At under-critical setting (i.e. β ≤ 0.4) resulting returns series bear hardly
any resemblance to their financial counterparts; their characteristics are similar
to those of white noise with exception of slightly higher extreme deviations and
in case of β ≤ 0.1 also faster mean-reversion.

Results do not show any significant difference between under-critical simu-
lations of Bornholdt’s and Ising models. For β > βC , however, the behavior
differs substantially. The Ising model converges in virtually all cases to one of
the border values of |M(t)|. For lower over-critical βs there is some white noise
fluctuation but the magnetisation generally does not change its sign as is well
illustrated by Figure A.2.10 Ising model in its original physical form is therefore
of no use in mimicking financial data.

In contrast, Bornholdt’s model exhibits at least some of the features observed
in financial series for most over-critical parameter combinations, especially for
β ≥ 1.0. For some of the higher βs, however, the simulated series tend to
converge. Moreover, these series usually vary more than non-convergent ones
and thus provide inconsistent results. This is the case of β ≥ 1.6 for α = 10,
β ≥ 1.7 for α = 20, and β ≥ 2.3 for α = 30. Let us now examine the calculated
characteristics of Bornholdt’s over-critical parameter combinations in more de-
tail. Extreme values of studied characteristics are often found in parameter
combinations that exhibit convergence. We will disregard those in the following
summary and only consider combinations providing consistent results.

As discussed previously, due to the symmetry of the model, the simulated
series are generally unskewed, and negative and positive extremes are equal
in size. Maximum of |M(t)| grows in β with 7σ events being the highest in
non-convergent combinations. Such values are only slightly lower than those of
GBP/USD (9.1) and gold (12.4). Kurtosis also grows with β to values just over
5 which is exactly what was observed in GBP/USD rate.

Both short- and long-range correlation of returns are mostly positive, both
increase with β and decrease with α. Highest values of AR parameter φ are
around 0.04 which is similar to S&P 500, whilst weak positive long-range de-
pendence encountered here was present in series of GBP/USD rate and Gold.

Both indicators of autocorrelation of absolute returns grow in β from about
0.2 to about 0.3, which perfectly fits all of our data. Parameters γ1 and δ1 of
GARCH model are perfectly in line with literature. There is a persistence in
volatility close to unity in most series and first order spillover represented by
γ1grows with β from 0.05 (low volatility) to 0.09 (high volatility).

5.5 Simulation of simplified model for various (α, β)

Simulations and subsequent analysis of simplified model are conducted for the
same set of parameter combinations (α, β) to allow comparison with strategy
model. The results are reported in similar way as in previous case, but only
important contour plots are shown within these paragraphs not to congest text
with figures. The remaining plots can be found in Section A.3.1 of Appendix.

10For high over-critical β other equilibria than M(t) = ±1 might occasionally occur if two
clusters of regular shapes form.
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Number of non-convergent series within each parameter combination (Fig-
ure A.9) is similar to the model with strategy for β ≤ 2.0 but tends to be
lower thereafter, especially for α ≥ 20. Four more combinations had to be
dropped from analysis (β = {2.6, 2.7, 2.9, 3.0} for α = 20) and one was added
((α, β) = (10, 2.4)).

In cases of most characteristics, we can again distinguish an under-critical
region approximately for β ≤ 0.5, over-critical Ising region (β > 0.5, α = 0) and
over-critical Bornholdt’s region (β > 0.5, α ≥ 10). Throughout this section,
we will disregard the Ising region as it is not influenced by local field hi(t) and
the results are thus the same as in case of model with strategy. Hence, any
statement will be valid only for α ≥ 10.

5.5.1 Distributon of returns

As in previous model, symmetry in terms of sign leads to negligible mean and
skewness. Also, absolute values of maxima and minima are similar which is why
only maxima of |M(t)| are presented in Figure A.10. The range of maximum
values is similar to the strategy model but in the over-critical region exhibits
more randomness with respect to parameters α and β. Whereas in case of
strategy model, the maximum grows with β, in this case the top values are
found anywhere in the region of β ≥ 2. Identical pattern occurs in kurtosis
values (Figure A.11) where it is even more pronounced. Since skewness is far
from substantial, the pattern naturally carries over to results of JB test (Figure
A.12).

5.5.2 Dependence in returns

Results of Ljung-Box test shown in Figure suggest a non-trivial difference be-
tween the models. While both exhibit significant correlation for β ≤ 0.2, at
higher values the patterns are hardly the same. The simplified model exhibits
weak or no autocorrelation at α = 10 but becomes significant for higher α; for
α = 30 the null is rejected at 1% level in virtually all cases. Autocorrelation in
the strategy model is, on the other hand, strongest at α = 10 and weakens with
increasing α. To explain why this is, we need to examine short- and long-range
components of correlation in each model.

In both models the AR(1) parameter φ as well as the fractional parameter d
are significantly negative at low β, which, as discussed earlier, can be attributed
to negative correlation stemming from limited size of our lattice. In the over-
critical region, however, the models differ in sign of both short- and long-range
dependence.

Figures 5.18 and 5.19 show that both autoregressive and fractional param-
eters are close to zero but generally gravitate to negative values, especially for
high α. This indicates both short-term negative correlation and weak antiper-
sistence in the series. Conversely, in the strategy model, we could find generally
positive values that were highest and most significant at α = 10.
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(a) Parameter values

(b) P-value of parameter

Figure 5.18: AR(1) model parameter and its p-value for returns series. For
numerical values of the parameter and p-value refer to Tables A.27 and A.28
respectively.

Figure 5.19: Local Whittle estimate of fractional difference parameter d of re-
turns. For numerical values refer to Table A.29.



5.5.3 Dependence in absolute returns

Differences in autocorrelation of returns translate also to autocorrelation of ab-
solute returns but are less pronounced. Both models exhibit high AR(1) and
difference parameters for the whole over-critical region with values slightly grow-
ing with β. The simple model has higher values for α = 10, while the strategy
model for α = 30 which are the regions where the respective models exhibit
more significant correlation in returns. Nevertheless, the values of both corre-
lation parameters for both models are in the vicinity of 0.3, which is a value
observed in the financial series.

Lastly, the GARCH parameter values (Figure A.16) are very much alike in
both cases and do not indicate any difference between the model versions.

5.5.4 Discussion of differences between model versions

The most profound difference between the two versions of Bornholdt’s model
is the opposite sign of both short- and long-range correlation in returns. It
elegantly illustrates functioning of the second term of local field hi(t) and also
shows that it is significantly stronger in case of simplified model. As discussed in
Section 4.4.1, second term prompts an agent to swap. In simplified model this is
always true, whereas in the strategy model only after strategy adjustment. The
second term thus induces behavior that opposes any deviation from zero, there-
fore, inducing mean reversion. For higher α (measure of second term’s strength)
the generated process will thus become less positively or more negatively corre-
lated, which is exactly what we observe in correlation indicators (φ and d alike)
of both models. In strategy model, the positive correlation induced by the first
term prevails, but weakens with increasing α. Values in the simplified model
gravitate towards negative values, more so with higher α. Although the strategy
adjustment seems to be fast at least at time-scales that we use, it introduces an
inertia into the model that influences short- and long-range correlation

6 Conclusion
Purpose of this work was to thoroughly analyze Bornholdt’s model and to pro-
vide a detailed and accessible description not only of the results but also of the
underlying dynamics.

We have presented a breakdown of definitions of both versions of Bornholdt’s
model as well as the original Ising model. We have discussed parallels and
concluded that while Bornholdt’s augmentation might reflect some behavioral
patterns, it more likely serves primarily to eliminate Ising’s inherent tendency
to converge.

With an aid of simulated series, we subsequently described and compared
inner dynamics of the strategy model and the simplified model. This comparison
indicated that models’ dynamics as well as the resulting series are the same
which would deem the whole strategy concept somewhat redundant. Later
simulations over wide range of parameters, however, proved that the lag in
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strategy adjustment introduces an inertia in magnetisation change. This allows
for simulation of positive short- and long-range dependence in returns series.

To assess how well Bornholdt’s model mimics real-world financial data, we
first tested presence of stylized facts in three series of different types - S&P 500
market index, GBP/USD exchange rate and gold as a commodity. Having more
than just one referential financial series proved to be useful; even though all the
series generally followed stylized facts, they turned out to be diverse in number
of aspects.

Deviation from normal distribution was noticeable in all series, with ex-
hibits of volatility clustering and frequent occurrence of at least 5σ events. All
distributions were highly leptokurtic, with S&P 500 being by far the most. In-
terestingly, skewness exceeding -1 was observed only in case of the market index,
whereas gold proved to be unskewed.

Both short- and long-range correlation proved to be low but significant in
all three series except for the exchange rate where remarkably strong AR(1)
parameter was observed.

Autocorrelation of absolute returns was similar for all three series. First
order autocorrelation of about 0.3 indicated presence of short-range dependence,
whilst Whittle estimate of difference parameter indicated long-range dependence
in the series. Fitting ACF of absolute returns yielded mixed results as neither
function provided a good approximation of decay in all three cases.

GARCH results in case of S&P 500, exhibiting relatively high volatility with
usual level of persistence, were in line with literature. Persistence in the other
two series was somewhat lower, whereas influence of the last observation was
two to three times higher than literature suggests.

After obtaining our reference statistics, we simulated Bornholdt’s model with
strategy and analyzed the resulting return series. The distribution deviated from
normality in a manner similar to financial series, albeit with the deviation be-
ing not as pronounced. In terms of autocorrelation of returns series, the model
exhibited weak positive autoregressive process and weak long-range antipersis-
tence, similarly to S&P 500. Regarding autocorrelation of absolute returns, the
model exhibited very similar behavior; the values of AR(1) parameter and dif-
ferencing parameter were almost the same as those of the market index. The
decay of absolute returns’ ACF was, unlike that of the index, well captured
by exponential function. Exponential decay was encountered in case of the ex-
change rate which, however, was rather specific due to its high first lag and a
fact that both functions provided a good fit at the same time.

Our goal in the next part was to test whether Bornholdt’s model generates
data with desired characteristics for other input parameter combinations (α, β)
as well and to assess how the characteristics change with those parameters. We
ran simulations over a range of parameter combinations chosen such that they
comprise both Bornholdt’s and original Ising model, and both under- and over-
critical setting. We concluded that at under-critical setting, resulting returns
series are basically a white noise for both types of models and are of little
interest. So is Ising model at over-critical setting since it tends to converge to
one of the border values of magnetisation, producing rather flat return series.
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In contrast, both versions of Bornholdt’s model at over-critical setting gen-
erate series that in many aspects resemble the financial series.

Because of the symmetry of the model, the distribution is also symmetrical
with maxima and minima of equal size. The extremes are not as pronounced
as in case of financial series; 7σ events, occurring generally at higher β, are
the highest. Kurtosis also grows with β to values just over 5 which is a value
encountered in GBP/USD rate.

Short- and long-range correlation of returns are dependent on α as well
as version of the model; both positive and negative significant values can be
obtained.

Autocorrelation of absolute returns grows in β from about 0.2 to about
0.3, which is exactly the range of values observed in the financial data. The
parameters of GARCH span the whole range suggested by literature; γ1 grows
with β from 0.05 to 0.09 and δ1 decreasing accordingly.

In case of distribution parameters, results closest to the values observed in
financial data are often found at higher β. Unfortunately, we cannot increase
β arbitrarily since above a certain point this leads to increased variance in re-
sults and convergence of simulated series. There is not a universal value of
this maximum β; instead it increases with α. As a result, region of parameter
combinations that yield the very best results does not seem to be very com-
pact. Instead it might be spread along the border between convergent and
non-convergent parameter combinations.

To determine more general or more subtle patterns, a simulation over wider
range or with lower step in parameter value would be beneficial. This would
however require much more efficient code for simulations or availability of server-
level computational capacity for a period of one or two weeks
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A Apendix

A.1 Other Ising based models
Following Ising-based models are provided for two reasons. First is to give
reader an opportunity to appreciate simplicity of Bornhodt’s model. Second is
to illustrate the range of possible augmentations. Each of these models, as well
as Bornholdt’s and many others, can further be modified by subtle changes such
as those proposed in a remarkable work of Dvorak [2012].

Sieczka and Holyst [2008] introduces a model which is based on Bornholdt
[2001] but in addition has certain features reminiscent of those used in Iori
[1999]. Authors use identical lattice set-up as Bornholdt [2001] but the spin
Si(t) is updated with a different dynamics:

Si(t) = signλ|M(t−1)|

 ∑
<i,j>

JijSj(t− 1) + σηi(t)

 (A.1)

where signq is a threshold function

signq(x) =


1 if x > q

0 if − q < x < q.

−1 if x < −q
(A.2)

Lastly, ηi(t) is a random Gaussian function with 0 mean and variance of 1
simulating i-th trader’s individual erratic opinion with parameter σ as a measure
of its influence.

The threshold q of the signq function is dependent on magnetisation and for
parameter λ = 0 it is identical to the 2-valued spin model.

There are three factors that influence the i-th spin. The influence of neigh-
boring spin Sj (identical to Bornholdt’s model), the erratic opinion ηi(t) and a
threshold q = λ |M(t− 1)|. While in the simple version of Bornholdt’s model
(Equation 4.8) the higher magnetisation forces the chartist to switch group, in
Sieczka and Holyst’s model it is quite the opposite. Higher absolute magnetisa-
tion means higher threshold that, in order to trade, needs to be exceeded by a
combination of neighbors’ influence and own opinion. Authors’ rationale is that
in times of high absolute magnetisation (i.e. deviation from fundamental price)
the agents are afraid of trading and need stronger incentives to do so.

Iori [1999] proposes a model where each agent i owns capitalKi(t) consisting
of cash Ci(t) and Ni(t) units of stock at price p(t). Capital of agent i at time
t is then given by Ki(t) = Ci(t) + p(t)Ni(t). For each agent i at time step t,
there are three possible values of his spin Si(t): 0 if he remains inactive, +1 if
he decides to buy one piece of stock and −1 if he decides to sell one. At each
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time step each agent is influenced by a local field hi :

hi(t) =
∑
<i,j>

JijSj(t) +Aνi(t) +Bε(t) (A.3)

where once again
∑
<i,j> denotes a sum over the set of agent i’s neighbors, Jij

is a measure of neighboring agent j’s influence on agent i. While ε(t) is a signal
accessible to all traders, νi(t) is agent specific and is analogous to temperature.
To induce an agent to trade his local field hi(t) must exceed his specific threshold
ξi(t).11 The decision rule is

Si(t) =1 if hi(t) ≥ ξi(t)
Si(t) =0 if − ξi(t) < hi(t) < ξi(t) (A.4)
Si(t) =− 1 if hi(t) ≤ −ξi(t)

Unlike most others, Iori [1999] then uses a series of consultation rounds before
a trade is conducted. Agents make an initial decision depending on their local
fields and thresholds according to Equation A.4. This influences their neighbors’
local fields and possibly makes them change their initial decision. When the
system converges to a stable state, the orders are placed simultaneously.

Because each agent can only buy one piece of stock at a time, supply Z(t)
and demand D(t) are given by the number of sellers and buyers, respectively
and the trading volume V (t) by their sum. After each trading round, the stock
price changes according to the rule

P (t+ 1) = P (t)

(
D(t)

Z(t)

)α
, α = a

V (t)

L2

where L2 is the total number of traders and therefore also the maximum num-
ber of stock that can be traded each round. This is designed to reflect the
overreaction of market to imbalanced orders in times of high activity.

Sornette and Zhou [2006] introduce somewhat more complex model that
deviates in many ways from the basic Ising model. It is designed to simulate
more behavioral patterns and is mentioned here as last in order to show other
possible extensions to our model.

Authors again use a square lattice described above with possible spin values
of Si = ±1 and dynamics of update

Si(t) = sign

 ∑
<i,j>

Jij(t)E[Sj ](t) + σi(t)G(t) + εi(t)

 (A.5)

where E[Sj ](t) is agent i’s expectation of agent j’s decision at time t. The
expectation is what distinguishes the first term from that of Bornholdt’s and

11The thresholds are normally distributed and change in time proportionally to price of the
stock.
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most others. In the second term G is a random ±1 function that represents a
universally accessible global information and σi measures its impact on agent i’s
action. The last term represents a private information similar to that of Sieczka
and Holyst [2008].

Unlike in previous models the market price and the influence of neighbors
are not constant. The market price is updated according to

p(t) = p(t− 1)exp[r(t)], r(t) =
M(t)

λ
(A.6)

where λ is a measure of liquidity and is constant. The ability of agents to learn
is accounted for by adaptive coefficient of influence of neighbors:

Jij(t) = bij + αiJij(t− 1) + βr(t− 1)G(t− 1) (A.7)

where bij measures the intrinsic influence of neighbors and αi > 0 measures
the loss of memory of past influences. The last term β 6= 0 measures how the
influence changes in relation to the global news G. This parameter is of high
importance since its sign decides whether the agent acts rationally or not. If
global information G known at time t−1 has the same sign as the return r(t−1),
a rational agent should follow the news rather than behavior of others, in which
case should be β < 0. The magnitude of return also plays a role as high return
of either sign has higher financial as well as psychological effect.

Positive β would imply limited rationality where agent might for example
wrongly attribute the origin of correct impulses. Such behavior might result
from several mechanisms well described by behavioral economics literature (e.g.
Heath and Gonzalez [1995] and Wyart and Bouchaud [2007]) such as mutually-
reinforcing optimism and overconfidence.
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A.2 Bornholdt’s model with strategy spin
A.2.1 Tables of statistics for different (α, β)

30 32 32 32 32 32 32 32 32 32 32

20 32 32 32 32 32 32 32 32 32 32

10 32 32 32 32 32 32 32 32 32 32

0 32 32 32 32 32 32 32 32 8 12

α\β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30 32 32 32 32 32 32 32 32 32 32

20 32 32 32 32 32 32 32 32 30 31

10 32 32 32 32 32 32 32 31 23 16

0 15 9 12 13 12 3 1 0 1 2

α\β 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

30 31 32 32 32 28 31 28 26 28 26 23

20 28 30 29 23 28 22 25 18 18 13 10

10 25 18 13 14 12 4 5 7 3 4 6

0 0 0 0 0 0 0 0 0 1 1 0

α\β 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Table A.1: Bornholdt’s model with strategy: Number of non-convergent series
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A.2.2 Plots of realizations for different (α, β)
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A.3 Bornholdt’s simplified model
A.3.1 Plots of statistics for different (α, β)

Figure A.9: Number of non-convergent series. For numerical values refer to
Table A.19.
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Figure A.10: Maximum of absolute magnetisation |M(t)|. For numerical values
refer to Table A.21.

Figure A.11: Kurtosis of return series. For numerical values refer to Table A.22.



(a) Test statistic

(b) Logarithm of test statistic

(c) P-value

Figure A.12: Result of Jarque-Berra test of returns series. For numerical values
of test statistics and p-values refer to Tables A.23 and A.24 respectively.



(a) Test statistics

(b) P-values

Figure A.13: Results of Ljung-Box test of returns series. For numerical values
of test statistics and p-values refer to Tables A.25 and A.26 respectively.



(a) Parameter values

(b) P-value of parameter

Figure A.14: AR(1) model parameter and its p-value for absolute returns series.
For numerical values of the parameter and p-value refer to Tables A.30 and A.31
respectively.

Figure A.15: Local Whittle estimate of fractional difference parameter d for
absolute returns. For numerical values refer to Table A.32.



(a) Values of parameter γ1

(b) P-values of parameter γ1

(c) Values of parameter δ1

(d) P-values of parameter δ1

Figure A.16: GARCH (1,1) model parameters and their p-values. For numerical
values of the parameter γ1 and corresponding p-values refer to Tables A.33 and
A.34 respectively. For numerical values of the parameter δ1 and corresponding
p-values refer to Tables A.33 and A.34 respectively.



A.3.2 Values of statistics for different (α, β)

30 32 32 32 32 32 32 32 32 32 32

20 32 32 32 32 32 32 32 32 32 32

10 32 32 32 32 32 32 32 32 32 32

0 32 32 32 32 32 32 32 32 13 12

α\β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30 32 32 32 32 32 32 32 32 31 31

20 32 32 32 32 32 32 31 31 28 27

10 32 32 32 32 32 32 32 24 26 19

0 12 11 9 8 9 8 2 1 0 0

α\β 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

30 32 31 26 20 20 23 21 17 19 12 10

20 24 22 21 16 11 8 6 7 9 4 5

10 12 13 13 11 9 13 2 3 3 4 5

0 1 0 1 0 1 2 2 1 0 0 0

α\β 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Table A.19: Bornholdt’s simplified model without strategy: Number of non-
convergent series
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Topic characteristics
The main focus of this thesis is to construct a temperature-variant Ising model
and examine its ability to mimic some financial stylized facts including those
concerning a money stock.

The Ising model is commonly used in physics to represent magnetic spins
of particles in ferromagnetic materials. It can also be understood as a hetero-
geneous agent model to simulate behavior of market participants, as shown in
number of research papers. To our best knowledge, for economic purposes the
model has always been employed with a fixed temperature, i.e., total energy
level of the system.

Incorporating a temperature as a variable could simulate an impact of the
money stock and therefore help to asses a role of central bank. In particu-
lar, we will examine how the energy level influences frequency and nature of
phase transitions that correspond to changes in the general mood of the market
participants.
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Hypotheses
1. The temperature-dependent Ising model is able to mimic some financial

stylized facts.

2. The inclusion of temperature dependence significantly improves the model’s
ability to mimic the stylized facts.

3. Through variable temperature the model is able to simulate frequency and
nature of periods of shifts in general market mood, i.e., periods of high
volatility.

Methodology
Firstly, a temperature-dependent Ising model suitable for economical simulation
will be constructed in line with previous research in physics. Secondly, a number
of numerical simulations will be carried out with an aim to mimic patterns
observable in financial markets. Stock indices such as S&P 500 might be used
as a proxy for financial markets behavior. Lastly, through standard statistical
and econometric procedures it will be tested to what extent the simulated and
the actual financial series share the same properties.

Outline
1. Introduction

2. Stylized facts and a role of the central banks

3. Ising model overview

4. Ising model simulations

5. Conclusion
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