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Introduction

Spinor-valued differential forms, arising in the tensor products of differential forms
and spinor fields, are fundamental objects in (pseudo-)Riemannian differential
Spin-geometry. Many properties of spinors and differential forms carry over and
generalize to spinor-valued forms. The subject of present thesis concentrates
on Killing fields, which are solutions of particular invariant system of partial
differential equations called Killing equations.

A prominent motivating example of the type just mentioned are Killing vector
fields, the infinitesimal generators of isometries on a (pseudo-)Riemannian man-
ifold. A direct generalization are then Killing differential forms. Killing spinor
fields naturally appear in the study of the Dirac operator on Spin-manifolds of
constant scalar curvature. In any case, the Killing equations are overdetermined
and the existence of corresponding Killing fields on particular manifold is a rare
phenomenon. However once they exist, they provide valuable information about
geometry of the underlying manifold. In particular, the existence of Killing spinor
fields imposes strong restrictions on curvature. In general, Killing tensors-spinors
give integrals of motion for the geodesic equation and contribute to its integra-
bility, and from a broader perspective can be regarded as hidden symmetries of
the underlying pseudo-Riemannian manifold.

The main goal of the present thesis is to introduce the Killing equations for the
case of spinor-valued forms. The definition is quite straightforward generalization
of Killing differential forms and Killing spinor fields. To our best knowledge, the
present definition is in its full generality new, although some authors produced a
special case of ours. Subsequently we deduce several properties of Killing spinor-
valued forms. In particular, we prove that the tensor product of a Killing form
and a Killing spinor is a Killing spinor-valued form according to our definition,
which is the main justification of our approach.

We also discuss two additional variants of Killing fields. The first variant
are the conformal Killing fields, defined by weaker conditions than Killing fields.
The general concept of conformal Killing fields is already well established and
our definition of conformal Killing spinor-valued forms simply covers this case. It
can be shown that the conformal Killing equations are conformally covariant and
thus apply in the more general framework of conformal geometry.

The second variant are the special Killing fields, defined by stronger conditions
than Killing fields. Their main application is the so called cone construction.
It starts with the construction of metric cone over the original base manifold.
Then it is shown that special Killing fields on the base manifold correspond to
certain parallel fields on the metric cone. The cone construction for special Killing
spinor-valued forms is our main result. It is again analogous to the results for
spinor fields and differential forms. Though in the case of spinor fields there is
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no stronger notion of special Killing spinors, the cone construction applies to
Killing spinors as well. The cone construction has further applications in the
holonomy classification of manifolds admitting special Killing fields. However,
such a classification in the case of spinor-valued forms is beyond the scope of this
thesis.

The thesis is divided into three chapters. The first chapter has purely algebraic
character. Here we closely examine several representations of spin group and
deduce several formulas needed for later computations with spinor-valued forms.
The representation theory also serves as a ground for the construction of invariant
differential operators. In the second chapter, we introduce several types of Killing
fields and discuss some of their basic properties. We describe the Killing equations
in terms of invariant differential operators. This perspective offers a better insight
into the definitions and reveals general pattern behind the different types of
Killing fields. The third, final chapter, is devoted to the cone construction and
our main results.
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Chapter 1

Spinor-valued forms

This chapter is devoted to algebraic preliminaries needed for our study of spinor-
valued forms. After the introduction of basic setting and notions we deal mostly
with representations of the spin group. Our primary objective is the decompo-
sition of several such representations. The most important part of the decom-
position are the so called twistor modules which will later give rise to twistor
operators. In the course of our exposition we introduce an effective algebraic
calculus for spinor-valued forms.

1.1 Vectors and forms
First of all we establish the notation and briefly recall some basic properties of
vectors and forms. We start with an oriented unitary real vector space. All
subsequent notions and constructions in the present chapter will depend solely
on this initial data. Note that we consider only positive-definite inner product
though most results could be presumably generalized to arbitrary non-degenerate
bilinear product.

For the sake of simplicity we consider the arithmetic space and denote:

• V = Rn — the real arithmetic vector space of dimension n,

• (e1, . . . , en) — its canonical basis,

• g : V × V→ R — the canonical inner product on V,

• the standard orientation of V,

such that the canonical basis is orthonormal and positively oriented.
We further denote:

• V∗ — the dual vector space of V.

The inner product g induces mappings:

• ∗ : V� V∗ — the orthogonal dual of a vector or 1-form,

which are mutually inverse, and hence yielding:

V ∼= V∗. (1.1)
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We further denote:

• Ap — the space of alternating p-forms on V, where

• p is the degree of form.

Unless otherwise stated we always assume that

p ∈ {0, . . . , n}. (1.2)

In particular, we can identify:

A0 = R, and A1 = V∗. (1.3)

Altogether the spaces Ap form

• A — the exterior algebra over V∗,

A = A0 ⊕ · · · ⊕ An. (1.4)

It is a real Z-graded associative algebra and we additionally define:

Ap = 0, ∀p ∈ Z \ {0, . . . , n}. (1.5)

The basic operations with vectors and alternating forms are:

• ∧ : Ap × Ap
′ → Ap+p

′ — the exterior product,

which is just the multiplication in the exterior algebra A,

• y : V × Ap → Ap−1 — the interior product,

which generalizes the usual pairing of vectors and 1-forms. The exterior and
interior products satisfy the well-known identities:

α ∧ α′ = (−1)pp
′
α′ ∧ α,

X y (X ′ y α) = −X ′ y (X y α),

X y (α ∧ α′) = (X y α) ∧ α′ + (−1)pα ∧ (X y α′), (1.6)

∀α ∈ Ap, α′ ∈ Ap
′
, X,X ′ ∈ V.

Finally we recall

• ω ∈ An — the volume form on V,

ω = e∗1 ∧ · · · ∧ e∗n, (1.7)

which is uniquely determined by the inner product and orientation. It further
induces mappings:

• ? : Ap � An−p — the Hodge dual of alternating forms,

which are mutually inverse up to the factor of (−1)p(n−p), and hence yielding:

Ap ∼= An−p. (1.8)
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1.2 Spinors
As a next step towards spinor-valued forms we recall the construction and basic
properties of spinors. The topic of spinors and related Clifford algebras is quite
extensive, so we restrict ourselves only to necessary details. For the comprehensive
theory see, e.g., [5], [12], [7] or [3].

There are both real and complex Clifford algebras, however, we restrict our-
selves just to the complex case. We denote:

• Cl(n) — the complex Clifford algebra of V, that is, the Clifford algebra of the
complexified space V ⊗ C,

• · : Cl(n)× Cl(n)→ Cl(n) — the multiplication in Cl(n).

It is a complex associative algebra with unit, which is generated by V and is
universal with respect to the main property:

X ·X = −2g(X,X), ∀X ∈ V. (1.9)

By the polarization identity, the equality (1.9) is equivalent to

X ·X ′ +X ′ ·X = −2g(X,X ′), ∀X,X ′ ∈ V. (1.10)

This identity is fundamental for all computations with spinors and we shall use it
frequently without further reference. In terms of the canonical basis, (1.10) can
be expressed also as

ei · ej + ej · ei = −2δij, ∀i, j ∈ {1, . . . , n}, (1.11)

where δij is the Kronecker delta.
The Clifford algebra is always a Z2-graded algebra and we denote:

• Cl+(n) — the even part of Cl(n),

• Cl−(n) — the odd part of Cl(n).

The grading is completely determined by:

C ⊆ Cl+(n), and V ⊆ Cl−(n), (1.12)

because V generates Cl(n).
There appear substantial differences between even and odd dimension. As

usual, we determine these two cases by taking

• k, such that

n = 2k or 2k + 1. (1.13)

Now we can introduce:

• S — the complex spinor space corresponding to Cl(n),

which is an irreducible Cl(n)-module and, in particular, a complex vector space.
It arises from the isomorphisms which describe the structure of Cl(n):

Cl(2k) ∼= EndC(S), and Cl(2k + 1) ∼= EndC(S)⊕ EndC(S), (1.14)

where we denote:

• EndC(S) — the full algebra of complex linear endomorphisms of S.

In case n = 2k + 1 there are clearly two possible Cl(n)-module structures on the
vector space S; we just permanently choose one of them.
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The choice can be made explicit by considering the element

• ω̃ ∈ Cl(n),

ω̃ = i
n(n+1)

2 e1 · · · en. (1.15)

This element is uniquely determined by the inner product and the orientation. In
fact, up to the scalar factor it directly corresponds to the volume form ω. Now
the two possible projections in case n = 2k + 1,

• πCl
+ , π

Cl
− : Cl(2k + 1)→ EndC(S),

are explicitly distinguished because it holds:

πCl
± (ω̃) = ±1. (1.16)

Also note that the two projections coincide when restricted to the even part
Cl+(2k + 1).

Since V ⊆ Cl(n), the Cl(n)-module structure on the spinor space S restricts to
a bilinear mapping:

• · : V × S→ S — the Clifford multiplication of spinors by vectors.

On the other hand, the Clifford multiplication completely determines the Cl(n)-
module structure on S because V generates Cl(n). Note that we use the same
symbol · for both the product in Cl(n) and Clifford multiplication. This notation
can hardly cause any confusion and is commonly used.

1.3 Representations
Before proceeding to spinor-valued forms we outline the representation theory
of orthogonal and spin groups. The representations are essential for the later
passage to geometry, in particular, the construction of associated vector bundles.
Like in the previous section we are brief and focus only on necessary results. For
more details see any textbook on the representation theory of Lie groups and
algebras, e.g., [6] or [8].

As a general rule, when referring to representations we always consider a
unique standard group action and thus identify representations with their under-
lying spaces.

Firstly, we consider the classical Lie groups:

• O(n) — the orthogonal group of V,

defined as the group of all automorphisms of V which preserve the inner product
g; and its subgroup

• SO(n) — the special orthogonal group of V,

defined as the group of all automorphisms of V which in addition preserve the ori-
entation. Secondly, we consider groups which arise by taking particular invertible
elements in Cl(n):

• Pin(n) — the pin group of V,
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generated by unit vectors in V; and its subgroup

• Spin(n) — the spin group of V,

which is generated by products of two unit vectors in V. The latter two groups
are closed submanifolds of Cl(n) and hence Lie groups.

The two pairs of Lie groups are related via

• the covering homomorphism λ : Pin(n)→ O(n).

It comes from a modification of the adjoint action of Pin(n) on Cl(n), which leaves
the subspace V invariant. Moreover the action on V satisfies:

1) Pin(n) preserves the inner product g.

2) Spin(n) preserves in addition to g also the orientation.

Eventually λ fits into the commutative diagram:

Spin(n) Pin(n)

SO(n) O(n)

λ λ

, (1.17)

where the kernel of λ is:

Ker(λ) = {±1}. (1.18)

The λ is also a smooth two-fold covering map, hence it is indeed a covering
homomorphism of topological groups.

Given the defining action of O(n) and SO(n) and the covering homomorphism
λ, the vector space V becomes a representation of all the four groups. Conse-
quently, the vector spaces V∗ and Ap constructed from V become representations
in the usual way. Note that the actions of distinct groups are always related
through the commutative diagram (1.17).

The groups Pin(n) and Spin(n) have also the spin representation on the spinor
space S. The action on S is given simply by restriction of the Cl(n)-module struc-
ture. The spin representation of Spin(n) is faithful and thus cannot be induced
from a representation of SO(n). Consequently neither the spin representation of
Pin(n) can be induced from a representation of O(n).

Note that the spin representation of Pin(n) depends on the choice of projection
πCl

+ or πCl
− from section 1.2 and in fact there are two non-equivalent representations.

However, since Spin(n) ⊆ Cl+(n) the spin representation of Spin(n) is independent
of this choice and hence unique.

All the representations introduced so far are irreducible with the following
exceptions in case n = 2k:

1) The complexification of real representation Ak of SO(2k) and Spin(2k) decom-
poses as

Ak ⊗ C = Ak+ ⊕ Ak−. (1.19)
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This decomposition is induced by the involutive action of the volume form ω, in
particular the Hodge dual. The real representation Ak itself decomposes similarly
only in the case n = 4l.

2) The spin representation S of Spin(2k) decomposes as

S = S+ ⊕ S−, (1.20)

where

• S+ and S− are the half-spinor spaces.

This decomposition is induced by the element ω̃ from (1.15).

Next we examine several mappings introduced before from the perspective of
representation theory. In order to obtain proper linear maps we first extend the
bilinear products to the corresponding tensor products:

• the inner product g : V ⊗ V→ R,

• the exterior product ∧ : Ap ⊗ Ap
′ → Ap+p

′ ,

• the interior product y : V ⊗ Ap → Ap−1,

• the Clifford multiplication · : V ⊗ S→ S.

It turns out that the mappings mostly commute with the Lie group actions, i.e.,
they are intertwining mappings of the representations. In particular:

1) The inner, exterior and interior products and the orthogonal dual are inter-
twining with respect to O(n) and thus also SO(n), Pin(n) and Spin(n).

2) The Clifford multiplication is intertwining with respect to Pin(n) and thus
also Spin(n).

3) The Hodge dual is intertwining only with respect to SO(n) and thus also
Spin(n) because it depends on the orientation.

We conclude the present section by recalling the highest weight theory for the
Lie algebra so(n). But the theory applies only to simple Lie algebras, so we shall
assume n ≥ 3.

However, for our study of spinor-valued forms this theory is not at all essential
and we reveal it just for the sake of reference. Hence the assumption n ≥ 3 applies
only to the statements about highest weights, which we deem just as auxiliary.
We do not provide proofs of such statements; they can be carried out, for instance,
by directly determining the highest weight vectors.

We consider the Lie algebras:

• so(n) — the special orthogonal Lie algebra of V,

which is the Lie algebra O(n) and SO(n),

• spin(n) — the spin Lie algebra of V,

which is the Lie algebra of Pin(n) and Spin(n).
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The differential of the covering homomorphism,

• dλ : spin(n)→ so(n),

turns out to be an isomorphism of Lie algebras:

spin(n) ∼= so(n). (1.21)

We shall identify the Lie algebras via this isomorphism and subsequently deal
only with so(n).

To each representation of O(n), SO(n), Pin(n) or Spin(n) corresponds a rep-
resentation of so(n) defined by taking its differential. Note that the resulting
representation of so(n) is the same regardless of the Lie group, as long as the
actions of distinct groups are related by the homomorphisms in diagram (1.17).
On the other hand, not every representation of so(n) comes from a representation
of O(n), SO(n) or Pin(n). This is generally possible only for Spin(n) which is the
simply connected compact real form of so(n).

A dominant weight of the Lie algebra so(n) is a k-tuple consisting entirely of
integers or entirely of half-integers,

(µ1, . . . , µk) ∈ Zk ∪ (Z + 1
2
)k, (1.22)

such that:

a) if n = 2k then

µ1 ≥ · · · ≥ µk−1 ≥ |µk|, (1.23)

b) if n = 2k + 1 then

µ1 ≥ · · · ≥ µk ≥ 0. (1.24)

Subsequently we can assign a unique dominant weight:

• µ(U) — the highest weight of U,

to each finite-dimensional irreducible representation U of so(n). This way, all
such representations are classified and enumerated up to an equivalence.

In order to simplify matters we also introduce a special notation to handle
decompositions like (1.19) and (1.20),

µ(U) = (µ1, . . . , µk−1,±µk), (1.25)

meaning that:

a) either n = 2k and U is a direct sum of two irreducible representations U+ and
U− such that

µ(U+) = (µ1, . . . , µk−1, µk),

µ(U−) = (µ1, . . . , µk−1,−µk), (1.26)
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b) or n = 2k + 1 and U is irreducible such that

µ(U) = (µ1, . . . , µk). (1.27)

The highest weights of the representations introduced so far are:

µ(R) = (0, . . . , 0),

µ(V) = µ(V∗) = (1, 0, . . . , 0),

µ(Ap) = (1, . . . , 1︸ ︷︷ ︸
p×

, 0, . . . , 0), ∀p ∈ {0, . . . , k − 1},

µ(Ak) = (1, . . . , 1,±1),

µ(S) = (1
2
, . . . , 1

2
,±1

2
). (1.28)

In general, any representation of so(n) which comes from a representation of
SO(n) or O(n) has highest weight consisting of integers.

1.4 Spinor-valued forms
In this section we introduce and decompose the spaces of spinor-valued forms.
Unless otherwise stated, we always work with representations of the spin group
Spin(n). Accordingly, we assume all mappings intertwining and subspaces invari-
ant with respect to Spin(n). We do not necessarily come down to irreducible
summands. For instance, we do not pursue the decompositions (1.19) and (1.20).
In fact, our decompositions could be proved irreducible just up to a similar sum
of two half-spaces.

We denote:

• SAp the space of spinor-valued alternating p-forms,

which is defined as the tensor product

SAp = Ap ⊗ S. (1.29)

Note that, in particular,

SA0 = R⊗ S = S (1.30)

is just the spinor space. Like with ordinary forms we use the convention

SAp = 0, ∀p ∈ Z \ {0, . . . , n}, (1.31)

which will simplify some subsequent definitions and arguments by induction.
The Clifford multiplication of spinors by vectors can be treated as an EndC(S)-

valued 1-form. We denote this 1-form and its orthogonal dual by

• γ· ∈ V∗ ⊗ EndC(S) — the Clifford multiplication form,

• γ∗· ∈ V ⊗ EndC(S).

They can be described in terms of an orthonormal basis by equations:

γ· =
n∑
i=1

e∗i ⊗ (ei·), γ∗· =
n∑
i=1

ei ⊗ (ei·). (1.32)

Recall that the Clifford multiplication is an intertwining mapping and so will
be mappings constructed using γ· and γ∗·. In fact, the γ· and γ∗· are invariant
elements of the respective representations.
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Subsequently we can build complex expressions from spinor-valued forms and
γ· or γ∗· using:

• the exterior and interior product operating on the form part,

• the Clifford multiplication operating on the spinor part.

As an example, the Clifford multiplication can be expressed as:

X ·Ψ = (X y γ·)Ψ = (γ∗· yX∗)Ψ, ∀X ∈ V, Ψ ∈ S. (1.33)

From (1.6) and (1.10) we can further deduce several identities:

X · (γ· ∧ Φ) + γ· ∧ (X · Φ) = −2X∗ ∧ Φ,

X · (γ∗· y Φ) + γ∗· y (X · Φ) = −2X y Φ,

X y (γ· ∧ Φ) + γ· ∧ (X y Φ) = X · Φ,
X∗ ∧ (γ∗· y Φ) + γ∗· y (X∗ ∧ Φ) = X · Φ, (1.34)

∀Φ ∈ SAp, X ∈ V. These formulas are fundamental for our computations with
spinor-valued forms and we shall use them without further notice. Another
important identity is subject of the next lemma.

Lemma 1. ∀Φ ∈ SAp,

γ∗· y (γ· ∧ Φ)− γ· ∧ (γ∗· y Φ) = (2p− n)Φ. (1.35)

Proof. Using (1.6), (1.11) and (1.32) we compute:

γ∗· y (γ· ∧ Φ) =
n∑

i,j=1

ei y (e∗j ∧ (ei · ej · Φ)) =

=
n∑
i=1

ei · ei · Φ−
n∑

i,j=1

e∗j ∧ (ei y (ei · ej · Φ)) =

= −nΦ + 2
n∑
i=1

e∗i ∧ (ei y Φ) +
n∑

i,j=1

e∗j ∧ (ei y (ej · ei · Φ)) =

= (2p− n)Φ + γ· ∧ (γ∗· y Φ).

We can also put together the spaces SAp yielding:

• SA — the space of all spinor-valued forms,

SA = A⊗ S = SA0 ⊕ · · · ⊕ SAn. (1.36)

Note that SA is clearly a representation of Spin(n) but it is no longer an algebra,
contrary to the exterior algebra A. Now (γ·∧) and (γ∗·y) become linear algebraic
operators:

• (γ·∧) : SA→ SA,

(γ·∧)(Φ) = γ· ∧ Φ, (1.37)
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• (γ∗·y) : SA→ SA,

(γ∗·y)(Φ) = γ∗· y Φ, (1.38)

∀Φ ∈ SA. In order to get more compact formulas, we shall often work with these
operators alone without the argument Φ. We can also take the iterations of these
operators. Restricting back to p-forms we get mappings for p′ > p,

• (γ·∧)p
′−p|SAp : SAp → SAp

′
,

(γ·∧)p
′−p(Φ) = γ· ∧ (. . . (γ·∧︸ ︷︷ ︸

(p′−p)×

Φ) . . . ), (1.39)

∀Φ ∈ SAp,

• (γ∗·y)p′−p|SAp′ : SA
p′ → SAp,

(γ∗·y)p′−p(Φ) = γ∗· y (. . . (γ∗·y︸ ︷︷ ︸
(p′−p)×

Φ) . . . ), (1.40)

∀Φ ∈ SAp
′
.

As usual we additionally define the zero power of an operator to be the identity
mapping,

(γ·∧)0 = (γ∗·y)0 = 1SA. (1.41)

Unfortunately, the mappings (γ·∧)p−p
′ and (γ∗·y)p−p′ are generally not even one-

sided inverses of each other, but they come close to being so.
Decomposition of the space SA and, in particular, its subspaces SAp can be

obtained using the technique of Howe dual pairs. If we denote the following
intertwining operators on SA

X = (γ·∧), Y = −(γ∗·y), H = [X, Y ], (1.42)

it turns out that they span a Lie algebra isomorphic to

• sl(2) — the special linear Lie algebra on 2-dimensional vector space.

Consequently, the well-known structure of representations of sl(2) can be utilized
to decompose SA with respect to Pin(n) and Spin(n). This approach was first
carried out by M. Slupinski in [15] and later employed by P. Somberg in [16]; for
the general technique see also [9].

Here we follow the approach in a rather elementary way yielding the decom-
position without explicitly utilizing the representations of sl(2). First note that
(1.35) can be written as

H|SAp = [(γ∗·y), (γ·∧)]|SAp = (2p− n). (1.43)

Hence the decomposition of SA to SAp is in fact the eigenvalue decomposition
with respect to H and the spaces SAp are weight spaces of sl(2).

12



To further decompose SAp we introduce:

• the invariant subspace of primitive spinor-valued q-forms Uq ⊆ SAq,

Uq = Ker((γ∗·y)|SAq) = {Φ ∈ SAq | γ∗· y Φ = 0}. (1.44)

Recall the number k defined in (1.13) and unless otherwise stated we always
assume that

q ∈ {0, . . . , k}. (1.45)

Comparing the dimensions implies that all the Uq must be non-zero. Note that,
in particular,

U0 = SA0 = S. (1.46)

The highest weight of Uq with respect to so(n) is given by

µ(Uq) = (3
2
, . . . , 3

2︸ ︷︷ ︸
q×

, 1
2
, . . . , 1

2
,±1

2
), ∀q ∈ {0, . . . , k − 1},

µ(Uk) = (3
2
, . . . , 3

2
,±3

2
). (1.47)

On the other hand, Uq consists of lowest weight vectors with respect to sl(2) from
the Howe duality.

We further introduce

• invariant subspaces SAp[q] ⊆ SAp,

SAp[q] = (γ·∧)p−q(Uq), ∀q ∈ {0, . . . , l(p)}, (1.48)

• where we denote l(p) ∈ {0, . . . , k},

l(p) = min{p, n− p}. (1.49)

Note that, in particular,

SAq[q] = Uq. (1.50)

Also note that

q ∈ {0, . . . , l(p)} is equivalent to p ∈ {q, . . . , n− q}. (1.51)

These subspaces will turn out to form an eigenvalue decomposition of SAp.

Lemma 2. ∀q ∈ {0, . . . , l(p)},

γ∗· y (γ·∧)|SAp[q] = −(p− q + 1)(n− p− q). (1.52)

Proof. We proceed by induction on p.

1) If p = q then (1.52) follows directly from (1.35).

13



2) Next suppose p > q. So let Φ ∈ SAp[q] and by (1.48) there exists Φ′ ∈ Uq

such that

Φ = (γ·∧)p−q(Φ′).

Using (1.35) and the induction hypothesis, we compute:

γ∗· y (γ· ∧ Φ) = γ∗· y (γ·∧)p−q+1(Φ′) =

= (2p− n)(γ·∧)p−q(Φ′) + γ· ∧ (γ∗· y (γ·∧)p−q(Φ′)) =

= (2p− n− (p− q)(n+ 1− p− q))(γ·∧)p−q(Φ′) =

= −(p− q + 1)(n− p− q)Φ.

Combining (1.52) with (1.35) we get the following dual identity.

Corollary 3. ∀q ∈ {0, . . . , l(p)},

γ· ∧ (γ∗·y)|SAp[q] = −(p− q)(n− p− q + 1). (1.53)

We denote the scalar factor from (1.52) by

c(q, p) = −(p− q + 1)(n− p− q). (1.54)

Clearly c(q, p) is non-zero unless p = n− q.

Corollary 4. Let q ∈ {0, . . . , k} and p, p′ ∈ {q, . . . , n−q} such that p < p′. Then
the restricted mappings

• (γ·∧)p
′−p|SAp[q] : SA

p[q]→ SAp
′
[q], and

• (γ∗·y)p′−p|SAp′ [q] : SA
p′ [q]→ SAp[q]

are mutually inverse isomorphisms up to a non-zero constant. In particular,

Uq = SAq[q] ∼= . . . ∼= SAp[q] ∼= . . . ∼= SAp
′
[q] ∼= . . . ∼= SAn−q[q]. (1.55)

Proof. At first we prove the case when p′ = p+ 1. By (1.52) we have

(γ∗·y) ◦ (γ·∧)|SAp[q] = γ∗· y (γ·∧)|SAp[q] = c(q, p),

with c(q, p) non-zero since p + 1 ≤ n − q. By (1.48) the image of (γ·∧)|SAp[q] is
indeed SAp+1[q] and the claim follows.

Now the general case follows easily by induction.

Corollary 5. The subspaces SAp[q] are linearly independent, that is, they form
a direct sum

SAp[0]⊕ · · · ⊕ SAp[l(p)] ⊆ SAp. (1.56)

Proof. According to (1.52), the subspaces SAp[q] are eigenvalue subspaces of the
mapping γ∗· y (γ·∧). Hence it suffices to show that the eigenvalues c(q, p) are
mutually different. Now by (1.54) if

c(q1, p) = c(q2, p),

then either

q1 = q2 or q1 + q2 = n+ 1.

But the second case cannot occur since q1, q2 ∈ {0, . . . , k}.
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Proposition 6. The space SAp decomposes as:

SAp = SAp[0]⊕ · · · ⊕ SAp[l(p)] ∼= U0 ⊕ · · · ⊕ Ul(p). (1.57)

Proof. We shall proceed by induction on p.

1) First if p = 0, then

SA0 = U0 = SA0[0],

so there is nothing to prove.

2) Next let 0 < p ≤ k. By the induction hypothesis the space SAp−1 decom-
poses as

SAp−1 = SAp−1[0]⊕ · · · ⊕ SAp−1[p− 1].

Hence, according to corollaries 4 and 5, the mapping (γ∗·y) maps the subspace

SAp[0]⊕ · · · ⊕ SAp[p− 1] ⊆ SAp

isomorphically onto SAp−1. Moreover, we have

Ker((γ∗·y)|SAp) = Up = SAp[p]

and (1.57) follows by the isomorphism theorem.

3) Finally let k < p ≤ n. From corollary 5 we already have the inclusion

SAp[0]⊕ · · · ⊕ SAp[n− p] ⊆ SAp.

From the induction hypothesis for n− p we have

SAn−p = SAn−p[0]⊕ · · · ⊕ SAn−p[n− p].

The spaces SAp and SAn−p have equal dimension and by corollary 4

SAp[q] ∼= SAn−p[q],

hence the inclusion must be equality.

We denote the projections corresponding to the decomposition (1.57) by

• πSA
p,q : SAp → SAp[q] — the qth primitive part,

∀q ∈ {0, . . . , l(p)}. We additionally define

πSA
p,q = 0, (1.58)

∀q /∈ {0, . . . , l(p)}. From corollary 4 and proposition 6 follows that these projec-
tions commute with the mappings (γ·∧) and (γ∗·y),

γ· ∧ πSA
p,q = πSA

p+1,q ◦ (γ·∧)|SAp ,

γ∗· y πSA
p,q = πSA

p−1,q ◦ (γ∗·y)|SAp . (1.59)
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Corollary 7. In particular, ∀Φ ∈ Uk:

a) either n = 2k + 1 and then

γ· ∧ (γ· ∧ Φ) = 0. (1.60)

b) or n = 2k and then

γ· ∧ Φ = 0, (1.61)

Proof. Again a direct consequence of corollary 4 and proposition 6.

Having the decomposition (1.57), we can denote

• invariant subspace Wp ⊆ SAp,

Wp = SAp[1]⊕ · · · ⊕ SAp[l(p)], (1.62)

with the lowest summand isomorphic to U0 = S omitted. In particular,

W0 = Wn = 0. (1.63)

This space and the following technical lemma will play an important role in
the next section. In fact, the lemma is the main reason why we examined the
decomposition so closely.

Lemma 8. Let p < n. The mapping

• ηp : SAp → SAp,

ηp = 1 + 1
(p+1)(n−p) γ

∗· y (γ·∧), (1.64)

maps SAp onto Wp and its kernel is

Ker(ηp) = SAp[0]. (1.65)

The restriction of ηp to Wp has an inverse η−1
p : Wp → Wp determined by:

η−1
p |SAp[q] = (p+1)(n−p)

q(n−q+1)
. (1.66)

Proof. Using (1.52) we evaluate ηp on SAp[q]:

ηp|SAp[q] = 1 + 1
(p+1)(n−p) γ

∗· y (γ·∧) = 1− (p−q+1)(n−p−q)
(p+1)(n−p) = q(n−q+1)

(p+1)(n−p) .

The numerator is clearly zero if and only if q = 0 and the claim follows.
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1.5 Twistor module
In the present section we decompose

• the tensor product DSAp = V∗ ⊗ SAp,

with respect to Spin(n). We first deal with the cases p = 0 or n for which the
decomposition degenerates. As a matter of fact, the decomposition of DSA0 is
just a special case of (1.57):

V∗ ⊗ S = SA1 ∼= S⊕ U1. (1.67)

Recall from (1.44) that U1 is defined as kernel of the mapping (γ∗·y)|SA1 which
realizes the Clifford multiplication. The corresponding projections and injection
can be easily computed to be:

• πDS
0 : V∗ ⊗ S→ S,

πDS
0 (ξ ⊗Ψ) = ξ∗ ·Ψ, (1.68)

• ιDS
0 : S→ V∗ ⊗ S,

ιDS
0 (Ψ) = − 1

n

n∑
i=1

e∗i ⊗ (ei ·Ψ), (1.69)

• πDS
1 : V∗ ⊗ S→ U1,

πDS
1 (ξ ⊗Ψ) = (1V∗⊗S − ιDS

0 ◦ πDS
0 )(ξ ⊗Ψ) =

= ξ ⊗Ψ + 1
n

n∑
i=1

e∗i ⊗ (ei · ξ∗ ·Ψ), (1.70)

∀ξ ∈ V∗, Ψ ∈ S. The projection πDS
1 gives rise to the twistor operator and

therefore we call the space

• U1 — twistor module of S.

From (1.47) we can deduce that it contains the highest weight component,

µ(U1) = (3
2
, 1

2
, . . . , 1

2
,±1

2
). (1.71)

We have also SAn ∼= SA0 and hence DSAn decomposes analogously.
Before proceeding further we turn to ordinary p-forms for a while. There is a

decomposition invariant with respect to O(n):

V∗ ⊗ Ap ∼= Ap−1 ⊕ Ap+1 ⊕ Ap,1. (1.72)

We call the space

• Ap,1 — twistor module of Ap.

It is defined as the intersection of kernels of the exterior and interior product
maps. In fact, it is again the highest weight component,

µ(Ap,1) = (2, 1, . . . , 1︸ ︷︷ ︸
(p−1)×

, 0, . . . , 0), ∀p ∈ {1, . . . , k − 1},

µ(Ak,1) = (2, 1, . . . , 1,±1). (1.73)

This decomposition was proved by Stein and Weiss in [17] and later employed by
Semmelmann in [14].
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Now we combine the cases of spinors and ordinary forms. As a result, we carry
the notion of twistor module over to spinor-valued forms. We take the following
projections and injections:

• πDSA
p,p−1 : V∗ ⊗ SAp → SAp−1,

πDSA
p,p−1(ξ ⊗ Φ) = ξ∗ y Φ, (1.74)

• ιDSA
p,p−1 : SAp−1 → V∗ ⊗ SAp,

ιDSA
p,p−1(Ξ′) =

n∑
i=1

e∗i ⊗ (e∗i ∧ Ξ′), (1.75)

• πDSA
p,p : V∗ ⊗ SAp → SAp,

πDSA
p,p (ξ ⊗ Φ) = ξ∗ · Φ, (1.76)

• ιDSA
p,p : SAp → V∗ ⊗ SAp,

ιDSA
p,p (Φ) =

n∑
i=1

e∗i ⊗ (ei · Φ), (1.77)

• πDSA
p,p+1 : V∗ ⊗ SAp → SAp+1,

πDSA
p,p+1(ξ ⊗ Φ) = ξ ∧ Φ, (1.78)

• ιDSA
p,p+1 : SAp+1 → V∗ ⊗ SAp,

ιDSA
p,p+1(Ξ) =

n∑
i=1

e∗i ⊗ (ei y Ξ), (1.79)

∀ξ ∈ V∗, Ξ′ ∈ SAp−1, Φ ∈ SAp, Ξ ∈ SAp+1. Up to a non-zero constant the
injections are indeed right inverses of the projections. We are omitting the
normalization for now because we shall need to modify those projections and
injections first.

Lemma 9. The projections and injections from (1.74)–(1.79) satisfy:

πDSA
p,p−1 ◦ ιDSA

p,p−1 = n− p+ 1, πDSA
p,p−1 ◦ ιDSA

p,p+1 = 0,

πDSA
p,p+1 ◦ ιDSA

p,p+1 = p+ 1, πDSA
p,p+1 ◦ ιDSA

p,p−1 = 0, (1.80)

πDSA
p,p ◦ ιDSA

p,p−1 = (γ·∧)|SAp−1 , πDSA
p,p ◦ ιDSA

p,p+1 = (γ∗·y)|SAp+1 ,

πDSA
p,p−1 ◦ ιDSA

p,p = (γ∗·y)|SAp , πDSA
p,p+1 ◦ ιDSA

p,p = (γ·∧)|SAp , (1.81)

πDSA
p,p ◦ ιDSA

p,p = −n. (1.82)
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Proof. The first four equations (1.80) follow easily from the basic properties of
the exterior and interior product (1.6). The next four equations (1.81) are in turn
a direct consequence of the definition (1.32) of γ· and γ∗·. For the last equation
(1.82) we have:

πDSA
p,p ◦ ιDSA

p,p =
n∑
i=1

(ei · ei·) = −n.

However, decomposition of DSAp is not as simple as it may appear now.
Firstly, lemma 9 shows that ιDSA

p,p (SAp) does not lie in the kernels of πDSA
p,p+1 and

πDSA
p,p−1. But there is also a more substantial difficulty. As we shall see in a moment,

the spaces SAp, SAp+1 and SAp−1 cannot be embedded in DSAp independently; in
fact, DSAp contains just two copies of the spinor space S. A key observation is
the subject of the following lemma.

Lemma 10. The projections of πDSA
p,p−1, πDSA

p,p and πDSA
p,p+1 are not independent,

namely the zeroth primitive parts are related by:

πSA
p,0 ◦

(
1

n−p+1
γ· ∧ πDSA

p,p−1 − πDSA
p,p + 1

p+1
γ∗· y πDSA

p,p+1

)
= 0. (1.83)

Proof. We take ξ ∈ V∗ and Φ ∈ SAp and proceed by induction on p.

1) Let p = 0 and we directly compute:(
1

n+1
γ· ∧ πDSA

0,−1 − πDSA
0,0 + γ∗· y πDSA

0,1

)
(ξ ⊗ Φ) =

= −ξ∗ · Φ + γ∗· y (ξ ∧ Φ) = −ξ∗ · Φ + ξ∗ · Φ− ξ ∧ (γ∗· y Φ) = 0.

2) Let p > 0. We first compute using (1.53) and (1.59):

γ· ∧ πSA
p−1,0(γ· ∧ (ξ∗ y (γ∗· y Φ))) = πSA

p,0((p− 1)(n− p+ 2)γ· ∧ (ξ∗ y Φ)),

γ· ∧ πSA
p−1,0(ξ∗ · (γ∗· y Φ)) = πSA

p,0(−2γ· ∧ (ξ∗ y Φ) + p(n− p+ 1)ξ∗ · Φ),

γ· ∧ πSA
p−1,0(γ∗· y (ξ ∧ (γ∗· y Φ))) =

= πSA
p,0(p(n− p+ 1)(−ξ∗ · Φ + γ∗· y (ξ ∧ Φ))).

Now we use the induction hypothesis and substitute the above equalities:

0 = γ· ∧ πSA
p−1,0 ◦

(
1

n−p+2
γ· ∧ πDSA

p−1,p−2 − πDSA
p−1,p−1 +

+ 1
p
γ∗· y πSA

p−1,p

)
(ξ ⊗ (γ∗· y Φ)) =

= πSA
p,0((p− 1)γ· ∧ (ξ∗ y Φ) + 2γ· ∧ (ξ∗ y Φ)− p(n− p+ 1)ξ∗ · Φ−

− (n− p+ 1)ξ∗ · Φ + (n− p+ 1)γ∗· y (ξ ∧ Φ)) =

= (p+ 1)(n− p+ 1)πSA
p,0 ◦

(
1

n−p+1
γ· ∧ πDSA

p,p−1 − ξ∗ · πDSA
p,p +

+ 1
p+1

γ∗· y πDSA
p,p+1

)
(ξ ⊗ Φ).

For the rest of the section we exclude the degenerate cases and assume

p ∈ {1, . . . , n− 1}. (1.84)
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Definition 11. We call

• SAp,1 — twistor module of SAp,

the intersection of kernels of the projections defined above,

SAp,1 = Ker(πDSA
p,p−1) ∩Ker(πDSA

p,p ) ∩Ker(πDSA
p,p+1). (1.85)

Now we shall modify the embeddings given by the projections and injections
from (1.74)–(1.79) in order to obtain decomposition of DSAp. Since the spaces
SAp are highly reducible as shown in proposition 6, we have certain freedom in
choosing the modified embeddings. Perhaps the most natural choice would be to
modify just the embedding of SAp since the embeddings of SAp−1 and SAp+1 are
already independent. However, for our purposes we make a different choice:

1) We preserve the embedding of SAp+1 as it is.

2) We modify the embedding of SAp to be independent of SAp+1.

3) Finally, we modify the embedding of SAp−1 to be independent of the first two.
As already suggested and implied by lemma 10, we cannot obtain an embedding
of the whole space SAp−1 but only of its subspace which turns out to be Wp−1.

Even within these constraints we still have certain freedom of choice and we
choose particular formulas that are preferably simple. By now we also include
appropriate normalization of the injections. So we define:

• π̃ DSA
p,p+1 : DSAp → SAp+1,

π̃ DSA
p,p+1 = πDSA

p,p+1, (1.86)

• ι̃ DSA
p,p+1 : SAp+1 → DSAp,

ι̃ DSA
p,p+1 = 1

p+1
ιDSA
p,p+1, (1.87)

• π̃ DSA
p,p : DSAp → SAp,

π̃ DSA
p,p = πDSA

p,p − 1
p+1

γ∗· y πDSA
p,p+1 + 1

p+1
γ· ∧ πDSA

p,p−1, (1.88)

• ι̃ DSA
p,p : SAp → DSAp,

ι̃ DSA
p,p = − p+1

p(n+2)

(
ιDSA
p,p − 1

p+1
ιDSA
p,p+1 ◦ (γ·∧)

)
, (1.89)

• π̃ DSA
p,p−1 : DSAp → Wp−1,

π̃ DSA
p,p−1 = πDSA

p,p−1 + p+1
p(n+2)

γ∗· y π̃ DSA
p,p , (1.90)

• ι̃ DSA
p,p−1 : Wp−1 → DSAp,

ι̃ DSA
p,p−1 = 1

n−p+1

(
ιDSA
p,p−1 − n+2

p+1
ι̃ DSA
p,p ◦ (γ·∧)

)
◦ η−1

p−1, (1.91)

∀ξ ∈ V∗, Ξ ∈ SAp+1, Φ ∈ SAp, Ξ′ ∈ Wp−1 and where η−1
p−1 is the inverse mapping

from lemma 8.
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Lemma 12. The zeroth primitive part of π̃ DSA
p,p−1 vanishes,

πSA
p−1,0 ◦ π̃ DSA

p,p−1 = 0, (1.92)

so the image of π̃ DSA
p,p−1 is indeed contained in Wp−1.

Proof. Using (1.52) and (1.59) we compute:

πSA
p−1,0 ◦ π̃ DSA

p,p−1 = γ∗· y πSA
p−1,0 ◦

(
− 1

p(n−p+1)
γ· ∧ πDSA

p,p−1 +

+ p+1
p(n+2)

(
πDSA
p,p − 1

p+1
γ∗· y πDSA

p,p+1 + 1
p+1

γ· ∧ πDSA
p,p−1

))
=

= − p+1
p(n+2)

γ∗· y πSA
p−1,0

(
1

n−p+1
γ· ∧ πDSA

p,p−1 − πDSA
p,p + 1

p+1
γ∗· y πDSA

p,p+1

)
,

and (1.92) follows by (1.83) of lemma 10.

Lemma 13. ∀r ∈ {p, p+ 1}, s ∈ {p− 1, p, p+ 1},

π̃ DSA
p,r ◦ ι̃ DSA

p,s = δrs1SAr ,

π̃ DSA
p,p−1 ◦ ι̃ DSA

p,s = δ(p−1)s1Wp−1 , (1.93)

Proof. Using the defining equations (1.86)–(1.91) together with (1.80)–(1.82),
(1.35) and (1.64) we compute:

π̃ DSA
p,p+1 ◦ ι̃ DSA

p,p+1 = 1,

π̃ DSA
p,p+1 ◦ ι̃ DSA

p,p = − p+1
p(n+2)

((γ·∧)− (γ·∧)) = 0,

π̃ DSA
p,p+1 ◦ ι̃ DSA

p,p−1 = 1
n−p+1

(0− 0) ◦ η−1
p−1 = 0,

π̃ DSA
p,p ◦ ι̃ DSA

p,p+1 = 1
p+1

((γ∗·y)− (γ∗·y) + 0) = 0,

π̃ DSA
p,p ◦ ι̃ DSA

p,p = − p+1
p(n+2)

(
− n− 1

p+1
(γ∗· y (γ·∧)− γ· ∧ (γ∗·y))− 0

)
=

= − p+1
p(n+2)

(
−n− 2p−n

p+1

)
= 1,

π̃ DSA
p,p ◦ ι̃ DSA

p,p−1 = 1
n−p+1

(
(γ·∧)− 0 + n−p+1

p+1
(γ·∧)− n+2

p+1
(γ·∧)

)
◦ η−1

p−1 = 0,

π̃ DSA
p,p−1 ◦ ι̃ DSA

p,p+1 = 1
p+1

(0 + 0) = 0,

π̃ DSA
p,p−1 ◦ ι̃ DSA

p,p = − p+1
p(n+2)

((γ∗·y)− 0) + p+1
p(n+2)

(γ∗·y) = 0,

π̃ DSA
p,p−1 ◦ ι̃ DSA

p,p−1 = 1
n−p+1

(
(n− p+ 1)− 0 + 0− 1

p
γ∗· y (γ·∧)

)
◦ η−1

p−1 =

= ηp−1 ◦ η−1
p−1 = 1.
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Lemma 14. The simultaneous kernel of the modified projections coincides with
the twistor module SAp,1,

Ker(π̃ DSA
p,p−1) ∩Ker(π̃ DSA

p,p ) ∩Ker(π̃ DSA
p,p+1) =

= Ker(πDSA
p,p−1) ∩Ker(πDSA

p,p ) ∩Ker(πDSA
p,p+1) = SAp,1. (1.94)

Proof. From the defining equations (1.86), (1.88) and (1.90) follows that π̃ DSA
p,p+1,

π̃ DSA
p,p , π̃ DSA

p,p−1 are linearly dependent on πDSA
p,p+1, πDSA

p,p , πDSA
p,p−1 and also vice versa.

Hence the simultaneous kernels must coincide.

We further denote
• the invariant subspaces DSAp[r] ⊆ DSAp given as

DSAp[r] = ι̃ DSA
p,r (SAr), ∀r ∈ {p, p+ 1},

DSAp[p− 1] = ι̃ DSA
p,p−1(Wp−1). (1.95)

Proposition 15. The tensor product DSAp = V∗ ⊗ SAp decomposes as

DSAp = DSAp[p− 1]⊕ DSAp[p]⊕ DSAp[p+ 1]⊕ SAp,1 ∼=
∼= Wp−1 ⊕ SAp ⊕ SAp+1 ⊕ SAp,1. (1.96)

Proof. Follows from lemmas 13 and 14 by the isomorphism theorem.

The remaining projection onto the twistor module
• πDSA

p,(p,1) : DSAp → SAp,1,
is now given by:

πDSA
p,(p,1) = 1DSAp − ι̃ DSA

p,p−1 ◦ π̃ DSA
p,p−1 − ι̃ DSA

p,p ◦ π̃ DSA
p,p − ι̃ DSA

p,p+1 ◦ π̃ DSA
p,p+1. (1.97)

1.6 Primitive twistor module
In this section we decompose
• the tensor product DUq = V∗ ⊗ Uq,
with respect to Spin(n). We again exclude the already resolved case q = 0 and
assume

q ∈ {1, . . . , k}. (1.98)

Definition 16. We call
• Uq,1 — twistor module of Uq,

the corresponding subspace of SAq,1,

Uq,1 = DUq ∩ SAq,1 =

= DUq ∩Ker(πDSA
q,q−1) ∩Ker(πDSA

q,q ) ∩Ker(πDSA
q,q+1). (1.99)

It can be shown, that the highest weight of Uq,1 is given by

µ(U1,1) = (5
2
, 1

2
, . . . , 1

2
,±1

2
),

µ(Uq,1) = (5
2
, 3

2
, . . . , 3

2︸ ︷︷ ︸
(q−1)×

, 1
2
, . . . , 1

2
,±1

2
), ∀q ∈ {2, . . . , k − 1},

µ(Uk,1) = (5
2
, 3

2
, . . . , 3

2
,±3

2
), (1.100)

so it again contains the highest weight component.
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This time we modify the projections and injections from (1.74)–(1.79) so that
we get independent embeddings of Uq−1, Uq and Uq+1 in DUq. Yet we have to
be careful in case q = k, at least because the space Uk+1 does not even exist.
In the primitive case no multiplicities occur in the decomposition and hence the
embeddings are unique. So we define:

• πDU
q,q−1 : DUq → Uq−1,

πDU
q,q−1 = πDSA

q,q−1|DUq , (1.101)

• ιDU
q,q−1 : Uq−1 → DUq,

ιDU
q,q−1 = 1

n−q+2

(
ιDSA
q,q−1 − 1

n−2q+2

(
ιDSA
q,q ◦ (γ·∧) +

+ 1
n−2q+1

ιDSA
q,q+1 ◦ (γ·∧)2

))∣∣∣
Uq−1

=

=
n∑
i=1

e∗i ⊗ ιDU
q,q−1[i], (1.102)

where

ιDU
q,q−1[i] = 1

n−q+2

(
(e∗i∧)− 1

n−2q+2

(
ei · (γ·∧) +

+ 1
n−2q+1

ei y (γ·∧)2
))∣∣∣

Uq−1
, (1.103)

• πDU
q,q : DUq → Uq, defined only when 2q < n,

πDU
q,q =

(
πDSA
q,q − 2

n−2q+2
γ· ∧ πDSA

q,q−1

)∣∣∣
DUq

, (1.104)

• ιDU
q,q : Uq → DUq, defined only when 2q < n,

ιDU
q,q = − 1

n+2

(
ιDSA
q,q + 2

n−2q
ιDSA
q,q+1 ◦ (γ·∧)

)∣∣∣
Uq

=
n∑
i=1

e∗i ⊗ ιDU
q,q [i], (1.105)

where

ιDU
q,q [i] = − 1

n+2

(
(ei·) + 2

n−2q
ei y (γ·∧)

)∣∣∣
Uq
, (1.106)

• πDU
q,q+1 : DUq → Uq+1, defined only when 2q + 1 < n,

πDU
q,q+1 =

(
πDSA
q,q+1 + 1

n−2q

(
γ· ∧ πDSA

q,q −

− 1
n−2q+1

(γ·∧)2 ◦ πDSA
q,q−1

))∣∣∣
DUq

, (1.107)

• ιDU
q,q+1 : Uq+1 → DUq, defined only when 2q + 1 < n,

ιDU
q,q+1 = 1

q+1
ιDSA
q,q+1|Uq+1 =

n∑
i=1

e∗i ⊗ ιDU
q,q+1[i], (1.108)
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where

ιDU
q,q+1[i] = 1

q+1
(eiy)|Uq+1 . (1.109)

Recall the symbol l(p) from (1.49). Consequently note that πDU
q,r and ιDU

q,r are
defined if and only if:

r ∈ {q − 1, . . . , l(q + 1)} =


{q − 1, q, q + 1}, when 2q + 1 < n,

{q − 1, q}, when 2q + 1 = n,

{q − 1}, when 2q = n.

(1.110)

We employ this fact in the following in order to treat at once all the cases including
the degenerate ones when q = k.
Lemma 17. ∀r ∈ {q − 1, . . . , l(q + 1)}, i ∈ {1, . . . , n},

(γ∗·y) ◦ πDU
q,r = 0, and (γ∗·y) ◦ ιDU

q,r [i] = 0. (1.111)

In other words, it indeed holds

πDU
q,r (DUq) ⊆ Ur and ιDU

q,r (Ur) ⊆ DUq. (1.112)

Proof. Let ξ ∈ V∗, Φ ∈ Uq and using (1.35) we compute for the projections:

γ∗· y πDU
q,q−1(ξ ⊗ Φ) = γ∗· y (ξ∗ y Φ) = −ξ∗ y (γ∗· y Φ) = 0,

γ∗· y πDU
q,q (ξ ⊗ Φ) = γ∗· y

(
ξ∗ · Φ− 2

n−2q
γ· ∧ (ξ∗ y Φ)

)
=

= −ξ∗ · (γ∗· y Φ)− 2ξ∗ y Φ + 2(n−2q)
n−2q

ξ∗ y Φ = 0.

γ∗· y πDU
q,q+1(ξ ⊗ Φ) =

= γ∗· y
(
ξ ∧ Φ + 1

n−2q

(
γ· ∧ (ξ∗ · Φ)− 1

n−2q+1
(γ·∧)2(ξ∗ y Φ)

))
=

= −ξ ∧ (γ∗· y Φ) + ξ∗ · Φ− n−2q
n−2q

ξ∗ · Φ +

+ 1
n−2q

(
−2γ· ∧ (ξ∗ y Φ) + (n−2q)+(n−2q+2)

n−2q+1
γ· ∧ (ξ∗ y Φ)

)
= 0.

And for the injections:

γ∗· y ιDU
q,q+1[i]|Uq+1 = γ∗· y (eiy)|Uq+1 = −ei y (γ∗·y)|Uq+1 = 0,

γ∗· y ιDU
q,q [i]|Uq = − 1

n+2
γ∗· y

(
(ei·) + 2

n−2q
ei y (γ·∧)

)∣∣∣
Uq

=

= 1
n+2

(
ei · (γ∗·y) + 2(eiy)− 2(n−2q)

n−2q
(eiy)

)∣∣∣
Uq

= 0,

γ∗· y ιDU
q,q−1[i]|Uq−1 =

= 1
n−q+2

γ∗· y
(

(e∗i∧)− 1
n−2q+2

(
ei · (γ·∧) + 1

n−2q+1
ei y (γ·∧)2

))∣∣∣
Uq−1

=

= 1
n−q+2

(
−e∗i ∧ (γ∗·y) + (ei·)− n−2q+2

n−2q+2
(ei·) +

+ 1
n−2q+2

(
2ei y (γ·∧)− (n−2q)+(n−2q+2)

n−2q+1
ei y (γ·∧)

))∣∣∣
Uq−1

= 0.

We further denote
• the invariant subspaces DUq[r] ⊆ DUq given as

DUq[r] = ιDU
q,r (Ur), ∀r ∈ {q − 1, . . . , l(q + 1)}. (1.113)
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Lemma 18. ∀r ∈ {q − 1, . . . , l(q + 1)},

πDU
q,r ◦ ιDU

q,s = δrs1Ur . (1.114)

Proof. Using the defining equations (1.101)–(1.108) together with (1.80)–(1.82),
(1.52) and (1.53) we compute:

πDU
q,q−1 ◦ ιDU

q,q+1 = πDSA
q,q−1 ◦ ιDU

q,q+1 = 0,

πDSA
q,q ◦ ιDU

q,q+1 = 1
q+1

(γ∗·y)|Uq+1 = 0,

πDU
q,q ◦ ιDU

q,q+1 = 0− 0 = 0,

πDSA
q,q+1 ◦ ιDU

q,q+1 = 1,

πDU
q,q+1 ◦ ιDU

q,q+1 = 1 + 0− 0 = 1,

πDU
q,q−1 ◦ ιDU

q,q = πDSA
q,q−1 ◦ ιDU

q,q = − 1
n+2

((γ∗·y) + 0)|Uq = 0,

πDSA
q,q ◦ ιDU

q,q = − 1
n+2

(
−n+ 2

n−2q
γ∗· y (γ·∧)

)∣∣∣
Uq

=

= − 1
n+2

(
−n− 2(n−2q)

n−2q

)
= 1,

πDU
q,q ◦ ιDU

q,q = 1− 0 = 1,

πDSA
q,q+1 ◦ ιDU

q,q = − 1
n+2

(
(γ·∧) + 2(q+1)

n−2q
(γ·∧)

)∣∣∣
Uq

= − 1
n−2q

(γ·∧)|Uq ,

πDU
q,q+1 ◦ ιDU

q,q =
(
− 1
n−2q

(γ·∧) + 1
n−2q

((γ·∧)− 0)
)∣∣∣

Uq
= 0,

πDU
q,q−1 ◦ ιDU

q,q−1 = πSA
q,q−1 ◦ ιDU

q,q−1 =

= 1
n−q+2

(
(n− q + 1)− 1

n−2q+2
(γ∗· y (γ·∧) + 0)

)∣∣∣
Uq−1

=

= 1
n−q+2

((n− q + 1) + 1) = 1,

πDSA
q,q ◦ ιDU

q,q−1 =

= 1
n−q+2

(
(γ·∧)− 1

n−2q+2

(
−n(γ·∧) + 1

n−2q+1
γ∗· y (γ·∧)2

))∣∣∣
Uq−1

=

= 1
n−q+2

(
1 + n+2

n−2q+2

)
(γ·∧)|Uq−1 = 2

n−2q+2
(γ·∧)|Uq−1 ,
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πDU
q,q ◦ ιDU

q,q−1 =
(

2
n−2q+2

(γ·∧)− 2
n−2q+2

(γ·∧)
)∣∣∣

Uq−1
= 0,

πDSA
q,q+1 ◦ ιDU

q,q−1 = 1
n−q+2

(
0− 1

n−2q+2

(
(γ·∧)2 + q+1

n−2q+1
(γ·∧)2

))∣∣∣
Uq−1

=

= − 1
(n−2q+2)(n−2q+1)

(γ·∧)2|Uq−1 ,

πDU
q,q+1 ◦ ιDU

q,q−1 =
(
− 1

(n−2q+2)(n−2q+1)
(γ·∧)2

+ 1
n−2q

(
2

n−2q+2
(γ·∧)2 − 1

n−2q+1
(γ·∧)2

))∣∣∣
Uq−1

= 0.

Next we express the original projections by formulas inverse to (1.101), (1.104)
and (1.107). But first we prove a technical lemma which will help us handle the
degenerate cases.

Lemma 19. ∀Φ ∈ Uq and ξ ∈ V∗:

a) if 2q + 1 = n, then

ξ ∧ Φ = −γ· ∧ (ξ∗ · Φ) + 1
2
γ· ∧ (γ· ∧ (ξ∗y)); (1.115)

b) if 2q = n, then

ξ∗ · Φ = γ· ∧ (ξ∗ y Φ), (1.116)
ξ ∧ Φ = −1

2
γ· ∧ (γ· ∧ (ξ∗ y Φ)). (1.117)

Proof. a) When 2q + 1 = n we have by corollary 7

γ· ∧ (γ· ∧ Φ) = 0.

Hence we can compute using (1.34):

ξ∗ · (γ· ∧ Φ) = ξ∗ y (γ· ∧ (γ· ∧ Φ)) + γ· ∧ (ξ∗ y (γ· ∧ Φ)) =

= γ· ∧ (ξ∗ y (γ· ∧ Φ)) = γ· ∧ (ξ∗ · Φ)− γ· ∧ (γ· ∧ (ξ∗ y Φ)),

ξ ∧ Φ = −1
2
(γ· ∧ (ξ∗ · Φ) + ξ∗ · (γ· ∧ Φ)) =

= −γ· ∧ (ξ∗ · Φ) + 1
2
γ· ∧ (γ· ∧ y(ξ∗ y Φ)).

b) When 2q = n we have by corollary 7

γ· ∧ Φ = 0.

Hence we can again compute using (1.34):

ξ∗ · Φ = ξ∗ y (γ· ∧ Φ) + γ· ∧ (ξ∗ y Φ) = γ· ∧ (ξ∗ y Φ),

ξ ∧ Φ = −1
2
(γ· ∧ (ξ∗ · Φ) + ξ∗ · (γ· ∧ Φ)) =

= −1
2
γ· ∧ (ξ∗ · Φ) = −1

2
γ· ∧ (γ· ∧ (ξ∗ y Φ)).
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Lemma 20. The restrictions of the original projections to DUq are given by:

a) if 2q + 1 < n, then

πDSA
q,q−1|DUq = πDU

q,q−1, (1.118)

πDSA
q,q |DUq = πDU

q,q + 2
n−2q+2

γ· ∧ πDU
q,q−1, (1.119)

πDSA
q,q+1|DUq = πDU

q,q+1 − 1
n−2q

γ· ∧ πDU
q,q −

− 1
(n−2q+2)(n−2q+1)

(γ·∧)2 ◦ πDU
q,q−1; (1.120)

b) if 2q + 1 = n, then (1.118) and (1.119) remain unchanged and instead of
(1.120) we have

πDSA
q,q+1|DUq = −γ· ∧ πDU

q,q + n−2q−2
2(n−2q+2)

(γ·∧)2 ◦ πDU
q,q−1 =

= −γ· ∧ πDU
q,q − 1

6
(γ·∧)2 ◦ πDU

q,q−1; (1.121)

c) if 2q = n, then (1.118) remains unchanged and instead of (1.119) and
(1.120) we have

πDSA
q,q |DUq = γ· ∧ πDU

q,q−1, (1.122)

πDSA
q,q+1|DUq = −1

2
(γ·∧)2 ◦ πDU

q,q−1. (1.123)

Proof. a) When 2q + 1 < n, all the three projections πDU
q,q−1, πDU

q,q and πDU
q,q+1

are available. The equations (1.118) and (1.119) follow directly from (1.101) and
(1.104). As for (1.120), we substitute (1.118) and (1.119) into (1.107):

πDSA
q,q+1|DUq = πDU

q,q+1 − 1
n−2q

(
γ· ∧ πDU

q,q + 2
n−2q+2

(γ·∧)2 ◦ πDU
q,q −

− 1
n−2q+1

(γ·∧)2 ◦ πDU
q,q

)
=

= πDU
q,q+1 − 1

n−2q
γ· ∧ πDU

q,q − 1
(n−2q+2)(n−2q+1)

(γ·∧)2 ◦ πDU
q,q−1.

b) When 2q + 1 = n, only the projections πDU
q,q−1 and πDU

q,q are available. The
equations (1.118) and (1.119) follow as in the previous case. As for (1.121), we
use (1.115) of lemma 19 and substitute (1.118) and (1.119):

πDSA
q,q+1 = −γ· ∧

(
πDU
q,q + 2

n−2q+2
γ· ∧ πDU

q,q−1

)
+ 1

2
(γ·∧)2 ◦ πDU

q,q−1 =

= −γ· ∧ πDU
q,q + n−2q−2

2(n−2q+2)
(γ·∧)2 ◦ πDU

q,q−1.

c) When 2q = n, only the projection πDU
q,q−1 is available. The equation (1.118)

follows as in the previous cases. As for (1.122) and (1.123) we just use (1.116)
and (1.117) of lemma 19 and substitute (1.118).
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Corollary 21. The simultaneous kernel of the modified projections coincides with
the twistor module Uq,1,

Ker(πDU
q,q−1) ∩ · · · ∩Ker(πDU

q,l(q+1)) =

= DUq ∩Ker(πDSA
q,q−1) ∩Ker(πDSA

q,q ) ∩Ker(πDSA
q,q+1) = Uq,1. (1.124)

Proof. From the defining equations (1.107), (1.104) and (1.101) follows that
πDU
q,q+1, πDU

q,q , πDU
q,q−1 are linearly dependent on πDSA

q,q+1|DUq , πDSA
q,q |DUq , πDSA

p,p−1|DUq and
also vice versa including the degenerate cases, as shown in lemma 20. Hence the
simultaneous kernels must coincide.

For later use we also express the modified projections from the previous
section. Again we first prove an auxiliary lemma.

Lemma 22. It holds:

γ∗· y πDSA
q,q+1|DUq = πDSA

q,q |DUq , (1.125)

γ∗· y πDSA
q,q |DUq = −2 πDSA

q,q−1|DUq . (1.126)

Proof. Let Φ ∈ Uq and ξ ∈ V∗. Using (1.34) and (1.44) we compute:

γ∗· y πDSA
q,q+1(ξ ⊗ Φ) = γ∗· y (ξ ∧ Φ) = ξ∗ · Φ− ξ ∧ (γ∗· y Φ) =

= ξ∗ · Φ = πDSA
q,q (ξ ⊗ Φ),

γ∗· y πDSA
q,q (ξ ⊗ Φ) = γ∗· y (ξ∗ · Φ) = −2 ξ∗ y Φ− ξ∗ · (γ∗· y Φ) =

= −2 ξ∗ y Φ = −2πDSA
q,q−1(ξ ⊗ Φ).

Lemma 23. The restrictions of the modified projections from (1.88) and (1.90)
to DUq are given by:

a) if 2q < n, then

π̃ DSA
q,q−1|DUq = q−1

q
πDU
q,q−1, (1.127)

π̃ DSA
q,q |DUq = q

q+1
πDU
q,q + n+2

(q+1)(n−2q+2)
γ· ∧ πDU

q,q−1; (1.128)

b) if 2q = n, then the equation (1.127) remains unchanged and instead of
(1.128) we have

π̃ DSA
q,q |DUq = γ· ∧ πDU

q,q−1. (1.129)

Proof. We first compute in both cases using (1.125) and (1.126) of lemma 22 and
also (1.52):

π̃ DSA
q,q =

(
q
q+1

πDSA
q,q + 1

q+1
γ· ∧ πDSA

q,q−1

)∣∣∣
DUq

,

π̃ DSA
q,q−1 =

(
πDSA
q,q−1 + 1

q(n+2)
(q γ∗· y πDSA

q,q + γ∗· y (γ· ∧ πDSA
q,q−1))

)∣∣∣
DUq

=

= q−1
q
πDSA
q,q |DUq .

Substituting (1.118) into the second equation, we immediately get (1.127). As
for the first equation, we need to discuss the two cases separately.

a) When 2q < n, we substitute (1.119) yielding (1.128).

b) When 2q = n, we substitute (1.122) yielding (1.129).

Now we finally prove the decomposition of DUq.
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Proposition 24. The space DUq decomposes as

DUq = DUq[q − 1]⊕ · · · ⊕ DUq[l(q + 1)]⊕ Uq,1 ∼=
∼= Uq−1 ⊕ · · · ⊕ Ul(q+1) ⊕ Uq,1. (1.130)

In more detail:

a) if 2q + 1 < n, then

DUq = DUq[q − 1]⊕ DUq[q]⊕ DUq[q + 1]⊕ Uq,1 ∼=
∼= Uq−1 ⊕ Uq ⊕ Uq+1 ⊕ Uq,1, (1.131)

b) if 2q + 1 = n, then

DUq = DUq[q − 1]⊕ DUq[q]⊕ Uq,1 ∼= Uq−1 ⊕ Uq ⊕ Uq,1, (1.132)

c) if 2q = n, then

DUq = DUq[q − 1]⊕ Uq,1 ∼= Uq−1 ⊕ Uq,1. (1.133)

Proof. Follows from lemmas 18 and 21 by the isomorphism theorem.

The remaining projection onto the twistor module

• πDU
q,(q,1) : DUq → Uq,1,

is now given by:

πDU
q,(q,1) = 1DUq − ιDU

q,q−1 ◦ πDU
q,q−1 − · · · − ιDU

q,l(q+1) ◦ πDU
q,l(q+1). (1.134)

Lemma 25. The projection onto the primitive twistor module Uq,1 coincides with
restriction of the projection onto the twistor module SAq,1,

πDU
q,(q,1) = πDSA

q,(q,1)|DUq . (1.135)

Proof. In lemma 14 and corollary 21 we deduced that the simultaneous kernels of
two mutually linearly dependent sets of projections must coincide. In particular,
we have

πDU
q,(q,1)(DU

q) = Ker(πDU
q,q−1) ∩ · · · ∩Ker(πDU

q,l(q+1)) =

= DUq ∩Ker(π̃ DSA
q,q−1) ∩Ker(π̃ DSA

q,q ) ∩Ker(π̃ DSA
q,q+1) =

= πDSA
q,(q,1)(DU

q).

Similarly, the set of injections ιDU
q,q−1, . . . , ι

DU
q,l(q+1) is linearly dependent on the set

of injections ι̃ DSA
q,q−1, ι̃ DSA

q,q , ι̃ DSA
q,q+1. Hence we have the inclusion

Ker(πDU
q,(q,1)) = ιDU

q,q−1(Uq−1) + · · ·+ ιDU
q,l(q+1)(U

l(q+1)) ⊆
⊆ DUq ∩ (ι̃ DSA

q,q−1(SAq−1) + ι̃ DSA
q,q (SAq) + ι̃ DSA

q,q+1(SAq+1)) =

= DUq ∩Ker(πDSA
q,(q,1)).

Moreover, both the projections πDU
q,(q,1) and π

DSA
q,(q,1) are idempotent and thus

πDU
q,(q,1)(DU

q)⊕Ker(πDU
q,(q,1)) = DUq = π̃ DSA

q,(q,1)(DU
q)⊕ (DUq ∩Ker(π̃ DSA

q,(q,1))).

Consequently, the projections must coincide on DUq.

Comparing the decompositions (1.96) and (1.130) we can deduce also decom-
position of the twistor module SAp,1.
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Proposition 26. The twistor module SAp,1 decomposes as:

SAp,1 ∼= U1,1 ⊕ · · · ⊕ Ul(p),1. (1.136)

Proof. First denote the numbers q = l(p) and

(r, s) =


(q, q + 1), when 2q + 1 < n,

(q, q), when 2q + 1 = n,

(q − 1, q), when 2q = n.

Substituting (1.57) into DSAp and using (1.67) and (1.130) we get:

DSAp ∼= U0 ⊕ · · · ⊕ Uq−1 ⊕ U0 · · · ⊕ Ur ⊕ U1 · · · ⊕ Us ⊕ U1,1 ⊕ . . .Uq,1 ∼=
∼= Wp−1 ⊕ SAp ⊕ SAp+1 ⊕ U1,1 ⊕ . . .Ul(p),1.

Now comparing with (1.96) follows (1.136).

In particular, note that the twistor module SAp,1 does not contain a copy of
the twistor module U1 corresponding to the zeroth primitive part of SAp.
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Chapter 2

Killing equations

In the present chapter we introduce the notion of so called Killing spinor-valued
differential forms. We start by recalling basic notions and results in Riemannian
Spin-geometry, and then proceed to the study of several types of fields defined
by Killing equations, namely the Killing forms, the Killing spinors and their
generalization called Killing spinor-valued forms. Finally, we pass to examine
several basic properties and relations among the different types of Killing fields.

We present both the Riemannian and conformal variants of Killing fields,
although we focus primarily on the Riemannian case. In addition, we introduce
the so called special Killing fields, which play an essential role in the next chapter.
We describe the several types of Killing equations in terms of invariant differential
operators. This perspective offers a better insight into the definitions and reveals
the general pattern behind the different types of Killing fields.

2.1 Riemannian manifolds
In this section we briefly review basics of Riemannian geometry. For more details
we recommend the classical textbook on differential geometry, [11].

LetM be a Riemannian manifold of dimension n and denote by

• g — the Riemannian metric onM.

Note that we only consider positive-definite metric and so exclude the pseudo-
Riemannian manifolds.

As usual, we introduce the following natural vector bundles:

• T — the tangent bundle ofM,

• T ∗ — the cotangent bundle ofM,

• Ap — the p-th exterior form bundle ofM,

and the corresponding spaces of smooth sections:

• X — the Lie algebra of vector fields onM,

• Ωp — the space of differential p-forms onM.

In general, if B is a smooth fibre bundle onM, we denote by

• Γ(B) — the space of smooth sections of B.
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Recall the notion of principal G-bundle onM and the construction of

• the associated fiber bundle P ×G F,

where G is a Lie group, P a principal G-bundle and F a manifold on which G acts
from the left. Now if b is a local section of P , then every local section a of P×G F
can be expressed with respect to b as

a = [b, f ], (2.1)

where f : M→ F is a smooth locally defined mapping. In case F is a vector space
and thus a representation of G we speak of

• the associated vector bundle P ×G F.

The Riemannian metric on the manifoldM defines

• PO — the principal O(n)-bundle of orthonormal frames.

IfM is oriented, we have also

• PSO — the principal SO(n)-bundle of positively oriented orthonormal frames.

The natural vector bundles onM are now canonically equivalent to the associated
bundles:

T ∼= PO ×O(n) V, T ∗ ∼= PO ×O(n) V
∗,

Ap ∼= PO ×O(n) A
p. (2.2)

Note that we always consider only the standard representation structures as in
the first chapter. These bundle equivalences can be thought of as a reduction
of the structure group of the natural vector bundles to O(n). In the case M is
oriented, a further reduction to SO(n) is also possible.

2.2 Riemannian Spin-manifolds
In this section we proceed to the introduction of Riemannian Spin-geometry. For
more details we refer to, e.g., [5] or [12].

Suppose that the manifoldM is oriented and recall that

• a Spin-structure PSpin onM

is a principal Spin(n)-bundle which is a lift of the principal bundle PSO via the
covering homomorphism λ from (1.17). That is, there exists

• a two-fold covering bundle map Λ: PSpin → PSO, such that

Λ(sA) = Λ(s)λ(A), (2.3)

∀s ∈ PSpin and A ∈ Spin(n).

A Riemannian spin manifold is an oriented Riemannian manifold together with
a chosen Spin-structure. Note that the Spin-structure does not need to exist and
is generally not unique. From now on we assume thatM is a spin manifold with
chosen Spin-structure PSpin.
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In the case of spin manifolds is the structure group of natural vector bundles
ofM reduced to Spin(n), so we get canonical bundle equivalences:

T ∼= PSpin ×Spin(n) V, T ∗ ∼= PSpin ×Spin(n) V
∗,

Ap ∼= PSpin ×Spin(n) A
p. (2.4)

There are additional natural vector bundles associated to a Spin-structure:
• S — the complex spinor bundle ofM,

S = PSpin ×Spin(n) S, (2.5)

• SAp — the p-th spinor-valued differential (or, exterior) form bundle ofM,

SAp = PSpin ×Spin(n) SA
p, (2.6)

and the corresponding spaces of smooth sections
• Σ — the space of spinor fields onM,

• ΣΩp — the space of spinor-valued differential forms onM.
All algebraic notions of the representation theory naturally carry over to corre-

sponding associated bundles. Firstly, invariant elements give rise to distinguished
global sections. For instance, the Riemannian metric g onM corresponds to the
inner product g on V. There is also an EndC(S)-valued differential 1-form and its
orthogonal dual,
• γ· ∈ Γ(T ∗ ⊗ EndC(S)) — the Clifford multiplication form,

• γ∗· ∈ Γ(T ⊗ EndC(S)),
which realize the Clifford multiplication in vector bundles on M in the sense
of (1.33). Moreover, all algebraic identities which are invariant with respect
to the structure group remain valid on the level of sections of the associated
vector bundles. In particular, we can employ (1.34) and its consequences in
computations with spinor-valued differential forms.

Secondly, intertwining mappings give rise to bundle maps. Consequently,
a decomposition of the fibre as a representation of the structure group carries
over to decomposition of the whole associated bundle. So we can utilize the
decompositions from chapter 1 and introduce further vector bundles onM:
• U q — the primitive spinor-valued exterior form bundle ofM,

U q = PSpin ×Spin(n) U
q, (2.7)

• Ap,1 — the twistor module bundle of Ap,
Ap,1 = PO ×O(n) A

p,1 = PSpin ×Spin(n) A
p,1, (2.8)

• SAp,1 — the twistor module bundle of SAp,
SAp,1 = PSpin ×Spin(n) SA

p,1, (2.9)

• U q,1 — the twistor module bundle of U q,
U q,1 = PSpin ×Spin(n) U

q,1, (2.10)

• Wp−1,

Wp−1 = PSpin ×Spin(n) W
p−1. (2.11)
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2.3 Levi-Civita connection
We shall start with the definition of Levi-Civita connection induced by the Rie-
mannian metric and then lift it to the Spin-structure, thereby producing the spin
connection. For more details see again [11], [5] or [12].

On the Riemannian manifoldM we consider

• ∇ : X × X → X — the unique covariant derivative,

which is induced by the Levi-Civita connection on the principal bundle PO. This
covariant derivative is determined by

2g(∇X(Y ), Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y )) +

+ g([X, Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X), (2.12)

∀X, Y, Z ∈ X , where g is the metric. In general, the connection induces a unique
covariant derivative on any vector bundle B associated to PO,

• ∇ : X × Γ(B)→ Γ(B).

For instance, we have the covariant derivative on differential forms. Another ex-
ample is the tensor product of such vector bundles, where the covariant derivative
extends by the Leibniz rule.

An important consequence of (2.12) is that the metric g regarded as a sym-
metric covariant 2-tensor is parallel,

∇(g) = 0. (2.13)

The connection itself can be identified with

• ω — the connection 1-form.

Though it is a slightly more complicated object, it can be represented locally
as a skew-symmetric matrix ωjm of ordinary 1-forms on M with respect to an
orthonormal frame. Now if

b = (X1, . . . , Xn) (2.14)

is a local orthonormal frame field, then the covariant derivative ∇ is uniquely
determined by

∇Xi
(Xj) =

n∑
m=1

ωjm(Xi)Xm, ∀i, j ∈ {1, . . . , n}. (2.15)

In our case whenM is a spin manifold, the Levi-Civita connection on PO lifts
to a spin connection on the Spin-structure PSpin. Thus we get a unique covariant
derivative on any vector bundle associated to PSpin. Note that for vector bundles
which are associated to both PO and PSpin the two induced covariant derivatives
agree.
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We can compute covariant derivative of spinor fields,

• ∇ : X × Σ→ Σ,

locally using (2.1) and (2.15). First, let b be a local orthonormal frame field as
in (2.14) and ωjm the respective local expression of the connection 1-form. Next,
let s be a local section of PSpin which is a lift of b, that is,

Λ(s) = b, (2.16)

and ψ : M → S a locally defined spinor-valued function. Then the covariant
derivative of the corresponding spinor field is given by

∇X([s, ψ]) =
[
s, X(ψ) + 1

4

n∑
j,m=1

ωjm(X) ej · em · ψ
]
, (2.17)

∀X ∈ T . Combining (2.15) and (2.17) we can compute the covariant derivative
for all vector bundles of interest.

Finally, the Clifford multiplication form γ· and its dual γ∗· are parallel,

∇(γ·) = 0, ∇(γ∗·) = 0, (2.18)

analogous to (2.13) for the metric.
In general, covariant derivative on the vector bundle B on M can be regarded

as a mapping:

• ∇ : Γ(B)→ Γ(T ∗ ⊗ B).

Given an invariant decomposition of the tensor product T ∗⊗B, we can construct
first-order invariant differential operators on Γ(B) given by projections of ∇
onto summands in the decomposition. When applied to the decompositions in
chapter 1, we shall obtain invariant operators which are more or less explicitly
encompassed in the equations defining several types of Killing fields.

2.4 Killing forms
Killing forms were introduced by Yano in [21] as a ground for the construction of
invariants along geodesics. Recently, Killing forms were studied by Semmelmann
in [14].

We start by introducing invariant differential operators, which arose in the
decomposition (1.72):

• the exterior derivative d: Ωp → Ωp+1,

d(α) =
n∑
i=1

X∗i ∧∇Xi
(α), (2.19)

• the codifferential d∗ : Ωp → Ωp−1,

d∗(α) =
n∑
i=1

Xi y∇Xi
(α), (2.20)
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• the twistor operator T: Ωp → Γ(Ap,1),

T(α) = ∇(α)− 1
p+1

n∑
i=1

X∗i ⊗Xi y d(α)−

− 1
n−p+1

n∑
i=1

X∗i ⊗X∗i ∧ d∗(α), (2.21)

∀α ∈ Ωp. For the local expressions we always assume that (X1, . . . , Xn) is an
orthonormal frame as in (2.14). Unless otherwise stated , we also assume

p ∈ {1, . . . , n− 1} (2.22)

excluding the trivial cases p = 0 and n.

Definition 27. A Killing p-form is a p-form α such that

∇X(α) = 1
p+1

X y d(α), ∀X ∈ T . (2.23)

Taking orthogonal dual of a Killing 1-form α we can deduce that (2.23) is
equivalent to

g(∇X(α∗), Y ) + g(∇Y (α∗), X) = 0, ∀X, Y ∈ T . (2.24)

Killing 1-forms are thus just orthogonal duals of Killing vectors, justifying the
terminology (cf. also [21]).

Proposition 28. A p-form α is a Killing form, if and only if it satisfies the
following two conditions:

1) α is coclosed, that is, it belongs to the kernel of the codifferential,

d∗(α) = 0, (2.25)

2) α belongs to the kernel of the twistor operator,

T(α) = 0. (2.26)

Proof. A direct consequence of the decomposition (1.72).

Proposition 28 manifests the relationship between Killing forms and the in-
variant operators, which applies to all types of Killing fields.

As we have suggested in the beginning, the basic property which supports
the generalization of Killing vectors to forms is that they yield invariants along
geodesics. This property boils down to the following lemma. Recall that if X is
the tangent vector field of a geodesic inM then it satisfies

∇X(X) = 0 (2.27)

along the geodesic.
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Lemma 29. Let α be a Killing p-form and X the tangent vector field of a geodesic
inM. Then X y α is covariantly constant,

∇X(X y α) = 0, (2.28)

along the geodesic.

Proof. Using (2.27) and (2.23) we compute:

∇X(X y α) = X y∇X(α) = 1
p+1

X y (X y d(α)) = 0.

The conformal Killing forms were introduced by Tachibana in [18] for the case
of 2-forms and by Kashiwada in [10] for the general case. They are defined by a
weaker equation which turns out to impose condition just on the twistor operator.

Definition 30. A conformal Killing p-form is a p-form α such that

∇X(α) = 1
p+1

X y d(α)− 1
n−p+1

X∗ ∧ d∗(α), ∀X ∈ T . (2.29)

Proposition 31. A p-form α is a conformal Killing form, if and only if it belongs
to the kernel of the twistor operator,

T(Ψ) = 0. (2.30)

Proof. Again a direct consequence of the decomposition (1.72).

On the other hand, special Killing forms introduced by Tachibana in [19] are
defined with an additional second order condition on the differential of the form.

Definition 32. A special Killing p-form is a Killing p-form α, for which there
additionally exists a ∈ R such that

∇X(d(α)) = aX∗ ∧ α, ∀X ∈ T . (2.31)

2.5 Killing spinors
Killing spinors are objects with many interesting applications in geometry, but
here we present only few basic properties focusing on the transition to other types
of Killing fields. For more details and omitted proofs see, e.g., [5] or [2].

Again we start by introducing invariant differential operators, this time given
by the decomposition (1.67):

• the Dirac operator D: Σ→ Σ,

D(Ψ) = πDS
0 (∇(Ψ)) =

n∑
i=1

Xi · ∇Xi
(Ψ), (2.32)

• the twistor operator T: Σ→ Γ(U1),

T(Ψ) = πDS
1 (∇(Ψ)) = ∇(Ψ) + 1

n

n∑
i=1

X∗i ⊗Xi ·D(Ψ), (2.33)

∀Ψ ∈ Γ(S). The Dirac operator plays a central role in the subject of Riemannian
Spin-geometry and many of its properties are well known. In particular, the
question of eigenvalue estimates has been discussed to a great extent, leading to
the introduction of the notion of Killing spinor fields.
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Definition 33. A Killing spinor field, or Killing spinor for short, is a spinor field
Ψ for which there exists a ∈ C such that

∇X(Ψ) = aX ·Ψ, (2.34)

∀X ∈ T . The number a is called Killing number of Ψ.

Proposition 34. A spinor field Ψ is a Killing spinor with Killing number a, if
and only if it satisfies the following two conditions:

1) Ψ is an eigenvector of the Dirac operator,

D(Ψ) = −naΨ, (2.35)

2) Ψ belongs to the kernel of the twistor operator,

T(Ψ) = 0. (2.36)

Proof. First suppose that (2.34) holds. We compute using (2.32) and (2.33):

D(Ψ) =
n∑
i=1

aXi ·Xi ·Ψ = −naΨ,

T(Ψ) =
n∑
i=1

X∗i ⊗ (aXi ·Ψ− aXi ·Ψ) = 0.

On the other hand suppose that (2.35) and (2.36) hold. Again using (2.32) and
(2.33) we compute:

∇(Ψ) = − 1
n

n∑
i=1

X∗i ⊗Xi ·D(Ψ) =
n∑
i=1

X∗i ⊗ aXi ·Ψ.

However, there is much stronger relationship between Killing spinors, the
Dirac operator and the geometry of the underlying manifold. As we already
noticed, the Killing spinors are directly related to the eigenvalue estimates. This
relationship is unique for the Killing spinors and does not show up for the other
types of Killing fields.

Theorem 35. LetM be a compact spin manifold. Then any eigenvalue c of the
Dirac operator onM satisfies the inequality

c2 ≥ n
4(n−1)

R0, (2.37)

where R0 is the minimum of the scalar curvature of M. Moreover, if the eigen-
value c attains equality in (2.37), then the corresponding eigenvector Ψ is a Killing
spinor with Killing number

a = − c
n

= ∓
√

1
4n(n−1)

R0. (2.38)
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Theorem 36. Let M be a connected spin manifold and Ψ a Killing spinor on
M with Killing number a. ThenM has constant scalar curvature R given by the
equation

a2 = 1
4n(n−1)

R. (2.39)

In particular, the Killing number a is always real or purely imaginary.

There is also a weaker notion of conformal Killing spinors which omits the
eigenvalue condition for the Dirac operator.

Definition 37. A conformal Killing spinor field, or twistor spinor for short, is a
spinor field Ψ such that

∇X(Ψ) = − 1
n
X ·D(Ψ), (2.40)

∀X ∈ T .

Proposition 38. A spinor field Ψ is a conformal Killing spinor, if and only if it
belongs to the kernel of the twistor operator,

T(Ψ) = 0. (2.41)

Proof. A direct consequence of (2.33).

2.6 Killing spinor-valued forms
In the present section we introduce Killing spinor-valued differential forms. This
definition is quite straightforward generalization of Killing forms and Killing
spinors, which will become apparent in the expressions highlighting invariant
differential operators.

To our best knowledge, the present definition is in its full generality new. In
particular, the introduction of Killing number in case of spinor-valued forms has
several precedents, some authors produced a special case of ours. Much of this
work was published in the field of mathematical physics, and is considered for
pseudo-Riemannian manifolds in low dimensions.

Walker and Penrose in [20] suggested a general definition of what they call
Killing spinors, given by equation in abstract index notation

∇(A′0
(B0

χ
A′1...A

′
r)

B1...Bs) = 0, (2.42)

for the case of Lorentzian 4-manifold. Depending on the valence (r, s) this
definition covers the cases of spinors, forms, spinor-valued forms and other spinor-
tensors. In particular, the simplest cases

(r, s) = (0, 1) and (1, 0); (1, 1); (0, 2) and (2, 0)

apply to spinors, complexified 1-forms (or vectors) and complexified 2-forms
respectively. In fact, the left-hand side of (2.42) is just the appropriate twistor
operator. So the equation defines rather the conformal Killing fields.
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Later Duff and Pope in [4] introduced Killing spinor-vectors defined as

D̄(µην) = 0, where D̄µ = ∇µ∓c γ·µ, (2.43)

which involves the indeterminate constant c. This definition is equivalent to ours
given by (2.50) for the case of spinor-valued 1-forms.

Subsequently Nieuwenhuizen in [13] analyses (2.42) and (2.43) in more details.
He confirms our previous statement concluding that the definition of Walker and
Penrose indeed defines only the conformal Killing vectors and spinor-vectors. He
somewhat obscures the case of spinors when he imprecisely claims that (2.42)
defines Killing spinors. The argument relies on the assumption of Einstein space
(cf. [2], theorem 5 of chapter 2) and a closer look confirms our statement also for
spinors.

Recently Somberg in [16] introduced Killing spinor-valued p-forms for ar-
bitrary degree p. Similarly to our approach he employs the Howe duality to
decompose representations, but considers only primitive spinor-valued forms.
More importantly, his definition lacks the indeterminate Killing number a and
is equivalent to ours given by (2.50) for the case a = 0. Subsequently he deduces
the property analogous to lemma 29 that a Killing spinor-valued form yields
invariants along geodesics. We repeat this result in lemma 42.

Before we state the definition, we introduce invariant differential operators
given by the decomposition (1.96). We include also the more common operators
corresponding to the unmodified projections (1.74) and (1.76):

• the covariant exterior derivative d: ΣΩp → ΣΩp+1,

d(Φ) = π̃ DSA
p,p+1(∇(Φ)) = πDSA

p,p+1(∇(Φ)) =
n∑
i=1

X∗i ∧∇Xi
(Φ), (2.44)

• the twisted Dirac operator D: ΣΩp → ΣΩp,

D(Φ) = πDSA
p,p (∇(Φ)) =

n∑
i=1

Xi · ∇Xi
(Φ), (2.45)

• the codifferential d∗ : ΣΩp → ΣΩp−1,

d∗(Φ) = πDSA
p,p−1(∇(Φ)) =

n∑
i=1

Xi y∇Xi
(Φ), (2.46)

• the modified twisted Dirac operator D̃ : ΣΩp → ΣΩp,

D̃(Φ) = π̃ DSA
p,p (∇(Φ)) = D(Φ)− 1

p+1
γ∗· y d(Φ) + 1

p+1
γ· ∧ d∗(Φ), (2.47)

• the modified codifferential d̃∗ : ΣΩp → Γ(Wp−1),

d̃∗(Φ) = π̃ DSA
p,p−1(∇(Φ)) = d∗(Φ) + p+1

p(n+2)
γ∗· y D̃(Φ), (2.48)

• and the twistor operator T: ΣΩp → Γ(SAp,1),

T(Φ) = πDSA
p,p,1(∇(Φ)) =

= ∇(Φ)− ι̃ DSA
p,p+1(d(Φ))− ι̃ DSA

p,p (D̃(Φ))− ι̃ DSA
p,p−1(d̃∗(Φ)), (2.49)

∀Φ ∈ ΣΩp.
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Definition 39. A Killing spinor-valued p-form is a spinor-valued p-form for
which there exists a ∈ C such that

∇X(Φ) = a
(
X · Φ− 1

p+1
X y (γ· ∧ Φ)

)
+ 1

p+1
X y d(Φ), (2.50)

∀X ∈ T . The number a is called Killing number of Φ.

Proposition 40. A spinor-valued p-form Φ is a Killing spinor-valued form with
Killing number a, if and only if it satisfies the following three conditions:

1) Φ is an eigenvector of the modified Dirac operator,

D̃(Φ) = −p(n+2)a
p+1

Φ, (2.51)

2) Φ belongs to the kernel of the modified codifferential,

d̃∗(Φ) = 0, (2.52)

3) Φ belongs to the kernel of the twistor operator,

T(Φ) = 0. (2.53)

Proof. We can rewrite the equation (2.50) using (1.89) and (1.87) in form

∇(Φ) = −p(n+2)a
p+1

ι̃ DSA
p,p (Φ) + ι̃ DSA

p,p+1(d(Φ)).

Now the claim follows from the decomposition (1.96).

Comparing the three types of Killing fields we can deduce the general pattern
in the definition of Killing field:

1) When defined, the (covariant) exterior derivative is the only component of the
covariant derivative, which is not prescribed, it is not even restricted.

2) When defined, the (possibly modified) Dirac operator is prescribed by eigen-
value condition.

3) All the other components of the covariant derivative, in particular, the twistor
operator, are prescribed to vanish.

The modification of the standard Dirac operator was necessary since otherwise
we would impose a restricting condition on the covariant exterior derivative. On
the other hand, our particular modification is not the only possible one; recall that
in section 1.5 we observed a freedom in choosing the projections. Moreover, there
can possibly be modifications which are still independent of the exterior covariant
derivative and lead to non-equivalent definitions of Killing spinor-valued forms.
This possibility is a subject of further research with a perspective of family of
admissible modifications parametrized by a product of projective spaces.
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Also note that all ambiguities and the problem of a modification of the
standard Dirac operator disappears in the case of primitive spinor-valued forms.
However, defining the Killing fields in a highly reducible case like this one has its
own value. Indeed, the equation (2.50) does not simply reduce to requiring that
the individual primitive parts of Φ are Killing spinor-valued forms, it is more
general than that. On the other hand, if the primitive parts Φ[q] are Killing
spinor-valued forms with Killing numbers aq, then Φ does not necessarily need
to satisfy (2.50). The point is that the equation (2.50) explicitly prescribes the
ratios aq : aq′ .

The main justification of our definition 39 is subject of the next proposition,
which allows us to construct Killing spinor-valued forms out of Killing spinors
and Killing forms. Note that the construction yields in general a non-primitive
Killing spinor-valued form. Hence a definition restricted to primitive Killing
spinor-valued forms would not be sufficient.

Proposition 41. Let Ψ be a Killing spinor with Killing number a and α be a
Killing p-form. Then the tensor product

Φ = α⊗Ψ (2.54)

is a Killing spinor-valued form with Killing number a.

Proof. First we compute the covariant exterior derivative of Φ using (2.19), (2.44)
an (2.34):

d(Φ) =
n∑
i=1

X∗i ∧∇Xi
(Φ) =

n∑
i=1

X∗i ∧ (∇Xi
(α)⊗Ψ + α⊗∇Xi

(Ψ)) =

= d(α)⊗Ψ + a γ· ∧ Φ.

Now using (2.23) and (2.34) again we get:

∇X(Φ) = ∇X(α)⊗Ψ + α⊗∇X(Ψ) = 1
p+1

X y (d(α)⊗Ψ) + aX · Φ =

= a
(
X · Φ− 1

p+1
X y (γ· ∧ Φ)

)
+ 1

p
X y d(Φ).

Thus the proposition yields many examples of Killing spinor-valued forms
on manifolds which admit enough Killing spinors and forms, for instance, the
Riemannian spheres. Unfortunately, no other examples which cannot be reduced
to Killing spinors and Killing forms are known to us so far.

In case the Killing number a is zero, the equation (2.50) reduces to a simple
analogy of (2.23). Subsequently, we get also the next result analogous to lemma
29.

Lemma 42. Let Φ be a Killing p-form with Killing number a = 0 and X the
tangent vector field to a geodesic inM. Then X y Φ is covariantly constant,

∇X(X y Φ) = 0 (2.55)

along the geodesic.
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Proof. Using (2.27) and (2.50) we compute:

∇X(X y Φ) = X y∇X(Φ) =

= a
(
X y (X · Φ)− 1

p+1
X y (X y (γ· ∧ Φ))

)
+ 1

p+1
X y (X y d(Φ)) =

= aX y (X · Φ) = 0.

Next we turn to conformal Killing spinor-valued forms. We can already
observe much simpler pattern in the definition of the conformal Killing field:

1) Only the twistor operator is prescribed to vanish.

Indeed, this is the generally accepted definition for all types of conformal Killing
fields. However, this definition applies well only in case we start from an irre-
ducible representation. In such a case the twistor operator is defined to be the
unique highest weight component of the covariant derivative.

In our highly reducible case of spinor-valued forms we defined the twistor
operator by (2.49). From (1.136) we know that the twistor module decomposes
on the twistor modules corresponding to the individual primitive parts. Hence
the equation

T(Φ) = 0 (2.56)

does not bring anything really new. Moreover, the decomposition (1.136) does not
contain a summand corresponding to the zeroth primitive part. Accordingly, the
equation (2.56) leaves the covariant derivative of the zeroth primitive part Φ[0]
completely unprescribed. For these reasons we avoid to introduce the definition
of conformal Killing spinor-valued forms in general and reserve it only to the case
of primitive spinor-valued differential forms.

Similarly to ordinary forms, we define special Killing spinor-valued forms by
imposing an additional second order condition on its differential.

Definition 43. A special Killing spinor-valued p-form is a Killing spinor-valued
p-form Φ, which in addition satisfies

∇X(d(Φ)) = 1
2
X · d(Φ) + 1

2(p+1)
γ· ∧ (X y d(Φ))−

−
(
p+ 1

2

)
X∗ ∧ Φ +

(
1
4

+ ap
2(p+1)

)
γ· ∧ (X · Φ) +

+ a
2(p+1)

γ· ∧ (γ· ∧ (X y Φ)), (2.57)

∀X ∈ T .

This definition is directly motivated by the cone construction which will be
discussed in chapter 3. As such it is perhaps too restrictive and a more general
definition involving another indeterminate constant would be worth to study on
its own.
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2.7 Primitive Killing spinor-valued forms
Again we start by introducing invariant differential operators, this time given by
the decomposition (1.130):

• the codifferential d∗U : Γ(U q)→ Γ(U q−1),

d∗U(Φ) = πDU
q,q−1(∇(Φ)) = πDSA

q,q−1(∇(Φ)) = d∗(Φ), (2.58)

• the Dirac operator DU : Γ(U q)→ Γ(U q), defined only when 2q + 1 < n,

DU(Φ) = πDU
q,q (∇(Φ)) = D(Φ)− 2

n−2q+2
γ· ∧ d∗(Φ), (2.59)

• the covariant exterior derivative dU : Γ(U q)→ Γ(U q+1),
defined only when 2q < n,

dU(Φ) = πDU
q,q+1(∇(Φ)) =

= d(Φ) + 1
n−2q

(
γ· ∧D(Φ)− 1

n−2q+1
γ· ∧ (γ· ∧ d∗(Φ))

)
, (2.60)

• the twistor operator TU : Γ(U q)→ Γ(U q,1),

TU(Φ) = πDU
q,q,1(∇(Φ)), (2.61)

in more detail:

a) if 2q + 1 < n, then

TU(Φ) = ∇(Φ)− ιDU
q,q−1(d∗U(Φ))− ιDU

q,q (DU(Φ))− ιDU
q,q+1(dU(Φ)), (2.62)

b) if 2q + 1 = n, then

TU(Φ) = ∇(Φ)− ιDU
q,q−1(d∗U(Φ))− ιDU

q,q (DU(Φ)), (2.63)

c) if 2q = n, then

TU(Φ) = ∇(Φ)− ιDU
q,q−1(d∗U(Φ)), (2.64)

∀Φ ∈ Γ(U q). Unless otherwise stated we assume

q ∈ {1, . . . , k}. (2.65)

The definition 39 of Killing spinor-valued forms applies unchanged also to
primitive spinor-valued forms. We just need to carefully handle the degenerate
cases when q = k.
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Proposition 44. If 2q < n, then a primitive spinor-valued q-form Φ is a Killing
spinor-valued form with Killing number a, if and only if it satisfies the following
three conditions:

1) Φ is an eigenvector of the Dirac operator,

DU(Φ) = −(n+ 2)aΦ, (2.66)

2) Φ belongs to the kernel of the codifferential,

d∗U(Φ) = 0, (2.67)

3) Φ belongs to the kernel of the twistor operator,

TU(Φ) = 0. (2.68)

If 2q = n, then a primitive spinor-valued differential q-form Φ is a Killing
spinor-valued form, if and only if it is parallel,

∇(Φ) = 0. (2.69)

In particular, the Killing number a is necessarily zero in this case, unless Φ is
zero.

Proof. Let Φ ∈ Γ(U q). We consider the case 2q < n first. We will show that the
conditions (2.66)–(2.68) here are together equivalent to conditions (2.51)–(2.53)
of proposition 40. From lemmas 23 and 25 follows

D̃|Γ(Uq) = q
q+1

DU + n+2
(q+1)(n−2q+2)

γ· ∧ d∗U,

d̃∗|Γ(Uq) = q−1
q

d∗U,

T|Γ(Uq) = TU,

and the conditions of proposition 40 can be thus written as

DU(Φ) + n+2
q(n−2q+2)

γ· ∧ d∗U(Φ) = −(n+ 2)aΦ, (2.70)

(q − 1) d∗U(Φ) = 0, (2.71)
TU(Φ) = 0. (2.72)

Now note that the second term on the left-hand side of the first equation (2.70)
belongs to a different primitive part of the space Γ(SAq) than the other terms,

Φ, DU(Φ) ∈ Γ(U q) = Γ(SAq[q]), γ· ∧ d∗U(Φ) ∈ Γ(SAq[q − 1]),

and hence the equation (2.70) is equivalent to (2.66) and (2.67) together. Hence
the equations (2.70)–(2.72) are together equivalent to (2.66)–(2.68) and the proof
for the case 2q < n is complete.
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If 2q = n, the equations (2.71) and (2.72) remain unchanged, but instead of
(2.70) we have by lemma 23

γ· ∧ d∗U(Φ) = −(n+ 2)aΦ. (2.73)

The term on the left-hand side again belongs to a different primitive part of the
space Γ(SAq) and hence the equation (2.73) is equivalent to

d∗U(Φ) = 0, and a = 0,

unless Φ is zero. Moreover, by the decomposition (1.133) the codifferential and
twistor operator are the only components of the covariant derivative in this case.
Hence the whole covariant derivative of Φ has to vanish and the proof is complete.

For later use we also prove the following auxiliary lemma.

Lemma 45. Let Φ be a primitive Killing spinor-valued q-form with Killing num-
ber a. Then it holds:

γ∗· y d(Φ) = D(Φ) = DU(Φ) = −(n+ 2)aΦ. (2.74)

Proof. The first equality follows from (1.125) of lemma 22. The second equality
follows from (2.59) and (2.67) of proposition 44. Finally, the third equality is just
(2.66) of proposition 44.

As promised in the previous section we introduce also the definition of primi-
tive conformal Killing spinor-valued forms. For the sake of simplicity we state it
directly in terms of the twistor operator.

Definition 46. A primitive spinor-valued p-form Φ is a conformal Killing spinor-
valued form if it belongs to the kernel of the twistor operator,

TU(Φ) = 0. (2.75)
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Chapter 3

Cone construction

In this chapter we present our main result, the cone construction for special
Killing spinor-valued forms. It is analogous to the result by Bär in [1] for Killing
spinors and the result by Semmelmann in [14] for special Killing forms. First we
introduce the metric coneM over the manifoldM and deduce formulas for the
covariant derivative on M. In the course we also repeat the result by Bär as a
prerequisite for our results.

Because we shall treat both an n-dimensional manifold M and its (n+ 1)-
dimensional metric coneM, we need to extend our notation in order to distinguish
them. We keep the notation from previous chapters for objects related to the base
manifoldM and use the bar to distinguish objects related to the coneM. Thus
we have, for instance,

• V = Rn+1 — the real arithmetic vector space of dimension n+ 1,

• g — the canonical inner product on V or the Riemannian metric onM,

• T — the tangent bundle ofM,

• ∇ — the covariant derivative onM,

and so on. Moreover, we view V as a subspace of V. Hence we make an exception
from the bar rule and denote the canonical basis of V by

(e1, . . . , en, en+1), (3.1)

where (e1, . . . , en) is the canonical basis of V.

3.1 Metric cone
The metric cone over Riemannian manifold M with metric g is the product
manifoldM =M× R+ with metric g defined by

g = r2g + dr2, (3.2)

where r is the coordinate given by the projection onto R+. We denote the
canonical projections and corresponding families of embeddings by

• π1 : M→M and π2 : M→ R+,

π1(x, r) = x, π2(x, r) = r, (3.3)
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• ι1,r : M→M and ι2,x : R+ →M,

ι1,r(x) = (x, r), ι2,x(r) = (x, r), (3.4)

∀x ∈M, r ∈ R+.
The tangent space of the coneM naturally splits at any point (x, r) as

T (x,r) = ι1,r∗(Tx)⊕ ι2,x∗((T R+)r), (3.5)

where ι1,r∗ and ι2,r∗ are differentials of the embeddings and T R+ is the tangent
bundle on the half-line R+. The splittings depend smoothly on (x, r) and hence
yield a splitting of the whole tangent bundle,

T = ι1∗(T )⊕ ι2∗(T R+). (3.6)

The subbundles ι1∗(T ) and ι2∗(T R+) are just distributions tangent to the closed
submanifolds ι1,r(M) and ι2,x(R+) respectively.

To a tangent vector or a vector field X onM we associate a tangent vector
or vector field X onM by taking its image under ι1,r∗ and rescaling,

X(x,r) = 1
r
ι1,r∗(Xx). (3.7)

We also denote

• ∂r — the radial vector field onM,

(∂r)(x,r) = ι2,x∗

((
d
dr

)
r

)
, (3.8)

where d
dr

is the canonical unit vector field on R+.

Thanks to the rescaling in (3.7) the metric g from (3.2) satisfies

g(X,Y ) = g(X, Y ), (3.9)

and in addition

g(X, ∂r) = 0, g(∂r, ∂r) = 1, (3.10)

∀X, Y ∈ T .
As for differential forms, we can simply take the pull-back of a form on M

via the projection π1. We again include appropriate rescaling and to a p-form α
onM we associate a p-form α onM defined by

α = rp π1
∗(α). (3.11)

We shall also often use the 1-form

• dr — the differential of the radial coordinate.

It is just the pull-back of the canonical 1-form on R+ via the projection π2.
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We also recall the general construction of a pull-back bundle, which we shall
use later to relate the spinor bundles onM andM. Let

1) F : M′ →M be a smooth mapping of manifolds, and

2) πB : B →M be a smooth fiber bundle onM.

Then the smooth pull-back bundle F ∗(B) onM′ is defined as

F ∗(B) = {(x′, b) |F (x′) = πB(b)} ⊆ M′ × B, (3.12)

with the projection given by

π′B(x′, b) = x′. (3.13)

As an example we can take the pull-backs of the tangent bundles T and T R+ via
the projections π1 and π2 respectively. Since we have

π1 ◦ ι1,r = 1M, π2 ◦ ι2,x = 1R+ , ∀x ∈M, r ∈ R+, (3.14)

we can identify the pull-back bundles with the subbundles from (3.6),

π∗1(T ) ∼= ι1∗(T ), π∗2(T R+) ∼= ι2∗(T R+). (3.15)

Using this identification we can speak of the pull-back of vector field on M or
R+ and express the equations (3.7) and (3.8) in the form

X = 1
r
π∗1(X), ∂r = π∗2

(
d
dr

)
. (3.16)

3.2 Spinors
The inclusion of vector spaces V ⊆ V induces a natural inclusion of the corre-
sponding Clifford algebras, spin groups and spinor spaces,

Cl(n) ⊆ Cl(n+ 1), Spin(n) ⊆ Spin(n+ 1), S ⊆ S. (3.17)

A deeper analysis of the spinor spaces actually provides the following relations
between the underlying vector spaces:

a) if n = 2k then

S = S = en+1 · S, (3.18)

b) if n = 2k + 1 then

S = S⊕ en+1 · S. (3.19)

The subalgebra Cl+(n) commutes with en+1 and hence the relations remain valid
also when viewing S and S as Cl+(n)-modules. In particular, S is always an
invariant subspace of S with respect to Spin(n). However, for our purposes it is
convenient to introduce also some other embeddings of S into S.
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Lemma 47. The mappings

• f± : S→ S,

f±(ψ) = (1∓ en+1) · ψ, ∀ψ ∈ S, (3.20)

are injective and Spin(n)-intertwining.

Proof. The injectivity follows from the existence of inverse elements,

(1∓ en+1)−1 = 1
2
(1± en+1).

The invariance with respect to Spin(n) follows again from the fact that the
subalgebra Cl+(n) commutes with en+1.

Next we proceed towards the spinor bundles on M and M. Following the
construction discussed in section 2.2 we start with the principal bundles PSO and
PSO. To each positively oriented orthonormal frame

b = (X1, . . . , Xn) (3.21)

at some point ofM, we can assign a positively oriented orthonormal frame

b = (X1, . . . , Xn, ∂r) (3.22)

at the corresponding points of M. We can understand this assignment as an
injective bundle map

• I : π∗1(PSO)→ PSO,

where π∗1(PSO) is the pull-back of PSO.
Since the cone M is homotopy equivalent to M there is a one-to-one cor-

respondence between the Spin-structures on M and M. We can make this
correspondence explicit thanks to the bundle map I. So let PSpin be the chosen
Spin-structure onM. First we take the pull-back π∗1(PSpin) which is a principal
Spin(n)-bundle onM and then we extend its fiber by taking the associated bundle

PSpin = π∗1(PSpin)×Spin(n) Spin(n+ 1), (3.23)

where Spin(n) acts on Spin(n + 1) by the left translation. We identify π∗1(PSpin)
with a subbundle of PSpin and denote the inclusion by

• I ′ : π∗1(PSpin)→ PSpin.

Now PSpin is clearly a principal Spin(n+ 1)-bundle and we define

• the two-fold covering bundle map Λ: PSpin → PSO,

such that it satisfies the equation

Λ ◦ I ′ ◦ π∗1 = I ◦ π∗1 ◦ Λ (3.24)

together with (2.3). A routine calculation shows that Λ is well-defined and makes
PSpin into a spin structure onM.
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Given the principal bundle inclusion I ′ we can further reduce the structure
group of the natural vector bundles ofM to Spin(n). In particular, we get bundle
equivalences:

T ∼= π∗1(PSpin)×Spin(n) V, T ∗ ∼= π∗1(PSpin)×Spin(n) V
∗
,

S ∼= π∗1(PSpin)×Spin(n) S. (3.25)

Since the spinor space S is an invariant subspace of S, we can naturally identify
the pull-back of the spinor bundle S onM,

π∗1(S) ∼= π∗1(PSpin)×Spin(n) S, (3.26)

with a subbundle of the spinor bundle S onM.
The Spin(n)-intertwining mappings f± from (3.20) induce bundle maps

• F± : π∗1(S)→ S,

F±(π∗1(Ψ)) = (1∓ ∂r) · π∗1(Ψ), ∀Ψ ∈ S. (3.27)

To a spinor or spinor field Ψ onM we finally associate a spinor or spinor field Ψ
onM defined by

Ψ = F+(π∗1(Ψ)). (3.28)

If s and s are lifts of local orthonormal frames in form (3.21) and (3.22) respec-
tively, we can express (3.28) with respect to s and s by

[s, ψ] = [s, f(π1
∗(ψ))] = [s, f(ψ ◦ π1)], (3.29)

where ψ is a locally defined spinor-valued function on M. The use of mapping
f+ already in (3.29) is just for convenience and will simplify subsequent formulas.
Also note that we could have used the mapping f− equally well, only with some
sign changes in subsequent formulas.

3.3 Connection
We denote by ∇ the covariant derivative on M induced by the Levi-Civita
connection given by the metric g. In order to express ∇ in terms of ∇ onM we
first compute the commutator

[X,Y ] = 1
r
[X, Y ], [X, ∂r] = 1

r
X, (3.30)

∀X, Y ∈ X . Now using (2.12), (3.9), (3.10) and (3.30) we get

∇X(Y ) = 1
r
(∇X(Y )− g(X, Y ) ∂r), ∇∂r(X) = 0,

∇X(∂r) = 1
r
X, ∇∂r(∂r) = 0, (3.31)

and dually

∇X(α) = 1
r
(∇X(α)− dr ∧ (X y α)), ∇∂r(α) = 0,

∇X(dr) = 1
r
X
∗
, ∇∂r(dr) = 0, (3.32)

∀X ∈ T , Y ∈ X , α ∈ Ωp.
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Remark 48. Our formulas (3.31) and (3.32) for covariant derivative on the metric
cone differ from the more common formulas

∇X̃(Ỹ ) = ∇̃X(Y )− r g(X, Y ) ∂r, ∇∂r(X̃) = −1
r
X̃, (3.31’)

∇X̃(α̃) = ∇̃X(α)− 1
r

dr ∧ ˜(X y α), ∇∂r(α̃) = −p
r
α̃, (3.32’)

found, e.g., in [14]. This is because we rescale the pull-back of a vector or form
by the appropriate homogeneous scalar factor right from the beginning. Indeed,
substituting

X̃ = π1
∗(X) = rX, α̃ = π1

∗(α) = 1
rp
α,

we can easily prove that our formulas are equivalent to (3.31’) and (3.32’).
Let b be a local orthonormal frame field onM and ωjm the connection form

onM expressed with respect to b as in (2.14) and (2.15). Furthermore, let b be
a local orthonormal frame field onM associated to b as in (3.22). Using (2.15)
and (3.31) we compute the connection form ω onM with respect to b,

ωjm(Xi) = 1
r
ωjm(Xi), ω(n+1)j(Xi) = −ωj(n+1)(Xi) = 1

r
δij,

ωjm(∂r) = 0, ω(n+1)j(∂r) = −ωj(n+1)(∂r) = 0, (3.33)

∀i, j,m ∈ {1, . . . , n}. From this description of the connection form we can
compute the covariant derivative of associated spinor fields.

Lemma 49. Let Ψ be a spinor field onM and Ψ the associated spinor field on
the coneM. The covariant derivative of Ψ is given by

∇X(Ψ) = 1
r

(
∇X(Ψ)− 1

2
X ·Ψ

)
, ∇∂r(Ψ) = 0, (3.34)

∀X ∈ T .
Proof. Let b and associated b be local orthonormal frames as in (3.21) and (3.22),
and let s and associated s be their respective lifts to the spin structure. We
compute using (2.17), (3.29) and (3.33):

∇Xi
(Ψ) = ∇Xi

([s, ψ]) = ∇Xi
([s, f(π1

∗(ψ))]) =

=
[
s, Xi(f(π1

∗(ψ))) + 1
4

∑
j,m

ωjm(Xi) ej · em · f(π1
∗(ψ)) +

+ 1
2

∑
j

ωj(n+1)(Xi) ej · en+1 · f(π1
∗(ψ))

]
=

= 1
r

[
s, (1− en+1) ·

(
π1
∗(Xi(ψ)) + 1

4

∑
j,m

ωjm(Xi) ej · em · π1
∗(ψ)

)
−

− 1
2

∑
j

δij ej · en+1 · (1− en+1) · π1
∗(ψ)

]
=

= 1
r

[
s, f

(
π1
∗
(
Xi(ψ) + 1

4

∑
j,m

ωjm(Xi) ej · em · ψ − 1
2
ei · ψ

))]
=

= 1
r

(
∇Xi

(Ψ)− 1
2
Xi ·Ψ

)
,

where the indices i, j,m run through {1, . . . , n}. Following the same approach we
get the second equation and the proof is complete.

Comparing lemma 49 with the definition 33 of a Killing spinor implies the
result by Bär in [1].
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Corollary 50. The associated spinor field Ψ on the cone M is parallel, if and
only if the spinor field Ψ onM is Killing with Killing number a = 1

2
.

Note that Bär has also a parallel result for the Killing number a = −1
2
. This

can be obtained by using the mapping f− instead of f+ in (3.29).

3.4 Killing spinor-valued forms
The final section is devoted to the construction of a parallel spinor-valued (p +
1)-form on the cone M from a special Killing spinor-valued p-form on M. Our
result is analogous to the result by Bär in [1] mentioned above and the result by
Semmelmann in [14]. In our notation we can state the result by Semmelmann as
follows.

Proposition 51. Let α be a differential p-form on M. Then the differential
(p+ 1)-form β on the coneM defined by

β = dr ∧ α + 1
p+1

d(α) (3.35)

is parallel, if and only if α is a special Killing form with a = −(p+ 1).

Combining (3.11) and (3.28) we associate to a spinor-valued p-form Φ onM
a spinor-valued p-form Φ on the coneM by linearly extending the formula

α⊗Ψ = α⊗Ψ, (3.36)

where α ∈ Ωp, Ψ ∈ Σ. With respect to local sections s and associated s as in the
previous sections we can express (3.36) as

[s, φ] = [s, f+(π∗1(φ))], (3.37)

where φ is a locally defined SAp-valued function on M. Note that the homoge-
neous factor rp from (3.11) is already hidden in the local section s since it is a
lift of some local orthonormal frame b from (3.22).

Lemma 52. Let Φ be a spinor-valued p-form onM and Φ the associated spinor-
valued p-form on the cone M. The covariant derivative of Φ is given by the
equations

∇X(Φ) = 1
r

(
∇X(Φ)− 1

2
X · Φ− dr ∧ (X y Φ)

)
,

∇∂r(Φ) = 0, (3.38)

∀X ∈ T .

Proof. Follows immediately from (3.32) and (3.34).
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Proposition 53. Let Φ be a spinor-valued p-form onM. Then the spinor-valued
(p+ 1)-form Ξ on the coneM defined by

Ξ = dr ∧ Φ− 1
2(p+1)

γ· ∧ Φ + 1
p+1

d(Φ) (3.39)

is parallel, if and only if Φ is a special Killing spinor-valued form with Killing
number a = 1

2
.

Proof. We take X ∈ T and compute using (3.32), (3.38) and (1.34):

∇X(dr ∧ Φ) = 1
r

(
X∗ ∧ Φ + dr ∧

(
∇X(Φ)− 1

2
X · Φ

))
,

∇X(γ· ∧ Φ) = 1
r

(
γ· ∧ ∇X(Φ) +X∗ ∧ Φ + 1

2
γ· ∧ (X · Φ)−

− dr ∧ (X · Φ− γ· ∧ (X y Φ))
)
,

∇X(d(Φ)) = 1
r

(
∇X(d(Φ))− 1

2
X · d(Φ)− dr ∧ (X y d(Φ))

)
.

Collecting the terms and using (3.39) we get:

∇X(Ξ) =

= 1
r

(
dr ∧

(
∇X(Φ)− 1

p+1

(
1
2
(pX · Φ + γ· ∧ (X y Φ)) + (X y d(Φ))

))
+

+ 1
p+1

(
∇X(d(Φ))− 1

2
X · d(Φ) +

(
p+ 1

2

)
X∗ ∧ Φ−

− 1
4
γ· ∧ (X · Φ)− 1

2
γ· ∧ ∇X(Φ)

))
.

The term involving dr is linearly independent from the other one, hence ∇X(Ξ) =
0 if and only if

∇X(Φ) = 1
p+1

(
1
2

(pX · Φ + γ· ∧ (X y Φ)) +X y d(Φ)
)

=

= 1
2

(
X · Φ + 1

p+1
X y (γ· ∧ Φ)

)
+ 1

p+1
X y d(Φ), (3.40)

rearranged using again (1.34), and

∇X(d(Φ)) = 1
2
X · d(Φ)−

(
p+ 1

2

)
X∗ ∧ Φ + 1

4
γ· ∧ (X · Φ) +

+ 1
2
γ· ∧ ∇X(Φ). (3.41)

Substituting (3.40) into (3.41) we get:

∇X(d(Φ)) = 1
2
X · d(Φ) + 1

2(p+1)
γ· ∧ (X y d(Φ))−

−
(
p+ 1

2

)
X∗ ∧ Φ +

(
1
4

+ p
4(p+1)

)
γ· ∧ (X · Φ) +

+ 1
4(p+1)

γ· ∧ (γ· ∧ (X y Φ)). (3.42)

From (3.32) and (3.38) we also have ∇∂r(Ξ) = 0. Now the claim follows by
comparing (3.40) and (3.42) with (2.50) and (2.57) respectively.

We conclude the present section by briefly examining the case of primitive
spinor-valued form Φ.
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Lemma 54. Let Φ be a spinor-valued p-form onM and Φ the associated spinor-
valued p-form on the coneM. Then it holds

γ∗· y Φ = ∂r · γ∗· y Φ. (3.43)

Proof. Let s and associated s be local sections of the spin structures onM and
M as in the previous. Further let φ be the locally defined SAp-valued function on
M which corresponds to Φ with respect to s. We compute using (3.20), (3.37)
and (1.32):

γ∗· y Φ =
[
s,

n+1∑
i=1

ei · (1− en+1) · (ei y π1
∗(φ))

]
=

=
[
s,

n∑
i=1

ei · (1− en+1) · (ei y π1
∗(φ))

]
=

=
[
s,

n∑
i=1

(1 + en+1) · ei · (ei y π1
∗(φ))

]
=

=
[
s, (1 + en+1) · π1

∗(γ∗· y φ)
]

=

=
[
s, en+1 · (1− en+1) · π1

∗(γ∗· y φ)
]

= ∂r · γ∗· y Φ.

Proposition 55. Let Φ be a primitive Killing spinor-valued p-form on M with
Killing number a = 1

2
. Then the spinor-valued (p + 1)-form Ξ on the cone M

from (3.39) is also primitive.

Proof. We compute using (3.39), (3.43), (2.74), (1.34), (1.35), (1.44) and the
assumption a = 1

2
:

γ∗· y Ξ = γ∗· y (dr ∧ Φ)− 1
2(p+1)

γ∗· y γ· ∧ Φ + 1
p+1

γ∗· y d(Φ) =

= ∂r · Φ− dr ∧ (∂r · (γ∗· y Φ))− 1
2(p+1)

∂r · (γ∗· y (γ· ∧ Φ)) +

+ 1
p+1

∂r · (γ∗· y d(Φ)) =

= ∂r · Φ + n−2p
2(p+1)

∂r · Φ− n+2
2(p+1)

∂r · Φ = 0.

55



Bibliography

[1] Bär, C. Real Killing spinors and holonomy. Comm. Math. Phys. 1993, vol. 154, no. 3,
pp. 509–521. Available also from www: 〈http://projecteuclid.org/euclid.cmp/
1104253076〉. ISSN 0010-3616.

[2] Baum, H.; Friedrich, T.; Grunewald, R.; Kath, I. Twistors and Killing spinors on
Riemannian manifolds. Stuttgart: B. G. Teubner Verlagsgesellschaft, 1991. Teubner-
Texte zur Mathematik [Teubner Texts in Mathematics]. ISBN 3-8154-2014-8.

[3] Delanghe, R.; Sommen, F.; Souček, V. Clifford algebra and spinor-valued functions.
Dordrecht: Kluwer Academic Publishers Group, 1992. Mathematics and its Appli-
cations. Available also from www: 〈http://dx.doi.org/10.1007/978-94-011-
2922-0〉. ISBN 0-7923-0229-X.

[4] Duff, M. J.; Pope, C. N. Kaluza-Klein Supergravity and the Seven Sphere. In Ferrara, S.;
Taylor, J. G.; Nieuvenhuizen, P. van (ed.). Supersymmetry and Supergravity ’82.
Singapore: World Scientific Press, 1983, pp. 183. ISBN 9971-950-67-7.

[5] Friedrich, T. Dirac operators in Riemannian geometry. Providence: American Mathe-
matical Society, 2000. Graduate Studies in Mathematics. ISBN 0-8218-2055-9.

[6] Fulton, W.; Harris, J. Representation theory. New York: Springer-Verlag, 1991. Graduate
Texts in Mathematics. Available also from www: 〈http://dx.doi.org/10.1007/
978-1-4612-0979-9〉. ISBN 0-387-97527-6; 0-387-97495-4.

[7] Gilbert, J. E.; Murray, M. A. M. Clifford algebras and Dirac operators in harmonic
analysis. Cambridge: Cambridge University Press, 1991. Cambridge Studies in Ad-
vanced Mathematics. Available also from www: 〈http://dx.doi.org/10.1017/
CBO9780511611582〉. ISBN 0-521-34654-1.

[8] Goodman, R.; Wallach, N. R. Representations and invariants of the classical groups.
Cambridge: Cambridge University Press, 1998. Encyclopedia of Mathematics and
its Applications. ISBN 0-521-58273-3; 0-521-66348-2.

[9] Howe, R. Remarks on classical invariant theory. Trans. Amer. Math. Soc. 1989, vol.
313, no. 2, pp. 539–570. Available also from www: 〈http://dx.doi.org/10.2307/
2001418〉. ISSN 0002-9947.

[10] Kashiwada, T. On conformal Killing tensor. Natur. Sci. Rep. Ochanomizu Univ. 1968,
vol. 19, pp. 67–74. ISSN 0029-8190.

[11] Kobayashi, S.; Nomizu, K. Foundations of differential geometry. Vol. I. New York: John
Wiley & Sons, 1996. Wiley Classics Library. ISBN 0-471-15733-3.

[12] Lawson Jr., H. B.; Michelsohn, M.-L. Spin geometry. Princeton: Princeton University
Press, 1989. Princeton Mathematical Series. ISBN 0-691-08542-0.

[13] Nieuwenhuizen, P. van; Warner, N. P. Integrability conditions for Killing spinors. Comm.
Math. Phys. 1984, vol. 93, no. 2, pp. 277–284. Available also from www: 〈http:
//projecteuclid.org/euclid.cmp/1103941057〉. ISSN 0010-3616.

56

http://projecteuclid.org/euclid.cmp/1104253076
http://projecteuclid.org/euclid.cmp/1104253076
http://dx.doi.org/10.1007/978-94-011-2922-0
http://dx.doi.org/10.1007/978-94-011-2922-0
http://dx.doi.org/10.1007/978-1-4612-0979-9
http://dx.doi.org/10.1007/978-1-4612-0979-9
http://dx.doi.org/10.1017/CBO9780511611582
http://dx.doi.org/10.1017/CBO9780511611582
http://dx.doi.org/10.2307/2001418
http://dx.doi.org/10.2307/2001418
http://projecteuclid.org/euclid.cmp/1103941057
http://projecteuclid.org/euclid.cmp/1103941057


[14] Semmelmann, U. Conformal Killing forms on Riemannian manifolds. Math. Z. 2003,
vol. 245, no. 3, pp. 503–527. Available also from www: 〈http://dx.doi.org/10.
1007/s00209-003-0549-4〉. ISSN 0025-5874.

[15] Slupinski, M. J. A Hodge type decomposition for spinor valued forms. Ann. Sci. Ecole
Norm. Sup. (4). 1996, vol. 29, no. 1, pp. 23–48. Available also from www: 〈http:
//www.numdam.org/item?id=ASENS_1996_4_29_1_23_0〉. ISSN 0012-9593.

[16] Somberg, P. Killing tensor spinor forms and their application in Riemannian geometry.
In. Hypercomplex analysis and applications. Basel: Birkhäuser/Springer Basel, 2011,
pp. 233–247. Trends Math. Available also from www: 〈http://dx.doi.org/10.
1007/978-3-0346-0246-4_16〉.

[17] Stein, E. M.; Weiss, G. Generalization of the Cauchy-Riemann equations and rep-
resentations of the rotation group. Amer. J. Math. 1968, vol. 90, pp. 163–196.
ISSN 0002-9327.

[18] Tachibana, S.-i. On conformal Killing tensor in a Riemannian space. Tôhoku Math. J.
(2). 1969, vol. 21, pp. 56–64. ISSN 0040-8735.

[19] Tachibana, S.-i.; Yu, W. N. On a Riemannian space admitting more than one Sasakian
structures. Tôhoku Math. J. (2). 1970, vol. 22, pp. 536–540. ISSN 0040-8735.

[20] Walker, M.; Penrose, R. On quadratic first integrals of the geodesic equations for type
{22} spacetimes. Comm. Math. Phys. 1970, vol. 18, pp. 265–274. ISSN 0010-3616.

[21] Yano, K. Some remarks on tensor fields and curvature. Ann. of Math. (2). 1952, vol.
55, pp. 328–347. ISSN 0003-486X.

57

http://dx.doi.org/10.1007/s00209-003-0549-4
http://dx.doi.org/10.1007/s00209-003-0549-4
http://www.numdam.org/item?id=ASENS_1996_4_29_1_23_0
http://www.numdam.org/item?id=ASENS_1996_4_29_1_23_0
http://dx.doi.org/10.1007/978-3-0346-0246-4_16
http://dx.doi.org/10.1007/978-3-0346-0246-4_16

	Introduction
	Spinor-valued forms
	Vectors and forms
	Spinors
	Representations
	Spinor-valued forms
	Twistor module
	Primitive twistor module

	Killing equations
	Riemannian manifolds
	Riemannian Spin-manifolds
	Levi-Civita connection
	Killing forms
	Killing spinors
	Killing spinor-valued forms
	Primitive Killing spinor-valued forms

	Cone construction
	Metric cone
	Spinors
	Connection
	Killing spinor-valued forms

	Bibliography

