
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Petr Malý

Static analysis of C# programs

Department of Software Engineering

Supervisor of the master thesis: RNDr. David Bednárek, Ph.D.

Study programme: Software systems

Specialization: Software engineering

Prague 2014

On this place I would like to express my gratitude to RNDr. David Bednárek,

Ph.D. for the supervising of this diploma thesis and his valuable advices. I also

want to thank to Mgr. Michal Brabec for his professional opinion. I am also

grateful to my family and friends for their patience and support.

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that

the Charles University in Prague has the right to conclude a license agreement

on the use of this work as a school work pursuant to Section 60 paragraph 1 of

the Copyright Act.

In Prague 31.7.2014 Bc. Petr Malý

Název práce: Statická analýza programů v C#

Autor: Petr Malý

Katedra: Department of Software Engineering

Vedoućı diplomové práce: RNDr. David Bednárek, Ph.D., Department of Soft-

ware Engineering

Abstrakt: Ćılem této diplomové práce je prozkoumat a aplikovat jednotlivé metody

statické analýzy C# programů přeložených do Common Intermediate Language.

Výsledky této práce jsou zakomponovány do systému ParallaX Development En-

vrionment. Tato diplomová práce se zaměřuje na Structural, Points-to a Depen-

dence Analysis.

Kĺıčová slova: Statická Analýza, C#, ParallaX, Bobox, Structural Analysis,

Points-to Analysis, Dependence Analysis

Title: Static analysis of C# programs

Author: Petr Malý

Department: Department of Software Engineering

Supervisor: RNDr. David Bednárek, Ph.D.,

Abstract: The goal of this diploma thesis is to study and implement selected

methods of static code analysis for C# programs translated into the Common

Intermediate Language. The results of this work are integrated into the ParallaX

Development Environment system. This diploma thesis focuses on Structural,

Points-to and Dependence. analysis.

Keywords: Static Analysis, C#, ParallaX, Bobox, Structural Analysis, Points-

to Analysis, Dependence Analysis

Contents

1 Introduction 3

2 Architecture 5

2.1 System Description . 5

2.2 ParallaX Development Environment 6

2.3 Goals . 7

2.4 Global Problems Analysis . 7

2.5 Related Work . 8

3 Intermediate Language 10

3.1 Problem Analysis . 10

3.2 Goals . 11

3.3 Language restrictions . 11

3.4 ParallaX Intermediate language requirements 12

3.5 Instruction Set Simplification . 12

3.6 Variable Manipulation . 13

3.7 Stack Problem . 13

3.8 Type System . 17

3.9 Code Generation . 18

3.10 ParallaX Intermediate Language Definition 19

4 Control-Flow Analysis 23

4.1 Problems . 23

4.2 Basic blocks . 24

4.3 Structural Analysis . 26

4.3.1 Control Structures in C# 26

4.3.2 Applicability to C# . 37

5 Points-to analysis 38

5.1 Accuracy . 38

5.2 CIL Intermezzo . 40

5.3 Algorithm Description . 41

5.3.1 Contraints Generating . 41

1

5.3.2 Points-to Sets Propagation 45

5.4 Steensgaard’s Algorithm . 46

5.5 Usage . 46

6 Dependence Analysis 49

6.1 Data dependences . 49

6.2 Control dependences . 50

6.3 Conditions for Parallel Running 52

6.4 Use in C# context . 53

7 Conclusion 54

Bibliography 56

List of Abbreviations 60

Appendix A Outputs 61

A.1 Common structure . 61

A.2 Example 1 . 62

A.3 Example 2 . 64

A.4 Example 3 . 65

A.5 Example 4 . 66

Appendix B DVD Content 67

2

1. Introduction

This work deals with a static analysis of C# programs. It is a part of the Paral-

laX development environment which allows a programmer to create a program

using the Bobox framework. The Bobox framework is a complex parallelization

environment, which allows to fully utilize multicore processors. This work builds

on the results of the master thesis [6] written by Michal Brabec and continues to

develop selected parts of the ParallaX development environment. This work

concerns algorithms of the static analysis, which are essential for the development

of further parts of the ParallaX development environment. The more detailed

architecture is described in Chapter 2.

The ParallaX development environment obtains a code written in C# as

an input. It is processed in several phases and a C++ code is produced. Then it

serves as an input for the compilation with Bobox framework.

The code generated into C++ is compiled with the Bobox framework to pro-

duce a final executable program. The programmer writes a single-threaded code.

The Bobox framework hides the entire synchronization from the programmer.

The development of a C# program is mostly easier and more comfortable

than the development in other languages of the C family. The development is

less error-prone. For instance, the use of the Garbage Collector and the variable

references stops from making memory leaks1. The C# type system and language

constructs prevent more errors. A great number of errors are detected while the

program is compiled into the CIL2. You can find more reasons in [13].

The proccess of transforming the C# code to a C++ code is not so simple and

several issues must be solved, because these languages are not the same and there

are several differences. This work provides the results of several analyses to the

ParallaX code generator, which produces a C++ code.

Although it is not difficult to generate a C++ code which could be compiled,

the final program struggles with performance issues. One part of the ParallaX

development environment is an optimizer which uses the results of the analyses

studied in this work. The optimizer uses the provided information to create a

code which can run parallel.

1We assume a program written in a code marked as the safe code and not unsafe, where the
pointers on memory are allowed.

2Common intermediate language is bytecode used as an input for Just-in-time compiler.

3

Only selected static analyses are dealt with in this work. This thesis is con-

cerned with the structural analysis, which is part of the data-flow analysis, the

points-to analysis and the dependence analysis. The first named analysis is re-

quired by two others. It deals with an identification of basic control structures

which are then used to unfold control dependences in dependence analysis. The

points-to analysis provides information about dependences in a dynamically al-

located memory. This information is supplied to the code generator and the

dependence analysis. This analysis enables us to detect the parts of the code,

which can run parallel. Separate chapters contain a detailed description of the

use of all results.

This work is divided into a few chapters. The chapter Architecture contains

the architecture of the system which the current work is included in. This chapter

also consists of the definition of goals determining this work. It contains a detailed

description of the topic and the purpose of this diploma thesis.

The chapter Architecture is followed by several separate chapters. Those

are the chapters Intermediate Language, Control-Flow Analysis, Points-

to analysis, Dependence Analysis. Each of them begins with a detailed

analysis of problems of the topic and then an algorithm description follows. A

short conclusion appears at the end of each of those chapters. It also contains a

final impact of the analysis on the development of remaining parts of the system.

The description of an intermediate language which is a fundamental part of

this work is included in the chapter Intermediate Language. It also contain

a description of the structural analysis which is connected with the intermediate

language.

The chapter Control-Flow Analysis consists of an control-flow analysis. In

this chapter the Structural analysis algorithms are discussed thoroughly.

It referes to the dynamically allocated memory and references to that memory.

The chapter Points-to analysis consists of an analysis of the same name. It

referes to the dynamically allocated memory and references to that memory.

The Dependence analysis is included in the chapter Dependence Analysis.

The control dependences are thoroughly treated in it.

4

2. Architecture

In this chapter you can find a detailed description of the context which con-

tains this work. We define main goals and challenges. Related work concerning

concerning the studied topic is handeled in this chapter.

2.1 System Description

As mentioned in the previous chapter this work is part of a larger system. The

context of the larger system is illustrated in Figure 2.1. This work is part of the

ParallaX development environment (or simpler the ParallaX environment).

C#

source code

C#

compiler
CIL code

ParallaX

optimizer

PIL code

ParallaX

C++

generator

C++

source

code

C++

compiler

Bobox

application

Bobox

framework

Bobox

C# interface

library

ParallaX

development

environment

Figure 2.1: Architecture of the ParallaX Development Environment

The ParallaX development environment deals with a preparing the input

for Bobox framework. The Bobox framework is a complex parallelization envi-

ronment, which enables to a programmer to fully utilize multicore processors. It

accepts a C++ code as an input and produces an executable program. You can

find more details about the Bobox framework in [5].

5

2.2 ParallaX Development Environment

The main purpose of the ParallaX development environment is to provide a

tool, which allows programmer to write a C# program for the Bobox framework.

It optimize the code and tries to apply an automatic parallelization.

The ParallaX development environment consists of two main parts, which

are depicted in Figure 2.2. The first one is an optimizer and the second one is a

code generator. The input of ParallaX optimizer is a compiled C# program and

its job is to do analyses and transformations required by the code generator. The

code generator generates a C++ code, which is in the subsequent stage compiled

with the Bobox framework to produce an executable program.

The straightforward generation of the C++ code is a routine task and a correct

code is created. However this code must be modified so that the available com-

puting resources would be fully utilized and the performance of the final program

would be improved.

The development of the ParallaX environment was started by Michal Brabec

as a part of the work [6]. He implemented the code inliner which belongs to the

ParallaX optimizer. This work concentrates on the phase of code analyses,

which is followed by the transforming of a code and the generating of a new one.

These operations are not parts of this work and are intented as a further work.

Code

Inliner

Structural

Analysis

Points-to

Analysis

Dependence

Analysis Transformations

C++ code

generator

Figure 2.2: Stages of ParallaX optimizer. This work concerns the stages in the
bold frame.

6

2.3 Goals

In order to transform C# programs to a C++ code, we need to track the dynami-

cally allocated memory. It is required because of absence of Garbage Collector1 in

C++ . Our goal is to do a points-to analysis. This analysis provides enough infor-

mation about the use of the dynamically allocated memory and helps to supply

the garbage collector functionality. It enables to study the dependences in that

memory, hence an automatic parallelization could be performed in the future.

The second goal is to do a dependence analysis. Control and data dependences

are obtained from this analysis and together with the results from the points-to

analysis it makes possible to detect the parts of the code which can run parallel.

The automatic parallelizations is made in the stage of transformations, which is

not part of this work.

Both analyses will get a method as an input. This method has all method calls

recursively inlined with the exception of library calls. Recursion is not permitted.

The use of the method which has all method calls inlined is defined in the previous

work [6] and has several consequences. Each analysis is applied to a method which

can be very large. The points-to analysis can be affected by a low precision of

the results under certain circumstances (described in more detail in Chapter 5).

The third goal arises from these properties. We group the instructions of the

input code together in basic blocks and identify control structures. This task is

included in the structural analysis. The results of the structural analysis will be

also used in the dependence analysis, while the control depences are searched for.

Structural analysis, Points-to set analysis and Dependence analysis are thor-

oughly described in the further separate chapters.

2.4 Global Problems Analysis

At the beginning writting of this work, the ParallaX optimizer (see Figure 2.2)

included only the code inliner. The code inliner accepts a CIL code method, the

inline expansion is applied to this method. The output of the code inliner is CIL

code again.

Any work with the CIL code is clumsy, because the code is adapted to com-

piling by JIT compiler. It is not suitable for being analysed and transformed by

1Garbage Collector registers allocated memory and also frees it when it is no more used.

7

an optimizer. There are too many instructions. A large number of them are only

variants of the others and differ only in the operand precision. The transforma-

tions include a lot of routine and error-prone work afterwards. The passing of

the values through the stack is not convinient for any code transformation. We

will design an intermediate language, because of these difficulties. Its purpose

will be to simplify the analysing and transforming of the code. The more precise

analysis of the designed intermediate language is in Section 3.1 of Chapter 3.

We will not support all the features of the C# language. The features includes

the exception handling, unsafe code and anonymous functions. The Bobox frame-

work is intended for scientific computations concerning the big data processing.

This framework does not contain the exception handling and recovery from it.

If an exception is thrown it offen means that the input program is incorrect or

the input data are wrong, therefore recovery form the exception is useless. It is

possible to implement the rest of the restrictions, but the implementation is hard

and needs a large amount of effort. In addition it would not bring any benefit in

the expected areas of the use.

In following chapters we will study the existing algorithms of the specified

analysis. The algorithms are often applied to the code in the form of an interme-

diate language. The intermediate language code is obtained by transforming the

code which is written in C language or Fortran. The intermediate language could

reflect the original language in some aspects, hence it is neccessary to adapt the

existing algorithms so that they could be used on the code obtained from the C#

code.

2.5 Related Work

The structural analysis algorithms are treated in [10]. The algorithms use different

algorithms from [1]. These algorithms are well known, hence we can also find them

in other publications.

The points-to analysis algorithms were first mentioned in the works [3] and

[12]. These two publications present two different approaches in obtaining points-

to sets. The results of the first approach is more precise than the ones of the

second approach. On the other hand the first approach is slower than the second

one. There are also publications which combine both basic approaches to obtain-

ing results which are parameterized by a level of accuracy, for instance [11]. The

8

points-to analysis in [3] is applied on the C language code. There are some articles

dealing with the point-to analysis in Java ([8], [9]) and fewer articles concerning

C# ([4]). In [4] an existing points-to analysis is extended and the inter-procedural

aspects of the points-to analysis are dealt with (functions are annotated). We

analyse only one C# function, because we have inlined all function calls in the

whole function, therefore our work will differ from it. In addition we intend to

do a points-to analysis of intermediate language methods.

There are two major groups of dependences - data-dependences and control-

dependences. The first group is very wide and many algorithms exist. Each of

them could find only some type of dependences if a certain set of conditions is

satisfied. There are many publications for each algorithm. For purposes of this

work we will use the algorithms presented in [10] and [2].

9

3. Intermediate Language

3.1 Problem Analysis

A process of compilation C# programs consists of translating program from C#

language to CIL bytecode1. This bytecode is then used to run the application.

JIT2 compiler takes care of translating it to native code of target machine archi-

tecture.

Main purpose of CIL is to provide code which is platform indenpendent and

could be fastly translated into various native codes by JIT compiler. Because of

this requirement the CIL is adapted in a suitable way.

For instance, the instruction for the local variable loading is in CIL presented

in several forms. The first one in the most general form is ldloc. This instruction

gets an index as its operand and stores the content of local variable onto the stack.

All the other forms has same name, but different suffixes, which indicates its

operand or values on the stack. The second form is ldloc.s which also requires

index of local variable as its operand. The only difference is in the index range.

The index of ldloc is the two bytes number and the index of ldloc.s is one

byte number. The other ldloc instructions has no operand and a local variable

index is encoded in the instruction’s suffix (its binary code). These are ldloc.0,

ldloc.1, ldloc.2, ldloc.3 instructions.

The instructions, which are offen used, have much more shorter code than

others. It is suitable for fast analysing by JIT compiler and also it spares the size

of the output assembly.

The CIL design of many instruction variants is not suitable for further analysing

or transformations, because each analyse or transformation would have to include

all variants of each instruction and this manner would lead to many mistakes.

Local variables in CIL are indexed by numbers beginning with 0. This num-

ber is then used as a operand in some instructions. The method’s arguments are

numbered in the same way. There are special instructions3 for loading of argu-

ments content. They have also suffixes which replace an index in the operand. If

we want to modify arguments of method (i.e. remove or add argument) or modify

1Common Intermediate Language bytecode
2Just In Time compiler
3 ldarg, ldarg.s, ldarg.0, ldarg.1, ldarg.2 and ldarg.3.

10

the set of local variables, we may face problem of arguments (or local variables)

indices renumbering. The indices of variables may change, therefore operands of

instructions need to be updated and some instructions also need to be replaced

by anothers.

The indices renumbering means an additional work for the programmer. It

has same pitfalls as common CIL transformations.

In general any small change in CIL bytecode often leads to other change, in

order to preserve executable code. According to mentioned problems and many

others it is required to design intermediate language which supress pitfalls specific

for CIL and allows to make transformations more comfortable.

We will call the designed intermediate language ParallaX intermediate lan-

guage in the following paragraphs. We will often use a shorter form PIL.

3.2 Goals

The main goal of the ParallaX intermediate language in context of ParallaX

optimizer is to create comfortable tool for a developer, who creates the analyses

and the optimalizations upon CIL bytecode.

It is not demanded to create the implementation of an executable machine

for ParallaX intermediate language. The meaning of PIL execution will be

clarified later in this chapter. It is expected that code will be transformed into

another code after all transformations and analyses will be done in ParallaX

intermediate language. More details about this transformation are described in

Section 3.9.

3.3 Language restrictions

We will use CIL code which was generated by C# compiler from Microsoft Vi-

sual Studio 2012 as input for compiling to intermediate form. There are several

conditions which we will impose on C# code and CIL code created from it.

We will not support exception handling, which would complicate development

of ParallaX optimizer. ParallaX optimizer is only proof of concept therefore

we leave the implementing of this construct as a future possible extension of

ParallaX optimizer.

11

For the same reasons we do not support lambda expressions and anonymous

functions.

This diploma thesis uses the results of work [6], where the CIL code was

analyzed during preliminary phase (more in [6]) and all inner calls of analyzed

method were inlined. The inline expansion cannot be done on recursive function,

hence the ParallaX intermediate language will be restricted on analysing single

method. However calling other functions will be able via special instructions.

3.4 ParallaX Intermediate language requirements

We impose several requirements on ParallaX intermediate language. Following

lines briefly express important points of ParallaX intermediate language:

• Simplification of the instruction set

• Ability to add or remove local variables or function arguments

• Leaving the stack design and supplying it with other structures

• Designing a type system

• Code generation to C++ language

All of these points are important and they should not be neglected. If we pay

no or only little attention to them, serious troubles may appear in later phases

of developing ParallaX optimizer. In consequence we may spend a lot of time

on solving problems, which may seem to be easy at the first sight.

3.5 Instruction Set Simplification

We recall an important fact that was mentioned at the beginning of this chapter:

there are many variants of each instruction. They are distinguished by suffixes

to describe different size of operand or another property.

The reasons of large amount of instructions are the code size and the effective

code execution including compilation by JIT compiler. These reasons are not

important for designed ParallaX intermediate language, because it is not a

final form of code and it is expected that other code will be generated from

designed intermedite language.

12

Not all CIL instructions might be covered by ParallaX intermediate lan-

guage. One reason is that we use code generated from the restricted C# code.

The second reason is that some instruction are connected with CIL type sys-

tem called CTS4. Primarily those are the conversion instructions like conv.i,

conv.u4, conv.ovf.i8 These intructions are not used in the ParallaX

intermediate language, because of its simplified type system which is described

later in Section 3.8.

The original code is not possible to trasform back into the identical form,

because the transformation simplifies it. That is why we cannot denote it as a

bijection.

For instance in ParallaX optimizer it is possible to transform ParallaX

intermediate language code back into the CIL code. The final code is not identical

as the original one, but the meaning of the program remains. Each PIL instruction

is connected with one from CIL (could be more than one). Some CIL instructions

could not be directly translated into the PIL and has to be connected to other

PIL instructions. An example of these can be conv. It is suitable to connect

these instructions to others which generate converted value (i.e. ld instructions

and operation instructions add, mul etc.).

3.6 Variable Manipulation

We need to get off the CIL instruction variants which have encoded the operand

inside itself. This could be done by a simple code filtering. The forbidden instruc-

tions are searched and replaced by its more general variant. This is not difficult

operation and we classify it as a code preparation modification, therefore this

modification is in ParallaX optimizer implemented in code preparation phase.

3.7 Stack Problem

While we study CIL code we do not know anything about values on the stack

without context and simulation of stack work. Let consider following CIL code:

1 ldc.i4.3

2 stloc.0 // int a = 3;

3 ldc.i4.4

4Common Type System

13

4 stloc.1 // int b = 4;

5 ldloc.0

6 ldloc.0

7 mul

8 stloc.0 // a = a * a

9 ldloc.1

10 ldloc.1

11 mul

12 stloc.1 // b = b * b

13 ldloc.0

14 ldloc.1

15 add

16 stloc.2 // int result = a + b

If we move instructions on lines 9-10 before line 5 we get the following code

which has same meaning as previous code:

1 ldc.i4.3

2 stloc.0 // int a = 3;

3 ldc.i4.4

4 stloc.1 // int b = 4;

5 ldloc.1

6 ldloc.1

7 ldloc.0

8 ldloc.0

9 mul

10 stloc.0 // a = a * a

11 mul

12 stloc.1 // b = b * b

13 ldloc.0

14 ldloc.1

15 add

16 stloc.2 // int result = a + b

From the previous code it is not clear which instructions produce stack values

for mul instruction on line 9. If we study code thoroughly, we discover that those

instructions are on lines 5-6. These instructions do not have to be immediately

before mul in contrast to first code sample.

We cannot see the track of the stack values in printed CIL code without

exactly knowing what kind of values does the instruction expect or produce on

the stack.

ParallaX optimizer parses CIL code with Cecil library and this library does

not offer any functionality which would help us to solve this complication. We

have to remove the stack and supply the stack values passing with something

else.

14

We have to express passing values somehow. We have the guarantee that all

values which were produced on the stack will also be consumed, because the stack

must be empty on the end of method execution. If the stack was not be empty

the execution of that code would throw an exception of invalid code. This case

we do not take into account.

In CIL, there is no correlation between how many values from the stack are

consumed and how many values are produced. Each instruction (except call in-

structions) has fixed number of consumed values from the stack and fixed number

of produced values. Call instructions get a variable number of arguments from the

stack. It also stores return value back on the stack if method returns any value,

otherwise nothing is stored onto the stack. Instructions, which do not push any

value on the stack, are mostly stores instructions and control instructions (i.e.

branches, calls).

We have to find the way how to express a transfer of value, which has been

pushed onto the stack and poped afterwards. We will regard the value transfer

as a link between two instructions. We can imagine the whole situation as an

oriented graph where the vertices are instructions and the edges are the value

transfers.

For example, we can see storing a value of 10 into variable with index 0

in Figure 3.1a. Of course, if there is an edge between two instructions, the

instruction, the edge starts at, must be executed before the instruction, the edge

ends at. In the figure the instruction ldc.i4 pushes the constant value of 10 on

the stack and then the instruction stloc.0 pops the value from the stack and

stores it into the local variable with index 0.

Another example is depicted in Figure 3.1b. The instruction add gets two

values from the stack, namely the value produced by instruction ldloc.1 and

also value from the instruction ldc.i4. We cannot deduce whether the ldloc.1

will be executed before ldc.i4 or vice versa. However we can only say that

ldloc.1 will run before add, ldc.i4 before add and add before stloc.1.

We would specify the graph as a rooted tree5 if there were no instructions

which produce more than one value. The instruction dup pops a value from the

stack, pushes it with its duplicate back onto the stack. A demonstration of this

instruction is illustrated in Figure 3.2. The graph in the figure is not a rooted

5The rooted tree is a graph that is a tree (we ignore the orientation of the edges) and there
is a directed path from each vertex to the root. The root is vertex which has no outgoing edge.

15

ldc.i4 10

stloc.0

(a) Storing constant value to a lo-
cal variable

ldloc.1 ldc.i4 20

add

stloc.1

(b) Adding 20 to a local variable

Figure 3.1: Stack values forwarding graph

ldc.i4 30

dup

stloc.1 stloc.2

Figure 3.2: Storing the same constant value to local variables with indices 1 and
2

tree because there is no directed path from stloc.2 to stloc.1 or vice versa.

In Figure 3.3 the dup instruction also breaks the definition of the graph (there

could at most one edge between two vertices). We can denote the passing of stack

values as DAG6 if we allow graphs to be multigraphs. The graph7 cannot contain

a cycle because if there were any cycle, it would not be possible to make a correct

execution order of the instructions.

Mostly there are only instructions which push only one value onto the stack,

but we cannot rely on that and we must take the instructions similar to dup into

a considiration.

6Directed Acyclic Graph
7 In the following text we will understand a graph to be a multigraph.

16

ldc.i4 30

dup

add

stloc.1

Figure 3.3: Storing the sum of two constant values 30 to a local variable

3.8 Type System

The code written in CIL byte code uses CTS8, which is part of CLI. CTS is

designed to be shared by several languages which are translated into the CIL.

The CTS establishes a type safety, a faster execution of the code and provides

a tool for easy cross-language integration. There is designed a shared library9

which is used by languages based on CIL.

There are two main groups of types in CTS - value types and reference types.

The variables of value types contain directly its value, on the other hand the

variables of reference type point to a location of another value.

These two groups are reflected in C# via value semantic and referenced se-

mantic10 are mainly classes. Value semantic means that the value of variable is

copied, when we use variable in an assignment or we pass it as a method argu-

ment. On the other hand the reference semantic means, that the reference on

allocated memory is copied in case reference type variables.

The C# compiler does lots of work around value types (especially structs).

Some optimalizations are performed and not all value copying in C# code could

be seen in CIL code.

For instance, we have following C# code, where MyStruct is a struct:

8Common Type System
9The library is a part of ECMA 335 standard

10 The value types are simple numeric types, structs and enumerations, whereas the reference
types are classes, objects, arrays, strings. More details are in [7].

17

S1 MyStruct myStruct = new MyStruct ();

S2 myStruct = new MyStruct (8);

We can conclude that there are three memory allocations and two value copy-

ings. After translation into the CIL, there are not so many allocations or copyings.

Produced CIL code looks as follows:

S3 ldloca.s 0

S4 initobj namespace.MyStruct

S5 ldloca.s 0

S6 ldc.i4.8

S7 call instance void valuetype

namespace.MyStruct ::. ctor(int32)

The statement S1 should allocate one memory place for struct, then copy

it into the already allocated local variable named myStruct. This statement

corresponds with CIL instructions in statements S3 and S4. The constructor in

statement S1 is supplied by initobj instruction because it is parameterless. This

instruction initalizes value on specified address with default values (null if the

type is reference type, zero otherwise). The constructor in statement S2 is not

parameterless, therefore it is supplied by call instruction. In the CIL code we

work only with two allocated places and there is explicit copying. The copying is

hidden in initobj instruction and in called constructor.

We also have to create a type system for ParallaX intermediate language.

It is not necessarily required by any analyses, but type system helps to obtain

more accurate information. We need a type system because the code will be

transformed to C++ code finally and therefore the information about the types

should be preserved.

It is important to distinguish the two main groups of data types, because

they will be treated differently in C++ . The variables with data type from the

first group will be treated as a standard variable, but the variables of reference

type will be treated as variables allocated on the heap and there are some pitfalls

which must be solved.

3.9 Code Generation

The code generation is one of the final phases the ParallaX optimizer will be

used for. It is important to take into consideration that there are some constructs

which might be difficult or impossible to translate into target language. C# and

18

C++ are very similar languages, thus the set of that constructs will be very small.

As an example, consider the situation in Figure 3.2. There is used dup instruc-

tion and we have to solve how to propagate one value on two places. An easy way

is to store the duplicated value into a temporary value. This also imposes that

we will have to be able to add a new variable into the translated method. The

question arises whether the dup instruction should have been removed during a

transforming of CIL to the ParallaX intermediate language or during a code

generation.

A more detailed code generation description could be found in a separate

chapter.

3.10 ParallaX Intermediate Language Definition

In this section we will introduce the ParallaX intermediate language and its

representation. We use the PIL in following chapters of this work to illustrate

results of the analyses and transformations done by several algorithms mentioned

in this work.

The PIL is mainly designed for easy use in ParallaX optimizer. It regards

the requirements mentioned above. In this work the code will appear in three

forms. The first form will consists of graphs, where each graph corresponds with

root instruction defined bellow. The second one is formed by textual output. And

the last one has form of an instruction list.

ParallaX intermediate language consists of instructions defined in Table

3.1. Any of these instructions can produce a value, which is then consumed by

other instructions. All instructions can produce only one value, but the value

might be consumed by more than one instruction. There is requirement that

produced value must be consumed by at least one instruction.

Instructions with no produced values form a method of PIL, each of these

we mark as root instruction. Instruction which is not a root one must produce a

value, which is consumed by another instruction. We say that the first instruction

is a producer of the second if the first one produces a value which the second

instruction consumes. We also say that the second instruction is consumer of the

first. We mark producers of an instrunction as its dependencies.

The instruction set of the PIL is smaller than the instruction set of CIL. The

CIL instructions are aggregated into simpler ones. All instruction variants, which

19

1 LoadConst 30

2 Duplicate

3 Operation Add

4 Store loc1

Figure 3.4: First PIL representation illustrates the same program as Figure 3.3,
i.e. the sum of two constant values and storing it into the variable loc1

differentiate between the precisions of the operands or has the operand encoded

into its name, are ommited and supplied with only one instruction. For example

the CIL instructions ldloc.s, ldloc.1, ldarg.0, ldarg.s, are supplied with

the Load instruction. All the branch instructions of CIL are grouped into the

instruction Branch.

All these modifications loses some information, i.e. operand precision, faster

instructions etc. This information is no more needed, because the ParallaX

intermediate language serves as a tool for generating of the code of high level

programming language and we cannot take advantage of lost information in that

language.

We will speak about the CIL code execution in the following paragraphs. We

will consider that all root instructions are proccessed. If the instruction (root

instruction or non-root instruction) is proccessed, all its value producers must

be proccessed before. If the instruction produces a value, it is passed to its

consument only once.

The first representation of PIL is the simplest one. It consists of a list of

instructions, where each item is the name of the instruction and its operand (if it

has operand). There is no difference between the root instruction and the normal

instruction in the list. We can deduce that an instruction is the root instruction

from the its type. However we cannot determine dependencies of an instruction,

because it is not obvious which value producer from the list does it have, hence

this form is not suitable for an illustration of relations between the instructions.

The following representations of the PIL cover this drawback. As an example of

this representation see the Figure 3.4.

The second representation consists of graphs. Each root instruction is ex-

pressed by a directed multi-graph G = (V,E) where V is a set of instructions

and E is a multi-set of relations between them. The edge corresponds to a value

passing. The directed edge ~e = (u, v) denotes that instruction u produces the

20

Instruction Produces Consumes Operand Description

Nop – – – No operation
Load loaded value – variable name Loads value of variable
LoadConst loaded con-

stant
– value Loads numeric or string con-

stant
Store – stored value variable name Stores value to variable
Operation result of opera-

tion
operand 1,
operand 2

operation type Basic operation, list of opera-
tion is in Table 3.2

Branch – result of condi-
tion

jump target Conditional or unconditional
branch

New address of ar-
ray or object

[array size] data type Allocates new object

LoadAddress address – variable name Load address of some object
LoadIndirect loaded value address to load,

array index
field name Load value of variable on given

address
StoreIndirect – address to

store, array
index, value

field name Store value to variable on given
address

Duplicate value and value value – Duplicate loaded value

Table 3.1: Instruction table of ParallaX Intermediate Language

value which the instruction v consumes. The graph is also DAG because there

cannot be a cycle. This representation is familiar to the implementation in Par-

allaX optimizer. Each instruction has its own object. Their fields contains

references to each other. Each reference refers to a value producer or consumer

of the instruction. The implementation make the instruction manipulation more

comfortable and transformation could be done without any obstructions. In this

work we will show the graphs as a pictures.

The code snippet in the graph form might be too spacious, hence we will also

use a textual form. In a textual form, the instructions are shown as a ”simplified

C code” in order to be short and brief. Each root instruction corresponds with

a statement. Duplicate instruction which is displayed as an assignment to a

temporary variable is the only exception. The instructions dependencies are

visible from the syntax of the statement.

21

Operation Description Symbol

Nop No operation nop
Add addition +
Sub substraction -
Mul multiplication *
Div division /
Mod module %
And bitwise and &
Or bitwise or |
Xor bitwise xor ˆ
Shl bitwise left shift <<
Shr bitwise right shift >>
Neg negation !
Not bitwise not ∼

Callvirt virtual method call callvirt
Call method call call
Ceq equal to ==
Cne non equal to !=
Cgt greater than >
Cge greater than or equal to >=
Clt less than <
Cle less than or equal <=

True true constant 1
False false constant 0

Table 3.2: Table of operations, which might be used by Operation instruction

22

4. Control-Flow Analysis

There are two main parts of the original control-flow. The first part is the basic

blocks detection and the building of a flowgraph. The second part is the detection

of the loops or other control structures, i.e. ifs, gotos, cycles - fors, whiles. The

control structures detection is done by the interval analysis and the structural

analysis. The interval analysis identifies only loops, the structural analysis is

more sophisticated and discovers more control structures (the list of the control

structures is available in Section 4.3.1). In this chapter we will engage with a

construction of a flowgraph (it includes a basic blocks detection) and with a

structural analysis.

4.1 Problems

We can face problem with duplicate instruction. It may happen that the value

produced by duplicate is consumed by two instructions each of them from dif-

ferent basic block. It can cause troubles when we change the control flow. In this

case we can remove the duplicate instruction and supply it with the storing of

the value to the local variable and loading it at appropriate places. The situation,

when the value of the duplicate instruction is consumed in different basic block,

is rare and common C# compilers1 do not produce the CIL code which would end

like this.

The algorithms of structural analysis presented in [10] also detect a region

called improper interval schema (the exact definition of this term is written in

Section 4.3). Some programming languages allow to create this situation, it is

often caused by improper use of gotos. The only way how to produce that code

in C# would be to use goto commands which would refer inside of nested blocks

(cycle, if, try, etc.). However it is not possible, because the standard [7] forbids

it. The goto command can refer to the label in the scope of the current block or

in the scope of the outer block. The CIL code which is not produced by C# can

contain the improper interval schema. In our situation we consider only the code

generated from the C# code, hence we do not have to take the improper interval

schema into account.

1The compilers provided in Microsoft Visual Studio or Mono Project.

23

We will use the same terms in the following paragraphs as in [10].

4.2 Basic blocks

As mentioned earlier method is formed by sequence of root instructions and their

dependencies. Analyzed method will be considerably large, because of code inlin-

ing. We will group root instructions into basic blocks. We use the same definition

of a basic block as in [1] and we use algorithm presented in [10].

We define basic block as a maximal sequence of consecutive root instructions

which satisfy conditions:

• The only enter to the block is the first root instruction. Thus there is no

jump into the middle of the basic block.

• The execution of the root instruction leaves the block on the last root

instruction of the basic block. Hence there are no jumps or calls in the

middle of the basic block.

Successors of basic block b are the basic blocks whose instructions could be

executed immediately after the last root instruction of the basic block b. The

predecessors of basic block b are the basic blocks which can be executed just

before the first instruction of the basic block b.

We connect all the basic blocks where the method returns back with so-called

terminating basic block. The reason is a comfortable use in other analyses. The

points where the execution exits the method are unified with terminating basic

block. The original basic block where the method returns back are still available

via basic block connections.

The basic block of PIL code must begin at the first root instruction, at a

root instruction, which is target of some branch, or a root instruction which

immedieately follows conditional branch. These root instructions we will call

leaders. In the algorithm for basic blocks construction we find leaders first. Then

we create a basic block for each root instruction sequence which begins with

a leader and ends with the root instruction before another leader or the last

root instruction (the sequence does not contain any leader except the first root

instruction). In the last phase we connect all basic blocks together according to

branch instructions. The final algorithm for basic blocks contructions is shown

in Algorithm 1.

24

Data: The sequence instrs of PIL instructions
Result: Flowgraph consisting of basic blocks

1 Leaders = ∅;
2 Leaders = Leaders ∪ first instruction of instrs;
3 foreach branch instruction b in instr do
4 if b is not the last instruction then
5 Leaders = Leaders ∪ nextInstruction(b);
6 end
7 Leaders = Leaders ∪ branchTarget(b);

8 end
9 TerminatingBasicBlock = CreateTermBB();

10 BasicBlocks = {TerminatingBasicBlock};
11 foreach leader l in Leaders do
12 i = leader;
13 while i < length(instrs) ∧ i /∈ Leaders do
14 i = i + 1;
15 end
16 i = i− 1;
17 BasicBlocks = BasicBlock ∪ CreateBB(leader, i);

18 end
19 foreach basic block bb in BasicBlocks do
20 if bb is not TerminatingBasicBlock then
21 lastInstr = lastInstruction(bb);
22 if lastInstr is branch instruction then
23 if branchTarget(lastInstr) == −1 then
24 Succ(bb) = {TerminatingBasicBlock};
25 Prec(TerminatingBasicBlock) ∪= bb;

26 end
27 else
28 nextBB = basicBlockOf(branchTarget(lastrInstr));
29 Succ(bb) ∪= {nextBB};
30 Prec(nextBB) ∪= {bb};
31 end
32 if lastInstr has a value producer then
33 nextBB = basicBlockOf(lastrInstr + 1);
34 Succ(bb) ∪= {nextBB};
35 Prec(nextBB) ∪= {bb};
36 end

37 end
38 else
39 Succ(bb) = {TerminatingBasicBlock};
40 Prec(TerminatingBasicBlock) ∪= {bb};
41 end

42 end

43 end
44 return BasicBlocks;

Algorithm 1: Basic Block Construction

25

The graph G = (V,E), where V is a set of basic blocks and E is a set of

relations between the basic blocks, we call a flowgraph. A strongly connected

component2 of graph G we will call a region.

The flowgraph serves as an input for further analyses. In the following text

we will apply the structural analysis to the flowgraph. It will extend the current

flowgraph. We create a tree which will contain a control structures of the analyzed

program. This tree is called control tree.

4.3 Structural Analysis

The structural analysis is kind of control-flow analysis. This analysis identifies

control-flow structures, i.e. ifs, gotos, cycles - fors, whiles. This analysis gets

a flowgraph of the analyzed method as an input. A control tree is its output.

The set of nodes in the control tree consists abstract nodes. The abstract node

represents a control structure consisting of other control structures which form

theirs children. The abstract nodes in the leaves correspond with basic blocks.

4.3.1 Control Structures in C#

We will recognize several types of control structures. These control structures are

language specific. The original C# control structures will be detected.

We may generate a C++ code without any information about the control

structures, then the generated code would contain many gotos and it would not

be suitable for the optimizer of the C++ compiler. Any other optimization needs

to have control structures indentified.

We will detect following types of control structures: Block, IfElse, For,

While and Unknown. Not all structures are covered by the first four types. We

assign them to the last named group Unknown. For example the switch construct

or if construct containing goto statement inside belongs to this group.

In the [10] there are other schemata recognized. Those are proper and improper

interval region. Either group is connected with gotos statements.

The proper interval region is defined as an acyclic subgraph of a flowgraph,

which does not match on the other recognized schemata. In C# context the if

with goto statement inside match this definition. The proper schema is depicted

2The subgraph in which every vertex is reachable from the each other vertex

26

1 public static void ProperSchema(bool arg1 ,

2 bool arg2){

3 Console.WriteLine("B1");

4 if(arg1){

5 Console.WriteLine("B2");

6 goto B4;

7 }

8 B3:

9 Console.WriteLine("B3");

10 if(arg2){

11 Console.WriteLine("B5");

12 goto B6;

13 }

14 B4:

15 Console.WriteLine("B4");

16 B6:

17 Console.WriteLine("B6");

18 }

Figure 4.1: The C# source code of proper schema in Figure 4.2

in Figure 4.2. In the Figure 4.1 there is C# source code of this proper schema.

On the other hand the improper interval region is defined as a multi-entry

region3. This pattern causes difficulties, because it could not be reduced easily.

In programming language it could happen that the goto statement refers to the

label inside a loop. This behaviour is in C# forbidden. The standard [7] says

that gotos statements can point to the label inside the scope of the current or

outer block, not the inner block. In C# there is only way how to create improper

region. We have to create a cycle from gotos and one more entry to it. All other

3strongly connected component of the flowgraph

B1

B2 B3

B4 B5

B6

goto

got
o

Figure 4.2: The proper schema

27

1 public static void ImproperSchema(bool arg1 ,

2 bool

arg2){

3 Console.WriteLine("B1");

4 if(arg1){

5 Console.WriteLine("B3");

6 goto B5;

7 }

8

9 Console.WriteLine("B2");

10 B4:

11 Console.WriteLine("B4");

12 if(arg2){

13 Console.WriteLine("B6");

14 goto B6;

15 }

16 B5:

17 Console.WriteLine("B5");

18 goto B4;

19 B6:

20 Console.WriteLine("B6");

21 }

Figure 4.3: The C# source code of improper schema in Figure 4.4

cycle structures in C# are considered to be a block, therefore we cannot create

another entry to it. An example of improper region you can see in Figure 4.4. Its

C# source code is in Figure 4.3.

In this work we will consider these two schemata to be in unknown construct

group. If we do not use gotos statements, we do not match pattern of proper or

improper interval region.

In the following sections we introduce the patterns which are recognized in

the ParallaX optimizer. We also present the algorithms for their recognition.

These algorithm can be included to the algorithm of structural analysis mentioned

in [10]. We do not present the algorithm of structural analysis in this work,

because it does not need any modifications.

Block Control Structure

The Block control structure is the simplest structure. It consists of several basic

blocks which form a chain. The chain is formed by at least two basic blocks, it has

entry and exit basic block. The other basic blocks forms a path from entry basic

28

B1

B2 B3

B4 B5

B6

Figure 4.4: The improper schema containg a loop with two entries

block to exit basic block. In the algorithm we always get a Block with maximal

length. The last basic block of the chain has to have only one successor in order

to parse conditions of IfElse structure correctly. You can see an example of the

Block control structure in Figure 4.5.

B1

B2

BN

Figure 4.5: The Block control structure

IfElse Control Structure

Another more complex structure is IfElse. There are several parts of it: condi-

tion, then part and else part. The basic block which follows the control structure

immediately is called other basic block. The control structure could contain the

condition and then part more than once. The control structure is depicted on

Figure 4.6. The conditions are in the dashed frames. The else part is not manda-

tory.

The condition part can be composed of many conditions, but at least one.

Each condition except the first one must have only one predecessor. The first

29

one could have more than one successor. Each condition basic block also must

have two successors. If the basic block has only one successor (which follows a

condition basic block), it is then, else or other basic block. These basic block

form a boundary of the control structure. To differentiate other basic block from

then or else basic block we have to inspect its predecessor. If there is a such

predecessor which has other basic block as its successor and it is only successor

it means that the inspected basic block is other basic block.

COND 1

COND 2

COND N

COND A

COND B

COND M

THEN STMS THEN STMS ELSE STMS

OTHER STMS

Figure 4.6: The IfElse control structure consisting of two condition parts
(dashed frames) and one else part.

In the structural analysis algorithm (Algorithm ??) we obtain a node and we

test if it is an entry node of IfElse control structure. The detection is described

in Algorithm 2. At first we search all condition blocks, then blocks and other

block candidates. In the cited algorithm we use depth first search. Then we test

if the size of each set of the blocks is correct and if all successors of the then

blocks are the same other block (there must be only one other block).

For Control Structure

For control structure consists of several parts. It is illustrated in Figure 4.7.

Same as in the previous control structure the For control structure contains a for

30

1 Function DetectIfElse(processedNode, out newNode, out nodeSet):
2 nodeSet=emptySet;
3 newNode=nil;

4 otherStructures = ∅;
5 thenStructures = ∅;
6 conditionStructures = ∅;
7 if |successors(processedNode)| == 2 then
8 visited = ∅;
9 DeepFirstSearch1(processedNode);

10 if |thenStructures| > 0 && |otherStructures| == 1 &&
∀t ∈ thenStructures : successors(t)[0] == otherStructures[0] then

11 nodeSet = conditionStructures ∪ thenStructures;
12 newNode = new IfElseStructure(nodeSet);
13 return;

14 end

15 end
16 return;

17 End

18 Function DeepFirstSearch1(abstractNode):
19 visited(abstractNode) = true;
20 if |predecessors(abstractNode)| == 1 &&

∃p ∈ predecessor(abstractNode) && |succesors(p)|==1 then
21 otherStructures ∪= abstractNode;
22 return;

23 end
24 else if |successors(abstractNode)|==1 then
25 thenStructures ∪= abstractNode;
26 return;

27 end
28 else
29 conditionStructures ∪= abstractNode;
30 end
31 foreach successor ∈ successors(abstractNode) do
32 if !visited(successor) then
33 DeepFirstSearch1(successor);
34 end

35 end

36 End

Algorithm 2: IfElse control structure detection

31

header part, a condition part, a body part and an iteration part. We also need to

recognize a control structure following the For control structure; we denote it as

other block.

For header part consists of only one block which is an entry point of the

control structure. The only successor of this block is a condition block.

Condition part is composed of at least one condition block. Each partial

condition block must have two successors and except first partial condition only

one predecessor.

We cannot obtain any useful information from successors and predecessors

of other block. The block could have one or more predecessors. At least one

predecessor must be a condition block and the others could be another condition

block or any body block. The break statement causes the connection between

body block and other block.

The body part consists of at least one body block. We have to consider more

than one block because it is not always possible to replace all the body blocks

with a single block. The statements break and continue cause troubles, because

of their connection to the control structure.

The iteration part is a block which follows the body and its only successor is

the first condition block.

The Algorithm 3 identifies the for header at first, the conditions block are

detected in the same way as in the case of IfElse control structure. The only pitfall

is that some body block could satisfy the rules for a condition block identification,

thus the algorithm must process the condition nodes again.

The blocks which follow the conditions (and are not the condition blocks) are

either other block or body blocks. The algorithm inspects the path from them

to the first condition block in order to differentiate them. If all paths from the

inspected block to the first condition block contain a for header block, then the

inspected node is the other block. If there is a path from the inspected block to

the first conditional block which does not passes through the for header block,

then it is a body block. All the blocks of the path from body block to the iteration

block or other block are also body blocks.

Some of the condition blocks satisfy the conditions for identification of con-

dition blocks. Those are the blocks which have only one predecessor and two

successors. In Algorithm 3 the condition blocks are iterated in post-order (depth-

first search) and if the one of the successors of the inspected block is the only

32

other block, then the inspected node is a conditional block and we stop searching.

Otherwise the block is body block and the search must continue. This search

must be done in the second stage because the other block was not available in

the previous stage.

If the body part of the control construct consists of more than one body block,

the structural analysis must be applied again. This time the input is the subgraph

composed of body blocks and the edges which denotes that break or continue

statement are deleted.

FOR HEADER

BODY A

BODY N

ITERATION

CONDITION 1

CONDITION N

OTHER STMS

b
r
e
a
k

c
o
n
t
i
n
u
e

Figure 4.7: For control structure

While Control Structure

The While control structure is very similar to the For control structure. The

While control structure is depicted in the Figure 4.8. The only difference is that

the control structure misses the for header and iteration block. The iteration

block could be supplied by the first condition block in Algorithm 3. The for

33

1 Function DetectIfElse(processedNode, allNodes, out newNode, out
nodeSet):

2 nodeSet=emptySet;
3 newNode=nil;

4 forHeader = processedNode;
5 firstCondition = nil;
6 iteration = nil;
7 conditions = ∅;
8 bodyParts = ∅;
9 otherParts = ∅;

10 if |successors(processedNode)| == 1 then
11 processedNode = successors(processedNode)[0];
12 firstCondition = processedNode;
13 if predecessor(processedNode)[0] == forHeader then
14 iteration = predecessor(processedNode)[1];
15 end
16 else
17 iteration = predecessor(processedNode)[0];
18 end
19 visited = ∅;
20 DeepFirstSearch2(processedNode);
21 foreach condition ∈ conditions ; /* in post order */

22 do
23 if !otherParts[0] ∈ successor(condition) then
24 break;
25 end
26 conditions -= condition;
27 bodyParts ∪= condition;

28 end
29 bodyParts = Reduce(bodyParts);

30 if |bodyParts| == 1 && |conditions| > 0 && |otherParts| == 1
&& |predecessors(firstCondition)| == 2 &&
|successsors(firstCondition)| == 2 then

31 nodeSet = forHeader ∪ conditions ∪ bodyParts;
32 newNode = new ForStructure(nodeSet);
33 return;

34 end

35 end
36 return;

37 End

Algorithm 3: For control structure detection

34

1 Function DeepFirstSearch2(abstractNode):
2 visited(abstractNode) = true;
3 if (|predecessors(abstractNode)| == 1 && |successors(abstractNode)|

== 2) || abstractNode == firstCondition then
4 conditions ∪= abstractNode;
5 foreach successor ∈ successors(abstractNode) do
6 if !visited(successor) then
7 DeepFirstSearch2(successor);
8 end

9 end

10 end
11 else if !Path(abstractNode, firstCondition, allNodes - forHeader) then
12 otherParts ∪= abstractNode;
13 end
14 else if Path(abstractNode, firstCondition, allNodes - forHeader) then
15 bodyParts∪= abstractNode;
16 foreach successor ∈ successors(abstractNode) do
17 if !visited(successor) then
18 DeepFirstSearch2(successor);
19 end

20 end

21 end

22 End

Algorithm 4: Depth first search used in Algorithm 3

35

header block could be supplied by the predecessor of the first condition block

which has the highest post-order number.

BODY A

BODY N

CONDITION 1

CONDITION N

OTHER STMS

b
r
e
a
k

c
o
n
t
i
n
u
e

Figure 4.8: While control structure

Unknown Control Structure

The rest set of the block patterns is denoted as unknown control structures.

We have to replace the minimal strongly connected component of the blocks

with multiple entries and all blocks forming the paths from the nearest common

dominator4 of the entries to them. In similar way, we also replace the blocks which

forms the paths from the exits of SCC to their nearest common post-dominator5.

If there is no such SCC6, we replace all blocks in the path from its nearest

dominator to its nearest post-dominator.

4Dominators of a node are all nodes of the graph which are contained in all paths from the
entry node of the graph to the node.

5Post-dominators of a node are all nodes of the graph which are contained in all paths from
the node to the exit node.

6strongly connected component

36

4.3.2 Applicability to C#

The structural analysis algorithms are used for C# control structures recognition.

The main algorithm remained unchanged, however the algorithms for the control

structures recognition had to be adapted to C# context.

37

5. Points-to analysis

Points-to analysis also known as a pointer analysis produces the set of objects to

which the variables of a pointer type may point during program execution. The

points-to analysis give us same information as an alias analysis. We say that x

is alias of y and y is alias of x if both x and y point to the same location. Alias

analysis produces the pairs of variables which may be aliased at any moment of

the runtime.

The points-to analysis differs from the alias analysis in the output. It does

not produce pairs, but it makes a variable set for every pointer. The set contains

objects to which the pointer may point. It requires less storage than the alias

analysis. For instance for the assignments in C language p = &x and p = &y we

get p = {x, y}, the alias analysis would produce pairs (∗p, x) and (∗p, y).

We distinguish two kinds of alias information - may alias information and must

alias information. May alias information means that a variable may point to an

object on any path in the flowgraph, on the other hand must alias information

says that a variable must point to an object on all paths in the flowgraph.

There are two main algorithms of points-to analysis. The former which was

presented in [3] was created by L. O. Andersen and the latter which was developed

by B. Steensgaard and is described in [12].

Andersens’ algorithm is more precise and runs in O(N3) time. On the other

hand Steensgaard’s algorithm is not as precise as Andersens’s is, but works in

timeO(N). We get sets from Steensgaard’s algorithm. They are larger than those

created by Andersen’s algorithm and contain objects that are never pointed to

by the pointer. See the example in section 5.4. In this work we shall mainly

make use of Andersen’s algorithm. We adapt it to the ParallaX intermediate

language described in chapter 3 on page 10.

5.1 Accuracy

The analysis is called flow-sensitive if it takes the control-flow into consideration,

otherwise it is flow-insensitive.

We make difference beetween information we received as summary for the

whole function and that gained for a specific point (e.g. after each statement).

38

The former case is less precise and does not refer to the control-flow. The latter

case is related to different points in the program and accuracy depends on the

amount of observed points.

Many studies contain flow-insensitive points-to analysis because flow-sensitive

analysis does not bring important information which would help to improve the

code rapidly. One of the reasons was that the analysis was applied to small simple

functions which make complex algorithms and points-to sets were processed by

an interprocedural analysis.

In this work we have to deal with flow-sensitive points-to analysis, because we

use only one function as an input. All called functions were inlined in previous

phases of ParallaX. Processed function consists of basic blocks which then con-

tain instructions. Basic blocks correspond with control structures like cycles and

if construct. We use a basic block as a unit for creating point-to sets. That means

that we will create sets of objects which pointers may point to after executing

all statements (instructions) in basic block. This variant is at least as precise as

flow-insensitive variant. However it is not fine-grained (it would not improve our

results in comparison with small simple functions mentioned above).

In Andersen’s work [3] there were also problems with calls. All the calls from

the analysed function are considered to be different function calls even though

they call the same function. If the recursion is detected, then the analysis uses a

context of the first call of recursion as the context of a called method. It is where

incaccuracy of the result starts increasing. it starts growing up inaccuracy of the

result. This behaviour is in some aspects similar to function inlining, but there

are some differences. For more details see [3].

Another interesting part of points-to analysis is accessing to fields of composed

data types. There are three ways how to analyse fields. We have an expression

reference.SomeField which describes access to a field named SomeField via

a reference stored in the variable reference. The less precise way is called

field-indenpendent. It ignores all fields and a points-to set of the field reference

SomeField is the same as a points-to set of the variable reference. This approach

mostly concerns in points-to analyses of C code. A more precise interpretation is

called field-based. The points-to set of the reference and field are not identical,

but the points-to set of the field is shared by many instances of the composed

type, which the reference may point to. In the above mentioned expression the

variable reference is ignored and the field SomeField is considered to be a single

39

variable. The most precise way is called field-sensitive. This interpretation dif-

ferentiate between the instances of composed type, therefore all the fields of each

instance (the reference points to) are treated as various variables. For instance let

a reference may point to two memory places A and B. Then if we want to know

the points-to set of reference.SomeField we get a union of the points-to sets

A.SomeField and B.SomeField where A and B denote instances of the composed

type. More details and examples could be found in the subsection Field Load

and Store. The ParallaX optimizer implements the last mentioned variant,

i.e. the field-sensitive interpretation.

5.2 CIL Intermezzo

There are two kinds of data types supported in CIL - value types and reference

types. Variables of the value type directly contain their data, in contrast of

variables of reference type which contain a reference to their data. The value

types in C# are numeric ones (int, float, ...), structs and enums. A complete

list can be found in [7] on pages 107-112. The reference types are classes, interfaces

arrays or delegates. (see [7] on pages 112-117).

We could point to variables by pointers in CIL. There are managed and un-

managed pointers. Managed pointers may point to a local variable, parameter,

field of a compound type, or an element of an array. They are registered by the

Garbage Collector. In contrast to the managed pointers, unmanaged pointers

are not registered by the Garbage Collector. We will not take the unmanaged

pointers into consideration in this work. These pointers are not produced to CIL

code from safe C# code.

In CIL code, which is generated by C# compiler, the instances of reference

types are accessed via references that can be stored in the local variables, passed

as arguments, be a field of an object or be an element of an array. We mostly

use their addresses, because we access their fields or elements. In CIL there are

several instructions used to access the reference type instances, for exapmle ldfld

or ldelem. These instructions require the address of an object or an array. In PIL

we will gather these instructions together in LoadIndirect and StoreIndirect.

40

Situation Constraint Meaning

Allocation New RefType

Store locRef
locRef C {LOCREF} LOCREF ∈ pts(locRef)

Assignment Load locRef

Store copiedRef
copiedRef C locRef pts(copiedRef) ⊇ pts(locRef)

Field Load
LoadAddress locRef

LoadIndirect RefType.Field

Store copiedRef

copiedRef C locRef.F ield
∀LOC ∈ pts(locRef) :
pts(copiedRef) ⊇ pts(LOC.F ield)

Field Store
LoadAddress locRef

Load srcRef

StoreIndirect RefType.Field

locRef.F ield C srcRef
∀LOC ∈ pts(locRef) :
pts(LOC.F ield) ⊇ pts(srcRef)

Table 5.1: Table with points-to constraints for various statements in ParallaX
Intermediate Language

5.3 Algorithm Description

As mentioned above, the algorithm has two phases. At first constraints are

generated and then a constraint-solving algorithm is applied. Local variables and

arguments of analysed function having the reference type, will be regarded as a

pointer variable. We also look on the variables with reference type representing a

field of a composed type or an element of an array as a pointer variable. We will

track the fields or elements of the instances which have been allocated inside the

analysed function. We assume that all calls of the analysed function have been

inlined and therefore there are not any call instructions.

5.3.1 Contraints Generating

There are several kinds of constraints. All the constraints are listed in Table 5.1.

In the first phase we will try to extract these constraints from the PIL code. The

constraint represents a direction of the change propagation of the altered points-

to set. It is important to distinguish between the types of constraints, because

the change propagation is different for each type of contraints.

We use capital letters and numbers to denote an abstract location (explained

in subsection Allocations below). The name in camel case format beginning

with a small letter referes to a variable name. For each variable v of the reference

type we will keep a set of abstract locations and we will call it points-to set of

variable v. We will denote it as pts(v). Composed types, which are a kind of

reference type, contain fields. Fields have their own name and type. To access

that field we use a type or an abstract location of composed type and a field name.

For example ComposedType.F ieldName or LOC1.F ieldName.

41

Allocations

We associate each allocation in PIL (New instruction) with an abstract location. It

represents the memory where the value is stored. The name of a variable which the

allocated object is assigned to serve as a name for abstract location (we use it in

capital letters in order to separate it from the variable name). Hence an allocation

in the format locVar = New() has its name LOCV AR (allocations in this format

will be called simple allocations). However there are more complicated statements

with New instruction like locVar = New().Field or a repeated allocation (these

will be called complex allocations). We will provide these abstract locations with

a numbered temporary name.

The detection of abstract locations is trivial, we look it up in DAG1 of root

instruction. Simple allocations can be recognized so that the instruction New is

one of the value producers of the instructions Store or StoreIndirect, all the

other occurences of the New instruction are complex allocations.

We create an apropriate constraint from Table 5.1 for all simple allocation

It is not necessary to create any constraint for complex allocation, because the

abstract location is not referenced

Simple allocation constraints locRef C {LOCREF} makes a subsequent im-

pact on points-to set: pts(locRef) must contain LOCREF abstract location.

We shall also make difference if the reference is null or not, therefore we

shall introduce special abstract location with name NULL. We also need to have

an abstract location for that case when we do know nothing about the content

of a variable - UNKNOWN. Such a situation comes, when variables are passed as

arguments to the function. We know nothing about passed arguments without

inter-procedural analysis and this analysis is not in the scope of this project.

On Figure 5.1 on line 6 we can see an allocation in C#. On Figure 5.2 on line

1-2 we can see the same code translated into PIL.

Assignments

Contraints of the assignment type are easy to recognize, because they must be in

the format copiedRef = locRef where copiedRef and locRef are local variables

or the passed arguments. Other assignments with dereferenced variables are

described in the Field Load and Store subsection.

1 Directed Acyclic Graph

42

1 class ReferenceType

2 {

3 public ReferenceType Field;

4 }

5

6 ReferenceType reference = new ReferenceType ();

7 ReferenceType copiedReference = reference;

8 copiedReference = reference.Field;

9 reference.Field = copiedReference;

Figure 5.1: The situations in C# code which affects the point-to sets. Line 6
contains a new object creation, the assignment of a variable on line 7, loading
fields of an object on line 8 and storing them on line 9

1 New ReferenceType

2 Store locReference

3

4 Load locReference

5 Store copiedReference

6

7 LoadAddress locReference

8 LoadIndirect ReferenceType.Field

9 Store copiedReference

10

11 LoadAddress locReference

12 Load copiedReference

13 StoreIndirect ReferenceType.Field

Figure 5.2: The situations in ParallaX Intermediate Language which affects
point-to sets. Lines 1-2 contains a new object creation, the assignment of a
variable on lines 4-5, loading fields of an object on lines 7-9 and finally storing
them on line 11-13

43

We have the constraint copiedRef C locRef demanding, that copiedRef may

point to the same abstract location as locRef may, i.e. pts(copiedRef) ⊇
pts(locRef).

Field Load and Store

The loading and storing of the fields is the most complicated situation. In Table

5.1 there are only cases mentioned with one dereference on the left or the right

side of an assignment. The assignment of more than just one dereference could

be decomposed into more statements on condition that each statement has at

most one dereference (i.e. it contains only one instruction StoreIndirect or

LoadIndirect).

We need temporary variables, so as to decompose a complex statement. We

replace all derefences inside another one by a temporary variable. Consider the

following statement as an example of decomposing:

loc1.Field1.Field2 = loc2.Field3.Field4

Results of the previous statement decomposition:

t1 = loc1.Field1

t2 = loc2.Field3

t3 = t2.Field4

t1.Field2 = t3

At first we analyse the field store situation. Let us have a statement in the

format expr1.CustomField = expr2 where expr1 and expr2 can be variables or

field variables.

If expr1 is a field variable anotherExpr.AnotherF ield we create a new tempo-

rary variable t1 and try to analyse a new expression t1 = anotherExpr.AnotherF ield.

If expr2 is also an expression we replace it by t2 in the same way and create con-

straint t1.CustomFieldC t2.

If we have a statement in the format variable = expr.CustomField where expr

is a field variable, then we substitute it by a temporary variable t again and create

a new constraint variable C t.CustomField. In the end we also have to analyze a

new expression t = expr.

The last possible expression variable1 = variable2.CustomField generates a

constraint variable1 C variable2.CustomField.

44

When we have decomposed all complex field loads and stores, we obtain con-

straints in the format variable1.CustomField = variable2 for a field store and

another one in the format variable1 = variable2.CustomField for a field load.

For the first constraint there must be the following equation satisfied:

∀ LOC ∈ pts(variable1) : pts(LOC.CustomField) ⊇ pts(variable2)

and for the second constraint:

∀ LOC ∈ pts(variable2) : pts(variable1) ⊇ pts(LOC.CustomField)

Notice that we keep points-to set for a field variable of an instance of the

composed type. The name of its abstract location serves as a signature of the

instance. We also define the points-to set of the dereferenced variable as follows:

pts(variable.CustomField) =
⋃

LOC∈pts(variable)

pts(LOC.CustomField)

This is not used while the algorithm propagates the changes, but it is included

in the result, because it provides more accurate information about the field usage

for us.

5.3.2 Points-to Sets Propagation

During first phase of the points-to analysis we have generated a set of constraints,

which we use to propagate points-to sets among variables now. These constraints

are an input for the propagating algorithm. A points-to set for each variable is

an output of the algorithm.

The propagating algorithm is depicted in Algorithm 5. It uses a worklist

where the variables, whose points-to set has changed, are stored.

The outer while is neccessary for the correctness of the algorithm. For ex-

ample let variables loc1 and loc2 point to the same abstract location {LOC1}.
They are both aliases for each other. A statement changes loc1.Field and

another reads loc2.Field. We cannot rely on loc2 getting into the worklist.

Lines 26-38 are required for correctness. On the other hand lines 14-24 are

not necessary, but empirical observations have prooved that this heuristic speeds

45

up the algorithm.

5.4 Steensgaard’s Algorithm

Steensgaard’s algorithm does not use the subset based constraints, but it uses a

type inference. It means that an artificial type is made for each variable and a

constraint for each statement of the program. Constraints make relations between

the types. The types are unified according to a rule if there is statement x = y,

then type(x) = type(y). The points-to sets are associated rather with the type

than the variable itself in this algorithm, therefore if type(x) = type(y) then

pts(x) = pts(y) has to be satisfied. In addition each type can point to at most

one other type.

For example, consider the situation on Figure 5.3a, there are pointers pointing

to each other. The frame surrounding each variable indicates its type and its

points-to set2. The situation after processing statement x = y is depicted on

Figure 5.3b. In that point both x and y may point to the same variable w. The

variable types of x and y should be unified, because of the condition mentioned

above, this is illustrated on Figure 5.3c. The type of u and w points to two

different types and this is forbidden, thus we have to unify these two types, see

Figure 5.3d.

The result of the analysis shown on Figure 5.3d gives us information that

both u and w may point to v or z. We have obtained inaccurate information,

because in this context it is obvious that u cannot point to z and also w could

not point to v. This redundant information has an impact only on precision of

depending analyses, the correctness should not be threatened, because we have

may information not must information.

5.5 Usage

Another code analysis requires the result of this analysis. Depependence analysis

is the cited analysis. In context of C# and C++ , it can be used to detect the

validity range of a variable. The Garbage Collector is responsible for the allocation

and the deallocation in C#. There is no Garbage Collector in C++ , therefore we

2points-to se is associated with the type

46

Data: The set of constraints
Result: Points-to sets for each variables

1 Initialize pts(v) as empty set for each variable v except function arguments;
2 Set pts(a) = {UNKNOWN} for each function argument a;
3 foreach constraint v C {LOC} do
4 pts(v) = pts(v) ∪ {LOC};
5 end
6 W = {v | pts(v) 6= ∅};
7 while W is not empty do
8 while W is not empty do
9 w = get from W;

10 foreach assignment constraint uC w do
11 pts(u) = pts(u) ∪ pts(w);
12 Add u to working list W ;

13 end
14 foreach field store constraint u.CustomFieldC v where u = w or

v = w do
15 foreach LOC ∈ pts(u) do
16 pts(LOC.CustomField) = pts(LOC.CustomField) ∪ pts(v);
17 end

18 end
19 foreach field load constraint uC w.CustomField do
20 foreach LOC ∈ pts(w) do
21 pts(u) = pts(u) ∪ pts(LOC.CustomField);
22 Add u to working list W ;

23 end

24 end

25 end
26 foreach field store constraint u.CustomFieldC v do
27 foreach LOC ∈ pts(u) do
28 pts(LOC.CustomField) = pts(LOC.CustomField) ∪ pts(v)
29 end

30 end
31 foreach field load constraint uC v.CustomField do
32 foreach LOC ∈ pts(v) do
33 pts(u) = pts(u) ∪ pts(LOC.CustomField)
34 end
35 if pts(u) has changed then
36 Add u to working list W ;
37 end

38 end

39 end
40 foreach variable v do
41 if {UNKNOWN} ∈ pts(v) then
42 pts(v) = {UNKNOWN};
43 end

44 end

Algorithm 5: Worklist propagation

47

x u v

y w z

(a) State before applying constraint

x u v

y w z

(b) After constraint applying

x u

w

v

y z

(c) First node unified

x

y

u

w

v

z

(d) Second node unified

Figure 5.3: Applying constraint for x = y statement in the Steensgaard’s algo-
rithm

have to manage the allocations and deallocations ourselves. Information provided

by Points-to analysis helps us to determine the validity range of the variable.

48

6. Dependence Analysis

Dependence graphs are connected with Dependence analysis which is an important

tool for the instruction scheduling. This work is dealing with C# code transformed

up to intermediate language, where the instruction scheduling is not as important

as in a native code. We use the information provided by analysis for a revealing

the parts of program which may run in parallel.

As main parts of analysis are generetad data structures which contain in-

formation about dependencies in analyzed program. There are two kinds de-

pendencies which we study, the former data dependences and the latter control

dependences. The mentioned datastructures are called data-dependence graph and

control-dependence graph. Both of them are program-dependence graph.

In following sections we examine data dependences and control dependences

in more details. All analyses will be adapted to context of C#.

6.1 Data dependences

Data dependence is a constraint which reflects a relation between two statements.

These two statements use the same memory location. There are several kinds

of data dependences. They are contained in many publications. We use the

definitions from [10].

We assume that a statement S1 precedes a statement S2. Then we consider

following categories of data dependences:

• If the former statement S1 sets a value that the latter statement S2 uses,

we call this a flow dependence or true dependence.

• If S1 uses the value which the S2 sets, we say that there is an antidepence

between them.

• If both statements S1 and S2 write to the same variable, we call this de-

pencence an output dependence.

• Finally, if S1 and S2 read the same variable’s value, we say that there is an

input dependence between them.

49

Data dependence graph is created from data dependences. If we consider the

statements only inside a basic block, then the graph is DAG1. The dependences

inside the basic block is useful when the instructions are scheduled to fully utilize

processor and memory. We do not concern the instruction scheduling, because

we use PIL and it is not a final form of the code.

The data dependences are important for ParallaX development environ-

ment, because the automatic parallelization on the code must not break the data

depences in order to preserve program correctness. Important dependences are

those between the basic blocks and loop iterations, because that is a possible

area for automatic parallelization which could not be affected by C++ compiler

rapidly in later stages of the code processing.

There are many methods how to inspect the data dependences. The technics

revealing the dependences between the statements which operates with the ar-

ray variables are called dependence testing. There are many algorithms which

recognize only specific types of the data dependences. For example:

• Acyclic test

• Fourier Motzkin test

• Omega test

• Simple Loop Residue test

• Extended GCD test

• . . . and more others

The domain of data dependences is too wide and needs detailed inspection of

this area to mark out the technics which can be used in the context of the Paral-

laX development environment, therefore we will study only control dependences

in more detail in this work.

6.2 Control dependences

At first we introduce a relation dominance on flowgraph nodes (this definition is

presented in [10]). We say that basic block d dominates basic block i, written

1Directed Acyclic Graph

50

Start

Entry

Exit

B1

B2

B3 B4

B5 B6

B7

B8

Figure 6.1: Example of the extended flowgraph

d dom i, if every possible execution path from entry to i includes d. It is clear

that this relation is reflexive, transitive and antisymmetric. In the similar way

we define postdominance relation. The only difference is in the path. We say

that basic block p postdominates basic block i, written p pdom i, if every possible

execution path from i to exit passes through p.

We use the previous definitions to define the control dependence. Basic block

n is control-dependent on basic block m if and only if

1. there exists a path in the flow graph from m to n. All basic blocks in that

path except the m are postdominated by n and

2. n does not postdominates m.

The control dependency relation could be expressed as a control dependence

graph. We use the extended flowgraph to build the CDG. The extended flow-

graph consists of the original one with added one node called start. This node is

connected to the entry node and the exit node. This steps preserves the output

CDG as one connected component.

51

Exit

Start B3 B8 B1

B2 B4 B7 Entry

B5

B6

Figure 6.2: Postdominance tree of the flowgraph in Figure 6.1

We start with constructing postdominance tree2. We create a set of edges S

which consists of the edges m→ n in the extended flowgraph which satisfies the

condition that n does not postdominates m. Next, we find the nearest common

ancestor a of these nodes in the postdominance tree. All the nodes on the path

from a to n except a are control dependent on m.

Let consider a flowgraph in Figure 6.1. We build a post dominance tree which

is depicted in Figure 6.2. In the next step we create the set S. It contains follow-

ing edges: B3→B4, B1→B2, B1→B5, B5→B and Start→Entry. The Figure 6.3

illustrates the final control dependence graph.

6.3 Conditions for Parallel Running

The control dependence graph provides us information about parallel execution of

the basic blocks. If the node a and b are control-dependent on the same node c and

there is no data dependence between them, then they can be executed in parallel.

For instance in Figure 6.3 the basic blocks B3 and B2 are control-dependant on

B1,hence they can run in parallel if there is no data-dependence.

2Graph which is built according to postdominance relation.

52

Start

B1 Entry

B5 B3 B2 B7 B8

B6 B4

Figure 6.3: The control dependence graph of the flowgraph in Figure 6.1

6.4 Use in C# context

The algorithm which builds the CDG operates with a flowgraph which consists of

the basic blocks. These basic blocks are formed by PIL instructions. The output

is a new graph composed of the same basic blocks again. Therefore no changes

are needed and well known algorithms (mentioned in [10]) could be used.

53

7. Conclusion

In this work we have designed the ParallaX intermediate language1, which was

not defined as a main goal of this work. It has turned out that the PIL is an

essential part of the ParallaX environment. The algorithms of the structural,

points-to and dependence analysis were adapted to use PIL.

The structural analysis gets a sequence of PIL instructions as its input. It

produces two basic graphs - control graph and flow graph. There are several

C# control structures detected (if conditions, for cycles etc.). The other control

structures can exist in a valid CIL or PIL code. However they cannot be produced

by the common C# compiler2.

There are two main approaches of doing the points to analysis. The first

one is less accurate Steensgaard’s method described in [12]. The second one is

more accurate Andersen’s method introduced in [3]. We have chosen Andersen’s

method. Both versions analyse the C code but not the C# code, therefore the

algorithms had to be modified appropriately. Either version does not focus on the

complex data types and produces less precise information about them. We have

focused on the analysis of class fields in this work. The analysis was motivated

by the existing analysis for Java described in [8]. The implemented analysis gets

a method in PIL as an input. The analysis produces sets of abstract locations

for all variables of the reference type. The abstract locations correspond with

instructions which allocate a new memory.

There are two main types of the dependences which have been studied in the

scope of the dependence analysis. Those are the control dependences and the data

dependences. This work only includes the control dependences. The area of the

data dependeces has appeared to be too wide and needs to be examined in more

detail in order to be used in the context of the ParallaX environment.

The control dependence analysis requires a produced flowgraph, which has

been provided by the structural analysis. The post dominance tree is also used to

detect control dependences.

You can find the source codes of the implemented analyses on the attached

DVD. It is not possible to test the entire ParallaX development environment,

because not all parts has been implemented yet. More details about testing of

1PIL
2The compilers provided in Microsoft Visual Studio or Mono Project.

54

analyses results are placed into the file with name readme.txt. You can find this

file in the root of DVD filesystem.

This master thesis has reached the defined goals. The main contributions

consist in exploring of the existing algorithms of the selected analyses and adapt-

ing them to the context of the C# programs. The implementation has become

a part of the larger system - the ParallaX environment, which prepares and

transforms programs for the parallel execution. It also provides a solid basis for

further work in the context of the ParallaX environment.

55

Bibliography

[1] A.V. Aho, M.S. Lam, J.D. Ullman, and R. Sethi. Compilers: Principles,

Techniques, and Tools. Pearson Education, 2011.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures:

A Dependence-based Approach. Morgan Kaufmann, 2002.

[3] Lars Ole Andersen. Program Analysis and Specialization for the C Program-

ming Language. PhD thesis, University of Copenhagen, 1994.

[4] Mike Barnett, Manuel Fähndrich, Diego Garbervetsky, and Francesco Lo-

gozzo. Annotations for (more) precise points-to analysis. In Proceedings of

the 2nd International Workshop on Aliasing, Confinement and Ownership

in object-oriented programming (IWACO’07), pages 11–18, 2007.

[5] David Bednárek, Jǐŕı Dokulil, Jakub Yaghob, and F Zavoral. The bobox

project parallelization framework and server for data processing. Charles

University in Prague, Technical Report, 1:2011, 2011.

[6] Michal Brabec. Parallelizability analysis based on bytecode. Master’s thesis,

Charles University in Prague Faculty of Mathematics and Physics, 2013.

[7] ECMA. Standard ECMA-334 C# Language Specification. ECMA (European

Association for Standardizing Information and Communication Systems),

Geneva, Switzerland, June 2006.

[8] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using

spark. Compiler Construction, pages 153–169, 2003.

[9] D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-

insensitive and context-insensitive points-to analyses for Java. In Proceedings

of PASTE’01, pages 73–79, 2001.

[10] Steven S. Muchnick. Advanced Compiler Design Implementation. Morgan

Kaufmann Publishers, 1997.

[11] Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-

to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium

56

on Principles of Programming Languages, POPL ’97, pages 1–14, New York,

NY, USA, 1997. ACM.

[12] Bjarne Steensgaard. Points-to analysis in almost linear time. Proceeding

POPL ’96 Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages History of programming languages,

pages 32–40, 1996.

[13] Linda Wilkens. The joy of teaching with C#. Journal of Computing Sciences

in Colleges, Volume 19 Issue 2:254–264, 2003.

57

List of Tables

3.1 Instruction table of ParallaX Intermediate Language 21

3.2 Table of operations, which might be used by Operation instruction 22

5.1 Table of points-to constraints . 41

58

List of Figures

2.1 Architecture of the ParallaX Development Environment 5

2.2 Stages of ParallaX optimizer 6

3.1 Stack values forwarding graph . 16

3.2 Storing the constant . 16

3.3 Storing the sum . 17

3.4 The sum of two constants . 20

4.1 The C# source code of proper schema in Figure 4.2 27

4.2 The proper schema . 27

4.3 The C# source code of improper schema in Figure 4.4 28

4.4 The improper schema containg a loop with two entries 29

4.5 Block control structure . 29

4.6 IfElse control structure . 30

4.7 For control structure . 33

4.8 While control structure . 36

5.1 C# cases of the points-to set manipulation 43

5.2 PIL cases of the points-to set manipulation 43

5.3 Steensgaard’d algorithm example 48

6.1 Example of the extended flowgraph 51

6.2 Postdominance tree of the flowgraph in Figure 6.1 52

6.3 The control dependence graph of the flowgraph in Figure 6.1 . . . 53

59

List of Abbreviations

CIL Common Intermediate Language

CLR Common Language Runtime

CTS Common Type System

CDG Control Dependences Graph

DAG Directed Acyclic Graph

JIT Just In Time Compiler

PIL ParallaXIntermediate Language

STL Standard Template Library

60

A. Outputs

Following pages contain a demonstration of the points-to analysis. These outputs

could be obtained from the implemented analysis by running the tests. More

informations are contained in the attached readme.txt file.

The first code snippet is always analyzed C# code. The second snippet is

a translation of C# code to the ParallaX intermediate code. Finally the last

output are points-to set for the code in intermediate language.

A.1 Common structure

1 public class SimpleClass

2 {

3 public bool boolValue;

4 public int integralValue;

5 public long longValue;

6 public double doubleValue;

7 public float floatValue;

8 public SimpleClass selfReference;

9

10 public int Field { get; set; }

11

12 public int IntegralValue

13 {

14 get { return this.integralValue; }

15 set { this.integralValue = value; }

16 }

17

18 public bool Method ()

19 {

20 return true;

21 }

22 }

61

A.2 Example 1

C# code:

1 void Test1(){

2 SimpleClass sc1 = new SimpleClass ();

3 SimpleClass sc2 = new SimpleClass ();

4 sc2.selfReference = sc2;

5 sc2.selfReference = sc1;

6

7 SimpleClass sc3 =

PointsToTest.SetIntegralValue(new

SimpleClass ());

8 SimpleClass sc5 = sc3;

9 sc5.selfReference = sc2;

10

11 SimpleClass sc4 =

sc3.selfReference.selfReference;

12 sc3.selfReference.selfReference = sc3;

13

14 int iterations = 5;

15 while (iterations -- > 0)

16 {

17 SimpleClass scWhile = new SimpleClass ();

18 scWhile.selfReference = sc1;

19 sc1 = scWhile;

20 }

21 }

Intermediate language code:

1 Nop

2 Loc0 ← New()

3 Loc1 ← New()

4 *(Loc1).selfReference ← Loc1

5 *(Loc1).selfReference ← Loc0

6 Loc8 ← New()

7 *(Loc8).integralValue ← 5

8 Loc9 ← Loc8

9 GoTo 9

10 Loc10 ← Loc9

11 GoTo 11

12 Loc2 ← Loc10

13 Loc3 ← Loc2

14 *(Loc3).selfReference ← Loc1

15 Loc4 ← *(*(Loc2).selfReference).selfReference

16 *(*(Loc2).selfReference).selfReference ← Loc2

17 Loc5 ← 5

18 GoTo 21

19 Loc6 ← New()

62

20 *(Loc6).selfReference ← Loc0

21 Loc0 ← Loc6

22 Loc5 ← OpSub(T0 ,1)

23 Loc7 ← OpCgt(T0 ,0)

24 if Loc7 then GoTo 18

25 Return

Points-to sets:

Loc0 = {LOC0 , LOC6}

Loc1 = {LOC1}

Loc8 = {LOC8}

Loc6 = {LOC6}

Loc9 = {LOC8}

Loc10 = {LOC8}

Loc2 = {LOC8}

Loc3 = {LOC8}

Loc4 = {LOC1 , LOC0 , LOC6 , LOC8}

Loc1:: selfReference = {LOC1 , LOC0 , LOC6 , LOC8}

Loc3:: selfReference = {LOC1}

Loc2:: selfReference = {LOC1}

Loc2:: selfReference :: selfReference = {LOC1 , LOC0 ,

LOC6 , LOC8}

Loc6:: selfReference = {LOC0 , LOC6}

63

A.3 Example 2

C# code:

1 void Test2(){

2 SimpleClass sc1 = new SimpleClass ();

3 SimpleClass sc2 = new SimpleClass ();

4

5 SimpleClass sc3 = sc2;

6 sc3.selfReference = sc1;

7 sc1 = sc2.selfReference;

8 }

Intermediate language code:

1 Nop

2 Loc0 ← New()

3 Loc1 ← New()

4 Loc2 ← Loc1

5 *(Loc2).selfReference ← Loc0

6 Loc0 ← *(Loc1).selfReference

7 Return

Points-to sets:

Loc0 = {LOC0}

Loc1 = {LOC1}

Loc2 = {LOC1}

Loc2:: selfReference = {LOC0}

Loc1:: selfReference = {LOC0}

64

A.4 Example 3

C# code:

1 void Test3{

2 SimpleClass sc1 = new SimpleClass ();

3 SimpleClass sc2 = new SimpleClass ();

4 sc2.selfReference = new SimpleClass ();

5 sc2.selfReference.

6 selfReference = new SimpleClass ();

7 sc2.selfReference.

8 selfReference.

9 selfReference = new SimpleClass ();

10 sc2.selfReference

11 .selfReference

12 .selfReference

13 .selfReference = sc2;

14

15 sc1 = sc2.selfReference.selfReference;

16 }

Intermediate language code:

1 Nop

2 Loc0 ← New()

3 Loc1 ← New()

4 *(Loc1).selfReference ← New()

5 *(*(Loc1).selfReference).selfReference ← New()

6 *(*(*(Loc1).selfReference).selfReference)

7 .selfReference ← New()

8 *(*(*(*(Loc1).selfReference).selfReference)

9 .selfReference).selfReference ← Loc1

10 Loc0 ← *(*(Loc1).selfReference).selfReference

11 Return

Points-to sets:

Loc0 = {LOC0 , LOC1:: SELFREFERENCE :: SELFREFERENCE}

Loc1 = {LOC1}

Loc1:: selfReference = {LOC1:: SELFREFERENCE}

Loc1:: selfReference :: selfReference =

{LOC1:: SELFREFERENCE :: SELFREFERENCE}

Loc1:: selfReference :: selfReference :: selfReference =

{LOC1:: SELFREFERENCE :: SELFREFERENCE :: SELFREFERENCE}

Loc1:: selfReference :: selfReference :: selfReference

:: selfReference = {LOC1}

65

A.5 Example 4

C# code:

1 public void Test4()

2 {

3 SimpleClass sc1 = new SimpleClass ();

4 SimpleClass sc2 = new SimpleClass ();

5 sc1 = new SimpleClass ();

6 SimpleClass sc3 = sc1;

7

8 SimpleClass sc4 = new SimpleClass ();

9 SimpleClass sc5 = sc4;

10 sc5 = new SimpleClass ();

11 sc5.selfReference = new SimpleClass ();

12 SimpleClass sc6 = sc4.selfReference;

13 }

Intermediate language code:

1 Nop

2 Loc0 ← New()

3 Loc1 ← New()

4 Loc0 ← New()

5 Loc2 ← Loc0

6 Loc3 ← New()

7 Loc4 ← Loc3

8 Loc4 ← New()

9 *(Loc4).selfReference ← New()

10 Loc5 ← *(Loc3).selfReference

11 Return

Points-to sets:

Loc0 = {LOC0 , TEMP1}

Loc1 = {LOC1}

Loc3 = {LOC3}

Loc4 = {LOC4 , LOC3}

Loc2 = {LOC0 , TEMP1}

Loc5 = {LOC4:: SELFREFERENCE}

Loc4:: selfReference = {LOC4:: SELFREFERENCE}

Loc3:: selfReference = {LOC4:: SELFREFERENCE}

66

B. DVD Content

For the detailed instructions to run the project see README.txt file. The attached

DVD has following structure:

• parallax

– trunk

∗ Architecture

∗ Documentation

∗ Mono.Cecil

∗ ParallaX

∗ ParallaX.Common

∗ ParallaX.ConfigurationEngine

∗ ParallaX.Core.Analyzer

∗ ParallaX.Core.CodeGenerator

∗ ParallaX.Core.CodePreprocessor

∗ ParallaX.Core.DependenceTester

∗ ParallaX.Core.PrelimCodeAnalyzer

∗ ParallaX.Core.PrelimTransformer

∗ Parallax.Interface

∗ ParallaX.IntermediateLanguage

∗ ParallaX.Library

∗ ParallaX.OptimalizationDriver

∗ UnitTest

∗ Local.testsettings

∗ ParallaX.sln

∗ ParallaX Example1.sln

∗ ParallaX.vsmdi

∗ Settings.StyleCop

∗ TraceAndTestImpact.testsettings

• parallax example

67

– trunk

∗ ParallaXExample1

∗ ParallaXExample1.Lib

∗ ParallaxExample2

∗ common.bat

∗ ParallaXExample1.sln

• README.txt

68

	Introduction
	Architecture
	System Description
	ParallaX Development Environment
	Goals
	Global Problems Analysis
	Related Work

	Intermediate Language
	Problem Analysis
	Goals
	Language restrictions
	ParallaX Intermediate language requirements
	Instruction Set Simplification
	Variable Manipulation
	Stack Problem
	Type System
	Code Generation
	ParallaX Intermediate Language Definition

	Control-Flow Analysis
	Problems
	Basic blocks
	Structural Analysis
	Control Structures in C[0pt][0pt]#
	Applicability to C[0pt][0pt]#

	Points-to analysis
	Accuracy
	CIL Intermezzo
	Algorithm Description
	Contraints Generating
	Points-to Sets Propagation

	Steensgaard's Algorithm
	Usage

	Dependence Analysis
	Data dependences
	Control dependences
	Conditions for Parallel Running
	Use in C[0pt][0pt]# context

	Conclusion
	Bibliography
	List of Abbreviations
	Appendix Outputs
	Common structure
	Example 1
	Example 2
	Example 3
	Example 4

	Appendix DVD Content

